WO2002004936A1 - Probe for mass spectrometry of liquid sample - Google Patents

Probe for mass spectrometry of liquid sample Download PDF

Info

Publication number
WO2002004936A1
WO2002004936A1 PCT/JP2001/005961 JP0105961W WO0204936A1 WO 2002004936 A1 WO2002004936 A1 WO 2002004936A1 JP 0105961 W JP0105961 W JP 0105961W WO 0204936 A1 WO0204936 A1 WO 0204936A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
probe
general formula
compound
carbon atoms
Prior art date
Application number
PCT/JP2001/005961
Other languages
English (en)
French (fr)
Inventor
Koji Suzuki
Yoshio Suzuki
Original Assignee
Japan Science And Technology Corporation
The Kanagawa Academy Of Science And Technology Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation, The Kanagawa Academy Of Science And Technology Foundation filed Critical Japan Science And Technology Corporation
Priority to JP2002509756A priority Critical patent/JP4212353B2/ja
Priority to US10/332,622 priority patent/US7301018B2/en
Priority to AU2001269491A priority patent/AU2001269491A1/en
Publication of WO2002004936A1 publication Critical patent/WO2002004936A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2458/00Labels used in chemical analysis of biological material
    • G01N2458/15Non-radioactive isotope labels, e.g. for detection by mass spectrometry

Definitions

  • the present invention relates to a probe for mass spectrometry of a liquid sample.
  • mass spectrometry is one of the most sensitive and accurate methods for quantifying samples in specimens.
  • mass spectrometry is important to select an ionization method that matches the properties of the compound.
  • the former method includes electron ionization, chemical ionization, and atmospheric pressure ionization, and the latter includes electrospray ionization, matrix-assisted laser desorption ionization, and fast atom bombardment ionization.
  • the detection of the molecular ion peak of the sample is extremely low and is usually observed as a pseudo-molecular ion peak to which sodium or the like is added, or in the case of LG / MS, ammonium acetate, formic acid, A method has been adopted to aid ionization of the sample by mixing a protic solvent such as acetic acid.
  • an object of the present invention is to provide a means for efficiently ionizing a liquid sample without adding a protic solvent to a mobile phase in an ionization method in mass spectrometry of a liquid sample.
  • the inventors of the present invention have used, as a probe, a compound having, in one molecule, a group that is ionized in a solvent and a functional group that reacts and covalently bonds with a functional group in the sample compound. It was conceived that the sample compound could be efficiently ionized by covalently bonding the probe to the sample compound, and the sample compound ionized by such a probe was analyzed by electrospray mass spectrometry. It was experimentally confirmed that quantification could be performed with high sensitivity, and the present invention was completed.
  • the present invention provides a compound represented by the general formula [I]:
  • R 1 is an ionic functional group that becomes an ion in a solvent
  • R 2 is a structure capable of binding to another substance
  • A is a part of an arbitrary spacer.
  • the probe for mass spectrometry of the liquid sample represented by these is provided.
  • the present invention also provides a mass spectrometric method comprising binding the probe of the present invention to a sample compound in a liquid sample, and subjecting the resulting conjugate to mass spectrometry. Furthermore, the present invention provides the use of the compound represented by the above general formula [I] for producing a probe for mass spectrometry of a liquid sample.
  • the sample can be ionized efficiently without adding a protic solvent to the mobile phase.
  • Spray ionization mass Analysis can be performed.
  • FIG. 1 shows a mass spectrum obtained by electrospray ionization mass spectrometry performed in Example 11 of the present invention.
  • FIG. 2 shows a mass spectrum obtained by electrospray ionization mass spectrometry in the case of using only the probe, performed in Example 11 of the present invention.
  • FIG. 3 is a diagram schematically illustrating a configuration of a mass spectrometer used for mass spectrometry performed in Example 11.
  • R 1 is an ionizing group that ionizes in a solvent.
  • R 1 may be any group as long as it can be ionized in the solvent used, and may be either positively charged or negatively charged.
  • examples of R 1 include an amine, a carboxylic acid or a salt thereof, a sulfonic acid or a salt thereof,
  • R' '' are the same or different and do not adversely affect the effects of the present invention, preferably, hydrogen, halogen, or a linear or straight-chain having 1 to 20 carbon atoms. Or a branched alkyl group), but is not limited thereto.
  • halogen j is fluorine, chlorine, bromine and iodine unless otherwise specified.
  • amines are preferred, and in particular, amines represented by the following general formula [M] are preferred.
  • R 3 , R 4 and R 5 are each independently any group which does not adversely affect the effects of the present invention, preferably hydrogen, halogen, or a linear group having 1 to 20 carbon atoms. Or a branched alkyl group
  • R 2 represents a structure capable of binding to another substance.
  • An example of a preferred group of R 2 is a functional group capable of reacting and covalently bonding with a functional group in a sample compound.
  • R 2 may be any functional group as long as it can react with a functional group in the sample compound to form a covalent bond. Since liquid samples analyzed by mass spectrometry are often biological substances such as proteins and sugars, the functional groups often contained in these samples, i.e., one NH 2 group, _SH group,
  • a functional group that reacts with a COOH group, an OH group, or a CHO group to form a covalent bond is preferred.
  • Examples of such functional groups SCN-, CI0 2 S-,
  • two molecules of the probe are combined with the sample compound represented by R—CHO. React like.
  • R 2x Preferred R 2 is a group represented by the general formula [VI]
  • n indicates an integer of 1 to 5
  • the halogen is preferably bromine.
  • R 2 represented by the above general formula [VI] reacts with cytosine in the sample compound and binds as follows.
  • R represents an arbitrary group such as a nucleotide or a sugar moiety of a nucleic acid
  • R 2 can bind to the cytosine moiety in the sample compound, cytidine monophosphate, cytidine diphosphate, cytidine triphosphate, deoxycytidine monophosphate, deoxycytidine diphosphate and deoxycytidine triphosphate, and Can bind to nucleic acids such as DNA and RNA, including cytosine.
  • R represents an arbitrary group such as a nucleotide or a sugar moiety of a nucleic acid
  • this R 2 can bind to the guanine moiety in the sample compound, guanosine monophosphate, guanosine diphosphate, guanosine triphosphate, deoxyguanosine phosphoric acid, deoxyguanosine diphosphate and deoxyguanosine are used. It can bind to nucleic acids such as DNA and RNA containing triphosphate and guanine.
  • R 2 is a group represented by the above general formula [VI I], it reacts with the phosphate moiety in the sample compound and binds as follows (however, in the following example, when n is 2) About).
  • this reaction formula shows the case where the sample compound is deoxyadenosine monophosphate (that is, the base in the nucleotide is adenine and the sugar is deoxylipose), but R 2 binds to the phosphate moiety.
  • the base may be another base other than adenine, such as cytosine, guanine, thymine or peracil, and the sugar may be deoxylipose or ribose.
  • the number of phosphate esters is one, but since R 2 is bonded to the terminal phosphate ester, the number of condensed phosphate esters can be any of one to three. It may be.
  • R 2 represented by the general formula [VI I] can bind to all kinds of nucleosidophosphates, nucleosidoniphosphates and nucleoside triphosphates. Further, since a free phosphate ester exists at the terminal of the nucleic acid, R 2 represented by the general formula [VII] can bind to a nucleic acid such as DNA or RNA.
  • R 2 is a group having optical activity
  • by binding to a sample compound having optical activity measurement of a sample compound having a specific optical activity becomes possible. It is possible to determine the absolute configuration of the optical center.
  • Preferred examples of R 2 having optical activity can Rukoto include a group represented by the general formula [VI II].
  • R 2 represented by the general formula [VI II] is, c react with amino acids to bind as follows
  • the amino acid is a mixture of D-form and L-form (racemic form)
  • the formed conjugates have a diastereomeric relationship with each other.
  • R 2 is not limited to a functional group capable of reacting and covalently bonding with a functional group of the sample compound.
  • a group having an enclosing cyclic structure can also be preferably used as R 2 .
  • R 2 may be mentioned those having a structure of inter-force rate to double-stranded nucleic acid.
  • R 2 include a group represented by the following general formula [IX].
  • ⁇ 1 1 ⁇ Pi 1 2 each independently represent hydrogen, halogen, N N-dialkyl ⁇ amino group of an alkyl group or a C 1 5 having 1 5 carbon atoms
  • Such R 2 is because it binds to inter force rate to double-stranded nucleic acid, a probe having the good Una R 2 may be preferably used for the measurement of the double-stranded nucleic acid.
  • Examples of the group having a cyclic structure that includes the sample compound include a group represented by the following general formula [X].
  • R 13 is a hydroxyl group, a carboxyl group or an alkyl group having 1 to 5 carbon atoms, and m is an integer of 5 to 9)
  • the cyclodextrin structure represented by the general formula [X] is a cyclic oligosaccharide having a truncated conical structure with a hydroxyl group facing outward and a carbon chain facing inside. Since the vacancy of cyclodextrin is a hydrophobic field, organic molecules can be included in the vacancy using hydrophobic interaction. By utilizing this phenomenon, to purify water containing various organic fraction child of small amounts, in order that the included material to identify what, utilizing the probe having the above R 2 Can be. By administering the probe to a water sample and stirring, the organic molecules in the water sample are included in the pores of cyclodextrin.
  • Examples of the group having a cyclic structure that includes the sample compound include a group represented by the following general formula [XI].
  • R 14 and R 15 are each independently hydrogen, halogen or an alkyl group having 1 to 5 carbon atoms
  • R 16 is an alkyl group having 1 to 5 carbon atoms, or a carboxyl group, an ester group or an amide at the terminal.
  • the calixarene represented by the general formula [XI] is a cyclic oligomer composed of a benzene ring. Vacancies surrounded by benzene rings in force liqus arenes are hydrophobic fields Therefore, organic molecules can be included in the pores by utilizing the hydrophobic interaction. By utilizing this phenomenon, to purify water containing various organic molecules small amounts, for substances contained with its to identify what, utilizing the probe having the above R 2 Can be. By administering the probe to a water sample and stirring, the organic molecules are included in the pores of calixarene.
  • the group having a cyclic structure that includes the sample compound is not limited to those described above, and for example, a group in which one hydrogen atom has been removed from crown ether or the like can also be used.
  • R 2 a group that is coordinated with a sample compound, for example, a group in which one hydrogen atom has been released from a complex-forming compound such as EDTA can be used.
  • A is an arbitrary spacer part. Since the probe of the present invention binds to a sample compound by R 2 and ionizes the compound after binding by R 1 , A located between R 1 and R 2 has an arbitrary structure. You can get it. In any case, it is preferable to use a compound having a hydrophobic part and a hydrophilic part as A, because both a hydrophobic solvent and a hydrophilic solvent can be used, and versatility is enhanced.
  • the hydrophobic portion include aromatic rings such as a benzene ring
  • examples of the hydrophilic portion include structures containing ether, amine, and ketone.
  • Preferred examples of such A include those represented by the following general formula [III].
  • R 6 is an alkylene group having 1 to 20 carbon atoms, and is a constituent unit thereof.
  • CH 2 — One or more and half or less of CH 2 — may be one or more groups selected from the group consisting of 1 O—, one CO— and one NH—, and 1 or 2 or more carbon atoms having 1 to 2 carbon atoms.
  • 6 may be substituted with an alkyl group, and Ar is an aromatic ring optionally substituted with 1 to 5 alkyl groups having 1 to 6 carbon atoms.
  • R 7 may or may not be present, and when present, represents an alkylene group having 1 to 6 carbon atoms, and R 8 is any hydrogen represented by the benzene ring shown in the formula. Represents a substituted alkylene group having 1 to 6 carbon atoms
  • R 9 may or may not be present, and if present, indicates an alkylene group having 1 to 6 carbon atoms
  • R 9 in the above general formula [V] is a phenylene group
  • R 2 has a structure represented by the above general formula [VI] and
  • R 6 can also be preferably used.
  • This A is a group having a structure in which R 2 interacts with a double-stranded nucleic acid (for example, a group represented by the above general formula X), and when the sample compound is a double-stranded nucleic acid, It can be preferably used when 2 is a group having a cyclic structure that includes another compound (for example, a group represented by the above general formula [X] or [XI]).
  • R 6 —Ar—R 6 ′ — (where R 6 and Ar have the same meanings as R 6 and Ar in the general formula [III], respectively, and R 6 ′ is present And if present, it has the same meaning as R 6 in the general formula [III] (where R 6 and R 6 ′ in the formula are the same or different. )) Can also be preferably used.
  • Preferred examples of such A include the following general formulas [XII] [XII]
  • R 20 and R 21 independently represent an alkylene group having 16 carbon atoms, and R 22 may or may not be present, and if present, an alkylene group having 16 carbon atoms Indicates
  • the structure of A may be arbitrary, but if the molecular weight of the entire probe is too large, the ratio of the probe in the sample compound-probe conjugate will increase and the sensitivity of the analysis will decrease. It is preferably less than 000.
  • the probe of the present invention can be easily synthesized by those skilled in the art based on known methods.
  • the following examples also specifically describe a method for producing a plurality of preferred probes.
  • R 2 is CH 2 ONH 2 ⁇ HC I is R '
  • Mass spectrometry of a liquid sample using the probe of the present invention can be performed in exactly the same manner as mass spectrometry of a normal liquid sample after reacting and binding the sample compound with the probe of the present invention.
  • the probe of the present invention is applicable to any liquid sample mass spectrometry method involving ionization of a sample.
  • Examples include, but are not limited to, electrospray ionization mass spectrometry, atmospheric pressure chemical ionization mass spectrometry, thermospray ionization mass spectrometry, particle beam mass spectrometry, frit fast atom bombardment mass spectrometry.
  • the present invention can be applied not only to ordinary mass spectrometry but also to mass spectrometry performed in an analyzer integrated with a reaction tank.
  • mass analysis performed downstream of a reaction tank or reaction coil in an analyzer that incorporates a reaction tank or reaction coil, such as a post-column reaction type high-performance liquid chromatograph or a flow injection analyzer.
  • the probe of the present invention can be applied to analysis.
  • the probe can be mixed with the sample upstream of the reaction vessel or reaction coil and the binding reaction can be performed in the reaction vessel or reaction coil.
  • the mass spectrometry itself can be easily performed using a commercially available device according to the instructions attached to the device.
  • the “liquid sample” includes both a sample compound when the sample compound to be analyzed is in a liquid state and a solution of the sample compound when the sample compound is a solid.
  • the sample compound is reliably ionized by binding to the probe, and the mass of the probe-derived portion after binding is known, so that high sensitivity is obtained by ordinary mass spectrometry. , Can be quantified with high accuracy.
  • the molecular weight of the sample compound can be calculated by subtracting the molecular weight of the probe from the observed peak value (m / Z value).
  • Example 11 1 Electrospray ionization mass spectrometry
  • the probe (compound I) synthesized in Example 1 and the sample compound (compound) were bonded.
  • This reaction is a compound of 10.0 m M to a test tube: take Asetonitoriru (or THF) solution of L Contact and compounds, after mixing the two, was carried out by stirring at room temperature for 30 minutes.
  • the reaction product obtained in (1) was diluted to 1.0 M, and then measured using an ESI-TOF mass spectrometer (Mariner) manufactured by Applied Biosystems.
  • Figure 3 shows the configuration of the mass spectrometer used.
  • a mobile solvent (Me0H, water, etc.) was constantly flowed from the syringe pump at a flow rate of 10.0 ⁇ / min.
  • the sample solution was introduced from the injector using a microsyringe.
  • the sample solution follows the flow of the mobile solvent to the mass spectrometer.
  • the setting conditions of the mass spectrometer were as follows.
  • Figure 1 shows the measurement results. For comparison, only the probe was diluted to 1.0 / M and subjected to mass spectrometry in the same manner. The result is shown in figure 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

