WO2001064759A1 - Procede de production d'un polymere hydrogene d'hydrocarbure a cycle insature - Google Patents

Procede de production d'un polymere hydrogene d'hydrocarbure a cycle insature Download PDF

Info

Publication number
WO2001064759A1
WO2001064759A1 PCT/JP2001/001511 JP0101511W WO0164759A1 WO 2001064759 A1 WO2001064759 A1 WO 2001064759A1 JP 0101511 W JP0101511 W JP 0101511W WO 0164759 A1 WO0164759 A1 WO 0164759A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
polymer
catalyst
heterogeneous catalyst
solution
Prior art date
Application number
PCT/JP2001/001511
Other languages
English (en)
French (fr)
Inventor
Hironori Haga
Masaki Takeuchi
Takeshi Muraoka
Kaoru Iwata
Original Assignee
Teijin Limited
Bayer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited, Bayer Ag filed Critical Teijin Limited
Priority to AU2001236000A priority Critical patent/AU2001236000A1/en
Priority to EP01908149A priority patent/EP1270607A4/en
Publication of WO2001064759A1 publication Critical patent/WO2001064759A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring

Definitions

  • the present invention relates to a method for producing a polymer hydride of an unsaturated ring-containing hydrocarbon. More specifically, the present invention relates to a method for producing a hydride of an unsaturated ring-containing hydrocarbon polymer having a greatly reduced catalyst content.
  • the hydrides of unsaturated ring-containing hydrocarbon polymers containing bulky cyclic hydrocarbon groups in the main chain and Z or side chains have transparency, heat resistance, chemical resistance, moisture resistance, dielectric properties and various mechanical properties. It is a synthetic resin with excellent properties and is widely used in various fields. These are amorphous and highly transparent because they contain bulky cyclic hydrocarbon groups in the main chain and side chains, and are widely used as optical materials.
  • Examples of unsaturated ring-containing hydrocarbon polymers that are precursors of powerful hydrogenated polymers include addition copolymers, ring-opening polymers, and styrene polymers containing an aromatic group in the side chain.
  • the addition copolymer is generally obtained by addition polymerization of a cyclic olefin-cyclic gen and ethylene or ⁇ -olefin.
  • Styrene polymers are widely used as general-purpose resins. However, It is hard to say that it has high performance in terms of heat resistance and weather resistance. From such a viewpoint, a proposal has been made to hydrogenate the contained aromatic group to form a vinylcyclohexane polymer.
  • a homogeneous catalyst and a heterogeneous catalyst are used for the hydrogenation reaction of these unsaturated ring-containing hydrocarbon polymers.
  • Heterogeneous catalysts which can easily separate the catalyst compared to homogeneous catalysts, are often used. Examples of such equipment include filtration using a filter and a mechanical centrifuge.
  • the latter is a device that can continuously separate the catalyst, but because it has a drive unit, mechanical troubles are likely to occur, and periodic maintenance is required. Become.
  • Another major disadvantage is that high-pressure liquids such as hydrogenation reaction liquids cannot be directly introduced into the apparatus.
  • the equipment itself is very expensive, which also has a significant effect on production costs.
  • the hydrocyclone has the advantage that there are no moving parts in the equipment and there is no mechanical trouble, the equipment is small and has a simple structure, it can be manufactured at low cost, and the processing capacity is large compared to the small size, but 0.5 to 2 kgf
  • the disadvantage is that an expensive device such as a pump for slurry with a high head of Z cm 2 is required.
  • An object of the present invention is to overcome the various problems in the conventional heterogeneous catalyst separation / recovery process and produce a hydride of an unsaturated ring-containing hydrocarbon polymer in which the content of the heterogeneous catalyst has been greatly reduced. It is to provide a method.
  • Another object of the present invention is to provide a method for efficiently producing a hydride of an unsaturated ring-containing hydrocarbon polymer having a greatly reduced content of a heterogeneous catalyst. Still other objects and advantages of the present invention will become apparent from the following description.
  • An unsaturated ring-containing hydrocarbon polymer containing at least one aliphatic carbon-carbon double bond and Z or at least one aromatic hydrocarbon group in a main repeating unit is produced by subjecting an unsaturated heterocyclic hydrocarbon polymer to the presence of a heterogeneous catalyst.
  • a hydrogenation reaction is carried out in an inert solvent under hydrogen pressure, and the resulting suspension containing the hydrogenated polymer and the heterogeneous catalyst is applied to the liquid cycle port by the hydrogen pressure used in the hydrogenation reaction. Pumping, separating and recovering the heterogeneous catalyst from the suspension at the liquid cycle port, and recovering the hydrogen polymer as a solution in an inert solvent.
  • FIG. 1 is a schematic explanatory view of one example of a manufacturing apparatus for performing the manufacturing method of the present invention.
  • FIG. 2 is a schematic explanatory view of another example of the manufacturing apparatus for performing the manufacturing method of the present invention.
  • FIG. 3 is a schematic explanatory view of another example of the manufacturing apparatus for performing the manufacturing method of the present invention.
  • Figure 4 is a schematic diagram of a cone-type hydrocyclone. In the figure, (a) shows a plan view and (b) shows a sectional view.
  • FIG. 5 shows the shape of the hydrocyclone used in the example.
  • (a) shows a plan view and (b) shows a sectional view.
  • FIG. 6 is a flowchart illustrating an example of the manufacturing method of the present invention.
  • the unsaturated ring-containing hydrocarbon polymer in the present invention mainly comprises a monomer unit containing at least one aliphatic carbon-carbon double bond and Z or at least one aromatic hydrocarbon group in a repeating unit.
  • unsaturated ring-containing hydrocarbon polymers include, for example, addition polymers, ring-opening polymers, styrene polymers, and the like.
  • the addition polymer is generally obtained by copolymerizing a cyclic gen with ethylene or olefin. These are disclosed in Japanese Patent Application Laid-Open Nos. 60-168708, 61-159159, 61-221206, and Show 6 1-2 9 2 6 0 1 No., for example.
  • the cyclic diene e.g. Shikuropen evening Zhen, Jishikuropen evening Zhen, Noruporunajen, 5 E dust Den nor Pol Nene, 8 E dust Den tetracyclo [4. 4. 0. I 2 '5 . I 7' 10] -3 - dodecene, 8-isopropylidene tetracyclo [4. 4. 0. I 2 '.
  • hydrocarbon cyclic diene _3- dodecene such as is preferably used.
  • hydrocarbon cyclic diene _3- dodecene such as is preferably used.
  • a cyclic off-line may be used in a range of 30% or less of the cyclic gen.
  • Such cyclic Orefin for example norbornene, Te Torashikuro [4. 4. 0. I 2 hydrocarbon cyclic Orefin such '5.
  • I 7' 10 J -3- dodecene suitably.
  • the monoolefin used in the present invention include propylene having 3 or more carbon atoms, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene and the like.
  • ethylene is most preferable from the viewpoint of reactivity, but propylene is also preferably used.
  • ⁇ -olefins may be used alone or in combination of two or more.
  • Such an addition polymer can be easily synthesized generally in the presence of a Cidara monocatalyst or a meta-aqueous catalyst.
  • the ring-opening polymer used in the present invention is generally obtained by polymerizing a cyclic olefin-cyclic diene in the presence of a metathesis catalyst. These are disclosed in JP-A-60-26024, JP-A-63-218726, JP-A-2-133413 and JP-A-3-109418. As used was that monomer, for example norbornene, 5 _ phenylalanine nor Pol Nene, Tetorashiku port [4. 4. 0.
  • Another group of unsaturated ring-containing hydrocarbon polymers used in the present invention includes styrene homopolymers and styrene copolymers.
