WO2001087481A1 - Catalyseur d'esterification et de transesterification et procede de production d'ester - Google Patents

Catalyseur d'esterification et de transesterification et procede de production d'ester Download PDF

Info

Publication number
WO2001087481A1
WO2001087481A1 PCT/JP2001/004057 JP0104057W WO0187481A1 WO 2001087481 A1 WO2001087481 A1 WO 2001087481A1 JP 0104057 W JP0104057 W JP 0104057W WO 0187481 A1 WO0187481 A1 WO 0187481A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
ester
acid
amount
product
Prior art date
Application number
PCT/JP2001/004057
Other languages
English (en)
French (fr)
Inventor
Tetsu Matsumoto
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000147554A external-priority patent/JP3525133B2/ja
Priority claimed from JP2000169264A external-priority patent/JP3547002B2/ja
Priority claimed from JP2001119252A external-priority patent/JP2002308972A/ja
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to KR10-2002-7015282A priority Critical patent/KR100520308B1/ko
Priority to US10/275,758 priority patent/US7030057B2/en
Priority to EP01930172A priority patent/EP1308208A4/en
Priority to CA002408450A priority patent/CA2408450A1/en
Publication of WO2001087481A1 publication Critical patent/WO2001087481A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0202Alcohols or phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a catalyst used in an esterification reaction and a transesterification reaction, and a method for producing an ester using the catalyst.More specifically, the present invention relates to an excellent dehydration esterification reactivity of an activated titanium catalyst. The present invention relates to a method for producing esters having a low acid value and a narrow molecular weight distribution by effectively utilizing the transesterification ability.
  • Conventional technology
  • an acid catalyst such as sulfuric acid, an alkoxytitanium such as tetrabutoxytitanium, and the like have been used for the esterification reaction and transesterification reaction.
  • this alkoxy titanium catalyst was further improved to obtain a polyol polytitanate obtained by reacting an alkoxy titanium with a low-molecular-weight polyol (Japanese Patent No. 17952216) ) And polytitanic acid obtained by reacting alkoxytitanium with water (Patent No. 1858539).
  • alkoxy titaniums are reacted with a water-soluble polyfunctional polyol, they produce polyol polytitanate, and when reacted with water, they produce polytitanic acid.
  • plasticizers that do not volatilize, polyesters and composite esters formed from dibasic acids, diols and monofunctional alcohols show excellent performance, and their plasticization performance shows the same plasticity corresponding to the viscosity of plasticizer It is expected as a thing.
  • the above-mentioned drawbacks of the conventional catalysts based on alkoxytitanium used in the esterification reaction and the transesterification reaction are improved, the reactivity is remarkably fast, and the catalyst becomes inefficient as the reaction proceeds. It is possible to obtain an ester, which is a final product with zero acid value, because the activation is minimized and the capping reaction proceeds in the primary reaction.
  • the purpose is to provide a catalyst. An excess of alcohol may be used to simply lower the acid value, but OH groups will remain at the ends of the product, leaving the alcohol groups formed by conventional acid and base catalysts. Esters in which a large amount of terminal OH groups remain cannot be used for electricity as described above.
  • the present invention provides a reaction product having such an ester bond and having an OH group at a cap terminal by elongating a chain by a transesterification reaction, and further having an ester having an extremely narrow molecular weight distribution at a desired degree of polymerization.
  • An object of the present invention is to provide a method for producing an ester, which enables the production of an ester. Means for determining the task
  • a first subject of the present invention is a gel comprising an alkoxytitanium, a water-soluble '14 polyol and a mixture of water, or a reaction product of the mixture, wherein the water-soluble polyol and the water-soluble polyol are mixed with respect to 1 mol of the titanium.
  • the alkoxytitanium may be tetrabutoxytitanium, tetraisopropyloxytitanium or tetraoctoxytitanium, and the water-soluble polyol may be ethylene glycol, propanediol, diethylene glycol or glycerin.
  • a second subject of the present invention is a first step in which a monofunctional alcohol and a diol are simultaneously or individually added to a dibasic acid and reacted, and the reaction between the acid and the alcohol from the product formed in the first step
  • a method for producing an ester comprising: a second step of separating an reactant to obtain an ester; and a third step of recycling the reactant separated in the second step to the first step. Is an ester production method using 0.01 to 10 mmol, preferably 0.05 to 5 mmol, more preferably 0.1 to 5 mol, per 1 mol of the acid.
  • a third subject of the present invention is to provide an ester previously formed from a dibasic acid and a monofunctional alcohol or an ester previously formed from a dibasic acid, a monofunctional alcohol and a diol.
  • ester is used as a concept including both a polyester and a complex ester, which will be described in detail later.
  • reaction used herein includes both the concept representing only an esterification reaction or a transesterification reaction and the concept including an esterification reaction and a transesterification reaction. This is because the catalyst of the present invention is an effective catalyst for both the esterification reaction and the transesterification reaction.
  • the present invention relates to a method for producing a composite ester and a polyester by performing a transesterification reaction with a product.
  • the dibasic acid may be adipic acid or phthalic acid or a mixture thereof
  • the monofunctional alcohol may have 4 to 10 carbon atoms
  • the diol may be ethylene diol, 1, 2-propanediole, 1,3-butanediole, 1,4-butanediole, 1,6-hexanediole, 2-ethyl / ray 1,3-hexanediole, molecular weight of less than 100, preferably less than 500
  • the polyol polytitanate / polytitanic acid is premixed with a polyol and / or water, or the polyol and / or water is added and mixed simultaneously with the reaction (esterification reaction or transesterification reaction).
  • the reaction esterification reaction or transesterification reaction.
  • the active site as a catalyst is increased in polytitanic acid, and at the same time, during the esterification reaction or transesterification reaction, the polyol polytitanate wraps around the active site and is inactivated by esterification. It is proposed to increase the activity of the activated titanium catalyst by preventing its activation and extending the life of the active site. This When a catalyst such as is used in the dehydration esterification reaction, this reaction has the characteristic that it proceeds in a primary reaction that reacts in proportion to the logarithm of the acid concentration.
  • Such a polio / water-based water-produced titanium is prepared by using ethylene glycol ⁇ , propanediol, diethylene glycol, glycerin or other water-soluble polyols to convert alkoxytitanium into polyol and water, and into 1 mole of titanium.
  • ethylene glycol ⁇ , propanediol, diethylene glycol, glycerin or other water-soluble polyols to convert alkoxytitanium into polyol and water, and into 1 mole of titanium.
  • 1 to 50 mol of polyol and 1 to 60 mol of water are dissolved and reacted to obtain a gelled product containing water excess, which is a characteristic of polytitanate, and is used as a solvent or alcohol used in the reaction. And added to the reaction system.
  • the diester compound which has been used in excess in the next-stage transesterification reaction and whose acid value has been increased by heat can be used and can be easily reused with a low acid value in a short time.
  • the diester recycling process has become possible.
  • a fourth subject of the present invention is a reaction comprising a reactive ester composition of a dibasic acid (HOOCACOOH), a diol (HOXO H) and a terminal alcohol (ROH) (RO (COACOO XO) n H) (n ⁇ 1)
  • HOOCACOOH dibasic acid
  • HOXO H diol
  • ROH terminal alcohol
  • This reactant has the general formula:
  • R ′ may be the same or different, and represents an alkyl group which may be the same as R).
  • This activated titanium catalyst is used for both esterification and transesterification. Since it has catalytic activity, and particularly has excellent activity in esterification reaction, by utilizing such properties, ester alcohol and the above-mentioned esters are formed and reacted in the fifth subject, esterification. The problem can be solved.
  • the dehydration esterification reaction which is the first step of the present invention, is performed from a dibasic acid, a diol and a monofunctional alcohol using an activated titanium catalyst, the monofunctional alcohol (R) and the diol (the Rukoto be introduced into distributed and continuous reaction vessel the required amount of X), diester (suppressed as much as possible the formation of RAR), the reaction system in the complex ester (R (AX) n AR, n ⁇ 1)
  • a method is adopted in which the conditions are such that the alcohol and the ester alcohol (R AX) can coexist. That is, in this esterification reaction, when the amount of the alcohol (R) introduced is increased, the excess alcohol (R) produces undesirable diesthenole (RAR). In order to generate an undesired diester (RAR), it is necessary to keep this excess to such an extent that the ester alcohol (RAX) coexists with the complex ester.
  • the addition of alcohol of course, there is a problem of the addition amount as well as the excess amount, and a method of adding the alcohol (R) little by little during the reaction between the dibasic acid (A) and the dionole (X) has been adopted.
  • the reaction is preferably carried out at 150 ° C. to 160 ° C. by lowering the temperature.
  • the reaction proceeds sufficiently at this stage even in the absence of a catalyst.
  • the amount excess reacting the amount required, in manufacturing the desired product R (AX) m (AX) n AR (m ⁇ 0, n ⁇ l), R (AX) m AX + R (AX) n — i
  • the objective is achieved by carrying out the esterification reaction using an excess of the theoretical amount of alcohol (R) required to obtain the AR, although the amount of (R) used is excessive, even if the entire amount is reacted, the amount of esterified products containing diols is theoretical and not excessive. Furthermore, since these reactions are carried out under dehydration conditions in which water is removed from the reaction system, it is not easy to control the quantitative reaction of the lower diol (X).
  • the diol component is removed out of the reaction system in accordance with the water distillation rate along with the reaction rate, so it fluctuates greatly depending on the reaction molar amount, making it difficult to carry out the theoretical amount of reaction. It is necessary to control the amount. If the reaction amount of alcohol is insufficient due to distilling of diol (X), the alcohol amount will not be sufficient even if the alcohol (R) amount is controlled. In addition, the acid value does not decrease, the transesterification in the next stage does not proceed, and the low volatile content of the product including ester alcohol increases.
  • the rate of addition of the alcohol (R) is too fast or an excess is used, not only will the amount of diester (RAR) produced and the resulting removal increase, but also the corresponding degree of polymerization of the product And the product with the desired degree of polymerization cannot be obtained.
  • the use of the highly active biocatalyst of the present invention enables the reaction of very small amounts of acids and alcohols to be confirmed as a primary reaction, and the reaction proceeds to a trace amount at a rapid rate. As a result, high molecular weight polyester to low molecular weight complex ester can be produced with narrow distribution and close to the target degree of polymerization.
  • ester alcohol (RAX) corresponding to m 0 Becomes
  • the molecular weight distribution means Pw / Pn (Pw represents a weight average degree of polymerization, and Pn represents a number average degree of polymerization).
  • the method of the present invention is not used, the amount of alcohol (R) and diol (X) introduced in the esterification reaction is not controlled, or the catalyst does not have strong esterification and transesterification catalytic activities. If a conventional catalyst is used, it is difficult to obtain such a product stably.
  • the resulting complex ester is not only restricted in polymerization and has a narrow molecular weight distribution, but also has a particularly low acid value, facilitates transesterification, and can be produced with the target molecular weight. Standard values for conventionally sold polyester Can be greatly improved.
  • the high molecular weight composition is reduced, the viscosity of the product is reduced, and the diester as a by-product is also reduced, so that an excellent composite ester can be produced.
  • plasticizers they have low viscosity and high plasticity, and are expected to be excellent non-polluting plasticizers with no volatility.
  • the activated titanium oxide soot the catalytic activity may be reduced.
  • the active site is covered by adsorption or reaction with the titanium catalyst, thereby suppressing the acid adsorption and reducing the catalytic activity.
  • ethylene glycol used for catalyst activation, its activity is relatively small, so it continues to have high activity, resulting in a catalyst with excellent activity.
  • propanediol is also used as an activation catalyst to avoid the incorporation of ethylenedalicol when reacting with other diol components, and is used in the esterification reaction between diol and acid, but diol remains Activity may decline at the end of the reaction, even though it appears likely.
  • Diol may be used in a solvent or alcohol, but when a catalyst made by dissolving and activating alkoxytitanium is added, excellent activity is exhibited, and the acid value can be reduced effectively.
  • the fifth subject of the present invention is to produce esters by performing a dehydration esterification reaction and then a transesterification reaction to dibasic acid, diol and monofunctional alcohol using an activated titanium catalyst.
  • the active titanium catalyst is a mixture of alkoxytitanium, a water-soluble polyol and water, or a gel comprising a reaction product of the mixture, and the number of moles of the water-soluble polyol and water relative to 1 mole of the titanium.
  • the active titanium catalyst is a mixture of alkoxytitanium, a water-soluble polyol and water, or a gel comprising a reaction product of the mixture, and the number of moles of the water-soluble polyol and water relative to 1 mole of the titanium.
  • the esterification reaction or transesterification reaction wherein the monofunctional alcohol and the diol are used throughout the esterification reaction.
  • the dehydration esterification reaction is preferably performed under conditions such that the complex ester and the ester alcohol are produced in the coexistence.
  • the target product of the production method of the present invention is represented by R (AX) m + n AR (m 0, n ⁇ l, A is abbreviated as a dibasic acid, X is a diol, and R is a monofunctional alcohol, and each reactive group or ester bond is omitted. ),
  • the monofunctional alcohol (R) is converted to the theoretical amount necessary to obtain the desired product (ie, R (AX) m + n AR) in the catalytic dehydration reaction.
  • R (AX) m AX can be divided into R (AX) ⁇ and R AX, in which case the theoretical amount increases by 2 R and 2 R is used as an excess.
  • the excess amount is determined by the m / n in comparison with the degree of polymerization of the target product, and the excess amount can be used from an amount of 1 or less to several times as much as an excess amount. If it is less than 0.2, the effect will not be evident because it is a small percentage of implementation, and if it is too large, the RAR will increase and there will be no effect, and 0.2 to 2.0 times the amount with respect to the difference from the theoretical amount It is preferred to use the amount in excess.
  • the above-mentioned dehydration esterification reaction is carried out under conditions such that a complex ester and an ester alcohol are produced in the coexistence. It is considered something.
  • the molecular weight distribution of the produced ester is 2 or less, and a composite ester having a narrow molecular weight distribution can be produced.
  • esters is used as a concept including both polyesters and complex esters, which will be described in detail.
  • FIG. 1 shows the change of the acid concentration in the esterification reaction using the activated titanium catalyst of the present invention.
  • the catalyst of the present invention is a mixture of alkoxytitanium, a water-soluble polyol and water, or a reaction product of the mixture.
  • alkoxytitanium is tetrabutoxytitanium and its tetramer, tetrafunctional tetraalkoxytitaniums such as tetraisopropyloxytitanium, tetraethoxytitanium, tetraoctyloxytitanium and the like, and alcohols such as titanium trichloride and titanium tetrachloride.
  • Solution a compound called an orthotitanate, etc., but preferably tetrabutoxytitanium, tetraisopropyloxytitanium or tetraoctyloxytitanium, and more preferably tetrabutoxytitanium.
  • the water-soluble polyolone is not particularly limited as long as it is a water-soluble conjugate having two or more hydroxyl groups, but ethylene glycol, propanediol, diethylene glycol or glycerin is preferable.
  • the number of moles of the water-soluble polyol with respect to 1 mole of titanium in the alkoxytitanium is 1 to 50 moles, preferably 5 to 20 moles, more preferably 8 to 15 moles.
  • the number of moles of water is 1 to 60 moles, preferably 4 to 40 moles, and more preferably 10 to 20 moles.
  • the production of the esters in the present invention involves esterification using the titanium catalyst of the present invention, and further mainly a transesterification reaction to produce complex esters and polyesters. It may be manufactured only, in which case the product can be made into a product by simply adding water and filtering out titanium.
  • the reaction molar ratio between the diols and the diester used is important. The higher the amount of the diester, the lower the viscosity of the product having a lower degree of polymerization, and the higher the molar ratio of the diol. A product having a high viscosity and a high degree of polymerization can be obtained, the reaction molar ratio is determined according to the degree of polymerization of the target product, and a diol diester is also used as the diol component.
  • the rate of transesterification reaction by otatanol can be reduced, and a product close to the target product can be obtained.
  • the higher the degree of polymerization the more it becomes impossible to avoid the transesterification reaction by octanol, and as a result, the molecular weight distribution of the target product is higher in the proportion of lower degree of polymerization and higher in the degree of higher degree of polymerization. Products containing components (broadly distributed products) appear.
  • the properties of the complex ester product obtained by the dehydration esterification reaction of the complex ester and the transesterification reaction differ somewhat depending on the type of the component.
  • Ethylene glycol diethylene dalicol has poor water resistance but is a biodegradable additive.
  • Carbon number 3 The common diols of 8 to ⁇ —polypropylene glycol and the like exhibit relatively similar properties.
  • the influence of the side chain of 1K diol improves water resistance (see Japanese Patent Application Laid-Open No. Hei 6-172722).
  • linear adipic acid is mainly used as the acid, but unsaturated acids and aromatic acids are also used.
  • Phthalic acid has a sharp increase in viscosity as the degree of homopolymerization increases, but when partially mixed and produced and used as a plasticizer, physical properties such as water resistance and migration properties are excellent.
  • the monohydric alcohols of the terminal groups are not limited to the octanols described in Examples, but other alcohols with C4 or more are used.Lower alcohols have poor water resistance, and the higher the alcohol, the longer the chain The effect of alcohol comes out. In some cases, the use of polyethylene glycol monoalkyl ether as one of the other alcohols has been shown to inhibit the growth of fungi.
  • the reaction process will be described. As described above, the features of the process of producing dioctyl adipate, which is a diester of adipic acid, and diol diester, respectively, and adding the diester to the diester are referred to as the Retroy-dani reaction.
  • the reason for this is to reduce the reaction rate produced, but the reaction is thought to be due to the reaction of the octanol formed in the transesterification reaction again.
  • An addition reaction is performed to reduce the rate of the retro-reaction.For example, it is effective to obtain polyesters having a high degree of polymerization.Polyesters having an arbitrary degree of polymerization can be obtained depending on the mole ratio of diol diester to diester. .
  • a heterogeneous complex ester may be separately added to the reaction system, or a mixed diorgester may be added.
  • a heterogeneous dibasic acid diester is formed as a by-product during the retrofitting reaction and must be separated.Therefore, it is possible to proceed with the transesterification by adding the diester while removing octanol under reduced pressure. It will be advantageous. Different diol diesters can be made singly or as a mixture, and the reaction molar ratio between the dione resin ester and the diester can be determined, and then added to the diester to carry out the reaction and transesterification to obtain the product.
  • the transesterification reaction may be carried out while heating the mixture, but the reaction is carried out while adding diol and polyester.
  • a method of producing a mixture of an ester alcohol and a diester by a dehydration esterification reaction and performing a transesterification reaction thereof is also employed (see Patent No. 2517245). By changing the molar ratio, products with different degrees of polymerization can be obtained.
  • the desired product can be obtained by carrying out an additional transesterification reaction.
  • the diester to be circulated and used was once heated to 140.
  • the transesterification reaction (Step C) can be started by lowering the temperature to about C and adjusting the number of moles of reaction, and gradually increasing the temperature while increasing the degree of vacuum. By keeping the temperature at 200 ° C and 25 mmHg, the transesterification reaction proceeds. After sufficient dealcoholation, perform the next transesterification (step D) reaction.
  • the feature of this two-step transesterification reaction is that in the esterification reaction (A), which produces an ester alcohol and an ester, the molar ratio of the diol component is excessive in alcohol, corresponding to the reaction molar ratio.
  • the (E) reaction abbreviated as anorecol 0 or diol X, has a considerable probability in the presence of titanium catalysts, such as transesterification in a mixed solution, normal dehydration esterification, and subsequently transesterification to reduce volatiles. Occur. Since this reaction can be prevented by the transesterification reaction, the diester by-product can be recycled.
  • the characteristic of soot that progresses as a primary reaction at the same time as the reaction rate is extremely fast means that the reaction proceeds even with a very small amount of excess reaction between acid and alcohol. If it is theoretically excessive, the reaction proceeds even if the excess amount is small.
  • esterification with dibasic acid, diol, and terminal alcohol assuming ester alcohol and diester intermediates, theoretically excess ROH If the esterification reaction proceeds with just the excess, the excess used is removed by transesterification.
  • the purpose of the reaction is to assume that the excess amount due to the use of the diol and terminal alcohol is a complex ester with one more n in proportion to the excess use of the diol. Can be achieved.
  • Polyesterol exchanges polyesterol with polyesterester, so that by-product diesterol can be neglected and a product with an excellent distribution can be obtained.However, in lower complex ester, ester exchange reaction becomes reaction with complex ester. By doing so, a method of producing a small amount of by-products is adopted. The diester by-produced in the reaction must be converted into a complex ester in the two-step ester exchange reaction described above, and the unreacted di-stellate must be used as a circulating reaction material.
  • a plasticizer especially when used under high humidity, low molecular weight adipate is hydrolyzed, and the surface is whitened, and water resistance is required. For this purpose, it is improved if the above-mentioned phthalic acid is contained in a unit of 0.3 or more.
  • Dioctyl phthalate has been used as a plasticizer for PVC, and its performance has been the highest. However, in outdoor applications, it evaporates according to its vapor pressure.
  • the composite ester shows excellent performance, and the plasticization performance shows the same plasticity corresponding to the viscosity of the plasticizer.
  • the use ratio of a plasticizer that shows the same hardness as DOP 50 parts is 500 centiboise, the degree of polymerization is 4 and the number of complex esters up to about 5 is less than 52 parts, and the degree of polymerization is 1 to 46 when the degree of polymerization is 1 .
  • the degree of polymerization is 4 and the number of complex esters up to about 5 is less than 52 parts, and the degree of polymerization is 1 to 46 when the degree of polymerization is 1 .
  • Complex ester has the general formula
  • R is an alkyl group of a terminal alcohol
  • A is an acid residue of adipic acid (-CH 2 CH 2 CH 2 CH 2- )
  • X is an alcohol residue of a diol used (eg, -CH 2 CH (CH 3 )-: propanediol)), which has been conventionally used as a low-temperature lubricating oil.
  • the esters of the present invention have a low acid value and a low OH value, and a diol component exhibiting low temperature characteristics and adipic acid Is expected to show excellent properties for its intended use.
  • the present inventor has proposed an ester which is usually produced as a composite ester.
  • RO (COACOOXO) COACOOR 1 mole of RO (COACOOXO) 2 COACOOR produces 1 mole of ROCOACOOR equivalent to the increase in the number of n.
  • the degree of polymerization of diol diesters is the same in principle, but the theoretical amount of adipic acid ester () is subtracted from the weight of the reaction product of diol diester represented by HO (XOCOACOO) n XOH, and the molecular weight of HOXOH The number divided by indicates the number of moles of the product, and the reciprocal of the number indicates the value of the degree of polymerization n, and the molecular weight is calculated.
  • Adipic acid indicates A phthalic further Jioru components HOXOH or X in P, propanedioic all the type used was X P dipropylene glycol using X DP, using other X 2 E. Furthermore, it was expressed using the symbol of 0 as the terminal alcohol.
  • the degree of polymerization is indicated by a subscript number after 0.
  • the reaction when phthalic anhydride is used as the dibasic acid, the reaction is started with 1 mole of the phthalic anhydride and 1 mole of the diol, and the ester alcohol obtained by adding 1 mole of the monofunctional alcohol and esterifying is used.
  • PX molecular-weight
  • Transesterification it is possible to produce a high-molecular-weight (PX) n- free complex ester for the first time.
  • PX molecular-weight
  • Transesterification it is impossible to carry out a completely equimolar reaction, so it is preferable to use as much diester as possible and carry out the reaction quantitatively.