明細書
液状試料の質量分析用プローブ
技術分野
本発明は、 液状試料の質量分析のためのプローブに関する。
^景技術
現在、 最も高感度、 高精度に検体中の試料を定量することができる方法として 質量分析測定法が挙げられる。 質量分析法を用いて液状試料を測定するにあたリ 重要なことは、 化合物の性質に合わせたイオン化法を選択することである。 例え ば化合物の不安定要因によって使い分ける場合、 大きく分けてハードイオン化と ソフトイオン化の 2種類に分けられる。 前者の方法としては、 電子イオン化法、 化学イオン化法及び大気圧イオン化法が挙げられ、 後者の方法としてはエレクト ロスプレーイオン化法、 マトリックス支援レーザー脱離イオン化法及び高速原子 衝撃イオン化法が挙げられる。
一方、 最近では高速液体クロマトグラフィ一で分離した試料をオンラインで質 量分析を用いて同定を行う手法 (LG/MS)が化学、 生物学の分野で頻繁に利用され ている。 この場合、 液体クロマトグラフィーと相性の良いイオン化法は、 キヤピ ラリー先端から流出する溶液試料を直接イオン化する方法であるため、 先に記し た方法のうち、 後者の方法が該当する。 中でもエレクトロスプレーイオン化質量 分析装置と高速液体ク口マトグラフィーをオンラインで接続した装置は現在最も 汎用されており、 タンパク質、 糖質をはじめとした生体に不可欠な物質から、 近 年問題とされている環境ホルモン物質の同定にその威力を十分に発揮している。 エレクトロスプレーイオン化の場合、 試料の分子イオンピークが検出されること は極めて低く、 通常ナトリゥムなどが加算された擬分子イオンピークとして観察 されるか、 あるいは LG/MSでは移動相に酢酸アンモニゥム、 ギ酸、 酢酸などのプ 口トン性溶媒を混入することにより、 試料のイオン化を助ける方法が採られてい る。
液状試料の質量分析の際のイオン化を助ける手段として、 液体クロマ卜グラフ ィ一の移動相にプロトン性溶媒を添加する手法が LG/MSでは一般的となっている。 しかし、 i )酢酸アンモニゥムは負イオンモードの場合、 試料のイオンとアンモニ ゥムイオンがペアとなって感度が低下する、 i i )トリフルォロ酢酸は正イオンモ —ドの場合、 サンプルイオンとトリフルォロ酢酸イオンがペアとなって感度が低 下し、 負イオンモードの場合、 一部例外を除きイオン化を妨害する、 i i i )ァセト 二卜リルでは必ず酸を添加しなければならない、 またこの際、 酢酸アンモニゥ厶 では溶解しないので用いることができない、 等の欠点も指摘されている。
発明の開示
従って、 本発明の目的は、 液状試料の質量分析の際のイオン化法において、 移 動相にプロトン性溶媒を添加することなく、 試料を効率的にイオン化する手段を 提供することである。
本願発明者らは、 鋭意研究の結果、 溶媒中でイオン化する基と、 試料化合物中 の官能基と反応して共有結合する官能基を 1つの分子中に有する化合物をプロ一 ブとして用い、 該プローブを試料化合物と共有結合させることにより、 試料化合 物を効率的にイオン化することができることに想到し、 かつ、 このようなプロ一 ブによリイォン化した試料化合物がェレクトロスプレー質量分析によリ高感度に 定量できることを実験的に確認し、 本発明を完成した。
すなわち、 本発明は、 一般式 [ I ]
R 2— A— R 1 [ I ]
(但し、 式中、 R 1は溶媒中でイオンとなるイオン性官能基、 R 2は他の物質と 結合し得る構造、 Aは任意のスぺーサ一部を示す)
で表される液状試料の質量分析用プローブを提供する。 また、 本発明は、 上記本 発明のプローブと、 液状試料中の試料化合物とを結合させ、 得られた結合物を質 量分析にかけることを含む質量分析方法を提供する。 さらに、 本発明は、 上記一 般式 [ で表される化合物の、 液状試料の質量分析用プローブを製造するための 使用を提供する。
本発明のプローブを用いれば、 エレクトロスプレーイオン化法において、 移動 相にプロトン性溶媒を添加することなく、 試料を効率的にイオン化することがで き、 種々の試料について、 高感度、 高精度にエレクトロスプレーイオン化質量分 析を行うことができる。
図面の簡単な説明
図 1は、 本発明の実施例 1 1において実施した、 エレクトロスプレーイオン化 質量分析により得られた質量スぺクトルを示す。
図 2は、 本発明の実施例 1 1において実施した、 プローブのみの場合のエレク トロスプレーイオン化質量分析により得られた質量スぺクトルを示す。
図 3は、 実施例 1 1において実施した質量分析に用いた質量分析計の構成を模 式的に示す図である。
発明を実施するための最良の形態
本発明の液状試料のイオン化質量分析用プローブは、 上記一般式 [ I ]で表され るものである。 一般式 [ I ]において、 R 1は溶媒中でイオン化するイオン化基で ある。 R 1は、 使用する溶媒中でイオン化される基であればいずれの基であって もよく、 正に帯電するものでも負に帯電するものでもよい。 R 1の例として、 ァ ミン、 カルボン酸若しくはその塩、 スルホン酸若しくはその塩、
R'
I
一 B— R"
R'"
(但し、 式中、 、 '及び R' ' 'は同一又は異なる本発明の効果に悪影響を与え ない任意の基、 好ましくは、 水素、 ハロゲン、 又は炭素数 1 〜 2 0の直鎖状若し くは分枝状アルキル基) 等を挙げることができるが、 これらに限定されるもので はない (なお、 本明細書において、 「ハロゲン j は、 特に断りがない限りフッ素、 塩素、 臭素及びヨウ素のいずれであってもよい) 。 これらのうち、. ァミンが好ま しく、 とりわけ、 下記一般式 [ M ]で表されるァミンが好ましい。
R3
~~ +-R4 [ II ]
Rコ
(但し、 式中、 R 3、 R 4及び R 5はそれぞれ独立に、 本発明の効果に悪影響を 与えない任意の基、 好ましくは、 水素、 ハロゲン、 又は炭素数 1 〜2 0の直鎖状 若しくは分枝状アルキル基) 上記一般式 [I]中において、 R2は、 他の物質と結合し得る構造を示す。 R2の 好ましい一群の例として試料化合物中の官能基と反応して共有結合し得る官能基 を挙げることができる。 この場合、 R2としては、 試料化合物中の官能基と反応 して共有結合し得る官能基であれば、 いかなる官能基であってもよい。 液状で質 量分析により分析される試料は、 タンパク質や糖等の生体物質である場合が多い ので、 これらに含まれることが多い官能基、 すなわち、 一 NH2基、 _SH基、
— COOH基、 一 OH基、 一 CHO基等と反応して共有結合する官能基が好まし しヽ。 このような官能基の例として、 SCN―、 CI02S—、
Figure imgf000006_0001
Figure imgf000006_0002
B r H2C―、 C I OC—、 一 NH2、 -NHNH2. -CH -CH20NH2 (-HG I) (塩酸塩であってもなくてもよい) 、
Figure imgf000006_0003
Figure imgf000006_0004
を挙げることができる。 これらの官能基と反応する試料化合物中の官能基 ( ) 及び該反応の結果形成される結合を下記表 1に示す (なお、 R2がー NH2の場 合は、 表 1に示される、 試料化合物中の官能基 (R')がー NH2の場合の R 2と表 1に記載のように結合できる) 。
表 ί
官能基 (R2) 官能基 (R") 結合形成状態
SC — ■NH2 - — C-N ~~
I IT I
H S H
CK¾S— NH2
Figure imgf000008_0001
BrH20-- — COOH 一 1一
IH2C— 一 COOH OOSHH
0一 r
CIOC一 一 OH T一
-CHO
NH2
Figure imgf000008_0002
-N圆 2 —CHO 一 N— =0 -—
K H
また、 R2としては、 CH3CH (NH2) =CH—も好ましく採用すること ができる。 この場合、 2分子のプローブが R— CHOで表される試料化合物と次 のように反応する。
2x
Figure imgf000009_0001
好ましい R2として、 さらに、 一般式 [VI]
Figure imgf000009_0002
(ただし、 Xはハロゲンを示す) 、
Figure imgf000009_0003
及び一般式 [VII]
^ (CH2r-NH2 [VII]
(ただし、 nは 1〜5の整数を示す)
で表される基を挙げることができる。 一般式 [VI]中、 ハロゲンとしては、 好まし くは臭素である。
上記一般式 [VI]で示される R 2は、 試料化合物中のシ卜シンと反応して次のよ うに結合する。
Figure imgf000009_0004
(ただし、 式中、 Rは、 例えばヌクレオチドや核酸の糖部分のような任意の基を 示す) この R 2は、 試料化合物中のシトシン部分と結合することができるので、 シチ ジン一リン酸、 シチジン二リン酸、 シチジン三リン酸、 デォキシシチジン一リン 酸、 デォキシシチジン二リン酸及びデォキシシチジン三リン酸並びにシトシンを 含む D N A及び R N Aのような核酸と結合できる。
Figure imgf000010_0001
の場合は、 試料化合物中のグァニンと反応して次のように結合する。
Figure imgf000010_0002
(ただし、 式中、 Rは、 例えばヌクレオチドや核酸の糖部分のような任意の基を 示す)
この R 2は、 試料化合物中のグァニン部分と結合することができるので、 グァ ノシン一リン酸、 グアノシン二リン酸、 グアノシン三リン酸、 デォキシグアノシ ンーリン酸、 デォキシグアノシンニリン酸及びデォキシグアノシン三リン酸並び にグァニンを含む D N A及び R N Aのような核酸と結合できる。
R 2が上記一般式 [VI I ]で示される基である場合は、 試料化合物中のリン酸ェ ステル部分と反応して次のように結合する (ただし、 下記の例では nが 2の場合 について示す) 。
Figure imgf000011_0001
なお、 この反応式では、 試料化合物がデォキシアデノシン一リン酸 (すなわち、 ヌクレオチド中の塩基がアデニンで、 糖がデォキシリポース) の場合を示してい るが、 R 2は、 リン酸エステル部分と結合するので、 塩基は、 シトシン、 グァニ ン、 チミン又はゥラシルのようなアデニン以外の他の塩基であってもよいし、 糖 はデォキシリポースでもリボースでもよい。 また、 リン酸エステルの数は、 上記 反応式では 1個であるが、 R 2は、 末端のリン酸エステルと結合するので、 縮合 しているリン酸エステルの数は 1個〜 3個のいずれであってもよい。 従って、 ― 般式 [VI I ]で示される R 2はあらゆる種類のヌクレオシドーリン酸、 ヌクレオシ ドニリン酸及びヌクレオシド三リン酸と結合することが可能である。 さらに、 核 酸の末端には遊離のリン酸エステルが存在するので、 一般式 [VI I ]で示される R 2は D N Aや R N Aのような核酸と結合することも可能である。
また、 R 2が光学活性を有する基である場合には、 光学活性を有する試料化合 物と結合させることにより、 特定の光学活性を有する試料化合物の測定が可能に なり、 また、 試料化合物中の光学中心の絶対配置を決定することが可能になる。 光学活性を有する R 2の好ましい例として、 一般式 [VI I I ]で表される基を挙げ ることができる。
Figure imgf000011_0002
(ただし、 Xはハロゲン、 R 1 0は炭素数 1 5のアルキル基を示す)
ハロゲンとしては、 特に臭素が好ましい。 一般式 [VI I I ]で表される R 2は、 アミノ酸と反応して次のように結合する c
Figure imgf000012_0001
(ただし、 式中、 Rはアミノ酸の任意の側鎖を示す)
この場合、 アミノ酸が、 D体と L体の混合物 (ラセミ体) であると、 形成され た結合物は互いにジァステレオマーの関係になる。 この状態で LG/MS分析を行う ことにより、 単に ES I等の質量分析法で高感度検出を行うことができるばかリで なくアミノ酸の絶対配置を決定することが可能となる。
なお、 R 2は、 試料化合物の官能基と反応して共有結合し得る官能基に限定さ れるものではなく、 試料化合物とインター力レー卜又は配位結合によリ結合する 基や試料化合物を包接する環状構造を有する基も R 2として好ましく用いること ができる。
すなわち、 R 2の好ましい例として、 二本鎖核酸にインター力レートする構造 を有するものを挙げることができる。 このような R 2の具体例として下記一般式 [ I X]で表される基を挙げることができる。
Figure imgf000012_0002
(ただし、 (^ 1 1及ぴ 1 2は、 それぞれ独立に、 水素、 ハロゲン、 炭素数 1 5 のアルキル基又は炭素数 1 5の N N-ジアルキルァミノ基を示す)
このような R 2は、 二本鎖核酸にインター力レートして結合するので、 このよ うな R 2を有するプローブは二本鎖核酸の測定に好ましく用いることができる。 試料化合物を包接する環状構造を有する基としては、 下記一般式 [X]で示され る基を挙げることができる。
Figure imgf000013_0001
(ただし、 R 1 3は水酸基、 カルボキシル基又は炭素数 1〜 5のアルキル基、 m は 5〜 9の整数を示す)
一般式 [X]で示されるシクロデキストリン構造は、 環状のオリゴ糖で、 外側に 水酸基を向け、 内側に炭素鎖を向けた円錐台状の構造を有している。 シクロデキ ストリンの空孔は疎水場であるため、 疎水性相互作用を利用して、 有機分子をそ の空孔内に包接することが出来る。 この現象を利用して、 微少量の様々な有機分 子を含んでいる水を浄化し、 その含まれている物質が何であるかを同定するため に、 上記 R 2を有するプローブを利用することができる。 該プローブを水試料に 投与し、 撹拌することにより、 水試料中の有機分子はシクロデキス卜リンの空孔 内に包接される。
試料化合物を包接する環状構造を有する基としては、 さらに下記一般式 [X I ]で 示される基を挙げることができる。
Figure imgf000013_0002
(ただし、 R 1 4及び R 1 5はそれぞれ独立に水素、 ハロゲン又は炭素数 1 〜5の アルキル基、 R 1 6は炭素数 1 〜 5のアルキル基、 又は末端にカルボキシル基、 エステル基若しくはアミド基を有する炭素数 1 〜 5のアルキル基、 pは 3 ~ 7の 整数を示す)
一般式 [X I ]で示されるカリックスァレーンは、 ベンゼン環からなる環状のオリ ゴマーである。 力リックスァレーンのベンゼン環で囲まれた空孔は疎水場である ため、 疎水性相互作用を利用して、 有機分子をその空孔内に包接することが出来 る。 この現象を利用して、 微少量の様々な有機分子を含んでいる水を浄化し、 そ の含まれている物質が何であるかを同定するために、 上記 R 2を有するプローブ を利用することができる。 該プローブを水試料に投与し、 撹拌することにより、 有機分子はカリックスァレーンの空孔内に包接される。