  • examples of the styrene monomer used in the styrene polymer include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, and vinylnaphthylene. Of these, styrene is most preferably used in view of availability and physical properties of the final polymer.
  • the copolymerization component for example, a hydrocarbon conjugated diene such as butadiene, isoprene and 2,3-dimethylbutadiene is preferably used.
  • the mechanical properties can be significantly improved without impairing the transparency of the target hydrogenated polymer.
  • the introduction ratio is 30% by weight or less, preferably 20% by weight or less of the styrene monomer. Introducing more than this is not preferred because it not only impairs the heat resistance of the hydrogenated polymer but also impairs the transparency.
  • Such a styrene polymer can be obtained by polymerizing the corresponding styrene monomer by any of radical polymerization, anion polymerization, cationic polymerization, and coordinated anion polymerization.
  • radical polymerization is preferably used to obtain a polymer having a wide molecular weight distribution
  • anion polymerization is preferably used to obtain a narrow polymer.
  • An anion polymerization method is preferably used to obtain a copolymer with a gen.
  • the copolymer may be a random copolymer or a block copolymer, but a block copolymer is preferably used from the viewpoint of heat resistance.
  • a radial block copolymer or a graft copolymer branched into a star shape is also preferably used.
  • the molecular weight of the unsaturated ring-containing hydrocarbon polymer used in the present invention is an important index that governs the mechanical properties of the target hydrogenated polymer.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by GPC (gel permeation-shion chromatography) is preferably in the range of 30,000 to 1,000,000, more preferably. Is in the range of 50,000 or more, more preferably in the range of 80,000 to 400,000. If the average molecular weight is lower than that, If the mechanical strength of the polymerized polymer is insufficient, if it is higher than this, the melt viscosity is too high and the fluidity is insufficient, and molding becomes difficult, which is not preferable.
  • the reduced viscosity s pZ c measured at 3 Ot: in a 0.5 gZd L toluene solution is 0.1 to: L 0 d LZ g , Preferably in the range of 0.3 to 3 d LZg, and more preferably in the range of 0.4 to 2.0 d LZg.
  • a hydrogenated polymer is produced by hydrogenating such an unsaturated ring-containing hydrocarbon polymer in an inert solvent under hydrogen pressure using a heterogeneous catalyst.
  • the hydrogenation reaction will be described in detail.
  • heterogeneous catalyst used in the present invention examples include metals such as nickel, cobalt, ruthenium, rhodium, platinum and palladium, oxides thereof, salts thereof and complexes thereof.
  • heterogeneous catalyst examples include those in which these are supported on a porous carrier such as activated carbon, diatomaceous earth, silica, and alumina.
  • a solid catalyst in which at least one metal selected from the group consisting of a metal, an oxide thereof, a salt thereof or a complex thereof is supported on a porous carrier is preferred.
  • Raney nickel, Raney cobalt, stabilized nickel, and a supported catalyst of nickel, ruthenium, rhodium, palladium or platinum on silica, alumina or silicic alumina are preferred.
  • an unsaturated ring-containing hydrocarbon polymer as a raw material and a hydrogenated polymer as a product are dissolved, an undesired side reaction is not caused in a hydrogenation reaction, and a catalyst is used.
  • a solvent a hydrocarbon solvent is preferably used.
  • aliphatic saturated hydrocarbons such as pentane, hexane, heptane and octane
  • alicyclic saturated hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, cyclooctane and decalin
  • Benzene, toluene, xylene, ethylbenzene, tetralin and the like may be used alone or some Alternatively, two or more kinds may be used in combination.
  • aliphatic saturated hydrocarbons and alicyclic saturated hydrocarbons are preferred, and hexane, heptane, cyclohexane, and methylcyclohexane are particularly preferred.
  • decalin are preferred.
  • a polar solvent such as ethers or alcohols may be used in combination to suppress the side reaction and smoothly carry out the hydrogenation reaction.
  • Such solvents include linear or cyclic ethers such as ethyl ether, diisopropyl ether, dibutyl ether, methyl-tert-butyl ether, tetrahydrofuran, dioxane, 1,3-dioxolane; methanol, ethanol, isopropanol, n-butyl ether.
  • Aliphatic or alicyclic alcohols such as knol, isobutanol and cyclohexanol are preferably used.
  • the concentration of the unsaturated ring-containing hydrocarbon polymer in the hydrogenation reaction system is, for example, 4% by weight to 40% by weight, preferably 5% by weight to 30% by weight, and more preferably 1% by weight to 30% by weight. 0% to 25% by weight is used. If it is less than 4% by weight, productivity tends to decrease, which is not preferable. If it exceeds this, the hydrogenated polymer is likely to precipitate or the viscosity of the reaction mixture tends to be high, and stirring cannot be carried out smoothly, which is not preferable.
  • the hydrogenation reaction is performed at high temperature and high pressure.
  • the temperature used also depends on the catalyst and the hydrogen pressure to be used, preferably 1 0 O ⁇ 2 5 0, more preferably conducted at 1 5 0 a C ⁇ 2 0 0 ° C.
  • the reaction does not proceed smoothly, and at a high temperature of more than 250 ° C., side reactions and a decrease in molecular weight tend to occur.
  • 5 0 ⁇ 2 5 0 kgf Z cm 2 more preferably 8 0 ⁇ 2 0 0 kgf Z cm 2 is used as the hydrogen pressure.
  • the reaction time depends on various factors such as the concentration of the polymer, the activity and concentration of the catalyst, the temperature, the hydrogen pressure, and the stirring efficiency, and is, for example, 0.5 to 50 hours, preferably 1 to 20 hours, more preferably The training takes place over a period of 1.5 hours to 10 hours.
  • the hydrogenation rate of the hydrogenated polymer thus obtained is, for example, 90% or more, preferably 95%, more preferably 99% or more is used.
  • the resulting suspension containing the hydrogenated polymer is then pumped into a liquid cyclone by the hydrogen pressure applied to the reaction system, and the heterogeneous catalyst is separated and recovered in the liquid cycle port. And a hydrogenated polymer having a reduced heterogeneous catalyst content.
  • the step of separating and recovering the heterogeneous catalyst using the liquid cyclone will be described in detail.
  • Figures 1 to 3 show examples of equipment for performing the hydrogenation process using a liquid cycle port.
  • 1 is a stirring tank
  • 2 is a pump
  • 3 is a hydrogenation reactor
  • 4 is a catalytic cycle liquid cyclone
  • 5 is a pressure control valve
  • 6 is a flow ratio control valve
  • 7 is a flow rate.
  • Control valve, 8 is catalyst activated liquid cyclone, 9 is recovered catalyst storage tank, A is suspension of unsaturated ring-containing hydrocarbon polymer, B is hydrogen, C is raw suspension of hydrogenated polymer, is catalyst Suspension of the hydrogenated polymer in the cycle system, C 2 is the suspension of the hydrogenated polymer in the catalyst activation system, D is the downstream (high catalyst concentration) suspension in the catalyst cycle system, is the downstream in the catalyst cycle system (high catalyst concentration) suspension, D 2 is your Keru downstream (high catalyst concentration) was added catalytic activation system, E is suspended upstream (low concentration) in the catalytic cycle system Nigoeki, upstream in the catalytic cycle system ( low concentration) suspension, E 2 is definitive in catalyst activation system upstream (low concentration) suspension, F The catalyst suspension after activation and regeneration, X is an unsaturated ⁇ hydrocarbon polymer and inert solvent, Y is a filtration step and Z is the catalyst activation step.
  • FIG. 1 shows an example of an apparatus for performing a hydrogenation process using a hydrocyclone.
  • This apparatus mainly comprises a stirring tank 1, a hydrogenation tank 3, and a hydrocyclone 4.