  • Transesterification is described in (1) with RPXOH instead of RAXOH and with phthalic acid instead of adipic acid Will be.
  • the transesterification reaction is carried out under reduced pressure, preferably at 10 OmmHg or less, more preferably at 3 OmmHg or less, more preferably at 0.2 to 25 mmHg, particularly preferably at 0.5 to 2 mmHg.
  • the temperature is preferably high near the boiling point of the RAR, ie, at a temperature of 160 to 250 ° (preferably, 180 to 220 ° C), and it is preferable to carry out the addition transesterification little by little.
  • the degree of polymerization of the product becomes 2 or more. Is large and efficiency becomes poor. If it is less than 1.5 mol, the viscosity becomes high and the features of this method are lost.
  • the composition of the product obtained is obtained by subtracting the yield from the theoretical calculation, and assuming that the number of RAR moles of the g does not participate in the reaction, calculate the number of moles of the reaction and the reaction ratio.
  • the reciprocal is (PX) n Is calculated as n.
  • (PX) 2 does not necessarily mean PXPXP. In this reaction, it is considered that ROH has no effect on the reaction, and the product unit has the structure of PXAXP. It is probable that something was obtained.
  • R (AX) n OH and R (PX) n OH were calculated by evaporating the reaction product under reduced pressure to remove toluene used as azeotropic ribs, unreacted terminal alcohol, and 1-year-old ketanol.
  • the difference from the calculated amount is divided by the molecular weight of octanol, and the number of moles obtained by subtracting the number of moles from the used amount is calculated, and the ratio can be calculated.
  • a composition with a wide molecular weight distribution may be obtained by partially performing a retro-reaction, but the target can be increased by conducting transesterification under reduced pressure to obtain a higher molecular weight.
  • a polyester having the following polymerization degree can be produced as a product having a low acid value and a low alcohol terminal.
  • the transesterification reaction is progressing at the terminal end, but the transesterification reaction also progresses inside the polyester. Therefore, it is not expected that a completely normal distribution will be obtained.
  • the retrofit reaction by ROH is controlled, it is expected that the molecular weight distribution will probably be close to the normal distribution.
  • Example 16 a polyesterification reaction was performed for a molecular weight of 3500 from a complex ester having a degree of polymerization of 4 obtained by a direct sequential addition dehydration esterification reaction, but by-products of low molecular weight diester RAR were observed. There is no need to remove low molecular weight parts by high temperature distillation after polymerization. In contrast, in the reaction with the diester (Example 5), even with the use of twice the molar amount of the R (AX) OH ester alcohol, almost 20% of the RAR still remains unreacted, and therefore, is less than the target composition by 2%. It was calculated that the molecular weight increased almost by comparison.
  • R (AX) n OH and R (PX) n OH can be made individually or as a mixture, and the added amount can be determined according to the target composition.
  • the objective can be attained by performing a transesterification reaction by adding a compound.
  • the features of this reaction are that the molecular weight and composition can be easily controlled according to the purpose, and the acid value alcohol value is practically zero, and the molecular weight distribution of the alcohol-terminated polyester is also regulated.
  • the feature of this patent is that it has the potential to provide what has been done.
  • the ester structure produced for the purpose of the present invention is a reaction composition represented by the following reaction formula and general formula (A).
  • R i.e., ROH
  • ROH is a monofunctional alcohol and is a straight-chain or side-chain anorecol having 4 or more carbon atoms.
  • 2-ethylhexanol was used in the examples.
  • the present invention is not limited to alkyl alcohols.
  • ether alcohols called ethylene glycol monoalkyl ethers, those having different alkyl groups are used for antibacterial purposes, and diethylene glycol-based ether glycols can also be used.
  • the dibasic acids represented by A are not limited to phthalic adipic acid, but dallic acid succinate and cholesteric acid, and in part, terephthalic acid and their hydrogenated acids and maleic anhydride. Unsaturated acids typified by formula (1) are also feasible, but mixed use of two or more types is also possible.
  • Diorone represented by X that is, HOXOH is selectively used in view of the low-temperature properties required as a plasticizer and the price, but is used in the form of straight-chain diols having 1 to 6 carbon atoms or 1,2-propane.
  • Diols having side chains such as 1,2- or 1,3-butanediol and 2-ethyl-1,3-hexanediol are used for the purpose of emphasizing their properties.
  • Ether alcohols represented by glycol and dipropylene glycol can be used depending on the purpose, including hydrophilic affinity.
  • These compounds, particularly corresponding to the degree of polymerization n, have difficulty in lowering the acid value due to their composition in conventional polyester production, so that high-molecular-weight esters are less effective in the ester exchange reaction and are lower ester alcohols. Remains, resulting in polyester with an unfavorable distribution.
  • the length of the chain structure corresponds to the molecular weight.
  • a linear short unit is used, and for flexibility and water resistance, a chain diol having a side chain is used.
  • Polyethylene adipate at both terminal alcohols is a plasticizer for polyethylene terephthalate (PET) resin. As a result, it can be used as a raw material for biodegradable plastics by using a transesterification reaction.
  • the reaction is carried out partially via ester alcohol to obtain a product.
  • reaction formula (A) When the reaction formula (A) is described as R + A + X + A + R ⁇ RAXAR, the reaction amount is a reaction between 2R, 2A, and X, but a part of the reaction is ++ A + R ⁇ ⁇ If the reaction is planned to be RAX + RAR, the amount of reaction can use a large amount of R in the reaction of 3R, 2A and X. Even if this reaction is carried out, the previous reaction also proceeds at the same time, so even if excess R is used, not all will produce RAX, but in general, monofunctional alcohols react more than diols.
  • the reaction As a means of controlling the molecular weight, it is important to control the reaction between the diol and the dibasic acid unit. Some diol components are distilled off azeotropically with water during the dehydration esterification reaction. Therefore, it is necessary to adjust the composition halfway. In addition, the composition may change as the reaction proceeds at once.
  • the necessary amount of monofunctional alcohol is used to control the molecular weight, but for the purpose of a uniform product, polyester is added by adding a small amount before the half of the acid reacts, and finally adding the remaining half to the polyester. Is preferred.
  • the acid value does not drop sufficiently by an equivalent addition reaction. When the reaction proceeds 90 to 95%, an excess amount of diol is added simultaneously with the activation catalyst to proceed the reaction.
  • the unreacted acid amount calculated from the acid value has a logarithmic value that is linear with time, so that the end point of the reaction can be predicted.
  • the catalytic activity may be deactivated by the diol component filling the active site. Therefore, it may be necessary to add an activating catalyst at the same time as confirming the amount of the remaining diol. Inactivation differs depending on the diol component, and the use of ethylene glycol has the longest inactivation time, and the concentration ratio with water at the time of activation is also affected. After sufficiently lowering the acid value using activated soot, a transesterification reaction is carried out between the ester alcohol and the polyester formed by the excess diol used as the activation aid.
  • the diol component used in the dehydration esterification reaction and used in excess proceeds through the transesterification reaction by 2 Pfi 1 and is considered to be ester alcohol, and the corresponding terminal alcohol is placed in the next stage.
  • the ester recovered by the transesterification reaction becomes a polymer.
  • the reaction molar amount being 2 n moles
  • the excess diol X E, (l / 2n) middle product is for 1 mole used of the corresponding and the product represented by the following formula.
  • the reaction proceeds smoothly, the progress will differ depending on the reaction temperature, but the half-life of the acid can be about 15 to 30 minutes, and the time to obtain the final acid value can be estimated.
  • the amount of excess alcohol is small, the progress naturally slows down. Therefore, the excess diol catalyst solution prepared in the same manner is partially added to proceed the reaction.
  • the target is (RPXAR + RPXAR + RPXAXAR + RPXAXPR)
  • 5 moles of P phthalic acid
  • 6 moles of X diol
  • 8 moles of R terminal alcohol
  • X is 1.2 compared to 1 mole of A.
  • R is 1.6.
  • 1 mole of A is 2 moles of XI moles and 2 moles of X.
  • the plasticization efficiency when used is expressed as the amount of plasticizer showing the same hardness as when using octyl phthalate DOP 50 parts, and its value is estimated to be 51 to 52.
  • the target (RPXAR + RPXAR) is not limited to these combinations. If the weight is higher, such as RPXAXAXPR, the by-produced RPR decreases, but the viscosity increases if the amount of phthalic acid is large. However, if the degree of polymerization is higher, the viscosity becomes higher, and the plasticization efficiency becomes worse.
  • the use of this improved catalyst confirms the progress of the quantitative reaction of the three components and the heterogeneous complex ester of the four components.
  • the resulting esters are correspondingly capable of producing polyesters and composite esters having a low acid value and a low alcohol terminal, as well as a narrow molecular weight distribution, as well as heterogeneous esters.
  • the lower the molecular weight of the diol the more volatile it is, and the easier it is to azeotropically distill with water and the more difficult it is to control it.
  • the results are described in the examples, but the types of diol components are limited. Not something.
  • Example 1 (Dehydration of adipic acid or phthalic acid) To 1.49 g (24 mmol) of ethylene glycol, add 0.65 g (36 mmol) of water and mix, and add 0.41 g (1.2 mmol) of tetrabutoxytitanium in small portions. When mixed, a gel-like mixture containing water is obtained.
  • Example 2 shows the above polyol water-activated titanium catalyst at 190 to 195 ° C. using 1.5 mmol with respect to 0.5 mol of phthalic acid, and the acid value of the reaction solution was measured.
  • FIG. 1 shows the change over time in the amount of acid mole calculated from the value.
  • the reaction rate was the same as that of the primary acid reaction, and the half-life was also 13 minutes.
  • Example 2
  • octyl adipate (DOA) prepared in advance was added with a diol diester under a reduced pressure of a water pump of 25 tg Hg, and approximately one hour later, approximately calculated amount of octanol was recovered. 4 ml of cooling water was added to the reaction solution, a stirring solvent was added, the mixture was allowed to stand, activated clay was added, and the filtrate was concentrated and distilled to obtain 56 g of DOA and 282.4 g of a distillation residue.
  • DOA octyl adipate
  • the octanol was formed in response to the dropwise addition, and the transesterification was terminated after distilling off the distillate and observing the distillate in an approximately calculated amount.
  • a mixture of 1.79 moles of adipic acid (260 g) and 500 g of octanol was placed in a dehydration esterification reactor, heated and water produced was removed. One hour later, a 1.5 mmol active titanium catalyst was used as a catalyst. Three hours after the start, the acid value was set to 0.08. After 40 g of the diester obtained in Example 2 was added to obtain a 1.9 mol solution, 0.666 mol (188 g) of the diol diester having a molecular weight of 282.5 obtained in Example 4 was added. 210-180. The deotatanol transesterification reaction was performed at C / 70 to 25 thigh Hg.
  • a mixed solution of 4 mol (536 g) of dipropylene glycol and 0.267 mol (39.5 g) of phthalic anhydride was heated to react with anhydride.
  • 0.533 mol (78 g) of adipic acid was added to carry out a heating dehydration reaction, and after 1 hour, a titanium catalyst was added to obtain an acid value of 0.08.
  • dipropylenedaricol was removed to obtain 280.1 g of a residual liquid.
  • the molecular weight was corrected to be 385 by adding 27 g of dipropylene dalicol.
  • the above-mentioned diol diester was added to 300 g of DOA under reduced pressure to perform a transesterification reaction, and the product obtained by adding 0.2 mol (molar ratio 1: 4) was 162.5 g, The by-product DOA used in the present invention was 144.8 g.
  • the composition of the product is Calculated molecular weight 946. Its viscosity is 326 cm. Boyis water resistance is measured by immersing the sheet in hot water at 60 ° C and measuring the weight loss%, 0.91 for DOP 0.8, 180 for heat loss 2.61 for DOP 17%, flexible temperature was 19.5 ° C.
  • Example 8 (diol diester versus diester 3.37: 1)
  • Example 7 300 g of DOA was subjected to a steal exchange reaction by adding 0.24 mol (92.3 g) of DOA. Acquire the amount of product composition molecular weight of the product at 182. 0 g DOA recovery recycling required amount in the TsutomuAkira is 1 2 7. 0 g 0 (AX DP) 2. 33 (PX D p) o. The calculated molecular weight of 47AO is 1062. It has a viscosity of 334 centimeters of bois, a water resistance of 0.89, a loss of heat at 180 ° C for 2 hours of 2.03, and a softening temperature of 19.0 ° C.
  • Example 9 (Reaction molar ratio of diol diester and diester 1: 2.89) Subsequent to Example 7, the reaction molar ratio was changed, and 0.28 mol (92.3 g) of diol diester was added to 300 g of DOA. An additional transesterification reaction was performed. The product was collected at 206.9 g and the DOA to be recovered and recycled was 97.5 g. The product composition ⁇ ( ⁇ ) 2. 52 is calculated to be (£ 3 ⁇ 4 ⁇ ) 0. 51 70 molecular weight 1119.
  • Example 10 (Reaction of ester alcohol and diester) The dehydration esterification reaction was started using a mixture of 0.5 mol of adipic acid, 0.25 mol of 2-ethyl1.3 hexanediol and 0.75 mol of octanol. One hour later, 1.7 mmol of activated titanium catalyst was added, and the acid value was 1.66 in 30 minutes, 0.49 in one hour, 0.05 in 1.5 hours, and 0.05 in 1.5 hours. finished. After the completion of the reaction, the pressure in the reactor was gradually increased, and finally the pressure was reduced with a water jet pump.The temperature was maintained at 200 to 210 ° C for 1.5 hours, and further maintained at 0.5 tg Hg for 30 minutes to remove the generated ethanol. .
  • the pressure was switched to reduced pressure, and the water pump was depressurized to 25 mmHg, and the temperature was raised to 200 ° C. Kept.
  • octanol began to evaporate, and one hour later, a separately prepared diol diester solution was added, and the transesterification reaction was continued.
  • the separately prepared diester solution was prepared by subjecting a mixed solution of 0.3 mol of phthalic anhydride and 0.6 mol of dipropylene glycol (80.4 g) to nitrogen replacement, and performing a dehydration esterification reaction with a small amount of toluene.
  • the reaction was carried out at a temperature of about 210 ° C, and at the end of the reaction, 0.8 mmol of ethylene glycol water-activated titanium catalyst was added.
  • the acid value was adjusted to 0.1 or less one and a half hours after the addition, and the added liquid was added 30 minutes later. Used as In the transesterification reaction, if the addition was carried out earlier, the distillation of octanol became faster, but the addition was carried out little by little while observing the amount of octanol that came out.
  • the addition was completed in about 1 hour, and finally the pressure in the reactor was reduced to 0.5 tg Hg to completely remove octanol with a part of DOA.
  • the removed octanol was almost quantitative and weighed 152 g including a small amount of DOA.
  • the reaction liquid reached 100, 200 ml of diluent toluene and 6 ml of water were added, stirring was continued and the mixture was allowed to stand, and then activated clay filtration, concentration, and concentration distillation under reduced pressure were performed.
  • 205 g of DOA was recovered by combining the amount of distillation up to 250 ° C with the amount obtained in the previous transesterification reaction.
  • A adipic acid
  • P phthalic acid
  • R terminal alcohol (2-ethylhexanol)
  • R terminal alcohol (1-octanol)
  • X DP Jioru dipropylene glycol used as a component
  • X 13B 1 was used as the diol component, using the symbols of the 3-butanediol, a polymerization degree of a composition () described below with characters.
  • These diols and terminal alcohols are not limited to those described in the Examples, but various diols and terminal alcohols (C 4 to C i. Alcohols) which have been conventionally used or studied have been studied. The same theory applies to
  • the ethylene glycol water activated titanium catalyst used in Examples 12 to 18 is as follows: It was prepared as follows. To 1.49 g (24 mmol) of ethylene glycol, add 0.65 g (36 mmol) of water and mix. Add 0.41 g (1.2 mmol) of tetrabutoxytitanium in small portions and mix. A gel-like mixture containing To this gel-like polyol polytitanic acid catalyst, 10 g of otatanol was added and dispersed by stirring to obtain a polyol water-activated titanium catalyst.
  • a mixture of 0.33 mol (49.6 g) of phthalic anhydride and 0.33 mol (44.7 g) of dipropylene glycol was subjected to an anhydride reaction by heating and stirring to obtain 0.33 mol of 2-ethylhexanol. (43.3 g) was suspended with 1.5 mmol of ethylene glycol water-activated titanium catalyst, and the suspension was added to the reaction solution to perform a dehydration esterification reaction. The acid value was 0.1 in 1.5 hours after the addition, and the reaction was completed for 30 minutes.
  • reaction mixture was divided into 2 minutes, and 66.4 g of this reaction product (0.166 mol as reaction product RPX OH of 1 mol each) was added to 0.34 monooctyl adipate (R, AR,). (125.5 g) and 0.8 mmol of titanium catalyst were added under reduced pressure at 5 to: L miH g. .
  • Octanol containing toluene was distilled off in response to the addition, and 29.7 g was recovered.
  • the transesterification reaction was completed and the temperature dropped to 100 ° C, 5 ml of water was added and stirred, and after 2 hours, toluene was added and the mixture was filtered with diluted activated clay, and the filtrate was distilled to remove the solvent. After removing the volatile matter (R, AR ', etc.) at 190-250 ° C, 0.5 mmHg, 73.6 g of the product was obtained as a residual liquid.
  • the degree of polymerization 1.736 was obtained from the reciprocal of the ratio, 0.576. From this, the composition of the product is calculated to be ⁇ molecular weight 829.
  • the degree of polymerization decreases to 2.05, 1.79, 1.74, but the viscosity decreases correspondingly.
  • Ethylene glycol water was added to a mixture of 0.7 mol (102.2 g) of adipic acid, 0.7 mol (63 g) of 1,3-butanediol and 0.7 mol (91 g) of 1-octanol.
  • dehydration esterification was carried out in the presence of a small amount of toluene under heating. After 2 hours and 15 minutes, the acid value was 0.10, and after 30 minutes, the esterification reaction was completed. After concentration under reduced pressure, toluene 1-octanol was removed to obtain 24.2 g.
  • R (AX 13B ) 4 produced by dehydration esterification by starting with dehydration esterification by mixing 4 mol equivalents of adipic acid, 3 mol equivalents of 1,3-butanediol, and adding 2 mol equivalents of 1-otatanol sequentially.
  • R (PX DP ) OH was prepared by the following method. 0.1 mole (27.8 g) of dibutyl phthalate to 0.1 mole (13.4 g) of dipropylene glycol and 0.1 monole (13 g) of 2-ethylhexanol and 0.8 mole (0 .
  • the post-treatment solvent was removed according to a conventional method, and the distillation volatiles were removed under reduced pressure to obtain 195.5 g of a product as a residue.
  • Theoretical value R of the product (AX DP) 3. 4 ( AX DP). . 66 AR, 2 06. 3 g to, n l. 24, thus the composition of the product R (AX DP) 4. 22 (PX D P). .
  • the solvent was distilled off from the toluene diluent, and finally, the pressure was raised to 0.3 mmHg to 260 ° C to remove 310 g of volatile matter (DOA) to obtain 234.4 g of a product.
  • DOA volatile matter
  • the viscosity of the product is 510 centi-boise at 20 ° C, and the plasticity when used as a plasticizer for polyvinyl chloride is equivalent to that when using DOP 50PHR. Although somewhat worse, the loss on volatilization is almost zero, and it is estimated that there is no deterioration in low-temperature characteristics and that it can be used as an excellent non-volatile plasticizer. In this experiment, not only did the ester exchange reaction not proceed for + minutes for the esterified product that did not decrease in the acid value, but also phthalic anhydride corresponding to the thermal decomposition product was precipitated in the distillation machine upon removal of volatiles. Water washing is necessary to reduce the acid value.
  • This method minimizes the production of phthalic acid diester and presents a reaction system that does not generate by-products by recycling and reusing adipic acid ester.
  • the degree of polymerization m is determined by the reaction ratio with adipic acid ester. Although it is a different product, it is a method for obtaining excellent plasticity by preventing a sharp rise in viscosity due to phthalic acid. Although the fraction of polymerization means a mixed composition with a higher-order fraction, this method does not produce phthalate phthalate and mainly has a phthalate azide structure. And an excellent product is obtained.
  • Amount of adipic acid in monole (7,300 g) and molecular weight (2,000) 5 X10 / 11 1 mol of ethylene dalicol (21.8,8 g) and correction amount in proportion to diol azeotropically distilled with water A total of 300 g of a mixture of ethylene glycol containing 18.2 g and toluene of 100 g were placed in a reaction vessel, and the atmosphere in the reaction vessel was replaced with nitrogen. Then, a dehydration esterification reaction was started. Water distilled off azeotropically at 130 to 150 ° C. was circulated back to the reaction vessel and the reaction was carried out to remove generated water.
  • Esterification was carried out while maintaining the reaction temperature at 200 ° C, and the primary reaction rate calculated from the logarithmic value of the amount of residual acid calculated from the value of the last acid value and the time was a half-life of almost 20 minutes. It became 0.002, and the reaction was completed after 30 minutes.
  • the transesterification reaction solution was cooled, and 1 g of toluene and water were added. 40 g of stirred activated clay was added, and the catalyst was adsorbed and settled, and the toluene was distilled off from the supernatant and the toluene was distilled off to remove 920 g of the product [P ] Was obtained.
  • the number average molecular weight by GPC was 3140, the weight average molecular weight was 6020, and the dispersion was 1.917. A polyester with an excellent distribution could be produced with a target molecular weight of 3000.
  • This polyethylene adipate is a polyester with a low acid value and almost no terminal alcohol, and has excellent compatibility with polyethylene terephthalate resin.It can be added and mixed up to 8% in an extrusion test using a 10-inch kneader, but it is insufficiently dissolved at 10%. A phenomenon of backflow accumulation in the feed section was observed. No other plasticizer was found to be able to incorporate more than 3 parts of di-2-ethylhexyl phthalate and other complex esters.
  • the average molecular weight of 1,600 dispersion showed an excellent distribution at a value of 1.98, and the viscosity at 20 ° C. was 1,440 cmvoise.
  • the error with respect to the target molecular weight is related to the correction amount of the azeotropic distillation of propanediol, and the excess amount due to the azeotropic distillation is the amount obtained by confirming the correction amount experimentally, and corrected by the circulation amount and the reaction temperature. It is necessary to calculate the correction value to adjust the molecular weight to the intended value, especially for propanediol.
  • a polyester plasticizer is used as a plasticizer for PVC, and its low volatility is well separated.
  • the reaction molar ratio resulting from the composition is adipic acid 2, diol 1, octanol 2.
  • the target product was reacted as the reaction composition of adipic acid 2, diol 1.25, octanol 1.5 (RAXAR + 2RAXAXAR).
  • RAXAR + 2RAXAXAR 2RAX + 3RAXAR
  • the amount of R used is + 2R and the esterification reaction is carried out by additionally using it, and the desired product is obtained except for the amount corresponding to 2R in the transesterification reaction. Examples thereof are shown below.
  • reaction rows substantially half-life 20 minutes of reaction promoting ivy 0
  • Di-2-ethylhexylpoly (1.7) 1,2-propanediyl adipate 1,2-propanediol has a low boiling point and distills off azeotropically with water to produce a quantitative reaction.
  • RAR Jiokuchi Ruajipeto D_ ⁇
  • an example that uses the byproduct DOA using ester alcohols corresponding to RAX to Ki ⁇ Reacting with the recovered DOA has the same meaning as in this example, and this example illustrates the case of producing RAX while partially producing DOA at the same time, and reacting with the recovered and recycled RAR to produce a complex ester. It is a production example.
  • the mixture was placed in 740 g of recovered DOA and the temperature was adjusted to 180 to 200 with stirring. The pressure was reduced under C to remove the solvent and the otatanol produced by transesterification.
  • RAX is produced and reacted while partially producing a RAR that is circulated and consumed.
  • RAX may be made for the purpose, in which case the target product partially equivalent to RAXAR is formed at the same time, and in the transesterification reaction, the reaction solution containing RAXAR is somewhat different.
  • a complex ester having a small number of n cannot be obtained without transesterification with the amount, and the value of n decreases as the ratio of RAR during the reaction increases.
  • the target reactant is (2RPXAR + RPXAXAR + RPXAXPR)
  • P and A are 5 monoles X is 6 moles
  • R is 8 (5 + 3) ⁇
  • R is 8 (5 + 3) ⁇
  • R The target composition can be obtained by using an excess of 2 moles and removing the corresponding amount 2R by transesterification.
  • An example of the reaction of 1 mole of phthalic acid on a 5 mole scale of 1Z is shown below.
  • phthalic anhydride To 148 g of phthalic anhydride was added 130 g of 2-ethylhexyl alcohol and 80 g of toluene as a solvent, and after purging with nitrogen, the mixture was heated and stirred at 80 to 95 ° C for 4 hours to remove the anhydride. Reacted. Adipic acid (146 g) and 1,2-propanediol (91.2 g, 1.2 times the mole) and 5.8 g of azeotropically distilled water were added, and the dehydration esterification reaction was performed. After the start, esterification was carried out at 140 to 150 ° C, and the distilled water was circulated four times and returned to the reaction vessel, and the temperature was lowered each time, and the water was distilled off.
  • Adipic acid (146 g) and 1,2-propanediol (91.2 g, 1.2 times the mole) and 5.8 g of azeotropically distilled water were added, and the dehydration ester
  • the different complex ester can also be produced by the circulation method shown in Example 22 by using RPX phthalate alcohol instead of RAX.