試料化合物を包接する環状構造を有する基は、 上記のものに限定されるもので はなく、 例えば、 クラウンエーテル等から水素原子が 1個離脱した基等も用いる ことができる。
さらに、 R2としては、 試料化合物と配位結合する、 例えば EDTAのような錯体 形成性化合物から水素原子が 1個離脱した基等も用いることができる。
一般式 [I]中、 Aは任意のスぺーサ一部である。 本発明のプローブは、 R2に より試料化合物と結合し、 R1によって結合後の化合物をイオン化するものであ るから、 R1と R2の間に位置する Aは、 任意の構造をとリ得るものである。 も つとも、 Aとして、 疎水性部と親水性部を有するものを採用することにより、 疎 水性溶媒でも親水性溶媒でも用いることができ、 汎用性が高まるので好ましい。 疎水性部としては、 ベンゼン環のような芳香環を挙げることができ、 親水性部と しては、 エーテル、 ァミン、 ケトンを含む構造を挙げることができる。 このよう な Aの好ましい例として、 下記一般式 [III]で表されるものを挙げることができ る。
— R6
I [HI]
Ar
(式中、 R6は炭素数 1〜20のアルキレン基であり、 その構成単位である
— CH2—の 1個以上かつ半数以下が一 O—、 一 CO—及び一 NH—から成る群 より選ばれる 1又は 2以上の基であってもよく、 1又は 2以上の炭素数 1〜6の アルキル基で置換されていてもよく、 A rは、 1ないし 5個の炭素数 1 ~6のァ ルキル基で置換されていてもよい芳香環である)
さらに、 一般式 [III]で表される Aの好ましい例として、 下記一般式 [IV]
Figure imgf000015_0001
(但し、 式中、 R7は存在してもしなくてもよく、 存在する場合には炭素数 1〜 6のアルキレン基を示し、 R8は、 式中に示されるベンゼン環によって任意の水 素が置換された炭素数 1〜6のアルキレン基を示す)
又は下記一般式 [V]
Figure imgf000015_0002
(ただし、 式中、 7及び 8は、 式 [IV]と同じ意味を示し、 R9は、 存在して もしなくてもよく、 存在する場合には炭素数 1〜 6のアルキレン基を示す) で表されるものを挙げることができる。
また、 Aとしては、 上記一般式 [V]において、 R 9がフエ二レン基であるもの も好ましく用いることができる。 この Aは、 特に R2が上記一般式 [VI]で表され る構造を有する場合及び
Figure imgf000015_0003
である場合に好ましく用いることができる。
また、 Aとしては、 一 R6— (ただし、 R6は、 一般式 [III]における R3と同 じ意味を示す) であるものも好ましく用いることができる。 この Aは、 特に R2 が二本鎖核酸にインター力レートする構造を有する基 (例えば、 上記一般式 X] で表される基) であり試料化合物が二本鎖核酸である場合、 及び R 2が他の化合 物を包接する環状構造を有する基 (例えば、 上記一般式 [X]又は [XI]で表される 基) である場合に好ましく用いることができる。 さらに、 Aとしては、 一 R6— A r— R6' — (ただし、 R 6及び A rは一般式 [III]における R6及び A rとそれぞれ同じ意味を示し、 R6'は存在していても いなくてもよく、 存在している場合には一般式 [III]における R6と同じ意味を 示す (ただし、 式中の R6と R6'とは同一であっても異なっていてもよい) ) で あるものも好ましく用いることができる。 このような Aの好ましい例として、 下 記一般式 [XII] [XII]
Figure imgf000016_0001
(ただし、 1^17及ぴ1^1 8は、 互いに独立に炭素数"!〜 6のアルキレン基を示し、 R1 9は存在していてもいなくてもよく、 存在している場合には炭素数 1 6の アルキレン基を示す)
又は下記一般式 [XI M]
Figure imgf000016_0002
(ただし、 R20及び R21は、 互いに独立に炭素数 1 6のアルキレン基を示し、 R 22は存在していてもいなくてもよく、 存在している場合には炭素数 1 6の アルキレン基を示す)
で表されるものを挙げることができる。
Aの構造は任意のものでよいが、 プローブ全体の分子量が余りに大きくなると、 試料化合物一プローブ結合物における、 プローブの占める割合が大きくなつて分 析の感度が低下するので、 プローブの分子量は 1 000以下であることが好まし い。
本発明のプローブは、 当業者が、 公知の方法に基づいて容易に合成することが できる。 下記実施例にも、 複数の好ましいプローブの製造方法が具体的に記載さ れている。
試料化合物と、 プローブとの反応は、 プローブの R2と、 試料化合物中の、 R 2と結合させるべき官能基の種類に応じて、 公知の技術に基づき適宜の条件で行 うことができる。 下記実施例にも、 好ましいプローブと試料化合物との結合反応 の条件が具体的に記載されている。 R 2及ぴ該 R 2と結合する試料化合物中の官能基 (R' ) の上記した具体的な 組合せのそれぞれについて、 具体的な結合反応条件の例を以下に記載する。 もつ とも、 これらは単なる例示であり、 他の反応条件でもこれらの官能基同士を結合 させることは可能であるので、 結合反応条件が下記のものに限定されるものでは ないことは当業者にとって明らかである。 また、 ここに記載されていない R2に ついても、 当業者が化学常識に従って容易に結合反応を行うことができる。
(1) 1^2が301\1—、 R' が— N H 2の場合
2〜3 mgの試料に 0.2 ml (エタノール : 水 :卜リエチルァミン = 2 : 2 : 1 v/v)を加え減圧乾固した後、 0.5 ml (エタノール : 水 :トリエチルァミン : プ ローブ = 7 : 7 : 1 : 1 vA/)を加え室温で 20分間反応させる。 溶媒を減圧留去 した後、 溶離液に溶解し試料溶液とする (B. A. Bidl ingmeyer, et al, J. Ghro matogr. , 336, 93 (1984)参照) 。
(2) R2が C I 02S—で、 R' がー N H 2の場合
2〜3 mgの試料に 500 μΐの 1Μ NaHG03水溶液と 200 μ!_の 1 mg / mLプローブ
/アセトン溶液を加え、 60 °Gで 30分間加熱する。 アセトンを留去後、 溶離液に 溶解し試料溶液とする (Meffin, P. J. , et al, J. Pharm. Sci. , 66, 583 (197 7)参照) 。
(3) が
Figure imgf000017_0001
で、 R' が一 N H 2の場合
1.5 mgの試料を THF5.0 mLに溶解し、 50 mgのプローブを加え、 60 °Gで 30 分間加熱する。 THFを留去後、 溶離液に溶解し試料溶液とする (Jupi l l, T. H. Am. Lab. , 8 (5), 85 - 92 (1976)参照) 。
(4) が
Figure imgf000018_0001
で、 R' が _SHの場合
2~3 mgの試料を 500 μΙ_の水に溶解後、 200 μしの 1 mg / mLプローブ/ァセ トニトリル溶液を加え、 60 °Gで 30分間加熱する。 溶媒を留去後、 溶離液に溶 解し試料溶液とする (Nakashima K. , et al, Talanta. , 32, 167 (1985)参照) 。
(5) R2が B r H 2C—又は I H 2C—で、 R' がー COO Hの場合
2〜3 mgの試料をァセトン 500 μ!_に溶解し、 200 μしの 1 mg / mLプローブ/ アセトン溶液および K2G031 mgを加え、 60 °Gで 30分間加熱する。 溶媒を留去 後、 溶離液に溶解し試料溶液とする (Dunges, W. , Anal. Ghem. , 49, 442 (1977 )参照) 。
(6) 2が〇 I OC—で、 R' が— OHの場合
2〜3 m の試料を 0.5 mlのピリジンに溶解後、 0.2 mLの 1 mg / mLプローブ/ ピリジン溶液を加え、 40 °Gで 1時間加熱する。 溶媒を留去後、 溶離液に溶解し 試料溶液とする (Suzuki, , et aに J. Biochem. , 82, 1185 (1977)参照) 。
(7) R2
Figure imgf000018_0002
で、 R' がー C HOの場合
2〜3 mgの試料をメタノール 1.0 mし 酢酸 0.1 mし 0· 2 mLの 1 mg / mLプロ ーブ /メタノール溶液を加え、 40 °Gで 30分間加熱する。 溶媒を留去後、 溶離液 に溶解し試料溶液とする。
(8) R2
Figure imgf000019_0001
で、 R, が一 N H2の場合
試料のエタノール溶液(10一4〜 1(Γ3 M) 0.1 mLに、 10 mg / mLのプローブ/ エタノール溶液 1.5 mLを加え、 室温で 5分間〜 10分間撹袢する。 溶媒を減圧留 去後、 溶離液に溶解し試料溶液とする (Roth, M., Anal. Chem. , 43, 880 (1971 )参照) 。
(9) R2がー CH2ONH2 ■ HC Iで R' が
Figure imgf000019_0002
の場合
1 ~5 mgの試料、 トリェチルァミン 2滴、 プローブ 50 mgを 50 °Cで 30分間 加熱する。 溶媒を減圧留去後、 溶離液に溶解し試料溶液とする (Jupille, T. H. , Am. Lab. , 8 (5), 85-92 (1976)参照) 。
(10) 1¾2が一[\^ 1^1"12、 R' がー CHOの場合
1〜5 mgの試料を水 0.5 mlに溶解後、 30%HGI04水溶液に 20mg/mLの割合でプ ローブを溶かした溶液を加え、 室温で 10分間撹拌した。 溶媒を減圧留去後、 溶 離液に溶解し試料溶液とする (Newberg, C. , et al. , Anal. Chim. Acta, 7, 23 8 (1952)参照) 。
Figure imgf000019_0003
0. 1〜5. 0 μ§の試料を、 50μΙ_のリン酸緩衝溶液 (ρΗ7. 0)に溶解後、 200μΙ_の 1m g / mLのプローブ/リン酸緩衝溶液 (PH7. 0)を加え、 室温で 5分間撹拌する。 溶 媒を減圧留去後、 溶離液に溶解し試料溶液とする。
(12) R 2
Figure imgf000020_0001
の場合
0. 1 ~5· 0 μ§の試料を、 50μΙ_のリン酸緩衝溶液 (ρΗ7. 0)に溶解後、 200μίの 1m g / it!のプローブ/リン酸緩衝溶液 (pH7. 0)を加え、 室温で 5分間撹拌する。 溶 媒を減圧留去後、 溶離液に溶解し試料溶液とする。
Hクで、 R ' が
Figure imgf000020_0002
の場合
0. 1〜5. 0 μgの試料を、 50μしのリン酸緩衝溶液 (ρΗ7. 0)に溶解後、 200μΙ_の 1m g / mLのプローブ/リン酸緩衝溶液(pH7. 0)および 1 -ェチル- 3- (3-ジメチルァミ ノプロピル)カルポジイミドを加え、 室温で 30分間撹拌する。 溶媒を減圧留去後、 溶離液に溶解し試料溶液とする。
本発明のプローブを用いた液状試料の質量分析は、 試料化合物と本発明のプロ ーブを反応、 結合させた後、 通常の液状試料の質量分析と全く同様にして行うこ とができる。 本発明のプローブは、 試料のイオン化を伴う、 あらゆる液状試料の 質量分析方法に適用可能である。 好ましい液状試料の質量分析方法の例として、 エレクトロスプレーイオン化質量分析、 大気圧化学イオン化質量分析、 サーモス プレーイオン化質量分析、 パーティクルビーム質量分析、 フリット高速原子衝撃 質量分析等を挙げることができるが、 これらに限定されるものではない。 また、 通常の質量分析のみならず、 反応槽と一体化された分析装置中で行われる質量分 析に適用することも可能である。 例えば、 ポストカラム反応方式の高速液体クロ マトグラフィ装置や、 フローインジェクション分析装置のように、 分析装置に反 応槽又は反応コイルが組み込まれた分析装置において、 反応槽又は反応コイルの 下流で行われる質量分析に本発明のプローブを適用することができる。 この場合、 プローブは、 反応槽又は反応コイルの上流で試料と混合し、 結合反応を反応槽又 は反応コイル中で行うことができる。 なお、 質量分析自体は、 市販の装置を用い、 装置に添付された指示書に従って容易に行うことができる。
なお、 「液状試料」 とは、 分析対象である試料化合物が液状である場合の試料 化合物、 及び試料化合物が固体である場合の該試料化合物の溶液の両者を包含す る。
本発明のプローブを用いた場合には、 試料化合物がプローブと結合することに よって確実にイオン化されており、 結合後のプローブ由来部分の質量も既知であ るから、 通常の質量分析により高感度、 高精度に定量することができる。 なお、 観察されたピーク値 (m/Z値) からプローブの分子量を差し引くことにより試料化 合物の分子量を算出することができる。
以下、 本発明を実施例に基づきより具体的に説明する。 もっとも、 本発明は下 記実施例に限定されるものではない。
実施例 1 プローブの合成 (その 1 )
Figure imgf000021_0001
下記のスキームに従い、 R 1として第四級ァミン、 R 2として S C N—を有す る上記化合物を合成した。
ο¾/ί¾。
Figure imgf000022_0001
2- (2-トリメチルシロキシェトキシ) - 2-フエニル工タン二卜リルの合成
Figure imgf000023_0001
1 2
50 ml二口フラスコに 2-フエニル- 1,3-ジォキソラン(化合物 1) 3.0 g (19.9 mm ol)、 トリメチルシリルシアノイド(TMSGN) 2.1 ml (21· 4 mmol)、 Znl2 0.3 g (0. 94 mmol)を加え、 窒素気流下、 室温で 2時間撹拌した。 TLG (Si02; CH2CI2 : n- へキサン = 1 : 4 v/v)で原料消失を確認後、 ジェチルエーテル 100 mlを加え水 で洗浄した。 無水硫酸マグネシウムで乾燥後、 溶媒を減圧留去し無色オイル状化 合物を得た。 同定は 1H-圖 R、 ES卜 T0F質量分析を用いて行った。
収率 93 %
1H-國 R (300 MHz, CDCI3, TMS, r.t. , δ / ppm) 0.12 (s, 9H, Si (GH3) 3) , 3. 65 〜 3.84 (m, 4H, -OCH2CH2O-) , 5.42 (s, 1H, Ar-CH) , 7.40〜7.58 (m, 5H, ArH)
ESI-T0F [M + Na]+ = 272
(2) 2 -(2-ァミノ- 1-フエニルェトキシ)エタン -1-オールの合成
Figure imgf000023_0002
3