  • the hydrogenated polymer suspension (hereinafter referred to as “raw suspension”) obtained after the hydrogenation reaction is sent to the liquid cyclone 4 by adjusting the hydrogen pressure with a pressure control valve 5.
  • the liquid cyclone separates the catalyst into low-concentration suspension (upstream suspension) E and high-concentration suspension (downstream suspension) D in terms of catalyst content.
  • the upstream suspension is pumped to filtration step Y as needed.
  • a heterogeneous catalyst can be separated and recovered from the suspension by a known method.
  • the downstream suspension containing a large amount of the separated and recovered heterogeneous catalyst or heterogeneous catalyst can be directly transferred to a stirring tank, returned to the hydrogenation tank, and used again for the hydrogenation reaction. That one A part or the whole amount can be transferred to the catalyst activation step z, activated and regenerated, transferred to a stirring tank, returned to the hydrogenation tank and used for the hydrogenation reaction.
  • a new catalyst may be used in place of activation and regeneration.
  • Fig. 2 shows another example of a device that performs a hydrogenation process using a hydrocyclone.
  • the process mainly comprises a stirred tank 1, a hydrogenation tank 3, and hydrocyclones 4 and 8.
  • the suspension containing the unsaturated ring-containing hydrocarbon-based polymer and the heterogeneous catalyst (hereinafter also referred to as the original suspension) C is a pressure control valve
  • the hydrogen pressure is adjusted in 5 and at least a part of it (suspension is pumped to the hydrocyclone 4 (catalytic cycle step).
  • the upstream suspension is pumped to the filtration step Y if necessary, and the downstream suspension containing the catalyst at high concentration is stirred in the stirred tank 1
  • the other part C 2 of the raw suspension C that has passed from the hydrogenation reaction tank 3 through the pressure control valve 5 is pumped to the hydrocyclone 8, and the low-concentration suspension (upstream suspension) Nigoeki) high concentration suspension (downstream suspension and E 2) are separated D 2 binary.
  • the upstream suspension E 2 Pumped optionally a filtration step Y.
  • the downstream suspension D 2 containing catalyst at a high concentration is transferred to a catalyst activating step Z, is produced activated and re.
  • the catalyst after activation and regeneration The suspension F is returned to the stirring tank 1.
  • a new catalyst may be used instead of activation and regeneration.
  • the distribution of C 2 and C 2 is determined in consideration of the catalyst life.
  • the replenishment of the catalyst is the same as in the batch process, but is performed continuously.
  • FIG. 1 Another example of performing a hydrogenation process using a liquid cycle port is shown in FIG.
  • This process mainly consists of a hydrogenation tank 3 and a hydrocyclone 4.
  • the hydrogenated unsaturated ring-containing hydrocarbon polymer suspension (hereinafter referred to as the raw suspension) obtained after the hydrogenation reaction is adjusted to the hydrogen pressure by the pressure control valve 5 to form the liquid cyclone 4.
  • the hydrocyclone separates the catalyst suspension into a low-concentration suspension (upstream suspension) E and a high-concentration suspension (downstream suspension) D.
  • the upstream suspension is pumped to filtration step Y as needed.
  • the downstream suspension containing a large amount of the catalyst is temporarily stored in the recovered catalyst storage tank 9.
  • the suspension in this storage tank can be returned to the hydrogenation tank as it is and used again for the hydrogenation reaction.
  • the heterogeneous catalyst can be separated and recovered from the suspension by a known method without returning the suspension in the storage tank to the hydrogenation tank as it is.
  • the separated and recovered catalyst is transferred to the catalyst activation step Z, activated and regenerated, and then returned to the hydrogenation tank and used for the hydrogenation reaction.
  • the activity of the catalyst is high, it can be returned to the hydrogenation tank without activation and regeneration, or a new one can be used instead of activation and regeneration.
  • a new catalyst may be used.
  • D c is the liquid cycle inlet diameter
  • 1 ′ is the raw suspension inlet
  • 2 is the downstream (high catalyst concentration) suspension outlet
  • 3 ′ is the upstream (low catalyst concentration) suspension outlet
  • a 2 is the upper cylinder
  • is the cone.
  • hydrocyclone used in the present invention, is not particularly limited hydrocyclone used, generally as shown in FIG. 4, (consisting of eight 1 and eight 2) cylindrical portion and the cone-type liquid cycle opening comprising a conical portion (B).
  • the raw suspension is press-fitted into the lower cyclone cylinder (A) from the hydrocyclone inlet 1 ′.
  • the centrifugal force and gravity acting on the suspension allow the catalyst to be used in the lower cyclone cylinder. From the bottom wall, it travels down the conical wall, gathers at the bottom of the conical section, and exits from the downstream suspension outlet 2 ', while the upstream suspension with reduced catalyst concentration flows from the lower cylindrical section (Ai). It is pushed up by the upper cylindrical part (A 2 ) and then exits from the upstream suspension outlet 3 '.
  • the diameter (Dc) of the cone-type hydrocyclone used in the present invention is selected in consideration of catalyst separation efficiency, treatment capacity, and the like. In general, for example, those having a Dc of 10 to 50 Omm, preferably 20 to 25 Omm, more preferably 100 to 25 Omm are used. Exceeding that, the centrifugal force, which is the driving force for separation of the catalyst by the liquid cyclone, becomes difficult to work sufficiently on the heterogeneous catalyst, and the performance of separating the heterogeneous catalyst at the liquid cycle mouth deteriorates. In addition, if it is less than this, it is not preferable because the processing capacity is not sufficient.
  • the apex angle (0) of the conical portion is, for example, in the range of 6 ° to 40 °, preferably in the range of 10 ° to 30 °. If the angle exceeds 40 °, a large amount of the heterogeneous catalyst separated on the conical wall flows to the downstream suspension outlet and becomes difficult to flow out. Conversely, if the angle is less than 6 °, the length of the cone (L 2 ) becomes large, the size of the apparatus becomes large, and the heterogeneous catalyst is blocked at the apex of the cone. Therefore, there is no point in reducing the apex angle any further.
  • the length (1 ⁇ ) of the lower cylindrical portion for example, a range of 0.5Dc to 5Dc, preferably a range of Dc to 3.5Dc is used.
  • the heterogeneous catalyst to be separated at the cone is separated at the cylinder wall.
  • the separated catalyst accumulates on the cylindrical wall, and then the separated heterogeneous catalyst Are re-scattered, and the separation efficiency is reduced.
  • the circumferential rotating flow does not sufficiently develop in the cylindrical part. Therefore, a sufficient centrifugal force does not act on the heterogeneous catalyst, and the separation efficiency is deteriorated.
  • it is preferable that 70% by weight or more of the amount of the heterogeneous catalyst contained in the suspension is separated and recovered by the liquid cyclone.
  • the heterogeneous catalyst used in the hydrogenation reaction of the present invention has a mass median diameter of preferably 1 m or more, more preferably 10 zm or more.
  • a mass median diameter preferably 1 m or more, more preferably 10 zm or more.
  • the true density of the heterogeneous catalyst or, if the heterogeneous catalyst has porosity the density taking into account the weight of the solution of the hydrogenated polymer in the inert solvent permeated into the pores (apparent density) ) and the difference in density of the solution in an inert solvent in the hydrogenated polymer, is favored properly 0. 01 g cm 3 or more, more preferably 0. 1 gZcm 3 or more.
  • the apparent density of the catalyst means the density in consideration of the solution of the hydrogenated polymer that has permeated into the pores of the heterogeneous catalyst formed into a porous particle.
  • the apparent density pa (Wc + Ws) Z (Wc / pc + Ws / ps)
  • the concentration of the catalyst in the suspension to be introduced is preferably 60% by weight or less, more preferably 50% by weight or less, and further preferably 20% by weight or less.