Description

明 細 書 エステル化反応及びエステル交換反応用触媒並びにエステル類の製法 技術分野
この発明は、 エステル化反応及びエステル交換反応に用いられる触媒並びにこ の触媒を用いたエステルの製法に関し、 更に詳細には、 この発明は、 活性化チタ ン触媒の優れた脱水エステル化反応性とエステル交換能を有効に利用して、 酸価 が低く分子量分布の狭いエステル類を製造する方法に関する。 従来技術
従来、 エステル化反応及びエステル交換反応には硫酸等の酸触媒ゃテトラブト キシチタン等のアルコキシチタンなどが用レ、られてきた。
しかし酸触媒は最終生成物の酸価を下げることが困難であり、 またアルコキシ チタン類は反応が遅レ、という不満足な点を有していた。
そのため反応性を上げ、 触媒残渣の除去を容易にするために、 このアルコキシ チタン触媒を更に改良して、 アルコキシチタンと低分子ポリオールを反応させた ポリオールポリチタネート (特許第 1 7 9 5 2 1 6号) やアルコキシチタンと水 を反応させたポリチタン酸 (特許第 1 8 8 5 3 9 9号) が提案されている。 アルコキシチタン類を水溶性の多官能のポリオールと反応させるとポリオール ポリチタネートを生成し、 また水と反応させるとポリチタン酸を生成する。 これ らのポリオ一 ポリチタネートゃポリチタン酸を触媒として用いる場合には、 こ れらのポリチタネートノポリチタン酸をアルコール及ぴは水と反応させて、 その 表面に一 ΟΗ基を生じさせ、 これらを活' I"生化する。 しかし、 このように活性化し ても、 反応が進行するにつれ表面の一 ΟΗ基が消費され、 活性点が消滅して、 触 媒が不活性化するという欠点があった。
—方、 ポリ塩化ビエルの可塑剤としてジォクチルフタレートが使われて来てそ の性能は最高のものであるが、 屋外使用の用途ではその蒸気圧に対応して揮散し てしまうという欠点を有している。そのため揮散しない可塑剤として、 2塩基酸、 ジオール及び 1官能性アルコールから生成させたポリエステルや複合エステルは 優れた性能を示し、 その可塑化性能は可塑剤の粘度に対応して同等の可塑性を示 すものとして期待されている。
し力 し、 従来の触媒を用いてこのようなエステルを製造しょうとすると、 アル コールが少ないと酸価が下がらず、 エステルイ匕を早くして、 低酸価にするために アルコールを多く使うと重合度が上がらない。 重合度を上げてポリエステルを作 るために計算量に近い量で反応を行うために酸価が下がらず、 低電気伝導度が要 求される電用品向けでも規格が一桁高く低酸価のポリエステルが求められて ヽる。 —方重合度の低い特定の分子量を持つ複合エステルでは nの数が増えるにつれて 級数的にその数が減少する分子量分布を持ち、 分子量の低い分子の量が多くその 結果ジオールを構成成分としないジエステルが多い混合物として製造されるので それとの分離が容易ではない。 分離時の熱履歴によりリサイクルに使用したい成 分の酸価が上がるという欠点を改良することが極めて困難であった。
そのため、 上記のようなポリ塩化ビュルの可塑剤としてのポリエステルや複合 エステルがなかなか実際の生産工程で生産されず、 多量の可塑剤がポリ塩化ビニ ルから揮散し続けるという環境上の問題が未解決のまま放置されて!、る。 発明が解決しようとする課題
従って、 本発明においては、 エステル化反応及ぴエステル交換反応において用 いられる上記のような従来のアルコキシチタンに基づく触媒の欠点を改良して、 反応性が著しく速く、 反応の進行に従って触媒が不活性化することを最小限に抑 え、 カゝっ反応が一次反応で進むために酸価がゼロの最終生成物であるエステルを 得ることが可能になる、 エステル化反応及びエステル交換反用の触媒を提供する ことを目的とする。 酸価を単に下げる目的ではアルコールを過剰に使用すればよ いが、 生成物の末端に OH基が残り、 従来の酸、 塩基触媒ではできたアルコール 基がそのまま残る。 末端 OH基が多量に残ったエステル類は先に述べた電気用 には使用できなくなる。 このようにして脱水エステル化反応に優れた触媒活性を 有する触媒を目的にしても、 従来持っているエステル交換反応にあたって、 その 特有の活性が無くなれば、 従来の酸型の触媒と同様であるが、 エステル化後エス テル交換反応を行っても触媒効果の特徴を失わない触媒であることが望まれる。 更に、 本発明は、 このようなエステル結合を有しカゝっ末端に OH基を有する反 応物をエステル交換反応により鎖の延長を可能とし、 更に所望の重合度において 極めて狭い分子量分布を有するエステル類の製造を可能にするエステル類の製造 方法を提供することを目的とする。 課題を角军決するための手段
本発明の第一の主題は、 アルコキシチタン、 水溶 '14ポリオール及ぴ水の混合物 又は該混合物の反応生成物から成るゲル状物であって、 前記チタン 1モルに対す る前記水溶性ポリオール及ぴ水のモル数がそれぞれ:!〜 5 0モル及ぴ 1〜 6 0モ ルであるエステル化反応又はエステル交換反応用触媒である。 このアルコキシチ タンはテトラブトキシチタン、 テトライソプロピルォキシチタン又はテトラオク チ ォキシチタンであってもよく、 またこの水溶'性ポリオ一ノレはエチレングリ コ ール、プロパンジオール、ジエチレングリコール又はグリセリンであってもよい。 本発明の第 2の主題は、 2塩基酸に 1官能性アルコール及びジオールを同時又 はそれぞれ単独に添加して反応させる第 1工程、 第 1工程で生成した生成物から 前記酸と前記アルコールの反応物を分離してエステルを得る第 2工程、 第 2工程 で分離した反応物を前記第 1工程へ再循環させる第 3工程からなるエステルの製 法であって、 前記第 1工程において上記触媒を前記酸 1モルに対して 0 . 0 1〜 1 0ミリモル、 好ましくは 0 . 0 5〜5ミリモル、 より好ましくは 0 . 1〜5ミ リモル用いるエステルの製法である。
また本発明の第 3の主題は、 2塩基酸及ぴ 1官能性アルコールから予め生成さ せておいたエステル、 又は 2塩基酸、 1官能性アルコール及ぴジオールから予め 生成させておいたエステルを用いてジオールを反応させる第 1工程、 第 1工程で 生成した生成物から未反応の前記エステルを分離して、 それ以外のエステルを得 る第 2工程、 第 2工程で分離した未反応エステルを前記第 1工程へ再循環させる 第 3工程からなるエステルの製法であって、 前記第 1工程において上記触媒を前 記酸 1モルに対して 0 . 0 5〜5ミリモル用いるエステルの製法である。
なお、 本明細書を通して 「エステル」 という用語は、 後に詳説するポリエステ ル及ぴ複合エステルの双方を含む概念として用いられる。 また、 ここで 「反応」 とはエステル化反応又はエステル交換反応のみを表す概念並びにエステル化反応 及びエステル交換反応を含む概念の双方を含ものとして用いられる。 これは本発 明の触媒がエステル化反応及びエステル交換反応の双方に対して有効な触媒であ るからである。
これは、 また従属する各種のエステル交換反応の反応形態に関するもので、 活 性化触媒を使用して製造されるエステル類中に存在する触 能を使って、 ジォ ール及び/又はその反応生成物との間でエステル交換反応をおこなって、 複合ェ ステル並びにポリエステル類を製造する方法に関する。 この 2塩基酸はアジピン 酸若しくはフタル酸又はこれらの混合物であつてもよく、 この 1官能性アルコ一 ルの炭素数が 4〜1 0であってもよく、このジオールはエチレンダルコール、 1, 2—プロパンジォーレ、 1 , 3—ブタンジォーノレ、 1, 4—ブタンジォーノレ、 1, 6一へキサンジォーノレ、 2—ェチ /レー 1 , 3—へキサンジォーノレ、 分子量が 1 0 0 0以下、 好ましくは 5 0 0以下、 より好ましくは 3 0 0以下のポリエチレング リコーノレ及び分子量が 1 0 0 0以下、 好ましくは 5 0 0以下、 より好ましくは 3 0 0以下のポリプロピレングリコールから成る群から選択される少なくとも 1種 であってもよレヽ。
本発明においては、 ポリオールポリチタネート/ポリチタン酸にポリォーノレ及 ぴ /若しくは水を予め混合する力 \ 又はポリオール及び/若しくは水を反応 (エス テル化反応又はエステル交換反応)と同時に添カ卩して混合系にすることによって、 ポリオールポリチタネート Zポリチタン酸に触媒としての活性点を增やすと同時 に、 エステル化反応又はエステル交換反応に際してポリオールポリチタネートが 活性点を包みエステル化によつて不活性化されるのが防止され活性点の寿命を長 くして、 活性化されたチタン触媒の活性を著しく増大させることを提案する。 こ のような触媒を脱水エステル化反応に使用すると、 この反応は酸濃度の対数に比 例レて反応する 1次反応で進行するという特徴を有する。
このようなポリオ一/レ水活†生ィ匕チタンは、 エチレングリコー^^、 プロパンジォ ール、 ジエチレングリコール、 グリセリンその他の水溶性ポリオールを用いて、 アルコキシチタンをポリオール及ぴ水に、 チタン 1モルに対してポリオール 1〜 50モル及び水 1〜 60モルとなるように溶解させて反応させ、 ポリチタネート の特徴である水過剰分を含むゲル化生成物を得て、 溶剤又は反応に使用するアル コールに懸濁して、 反応系に添加される。
このような触媒を用いると、 図 1に示すように、 脱水エステル化は、 従来に比 ベて著しく速い 1次反応で進行し、 即ち反応の終点が予測され、 測定点以降」定 時間の経過後、 実質的に酸価ゼロの生成物を得ることが出来る。 この触媒反応を 利用して、 通常触媒として用いられる酸類より酸価の低いエステル類を得ること ができるばかりでなく、 酸価の下がらないエステル化物や、 熱劣ィヒ等によって酸 価があがったエステルを使用して容易に酸価を下げることができる。
本発明では、 次段エステル交換反応で過剰に使用して回収され、 熱^ で酸価 の高くなったジエステル化合物を使用して、 容易に短時間に低酸価にして再使用 することができ、 ジエステルのリサイクルプロセスが可能になった。
本発明の第 4の主題は、 2塩基酸(HOOCACOOH)、 ジオール(HOXO H) 及ぴ末端アルコール (ROH) の反応エステル組成物 (RO (COACOO XO) nH) (n≥ 1) から成る反応物を、 チタン触媒の存在下、 l O OmmHg 以下の減圧下で反応させてエステル類を製造する方法である。 この反応エステル 組成物としては、 2塩基酸(HOOCACOOH)、 ジオール (HOXOH)及ぴ 末端アルコール (ROH) のモル比 1 : 1 : 1の反応エステノレ組成物 (ROCO ACOOXOH) が好ましい。 この反応物は更に一般式:
R' O (COACOOXO) nCOACOOR'
(式中、 R' は、 それぞれ同じか又は異なっていてもよく、 前記 Rと同じであつ てもよいアルキル基を表す。) で表されるエステル化合物を含んでもよい。
この活性化チタン触媒は、 エステル化反応及ぴエステル交換反応のいずれにも 触媒活性を有し、 特にエステル化反応に優れた活性を有するため、 このような性 質を利用することによっては、 第 5の主題であるエステル化に際してエステルァ ルコールと前記エステル類を作つて反応させる課題を解決することが可能になる。 即ち、 2塩基酸、 ジオール及び 1官能性アルコールから活性ィ匕チタン触媒を用 いて本発明の第一段階である脱水エステル化反応を行う場合に、 1官能性アルコ ール (R) 及びジオール (X) の必要量を分散し且つ継続的に反応容器に導入す ることにより、 ジエステル (R A R) の生成をできる限り抑えて、 反応系に複合 エステル (R (A X) nA R、 n≥ 1 ) とエステルアルコール (R AX) とが共 存できるような条件にする方法が採用される。 即ち、 このエステル化反応におい て、 アルコール (R) の導入量を高濃度にすると、 過剰アルコール (R) はこの ましくないジエステノレ (R A R) を生成する。好ましくないジエステル (RAR) が生成するために、 この過剰量をエステルアルコール (R AX) が複合エステル と共存する程度に抑えておくことが必要となる。
アルコールの添加については、 当然過剰量を少なくすると共に添加濃度の問題 があり、 2塩基酸 (A) とジォーノレ (X) の反応時に少量ずつアルコール (R) を添加する方法が採用され、 反応温度を下げて 1 5 0〜: 1 6 5 °Cで反応すること が好ましく、 アジピン酸 (A) を使用する反応ではこの段階では無触媒でも反応 速度は十分に反応が進行する。 更に反応の進行状態に応じて、 必要量を反応させ 過剰量は、 目的生成物 R (AX) m (AX) nA R (m≥0、 n≥ l ) を製造する にあたって、 R (A X) mAX + R (AX) n— i ARを得るに必要な理論計算量の アルコール (R) の量を過剰量として使用してエステルイ匕反応を行うことで目的 が達成され、 目的生成物に対しては (R) の使用量は過剰であるが、 全量が反応 してもジオールを含むエステル化生成物につ!/ヽては理論量であって過剰使用では ない。 更にこれらの反応は水を反応系から除く脱水条件で行われるため、 特に低 級のジオール (X) の定量的反応のコントールは容易ではなレ、。 反応速度と共に 水の溜出速度に対応してジオール成分は反応系外に除去されるので、 反応モル量 によっても大幅に変動して、 理論量の反応を行うことは難しいが、 各成分の反応 量をコントロールすることが必要である。 アルコールの反応量がジオール (X) の溜出で不足するとアルコール (R) 量をコントロールしてもアルコール量が不 足し、 酸価が下がらず、 次段のエステル交換反応も進行せずエステルアルコール を含めて生成物の低揮発分が増大する。 一方、 アルコール (R) の添加速度が早 すぎまた過剰量が使用されると、 ジエステル (RAR) の生成量が増え、 その結 果除去量が増えるばかりではなく、 対応して生成物の重合度が大きくなつて目的 重合度の生成物が得られない。 本発明の高活' I"生触媒の使用によって、 特に極少量 の酸並びにアルコールの反応が、 1次反応として確認され早い速度で微量成分ま で反応が進行するので、 定量的な反応を初めて行うことが出来、 その結果は高分 子量のポリエステルから低分子量の複合エステルでも分布が狭レ、目的重合度に近 いエステル類が製造される。
続いて、 第二段階であるエステル交換反応を行う。 即ち複合エステル (R (A X) n— i A R、 n≥ 1 ) とエステルアルコール (R (AX) mAX) との反応を進 行させて所望のエステル (R (AX) m (AX) nAR) を生成させる事が出来、 エステルアルコール (R (A X) mA X) の記載は mが大きな場合にはポリエス テルについてであり、 複合エステルについては、 m= 0に相当するエステルアル コール (R A X) となる。
このようにして、 分子量分布が 2以下のエステル類を製造することが可能にな る。 この場合の分子量分布とは、 P w/ P nをいう (P wは重量平均重合度、 P nは数平均重合度を表す。)。
本発明の方法の使用の結果、 優れた分子量分布を持ち、 更に低重合度末端アル コールポリエステルに相当する複合エステル (R (AX) nA R、 n≥ 1 ) では、 一番の課題であった n = 0に相当するジエステル (R A R) の副生も最小限にす ることができる。
一方、本発明のような方法を取らず、エステル化反応においてアルコール(R) とジオール (X) の導入量を制御しなかったり、 あるいは強力なエステル化反応 とエステル交換反応の触媒活性を有しない従来の触媒を用いたりすれば、 このよ うな生成物を安定して得ることは困難となる。
生成した複合エステルは高分子化が抑えられて分子量分布が狭いばかりではな く、 特に、 低い酸価にする事が出来、 エステル交換反応が容易になり、 また目的 分子量を狙って製造出来るので、 従来販売されたポリエステルについての規格値 を大幅に改善することが可能となる。 複合エステルでは高分子量の組成が少なく なり、 生成物の粘度が下がり、 副生成物であるジエステルも少なくなつて、 優れ た複合エステルの製造が出来る。 それらは可塑剤として使用する時は、 低粘度高 可塑性で、 特に揮発性がなく優れた環境非汚染性の可塑剤として期待される。 更に、 活性ィ匕チタン触煤を使用するにあたって、 触媒活性が低下する場合があ る。 ポリオール成分の種類によってチタン触媒に吸着または反応して活性点を被 覆し、 酸の吸着を抑制し触媒活性の低下を来す現象と恩われる。 エチレングリコ ールを触媒活性化に使用した場含は、 その活性低下は比較的少ないので、 高い活 性を持ち続け、 結果として活性の優れた触媒となる。 その他のジオール成分を使 つて反応する際にエチレンダリコールの混入を避けるために例えばプロパンジォ ールも活性化触媒に使用され、 ジオールと酸のエステル化反応に使用されるが、 ジオールが残っていると思われるにも拘わらず反応末期に活性が低下することが ある。 ジオール成分が原因で活性が下がった反応系に同じジオール成分を使用し て活性化を行っても反応速度は再現しない、 しかしそのような場合でもエチレン グリコール一 7 を使用して、 触媒調節にあたっては溶剤やアルコール中、 更にジ オールを使つてもよいがアルコキシチタンを溶解し添加活性化して作つた触媒を 添加すると優れた活性を示し、 酸価は有効に下げることができる。
即ち、 本発明の第 5の主題は、 活性ィ匕チタン触媒を用いて 2塩基酸、 .ジォール 及び 1官能性アルコールに脱水エステル化反応及ぴ次にエステル交換反応を行つ てエステル類を製造する方法において、 該活性チタン触媒がアルコキシチタン、 水溶性ポリオール及ぴ水の混合物又は該混合物の反応生成物から成るゲル状物で あり、 該チタン 1モルに対する該水溶性ポリオール及ぴ水のモル数がそれぞれ 1 〜5 0モル及び 1〜6 0モルであるエステル化反応又はエステル交換反応用触媒 であって、 該エステル化反応の全期間に渡って該 1官能性アルコール及ぴ該ジォ ールの必要量を分散し且つ継続的に反応容器に導入することを特徴とするエステ ル類の製法を提供することである。
前記脱水エステル化反応は、 複合エステルとエステルアルコールとを共存して 生成するような条件で行われることが好ましい。
また、 本発明の製法の目的生成物を、 R (A X) m+nAR (m 0、 n≥l、 Aを 2塩基酸、 Xをジオール、 及び Rを 1官能性アルコールと略記し、 各反応基 やエステル結合を省略する。) とする場合には、觸3脱水エステル化反応において 該 1官能性アルコール (R) を、 目的生成物 (即ち、 R (AX) m+ nAR) を得 るのに必要な理論量に、 該脱水エステル化反応の生成物として R (AX) mAX + R (AX) n^ ARを得るのに必要な量と該理論量との差の 0 . .2〜2 . 0倍 量、 特に 0 . 5〜1 . 0倍量 (即ち、 過剰量) を加えた量で使用することが好ま しい。
なおこの場合には上記の差 Rは 1モルに相当する。 R (AX) mAXは R (A X) ώと R AXとに分けて考えることができ、 そのときは理論量は 2 R増え 2 R が過剰量として使用される。 一方、 目的物の重合度との対比 m/nによって過剰 量は決まり、 1以下の量から数倍量も過剰量として使用可能になるが、 0 . 3 3 以下では分子量分布が広くなり、 更に 0 . 2以下では少ない割合の取り极いとな つてその効果が明らかにならないし、 多すぎると RARが増えて効果がなく、 前 記理論量との差に対する量の 0 . 2〜2 . 0倍量を過剰量として使用することが 好ましい。
このような量を、 分散し且つ継続的に反応容器に導入することにより、 前記の 脱水エステル化反応が、 複合エステルとエステルアルコールとを共存して生成す るような条件で行われることになるものと考えられる。
また、本発明の方法によれば、生成するエステルの分子量分布は 2以下となり、 分子量分布の狭い複合エステルを製造することができる。
なお、 「エステル類」 とは、詳説するポリエステル及び複合エステルの双方を含 む概念として用いられる。 図面の簡単な説明
図 1は、 本発明の活性ィヒチタン触媒を用いたエステル化反応における酸濃度の 変ィ匕を示す。 発明の実施の形態 この発明の触媒は、 アルコキシチタン、 水溶性ポリオール及ぴ水の混合物又は 該混合物の反応生成物である。
ここでアルコキシチタンはテトラブトキシチタン及びその四量体、 テトライソ プロピルォキシチタン、 テトラエトキシチタン、 テトラオクチルォキチチタン等 の 4官能性テトラアルコキシチタン類、 三塩化チタン、 四塩化チタン等のアルコ ール溶液、 オルトチタン酸エステル類と呼ばれる化合物等を含むが、 テトラブト キシチタン、 テトライソプロピルォキシチタン又はテトラォクチルォキシチタン が好ましく、 テトラブトキシチタンがより好まし 、。 水溶性ポリォーノレは 2以上 の水酸基を有する水溶性ィ匕合物であれば特に制限は無 、が、エチレングリコール、 プロパンジオール、 ジエチレングリコール又はグリセリンが好ましい。
本発明においては、 このアルコキシチタン中のチタン 1モルに対する水溶性ポ リオールのモル数は 1〜 5 0モル、 好ましくは 5〜 2 0モル、 より好ましくは 8 〜 1 5モルであり、 また同様に水のモル数は 1〜 6 0モル、 好ましくは 4〜4 0 モル、 より好ましくは 1 0〜2 0モルである。