100 ml二口フラスコに化合物 2 2.0 g (8.0 mmmol) を加え脱気窒素置換後、 氷 浴下 1 M BH3■ THF溶液 50 mlを 30分間かけて滴下した。 室温で 4時間撹拌後、 TLC (Si02; n-へキサン : 酢酸ェチル = 4 : 1 vA/)で原料消失を確認した。 氷浴下、 6 N HGIを加え酸性にした後、 溶媒の大部分を減圧留去した。 NaOH水溶液を加え p H 10にした後、 酢酸ェチル 100 mlで 3回抽出し無水硫酸マグネシウムで乾燥した。 溶媒を減圧留去後、 無色オイル状化合物を得た。 同定は 1H-刚 R、 ESI- T0F質量分 析を用いて行った。
収率 90 %
1H -剛 R (300 MHz, CDC 13, TMS, r. t. , δ / ppm) 2.55 (br s, 3H) , 2.83 (dd, 1 H), 3.15 (dd, 1H), 3.39〜3.62 (m, 2H) , 3.68〜3· 78 (m, 2H), 5.00 (dd, 1H);
7.40 7.58 (m, 5H)
ESI-TOF [M]+ = 181
(3) ( e 卜ブトキシ) -N- (2- (2 -ヒドロキシエトキシ) -2 -フエニルェチル)フォ ルムアミドの合成
Figure imgf000024_0001
3 4
30 ml二口フラスコに化合物さ 0.50 g (2.76 mmol)を加え脱気窒素置換後、 THF 15 ml トリェチルァミン 0.28 ml (2.76 議 ol)、 ジ- ieri -ブチル -ジカーポネ ート 0.60 g (2.76 mmol)を加え、 室温で撹拌した。 2時間後、 TLG (Si02; n~へキ サン : 酢酸ェチル = 1 : 1)で原料消失を確認後、 溶媒を減圧留去した。 カラム クロマトグラフィー (Si02; /7~へキサン : 酢酸ェチル = 1 : 1)で精製し、 無色 オイル状化合物を得た。 同定は 1H- R、 ES卜 T0F質量分析を用いて行った。
収率 90 %
1H-NMR (300 MHz, CDCI3, TMS, r.t. , δ / ppm) 1.37 (s, 9Η), 3.10 (s, 3H) , 3.51 〜3.64 (m, 4Η), 4.33〜4.37 (m, 2Η) , 4.98 (br s, 1H), 5.01 (dd, 1H), 7·41~7.58 (m, 5H)
ESI-TOF [M + Na]+ = 304
(4) (iertブトキシ) -N-(2- (2- (メチルスルフォ二口キシ)エトキシ) -2-フエ二 ルェチルフオルムアミドの合成
Figure imgf000025_0001
5
30 ml二口フラスコに化合物 40.50 g (1.78 國 o I)を加え脱気窒素置換後、 ジ ェチルエーテル 10.0 mし トリェチルァミン 0.23 g (2.31 mmol)を加えた。 氷浴 下、 メタンスルホニルクロリ ド 0.22 g (1.96 瞧 ol)を加えた後、 室温で撹袢し た。 一時間後、 TLG (Si02; へキサン : 酢酸ェチル = 2 : 1) で原料消失を確 認した。 溶媒を減圧留去後、 カラムクロマトグラフィー (Si02; Tへキサン : 酢酸ェチル = 2 : 1) で精製し、 白色固体を得た。 同定は 1H-隱 R、 ES卜 T0F質量 分析を用いて行った。
収率 88 %
1H-N R (300 MHz, GDGI3, TMS, r. t. , δ / ppm) 1.37 (s, 9Η) , 3.10 (s, 3Η) , 3.51 〜3·64 (m, 4Η) , 4.33 ~ 4.37 (m, 2Η) , 4.98 (br s, 1Η), 5.01 (dd, 1Η), 7.40 〜7.58 (m, 5Η)
ESI -TOF [ + Na]+ = 382
(5) tertづトキシ)- N- (2- (2-ョードエトキシ)- 2-フエニルェチル)フオルム ァミドの合成
Figure imgf000025_0002
5 6
30 ml二口フラスコに化合物 0.50 g (1.39 mmol)を加え脱気窒素置換後、 ァ セトン 10.0 ml、 ヨウ化ナトリウム 1.10 g (7.25 画 ol)を加え還流した。 2時間後、 TLG (Si 02; A "へキサン : 酢酸ェチル = 1 : 1) で原料消失を確認後、 溶媒を減 圧留去した。 カラムクロマトグラフィー (Si02; n~へキサン : 酢酸ェチル = 10
: 1)で精製後、 赤色固体を得た。 同定は 1H- NNlR、 ESI- T0F質量分析を用いて行つ た。 収率 85 %
!H- MR (300 MHz, GDGI3, TMS, r.t. , δ / ppm) 1.35 (s, 9H) , 3.22 (t, 2H) ,
3.38 〜3.66 (m, 4H) , 5.02 (br s, 1H), 5.06 (dd, 1H), 7.41〜 7.58 (m, 5H) ESI-TOF [M + Na]+ = 414
(6) 2 -(2-ョードエトキシ) - 2-フエニルェタンイソチオシァネー卜の合成
Figure imgf000026_0001
10 ml二口フラスコに化合物旦 0.20 g (0.51 mmol)を加え脱気窒素置換後、 塩 化メチレン 2.0 ι^、 トリフルォロ酢酸 0.5 ml を加え室温で撹拌した。 30分後、 TLC (Si02; ヘキサン : 酢酸ェチル = 4 : 1) で原料消失を確認し、 溶媒を減 圧留去した。 得られた化合物に塩化メチレン : 水 = 1 : 1 v/vの混合溶媒 5.0 ml を加えた後、 炭酸水素ナトリウム 0.30 g、 チォホスゲン 80.0 μΙ を加え、 室 温で撹拌した。 1時間後、 TLG (Si02; ^へキサン : 酢酸ェチル = 4 : 1) で原 料消失を確認し、 塩化メチレン 50 mlで 3回抽出後、 有機相を無水硫酸マグネシ ゥムで乾燥した。 溶媒を減圧留去後、 黄橙色オイル状化合物を得た。 同定は1 H - NMR, ES卜 T0F質量分析を用いて行った。
収率 80 %
1H-NMR (300 MHz, CDCI3, TMS, r.t. , δ / ppm) 3.26〜3.33 (m, 2Η) , 3.36~3· 79 (m, 2Η), 3.80 (dd, 1Η), 3.95 (dd, 1H), 5.24 (dd, 1H), 7.40〜7.58 (m, 5H)
ESI-TOF [M + Na]+ = 355
(7) 2- (2- (トリエチルァミノ)エトキシ) -2 -フエニルェタンイソチオシァネー 卜
ョーダイドの合成 S=C=N
Figure imgf000027_0001
8
30 mlなす型フラスコに化合物 20.20 g (0.60 mmol)、 トルエン 5.0 mし トリ ェチルァミン 1.0 mlを加え、 室温で撹袢した。 24時間後、 TLG (Si02; ~へキサ ン : 酢酸ェチル = 4 : 1) で原料消失を確認し、 析出した沈殿を分取後、 トル ェンで洗浄し、 黄白色固体を得た。 同定は 1H- NMR、 ESI- TOF質量分析を用いて行 つた。
収率 92 %
1H—刚 R (300 MHz, D SO-ofe- TMS, r.t. , δ / ppm) 1.30 (t, 9H), 3.04 (q, 6H) 3.75〜3.95 (m, 3H), 4.11 (dd, 1H), 4.10 ~ 4.16 (m, 1H), 4.33 (dd, 1H), 5.54 (dd, 1H), 7.40〜7.58 (m, 5H)
ESI -TOF [M]+ = 307
実施例 2 プローブの合成 (その 2)
Figure imgf000027_0002
下記のスキームに従い、 R1として第四級ァミン、 R2として B r H2C—を 有する上記化合物を合成した。
,,-^ ( 4433- OH TBDMSO TBDMSO TBDMSO
TBDMSCI MsCl Nal
DBU TEA Acetone
CH3CN Ether
Figure imgf000028_0001
Figure imgf000028_0002
50 ml
(化合物 1 )
48 g (16. l 1
6.5 mmol) 認 後、 溶媒 後、 無水硫酸 マ トグラフ
(2) (メ ラ ペンチル
TBDMS
Figure imgf000029_0001
10 100 ml二口フラスコに化合物 2 2.0 g (6.75 mmmol) を加え脱気窒素置換後、 ジェチルエーテル 20.0 mし トリェチルァミン 0.68 g (6.75 mttiol), メタンスル
TBDMSO
Figure imgf000030_0001
3 4
30 ml二口フラスコに化合物 3 0.50 g (1.25 mmo I)を加え脱気窒素置換後、 ァ セトン 15 (tiし ヨウ化ナトリウム 1.49 g (10.0 mmol)を加え、 2時間還流した。 溶媒を減圧留去後、 水で洗浄し、 無水硫酸マグネシウムで乾燥した。 溶媒を減圧 留去後、 シリカゲルカラムクロマトグラフィーで精製し、 目的化合物を得た。
(4) 卜リエチル(2 - (3, 3, 4, 4-テトラメチル -1-フェニル- 3-シラペンチルォキシ
)ェチル)ァミンの合成
Figure imgf000030_0002
4 5
30 mlなす型フラスコに化合物 40.50 g (1.25 mmol)、 トルエン 10.0 mし ト リエチルァミン 1.0 ml を加え、 室温で 24時間撹拌した。 析出した沈殿を分取後、 トルエンで洗浄した。 減圧乾燥後、 目的化合物を得た。
(5) 1- (メチルスルホニル) - 2-フエ二ル- 2- (2 -(トリェチルァミノ)ェトキシ)ェ タンの合成
Figure imgf000030_0003
- 6
30 ml二口フラスコに化合物 0.50 g (1.37 瞧 ol)、 酢酸 : 水 : THF = 3 :
1 : 1 v/vの混合溶媒 10. 0 mlを加え室温で 2時間撹拌した。 溶媒を減圧留去 後、 ポンプで減圧乾燥した。 得られた化合物に、 ジェチルエーテル 10 0 rnl、 ト リエチルァミン、 メタンスルホニルクロリ ドを加え、 室温で 2時間撹拌した。 水 で洗浄後、 無水硫酸マグネシウムで乾燥した。 溶媒を減圧留去後、 シリカゲル力 ラムクロマトグラフィーで精製し、 目的化合物を得た。
(6) (2- (2-ョ一ド- 1-フエ二ルェ卜キシ)ェチル)トリェチルァミンの合成
Figure imgf000031_0001
50 mlなす型フラスコに化合物旦 0.20 g (0.58 mmol), アセトン 20.0 mし 臭化 リチウム 0.43 g (5.0 mmol)を加え 2時間還流した。 溶媒を減圧留去後、 エタノー ルを加えた。 不溶物を濾別後、 濾液を減圧濃縮し、 目的化合物を得た。
実施例 3 プローブの合成 (その 3)
Figure imgf000031_0002
9
下記のスキームに従い、 R1として第四級ァミン、 R2として NH2 を有す る上記化合物を合成した。
Figure imgf000032_0001
(1 ) 2- (2-トリメチルシロキシェトキシ)- 2-フエニルェタン二トリルの合成
Figure imgf000033_0001
1 2
50 ml二口フラスコに 2-フエニル -1,3-ジォキソラン(化合物 1) 3.0 g (19.9 隱 ol)、 T SCN2.1 ml (21.4 瞻 l)、 Znl2 0.3 g (0.94 mmol)を加え、 窒素気流下、 室温で 2時間撹拌した。 TLG (Si 02; CH2CI2 : n~へキサン = 1 : 4 v/v)で原料消 失を確認後、 ジェチルエーテル 100 mlを加え水で洗浄した。 無水硫酸マグネシゥ ムで乾燥後、 溶媒を減圧留去し無色オイル状化合物を得た。 同定は 1H-刚 R ESI - T0F質量分析を用いて行った。
収率 93 %
1H-刚 R (300 MHz, CDCI3, TMS, r.t. , δ / ppm) 0.12 (s, 9H, Si (GH3) 3) , 3. 65 3.84 (m 4H, -OCH2GH2O-) , 5.42 (s, 1H, Ar-CH) , 7.40 7.58 (m, 5H, Ar
H)
ESl-TOF [M + Na]+ = 272
(2) 2- (2-ァミノ- 1 -フエニルェトキシ)エタン- 1-オールの合成
Figure imgf000033_0002
100 ml二口フラスコに化合物 2.0 g (8.0 mmmol) を加え脱気窒素置換後、 氷浴下 1 M BH3. THF溶液 50 mlを 30分間かけて滴下した。 室温で 4時間撹拌後、 TL C (Si02; n-へキサン : 酢酸ェチル = 4 : 1 v/v)で原料消失を確認した。 氷浴 下、 6 N HGIを加え酸性にした後、 溶媒の大部分を減圧留去した。 NaOH水溶液を 加え pH 10にした後、 酢酸ェチル 100 mlで 3回抽出し無水硫酸マグネシウムで乾燥 した。 溶媒を減圧留去後、 無色オイル状化合物を得た。 同定は 1H-副 R ESI-T0F 質量分析を用いて行った。
収率 90 %
1H -剛 R (300 MHz, CDCI3, TMS, r. t. , δ / ppm) 2.55 (br s, 3H) , 2.83 (dd, 1
H), 3.15 (dd, 1H), 3.39 ~ 3.62 (m, 2H) , 3.68 ~ 3.78 (m, 2H), 5.00 (dd, 1 H), 7.40〜7.58 (m, 5H)
ESI-TOF [ ]+ = 181
(3) 6/" ブトキシ) -(2-(2-ヒドロキシエトキシ) - 2-フエニルェチル)フォ ルムアミ ドの合成
Figure imgf000034_0001
3 4
30 ml二口フラスコに化合物さ 0.50 g (2.76 mmo I)を加え脱気窒素置換後、 THF 15 mU トリェチルァミン 0.28 ml (2.76 mmol), ジ- ieri-ブチル-ジカ一ポネ —卜 0.60 g (2.76 mmol)を加え、 室温で撹拌した。 2時間後、 TLG (Si02; へキ サン : 酢酸ェチル = 1 : 1)で原料消失を確認後、 溶媒を減圧留去した。 カラム クロマトグラフィー (Si02; Tへキサン : 酢酸ェチル = 1 : 1)で精製し、 無色 オイル状化合物を得た。 同定は - NMR、 ES卜 T0F質量分析を用いて行った。
収率 90 %
1H -剛 R (300 MHz, CDCI3, TMS, r.t. , δ / ppm) 1.37 (s, 9Η) , 3.10 (s, 3Η) , 3.51〜3.64 (m, 4Η) , 4.33 ~ 4.37 (m, 2Η), 4.98 (br s, 1Η), 5.01 (dd, 1Η), 7.41~7.58 (m, 5Η)
ESI-T0F [Μ + Na]+ = 304
(4) (ie ブトキシ) -N - (2- (2 -(メチルスルフォ二口キシ)エトキシ) - 2-フエ二 ルェチルフオル厶アミドの合成
Figure imgf000035_0001
4 5