  • the content exceeds 60% by weight, the amount of the heterogeneous catalyst separated and recovered in the liquid cycle mouth tends to be excessive in the liquid cycle mouth, and the catalyst once separated from the suspension is scattered again and the liquid is removed. It is not preferable because it adversely affects the separation performance of the cycle mouth.
  • the solution viscosity of the solution of the hydrogenated polymer contained in the raw suspension is preferably in the range of 500 cp or less, more preferably 100 cp or less, and further preferably 50 cps or less. If it exceeds this, the heterogeneous catalyst receives a large resistance from the suspension, and is difficult to be separated from the suspension, which is not preferable.
  • the most preferred embodiment is to use the original suspension obtained by the hydrogenation reaction without dilution or concentration.
  • the raw suspension is injected into the liquid cycle port with the hydrogen pressure used in the hydrogenation reaction.
  • the hydrogen pressure used for hydrogenation is high. Therefore, no additional pressurization is required when separating the catalyst using a hydrocyclone. In many cases, the pressure is reduced and injected into the hydrocyclone. At this time, it is necessary to consider the relationship between the vapor pressure of the solvent used and the operating temperature. In other words, careless pressure reduction is not preferable because the solvent evaporates depending on the operating temperature.
  • the hydrogen pressure used is preferably 0. 5 ⁇ 250 kg fZcm 2, preferably in the range of 5 ⁇ 200 kgf Zcm 2 is used. Exceeding this is not desirable because of restrictions on the equipment. Conversely, below this is not preferable because the suspension cannot be sent to the liquid cycle port at a sufficient flow rate due to insufficient pressure.
  • Mass flow ratio when the mass flow through the upstream suspension and units downstream suspension time (kg Z hr), respectively and V 2, f ⁇ V iZ, defined by + V 2).
  • V 2 f ⁇ V iZ, defined by + V 2.
  • f is greater than 0.99, the catalyst separation efficiency is reduced, and when f is less than 0.7, the processing capacity is reduced.
  • the process according to the present invention described above is applicable to a batch process and a continuous process. Further, in order to obtain a molding polymer, the solvent can be removed, for example, through a flushing step.
  • a solution of the hydrogenated polymer recovered in the above-described production method in an inert solvent is further subjected to filtration to obtain a highly purified hydrogenated unsaturated cyclic hydrocarbon.
  • This is a method for producing a combined hydride, that is, a hydrogenated polymer. That is, it is possible to obtain a highly purified hydrogenated polymer by further passing the upstream suspension having a reduced catalyst concentration and containing the hydrogenated polymer to a filtration step.
  • the upstream suspension with the reduced catalyst concentration and containing the hydrogenated polymer contains flammable and explosive hydrogen gas, so the hydrogen gas present in the system can be replaced with an inert gas.
  • the inert gas for example, nitrogen gas, argon gas, neon gas, carbon dioxide gas and the like are preferably used. Thereafter, a suspension having substantially reduced hydrogen concentration and substantially no hydrogen gas is sent to the filtration step.
  • the filtration is performed at a predetermined temperature and a predetermined pressure by a method known per se.
  • the filter medium used for filtration is not particularly limited as long as the filter medium does not corrode or break during filtration, but examples thereof include a membrane filter, a woven cloth filter, a non-woven cloth filter, a sintered metal filter, a ceramic filter, and a filter paper. It is preferably used.
  • the pore size of the filter medium used in the present invention is preferably 0.1 to 5 as the maximum pore size measured by the bubble point test described in JIS K 3 832 or 8 3 1 ⁇ F 3 16-70. 0 ⁇ m, more preferably 0.1 to 10 m, even more preferably 0.1 to 5 m. If it is smaller than this, the pressure loss at the time of filtration tends to be large. If it is larger than this, it is difficult to obtain sufficient filtration accuracy.
  • the filtration step can be repeated two or more times several times in order to increase the filtration accuracy.
  • the second and subsequent filtration steps may be performed immediately after the first filtration step, after the flushing step, or a combination thereof.
  • the filter media used may be the same or different.
  • the filtration temperature is not particularly limited as long as there is no inconvenience in the filtration, but from the viewpoint of minimizing energy loss, it is preferable to perform the filtration at a temperature around the temperature used when hydrogen gas is replaced with an inert gas. . By doing so, the energy applied for heating the highly purified hydrogenated polymer solution in the subsequent flushing step can be advantageously saved.
  • a filtration aid can be used at the time of filtration. Filtration using a filter aid is performed by a method known per se.
  • Another preferred embodiment of the present invention is a method in which the solution of the hydrogenated polymer recovered in the production method in an inert solvent is further subjected to a centrifugation step and, if necessary, a filtration step to obtain a highly purified hydrogenated polymer. This is a method for producing a polymer.
  • this method is to purify the upstream suspension having a reduced catalyst concentration and containing the hydrogenated polymer by centrifuging the suspension and using a filter medium as necessary.
  • a device known per se is used as the centrifugal separator. Specifically, centrifuges with centrifugal sedimentation tubes, cylindrical centrifuges, and centrifugal separators And the like are preferably used. By doing so, the heterogeneous catalyst in the suspension of the hydrogenated polymer can be further removed before removing the fine particles of the heterogeneous catalyst by filtration, and the load of filtration can be reduced. .
  • additives which are soluble in the polymer solution such as a stabilizer, an ultraviolet absorber and a release agent may be added at this stage.
  • the addition is preferably performed before the filtration or in the case of performing filtration a plurality of times, in any of the steps during the filtration.
  • Such additives although soluble in their own right, contain extrinsic impurities such as dirt and dust, and insoluble endogenous impurities contained in the additives, so if added after filtration, the purity of the product will be reduced. Not preferred.
  • the method of addition is not particularly limited. For example, it can be added in a molten state or in a slurry or a solution as a solid. From the viewpoint of the operation, it is particularly preferable to add in the form of slurry or solution.
  • the solvent can be removed from the obtained hydrogenated polymer solution to obtain a highly purified hydrogenated polymer.
  • the method for removing the solvent is not particularly limited, and a known method such as a flashing method, a method of pouring into a non-solvent, and coagulating is employed. Among them, the flushing method is economically advantageous because it does not require the use of a non-solvent.
  • the total amount of metal residues derived from the catalyst in the highly purified hydrogenated polymer thus obtained is preferably 5 ppm or less, more preferably 3 ppm or less, and still more preferably 1 ppm, based on the polymer. It is as follows. Exceeding 5 ppm is not preferable because the signal characteristics of the optical recording medium deteriorate. In addition, it is not preferable that the hydrogenated polymer contains foreign matter that is incompatible with the polymer. Such foreign matter refers to foreign matter derived from various additives such as a catalyst-derived foreign matter, a stabilizer, an ultraviolet absorber, and a release agent.
  • the content of foreign matter having a particle size of 0.5 im or more contained in the highly purified hydrogenated polymer is preferably 3 ⁇ 10 4 —less than the polymer, more preferably 2 ⁇ 10 4 Z g _ polymer, and more preferably not more than 1 X 1 0 4 or Zg- polymer.
  • Exceeding 3 X 10 4 Zg-polymer is not preferable because the signal characteristics of the optical recording medium deteriorate.
  • the hydrogen pressure of the hydrogenation reaction is used, so that it is not necessary to use a high-yield slurry pump.
  • the present invention is useful as a process capable of producing a suspension of a hydrogenated polymer having a greatly reduced heterogeneous catalyst content by using an apparatus with low trouble and low production cost.
  • the raw materials, measuring methods, equipment, etc. used in the examples are as follows.