これらを単に室温で又は ロ熱して混合するカゝ又は溶媒中で溶解させてもよく、 またその混合順序にっレ、ても制限は無 、。 .
アルコキシチタン、 7溶性ポリオール及ぴ水の混合物は室温で反応しゲル状に なる。 この構造は内部に水を含み外側をポリオールポリチタネートのゲルで覆わ れた球状構造をとると考えられ、 その外表面には多数の O H基が表出し、 触媒活 性を努揮するものと考えられる。
一方、 従来知られているように、 アルコキシチタンとポリオールを混合すると ポリオールポリチタネートを生成し、 一方アルコキシチタンと水を混合するとポ リチタン酸となり、 これらにメタノ一ル及ぴ水を添加して反応させるとその表面 に O H基を持ち触媒活性を生じる。 し;^し、 本発明の触媒は、 このようにして得 られた従来技術のポリオールポリチタネートノポリチタン酸よりも遥かに強い触 媒活性を有するだけでなく (図 1 )、経時による触媒の劣ィ匕をほとんど生じないも のである。 このように本発明の触媒は従来想像だにされなかった効果を有するも のである。 この優れた効果は上記のような特異な構造に起因するものと考えられ る。
本発明におけるエステル類の製造は、 本発明のチタン触媒を使ってエステル化 更に主としてエステル交換反応で、 複合エステルさらにポリエステル類を製造す るものであるが、 当然第一段階のエステルイ匕反応物を製造するのみでも良く、 其 の際には製品は単に水を加えてチタンを濾過除去し、 製品にすることが出来る。 エステル交換反応については、 使用するジオール類とジエステルの反応モル比が 重要であって、 ジエステル量が多い程低重合度の低粘度生成物が得られ逆にジォ ールのモル比が多い程粘度の高く重合度の高い生成物が得られ、 目的生成物の重 合度に応じて反応モル比が決められ、 ジオール成分はジオールジエステルも使用 される。
そのような製造の経過から、 ジエステルの過剰量例えば低粘度製品を目的にジ オール 1モルに対して 4モル量を使用すると、 2モル量は過剰使用であり、 また 2モル量の反応量や更に低い場合でも、 未反応で残存するジエステルは、 循環し て使用することが必要で、 高温では、 前記の触媒に起因する着色の外に熱分解に よる例えば無水フタル酸の生成等の揮発性酸が出来ることから、 出来るだけ必要 十分な熱量で蒸留する減圧濃縮装置が要求され連続式装置は更に好まし ヽ。 本発明者のこれまで行つて来た複合エステル類の製造方法では、 分子量分布を コントロールして製造する為に末端アルコールのォクタノールを逐次添加する方 法が最善の方法であつたが、 エステル交換反応の際にジオールを逐次添加して脱 オタタノールを行いながら反応を進めるとオタタノールによる、 エステル交換反 応の割合を少なくすることが出来目的物に近い生成物を得ることが出来る。 しか しながら、 より高重合度になるほど、 ォクタノールによる、 エステル交換反応の 関与を避けることが出来なくなって、 その結果は目的生成物の分子量分布は、 低 重合度の割合が高くまた高重合度の成分も含む生成物 (分布の広い生成物) が出 来上がる。
複合エステル類の脱水エステル化反応さらにエステル交換反応で得られる複合 エステル類生成物の性質は成分の種類によつて幾分異なり、 エチレングリコール ジエチレンダリコールは耐水性能が悪いが微生物崩壊性添加物となり、 炭素数 3 〜 8の一般的なジオールゃポリプロピレングリコール等は比較的似た性質を示す 1K ジオールの側鎖の影響は耐水性を改善する (特開平 6 - 1 7 2 2 6 1参照)。 一方酸として主として直鎖のアジピン酸が使われるが、 不飽和酸や芳香族酸も 使用される。 フタル酸はホモ重合度が上がるにつれて、 粘度が急激に上がるが、 部分的に混ぜて製造して可塑剤として使用すると、 耐水性対移行性等の物性が優 れたものとなる。 末端基の一価アルコール類は、 実施例記載のォクタノールに限 定されるものではなく、 その他の C 4以上のアルコールが使用され、 低級アルコ ールでは耐水性が悪く、 高級になるほど、 長鎖アルコールの影響がでる。 その他 のアルコール類の一つとして、 ポリエチレングリコールモノアルキルエーテルの 使用では、 真菌の生育抑制作用を認めた例もある。
反応のプロセスについて述べる。 記述の如くアジピン酸のジエステルであるジ ォクチルアジペートと、 ジオールジエステルをそれぞれ作って、 ジエステルに添 加するプロセスの特長は、 レトロイ匕反応と呼ぶ n = 2を目的にして、 n = lが副 生する反応割合を少なくする為であるが、 その反応はエステル交換反応で生成す るォクタノールが再度反応する為と考えられ、 更に進行すると脱ジオール反応と もなる。 そのレトロ化反応の割合を少なくする為に添加反応を行い、 例えば重合 度の高いポリエステル類を得る為に有効でジオールジエステルとジエステルのモ ル比によつて、 任意の重合度のポリエステルが得られる。
HOCOACOOH + 2HOXOH → HO (XOCOACOO) XOH
HO (XOCOACOO) XOH + nROCOACOOR →
RO (COACOOXO) nCOACOOR + ROCOACOOR
更に異種複合エステルを得る為に有効で、 別々に反応系に添加しても良いが、 混ぜたジォールジェステルを添加しても良い。 異種複合エステルでは、 レトロ化 反応の経過で、 異種 2塩基酸ジエステルが副生し分離が必要になるので、 減圧下 にォクタノールを除去しながらジエステルを添カ卩しエステル交換反応を進めるこ とが有利になる。 異種のジオールジエステルを単独にまた混合して作り、 ジォー ノレジエステルとジエステルの反応モル比を決め、 ジエステル中に添加して反応、 エステル交換反応を行って生成物を得ることが出来る。
nHOCOACOOH + C6H4 (CO) 20 + 2n+l HOXOH → nHO (XOCQACOO) nXOH + HO (XOCOC6H4COO) nXOH →
+2n (n+l ) ROCOACOOR →
RO ( COACOOXO ) n ( COC6H4COOXO ) mCOACOOR + ROCOACOOR
この添加反応でも急激に添加脱アルコールを試みても生成するオタタノールの 系外への除去が間に合わないと前記脱ジオール反応や異種酸ジエステル生成が進 んで、 分子量が上がらない。 一方ホモタイプの複合エステルの製造では混合物を 加熱しながらエステル交換反応を行つてもよいが、 ジォール及ぴジォ一ルジェス テルを添加しながら反応を進める。 更にエステルアルコールとジエステル混合物 を、 脱水エステル化反応で作って、 その烬エステル交換反応を行う方法も採用さ れ(特許第 2 5 1 7 2 4 5号参照)、この場合もエステルアルコールとジエステル のモル比を変えることによって、 重合度の異なる生成物を得ることが出来る。
2n+lROH + n+lHOCOACOOH + HOXOH →
ROCOACOOXOH + nROCOACOOR →
RO (COACOOXO) nCOACOOR + ROCOACOOR
この反応では引き続いて添加エステル交換反応を行って、 目的物を得ることも 出来る。
即ち前記エステルアルコールとジエステルの混合物を作った後 (A反応工程) 循環して使用するジエステルをカ卩ぇ(B工程)、温度を一旦 1 4 0。C程度まで下げ て反応モル数を調節し、温度を徐々に上げながら、減圧度を上げることによって、 エステル交換反応 (C工程) を始めることができる。 2 0 0 °C 2 5mm Hg に保つ ことによって、 エステル交換反応が進み、 十分脱アルコールを行って次段の添加 エステル交換 (D工程) 反応を行う。 此の 2段階のエステル交換反応の特長は、 エステルアルコールとエステルを製造するエステル化反応 (A) 反応では、 反応 モル比に対応して、 ジオール成分のモル比の分がアルコール過剰であって、 ジェ ステル製造時には 2割程度のアルコールを過剰に使用してエステル化し、 エステ ル交換反応の前に過剰のアルコールを除去する工程が必要である力 全く過剰な アルコールを必要としないで、 3ステル化反応 (C反応) を行える点である。 更に後段の添加エステル交換 (D) 反応は特に異種複合エステルを製造する際 に、 レトロ反応が進み、脱ジオールィ匕が進むと、ジオールは再反応に関与しても、 副生したジォクチルフタレートは、 循環するジエステルに混合して混るので、 分 離除去工程が必要となる。 実質的にパッチ反応では、 副生するジエステルの再使 用は不可能 なり、 副生するジエステルの分だけ原価高となり、 採算が取れない 製造法となる。 複合エステルの耐水性能が要求されると、 単価の高いジオールか 異種複合エステルしかなく、 異種複合エステルでは、 副生ジエステルの再使用が 問題であった。 この添加エステル交換反応は、 フタル酸のジオールジエステルを 添加して反応を行う。 ジォクフタレートになる反応は、 構造式を更に簡略化し、 異種酸 A及ぴ?、 ァノレコール 0、 ジオール Xとして略記した (E) 反応が混合液 でのエステル交換や、 通常の脱水エステル化反応更に引き続いて揮発分を少なく する為のエステル交換反応などチタン触媒存在では相当の確率で起こる。 この反 応を添加エステル交換反応で防止することが出来るので、 副生ジエステルを循環 使用することが出来ることになる。
3ROH + HOCOACOOH + HOXOH → (A)
ROCOACOOXOH + ROCOACOOR →
+ ROCOACOOR (B ) →
RO ( COACOOXO) nCOACOOR + ROCOACOOR ( C ) →
+ HO (XOCOC6H4COO ) XOH → ( D)
RO ( COACOOXO) n ( COC6H4COOXO) mCOACOOR + ROCOACOOR OAO + HOXPXOH + 20A0 + O → OAXPO + HOXAO + OAO → OAXOH + 〇PO + OAXAO → OPO + OAXAXAO (E )
—方逐次添カロ脱水エステル化反応の生成物でも、 最後にオタタノ一ノレがエステ ル交換反応を行って、 過剰に反応に使われると、 エステルアルコールが生成する ので反応末期にはエステル交換反応を行うことが必要になり、 本プロセスを使う ことが出来る。
触媒使用の特性として、 反応速度が著しく早いと同時に 1次反応として進行す る触煤の特性は、 過剰量の少ない極少量の酸とアルコールの反応でも反応が進行 する事を意味しており、 理論的に過剰であれば過剰量が少なくても反応が進行す る。 2塩基酸、 ジォール、 末端アルコールによるエステル化に際して、 エステル アルコール及ぴジエステルの中間生成物を想定すると理論的には ROHの過剰分 が必要でその過剰分だけで十分なエステル化反応が進めばエステル交換反応で過 剰使用分は除去される。
実験の結果は本発明の触媒の使用によって、 十分反応速度も高く理論量の過剰 分で反応が進み、 低酸価で優れた分子量分布の目的組成エステル類が製造され、 一般的に使用される過剰なアルコールが生成物に働いてエステル交換反応が進み ジエステルと重合度の高いエステルとに変わる高分子ィ匕 (異性化) を防止する事 が出来、 その結果優れた組成のエステル類を製造する事ができる。
ROH+HOCOACOOH+HOXOH+ROH+HOCOACOOH+HOR→
ROCOACOOXOH+ROCOOACOOR→ROCOACOOXOCOACOOR+ROH
低級重合度の複合エステル、 異種複合エステルでは、 ジオールと末端アルコー ルの使用による過剰分として、 ジオールの過剰使用に相当する割合で nの 1つ多 い複合エステルを想定する事で反応の目的を達成させる事が出来る。
ROH+nHOCOACOOH+nHOXOH+HOCOACOOH+2ROH→
RO (COACOOXO) nH+ROCOACOOR ( n- 1ROCOACOOXOH+ROCOACOOXOCOACOOR )→ RO ( COACOOXO ) nCOACOOR+ROH
優れた触媒の使用によって、 ポリエステル類では理論組成物を理論に近く反応 させる事ができ、 優れた組成物が得られるが、 エステル交換反応をエステルアル コール 1に対してジエステル 1の割合で定量的に進める事は害質的に不可能で、 ポリエステル化が進行し対応してジエステルが未反応で残存し、 副生を防止する 事が出来ない。
ポリエステノレではポリエステノレとのエステノレ交換となるので副生ジエステノレを 無視する事が出来優れた分布の生成物が得られるが、 低級複合エステルではエス テル交換反応を複合エステルとの反応になるようにする事で副生成物を少なく製 造する方法が採用される。 反応で副生するジエステルは記述の 2段階エステル交 換反応で複合エステルとし未反応ジ千ステルは循環反応原料として使用する事が 必要となる。
複合エステルの可塑剤としての使用では、 異種複合エステルにすることによつ て、 優れた性能が出るので、 特に高分子量にする必要はないが低粘度ほど可塑ィ匕 性能が優れた結果になる。 従来の電気用途の低揮発性可塑剤としては、 ポリェチ レンやその他の樹脂類との併用があるために可塑剤の樹脂内での移行更にその他 の榭脂への移行性が少ない性質の者が要求され、そのためには分子量を大きくし、 分子量分布のコント口ールが比較的難しいことから、 低分子量部分の除去更に必 要以上に高分子量に分子設計され、 分子量が 2 0 0 0〜4 0 0 0のものが使用さ れている。 従ってその粘度や酸価の低減が難かしい。 本発明者のこれまでの実験 結果からは、 直鎖だけでなく、 フタル酸の部分的使用は、 分子内で鋏状部分が出 来その結果塩ィ匕ビニール内 (高濃度から低濃度可塑化物への移行) のみならずポ リエチレンへの移行も少ない結果となることを知った特開平 8— 1 5 7 4 1 8に 記載されている。 その外、 可塑剤としての用途では、 高湿度下での使用では特に 低分子量のアジペートは、 加水分解され表面が、 白化現象が見られ、 耐水性が要 求される。 此のような目的から前述のフタル酸をユニットで 0 . 3以上含むと改 善される。 ポリ塩化ビニールの可塑剤としてジォクチルフタレートが使われて来 てその性能は最高のものであつたが、 屋外使用の用途ではその蒸気圧に対応して 揮散してしまう。 此のような目的からは飛ばない可塑剤として、 複合エステルは 優れた性能を示し、可塑化性能は、可塑剤の粘度に対応して同等の可塑性を示す。 D O P 5 0部と同じ堅さを示す可塑剤の使用割合として、 5 0 0センチボイズ、 重合度 4ホモでは 5程度までの複合エステルは 5 2部以下であり、 重合度 1では 4 6までに下がる。 アジピン酸の含量が増すに連れて低温特性が増し、 耐寒性の 用途もあるが、 重合度の増大は悪化する。 低分子量の複合エステル程高い可塑性 を示すが n = 1を完全に作ることは困難で、 可塑剤としては要求される性能に対 応して製造のし易さ、 製造価格などから選ばれて、 製造されると考えられる。 複合エステル (complex ester) は一般式
ROCOACOOXOCOACOOil
(式中、 R は末端アルコールのアルキル基、 Aは主としてアジピン酸の酸残基 (-CH2CH2CH2CH2- ) 、 Xは使用されるジオールのアルコール残基(例- CH2CH (CH3) -:プロパンジオール) )で表され、 従来低温の潤滑油として使用さ れてきたが、 本発明のエステル類は低酸価低 OH価で、 低温特性を示すジオール 成分とアジピン酸を使用して、その目的使用に優れた特性を示すものと思われる。 本発明者は、 通常複合エステル (Composite ester) として製造されるエステ ル類は複合エステル ( Complex ester ) を 目標と して作っても RO (COACOOXO) nCOACOORで示される nの数の整数の化合物の混合物として製造 され特に製造方法でその割合が異なる複数ケのものよりなり、 nの数が増すにつ れてその割合が級数的に少なくなる組成物となるので、 複合エステル (Composite ester) と区別してきた。 従って分子量は混合組成の平均値で示 され、 例えば 1 . 5は n = 1と n = 2の等モルの混合物を表すことになる。 これ までの実験結果から、 RO (COACOOXO) COACOOR を目的に製造しても RO (COACOOXO) 2COACOORが 1モル副生すると nの数が増えた分に相当するモル 数 1の ROCOACOOR が生成することが分かっており、 このことを利用して、 目 的生成物の重量から収得生成物の重量を差し引いた量の ROCOACOOR のモル数 を計算して、 このモル数を引いたモル数の生成物が出来たとして生成物 RO (COACOOXO) nCOACOORの nの価を計算すると、 生成物の平均分子量が計算さ れる。 複合エステル類の分子量はこのようにして、 計算すると、 反応は定量的に 取扱うことが出来る。 同様にジオールジエステル類の重合度も原理的には同じで あるが、 HO (XOCOACOO) nXOH で示されジオールジエステルの反応生成物重量か らアジピン酸エステルの () の理論量を差し引き HOXOH の分子量で割った価は 生成物のモル数を示し、 其の逆数は、 重合度 nの価を示すとして計算すると、 分 子量が計算される。 尚実施例には組成式を示した。 アジピン酸を Aフタル酸を P で更にジォール成分を HOXOH又は Xで示し、 使用した種類によってプロパンジ オールは XPジプロピレングリコールは XDPを使用し、 その他 X 2 Eを使用した。 更に末端アルコールとして 0の記号を使って表現した。 特に組成として重合度が 問題になるので、 0 の次に下つき数字で重合度を示した。
本発明で 2塩基酸として無水フタール酸を使用すると先ずその 1モルとジォー ル 1モルで反応を開始し一官能性アルコール 1モルを追加してエステル化して得 られるエステルアルコールを使用し、 減圧下添加エステル交換反応を行うことに よって、初めて高分子量の( P X ) nを含まない複合エステルを造ることができる。 エステル交換反応では、 完全に等モル反応は不可能なので可能な限りジエステル を多く使って定量的に反応させることが好ましい。 エステル交換反応は (1 ) の R A X O Hに代えて R P X O H、 アジピン酸に代わつてフタール酸で記載される ことになる。
ここで、 この反応を混合液を加熱して生成する R OHを除去すると生成物が得 られることになるが(特許第 251 7245号)、レトロ化反応が同時に起こるの で、 フタール酸を使用した場合には(PX)nの n = 3以上のものが副生し、 粘度 が高くなる。
本発明において、エステル交換反応は減圧下、好ましくは 1 0 OmmHg以下、 より好ましくは 3 OmmHg以下、 より好ましくは 0. 2〜25mmHg、 特に 好ましくは 0. 5〜2mmHgで行う。 また温度は好ましくは RARの沸点に近 く高い温度 1 60〜 250° (、 好ましくは 1 80〜 220 °Cで行い、 少量づっ添 加エステル交換反応を行うことが、 好ましいことになる。
この反応で使用するジエステル R A Rのモル数は、 2以下では生成物の重合度 が 2以上となるので、 低粘度生成物を得るためには 2モル以上の使用が好ましく 更に多いと循環使用する RARの量が多く効率が悪くなる。 1. 5モル以下では 高粘度になって本方法の特長が無くなる。 得られる生成物の組成は理論計算量か ら収得量を差し引きその g数の RARモル数が、 反応に関与しなかったとして、 反応モル数並びに反応割合を計算し、 その逆数が( P X ) nの重合度 nと計算され る。 (PX) 2は必ずしも PXPXPを意味しているのではなく、 この反応では R OHの反応への影響は無いと考えられ生成物のュニットは P X AX Pの構造とな つているので、 低粘度生成物が得られたものと考えられる。
ァジピン酸ではフタール酸の無水物反応と異なって、選択的反応が行えなレ、が、 ジオールと酸との反応を優先し末端アルコールの添加を行うと、 ジエステル R A Rの副生が少なくなるが、 特に複合エステル nの小さなビスィ匕合物を選択的に製 造するので無ければ、 むしろそのまま使用することによって、 重合度の計算上は 問題なく使用される。 R (AX)nOH、 R (PX)nOHの計算は反応生成物を減圧 下で揮発分として、 共沸肋材として使用したトルエンと、 未反応の末端アルコー ル、 1一才クタノールを除去し、 生成物の重量から、 計算量との差をォクタノー ルの分子量で割りモル数を計算使用量より引いた反応モル数を算出しその割合を 計算することができる。その割合の逆数は( AX ) nの n重合度として計算される。 反応の仕方で幾分変わるが、 その値はおおよそ 1. 1〜1. 3までの値で、 RO Hを除去して平均分子量を計算して使用することもできるが、 ROHを除去しな いでそのまま混合物として n=lとして、 使用することもできる。
. アジピン酸エステル類では、 部分的にレトロ化反応を行って、 分子量分布の広 い組成物を得ても良いが、 減圧下添加エステル交換反応を行って、 より高分子量 とすることによって、 目標とする重合度のポリエステルを特に低酸価低アルコー ル末端の生成物として、 製造することができる。 尚分子量分布については、 末端 部でエステル交換反応が進行しているが、 ポリエステルの内部でもエステル交換 反応が進行し、 その際端から 2番目では (4) 式、 レトロ反応も起こっているこ とになるので、 完全に正規分布が、 得られるとは考えていないが、 ROHによる レトロ化反応が制御されているので、 恐らく正規分布に近い分子量分布を持つも のと期待される。