30 ml二口フラスコに化合物 0.50 g (1.78 mtnol)を加え脱気窒素置換後、 ジ ェチルエーテル 10.0 mU 卜リエチルァミン 0.23 g (2.31 mmol)を加えた。 氷浴 下、 メタンスルホニルクロリ ド(MsGl)0.22 g (1.96 tnmol)を加えた後、 室温で撹 袢した。 一時間後、 TLG (Si 02; n~へキサン : 酢酸ェチル = 2 : 1) で原料消失 を確認した。 溶媒を減圧留去後、 カラムクロマトグラフィー (Si02; n~へキサン : 酢酸ェチル = 2 : 1) で精製し、 白色固体を得た。 同定は 1H-剛 ES卜 T0F質 量分析を用いて行った。
収率 88 %
1H-NMR (300 MHz, CDCI3, TMS, r.t. , δ / ppm) 1.37 (s, 9H), 3.10 (s, 3H) , 3·51〜3, 64 (m, 4H) , 4.33 ~ 4.37 (m, 2H) , 4.98 (br s, 1H), 5.01 (dd, 1H), 7.40〜7.58 (m, 5H)
ESI-T0F [M + Na]+ = 382
(5) (iertブトキシ) - N- (2-(2-ョードエトキシ)- 2-フエニルェチル)フオル厶 ァミ ドの合成
Figure imgf000035_0002
^ 6
30 ml二口フラスコに化合物互 0.50 g (1.39 mmo I)を加え脱気窒素置換後、 ァ セトン 10.0 mし ヨウ化ナトリウム 1.10 g (7.25 mmol)を加え還流した。 2時間後、 TLC (Si02; へキサン : 酢酸ェチル = 1 : 1) で原料消失を確認後、 溶媒を減 圧留去した。 カラムクロマトグラフィー (Si02; ~へキサン : 酢酸ェチル = 10 : 1)で精製後、 赤色固体を得た。 同定は 1H-剛 R、 ES卜 T0F質量分析を用いて行つ た。
収率 85 %
1H-NMR (300 MHz, CDC 13, TMS, r.t. , δ / ppm) 1.35 (s, 9H) , 3.22 (ΐ, 2H) , 3.38〜3.66 (m, 4H) , 5.02 ( r s, 1H), 5.06 (dd, 1H), 7.41 ~ 7.58 (m, 5H) ESI-TOF [M + Na]+ = 414
(6) N— (2 - (2-ョ一ドエトキシ) - 2-フエニルェチル)一 3-ォキソブタンアミ ドの合 成
Figure imgf000036_0001
10 ml二口フラスコに化合物 0.20 g (0.51 mmol)を加え脱気窒素置換後、 塩 化メチレン 2.0 ml, トリフルォロ酢酸 0.5 mlを加え室温で撹拌した。 30分後、 TL C (Si02; T-へキサン : 酢酸ェチル = 4 : 1) で原料消失を確認し、 溶媒を減圧 留去した。 得られた化合物に塩化メチレン 5.0 mし 卜リエチルァミン 0.05 g (0. 51 mrnol), ァセト酢酸 0.05 g (0.51 mmol)を加え、 氷浴下 30分間撹拌した。 B0P( Benzotr 1 azo I— 1一 y I oxyt ris(di' metny I am / no) phosphon 1 urn hexaf I uorophosphate) 試薬 0.22 g (0.51 mmol)を添加後、 氷浴下で 30分間、 室温に戻した後 24時間撹拌 した。 TLG (Si02; /7 "へキサン :'酢酸ェチル = 4 : 1) で原料消失を確認し、 塩 化メチレン 50 mlで 3回抽出後、 有機相を無水硫酸マグネシウムで乾燥した。 溶媒 を減圧留去後、 化合物を得た。
(フ) 3 -アミノ- N-(2- (2-ョードエ卜キシ) -2 -フエニルェチル) - 2-ブテンアミド の合成 montmorillonite K-10
Figure imgf000037_0001
8
10 mlなす型フラスコに化合物 20.20 g (0.60 mmol)、 アンモニア水 5.0 mし モントモリロナイト K-10 0.1 gを加え、 24時間室温で撹拌した。 塩化メチレンで 抽出後、 水で洗浄し、 無水硫酸マグネシウムで乾燥した。 溶媒を減圧留去後、 シ リ力ゲルカラムク口マトグラフィ一で精製した。
(8) 3—ァミノ一 N— (2 -フェニル -2 - (2 -(卜リエチルァミノ)エトキシ)ェチル)一 2— ブテンアミドの合成
TEA
toluene
Figure imgf000037_0002
8 9
10 mlなす型フラスコに化合物 0.20 g (0.58 議 ol)、 トルエン 5.0 mし トリ ェチルァミン 1.0 mlを加え、 室温で 24時間撹拌した。 析出した沈殿を分取後、 卜 ルェンで洗浄し減圧乾燥した。
実施例 4 プローブの合成 (その 4)
Figure imgf000037_0003
8
下記のスキームに従い、 R1 して第四級ァミン、 として- C0CH2Brを有す る上記化合物を合成した。
スキーム
Figure imgf000038_0001
(1 ) フエニル-(2 -トリメチルシラニルォキシ-エトキシ) -ァセトニトリノレ (化合 物 2) の合成
Figure imgf000039_0001
1 2
30 mlナス型フラスコに 2 -フエ二ル- 1,3-ペンタジオン(化合物 1 ) 3.0 g (1 9.9 mmol) を加え氷浴につけた後、 TMSCN 2.1ml (21.43 mmol), Znl2 0.3 g (0. 94mm0l)を加え、 室温で 2 時間攪拌した。 反応溶液にジェチルエーテルを加え、 水で洗浄後、 MgS04を用いて乾燥した。 溶媒を減圧留去後、 黄色油状物質 (4.17g, 収率 83.2 %)を得た。
!H-NMR (270MHZ, CDC 13, T S, r. t. , 5/ppm) 0.15(s, 9H, S1CH3), 3.80 (t, 2 H, -0CH^ 20S\~) , 4.11 (t, 2H, -0CH2i? ?0Si-) , 5.39(s, 1H, ArGH) , 7.45 (m,
5H, ArH) ESI-TOF (+): [ + Na]+ = 272.0
(2) 2- (2 -アミノ- 1-フエ二ル-ェ卜キシ) -エタノール(ィ匕合物 )の合成
Figure imgf000039_0002
100 ml 三口フラスコに、 化合物 1.0 g (4.01 mmol)を反応容器に加え、 脱 気窒素置換後、 氷浴につけて 1 M BH3■ THF溶液 30ml をゆっくりと加えた。 氷浴 中で 30分間、 室温で 4時間攪拌させた。 反応終了後、 反応容器を氷浴につけ、 1 N HCI 水溶液を加え酸性にした。 溶媒を減圧留去後、 水 20ml を加え、 NaOH水溶 液を加え pH 10とした。 酢酸ェチルを加えて抽出した後、 水で洗浄した。 無水硫 酸ナ卜リゥムで乾燥後、 無色オイル状の化合物(650mg, 収率 89.5 %)を得た。
1H -剛 R (300MHz, CDCI3, TMS, r. t. , <5/ppm) 2.95 (d, 2H, 2-CH2) , 3.65 (t, 2H, -0Gf/^ 20 ) , 3.75 (t, 2H, -00Η2β¾0Η) , 4.46 (t, 1H, ArGH) , 7.32 (m, 5H, ArH) ESI-TOF (+) : [M + H]+ = 182.0 (3) [2- (2-ヒドロキシ -ェトキシ) -2-フエ二ル-ェチル] -力ルバミン酸 tert-ブ チルエステル(化合物 の合成
Figure imgf000040_0001
3 4
100 ml二口フラスコに、 化合物 3 1.40 g (7.70 隱 o I)を入れ窒素置換後、 氷 浴中で乾燥 THF 55 ml 、 TEA 0.78 g (7.69 mmol)、 D i -tert-buty I -d i carbonate
1.68 g (7.70 mmol)を加え、 室温で 2時間攪拌した。 溶媒を減圧留去後、 カラ 厶クロマトグラフィー (Si02、 クロ口ホルム) で精製し、 黄色油状化合物(1.30g, 収率 59.9 %)を得た。
H-NMR (300MHz, GDGI3, TMS, r.t. , <5 /ppm) 1.48(s, 9H, i-Bu) , 3.24 (d, 2H, m-CHj) , 3.49 (t, 2H, -0C〃 H20H) , 3.73 (ΐ, 2H, -00H2CH^)i) , 4.42 (t,
1H, ArCH) , 7.33 (m, 5H, ArH)
ESI-T0F (+) :. [ + Na ]+ = 304.0
(4) メタンスルホン酸 2- (2- tert -ブトキシカルボニルァミノ- 1 -フ: c二ル-ェト キシ) -ェチルエステル(化合物 5)の合成
Figure imgf000040_0002
50 mlナス型フラスコに、 化合物 500 mg (1.78 瞧 ol) を加え窒素置換後、 乾燥 THF 16 ml 、 TEA 0.5 ml (4.55 mmol) を加えて氷浴につけた。 MsCI 440 m g -(3.84 mmol) を加え、 室温で一時間攪拌した。 溶媒を減圧留去後、 クロ口ホル ムを加えて析出した沈殿をろ別後, ろ液を減圧濃縮した。 カラムクロマトグラフ ィー (Si02, 酢酸ェチル : Tへキサン = 2 : 1 v/v) で精製し、 黄色油状物質 (4 91 mg, 収率 77.0 %)を得た。
1H-刚 R (300MHz, GDGI3, TMS, r.t. , 5 /ppm) 1.44(s, 9H, i-Bu) , 3.24 (d, 2 H, m-CH2) , 3.44 (t, 2H, -OCH^OS-) , 3.62 (t, 2H, -Ο0Η2β¾θε-) , 4.34 ( t, N ArCH) , 7.33(m, 5H, ArH)
ESI-TOF (+) : [ + Na ]+ = 382.2
(5) [2- (2-ョード-ェトキシ)- 2-フヱニル-ェチル] -力ルバミン酸 tert-ブチル エステル(化合物 )の合成
Figure imgf000041_0001
50 mlナス型フラスコに、 化合物互 100 mg (0.28 mmol)を加え、 窒素置換後、 アセトン 10 ml、 Nal 1.0 g (6.67 mmol)を加えて 2時間還流した。 Nal をろ別後、 溶媒を減圧留去した。 カラムクロマトグラフィー (Si02, /7"^キサン:酢酸ェチ ル = 1 : 1 v/v) で精製し、 黄色油状化合物(104mg, 収率 93.99 %)を得た。
1H-NMR (270MHz, CDCI3, TMS, r. t. , 5/ppm) 1.45 (s, 9H, i^Bu) , 3.22 (t, 2 H, I二 CH2) , 3.49 (d, 2H, m-CH2) , 3.67 (t, 2H, -0CH2) , 4.43 (t, 1H, ArCH) , 7.34 (m, 5H, ArH) ESI-TOF (+) : [M + Na]+ = 413.9
(6) [2- (2- tert-ブトキシカルポニルァミノ- 1-フエ二ル-ェトキシ) -ェチル]-卜 リエチル -アンモニゥ厶 ヨウ化物(化合物 7)の合成
Boc、 八
Figure imgf000041_0002
6
50 mlナス型フラスコに、 化合物 350 mg (0.90 mmol)、 トルエン 8.75 mし TEA 1.75 ml (17.33 mmol)を加えて、 80 °Cで 24時間反応を行なった。 溶媒を減 圧留去後、 大型薄層クロマトグラフィー(Si 02, クロ口ホルム: メタノール =7: 1 vA で精製し、 赤黄色固体物質 (383mg, 収率 66.70%)を得た。
1H-NMR (300MHz, CDC 13, TMS, r. t. , <5/ppm) 1.42 (t, 9H, QW2-GH) , 1.48 (s, 9H, i-Bu), 3.53 (q, 6H, NR3— C〃 , 3.70 (t, 2H, -00Η2β¾Ν-) , 3.72 (d, 2H, N W-GH2) , 3.95 (t, 2H, -QCH^ -) , 4.63 (t, 1H, ArCH) , 7.35 (m, 5H, ArH) ESI-TOF (+) : [ M ]+ = 365.2
(7) 化合物 8の合成
Figure imgf000042_0001
Figure imgf000042_0002
8
30 mlナス型フラスコに化合物 20.50 g (1.02 國 ol)、 TFA ( ト リフルォロ酢 酸) 0.50 mし 塩化メチレン 10.0 ml を加え、 室温で 30分間撹拌した。 溶媒を減 圧留去後、 ポンプで減圧乾燥した。 窒素置換後、 THF 20.0 mU TEA 0.10 g (1.0
2 國 ol)、 BOP 0, 10 g (1.02 mmol)、 4 -プロモメチルァセチル安息香酸 0.25 g (
1.02 mmol)を加え室温で 24 時間撹拌した。 溶媒を減圧留去後、 カラムクロマト グラフィ一で精製し、 目的化合物を得た。
実施例 5 プローブの合成 (その 5)
Figure imgf000042_0003
下記のスキームに従い、 R として第四級ァミン、 R2として -G0GH0 を有する 上記化合物を合成した。
スキーム
Figure imgf000043_0001
(1) フエニル-(2-トリメチルシラニルォキシ-ェトキシ)-ァセトニトリル (化合 物 2) の合成
Figure imgf000044_0001
1 2
30 mlナス型フラスコに 2-フエニル -1,3-ペンタジオン(化合物 1) 3.0 g (19. 9 mmol) を加え氷浴につけた後、 TMSCN 2.1ml (21.43 mmol), Znl2 0.3 g (0.94 國 ol)を加え、 室温で 2 時間攪拌した。 反応溶液にジェチルエーテルを加え、 水 で洗浄後、 MgS04を用いて乾燥した。 溶媒を減圧留去後、 黄色油状物質 (4.17g, 収率 83.2 %)を得た。
1H-NMR (270MHz, CDC 13, TMS, r. ΐ. , 5/ppm) 0.15 (s, 9H, SiCH3) , 3.80 (t, 2H, -OC/Z^OSi-) , 4.11 (t, 2H, -OCH2C iOSi-) , 5.39 (s, 1H, ArCH) , 7.45 (m, 5H, ArH) ESI-T0F (+) : [ + Na ]+ = 272.0
(2) 2- (2-ァミノ- 1-フエ二ル-ェトキシ)-エタノール(化合物さ)の合成
Figure imgf000044_0002
100 ml三口フラスコに、 化合物 2 1.0 g (4.01 mmol)を反応容器に加え、 脱 気窒素置換後、 氷浴につけて 1 M BH3 ' THF溶液 30ml をゆっくりと加えた。 氷 浴中で 30分間、 室温で 4時間攪拌させた。 反応終了後、 反応容器を氷浴につけ、 1N HGI水溶液を加え酸性にした。 溶媒を減圧留去後、 水 20ml を加え、 NaOH水溶 液を加え pH 10とした。 酢酸ェチルを加えて抽出した後、 水で洗浄した。 無水硫 酸ナトリウムで乾燥後、 無色オイル状の化合物 (650mg, 収率 89.5 %)を得た。
1 H-NMR (300MHz, CDCI3, TMS, r. t. , δ /ppm) 2.95 (d, 2H, ΝΗ2-β¾») , 3.65 (t, 2Η, -0C/iCH20H) , 3.75 (t, 2H, -00Η2β¾ΟΗ) , 4.46 (t, 1Η, ArCH) , 7.32 (m, 5H, ArH) ESI-T0F (+) : [ M + H ]+ = 182.0