  • Triisobutylaluminum was purchased as a 2 M concentration toluene solution from Tohso Ixazo Co., Ltd. and used as it was.
  • Shishidani Titanium was purchased from Wako Pure Chemical Industries, Ltd. and used as is.
  • Tg Glass transition temperature
  • UV_240 ultraviolet-visible spectrometer
  • the content of foreign substances was measured by dissolving the polymer in cyclohexane and using a light scattering particle counter.
  • Mass median diameter of the catalyst The catalyst was suspended in a hexahedral hexane and measured with a laser diffraction / scattering type particle size distribution analyzer.
  • the resulting hydrogenated polystyrene stock suspension was introduced into a liquid cyclone (FIG. 5) kept at 180 ° C. under a hydrogen pressure of 12 kgf Zcm 2 .
  • the mass flow ratio f was controlled to 0.75 by controlling the valves attached to the outlets of the upstream suspension and the downstream suspension.
  • the upstream suspension was almost clear.
  • the downstream suspension was a highly concentrated black-brown suspension.
  • the separation efficiency determined from the ratio of the amount of catalyst contained in the downstream suspension to the amount of catalyst contained in the original suspension was 99.1% by weight.
  • the upstream suspension was subjected to pressure filtration using a membrane filter with a pore size of 0.1 / m (“Fluoropore” manufactured by Sumitomo Electric Industries, Ltd.) to obtain a colorless and transparent hydrogenated styrene polymer solution.
  • a membrane filter with a pore size of 0.1 / m (“Fluoropore” manufactured by Sumitomo Electric Industries, Ltd.) to obtain a colorless and transparent hydrogenated styrene polymer solution.
  • the density of this solution at the hydrocyclone operating temperature (180 ° C) was 0.55 gZcm 3 , and the solution viscosity was 4 cps.
  • the content of foreign substances having a particle size of 0.5 // m or more determined by the light scattering method was 0.82 ⁇ 10 4 Zg-polymer, and was found to be extremely highly purified.
  • the hydrogenated polystyrene stock suspension obtained in Example 1 was introduced into a liquid cyclone (FIG. 5) kept at 180 ° C. under a hydrogen pressure of 12 kgf Zcm 2 . At that time, the mass flow ratio f was controlled to 0.92. The upstream suspension was almost clear. The downstream suspension was a black-brown thick suspension. The separation efficiency was 96.5% by weight.
  • the reduced viscosity of the polymer obtained by fractionating a small amount of the obtained solution and purifying by a conventional method was 77 spZC, 0.65 dLZg, and the glass transition temperature (Tg) measured by DSC was 186 t: Met.
  • reaction solution 23.4 g of lactic acid and 3.O g of water were added at 100 ° C. with stirring, and reacted at the same temperature for 2 hours.
  • the reaction solution changed color from black-brown to black cloudy slurry.
  • the slurry was subsequently filtered.
  • the obtained filtrate was subjected to an adsorption treatment using basic alumina to obtain a colorless treatment liquid.
  • the resulting solution was added to a large amount of ethanol, and the deposited precipitate was separated by filtration and dried to obtain a colorless flake-shaped unsaturated ring-opened polymer.
  • the obtained flaky unsaturated cyclic ring-opened polymer was dissolved in 3,300 g of toluene.
  • the resulting hydrogenated ring-opened polymer stock suspension was introduced into a liquid cyclone (FIG. 5) kept at 15 O under a hydrogen pressure of 12 kgf / cm 2 . At that time, the mass flow ratio f was kept at 0.90.
  • the upstream suspension was almost clear. In contrast, the downstream suspension was a highly concentrated black suspension. The separation efficiency was 98.0% by weight.
  • the upstream suspension was filtered under pressure using a membrane filter having a pore size of 0.1 m to obtain a colorless and transparent hydrogenated ring-opened polymer.
  • the hydrogenation rate of the polymer obtained by fractionating a small amount of this solution and purifying it by a conventional method was 99.9% or more from 1 H-NMR spectrum.
  • the reduced viscosity was 7?
  • the remaining 20% of the obtained hydrogenated polystyrene stock suspension was depressurized into a catalyst activation liquid cycle port kept at 180 ° C, and then introduced under a hydrogen pressure of 12 kgf Zcm 2 . At that time, the mass flow ratio f was controlled to 0.75.
  • the upstream suspension was almost clear.
  • the upstream suspension was depressurized and sent to the filtration step.
  • the downstream suspension was not activated and regenerated, and instead, an appropriate amount of the catalyst was introduced into the autoclave. The separation efficiency was 99.0%.
  • 612 g of polystyrene and 3,018 g of cyclohexane were added, and the mixture was sent to the next (second) hydrogenation reaction.
  • the upstream suspension separated in the catalyst cycle port and the catalyst activation port can be combined, and then used with a membrane filter with a pore diameter of 0.1 / m (“Fluoropore” manufactured by Sumitomo Electric Industries, Ltd.). After pressure filtration, a colorless and transparent hydrogenated styrene polymer solution was obtained. The density of this solution at the hydrocyclone operating temperature (180 ° C) was 0.55 g / cm 3 , and the solution viscosity was 4 cps. A small amount of the obtained hydrogenated styrene solution was fractionated and poured into a large amount of ethanol to obtain a white precipitate. The precipitate was separated by filtration and dried to obtain hydrogenated styrene.
  • the hydrogenation rate of the hydrogenated polystyrene obtained at the fifth time was 99.7%, and the reduced viscosity 7? SpZC was 0.48 dLZg. That is, no deterioration in quality was observed.
  • the hydrogenated styrene polymer solution thus obtained was subjected to a flushing step to produce hydrogenated polymer pellets. Then, injection molding was performed at a cylinder temperature of 300 and a mold temperature of 75 :. As a result, a transparent molded product having a thickness of 2 mm was obtained. Its transmittance was 91%, which proved to be extremely transparent.
  • the upstream suspension separated by the hydrocyclone was subjected to pressure filtration using a membrane filter with a pore size of 0.1 m (“Fluoropore” manufactured by Sumitomo Electric Industries, Ltd.).
  • a styrene polymer solution was obtained.
  • the density of this solution at the hydrocyclone operating temperature (180) was 0.55 gZcm 3 and the solution viscosity was 4 cps.
  • a small amount of the obtained hydrogenated styrene solution was collected and put into a large amount of ethanol to obtain a white precipitate.
  • the precipitate was separated by filtration and dried to obtain hydrogenated styrene.
  • the hydrogenation rate of this polymer determined by 1 H-NMR was 99.0%.
  • the reduced viscosity /] sp / C was 0.48 dLZg. Also, what is the residual metal in the resin determined by ICP emission spectroscopy? was highly purified at 0.1 ppm or less and S i was 0.26 ppm.
  • the raw suspension extracted from the hydrogenation tank is continuously divided into a catalyst cycle liquid cycle port and a catalyst activation liquid cycle port heated to 150 at a hydrogen pressure of 12 kg fZcm 2 at a flow ratio of 50:50. ⁇ Introduced. At that time, the mass flow ratio f of each cyclone was set to 0.90. Then, of the suspension sent to the catalyst cycle cyclone, the upstream suspension was taken out as a nearly transparent suspension after decompression, and sent to the filtration step after decompression. On the other hand, the downstream suspension was continuously sent to the stirring tank 1. On the other hand, of the suspension sent to the catalyst-activated liquid cyclone, the upstream suspension was sent to the filtration process as a nearly transparent suspension after decompression. Further, the amount of catalyst corresponding to the amount of catalyst in the downstream suspension and the amount of catalyst lost to the filtration step was continuously supplied to the stirring tank 1. In this way, a continuous hydrogenation reaction was performed.