後述の実施例 1 6において、 直接逐次添加脱水エステル化反応で得た、 重合度 4の複合エステルより 3500の分子量を目的にポリエステル化反応を行ったが、 低分子量のジエステル RARの副生は認められず、 高分子化した後で高温蒸留で 低分子量部分を除去する必要がない特長がある。 これに対して、 ジエステルとの 反応 (実施例 5) では、 2倍モル量の R (AX) OHエステルアルコールの使用で も尚 20%近くの RARが反応しないで残り、 従って目的の組成より 2割近く分 子量が上がる計算となった。
複合エステノレのなかで、 異種複合エステルにすることによって、 耐水性が向上 することはよく知られている。 このような目的では、 R (AX)nOHおよび R (P X)nOHをそれぞれ単独に作り或いは混合して作り、 目的組成に合わせて、 それ ぞれの添加量を決め、 前または後に異種成分を添加して、 エステル交換反応を行 うことで目的を達成することができる。 これらのことを合わせて、 この反応の特 長は、 分子量並びに組成を目的に応じて容易にコントロールして製造でき、 特に 酸価アルコール価も実質的にゼロで、 アルコール末端ポリエステルの分子量分布 も規制されたものを提供できる可能性を持っている点が本特許の特長である。 本発明の目的として製造されるエステル構造は下の反応式及ぴ一般式 (A) で 表される反応組成物である。
R+n (A + X) +A + R → R (AX) nAR (A) ここで R (即ち、 ROH) は一官能性アルコールで炭素数 4以上の直鎖ないし側 鎖を有するァノレコールで、 従来一般的に使用されるものとして、 実施例では 2ェ チルへキサノールを使用した。 更にアルキルアルコールに限定されるものでは無 く、 エチレングリコールモノアルキルエーテルと呼ばれるエーテルアルコールで はアルキル墓の異なるものは抗菌性目的で、 またジエチレングリコールベースの エーテルグリコールも使用可能である。 A (fiflち、 HOCOACOOH) で表現される 2 塩基酸はアジピン酸フタル酸に限定されるものでは無く、 琥珀酸ダルタール酸コ ルク酸更に部分的にはテレフタル酸やそれらの水素添加酸無水マレイン酸に代表 される不飽和酸も実施可能であるが、 2種以上の混合使用も有る。 X (即ち、 HOXOH) として表されるジォーノレは可塑剤として要求される低温特性と価格面か ら選別して使用されるが、 炭素数が 2〜 6の直鎖ジオール類又は 1 , 2—プロパ ンジオール、 1 , 2—又は 1, 3一ブタンジオール、 2 _ェチル1, 3—へキサ ンジオールで代表される側鎖を有するジオール類がそれぞれの特性重視目的で使 用され更にジー (ポリ) エチレングリコール、 ジプロピレングリコールで代表さ れるエーテルアルコールは親水親和性を含めて目的に応じて使用可能である。 これらの化合物は、 特に重合度 nに対応して、 従来のポリエステル製造ではそ の組成が問題で酸価を下げることが難しくそのために高分子量エステルではエス テル交換反応の効果が少なく低級のエステルアルコールが残って分布が好ましく ないポリエステルとなる。
これらの末端アルコールポリエステル類では、 鎖状構造の長さは分子量に対応 することになるが、 剛直性を求めては直鎖の短いユニットが、 柔軟性耐水性から は側鎖を有する鎖状ジオールやその混合ュニットが使用され、 高級高分子ポリエ ステルの素材として使うことができ、 その粘度極性に対応して可塑剤として有用 で、 両末端アルコールのポリエチレンアジペートはポリエチレンテレフタレート (P E T) 樹脂の可塑剤として優れた性能を示し、 またエステル交換反応を利用 して、高分子ィヒが可能で生物分解性プラスチックスの素材として使用可能である。 また複合エステルは末端アルコールで幾分異なるが、 n = 1の分子量は最低でも 5 0 0程度でポリ塩化ビニールの可塑剤として使用する時は、 8 0 °C 1力月の連 続使用でも全く揮発しな ヽことが分かつている。 副生して共存する 2塩基酸ジェ ステル除去が問題であつたが、 その副生が実質的に無視できる程度に少なくする ことができるかどうかが問題で、 定量的な製造はできないので副生するジエステ ルを再使用することが必要となってくる。 エステル化反応におけるアルコールの過剰使用量
酸に対して過剰にアルコールを使用しなければ、 化学反応の平衡理論からも、 絶対に酸を完全に反応させることは不可能であるが、 これらの反応では過剰量を 最少限にしなければならない。 従って、 本発明では、 部分的にエステルアルコー ルを経由して反応を行って生成物を得る。
前記反応式 (A)において、 R+A+X+A+R→RAXARと説明した時に反応量は 2Rと 2Aと Xとの反応であるが、 反応の一部を + +A+R}→RAX+RARになる ように計画して反応を行うと反応量は 3Rと 2Aと Xとの反応で Rを多く使用で きる。 この反応を行っても同時に前の反応も進行するので、過剰の Rを使用して も全部が RAXを生成するとは限らないが、 一般的には、 ジオールより一官能个生 アルコールの方が反応速度が速いので大部分が RAX+RAR となるが、 RAXは後 段のエステル交換反応によって脱 Rし RAX+RAR—RAXAR+Rとすることになる。 この反応は定量的に行うことはできず、 RAX+RAXAR→RAXAXAR の逐次反応が従 属して進行し、未反応の RARが残り R (AX) nARの nが増大する。従って高分子 量になる程目的物に近い生成物が得られることになるが、 低級の複合エステルで は、 逐次反応を防止することができない。 従って RAXARを純粋に製造するこ とはできないが、使用過剰量を最低限にするような反応条件を作ることができる。 次に n=lを目的にした場含に nの数が大きくなるので、 予め nの大きいものを 目的に、 X の過剰量を使用することとなる。 2X の使用では RAX+RAX+RA で 3R+3A+2Xの反応となり、 n=lの時(RAXARを 1 . 5モル)の 3R+3A+1 . 5Xに対比 すると、 0 . 5X多くアルコール成分を使用することになる。 n =lを生成すること はできないが、 より nの高いものができるように計画して反応させることによつ て、 アルコールの過剰使用が可能となり、 反応速度の低下が起こらずに、 反応を 進行させることが可能となり、 此のような反応条件の選択によって、 アルコール の不足に起因する触媒活性の低下と反応速度の低下が防止され、 目的に近い生成 物を製造することができる。 ポリエステ /レの製造
分子量コントロールの手段として、 ジオールと 2塩基酸ュニットの反応コント ロールが大事である、 ジオール成分によっては脱水エステル化反応に当たって、 水と共沸で溜出する。従って途中までに組成を調整することが必要である。また、 一挙に反応を進めると組成が変わる可能性がある。 一官能性アルコールは分子量 コントロールのために必要量が使用されるが、 均一生成物を目的には、 酸の半分 量が反応する前に少量ずつ添加し最後に残り半量を添加してポリエステル化する ことが好ましい。 当量の添加反応では酸価は十分には下がらない。 9 0〜 9 5 % 反応が進んだ時に活性化触媒と同時にジオール過剰量を添加して反応を進める。 活性化触媒では、 酸価から計算される未反応酸量はその対数値は時間に対応して 一次であるので反応終了時点を予測することができる。 一方触媒活性はジオール 成分が活性点を埋めて不活性化することがある。 従って残存ジオール量の確認と 同時に活性化触媒の添加が必要になる場合がある。 ジオール成分によつて不活性 化は異なり、 エチレングリコールの使用が最も不活性ィ匕の時間が長く、 活性化の 際の水との濃度比も影響する。 活性化触煤を使用して十分に酸価を下げた後活性 化助剤として使用した過剰ジオールによって生成したエステルアルコールとポリ エステルの間でエステル交換反応を行う。 反応容器に蒸留装置を設置し減圧にし て揮発分を除去最後は 1 8 0〜 2 0 0 °Cに上げ減圧度も 0 .3赚 Hg程度まで上げ て生成するォクタノール (末端アルコール成分) を除く。 分子量は予め触媒と同 時に添加するジオール成分を含めて計算する 3成分の組成割合で反応を進めるこ とになる。 対応する末端アルコールは加えて添加反応される。 後添加のジオール 量は触媒と共に添加されることが有利で、 その量は高分子量ポリエステル程少量 で影響が大きくなる。 使用されるジオール量は僅かでもエステル交換反応前の平 均分子量がエステル交換反応後 2倍になることもある。 脱水エステル化反応で使 用され過剰に使用されたジオール成分は、 エステル交換反応も2 Pfi1して進み、 ェ ステルアルコールとなっているものと考えられ、 対応する末端アルコ一ルが次段 のエステル交換反応で回収されエステルは高分子化することになる。 反応モル量を 2 nモルとし、過剰ジオール XEとして、 (l/2n)相当の 1モル使 用では途中生成物並びに生成物は下式で示される。
2 (n+1 ) A+2nX → 2nAX+2A → Rの添加重合エステノレ化 → 2R (AX) nA+R → 完全エステル化中間過程 { 2R (AX) nAR} 次いで XE と触媒添加 → R (AX) nAXE+R (AX) nAR → エステノレ交換反 J心 → R (AX) nAXE (AX) nAR エステル化反応生成物のモル数と過剰使用されるジオールのモルの比に対応し て、 エステル交換反応後の分子量が上がるのでその精度に対応して、 目的生成物 の平均重合度が変った生成物が得られることになる。 2塩基酸複合ェステルの製造
アジピン酸を例とする 2塩基酸複合エステル製法について述べると、 酸とジォ ールの反応を選択的に行うことは非常に困難であるが、 特に遊離の酸が残らない ように作ることが最も重要である。 n=lの複合エステルを完全に作ることは実質 的に不可能であるとして、 前記の条件を満たす条件下で反応を行うことになる。 相当モルの 2塩基酸とジォ~ルをできるだけ緩やかな条件で反応を行う。 幸いに してアジピン酸等の 2塩墓酸は酸強度が高く単なる加熱で脱水エステル化反応が 進行する。 ここでは 1 4 0〜1 5 0 °Cのトルエン溶媒中での反応を期待する。 最 後は 1 6 0まであげ等モルの反応を行うが同時に末端アルコールの半量を徐々に 添加し末端の酸を残して酸の大部分が反応するのを待って残りのアルコールを添 カロして反応を進める。 9 0〜9 5 %酸を反応させたとき、 ジオール成分の中にァ ルコキシチタン約 2. 5ミリモル Z酸モル量を入れて溶解し、 次レヽで予め混合調 製したエチレンダリコーノレ 1 gと水 0 . 5〜1 g混合液を添加混合して調製した 活性化触媒を添加して反応を継続する。 既に述べたが活性化触媒の不活性ィ匕はェ チレンダリコールに変えてジオール成分を使用した時に認められるが、 その種類 によつて影響の度合いが異なる。 順調に反応が進むと反応温度で進行が異なるが 酸の半減期は 1 5〜3 0分程度にすることができ、 最終酸価を得る時刻が推定で きることになる。 過剰アルコール量が少ない時は進行が当然遅くなるので同様に 調製した過剰ジオール触媒液を部分的に添加して反応を進める。
この反応で酸ジオール反応物が酸と反応して AXA の形になることを期待する が、同時に AXAXの反応が進行すると Aが余って残ることになる。厳密に 1 0 0 % 後者の反応を防止することはできないが、 緩徐な条件で反応を行い少量ずっー官 能性アルコール Rを添加しながら反応を行うことによって、 目的を達成すること になる。 一方過剰量のジオールは残つた Aとの反応も考えられるが恐らく一旦で きた生成物と反応してエステルアルコールとなっている物と思われ、 ジオール過 剰量の 2倍モル相当の一官能性アルコールがエステル交換反応で生成する 過剰に使用する量の影響について、 反応様式の違いで、 反応の終わりの段階で 使用する場合を考察する。今末端アルコール(R ) 2モル、 2塩基酸(A) 2モル、 ジオール( X ) 1モルの反応で 1 0 %量の過剰量 0. 1モルの X Eが反応すると A+X → AX → Rの部分添カロ反応 { RAX+A, RA } → RAXA+R+0 . 1 エス テノレ化 → 0 . 9RAXAR+0 . 1RAX+0 . 1RAXE → エステノレ交換反応 → 0 . 7RAXAR+0 . 2 RAXAXAR (即ち、 R (AX ) 1,22AR )
もし酸の 1 0 %が RARとなって副生すると nは 1 . 22 X 1 . 25=1 . 53となる。 従つて過剰量の反応の仕方が問題となり、 具体的には(RAXAR+RAXAXAR)又は更 に RAXAXARを目的に Aに対して Xは過剰量を使用して反応し、 対応して少ない Rで反応を進め、 少なくなつた Rの量を過剰量として使用することによって、 反 応速度を対応する一次反応で進行させることができる。 異種複含エステルの製造
アジピン酸に対比するとフタル酸は複合エステルになった場合にフタレ一トフ タレート(-PXPX- )の構造が生成すると生成物の粘度が急激に増加することが分 かっている。 本発明では対応する成分を定量的に反応する方法が提起され、 活性 ィ匕触媒の採用することによって、 アルコール成分が不足するときは、 反応速度が 遅くなるので、 速度を確認することで、 反応が定量的に進んでいるかが確認され る。 定量的に反応させるために中間にエステルアルコールを考えて経由すること によって、 過剰分を得て、 エステルイ匕する方法を採用した。 フタル酸についても 同様方式を採用するが、 前記のフタレートフタレート構造をなくすことができな かった。 しかしフタレートアジぺート構造にすると粘度の上昇が少ないことを利 用することができる。反応としては(RPXAR+RPXAR+RPXAXAR+RPXAXPR)を目標 にすると、 P (フタル酸) 5モル、 A (アジピン酸) 5モルに対し X (ジオール) 6モル、 R (末端アルコール) 8モルとなり、 A 1モルに対して比較すると Xは 1 . 2、 Rは 1 . 6となる。 (5 R P XAR )では A 1モルに X Iモル R 2モルである 、 Xは 0. 2多く、 Rは 0. 4少なく反応を始め、 最後に Rが 2となるように 追加すると、 アルコール量 0. 4は過剰分となる。 エステル化を進め、 酸が全部 エステルとなった後エステル交換することによって、 過剰分相当する 0. 4の R が除力^ r生成物が得られることになる。
(.RPXAR+RPXAR+RPXAXAR+RPXAXPR) 記載の構造の糸且成物が 全にできれば RARも R P Rも副生しないが、 フタル酸の反応速度は遅くアジピン酸が先に低 温で反応するので、 副生するのは主として R P Rでその混合物ができる。 この方 法では先に述べた様にアジぺートフタレートが主となるためその粘度は比較的低 く 5 0 0センチボイズ程度で、 従来の複合エステル可塑剤の評価結果からポリ塩 化ビニールの可塑剤として使用したときの可塑化効率はジォクチルフタレート D O P 5 0部使用時と同等の硬度を示す可塑剤量として表現されその値は 5 1〜 5 2と推測される、 目標とする (RPXAR+RPXAR+RPXAXAR+RPXAXPR) 記載の構造 はこれらの組み合わせに限定されるものではなく、 RPXAXAXPR の様な更に高重 合度のものになると副生する R P Rが少なくなるが、 フタル酸量が多いと粘度が 上がるし、 更に重合度が高いと粘度が高くなつて、 可塑化効率が悪くなる。
この改良触媒の使用によつて始めて 3成分更に異種複合エステルでは 4成分の 定量的反応の進行が確認され、 単に触媒の使用のみではその特長が分からなレヽが 定量的反応を行うことができる点が特長で、 得られるエステル類は対応して、 低 酸価低アルコール末端の然も分子量分布の狭いポリエステル及び複合エステル並 びに異種複含エステルを製造することが可能となる。 実施例記載は低分子量ジォ ール程揮発†生で水と共沸溜出し易くコントールがし難 ヽがそれらにつ 、ての結果 を実施例に記載したが、 ジオール成分の種類を限定するものではない。
以下、 実施例により本発明を例証するが、 これらは本発明を制限することを意 図したものではない。 実施例 1 (アジピン酸またはフタル酸の脱水エステル化反応) エチレングリコール 1 . 4 9 g ( 2 4ミリモル) に水 0 . 6 5 g ( 3 6ミリモ ル) を加えて混合し、 テトラブトキシチタンを 0 . 4 1 g ( 1 . 2ミリモル) を 少量ずつ加えて混合すると、 水を含むゲル状混合物となる。
このゲル状ポリオールポリチタン酸触媒にオタタノール 1 0 gを加え撹拌分散 させたポリオール水活性化チタン触媒を、 アジピン酸 1モルに対して 1 . 2ミリ モル用いて 2 0 0〜2 0 5 ^で反応を行い、 反応液の酸価を測定し酸価より算出 される酸モル量の経時変化を図 1に示す。 反応の速度は酸の一次反応で、 前述の 特許記載のポリオールポリチタネートポリチタン酸の場合と同じであつたが、 活' 性は著しく向上し、 末期まで速度は変わらず酸濃度が減少し半減期は 1 1分であ つ 7こ o
同様に、 上記ポリオール水活性化チタン触媒を、 フタル酸 0 . 5モルに対して 1 . 5ミリモル用いて 1 9 0〜 1 9 5 °Cで反応を行い、 反応液の酸価を測定し酸 価より算出される酸モル量の経時変化を図 1に示す。 反応の速度は酸の一次反応 で同様に半減期は 1 3分であった。 実施例 2
複合エステル類を製造した際前留分として除去されたジォクチルアジペートを 主とし少量のジォクチルフタレートを含み、 熱分解で生成した酸を含み酸価 0 . 6を示す 2 0 0 gのジエステルを、 エステル交換反応に使用するに当たって、 予 めォクタノール 3 0 gを加え、 エステル交換反応の触媒を目的に、 エチレンダリ コール水活性化チタン触媒 1 . 2ミリモルを加え、 2 0 0。(:で 1時間カロ熱撹拌し た。 酸価は 3 0分後に 0 . 2まで下がり、 1時間後酸価は 0 . 1以下実質的にゼ 口となり減圧にしてオタタノ一ノレを除去して、 エステル交換反応に入ることが出 来た。 実施例 3 複合エステル一ポリエステルの製造 (ジオールジエステルとジエステ ルの反応モル比 2 : 3 )
アジピン酸 0 . 5モル (7 3 g ) とジプロピレングリコール 1モル (1 3 4 g ) を脱水エステル化反応装置に入れ少量のトルエンと共に共沸脱水エステル化反応 を行つた。 1時間後 1. 8ミリモルの実施例 1のエチレングリコール水活性化チ タン触媒を添加、 反応を続け、 添加後 1時間で酸価 0. 14となり、 更に 30分 後反応を終了し、 トルエンを除き、 別途反応機に逐次添加してエステル交換反応 を行った。 即ち予め作ったジォクチルアジペート (DOA) 0. 75モル (27 7. 5 g) を 25腿 Hgの水流ポンプ減圧下で、 ジオールジエステルを添加 1時 間後略計算量のォクタノールを回収した。 反応液に冷却水 4 mlを加えて撹拌溶 剤¾加えて放置し、 活性白土を加えて濾過濾液を濃縮蒸留を行って、 DOA56 gと蒸留残液 282. 4 gを得た。 計算量 336. 5との差を DOAモル数とし 理論モル数より DOAモル数を差引いて得られる反応モル数と理論モル数の割合 を出し、 その逆数だけ重合度が上がったとして計算すると、 重合度は 9. 6であ り、 生成ポリエステルの分子量は 2712であった。 実施例 4 (ジオールジエステル: ジエステル反応モル比 1 : 2の反応)
アジピン酸 0. 2モル (29. 2 g) と無水フタル酸 0. 1モル (14. 8 g) にジプロピレングリコール 0. 6モル (80. 8 g) を入れ少量のトルエンと共 に脱水エステル化反応を始め、 1時間後 1. 2ミリモルの活性ィ匕チタン触媒を加 え添加後 3時間で酸価 (ml/g) 0. 11となり更に 30分後反応を終えた。 別の反応機で、 0. 6モルのアジピン酸にォクタノール 1. 5モルを加え脱水ェ ステル化を始め、 30分後活性化チタン触媒 1. 1ミリモルを添加し、 180〜 200 で、 反応を行った。 1時間半後酸価 0. 03 m 1 / gとなった。 減圧で ォクタノールを除き、 水流ポンプで減圧下に 200°Cで、 前記ジオールジエステ ル反応液を添加した。 1時間半後真空ポンプで 0. 5 mm Hg として生成したオタ タノールは- ϋ¾·Ι+笪量の 79
Figure imgf000029_0001
の実験を行った結果が示されているが、 ジォールジェステルの使用で、 レトロ反 応による脱フタル酸 (DOPの副生が起こる) ならびにジオール成分の脱離が最 小限に押さえられた場合の、生成物の組成を示すことになるが、 2. 1 1倍とは、 n= 1を目的に反応を行っても生成物は n= 2. 1 1を与えるということで、 そ の意味は極端な表現では、 重合度 3のものが 1割含む重合度 2が出来ることを意 味している。 実際は n= lが沢山あり、 順次 nの数が多くなると少なくなる分子 量分布となっている箬である。 実施例 5 (異種複合エステルジオールジエステル:ジエステル 1 : 2. 5の反応) 無水フタル酸 0. 66モル (98. 7 g) にプロピレングリコール 608 gを 加えカロ熱撹拌し、無水物を反応させた後アジピン酸 1. 33モル (1 94. 7 g) を加えて加熱撹拌し生成する水を除去しながら反応を進め、 約 1時間後 1. 8ミ リモルのェチレングリコール水活性化チタン触媒を加え、 2時間後酸価 0. 07 とした。