(3) [2- (2-ヒドロキシ-ェトキシ)- 2-フエ二ル-ェチル] -力ルバミン酸 tert-ブ チルエステル(化合物 4)の合成
Figure imgf000045_0001
100 ml二口フラスコに、 化合物 3 1.40 g (7.70 國 ol)を入れ窒素置換後、 氷 浴中で乾燥 THF 55 ml 、 TEA 0.78 g (7.69 mmol), ジ -tert -プチル-ジ力一ボネ 一卜 1.68 g (7.70 mmol)を加え、 室温で 2時間攪拌した。 溶媒を減圧留去後、 カラムクロマトグラフィー (Si02、 クロ口ホルム) で精製し、 黄色油状化合物(1. 30g, 収率 59.9 %)を得た。
1H—剛 R (300MHz, CDCI3, TMS, に t., S/ppm) 1.48 (s, 9H, ί-Bu) , 3.24 (d, 2H, N -C/j) , 3.49 (t, 2H, -0β¾0Η20Η) , 3.73 (t, 2H, -OCH2i7 iOH) , 4.42 (t,
1H, ArCH) , 7.33 (m, 5H, ArH)
ESI-T0F (+) : [ M + Na ]+ = 304.0
(4) メタンスルホン酸 2 - (2-tert -ブトキシカルボニルァミノ- 1 -フヱニル-ェ卜 キシ) -ェチルエステル(化合物互)の合成
Figure imgf000045_0002
50 mlナス型フラスコに、 化合物 500 itig (1.78 mmol) を加え窒素置換後、 乾燥 THF 16 ml 、 TEA 0.5 ml (4.55 圆 ol) を加えて氷浴につけた。 MsGI 440 m g (3.84 mmol) を加え、 室温で一時間攪拌した。 溶媒を減圧留去後、 クロ口ホル ムを加えて析出した沈殿をろ別後, ろ液を減圧濃縮した。 カラムクロマトグラフ ィ一 (Si02, 酢酸ェチル : /7"へキサン = 2 : 1 v/v) で精製し、 黄色油状物質 (4 91mg, 収率 77.0 %)を得た。
1H-N R (300MHz, CDGI3, TMS, r. t. , δ /ppm) 1.44 (s, 9H, 卜 Bu) , 3.24 (d, 2 H,
Figure imgf000046_0001
, 4.34 ( t, 1H, ArCH) , 7.33 (m, 5H, ArH)
ESI-TOF (+) : [ M + Na ]+ = 382.2
(5) [2- (2-ョード -ェトキシ)- 2-フ: c二ル-ェチル] -力ルバミン酸 tert-ブチル エステル(化合物 6)の合成
Figure imgf000046_0002
50 mlナス型フラスコに、 化合物 100 mg (0.28 mmol)を加え、 窒素置換後、 アセトン 10 ml、 Nal 1.0 g (6.67 mmol)を加えて 2時間還流した。 Nalをろ別後、 溶媒を減圧留去した。 カラムクロマトグラフィー (Si02, /7" ^キサン:酢酸ェチ ル = 1 : 1 v/v) で精製し、 黄色油状化合物(104mg, 収率 93.99 %)を得た。
1H-NMR (270MHz, CDC 13, TMS, r. t. , <5 /ppm) 1.45(s, 9H, Bu) , 3.22 (t, 2 H, l-GH2) , 3.49 (d, 2H, \~0Η2) , 3.67 (t, 2H, — 0CH2) , 4.43 (t, 1H, ArCH) , 7.34 (m, 5H, ArH) ESI-TOF (+) : [ M + Na ]+ = 413.9
(6) [2-(2- tert-ブトキシカルボニルァミノ- 1-フエ二ル-ェトキシ)-ェチル] -ト リエチルアンモニゥム ヨウ化物(化合物 7)の合成
Boc、 八
Figure imgf000046_0003
6 7
50 mlナス型フラスコに、 化合物旦 350 mg (0.90 mmol), トルエン 8.75 ml、 TEA 1.75 ml (17.33 mmol)を加えて、 80 °Cで 24時間反応を行なった。 溶媒を減 圧留去後、 大型薄層クロマトグラフィー(S i 02, クロ口ホルム: メタノ一ル =7: 1 v/v)で精製し、 赤黄色固体物質 (383mg, 収率 66.70%)を得た。
1H-NMR (300MHz, CDC 13, TMS, r. t. , <5/ppm) 1.42 (t, 9H, GH2- β¾¾ , 1.48 (s, 9H, ^Bu), 3.53 (q, 6H, NR3 - C〃 , 3.70 (t, 2H, -00H2CH^i-) , 3.72(d, 2H, N H-CH2) , 3.95 (t, 2H, -0β¾0Η2Ν-), 4.63 (t, 1H, ArCH) , 7.35 (m, 5H, · ArH) ESI-TOF (+) : [ M ]+ = 365.2
(7) 化合物 8の合成
Figure imgf000047_0001
8
30 mlナス型フラスコに化合物 20.50 g (1.02 画 ol)、 TFA 0.50 mし 塩化メ チレン 10.0 ml を加え、 室温で 30分間撹拌した。 溶媒を減圧留去後、 ポンプで 減圧乾燥した。 窒素置換後、 THF 20.0 mk TEA 0.10 g (1.02 mmol), BOP 0.10 g (1.02 mmol), 4 -プロモメチルァセチル安息香酸 0.25 g (1.02 mmol)を加え室 温で 24時間撹拌した。 溶媒を減圧留去後、 カラムクロマトグラフィーで精製し、 目的化合物を得た。
(8) 化合物 の合成
Figure imgf000047_0002
20 mlナス型フラスコに化合物 0.25 g (0.41 画 ol)、 D S0 5.0 ml を加え、 室温で 2時間撹拌した。 溶媒を減圧留去後、 カラムクロマトグラフィーで精製し 目的化合物を得た。 実施例 6 プローブの合成 (その 6)
Figure imgf000048_0001
下記のスキームに従い、 R1として第四級ァミン、 R2として- CH2CH2NH2 を有 する上記化合物を合成した。
4
Figure imgf000049_0001
(1) フエニル -(2-トリメチルシラニルォキシ-ェトキシ)-ァセトニ卜リル(化合 物 2) の合成
Figure imgf000050_0001
1 2
30 mlナス型フラスコに 2-フエニル- 1,3-ペンタジオン(化合物 1) 3.0 g (19. 9 mmol) を加え氷浴につけた後、 TMSCN 2.1ml (21.43 mmol)、 Znl2 0.3 g (0.94 nrniol)を加え、 室温で 2 時間攪拌した。 反応溶液にジェチルエーテルを加え、 水 で洗浄後、 MgS04を用いて乾燥した。 溶媒を減圧留去後、 黄色油状物質 (4.17g, 収率 83· 2 %)を得た。
1H—圖 R (270MHz, GDCI3, TMS, t. , (5/ppm) 0.15(s, 9H, S1CH3) , 3.80 (t, 2Η, -OCZ^OSi-) , 4.11 (t, 2Η, -OCH2i7 iOSi-) , 5.39(s, 1Η, ArCH) , 7.45 (m, 5H, ArH) ESI-T0F (+) : [ M + Na ]+ = 272.0
(2) 2 - (2-ァミノ- 1-フエ二ル-ェトキシ) -エタノール(化合物さ)の合成
Figure imgf000050_0002
100 ml 三口フラスコに、 .化合物 2 1.0 g (4.01 mmol)を反応容器に加え、 脱 気窒素置換後、 氷浴につけて 1 M BH3 - THF 溶液 30ml をゆつくりと加えた。 氷 浴中で 30分間、 室温で 4時間攪拌させた。 反応終了後、 反応容器を氷浴につけ、 1N HGI水溶液を加え酸性にした。 溶媒を減圧留去後、 水 20ml を加え、 NaOH水溶 液を加え pH 10とした。 酢酸ェチルを加えて抽出した後、 水で洗浄した。 無水硫 酸ナトリゥムで乾燥後、 無色オイル状の化合物 (650mg, 収率 89.5 %)を得た。
1H-剛 R (300MHz, CDCI3, TMS, t, , <5/ppm) 2.95 (d, 2H, ΝΗ2, ?) , 3.65 (t, 2H, -0fi¾CH20H) , 3.75 (t, 2H, — OGH2i5¾OH) , 4.46 (t, 1H, ArCH) , 7.32 (m, 5H, ArH) ESI-T0F (+) : [ M + H ]+ = 182.0
(3) [2- (2-ヒドロキシ -ェトキシ)- 2-フエ二ル-ェチル] -力ルバミン酸 tert-ブ チルエステル(化合物 4)の合成
Hゥ N OH Boc-HN OH di-ierf-butyl aicarbonate
TEA, THF さ 4
100 ml二口フラスコに、 化合物 3 1.40 g (7.70 mmol)を入れ窒素置換後、 氷 浴中で乾燥 THF 55 ml 、 TEA 0.78 g (7.69 謹 ol)、 ジ- tert-ブチル-ジカーポネ ート 1.68 g (7.70 mmol)を加え、 室温で 2時間攪拌した。 溶媒を減圧留去後、 カラムクロマトグラフィー (Si02、 クロ口ホルム) で精製し、 黄色油状化合物(1. 30g, 収率 59.9 %)を得た。
1 H-NMR (300MHz, CDCI3, TMS, r. t. , δ /ppm) 1.48(s, 9Η, t-Bu) , 3.24 (d, 2H, m-GH3) , 3.49 (t, 2H, -0^Η20Η) , 3.73 (t, 2H, -OCH2i7 iOH) , 4.42 (t,
1H, ArCH) , 7.33 (m, 5H, ArH)
ESI-T0F (+) : [ M + Na ]+ = 304.0
(4) メタンスルホン酸 2 -(2-tert -ブトキシカルボニルァミノ- 1-フエ二ル-ェト キシ) -ェチルエステル(化合物 5)の合成
Figure imgf000051_0001
50 mlナス型フラスコに、 化合物 100 mg (0.28 mmol)を加え、 窒素置換後、 アセトン 10 mU Nal 1.0 g (6.67 mmol)を加えて 2時間還流した。 Nal をろ別後, 溶媒を減圧留去した。 カラムクロマトグラフィー (Si02, ""^キサン:酢酸ェチ ル = 1 : 1 v/v) で精製し、 黄色油状化合物(104tng, 収率 93.99 %)を得た。
1H-NMR (270MHz, CDC 13, TMS, r. t. , <5/ppm) 1.45 (s, 9H, i^Bu) , 3.22 (t, 2 H, 卜 GH2) , 3.49 (d, 2H, NH-C J , 3.67 (t, 2H, -0CH2) , 4.43 (t, 1H, ArCH) , 7.34 (m, 5H, ArH) ESI-T0F (+) : [ M + Na ]+ = 413.9
(5) [2- (2-ョード-ェトキシ) -2-フエ二ル-ェチル] -力ルバミン酸 tert-ブチル エステル(化合物 )の合成
Figure imgf000052_0001
5 6
50 mlナス型フラスコに、 化合物 100 mg (0.28 tranol)を加え、 窒素置換後、 アセトン 10 mし Nal 1.0 g (6.67 mtnol)を加えて 2時間還流した。 Nal をろ別後、 溶媒を減圧留去した。 カラムクロマトグラフィー (Si02, A7" ^キサン:酢酸ェチ ル = 1 : 1 v/v) で精製し、 黄色油状化合物(104mg, 収率 93.99 %)を得た。
1H -剛 R (270MHz, CDCI3, TMS, r. t. , ά/ppm) 1.45 (s, 9Η, Z-Bu) , 3.22 (t, 2 H, I-CH2) , 3.49 (d, 2H, m-0H2) , 3.67 (t, 2H, 一 0GH2) , 4.43 (t, 1H, ArCH) , 7.34 (m, 5H, ArH) ESI-T0F (+) : [ M + Na ]+ = 413.9
(6) [2- (2- tert-ブトキシカルポニルァミノ-卜フエ二ル-ェトキシ)-ェチル] -ト リエチルアンモニゥ厶 ヨウ化物(化合物 7)の合成
Figure imgf000052_0002
6 7
50 mlナス型フラスコに、 化合物 6 350 mg (0.90 mmol)、 トルエン 8.75 ml、 TEA 1.75 ml (17.33 mtnol)を加えて、 80 °Cで 24時間反応を行なった。 溶媒を減 圧留去後、 大型薄層クロマトグラフィー(Si 02, クロ口ホルム: メタノール =7: 1 v/v)で精製し、 赤黄色固体物質 (383mg, 収率 66.70%)を得た。
1H -關 R (300MHz, GDGI3, TMS, r. t. , δ /ppm) 1.42 (t, 9H, GH2 - β¾), 1.48 (s,
9H, i-Bu), 3.53 (q, 6H, NR3— i ^), 3.70 (t, 2H, -00Η2^-) , 3.72(d, 2H, N
W-CH2) , 3.95 (t, 2H, — 0fl¾CH2N— ), 4.63 (t, 1H, ArGH) , 7.35 (m, 5H, ArH)
ESI-T0F (+) : [ M ]+ = 365.2
(7) 化合物 8の合成
Figure imgf000053_0001
Figure imgf000053_0002
30 ml ナス型フラスコに化合物 20.50 g (1.02 mmol)、 TFA 0.50 ml、 塩化メ チレン〗 0.0 ml を加え、 室温で 30分間撹袢した。 溶媒を減圧留去後、 ポンプで 減圧乾燥した。 窒素置換後、 THF 20.0 mU TEA 0.10 g (1.02 mmol)、 BOP 0.10 g (1.02 iranol)N ? "ァラニン 0.10 g (1.02 議 o I〉を加え室温で 24時間撹拌した。 溶媒を減圧留去後、 カラムクロマトグラフィーで精製し、 目的化合物を得た。 実施例 7 プローブの合成 (その 7)
Figure imgf000053_0003
8
下記のスキームに従い R1として第四級ァミン、 R2として
Figure imgf000053_0004
を有する上記化合物を合成した。
Figure imgf000054_0001
(1 ) フエニノレー (2—トリメチルシラニルォキシ―ェトキシ)ーァセトニトリル(化合 物 2) の合成
Figure imgf000055_0001
1 2
30 mlナス型フラスコに 2-フエニル- 1,3-ペンタジオン(化合物 1) 3.0 g (19. 9 mmol) を加え氷浴につけた後、 TMSCN 2.1ml (21.43 画 ol)、 Znl2 0.3 g (0.94 画 ol)を加え、 室温で 2 時間攪拌した。 反応溶液にジェチルエーテルを加え、 水 で洗浄後、 MgS04を用いて乾燥した。 溶媒を減圧留去後、 黄色油状物質 (4.17g, 収率 83.2 %)を得た。