  • the catalyst separation efficiency was 98.0% in both the catalyst cycle liquid cycle and the catalyst activation liquid cycle.
  • the separated upstream suspension was filtered under pressure using a membrane filter having a pore size of 0.1 ⁇ to obtain a colorless and transparent hydrogenated ring-opened polymer. Then, the sample 1 after the continuous reaction was in the steady state and the sample 2 20 hours after the steady state was reached were analyzed.
  • the hydrogenation rates of the polymers of Sample 1 and Sample 2 obtained by the conventional purification method were 99.5% or more in both 1 ⁇ ⁇ -NMR spectra.
  • the reduced viscosities 77 s ⁇ C were all 0.53 dLZg, and the Tg measured using DSC was 140 ° C. Thus, it was found that the quality of the hydrogenated unsaturated cyclic ring-opening polymer obtained by this continuous reaction was extremely constant.
  • the polymer solution thus obtained was subjected to a flashing process to produce a pellet. Then, injection molding was performed at a cylinder temperature of 30 ° and a mold temperature of 75 to obtain a transparent plate having a thickness of 2 mm. The transmittance of this transparent plate was 91%, confirming extremely high transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書 水素化不飽和含環炭化水素重合体の製造方法 技術分野
本発明は、 不飽和含環炭化水素の重合体水素化物の製造法に関する。 さらに詳 しくは、 触媒含有率が大きく低減された、 不飽和含環炭化水素重合体の水素化物 の製造方法に関する。
従来の技術
嵩高い環状炭化水素基を主鎖および Zまたは側鎖に含む、 不飽和含環炭化水素 重合体の水素化物は、 透明性、 耐熱性、 耐薬品性、 耐湿性、 誘電特性および種々 の機械的性質に優れた合成樹脂であり、 様々な分野で広く用いられている。 これ らは、 嵩高い環状炭化水素基を主鎖や側鎖に含むために、 非晶性であり透明性が 高く、 光学材料として重用されている。
力かる水素化重合体の前駆体である不飽和含環炭化水素重合体として、 主に付 加共重合体、 開環重合体および側鎖に芳香族基を含むスチレン重合体が挙げられ る。
付加共重合体は一般に環状ォレフィンゃ環状ジェンとエチレンや α—ォレフィ ンとを付加重合して得られる。その内、環状ジェンを単量体として用いた場合は、 得られる重合体中には C = C二重結合が含まれ、耐熱性、耐酸化安定性、耐光性、 耐候性を下げる要因になっている。 この二重結合を水素添加することにより飽和 化すると、 これらの欠点を抑えられることが知られている。
開環重合体は環状ォレフィンをいわゆるメ夕セシス触媒を用いて重合すること により得られる一群の重合体である。 これらには、 その重合機構の性格上、 不可 避的に C = C二重結合が含まれる。 従って、 環状ジェンとエチレンやひ—ォレフ ィンとの付加共重合体の場合と同様の理由で、 水素添加して飽和化することが好 ましい。
また、 スチレン重合体は汎用樹脂として広く用いられている。 しかしながら、 耐熱性、 耐候性の点で必ずしも高い性能を有するとは言い難い。 このような観点 から、 含まれる芳香族基を水素添加して、 ビニルシクロへキサン重合体にする提 案がなされている。
一般に、 これらの不飽和含環炭化水素重合体の水素添加反応には、 均一触媒と 不均一触媒が用いられている。 均一触媒に比べて触媒の分離が容易な不均一触媒 はよく用いられており、 そのための装置としては、 フィルタによるろ過、 機械式 の遠心分離器が挙げられる。
しかしながら、 前者においては、 フィルタ上に触媒が徐々に堆積し、 フィルタ の性能がそれに従い低下するため、 フィル夕の再生工程が必要となる。 特に商業 スケールにおいては、 不均一触媒であるため比較的多量に使用するので、 分離す べき触媒の量は非常に多くなるため、 ろ過装置の増大化 ·大型化、 およびフィル 夕上の触媒の払い落としまたは逆洗というフィル夕の再生工程の回数が増加し、 これが生産コストに大きく影響する。
また、 後者は、 連続的に触媒を分離することができる装置であるが、 駆動部を 有するため、 機械的トラブルを生じやすく、 定期的なメンテナンスが必要となる ため、 必ず並列で 2台必要となる。 また、 水素添加反応液のような高圧の液体を 装置に直接導入することができないという、 大きな欠点を有している。 さらには 装置自体が非常に高価であり、 これも生産コストに大きく影響する。
一方、 液体サイクロンは、 装置に可動部が無く機械的トラブルが無い、 装置が 小型で単純な構造なので安価に作れる、 小型の割に処理能力が大きいという長所 を有する反面、 0 . 5〜2 k g f Z c m2の高揚程のスラリー用ポンプという高 価な装置が必要である、 という短所を有する。
発明の開示
本発明の目的は、 従来の不均一触媒の分離回収工程におけるさまざまな問題点 を克服し、 不均一触媒の含有量が大きく低減された、 不飽和含環炭化水素重合体 の水素化物を製造する方法を提供することにある。
本発明の他の目的は、 不均一触媒の含有量が大きく低減された、 不飽和含環炭 化水素重合体の水素化物を効率よく製造する方法を提供することにある。 本発明のさらに他の目的および利点は以下の記載から明らかになろう。
本発明によれば、 本発明の上記目的および利点は、
主たる繰返し単位の中に少なくとも 1個の脂肪族炭素—炭素二重結合および Z または少なくとも 1個の芳香族炭化水素基を含有する不飽和含環炭化水素重合体 を、 不均一触媒の存在下、 不活性溶媒中で水素加圧下に水素添加反応に付し、 得られた水素化重合体と不均一触媒を含有する懸濁液を水素添加反応に用いら れた水素圧力によって液体サイク口ンに圧送し、 そして該液体サイク口ンで該懸 濁液から不均一触媒を分離して回収するとともに該水素重合体を不活性溶媒中の 溶液として回収する、
ことを特徴とする水素化重合体の製造法によって達成される。
図面の簡単な説明
図 1は、 本発明の製造方法を実施する製造装置の 1例の概略説明図である。 図 2は、本発明の製造方法を実施する製造装置の他の 1例の概略説明図である。 図 3は、本発明の製造方法を実施する製造装置の他の 1例の概略説明図である。 図 4は、 コーン型液体サイクロンの模式図である。 図中 (a ) は平面図を示し そして (b ) は断面図を示す。
図 5は、実施例に用いた液体サイクロンの形状を示したものである。図中(a ) は平面図を示しそして (b ) は断面図を示す。
図 6は、 本発明の製造方法の 1例を説明するフローチャートである。
発明の詳細な説明
本発明における不飽和含環炭化水素重合体は、 繰返し単位中に少なくとも一個 の脂肪族炭素一炭素二重結合および Zまたは少なくとも一個の芳香族炭化水素基 を含む単量体単位から主としてなる。 そのような不飽和含環炭化水素重合体とし ては、 例えば付加重合体、 開環重合体およびスチレン重合体などを代表的なもの として挙げることができる。
付加重合体は、 一般に環状ジェンとエチレンやひ—ォレフインとを共重合して 得られる。 これらは、 特開昭 6 0 - 1 6 8 7 0 8号公報、 特開昭 6 1— 1 1 5 9 1 6号公報、 特開昭 6 1 - 2 2 1 2 0 6号公報および特開昭 6 1 - 2 9 2 6 0 1 号公報などに開示されている。環状ジェンとしては、例えばシクロペン夕ジェン、 ジシクロペン夕ジェン、 ノルポルナジェン、 5—ェチリデンノルポルネン、 8— ェチリデンテトラシクロ [4. 4. 0. I2' 5. I7' 10] —3—ドデセン、 8— イソプロピリデンテトラシクロ [4. 4. 0. I2' 5. I7' 10] _3—ドデセン のごとき炭化水素環状ジェンが好適に用いられる。 中でも原料の入手性およびポ リマーの耐熱性を勘案すると、 ノルポルナジェン、 8—ェチリデンテトラシクロ [4, 4, 0. I2' 5. I7' 10] —3—ドデセン、 ジシクロペンタジェンが特に 好適である。 また、 必要に応じて環状ジェンの 30%以下の範囲で環状ォレフィ ンを併用してもよい。 かかる環状ォレフィンとしては、 例えばノルポルネン、 テ トラシクロ [4. 4. 0. I2' 5. I7' 10J —3—ドデセンなどの炭化水素環状 ォレフィンが好適に挙げられる。 また本発明において用いられるひ一ォレフィン としては、 例えば炭素数 3以上のプロピレン、 1ーブテン、 1—ペンテン、 1— へキセン、 1ーォクテン、 1—デセン等が挙げられる。 環状ォレフィンや環状ジ ェンと共重合する単量体としては反応性の上からエチレンが最も好ましいが、 そ の他プロピレンも好ましく用いられる。 これらの α—ォレフィンは単独で用いて もよいし、 2種以上組合せて用いてもよい。 かかる、 付加重合体は、 一般にチー ダラ一触媒やメタ口セン触媒の存在下において容易に合成することができる。 本発明において用いられる開環重合体は、 一般に環状ォレフィンゃ環状ジェン をメタセシス触媒の存在下で重合することにより得られる。 これらは、 特開昭 6 0 -26024号公報、 特開昭 63-218726号公報、 特開平 2— 1334 13号公報および特開平 3— 109418号公報等に開示されている。 用いられ る単量体として、 例えばノルポルネン、 5 _フエニルノルポルネン、 テトラシク 口 [4. 4. 0. I2' 5. I7' 10] — 3—ドデセンのごとき炭化水素環状ォレフ 5—イソプロピリデンノルポルネン、 8—ェチリデンテトラシクロ [4. 4. 0. 12. 5· 1?. 10] 一 3ードデセン、 8—イソプロピリデンテトラシクロ [4. 4.