減圧下にプロパンジオールを除去し残留液として 527. 2 gのジォールジェ ステノレを得た。 76/ (527.2/2-192.7) =1.072HO (XPA) 0.66 * 072 (XPP) 0.3 * L072XOH として分子量 282. 5が計算される。
アジピン酸 1 46 gと 2—ェチルへキサノール 300 gを加熱撹拌し生成する 水を除去しながら脱水エステル化反応を行った。 反応開始 1. 5時間後 1. 5ミ リモルのエチレンダリコール水活性化チタン触媒のォクタノール懸濁液を加え 1 時間半後酸価 0. 04で反応を終わつた。 反応液より過剰のオタタノールを蒸留 して除いた後、 減圧 7 Omm Hg順次圧力を下げ水流ポンプを使用して減圧下 21 0、 1 80でに反応液を保ちながら、 ジエステル 1モル量に対し前述の分子量 2 82. 5のジオールジエステル 0. 4モル (1 1 3 g) を滴加した。 滴加に応じ てォクタノールが生成し、 蒸留除去して略計算量の留出を見てエステル交換反応 を終了した。 冷却し 100°C前後で、 水 4 mlを加え撹拌し一夜放置して触媒の 加水分解を終えた。 トルエン希釈し活性白土を加え、 濾過し次いで濾液を濃縮更 に減圧下 0. 5 mm Hgで蒸留して副生するジォクチルアジぺート 160. 2 gを 得た。 残留液として 218. 8 gの異種複合エステルを得た。 理論量の計算値 3 05 g-218. 8 = 86. 2、 86. 2/370 = 0. 233、 反応して得ら れたモル数として 0. 4— 0. 233 = 0. 1 67生成物の重合割合はその逆数 n = 1 / ( 0 . 1 6 7 / 0 . 4 ) = 2 . 3 9生成物の分子組成は
。(^^^^^ ^^^。分子量 31 2と計算される。特開平 8—15 741 8の 例 24との比較では、 耐水性の外移行性も十分保持すると考えられる。 実施例 6 (異種複合エステルモル比 1 : 2. 85の反応)
アジピン酸 1. 79モル (260 g) とォクタノール 500 gの混合液を脱水 エステル化反応装置に入れ加熱、 生成する水を除き、 1時間後触媒として、 1. 5ミリモル活性ィヒチタン触媒を使い、 反応開始 3時間後酸価 0. 08とした。 前 述の実施例 2で得たジエステル 40 gを追カ卩し 1. 9モルの液とした後、 実施例 4で得た分子量 282. 5のジオールジエステル 0. 666モル (1 88 g) を 21 0〜 180。C/ 70〜 25腿 Hg で添加脱オタタノールエステル交換反応を 行った。 前と同様後処理触媒を加水分解後濾過除去し溶剤を除き蒸留して、 ジェ ステル 1 56 g残留液として生成物 349. 8 gを得た。 前同様の計算を行って n = 2. 685生成物の組成は 0 (AXP) 4.61(PXp)。.96AO分子量 1425として計 算される。 組成ではエステル交換反応時にオタタノールと一緒にプロパンジォー ^/が出てくるものと思われたが、 確認出来なかった。 蒸留時に高温で、 長時間経 過すると熱分解による無水フタル酸が、 留出管に析出し、 耐熱性は最高 250°C で、 DO Aを循環使用する為には、 その温度以下で蒸留することが必要である。 実施例 7 (ジオールジエステルとジエステルの反応モル比 1 : 4)
ジプロピレングリコール 4モル (536 g) と 0. 26 7モル (39. 5 g) の無水フタル酸混合液を加熱反応し無水物を反応させた。 0. 533モル ( 78 g )のアジピン酸を加えて加熱脱水反応を行い 1時間後チタン触媒を加え酸価 0. 08とした。減] Ϊ下 1 20°C以下でジプロピレンダリコールを除き残留液 280. 1 gを得た。 ジプロピレンダリコール 27 gを加えて補正し分子量 385として 取り扱った。 DOA300 gに前記ジオールジエステルを減圧下に加えエステル 交換反応を行い、 0. 2モルの添加 (モル比 1 : 4) の生成物は、 1 62. 5 g、 本発明におけるリサイクル使用される副生物 DOA144. 8 gであった。 生成 物の組成は
Figure imgf000032_0001
分子量 946と計算される。その粘度は 32 6センチボイズ耐水性はシートを 60 °C温水に浸漬し減量%を測定、 D O Pの値 0. 8に対して 0.91、 180 加熱減量は DOP 17%に対して 2. 61、 柔軟温度は一19. 5 °Cであった。 実施例 8 (ジオールジエステル対ジエステル 3. 37 : 1)
実施例 7に引き続いて DOA300 gに 0. 24モル (92. 3 g) の添加工 ステル交換反応を行った。 生成物の修得量は 182. 0 g本努明における回収リ サイクル必要量の D O Aは 1 2 7. 0 gで生成物の組成分子量は 0(AXDP)2.33(PXDp)o.47AO分子量 1062と計算される。 その粘度は 334センチ ボイズ、 耐水†生は 0. 89、 180°Cで 2時間の加熱減量は 2. 03、 柔軟温度 は一 19. 0°Cである。 実施例 9 (ジオールジエステルとジエステルの反応モル比 1 : 2. 89) 実施例 7に引き続いて反応モル比を変え 300 gの DO Aに 0. 28モル (9 2. 3 g) のジオールジエステルを添加エステル交換反応を行った。 生成物は 2 06. 9 gで回収リサイクルして使用すべき DO Aは 97. 5 gであった。 生成 物の組成は〇( )2.52(£¾) 0.5170分子量1119と計算される。その粘度は 3 93センチボイズで、 可塑剤として使用したときの可塑化効率は略ジォクチルフ タレート DOPと同等の 51、 耐水性テスト 0. 69、 160 加熱減量は 2. 65と大幅に少なく、 柔軟温度一 16. 5 °Cであった。 実施例 7〜 9は本発明者 の特開平 8— 157418記載の実施例であるが、 本発明に必要とされるリサイ クルに必要な量と、 得られ 可塑性能について、 明確な結果を記載しているが、 当時の組成計算様式を補正して分子量を記載した。 これら実施例 7〜9に記載し た複合エステルの可塑性能は非常に良 対揮発性は非常に優れた特性を示すが、 多量の DOAが副生することが問題である。 実施例 10 (エステルアルコールとジエステルの反応) ァジピン酸 0. 5モル、 2—ェチル 1, 3へキサンジオール 0. 25モル及ぴ ォクタノール 0. 75モルの混合物を使用して脱水エステル化反応を開始した。 1時間後 1. 7ミリモルの活性化チタン触媒を添加し添加 30分で酸価 1. 66、 1時間後 0. 49、 1. 5時間後酸価 0. 05となり、 更に 30分後反応を終了 した。反応終了後反応機の減圧度を少しづつ上げ、最後は水流ポンプで減圧にし、 200〜210°Cに 1. 5時間、 更に 0. 5腿 Hgで 30分保ち、 生成するオタ タノールを除いた。 反応終了後水を加えて加温撹拌 3時間、 濾過してチタン残渣 を除き減圧下に蒸留した。 D O A留分 55. 1 gと生成物 102. 7 gを得た。 その組成は 0(AX2E)2.41AO分子量は 987と計算される。 可塑剤として使用した ときの性能は特開平 6— 1 72261に重合度 1. 5、 2. 5を目的に製造した 記載があり、 可塑性能の外特にジオール成分の 1、 3位の側鎖の影響でエステル 基が攻撃を受けにくくなつて耐水性が優れた性能を示し、 ホモ重合体である為粘 度も分子量分布も正規分布に近く優れたエステルで、 可塑剤としても好ましいも のである。 此の反応では特にアルコール分が過剰に使用されるので、 酸価を下げ る際に問題がなく一挙にエステル化する此の触媒の使用では、 ごく短時間にモル 比さえ守れば、 各種の複合エステルを作ることが出来、 過剰に使用するジエステ ルの除去循環使用のみが、 問題となり、 本発明では、 ジエステル副生量に見合う 量を過剰分として使用し、 エステル交換時に前反応の副生 DOAを添加循環して 使用しようとするものである。 実施例 11
アジピン酸 1. 2モル(175. 2 g)、 ジプロピレングリコール 0. 6モル(8 0. 4 g) 及ぴォクタノール 1, 8モル (234 g) の混合物を減圧として窒素 置換し、 脱水エステルイ匕反応を開始した。 180〜200 1. 5時間後 90 % の水が蒸留除去された時点で、 別途用意したエチレングリコール水活性化チタン 触媒 2ミリモルのオタタノール懸濁液を添加した。 添加後 1時間半で、 酸価 (m 1/g) が 0. 08になり、 更に 30分後反応を終了した。 反応液にリサイクル 用に用意したジォクチルアジペート DOA0. 6モル (222 g) を添加して温 度を下げ、減圧に切り替え水流ポンプ減圧 25mmHgとして、温度を上げ 200°C に保った。 途中ォクタノールが蒸留して出始め、 1時間後別途用意したジオール ジエステル液を添加、 エステル交換反応を継続した。 別途調整したジォールジェ ステル液は、 0. 3モルの無水フタル酸とジプロピレングリコール 0. 6モル(8 0. 4 g) の混合液を窒素置換して、 少量のトルエンと共に脱水エステル化反応 を 200〜 21 0 °C前後の温度で行い反応の末期に 0. 8ミリモルのエチレング リコール水活性化チタン触媒を添加し、添加後 1時間半後酸価を 0. 1以下とし、 30分後添加液として使用した。 添加エステル交換反応は、 添加を早く行うと、 ォクタノールの留出は早くなるが、 ォクタノールの出る量を見ながら少量づっ添 加した。 添加は、 約 1時間で終わり、 最後に反応機の減圧を 0. 5腿 Hgまであ げ、 DO Aの一部とともに完全にォクタノールを除去した。 除去したォクタノー ルは略定量的で少量の DO Aを含めて 1 52 gであった。 反応液が 1 00でにな つたとき希釈剤のトルエン 200m lと水 6 m 1を加え撹拌を続けて放置し、 次 いで活性白土濾過、 濃縮、 減圧濃縮蒸留を行って、 0. 5ΙΜ 液温 250°C迄 の蒸留分として先のエステル交換反応で出た分と合わせ、 DOA 205 gを回収 した。残留液として目的複合エステル理論値 0 (AXDP) 2 (PXDP)。.66AO 465 gにな り、 対して生成物は 4 0 8 . 4 gで、 計算される生成物の組成は 〇(AXDP) 3.03 (PXcp .ooAO分子量 1 373と計算される。 実施例 1 2 (エステルアルコールとジエステル反応 モル比 RPXOH: R, A R' = 1 : 2)
実施例 1 2〜1 8では、 その組成を表すために、 A:アジピン酸、 P:フタ一 ル酸、 R :末端アルコール (2ェチルへキサノール)、 R, :末端アルコール (1 ーォクタノール)、 XDP:ジォール成分として使用したジプロピレングリコール、 X13B:ジオール成分として使用した 1 , 3—ブタンジオールの各記号を使用し、 組成として重合度を ( ) 下つき字で記載した。 これらのジオール類並びに末端 アルコール類については、 実施例記載のものに限定されるものではなく、 従来使 用されまた検討され T来た各種のジオール類並びに末端アルコール ( C 4〜 C i。 のアルコ一/レ) について同じ理論が適応されるものである。
なお実施例 1 2~1 8で用いたエチレングリコール水活性化チタン触媒は以下 のように調製した。 エチレングリコール 1. 49 g (24ミリモル) に水 0. 6 5 g (36ミリモノレ) を加えて混合し、 テトラブトキシチタンを 0. 41 g (1. 2ミリモル) を少量ずつ加えて混合すると、 水を含むゲル状混合物となる。 この ゲル状ポリオールポリチタン酸触媒にオタタノール 10 gを加え撹拌分散させて、 ポリオール水活性化チタン触媒を得た。
無水フタール酸 0. 33モル (49. 6 g) 及びジプロピレングリコール 0. 33モル (44. 7 g) の混合物を加熱撹幹して無水物反応を行い、 2—ェチル へキサノール 0. 33モル (43. 3 g) にエチレングリコール水活性化チタン 触媒 1. 5ミリモルを懸濁して、 反応液に加えて脱水エステル化反応を行った。 添加後 1. 5時間で酸価 0. 1となり 30分継続して反応を終了した。 反応液を 2分して、 この反応生成物 66. 4 g (各 1モルづつの反応生成物 RPX OHと して 0. 166モル) をジォクチルアジべ一ト (R, AR,) 0. 34モノレ (12 5. 5 g ) 及びチタン触媒 0. 8ミリモルを含む反応液中に減圧下 5〜: L miH g で添加した。 .
添加に対応してトルエンを含むォクタノールが留出し、 29. 7 gを回収した。 添加エステル交換反応を終了し、 100 °Cに温度が下がった時、 水 5 m 1を加え て撹拌し、 2時間後トルェンを加えて希釈活性白土濾過し、 この濾過液を蒸留し て溶剤を除き、 190〜250°CZ0. 5mmHgで揮発分 (R, AR' 等が該 当する。) を除いて、 残留液として生成物 73. 6 gを得た。
理論値 105. 7 gとの差 32. 1 gはジォクチルアジペート (mw=370) 0. 087モルと計算され、 反応したモル数 0. 08の割合は 0. 477、 その 逆数 2. 05が重合割合となる。 その結果として、 生成物は R (PX) 2.05AR, 分子量 911. 2となる。 20。Cの粘度は 868センチポィズであった。 実施例 13 (反応モル比 RPXOH: R, AR, =1 : 2. 5)
実施例 2の前段で得た R P X O Hエステル混合液 65. 7 g (0. 167モル) を反応で回収したジォクチルアジぺート 160. 2 gにオタタノール少量を加え 活性チタン触媒と共に 200 °Cで 1時間撹拌酸価を 0, 06とし、 減圧でオタタ ノールを除去して、 5〜0. 5 mmHgで撹拌しながら添加した。 エステル交換 反応を 1時間更に 30分経過後前同様後処理蒸留 190〜 250 °CZ 0. 5 mm Hgを行い、 前留分として、 ジォクチルアジペートを除き残留液として生成物を 得た。 その重量は 78. 5 g、 反応モル数 0. 0935、 割合 0. 559で、 そ の逆数 nは 1. 79、 20 °Cの粘度は 664センチポィズであった。 実施例 14 (RPXOH: R' AR' =1 : 2. 75)
無水フタール酸 0. 33モル (49. 0 g) 及ぴジプロピレングリコール 0. 33モル (44. 2 g) を加熱撹拌した後、 エチレングリコール水活性化チタン 触媒 1, 2ミリモルを懸濁した 43. 3 g (0. 333モル) の 2ェチルへキサ ノールを添加して、 脱水エステル化反応を行った。 2. 5時間後、 酸価 0. 08 となり、 更に 20分後反応を終えた。
回収ジォクチルアジべ一ト 200 g及び新規ジォクチルアジべ一ト 76 gの混 合物を減圧にして、 加熱揮発分を十分除いた後、 190で 0. 5mmHgで撹 拌しながら脱水エステル化反応物を 1. 5時間にわたって添加し、 生成したオタ タノール 42 gを除去して反応を終了した。 100 で水を加えて触媒を不活性 化活性白土濾過し、 濾過液を濃縮し、 減圧下 190〜250°CZ0. 5 mmH g で蒸留して揮発分としてジォクチルアジべ一ト 197 gを除き、 残留液として、 157. 9 gを得た。 理論量 209. 5 gとの差をジエステノレとして、 反応モル 数を計算その割合の 0. 576逆数から重合度 1. 736を得た。 これから生成 物の組成は ^ 分子量 829が計算される。 20°Cの粘度は 46 4センチボイズで、 RPXA(XP)0.74R, と推測され、 (PX) 2が含まれないた めに粘度が低くなつたものと思われる。 反応モル比を 2、 2. 5、 2. 75と変 えて生成物を見ると、 重合度は 2. 05、 1. 79、 1. 74と下がるが、 粘度 は対応してだんだん低くなるが、 重合度 2を越すと粘度が急上昇する。 粘度が高 くなるとポリ塩ィ匕ビニールの可塑剤として使用したとき可塑化効率は対応して悪 くなるので、優れた可塑性を得るためには反応モル比は 2. 5〜2. 75となる。 フタ一ル酸ュニットが多いほど、 耐水性対候性が上がることはよく知られてい る。 実施例 1 5
アジピン酸 0. 7モル (1 02. 2 g)、 1 , 3—ブタンジオール 0. 7モル(6 3 g) 及び 1—ォクタノール 0. 7モル (9 1 g) の混合液にエチレングリコー ル水活性化チタン触媒 2ミリモルを加え、 窒素置換を行った後加熱少量のトルェ. ンの存在下脱水エステル化反応を行つた。 2時間 1 5分後、酸価 0. 1 0となり、 30分後エステル化反応を終えた。 減圧下濃縮してトルエン 1—ォクタノールを 除去し、 2 1 4. 2 gを得た。
計算量より 1 6. 8 g少なくォクタノールとして 1 30で割り、 分析使用量を 1. 8 gを捕正し反応モル量 0. 5 8 5モルその割合は 0. 8 3 7重合度 1. 1 9 6組成 R (AX13B)^ 196OH分子量 3 6 9. 3となった、 ジォクチルアジべ一ト 1 0 3 g 0. 2 78モルを加熱撹拌しながら 1 80 °C/ 0. 5 mmH gに保ち前 記エステルアルコール 0. 58モル2 1 480. 58/0. 2 78= 2. 08倍 モルを添加エステル交換を行った。 理論組成は R (AX13B)2.。8AR,、 0. 2 78 モル 2 1 8. 6 gに対しォクタノール 74 gを回収先の量と合わせほぼ定量的量 であった。 前同様後処理し減圧下 1 9 0〜2 50°CZ0. 5 mmH gで蒸留揮発 分を除き残留生成物を 1 9 5. 6 gを得た。 不足量 2 3 gをジエステル分子量で 割り、 0. 06 2反応モル数は 0. 2 1 5その割合は 0. 7 7 6重合度は逆数 1. 28となった。 これから組成は R (AX13B)2.68AR' 分子量 9 0 5. 8となった。
20 °Cの粘度は 224センチボイズとなつた。 実施例 1 6
アジピン酸 0. 4モル (58. 4 g)、 1 , 3—ブタンジオール 0. 4モル (3 6 g) 及び 1—オタタノ ル 0. 4モル (5 2 g) に少量のトルエンとともに、 エチレンダリコール水活性化チタン触媒 2ミリモルを加え脱水エステル化反応を 行った。 200°Cで 2. 5時間後、 酸価 0. 08となった。 減圧下にトルエンを 除き 1 3 0 gの反応液を次の反応に使用した。 別途製造したアジピン酸 4モル当 量 1 , 3—プタンジオール 3モル当量混合で脱水エステル化を始め 1—オタタノ ール 2モル当量を逐次添加して脱水エステル化して製造した R (AX13B)4.57A R' 分子量 1 2 64、 20。Cの粘度 5 8 8センチポィズ、 0. 0 35モノレ (44. 2 g) に 0. 8ミリモルのテトラプトキシチタンを加え、 180¾Ζ0. 5 mm H gで撹拌しながら前記エステルアルコール 130 gを 1時間半をかけて、 少量 ずつ添加エステル交換反応を行い、 生成したォクタノール 50 gを回収した。 定 法に従つて触媒を不活性化白土濾過濾過液を濃縮減圧で蒸留して、 揮発分を除去 し、 残留液として生成物 122. 0 gを得た。 揮発物は 250°C/ 0. 5 mmH gでも沸点を示す程の留分が認められず殆どジエステルは反応して無くなった力 入っていなかつたものと思われる。 0. 4/0. 035= 11. 42倍の1 OHを反応させたので重合度は 4. 5 7 + 1 1. 4 2 = 1 5. 98となり生成物 の組成は;^ (AX13B)16AR, 分子量 3570と計算される。 20°Cの粘度は 19 52センチボイズであった。 実施例 17
アジピン酸 0. 3モル (43. 8 g) 及ぴジプロピレングリコール 0. 15モ ル (20. 1 g) の混合物に 2—ェチルへキサノール 0. 45モル (58. 5 g) と共に活性化チタン触媒 2.5ミリモルを使用して脱水エステル化反応を行った。 生成物は、 RAXOHと R' AR' 各 0. 1 5モルの混合物である。 別途それぞ れの目的で製造した R (AXDP) L2OHおよび R (PXDP) OHを別途用意した。 0. 5モルのアジピン酸と 0. 5モルのジプロピレングリコール及ぴ 0. 5モルの 2 —ェチルへキサノールに活性化チタン触媒 2ミリモルを加え少量のトルエンを使 用して 200〜 210 °Cで脱水'エステル化反応を行つて、 酸価を下げ次に減圧下
25 mmH g 100 °C以下で揮発性のオタタノールを除き生成物 176. 2 gを 得た。 計算による重合度は 1. 20、 分子量 422. 8となり、 その 0. 3モル を使用した。 一方 R (PXDP) OHは以下の方法で作った。 ジブチルフタレート 0. 1モル (27. 8 g) に 0. 1モル (13. 4 g) のジプロピレングリコール並 びに 0. 1モノレ (13 g) の 2—ェチルへキサノール更に 0. 8ミリモル (0.