1H-NMR (270MHz, CDC 13, T S, r. t. , <5/ppm) 0.15(s, 9H, S1GH3) , 3.80 (t,
2H, — 0 〃 ^GH20Si-) , 4.11 (t, 2H, -0CH2C i0Si-) , 5.39 (s, 1H, ArGH) , 7.45
(m, 5H, ArH) ESI-TOF (+) : [ M + Na ]+ = 272.0
(2) 2- (2-ァミノ- 1-フエ二ル-ェトキシ) -エタノール(化合物さ)の合成
NCゝ丫丫 O OTTMSS 八 O へ
人 BH3-THF
" 入
2
3
100 ml三口フラスコに、 化合物 2 1.0 g (4.01 mmol)を反応容器に加え、 脱 気窒素置換後、 氷浴につけて 1 M BH3■ THF溶液 30ml をゆつくリと加えた。 氷 浴中で 30分間、 室温で 4時間攪拌させた。 反応終了後、 反応容器を氷浴につけ、 1N HCI水溶液を加え酸性にした。 溶媒を減圧留去後、 水 20ml を加え、 NaOH水溶 液を加え pH 10とした。 酢酸ェチルを加えて抽出した後、 水で洗浄した。 無水硫 酸ナトリウムで乾燥後、 無色オイル状の化合物 (650mg, 収率 89.5 %)を得た。
1H-刚 R (300MHz, CDCI3, TMS, r. t. , δ /pp ) 2.95 (d, 2H, \2-0Η2) ' 3.65 (t, 2H, -0CH^ 20H) , 3.75 (t, 2H, — 0GH2i?〃OH) , 4.46 (t, 1H, ArGH) , 7.32(m, 5H, ArH) ESI-TOF (+) : [ M + H ]+ = 182.0
(3) [2- (2-ヒドロキシ-エトキシ) -2-フエ二ル-ェチル] -力ルバミン酸 tert-ブ チルエステル(化合物 )の合成
Figure imgf000056_0001
100 ml 二口フラスコに、 化合物 1.40 g (7.70 mmol)を入れ窒素置換後、 氷 浴中で乾燥 THF 55 ml 、 TEA 0.78 g (7.69 mmol)s ジ- tert-ブチルジカーボネ ート 1.68 g (7.70 画 ol)を加え、 室温で 2 時間攪袢した。 溶媒を減圧留去後、 カラムクロマトグラフィー (Si02、 クロ口ホルム) で精製し、 黄色油状化合物(1. 30g, 収率 59.9 %)を得た。
1H-刚 R (300MHz, GDCI3, TMS, r. t. , δ/ppm) 1.48 (s, 9Η, ^Bu) , 3.24 (d, 2H, H -CHj) , 3.49 (t, 2H, -0CH^H20]) , 3.73 (t, 2H, -00Η2^Η) , 4.42 (t,
1H, ArCH) , 7.33(m, 5H, ArH)
ESI-T0F (+) : [ M + Na ]+ = 304.0
(4) メタンスルホン酸 2 - (2-tert-ブトキシカルボニルァミノ- 1-フエ二ル-ェト キシ) -ェチルエステル(化合物 )の合成
Figure imgf000056_0002
50 mlナス型フラスコに、 化合物 4500 mg (1.78 隱 ol) を加え窒素置換後、 乾燥 THF 16 ml 、 TEA 0.5 ml (4.55 mmol) を加えて氷浴につけた。 MsCI 440 m g (3.84 mmol) を加え、 室温で一時間攪拌した。 溶媒を減圧留去後、 クロ口ホル ムを加えて析出した沈殿をろ別後, ろ液を減圧濃縮した。 カラムクロマトグラフ ィー (Si02, 酢酸ェチル : n~へキサン = 2 : 1 v/v) で精製し、 黄色油状物質 (4
91 mg, 収率 77.0 %)を得た。
1H-NMR (300MHz, CDC 13, TMS, r.t. , (5/ppm) 1.44 (s, 9H, 卜 Bu) , 3.24 (d, 2 H, m-CH2) , 3.44 (ΐ, 2H, -QGH^H20S-) , 3.62 (t, 2H, -OG^CH^S-) , 4.34 ( t, 1H, ArCH) , 7.33 (m, 5H, ArH)
ESI-TOF (+) : [ M + Na ]+ 二 382.2
(5) [2- (2-ョード -エトキシ) -2-フエ二ル-ェチル] -力ルバミン酸 tert -ブチル エステル(化合物 の合成
Figure imgf000057_0001
50 mlナス型フラスコに、 化合物互 100 mg (0.28 mmol)を加え、 窒素置換後、 アセトン 10 mし al 1.0 g (6.67 隱 ol)を加えて 2時間還流した。 Nal をろ別後、 溶媒を減圧留去した。 カラムクロマトグラフィー (Si02, " キサン:酢酸ェチ ル = 1 : 1 v/v) で精製し、 黄色油状化合物(10½g, 収率 93· 99 %)を得た。
1H-NMR (270MHz, CDC 13, TMS, r. t. , <5/ppm) 1.45 (s, 9H, 卜 Bu) , 3.22 (t, 2 H, 卜 GH2) , 3.49 (d, 2H, NH-C/Z) , 3.67 (t, 2H, -0CH2) , 4.43 (t, 1H, ArGH) , 7.34 (m, 5H, ArH) ESI-TOF (+) : [ M + Na ]+ = 413.9
(6) [2-(2-tert-ブトキシカルポニルァミノ- 1-フエ二ル-ェトキシ) -ェチル]-ト リェチルアンモニゥム ョゥ化物(化合物 7)の合成
Figure imgf000057_0002
6
50 mlナス型フラスコに、 化合物 350 mg (0.90 mmol)、 トルエン 8.75 mし TEA 1.75 ml (17.33 隱 ol)を加えて、 80 °Cで 24時間反応を行なった。 溶媒を減 圧留去後、 大型薄層クロマトグラフィー (Si02, クロ口ホルム: メタノール =7: 1 vA/)で精製し、 赤黄色固体物質 (383mg, 収率 66.70%)を得た。
1H-NMR (300MHz, CDC 13, TMS, t. , 5/ppm) 1.42 (t, 9H, GH2-CH3) , 1.48 (s, 9H, t-B ) , 3.53 (q, 6H, NR3 - 6"〃) , 3.70 (t, 2H, -00Η2β¾ -) , 3.72(d, 2H, NH-C , 3.95 (t, 2Η, -0β¾ΟΗ2 -) , 4.63 (t, 1Η, ArCH) , 7.35 (m, 5Η, ArH) ESI-TOF (+) : [ M ]+ = 365.2
(7) 化合物 8の合成
Figure imgf000058_0001
8
30 mlナス型フラスコに化合物 20.50 g (1.02 國 ol)、 TFA 0.50 ml、 塩化メ チレン 10.0 ml を加え、 室温で 30分間撹拌した。 溶媒を減圧留去後、 ポンプで 減圧乾燥した。 窒素置換後、 THF 20.0 ml、 TEA 0.10 g (1.02 mmol), BOP 0.10 g (1.02 謹 ol)、 2-ブロモ -4-メチルペンタン酸 0.20 g (1.02 mmol)を加え室温 で 24時間撹拌した。 溶媒を減圧留去後、 カラムクロマトグラフィーで精製し、 目的化合物を得た。
実施例 8 プローブの合成 (その 8)
Figure imgf000058_0002
4
下記のスキームに従い、 R1として第四級ァミン、 R2としてシクロデキスト リン (ダルコビラノース単位の数 7) を有する上記化合物を合成した。 Ac2。, Pyridine
Figure imgf000059_0001
Figure imgf000059_0002
Ac20, Pyridine
Figure imgf000060_0001
Figure imgf000060_0002
2
100 mlナス型フラスコにモノ- 6 -デォキシ- 6 -ァミノ- β-シクロデキストリン(1
) 2.0 g (1.59画 ol)、 無水酢酸 20.0 mし ピリジン 10.0 ml を加え、 室温で 24 時間撹拌した。 反応溶液を冷水にあけ、 エーテルで抽出した。 飽和食塩水で洗浄 後、 無水硫酸ナトリウムで乾燥した。 溶媒を減圧留去後、 目的化合物を得た。
(2) 化合物 の合成
Figure imgf000060_0003
2
Figure imgf000060_0004
3
100 ml三口フラスコに化合物 2 1.0 g (0.37 mmol)、 ヨウ化メチル 0.26 g (1.85 陽 l)、 ト リェチルァミン 0.05 g (0.40 隱 ol)、 乾燥 DMF 20.0 ml を加 え、 窒素気流下、 室温で 24時間撹拌した。 溶媒を減圧留去後、 再沈殿操作を行 い目的化合物を得た。
(3) 化合物 £の合成
Figure imgf000061_0001
3
Figure imgf000061_0002
4
50 mlナス型フラスコに化合物 3 1.0 g (0.35 mmol) 、 1.0 M NaOH水溶液 5· 0 ml、 エタノール 20.0 ml を加え、 5時間還流した。 溶媒の大部分を減圧留去後、 水 20 ml を加え、 1N HCIで酸性にした。 溶媒を減圧留去後、 再沈殿操作により 精製し、 目的化合物を得た。
実施例 9 プローブの合成 (その 9)
Figure imgf000061_0003
下記のスキームに従い、 R1として第四級ァミン、 R2として一 ONH2を有 する上記化合物を合成した。 -CI, TEA
HOOC ONH2-1/2HCI
H20, Ether HOOC ONH-2
2
Figure imgf000062_0001
(1) 化合物 2の合成
Z-CI, TEA
HOOC ONH2-1/2HCI
H20, Ether HOOC ONH-Z
1 2
100 mlナス型フラスコに、 化合物 13.0 g (27.5 闘 0|)、 水 30.0 mし トリェ チルァミン 3.46 g (34.3 mmol)を加え、 氷浴につけた。 Zクロリ ド 4.8 g (27.5 mmol)をジェチルエーテル 10.0 mlに溶解し、 滴下ロートを用いて加えた。 氷浴 下で 30分間、 室温に戻して 7時間撹拌した。 酢酸ェチルで抽出後、 有機層を飽 和食塩水で洗浄した。 無水硫酸ナトリウムで乾燥後、 カラムクロマトグラフィー (Si02, CHCI3 : 酢酸ェチル = 2 : 3 v/v)で精製し、 目的化合物を得た。
(2) 化合物 3の合成
Figure imgf000063_0001
100 ml三口フラスコに、 化合物 2 2.0 g (10.3 mmol)、 乾燥塩化メチレン 50. 0 mし 卜リエチルァミン 1.1 g(11.0 議 ol)を加え、 氷浴につけた。 ;0"キシリレ ンジァミン 1.4 g (11.0 國 ol)及び BOP試薬 4.8 g(11.0 画 ol)を加え、 氷浴下で 30分間、 室温に戻して 12時間撹拌した。 水を加えて反応を停止後、 飽和食塩水 で洗浄し、 無水硫酸ナトリウムで乾燥した。 溶媒を減圧留去後、 カラムクロマト グラフィ一 (Si02, CHCI3 : 酢酸ェチル = 1 : 1 v/v)で精製し、 目的化合物を得 た。
(3) 化合物 4の合成
Figure imgf000063_0002
100 mlナス型フラスコに化合物 2.0 g (6.0 國 ol)、 トルエン 50.0 mlおよ びヨウ化メチル 8.5 g (60.0 mmol)を加え 80 °Gで加熱撹拌した。 析出した沈殿 を分取後、 トルエンで洗浄し、 目的化合物を得た。 (4) 化合物 5の合成
Figure imgf000064_0001
100 mlナス型フラスコに化合物 42.0 g (5.0 mmol)、 エタノールを加え窒素 置換、 および水素置換した。 パラジウムカーボン 0.1 gを加え、 室温で 5時間撹 拌した。 パラジウムカーボンを濾別後、 溶媒を減圧留去し、 目的化合物を得た。 実施例 1 0 プローブの合成 (その 1 0)
Figure imgf000064_0002
3
下記のスキームに従い、 R1として第四級ァミン、 R2として一 NH N H2を 有する上記化合物を合成した。
(1) 化合物 の合成
Figure imgf000064_0003
100 mlナス型フラスコに化合物 13.0 g (19.8 瞧 ol)、 アセトン 50.0 ml、 ョ ゥ化メチル 14.1 g (100.0 隱 ol)、 炭酸カリウム 6.9 g (50· 0 mmol)を加え、 窒 素気流下、 24時間還流した。 炭酸カリウムを濾別後、 溶媒を減圧留去した。 反 応混合物にクロロホルムを加え、 析出した沈殿を分取した。 クロロホルムで洗浄 し、 目的化合物を得た。
(2) 化合物 3の合成
Figure imgf000065_0001
100 mlナス型フラスコに化合物 2.0 g (6.25 mmol)、 エタノール 30.0 mし ヒドラジン 0.22 g (7.0 mttiol)を加え、 室温で 5時間撹拌した。 溶媒を減圧留去 し、 目的化合物を得た。
実施例 1 1 エレクトロスプレーイオン化質量分析
(1) 試料化合物とプローブの結合
下記反応式に示すように、 実施例 1で合成したプローブ (化合物丄) と、 試料 化合物 (化合物 ) とを結合した。 この反応は、 試験管に 10.0 mMの化合物: Lお よび化合物 のァセトニトリル(または THF)溶液をとり、 両者を混合後、 室温で 30分間撹拌することにより行った。
Figure imgf000065_0002
2
Figure imgf000065_0003
(2) エレクトロスプレーイオン化質量分析
(1)で得られた反応産物を 1.0 Mに希釈後、 Appl ied Biosystems社製の ESI - T0F質量分析計 (Mariner) を用いて測定した。 用いた質量分析計の構成を図 3に 示す。 シリンジポンプより 10.0 μΐ / minの流速で、 常時移動溶媒 (Me0H、 水等 )を流した。 試料溶液はマイクロシリンジを用いて、 インジェクターから導入し た。 試料溶液は移動溶媒の流れに沿って、 質量分析計に向かう。 質量分析計の設定条件は以下の通りであった。
スプレーチップ電位(Spray tip potential) : 3450 V
ノズル電位(Nozzle Potential) : 184 V
Quad RF電圧(Quad RF voltage) : 1000 V
噴霧器ガス流速(Flow rate of Nebulizer gas) (N2) : 0.25 し/分
補助ガス流速(Flow rate of Auxi I iary gas) ( ) : 1.0 L/分
カウンタ一流温度 (Temperature of the counter stream) : 160 °G
測定結果を図 1に示す。 なお、 比較のため、 プローブのみを 1.0/ Mに希釈後、 同様にして質量分析を行った。 結果を図 2に示す。
図 1及び図 2から明らかなように、 試料化合物とプローブとの結合物は、 プロ ーブ単独の場合とは異なる位置に鋭いピークを示した。 これにより、 上記方法に より、 エレクトロスプレーイオン化質量分析が高感度、 高精度に行うことができ ることが明らかになった。