0. I2' 5. I7' 10] — 3—ドデセンなどの炭化水素環状ジェンが好適に用いら れる。 付加重合体と異なり、 開環重合体には不可避的に炭素一炭素二重結合が含 まれる。 このように炭素一炭素二重結合を含む重合体は熱化学安定性に乏しく、 実用に耐えない。 そのために、 開環重合体は水素化触媒の存在下で、 さらに水素 化する必要がある。
本発明において用いられる不飽和含環炭化水素重合体のもう一つの群としては、 スチレンホモ重合体およびスチレン共重合体が挙げられる。 スチレン重合体に用 いられるスチレン単量体としては、 例えばスチレン、 α—メチルスチレン、 ρ— メチルスチレンおよびビニルナフ夕レン等が挙げられる。 この内、 入手性および 最終ポリマーの物性の上からスチレンが最も好ましく用いられる。 一方、 共重合 成分としては、 例えばブタジエン、 イソプレン、 2 , 3—ジメチルブタジエンの ごとき炭化水素共役ジェンが好ましく用いられる。 これらの共重合成分を導入す ることにより、 目的とする水素化重合体の透明性を損うことなく力学物性を著し く向上させることができる。導入率としては、スチレン単量体の 3 0重量%以下、 好ましくは 2 0重量%以下が挙げられる。 それ以上導入すると水素化重合体の耐 熱性を損ねるだけでなく、 透明性も損ねるために好ましくない。 かかるスチレン 重合体は、 対応するスチレン単量体をラジカル重合、 ァニオン重合、 カチオン重 合、 配位ァニオン重合のいずれの方法によって重合しても得られる。 特に、 分子 量分布の広い重合体を得るにはラジカル重合、 狭い重合体を得るにはァニオン重 合が好ましく用いられる。 またジェン類との共重合体を得るにはァニオン重合法 が好ましく用いられる。 共重合体としては、 ランダム共重合体でもブロック共重 合体でもよいが、 耐熱性の上からはブロック共重合体が好ましく用いられる。 ま た、 星型に枝別れしたラジアルブロック共重合体やグラフト共重合体も好ましく 用いられる。
本発明において用いられる不飽和含環炭化水素重合体の分子量は、 目的とする 水素化重合体の機械的物性を支配する重要な指標である。 G P C (ゲルパーミエ —シヨン ·クロマトグラフィー) により測定したポリスチレン換算の重量平均分 子量 (Mw) で、 3 0 , 0 0 0〜1 , 0 0 0 , 0 0 0の範囲のものが好ましく、 より好ましくは 5 0, 0 0 0以上の範囲、 さらに好ましくは 8 0, 0 0 0〜4 0 0, 0 0 0の範囲のものである。 平均分子量がそれより低いと、 目的とする水素 化重合体の機械的強度が不足し、 それより高いと溶融粘度が高過ぎて流動性が不 足し、 成形が困難になり好ましくない。 また、 分子量の一つの尺度である還元粘 度で表示すると、 濃度 0. 5 gZd Lのトルエン溶液中、 3 O t:で測定した還元 粘度 s pZ cが 0. 1〜: L 0 d LZ g、 好ましくは 0. 3から 3 d LZg、 さ らに好ましくは 0 . 4から 2 . 0 d LZgの範囲である。
本発明においては、 このような不飽和含環炭化水素重合体を不均一触媒を用い て不活性溶媒中で水素加圧下で水素添加することにより水素化重合体を製造する。 以下水素添加反応につて詳述する。
本発明において用いられる不均一触媒としては、 例えばニッケル、 コバルト、 ルテニウム、 ロジウム、 白金、 パラジウムなどの金属、 その酸化物、 その塩また はその錯体が挙げられる。不均一触媒としてはさらに、 これらを、例えば活性炭、 珪藻土、 シリカ、 アルミナなどの多孔性担体に担持したものなどが挙げられる。 これらのなかでも、 ニッケル、 白金、 パラジウム、 ルテニウムおよびロジウムよ りなる群から選ばれた少なくとも 1種の金属、 その酸化物、 その塩またはその錯 体や、 ニッケル、 白金、 パラジウム、 ルテニウムおよびロジウムよりなる群から 選ばれた少なくとも 1種の金属、 その酸化物、 その塩またはその錯体を多孔性担 体に担持した固体触媒が好ましい。
特に、 ラネーニッケル、 ラネ一コバルト、 安定化ニッケル並びにニッケル、 ル テニゥム、 ロジウム、 パラジウムもしくは白金のシリカ、 アルミナあるいはシリ 力アルミナへの担持触媒が好ましい。
本発明において用いられる不活性溶媒としては、 原料の不飽和含環炭化水素重 合体および生成物の水素化重合体を溶解し、 水素添加反応の際に好ましくない副 反応を起さず、 かつ触媒を失活しない溶媒が好ましく用いられる。 かかる溶媒と しては、 炭化水素溶媒が好ましく用いられる。 具体的には、 例えばペンタン、 へ キサン、 ヘプタン、 オクタンのごとき脂肪族飽和炭化水素;シクロペンタン、 メ チルシクロペンタン、 シクロへキサン、 メチルシクロへキサン、 シクロオクタン、 デカリンのごとき脂環族飽和炭化水素;ベンゼン、 トルエン、 キシレン、 ェチル ベンゼン、 テトラリン等が挙げられる。 これらは、 単独で用いてもよいし、 ある いは 2種以上組合せて用いてもよい。 これらの内、 溶解性、 水添反応に対しての 反応性を勘案すると、 脂肪族飽和炭化水素、 脂環族飽和炭化水素が好ましく、 と りわけへキサン、 ヘプタン、 シクロへキサン、 メチルシクロへキサン、 デカリン が好ましい。 また、 副反応を抑制して水素添加反応を円滑に行うために、 エーテ ル類、 アルコール類等の極性溶媒を併用してもよい。 かかる溶媒としては、 例え ばェチルエーテル、 ジイソプロピルエーテル、 ジブチルエーテル、 メチルー t e r t—ブチルエーテル、 テトラヒドロフラン、 ジォキサン、 1, 3—ジォキソラ ンのごとき鎖状あるいは環状エーテル類;メタノール、 エタノール、 イソプロパ ノール、 n—ブ夕ノール、 イソブタノール、 シクロへキサノールのごとき脂肪族 あるいは脂環族アルコール類が好ましく用いられる。