3 g ) のテトラブトキシチタンを加え、 180。Cで最初は常圧最後は 200 mm Hgで加熱撹拌して生成するブタノールを除去し、 略計算量 14 gのブタノール を得て、 反応を終え添加反応に使用した。
最初に1 八^:011 + 1 , AR' の溶液を減圧にして、 撹拌しながら昇温し生成 するォクタノールを除去、 180°Cにして、 減圧を 15mmHgにした後 R (A XDP)I.20OH0. 3モノレ (126. 8 g)、 ついで R (AXDP) OH反応液 0. 1モ ル (39 g) を順次添加して、 エステル交換を行って、 生成するォクタノール約 70 gを除き 2時間後減圧を 0. 5 mmH gに上げ 30分温度を保ち反応を終了 した。 定法に従って後処理溶剤を除き減圧下に蒸留揮発分を除き残留物として生 成物を 195. 5 gを得た。 生成物の理論値 R (AXDP)3.4(AXDP)。.66AR, 2 06. 3 gに対し、 n=l. 24、 従って生成物の組成は R (AXDP)4.22 (PXD P) 。.83AR, 分子量 1 6 1 9、 20°Cの粘度 8 20センチボイズであった 実施例 1 8 プロパンジオールの使用例 (RPXOH : R, AR, = 1 : 2. 7) 無水フタール酸 0.5モル 74gに 2-ェチルへキサノール 0.5モル 65g並び にトルエン lOOgを加え 85°C〜95°Cで 4時間攪拌して無水物を反応させた。 次 いで 1.5倍モル量 0.75モルの 1,2-プロパンジオール 56gに lgのテトラブ トキシチタンを入れて溶解し、 攪拌しながらエチレンダリコール 0.8g水 0.8g の混合液を添加して活性チタン触媒を析出させて作った触媒液を添加して、 脱水 エステル化反応を行つた。 溜出するプロパンジオールを含む水を反応機に戻し、 更に共沸溶剤トルエンを除き反応温度を上げて反応を進め、 酸価を下げ 4時間後 残存酸量が 0.004 モルで反応を終了した。 残った溶剤並びにプロパンジオール を減圧下に除去してォクチル 12-プロパンジォールフタレート OcPXpOH 164g を得た。 理論量 168gとの差はビス 12プロパンジオールフタレート HOXpPXp〇H 生成によるもので、 少量のジォクチルフタレートを含む生成物であった。 その粘 度は 20°Cで 660センチボイズであった。 500g(1.35モ/レ)のジォクチノレアジぺ ート(DOA)を添加し、 180〜205°Cで最初は弱減圧次いで水流ポンプ減圧下最後 は 0.3mmHg で加熱攪拌して溜出するエステル交換反応生成物のォクタノール 60gを除去した。反応液は冷却し 100°Cで少量の水ならびにトルエンを加え攪拌、 更に活性白土を加えてチタン触媒を吸着して濾過除触媒を行った。 トルエン希釈 液より溶剤を蒸留最後は 0.3mmHg 260°Cまで挙げて揮発分(DOA) 310gを除去 し、 生成物 234.4g を得た。 理論量 288g との差は D〇A 53.6g/370 0.145 モルで生成物のモル量は 0.355 従って重合度は (206n+370) *0.355=234.4 又はモル当たり反応量の逆数から重合度 η=1 . 41 0 ( ΡΧρ ) 1Α1ΆΟ w=661 と計算 される。 生成物の粘度は 20°Cで 510センチボイズを示し粘度との対応ではポリ 塩化ビニールの可塑剤として使用した際の可塑性は DOP 50PHR使用時と同等の 値を示す使用量は 51〜52 と推測され同等ないレ幾分悪いが、 揮発減量は略ゼロ に近く低温特性の悪化もなく非揮発性の優れた可塑剤として使用可能であると推 測される。 尚本実験で酸価の下がらないエステルイ匕生成物ではエステル交換反応 が+分進行しないばかりではなく、 揮発分除去に際し熱分解物に相当するフタ一 ル酸無水物が蒸留機に析出するし、 酸値の低下の為の水洗アル力リ洗浄が必要と なる。 本方法は、 フタール酸ジエステルの生成を最小限にし、 アジピン酸エステ ルのリサイクル使用によって、 副生物を生じない反応方式を提示するもので、 ァ ジピン酸ジェステルとの反応割合によって、重合度 mの異なる生成物となるが、 フタール酸に起因する粘度の急上昇を防止して優れた可塑性を得る為の方法とな る。 重合度は端数は上位のものとの混合組成を意味しているが、 この方法ではフ タレートフタレートの生成はなくフタレートアジぺート構造が主となっている為 に、 生成物の粘度上昇が無く優れた生成物が得られる事になる。 実施例 1 9
ジ 2ェチルへキシルポリ ( 1 5 ) エタンジィルァジぺート ( n = 1 5分子量 3 0 0 0を目的として)
5モノレのアジピン酸 7 3 0 gと分子量 2 0 0 0に見合う量 5 X 1 0 / 1 1モル のエチレンダリコール 2 8 1 . 8 g及ぴ水と共沸溜出するジオールに見合う補正 量として 1 8 . 2 gを含む計 3 0 0 gエチレングリコールの混合物並びにトルェ ン 1 0 0 gを反応容器に入れ窒素置換を行った後脱水エステル化反応を開始した。 1 3 0〜1 5 0 °Cで共沸で溜出した水を反応容器に循環して戻しながら反応を行 つて生成水を除去した。 分子量 2 0 0 0に対応する末端アルコール量として 5 X 2 / 1 1モルの 2ェチルへキサノール 1 1 8 . 2 gを 3分し半量を最初から少量 づっ添加溜出する水が半量 1 0 0 gを過ぎてから徐々に温度を上げ 2 2 . 5 gを 追加し 9 0 %過ぎに最後に残り 2ェチルへキサノール 3 7 9を添加した。 温度を 下げ、 分子量 3 0 0 0に見合うエチレングリコール量 5 X 1 5 / 1 6.、 2 9 0 . 6 gとの差 8. 8 gにテトラブトキシチタン 5 gを溶解しエチレングリコーノレ 2 gと水 1. 5 gの混合液を加えて撹搾活性化チタンを析出させた活性化触媒懸濁 液を添加して脱水エステルイ匕を行った。 反応温度を 200°Cに保ってエステル化 を進め、 最後の酸価の価から計算される残存酸量の対数値と時間から計算される 一次反応の速度は半減期ほぼ 20分で残存酸量 0. 002となり 30分後反応を 終了した。
次いで溜出管を取り付け減圧を 0. mmH gまで上げ溜出するオタタノール を除去した。 エステル交換反応液は冷却してトルエン及び水 1 gを加えて攪拌活 性白土 40 gを加えて放置触媒を吸着沈降させ上澄液から濾過次いでトルエンを 蒸留して除き 920 gの生成物 [P] を得た。 重合度 nは {[P] —370 X 51 / {5 X 172- [P]} として計算され n= 15分子量 2950に対応して生成 物は n = 15. 5分子量は 3036であった。 G P Cによる数平均分子量は 31 40、 重量平均分子量 6020で、 分散は 1. 917で優れた分布を持つポリェ ステルを、 分子量 3000を目標にして製造することができた。
このポリエチレンアジペートは酸価が低く末端アルコールの殆どないポリエス テルで、 ポリエチレンテレフタレート樹脂との相溶性に優れ、 10インチの混練 機による押し出し試験では 8 %まで添加混入可能で 10 %では溶解不十分でフィ 一ド部に逆流蓄積する現象が認められた。 その他の可塑剤ではジ 2ェチルへキシ ルフタレート及ぴその他の複合エステルでも 3部以上を混入できるものは見いだ せなかった。 なお分子量 3000のポリエチレンアジペートより調整したポリエ チレンテレフタレートとのブロックポリエステルでは上記の条件下で 45部まで 混入可能であり、 それとの混合では 8部が 15部まで上がることが確認されてい る。 実施例 20
ジ 2ェチルへキシルポリ (6) 1 , 2一プロパンジィルアジぺート (n = 6分 子量 1486を目的にとして)
3モルのアジピン酸 438 gと分子量 1114対応する量として 12プロパン ジオール 3X4Z5モル 182 g及ぴ水との共沸溜出分として 35 gを余分に加 えた混合物にトルエン 80 gを入れ窒素置換を行って脱水エステル化反応を開始 した。 1 30〜1 50°Cで水を除去しながら 2ェチルへキサノール 3 X 2/ 7モ ルの 1 1 1 gを少章ずつ添加、 途中で溜出するプロパンジオールと共に溜出する 水を反応液に循環して戻し計算量の半分 60 gの水が溜出するまで反応を進めた。 その後温度を 1 70°Cまで上げて反応を進め最後に 2ェチルへキサノールを (2 /5-2/7) モル相当量 40 gを添加し、 95%以上のエステル化が進行した 後温度を下げ、 分子量 1 500に対応するプ πパンジオール量との差 76 X 3 X (6/7-4/5) 量 1 3 g中に 4 gのテトラブトキシチタンを溶角琴し、 ェチレ ングリコール 1 g水 1 gの混含液を添加攪拌してできる活性化触媒を添加し、 2 00 °C前後でエステル化を進め、 1次反応に従って酸価を下げその半減期は約 2 5分であった。
生成物は次いで減圧にして 2 10°C/0. 3腿 Hgで ステル交換反応を行い 揮発分のオタタノールを除去した。 100°Cに下げた後トルエン及ぴ水 1 gを添 加攪拌してできる活性化触媒を添加して析出するチタンを,沈降させ濾過して 触媒を除き溶剤を蒸留除去して残留液として生成物 [P] 631. 5 gを得た。 重合度 nは {[P] -3 X 370} / {3 X 1 86- [P]} として計算され、 得 られたポリエステルは n = 6. 5 1平均分子量 1 58 1で G P C分析ではほぼ平 均分子量 1 600分散は 1. 98の値で優れた分布を示し 20 °Cの粘度は 144 0センチボイズであった。 目的分子量に対する誤差はプロパンジォールの共沸溜 出分の補正量に関連し、 共沸溜出による過剰量は実験的に補正量を確認して得た 量で、 循環量並びに反応温度によって修正されるべき値で、 特にプロパンジォー ルでは分子量を目的に適合するためには補正量を算出することが必要である。 ポリ塩化ビニール用可塑剤としてポリエステル可塑剤が使用されその低揮発性 能は良く分かつたことである力 ジエステル可塑剤に対比して価格が高く、 また 粘度も高く可塑化効率が悪く多量の使用量が必要という短所から利用範囲が限定 され、 1 000程度のポリエステルと他樹脂との併用目的に可塑剤の非移行性の 高分子量 2000〜4000の分子量のポリエステルが作られて販売されている。 本発明の方法は高活性触媒使用によって低酸価であり、 エステル交換反応効果に よつて低分子量フラタションのない分子量規正の優れたポリエステルを選択的に 製造することができまたジオール成分の選択で低温特性や粘度特性の優れたポリ エステルが製造できる。 実施例 21
ジ 2 _ェチルへキシル 1, 2—プロパンジィルアジペート
組成から来る反応モル比はアジピン酸 2、 ジオール 1、 ォクタノール 2である 力 目的生成物をアジピン酸 2、 ジオール 1. 25、 ォクタノール 1. 5 (RAXAR+2RAXAXAR)の反応組成として反応を行った。 中間組成と して (2RAX+3RAXAR)を考えると Rの使用量は + 2 Rとなり追加使用してエステルイ匕 反応を行い、 エステル交換反応で 2 Rに対応する量を除いて目的生成物を得たそ の実施例を以下に示す。
アジピン酸 1モル 146 gに 12—プロパンジオール 47. 5 g過剰分として 7 gを反応容器に入れ脱水エステル化反応を 140〜: I 50°Cで行いプロパンジ オールの回収目的で水層を反応容器に戻しながらエステル化を進め、 水の溜出量 理論量の約半分 2 Omlまでに 2—ェチルサノールの 65 gを添加し、 その後温 度を上げて 180〜 200。じにして残りの 38 gを添加エステル化を行った。 最 後に追加分として 38 g (総量は酸に対し等モル量) の 2ェチルへキサノールを 加えた。 その後温度を下げ、 トルエン 1 Omlにテトラブトキシチタン 1. 5 g を溶解し、 エチレングリコール 0. 8 g水 0. 8 gの混液を添加攪拌して生成す る活性化チタン触媒を添加してエステル化反応を進め略半減期 20分の反応を行 つた 0
最後に減圧として 200。CZO. 3 mmHgでエステル交換を行って揮発分を 除去して反応を終えた。 トルエン水を加え活性白土を加え触媒を濾別し溶剤を蒸 留除去し減圧 0. 3mmHgで最高 270°Cまで上げて蒸留して DO Aを除去 6 4 g残留液として生成物 [P] 201. 5 gを得た。 20°Cにおける粘度は 14 0センチボイズであった。 1モルのアジピン酸から n=lとして計算される収得 量 278との差が DOAモノレ数として 76. 5/370 = 0. 206更に複合ェ ステルとして反応したモル数として 1—0. 206 = 0. 793の値を使用して n= {[P] -370 X (1-0. 206)} / { 186 X (1—0. 206) - [ P ] } として計算され重合度は n = l , 7 0であった。過剰使用のプロパンジォ ールは経験的に先行実験から水と共に共沸成分として蒸留される量である。 理論 的には目的組成カゝ得られれば n = 1 . 6 6であるが、 共沸分を除いて定量的に反 応させることは非常に難しく 1 , 7 0の重合度を直接製造することが此のような 方法で始めて製造することができた。 なお nの小さな複合エステルその他のジォ ールを使用した場合に直接法で n = l . 4が得られている。 この反応はアルコー ル量が定量的に反応しないと不足になり、 或いはエステルアルコールの中間生成 物が残り、 一次反応の速度が著しく遅くなり、 逆に速度から反応が定量的に進行 したかの判定ができる。 得られた生成物の粘度からポリ塩ィ匕ビニールの可塑剤と して使用したときの可塑化効率は 1割少なくても同等の表面硬度を示す優れた性 能が予測され、 低温特性を持ち、 長時間使用しても揮発性が著しく少ない可塑剤 として使用されるものと期待される。 実施例 2 2
プロパ ジオールを使用する循環方式による製造ジ 2—ェチルへキシルポリ( 1 . 7 ) 1 , 2—プロパンジィルアジペート 1, 2—プロパンジオールは沸点が 低くまた水と共沸で溜出し、 定量的に反応を行う製造は特に難しいが、 ジォクチ ルアジペート D〇a (RARと略記した場合がある)副生を前提に、副生 DOAを使 用する実施例を記载する RAXに対応するエステルアルコールを使用して、 回収 DOAと反応することは本実施例と同じ意味で、この実施例は部分的に DOAを同時 に作りながら R AXを作り、 回収リサイクル RARと反応して複合エステルを製 造する際の製造例である。
1 . 5 HOCOACOOH + HOXOH + 2 C8H17OH →
1 C8H17OCOACOOXOH + 0 . 5 C8H17〇COAC〇OC8H17
+ 2 C8H17OCOACO〇C8H17
C8H170 ( COACOOXO) !^oCOACOOCgH^ + C8H17OCOACOOC8H17 1 . 5モル 2 1 9 gのアジピン酸に 1モノレの 1, 2—プロパンジォ一/レ 7 6 g 及び共沸溜出分として過剰量 1 5 gを反応容器にいれ窒素置換後 1 4 0〜 1 6 0 °Cで反応を開始した。 溜出する水を循環して反応容器にもどしながら反応を進 め同時にォクタノールの半量 1モル 130 gを少量ずつ添加した。 プロパンジォ ールを十分反応させ理論量の約半分量の水が出た後温度を上げ 180〜200°C で 90 gのォクタノールを添加しながら、 反応を進め最後に温度を一旦下げ、 4 0 gのォクタノールにテトラブトキシチタン 3 gを溶解し、 エチレングリコール 1 g水 1 gの混合液を添加攪拌して生じる活性ィ匕チタン懸濁液を添加して脱水ェ ステル化反応を行った。
アルコールの過剰量はジオールのモル量に相当し、 半減期は約 20分で進行し た。
酸価を十分に下げた後回収された DOA740 gの中に入れ攪拌しながら温度を 180〜 200。Cで減圧にし、 溶剤及ぴエステル交換によって生成するオタタノ ールを除いた。
最後は 0. 3 mmH gまで下げ十分脱オタタノールを行って反応を終了した。 100°Cに下がった時トルエン 400m 1と水 2m 1を加えて攪拌し活性白土 4 0 gを添加攪拌静置触媒を沈降させ、 その後濾過更に溶剤を蒸留し、 最後に減圧 下に00八を最高270で 0. 3mmHgで除いた。 その量は 674 gであつ た。 残留液として生成物は 406 gで反応したアジピン酸 1モルからの理論生成 量 556 gとの差 150 gは DOA0. 405モルでアジピン酸の複合エステルと して反応した量は 2— 0. 405 = 1. 595モル次式より
(186 n + 370) X I. 595/n+ 1 =406 n = l. 68従って分子 量は 682と計算される。
この実施例は循環消費される R A Rを一部作りながら R A Xを作つて反応させ る例である。 RAXを目的に作ってもよく、 その際部分的に RAXARに相当す る目的物が同時にでき、 エステル交換反応の際に、 RAXARを含む反応液とな る点が幾分異なるが、 RARの過剰量とエステル交換しなければ、 nの数の少な い複合エステルを得ることができない点は、 本実施例と同じであって、 反応時の RARの割合が多いほど nの値が小さくなる。 実施例 23
ジ 2—ェチルへキシルポリ (1. 4) 1, 2—プロパンォキシ 1, 2—プロパン ジィ/レアジぺート (ジプロピレングリコールビス 2ェチルへキシルアジぺート) アジピン酸 2モノレ 2 9 2 . 2 gジプロピレングリコーノレ 1 . 1モノレ (0. 1モ ル過剰使用) 1 4 7 gを脱水エステル化反応装置に入れ窒素置換した後 1 4 0〜 1 6 0 °Cで反応を進め、 水の溜出に合わせ 4 O m lまでに 2—ェチルへキサノ」 ル 1 3 0 gを少量ずつ添加した。 温度を上げ残りの 1 0 0 g量を継続的に少量づ つ添加 9 0 %以上になったところで 3 0 gの 2—ェチルへキサノールにテトラブ トキシチタン 3 gを溶かしエチレングリコール 1 g水 1 gの混合液を添加攪拌し て生成する活性ィ匕チタン触媒を添加 2 0 0 で反応を行った。 一次反応の半減期 は 2 0分であった。
2 0 0 °Cでエステル交換反応を行った後、 トルエン及び水を加え加水分解活性 白土を加え触媒を沈降濾過分離し濃縮最後に 0. 3 mmH gで最高 2 6 0 °Cまで 上げて揮発分 DOAを除き 4 1 4 gを得た。生成物の平均重合度は 2 . 1 7と計算 されその粘度は 4 6 0センチボイズであった。 揮発性の少ないジオールでは速度 の速 、反応はできるが反応組成が不十分では、 目的組成から外れてくる。 実施例 2 4
ジ 2—ェチルへキシル 1 , 2—プロパンジィルアジペートフタレート (異種複合 エステルの製造例)
目的反応物として(2RPXAR+RPXAXAR+RPXAXPR)とすると P及び Aは 5モノレ Xは 6モル Rは 8 ( 5 + 3 ) ΐルでその中間体として(2RAX+3RPXAR+RPXPR)を 考えると、 R 2モルの過剰使用で良くその量の対応量 2 Rをエステル交換反応で 除くと目的組成物が得られる。 1 Z 5モルスケールのフタル酸 1モルの反応例を 以下に示す。
フタル酸無水物 1 4 8 gに 2—ェチルへキシルアルコール 1 3 0 g及び溶剤と してトルエン 8 0 gを加え窒素置換後 8 0〜 9 5 °Cで 4時間加熱攪拌して無水物 を反応した。 アジピン酸 1 4 6 g及ぴ 1 , 2—プロパンジオール 9 1 . 2 g ( 1 . 2倍モル) 及ぴ共沸で水と共に溜出する量として 5. 8 gを追加し脱水エステル 化反応を開始し、 1 4 0〜1 5 0 °Cでエステル化を進め、 溜出する水を 4回循環 して反応容器に戻しその度に温度を下げ水を蒸留して除いた。 その間に 7 8 gの 2一ェチルへキサノールを少量ずつ添カ卩し、 36m lの水が出た後で温度を 1 9 0〜 210 °Cまで上げて反応した。 90 %の水が出た後オタタノール 52 gを追 加し、 次いで温度を下げ、 別途トルエン 10 gォクタノール 1 5 g中にテトラブ トキシチタン 3 gを溶解、 エチレングリコール 1. 5 g水 1. 5 gの混合液を添 加攪拌して生成する活性化チタン触媒液を作って反応容器に加えてエステルイ匕を 続行し、 3時間後反応を終えた。
冷却後トルエン 300m lを加え水 2m 1と共に攪拌し、 活性白土を加え触媒 を吸着沈降させ、 濾過、 溶液を濃縮して減圧下に 0. 3mmHgで蒸留液温 22 0〜 240 °C沸点 21 0〜 220でのジォクチルフタレート溜分を得た。 残留液 として 407. 2 gを得た。 RPXARの理論生成量 576との差 1 68. 8を RPRとみてモル数 0. 432モルから複合エステルとして反応したモル量は、 2— 0. 432= 1. 568、 n= {390 X 1. 568—407. 2} / { 1 86 X 1. 568-407. 2} として計算され、 n = l. 76、分子量 71 7. 7となった。糸且成式
Figure imgf000047_0001
で示され 20°Cの粘度は 540センチボイズで 可塑剤として使用するときはフタル酸ジエステルと略同等の性能を示し、 全く揮 発性がない特長をもった可塑剤となるものと期待される。
なお異種複合エステルは、 実施例 22に示した循環方式によって、 その RAX に代えて RPXフタル酸エステルアルコールを使用することによつても製造され る。