Claims

請求の範囲
1. 一般式 [I]
R2— A— R1 [I]
(但し、 式中、 R1は溶媒中でイオンとなるイオン性官能基、 R2は他の物質と 結合し得る構造、 Aは任意のスぺーサ一部を示す)
で表される液状試料の質量分析用プローブ。
2. R2は、 他の官能基と反応して共有結合し得る官能基である請求項 1記載 のプローブ。
3. R1は、 ァミン、 カルボン酸若しぐはその塩、 スルホン酸若しくはその塩、 又は
Figure imgf000067_0001
(伹し、 式中、 R'、 '及び ' 'は同一又は異なる任意の基)
である請求項 2記載のプロ一ブ。
4. R1は、 一般式 [II]
Figure imgf000067_0002
(但し、 式中、 R3、 R4及び R5はそれぞれ独立に、 水素又は任意の基を示す )
で表されるァミンである請求項 3記載のプローブ。
5. 前記一般式 [II]中、 R3、 R 4及び R 5はそれぞれ独立に、 水素、 ハロゲ ン又は炭素数 1〜 20の直鎖状若しくは分枝状アルキル基を示す)
で表される請求項 4記載のプローブ。
6. R2は SCN—、 CIOpS-, NOCOCH2-
Figure imgf000068_0001
B r H2C―、 C I OC—、 CH3CH (N H 2) 二 CH―、 - GH20NH2- HG I . _NHゥ、 一 NHNH2、 一 CH2 I、
Figure imgf000068_0002
である請求項 2ないし 5のいずれか 1項に記載のプローブ。
7. Aは、 疎水性部と親水性部を有する請求項 2ないし 6のいずれか 1項に記 載のプローブ。
8. Aは下記一般式 [III]
-R6
[ill]
Ar
(式中、 R6は炭素数 1〜20のアルキレン基であり、 その構成単位である — CH2—の 1個以上かつ半数以下が一 0—、 一 CO—及び一 N H—から成る群 より選ばれる 1又は 2以上の基であってもよく、 1又は 2以上の炭素数 1〜20 のアルキル基で置換されていてもよく、 A rは、 1ないし 5個の炭素数 1〜20 のアルキル基で置換されていてもよい芳香環である)
で表される請求項 7記載のプローブ。
9. Aは、 下記一般式 [IV]
Figure imgf000069_0001
(但し、 式中、 R7は存在してもしなくてもよく、 存在する場合には炭素数 1〜
6のアルキレン基を示し、 R8は、 式中に示されるベンゼン環によって任意の水 素が置換された炭素数 1〜 6のアルキレン基を示す)
又は下記一般式 [V]
Figure imgf000069_0002
(ただし、 式中、 R7及び R8は、 式 [IV]と同じ意味を示し、 R9は、 存在して もしなくてもよく、 存在する場合には炭素数 1〜6のアルキレン基を示す) で表される請求項 8記載のプローブ。
1 0. 分子量が 1 000以下である請求項 2ないし 9のいずれか 1項に記載の プローブ。
1 1. エレクトロスプレーイオン化質量分析用プローブである請求項 2ないし 1 0のいずれか 1項に記載のプローブ。
1 2. R2は、 一般式 [VI]
Figure imgf000069_0003
(ただし、 Xはハロゲンを示す) 、
Figure imgf000069_0004
又は、 一般式 [VI I]
-fCH2)^NH2 [νπ]
(ただし、 ηは 1 5の整数を示す)
で表される基である請求項 2記載のプローブ。
1 3. R2は、 光学活性を有する基である請求項 2記載のプロ一'
1 4. R2は、 一般式 [VI II]
Figure imgf000070_0001
(ただし、 Xはハロゲン、 R 10は炭素数 1〜 5のアルキル基を示す) で表される基である請求項 2記載のプローブ。
1 5. R2は、 二本鎖核酸にインター力レートする構造を有する請求項 1記載 のプローブ。
1 6. R2は、 一般式 [IX]
Figure imgf000070_0002
(ただし、 1 1及び 1 2は、 それぞれ独立に、 水素、 ハロゲン、 炭素数 1 ~5 のアルキル基又は炭素数 1〜 5の Ν, Ν-ジアルキルァミノ基を示す)
で表される請求項 1 5記載のプローブ。
1 7. R2は、 他の物質を包接し得る環状構造を有する請求項 1記載のプロ一 ブ。
1 8. R2は、 一般式 [X]
Figure imgf000071_0001
(ただし、 R13は水酸基、 カルボキシル基又は炭素数 1〜 5のアルキル基、 m は 5〜 9の整数を示す)
で表される請求項 1 7記載のプローブ。
1 9. R2は、 一般式 [XI]
Figure imgf000071_0002
(ただし、 R14及び R15はそれぞれ独立に水素、 ハロゲン又は炭素数 1〜5の アルキル基、 R16は炭素数 1〜 5のアルキル基、 又は末端にカルボキシル基、 エステル基若しくはアミド基を有する炭素数 1〜 5のアルキル基、 pは 3〜7の 整数を示す)
で表される請求項 1 7記載のプローブ。
20. R1は、 ァミン、 カルボン酸若しくはその塩、 スルホン酸若しくはその 塩、 又は
R'
I
一 B— R"
(但し、 式中、 、 R' '及び R'''は同一又は異なる任意の基)
である請求項 1 2ないし 1 9のいずれか 1項に記載のプローブ。
21. R1は、 一般式 [II] R3
~ N+-R4 [ II ]
R5
(但し、 式中、 R3、 R4及び R5はそれぞれ独立に、 水素又は任意の基を示す
)
で表されるァミンである請求項 20記載のプローブ。
22. 前記一般式 [II]中、 R3、 R 4及び R 5はそれぞれ独立に、 水素、 ハロ ゲン又は炭素数 1〜 20の直鎖状若しくは分枝状アルキル基を示す)
で表される請求項 21記載のプローブ。
23. Aは、 疎水性部と親水性部を有する請求項 1 2ないし 22のいずれか 1 項に記載のプローブ。
24. Aは下記一般式 [III]
—— R6
| 【川〗
Ar
(式中、 R6は炭素数 1〜20のアルキレン基であり、 その構成単位である — CH2—の 1個以上かつ半数以下が— 0—、 —CO—及び一 NH—から成る群 より選ばれる 1又は 2以上の基であってもよく、 1又は 2以上の炭素数 1〜20 のアルキル基で置換されていてもよく、 A「は、 1ないし 5個の炭素数 1〜20 のアルキル基で置換されていてもよい芳香環である)
で表される請求項 23記載のプローブ。
25. Aは、 下記一般式 [IV]
Figure imgf000072_0001
(但し、 式中、 R7は存在してもしなくてもよく、 存在する場合には炭素数 1〜 6のアルキレン基を示し、 R8は、 式中に示されるベンゼン環によって任意の水 素が置換された炭素数 1〜 6のアルキレン基を示す)
又は下記一般式【V〕
Figure imgf000073_0001
(ただし、 式中、 R7及び R8は、 式 [IV]と同じ意味を示し、 R9は、 存在して もしなくてもよく、 存在する場合には炭素数 1 ~ 6のアルキレン基又はフエ二レ ン基を示す)
で表される請求項 24記載のプローブ。
26. Aは、 一 R6— (ただし、 R6は、 一般式 [III]における R6と同じ意味 を示す) 又は一 R6— A r— R6'— (ただし、 R6及び A rは一般式 [III]にお ける R6及び A rとそれぞれ同じ意味を示し、 R6'は存在していてもいなくても よく、 存在している場合には一般式 [III]における R6と同じ意味を示す (ただ し、 式中の R6と R6'とは同一であっても異なっていてもよい) )
である請求項 1ないし 22のいずれか 1項に記載のプローブ。
27. Aは、 下記一般式 [XII]
― R
Figure imgf000073_0002
(ただし、 1¾1 7及び1^1 8は、 互いに独立に炭素数 1〜6のアルキレン基を示し, R19は存在していてもいなくてもよく、 存在している場合には炭素数 1〜6の アルキレン基を示す)
又は下記一般式 [XI II]
Figure imgf000073_0003
(ただし、 R20及び R21は、 互いに独立に炭素数 1〜6のアルキレン基を示し、 R 22は存在していてもいなくてもよく、 存在している場合には炭素数 1〜 6の アルキレン基を示す)
で表される請求項 26記載のプローブ。
28. 分子量が 1 000以下である請求項 1 2ないし 27のいずれか 1項に記 載のプローブ。
2 9 . エレクトロスプレーイオン化質量分析用プローブである請求項 1 2ない し 2 8のいずれか 1項に記載のプローブ。
3 0 . 請求項 1ないし 2 9に記載のプローブと、 液状試料中の試料化合物とを 結合させ、 得られた結合物を質量分析にかけることを含む質量分析方法。
3 1 . 請求項 1ないし 2 9に記載の化合物の、 液状試料の質量分析用プローブ を製造するための使用。
PCT/JP2001/005961 2000-07-11 2001-07-10 Probe for mass spectrometry of liquid sample WO2002004936A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002509756A JP4212353B2 (ja) 2000-07-11 2001-07-10 液状試料の質量分析用プローブ
US10/332,622 US7301018B2 (en) 2000-07-11 2001-07-10 Probe for mass spectrometry of liquid sample
AU2001269491A AU2001269491A1 (en) 2000-07-11 2001-07-10 Probe for mass spectrometry of liquid sample

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000210592 2000-07-11
JP2000-210592 2000-07-11

Publications (1)

Publication Number Publication Date
WO2002004936A1 true WO2002004936A1 (en) 2002-01-17

Family

ID=18706836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005961 WO2002004936A1 (en) 2000-07-11 2001-07-10 Probe for mass spectrometry of liquid sample

Country Status (4)

Country Link
US (1) US7301018B2 (ja)
JP (1) JP4212353B2 (ja)
AU (1) AU2001269491A1 (ja)
WO (1) WO2002004936A1 (ja)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069328A1 (fr) * 2002-02-14 2003-08-21 Ajinomoto Co., Inc. Procede d'analyse aminofonctionnelle et reactif analytique
JP2005140755A (ja) * 2003-11-10 2005-06-02 Japan Science & Technology Agency 質量分析用プローブ及びそれを用いた質量分析方法
JP2005291958A (ja) * 2004-03-31 2005-10-20 Shionogi & Co Ltd 糖鎖標識試薬
JP2006036693A (ja) * 2004-07-27 2006-02-09 Mitsubishi Chemicals Corp アルデヒド化合物の標識用化合物、アルデヒド化合物の分析方法及び標識化糖
JP2006523305A (ja) * 2003-03-24 2006-10-12 イグジィリオン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 質量標識体
JP2006523845A (ja) * 2003-04-14 2006-10-19 ウオーターズ・インベストメンツ・リミテツド 芳香族ホスホニウム塩及びマススペクトロメトリー分析における標識試薬としてのこれらの使用
US7724777B2 (en) 2004-06-18 2010-05-25 Qualcomm Incorporated Quasi-orthogonal multiplexing for a multi-carrier communication system
US7916624B2 (en) 2000-09-13 2011-03-29 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8547951B2 (en) 2005-03-16 2013-10-01 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556969B2 (en) * 2002-12-19 2009-07-07 Northeastern University Intensified neutral loss tags and use thereof in mass spectrometry

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587794A (ja) * 1991-09-30 1993-04-06 Shimadzu Corp 液体クロマトグラフ−質量分析装置
JPH06102251A (ja) * 1992-09-18 1994-04-15 Hitachi Ltd 液体クロマトグラフ直結質量分析計
JPH06322274A (ja) * 1993-02-26 1994-11-22 Ciba Geigy Ag マトリックス援用レーザー脱離質量分析のためのマトリックス
JPH08145949A (ja) * 1994-11-25 1996-06-07 Sumitomo Chem Co Ltd 還元性オリゴ糖の質量分析法
JPH08145948A (ja) * 1994-11-16 1996-06-07 Sumitomo Chem Co Ltd 還元性オリゴ糖の質量分析法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9823646D0 (en) * 1997-12-19 1998-12-23 Brax Genomics Ltd Compounds for mass spectrometry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587794A (ja) * 1991-09-30 1993-04-06 Shimadzu Corp 液体クロマトグラフ−質量分析装置
JPH06102251A (ja) * 1992-09-18 1994-04-15 Hitachi Ltd 液体クロマトグラフ直結質量分析計
JPH06322274A (ja) * 1993-02-26 1994-11-22 Ciba Geigy Ag マトリックス援用レーザー脱離質量分析のためのマトリックス
JPH08145948A (ja) * 1994-11-16 1996-06-07 Sumitomo Chem Co Ltd 還元性オリゴ糖の質量分析法
JPH08145949A (ja) * 1994-11-25 1996-06-07 Sumitomo Chem Co Ltd 還元性オリゴ糖の質量分析法

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8098568B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US11032035B2 (en) 2000-09-13 2021-06-08 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9426012B2 (en) 2000-09-13 2016-08-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US8295154B2 (en) 2000-09-13 2012-10-23 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8223627B2 (en) 2000-09-13 2012-07-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8218425B2 (en) 2000-09-13 2012-07-10 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8199634B2 (en) 2000-09-13 2012-06-12 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US8098569B2 (en) 2000-09-13 2012-01-17 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US7916624B2 (en) 2000-09-13 2011-03-29 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US7924699B2 (en) 2000-09-13 2011-04-12 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US7990843B2 (en) 2000-09-13 2011-08-02 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US7990844B2 (en) 2000-09-13 2011-08-02 Qualcomm Incorporated Signaling method in an OFDM multiple access system
JP2016029068A (ja) * 2002-02-14 2016-03-03 味の素株式会社 アミノ官能性化合物の分析方法及び分析試薬
US9274123B2 (en) 2002-02-14 2016-03-01 Ajinomoto Co., Inc. Method for analysis of compounds with amino group and analytical reagent therefor
JPWO2003069328A1 (ja) * 2002-02-14 2005-06-09 味の素株式会社 アミノ官能性化合物の分析方法及び分析試薬
WO2003069328A1 (fr) * 2002-02-14 2003-08-21 Ajinomoto Co., Inc. Procede d'analyse aminofonctionnelle et reactif analytique
US7148069B2 (en) 2002-02-14 2006-12-12 Ajinomoto Co., Inc. Method for analysis of compounds with amino group and analytical reagent therefor
US9658234B2 (en) 2002-02-14 2017-05-23 Ajinomoto Co., Inc. Method for analysis of compounds with amino group and analytical reagent therefor
JP2006523305A (ja) * 2003-03-24 2006-10-12 イグジィリオン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 質量標識体
JP4744433B2 (ja) * 2003-03-24 2011-08-10 エレクトロフォレティクス リミテッド 質量標識体
US8697604B2 (en) 2003-03-24 2014-04-15 Electrophoretics Limited Labeling agents for mass spectrometry comprising tertiary amines
JP2006523845A (ja) * 2003-04-14 2006-10-19 ウオーターズ・インベストメンツ・リミテツド 芳香族ホスホニウム塩及びマススペクトロメトリー分析における標識試薬としてのこれらの使用
JP2005140755A (ja) * 2003-11-10 2005-06-02 Japan Science & Technology Agency 質量分析用プローブ及びそれを用いた質量分析方法
JP2005291958A (ja) * 2004-03-31 2005-10-20 Shionogi & Co Ltd 糖鎖標識試薬
JP4566604B2 (ja) * 2004-03-31 2010-10-20 塩野義製薬株式会社 糖鎖標識試薬
US7724777B2 (en) 2004-06-18 2010-05-25 Qualcomm Incorporated Quasi-orthogonal multiplexing for a multi-carrier communication system
US11039468B2 (en) 2004-07-21 2021-06-15 Qualcomm Incorporated Efficient signaling over access channel
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
US10237892B2 (en) 2004-07-21 2019-03-19 Qualcomm Incorporated Efficient signaling over access channel
US10517114B2 (en) 2004-07-21 2019-12-24 Qualcomm Incorporated Efficient signaling over access channel
US10849156B2 (en) 2004-07-21 2020-11-24 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
JP2006036693A (ja) * 2004-07-27 2006-02-09 Mitsubishi Chemicals Corp アルデヒド化合物の標識用化合物、アルデヒド化合物の分析方法及び標識化糖
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US8547951B2 (en) 2005-03-16 2013-10-01 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US9307544B2 (en) 2005-04-19 2016-04-05 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US8917654B2 (en) 2005-04-19 2014-12-23 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9693339B2 (en) 2005-08-08 2017-06-27 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US9860033B2 (en) 2005-08-22 2018-01-02 Qualcomm Incorporated Method and apparatus for antenna diversity in multi-input multi-output communication systems
US9240877B2 (en) 2005-08-22 2016-01-19 Qualcomm Incorporated Segment sensitive scheduling
US9246659B2 (en) 2005-08-22 2016-01-26 Qualcomm Incorporated Segment sensitive scheduling
US9660776B2 (en) 2005-08-22 2017-05-23 Qualcomm Incorporated Method and apparatus for providing antenna diversity in a wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US8842619B2 (en) 2005-10-27 2014-09-23 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US10805038B2 (en) 2005-10-27 2020-10-13 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US8681764B2 (en) 2005-11-18 2014-03-25 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication

Also Published As

Publication number Publication date
US20040142378A1 (en) 2004-07-22
US7301018B2 (en) 2007-11-27
JP4212353B2 (ja) 2009-01-21
AU2001269491A1 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
WO2002004936A1 (en) Probe for mass spectrometry of liquid sample
JP2716565B2 (ja) 新規リポポリアミン、その製造方法及び利用
US11808768B2 (en) 1,1 ′-[[(substituted alkyl)imino]bis (alkylene)]bis- ferrocenes and their use in I electrochemical assays by labelling substrates of interest
US6582916B1 (en) Metal ion-binding mass markers for nucleic acids
JP2014501925A (ja) 分析方法における電気化学的分析のための新規なフェロセン標識およびそれらの使用
Banerjee et al. Evidence of molecular fragmentation inside the charged droplets produced by electrospray process
US20040031122A1 (en) Wiping device
US20040198712A1 (en) Method for labeling phosphorylated peptides, method for selectively adsorbing phosphorylated peptides, complex compounds used in the methods, process for producing the complex compounds, and raw material compounds for the complex compounds
US20240240170A1 (en) Polyanionic acids to improve recovery and minimize system loss
EP1923397B1 (en) Fluorinated amino acids and peptides
Gao et al. Binding specificity of post‐activated neocarzinostatin chromophore drug‐bulged DNA complex studied using electrospray ionization mass spectrometry
Gregersen et al. Gas chromatographic mass spectrometric identification of N‐dicarboxylmonoglycines
Pouessel et al. A new bis-tetraamine ligand with a chromophoric 4-(9-anthracenyl)-2, 6-dimethylpyridinyl linker for glyphosate and ATP sensing
Suzuki et al. Design and synthesis of labeling reagents (MS probes) for highly sensitive electrospray ionization mass spectrometry and their application to the detection of carbonyl, alcohol, carboxylic acid and primary amine samples
EP3155436B1 (en) Isobaric mass labels
Mari et al. Insertion of organometallic moieties into peptides and peptide nucleic acids using alternative “click” strategies
WO2007133714A2 (en) Analyte focusing biochips for affinity mass spectrometry
JP2006317464A (ja) 液状試料の質量分析用プローブ
Maran et al. Electrochemistry of 2-bromo-2-methylpropanamides. Reduction mechanism and cyclocoupling reaction with amide solvents
CN105175297A (zh) 4-甲酰苯甲酸金刚烷酯缩邻氨基苯硫酚席夫碱镍配合物合成及应用
Szczepańska et al. Synthesis of macrocyclic tetraamides derived from α-amino acids and their investigations using ESI-MS technique
CN117342974A (zh) 一种用于手性分析的新型叠氮衍生试剂及其制备和应用
Nickita et al. Synthesis, Spectroscopic Properties and Electrochemical Oxidation of RuII‐Polypyridyl Complexes Attached to a Peptide Nucleic Acid Monomer Backbone
JP2005061854A (ja) シトシン若しくはその誘導体又はグアニン若しくはその誘導体の質量分析用プローブ
Sato et al. Triazole-linked host compounds for chiral-discrimination toward amino acid ester guests

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10332622

Country of ref document: US

122 Ep: pct application non-entry in european phase