Claims

請 求 の 範 囲
1. アルコキシチタン、 7JC溶性ポリオール及び水の混合物又は該混合物の反応 生成物から成るゲル状物であって、 前記チタン 1モルに対する前記水溶性ポリォ 一ル及ぴ水のモル数がそれぞれ 1〜 50モル及ぴ:!〜 60モルであるエステルイ匕 反応又はエステル交換反応用触媒。
2. 前記アルコキシチタンがテトラプトキシチタン、 テトライソプロピルォキ シチタン又はテトラオタチル才キシチタンであり、 前記水溶性ポリオールがェチ レングリコール、 プロパンジオール、 ジエチレングリコール又はグリセリンであ る請求項 1に記載の触媒。
3. 2塩基酸に 1官能性アルコール及びジオールを同時又はそれぞれ単独に添 加して反応させる第 1工程、 第 1工程で生成した生成物から前記酸と前記アルコ ールの反応物を分離してエステルを得る第 2工程、 第 2工程で分離した反応物を 前記第 1工程へ再循環させる第 3工程からなるエステルの製法であつて、 前記第 1工程にぉレ、て請求項 1又は 2に記載の触媒を前記酸 1モルに対して 0. 05〜 5ミリモル用いるエステルの製法。
4. 2塩基酸及び 1官能性アルコールから予め生成させておいたエステル、 又 は 2塩基酸、 1官能性アルコール及びジオールから予め生成させておいたエステ ルを用いてジオールを反応させる第 1工程、 第 1工程で生成した生成物から未反 応の前記エステルを分離して、 それ以外のエステルを得る第 2工程、 第 2工程で 分離した未反応エステルを前記第 1工程へ再循環させる第 3工程からなるエステ ルの製法であって、 前記第 1工程において請求項 1又は 2に記載の触媒を前記酸
1モルに対して 0. 05〜5ミリモル用いるエステルの製法。
5. 2塩基酸 (HOOCACOOH)、 ジォール (HOXOH) 及び末端アルコ ール (ROH) の反応エステノレ糸且成物 (RO (COACOOXO) nH) (n≥ l) 力、ら成る反応物を、 請求項 1又は 2に記載の触媒の存在下、 l O OmmHg以下 の減圧下で反応させてエステル類を製造する方法。
6. 前記反応物が更に一般式: R' O (COACOOXO) nCOACOOR'
(式中、 R' は、 それぞれ同じ力又は異なっていてもよく、 前記 Rと同じであつ てもよ!/、アルキル基を表す。 )で表されるエステル化合物を含む請求項 5に記載の 製造方法。
7. 請求項 1又は 2に記載の触媒を用いて 2塩基酸、 ジオール及ぴ 1官能性ァ ルコールに脱水エステル化反応及び次にエステル交換反応を行ってエステル類を 製造する方法において、 該エステル化反応の全期間に渡って該 1官能性アルコー ル及ぴ該ジオールの必要量を分散し且つ継続的に反応容器に導入することを特徴 とするエステル類の製法。
8. 前記脱水エステル化反応が、 複合エステルとエステルアルコールとを共存 して生成するような条件で行われることを特徴とする請求項 7に記載のエステル 類の製法。
9. 前記エステル類を R (AX) m+nAR (m≥0、 n≥l、 Aを 2塩基酸、 Xをジオール、 及ぴ Rを 1官能性アルコールと略記し、 各反応基ゃェステル結合 を省略する。) として、 前記脱水エステルィヒ反応において該 1官能性アルコール (R) を、 前記 R (AX) m+nARを得るのに必要な理論量に、 該脱水エステル 化反応の生成物として R (AX) mAX + R (AX) n—iARを得るのに必要な量 と該理論量との差の 0. 2〜2. 0倍量 (過剰量) を加えた量で使用することを 特徴とする請求項 7に記載のエステル類の製法。
10. 前記エステル類の分子量分布が 2以下である請求項 7又は 8に記載のェ ステル類の製法。
PCT/JP2001/004057 2000-05-19 2001-05-15 Catalyseur d'esterification et de transesterification et procede de production d'ester WO2001087481A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2002-7015282A KR100520308B1 (ko) 2000-05-19 2001-05-15 에스테르화 반응 및 에스테르교환 반응용 촉매 및 에스테르류의 제조방법
US10/275,758 US7030057B2 (en) 2000-05-19 2001-05-15 Catalyst for esterification and transesterification and process for producing ester
EP01930172A EP1308208A4 (en) 2000-05-19 2001-05-15 ESTERIFICATION AND TRANSESTERIFICATION CATALYST AND METHOD FOR PRODUCING ESTER
CA002408450A CA2408450A1 (en) 2000-05-19 2001-05-15 Catalyst for esterification reactions and transesterification reactions, and a method of producing esters

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000-147554 2000-05-19
JP2000147554A JP3525133B2 (ja) 2000-05-19 2000-05-19 エステル化反応及びエステル交換反応の少なくとも一方の反応用触媒及びエステルの製法
JP2000169264A JP3547002B2 (ja) 2000-06-06 2000-06-06 エステル類の製造方法
JP2000-169264 2000-06-06
JP2001-119252 2001-04-18
JP2001119252A JP2002308972A (ja) 2001-04-18 2001-04-18 エステル類の製法

Publications (1)

Publication Number Publication Date
WO2001087481A1 true WO2001087481A1 (fr) 2001-11-22

Family

ID=27343422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004057 WO2001087481A1 (fr) 2000-05-19 2001-05-15 Catalyseur d'esterification et de transesterification et procede de production d'ester

Country Status (6)

Country Link
US (1) US7030057B2 (ja)
EP (1) EP1308208A4 (ja)
KR (1) KR100520308B1 (ja)
CN (1) CN1181921C (ja)
CA (1) CA2408450A1 (ja)
WO (1) WO2001087481A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003055842A1 (fr) * 2001-12-25 2003-07-10 Japan Science And Technology Agency Procede de production d'un ester composite melange

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906147B2 (en) * 2002-03-20 2005-06-14 Cyclics Corporation Catalytic systems
US7750109B2 (en) 2000-09-01 2010-07-06 Cyclics Corporation Use of a residual oligomer recyclate in the production of macrocyclic polyester oligomer
US7767781B2 (en) 2000-09-01 2010-08-03 Cyclics Corporation Preparation of low-acid polyalkylene terephthalate and preparation of macrocyclic polyester oligomer therefrom
EP1409475B1 (en) 2001-06-27 2005-10-05 Cyclics Corporation Isolation, formulation, and shaping of macrocyclic oligoesters
ATE460448T1 (de) * 2003-01-23 2010-03-15 Saudi Basic Ind Corp Sabic Katalysatorkomplex zur katalyse von veresterungs- undumesterungsreaktionen und versterungs/umesterungsverfahren unter dessenverwendung
KR100849123B1 (ko) * 2007-06-15 2008-07-30 한국포리올 주식회사 피마자유를 사용한 고관능기의 생분해성 폴리올 합성방법및 이에 의해 합성된 폴리올 및 폴리우레탄
CN101376631B (zh) * 2008-10-07 2011-01-19 杭州临安商通塑化有限公司 一种一缩二乙二醇二苯甲酸酯增塑剂的环保制备方法
JP5431805B2 (ja) 2009-06-24 2014-03-05 富士フイルム株式会社 組成物、化合物及び被膜形成方法
JP5662726B2 (ja) 2009-09-28 2015-02-04 富士フイルム株式会社 複合アルコールエステル組成物及びその製造方法、並びにその用途
GB201119871D0 (en) 2011-11-17 2011-12-28 Davy Process Techn Ltd Process
GB201218078D0 (en) 2012-10-09 2012-11-21 Davy Process Techn Ltd Process
CN103421615A (zh) * 2013-05-20 2013-12-04 西安市宝润实业发展有限公司 一种利用地沟油或潲水油生产生物柴油的工艺
WO2016028837A1 (en) 2014-08-20 2016-02-25 Resinate Materials Group, Inc. Polyester polyols from recycled polymers and waste streams
US9850400B2 (en) 2014-08-20 2017-12-26 Resinate Materials Group, Inc. Digestion of keratin
US9951171B2 (en) 2014-08-20 2018-04-24 Resinate Materials Group, Inc. Polyester polyols from recycled polymers and waste streams
US9890243B2 (en) 2014-10-29 2018-02-13 Resinate Materials Group, Inc. Polymeric plasticizer compositions
US9580546B2 (en) 2014-10-29 2017-02-28 Resinate Materials Group, Inc. Polymeric plasticizer compositions
WO2016069673A1 (en) * 2014-10-29 2016-05-06 Resinate Materials Group, Inc. Polymeric plasticizer compositions
CN107257823A (zh) 2015-01-30 2017-10-17 瑞森内特材料集团有限公司 用于处理pet和ptt回收料流的综合方法
PL425398A1 (pl) * 2018-04-27 2019-11-04 Purinova Spolka Z Ograniczona Odpowiedzialnoscia Sposób otrzymywania wysokocząsteczkowych plastyfikatorów i związków powierzchniowo czynnych oraz wysokocząsteczkowe plastyfikatory i związki powierzchniowo czynne
CN111393289B (zh) * 2020-05-09 2022-09-13 安徽灵达高新材料有限公司 一种由氟化醇制备氟化丙烯酸酯的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234044A (ja) * 1986-04-01 1987-10-14 Satoru Matsumoto 異種複合エステルの製造方法
JP2001072751A (ja) * 1999-09-02 2001-03-21 Nippon Ester Co Ltd チタン触媒溶液の調製法及びそれを用いるポリエステルの製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176442A (ja) * 1984-09-21 1986-04-18 Satoru Matsumoto 複合エステルの製造方法
JP3409067B2 (ja) 1994-06-02 2003-05-19 哲 松本 異種複合エステル
JP3409068B2 (ja) 1994-12-01 2003-05-19 哲 松本 ジオールジエステルならびにそれを使用して造られる複合エステルならびにポリエステル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234044A (ja) * 1986-04-01 1987-10-14 Satoru Matsumoto 異種複合エステルの製造方法
JP2001072751A (ja) * 1999-09-02 2001-03-21 Nippon Ester Co Ltd チタン触媒溶液の調製法及びそれを用いるポリエステルの製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1308208A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003055842A1 (fr) * 2001-12-25 2003-07-10 Japan Science And Technology Agency Procede de production d'un ester composite melange

Also Published As

Publication number Publication date
CN1430534A (zh) 2003-07-16
US20050176986A1 (en) 2005-08-11
EP1308208A4 (en) 2004-08-04
KR20030007617A (ko) 2003-01-23
EP1308208A1 (en) 2003-05-07
US7030057B2 (en) 2006-04-18
CA2408450A1 (en) 2002-11-07
KR100520308B1 (ko) 2005-10-13
CN1181921C (zh) 2004-12-29

Similar Documents

Publication Publication Date Title
WO2001087481A1 (fr) Catalyseur d'esterification et de transesterification et procede de production d'ester
RU2316396C2 (ru) Катализатор и способ
US5364956A (en) Diester, composite ester and polyester having ether-ester terminal structure
JP3030779B2 (ja) コポリエステル‐ジオールポリカーボネート
WO2005035622A1 (en) Catalyst for manufacture of esters
KR100734121B1 (ko) 제로-힐 폴리에스테르 공정
JPS6125738B2 (ja)
JP2004189921A (ja) ポリエステル製造用チタン触媒溶液、及びそれを用いるポリエステルの製造法
TWI338013B (en) Polybutylene terephthalate
JP2001525432A (ja) 第2ヒドロキシル基を含む化合物からのポリエステル及びエステルの製造
JP3275045B2 (ja) 熱可塑性芳香族ポリエステルの製法
CN110869413A (zh) 制备可生物降解聚酯的方法和设备
JP2517245B2 (ja) 複合エステルの製造方法
JP3904532B2 (ja) ブチレンテレフタレートオリゴマーの製造方法及びポリブチレンテレフタレートの製造方法
JP3547002B2 (ja) エステル類の製造方法
JP3525133B2 (ja) エステル化反応及びエステル交換反応の少なくとも一方の反応用触媒及びエステルの製法
JPH0125733B2 (ja)
JP2002308972A (ja) エステル類の製法
JP3907470B2 (ja) 異種複合エステルの製造方法
JPH0773677B2 (ja) エステル化反応ならびにエステル交換反応用触媒
JP3775953B2 (ja) 芳香族ジカルボン酸ジアリールエステルの製造方法
JPH07216066A (ja) ポリエステルの製造方法
JPH11189634A (ja) 末端イソシアネートプレポリマーの製造方法
JPH11130735A (ja) テレフタル酸系エステルオリゴマーの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT NL

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10275758

Country of ref document: US

Ref document number: 2408450

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027015282

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018098002

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001930172

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027015282

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001930172

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020027015282

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001930172

Country of ref document: EP