本発明において水素添加反応系中における不飽和含環炭化水素重合体の濃度と しては、 例えば 4重量%〜4 0重量%、 好ましくは 5重量%〜3 0重量%、 さら に好ましくは 1 0重量%〜2 5重量%が用いられる。 4重量%未満では生産性の 低下を来たしがちで好ましくない。 それを超えると水素化重合体が析出したり、 反応混合物の粘度が高くなりがちで攪拌が必ずしも円滑に行えなくなり、 好まし くない。
水素添加反応は、 高温、 高圧下で行われる。 用いられる温度は使用する触媒や 水素圧にも依存するが、好ましくは 1 0 O 〜 2 5 0 、より好ましくは 1 5 0 aC 〜2 0 0 °Cで行われる。 1 0 O :未満の低温では反応が円滑に進行し難いし、 2 5 0 °Cを超える高温では、副反応や分子量低下が起こりがちなので好ましくない。 また、 水素圧としては好ましくは 5 0〜2 5 0 k g f Z c m2、 より好ましくは 8 0〜 2 0 0 k g f Z c m2が用いられる。 5 0 k g fノ c m2未満の低圧では反 応が円滑に進行し難いし、 2 0 0 k g f Z c m2を超える高圧では装置上の制約 がかかるし、 圧力を増す効果が認められ難い。 反応時間は、 ポリマー濃度、 触媒 の活性や濃度、 温度、 水素圧、 攪拌効率等の諸因子に依存するが、 例えば 0 . 5 時間から 5 0時間、 好ましくは 1時間から 2 0時間、 さらに好ましくは 1 . 5時 間から 1 0時間の範囲で行われる。
かくして得られる水素化重合体の水素化率は、 例えば 9 0 %以上、 好ましくは 9 5 %、 さらに好ましくは 9 9 %以上が用いられる。
本発明においては、 次いで得られた水素化重合体を含有する懸濁液を、 反応系 に加えられた水素圧力により液体サイクロンに圧送し、 該液体サイク口ン内で該 不均一触媒を分離回収するとともに不均一触媒含有率の低減された水素化重合体 を製造する。 以下、 この液体サイクロンを用いた不均一触媒の分離回収工程につ いて詳述する。
液体サイク口ンを用いた水素添加プロセスを実施する装置の例を図 1〜図 3に 示す。 図 1、 図 2および図 3において、 1は攪拌槽、 2はポンプ、 3は水素添加 反応槽、 4は触媒サイクル系液体サイクロン、 5は圧力調節弁、 6は流量比調節 弁、 7は流量調節弁、 8は触媒賦活系液体サイクロン、 9は回収触媒貯槽、 Aは 不飽和含環炭化水素重合体の懸濁液、 Bは水素、 Cは水素化重合体の原懸濁液、 は触媒サイクル系における水素化重合体の懸濁液、 C 2は触媒賦活系における 水素化重合体の懸濁液、 Dは触媒サイクル系における下流(高触媒濃度)懸濁液、 は触媒サイクル系における下流 (高触媒濃度) 懸濁液、 D 2は触媒賦活系にお ける下流 (高触媒濃度) 懸濁液、 Eは触媒サイクル系における上流 (低濃度) 懸 濁液、 は触媒サイクル系における上流 (低濃度) 懸濁液、 E 2は触媒賦活系に おける上流 (低濃度) 懸濁液、 Fは賦活 ·再生後の触媒懸濁液、 Xは不飽和含環 炭化水素重合体および不活性溶媒、 Yはろ過工程そして Zは触媒賦活工程である。 液体サイクロンを用いた水素添加プロセスを実施する装置の例を図 1に示す。 この装置は、 攪拌槽 1、 水添槽 3および液体サイクロン 4から主としてなる。 水 素添加反応後に得られた水素化重合体の懸濁液 (以下原懸濁液と言う) は、 圧力 調節弁 5で水素圧力を調節して、 液体サイクロン 4に圧送される。 そして、 液体 サイクロンにより、 触媒の含有量において低濃度懸濁液 (上流懸濁液) Eと高濃 度懸濁液 (下流懸濁液) Dに分離される。 上流懸濁液は、 必要に応じてろ過工程 Yに圧送される。 一方、 触媒を大量に含む下流懸濁液はその懸濁液から不均一触 媒を公知の方法で分離回収することができる。 あるいは、 分離回収した不均一触 媒もしくは不均一触媒を大量に含む下流懸濁液は、 その全量をそのまま攪拌槽に 移し、 さらに水添槽に戻し再度水素添加反応に使用することもできるし、 その一 部もしくは全量を触媒賦活工程 zに回し賦活 ·再生後攪拌槽に移し、 さらに水添 槽に戻し水素添加反応に使用することもできる。 もちろん、 賦活 '再生する代わ りに新しい触媒を用いてもよい。
液体サイクロンを用いた水素添加プロセスを実施する装置の他の例を図 2に示 す。 該プロセスは、 攪拌槽 1、 水添槽 3および液体サイクロン 4および 8から主 としてなる。 水素添加反応後 (水素添加反応中のものを含む) の不飽和含環炭化 水素系重合体および不均一触媒を含有する懸濁液 (以下、 原懸濁液ともいう) C は、 圧力調節弁 5で水素圧力を調節して、 少なくともその一部 (懸濁液じ は 液体サイクロン 4に圧送される (触媒サイクル工程)。そして、液体サイクロン 4 により、 低濃度懸濁液 (上流懸濁液) と高濃度懸濁液 (下流懸濁液) に分 離される。 上流懸濁液 は、 必要に応じてろ過工程 Yに圧送され、 触媒を高濃 度に含む下流懸濁液 は、 攪拌槽 1に戻される。 一方、 水素添加反応槽 3から 圧力調節弁 5を通ってきた原懸濁液 Cの他の一部 C 2は、 液体サイクロン 8に圧 送され、 低濃度懸濁液 (上流懸濁液) E 2と高濃度懸濁液 (下流懸濁液) D 2に分 離される。 そして、 上流懸濁液 E 2は必要に応じてろ過工程 Yに圧送される。 ま た、 触媒を高濃度に含む下流懸濁液 D 2は、 触媒賦活工程 Zに移され、 賦活 ·再 生される。 賦活 ·再生後の触媒懸濁液 Fは、 攪拌槽 1に戻される。 勿論、 賦活 · 再生する代わりに、 新しい触媒を用いてもよい。
図 2の装置を用いたプロセスの好ましい実施態様を以下に説明する。
( 1 )バッチプロセス (その 1 ):水素添加反応終了後、 原懸濁液 Cの全てを触媒 サイクル工程に回す。 そして、 触媒の活性が基準値以下に低下したときに、 原懸 濁液 Cの全てを触媒賦活工程 Zに回し、 触媒を賦活 '再生する。 このようなケ一 スは、 触媒の寿命が長い場合に適する。 そして、 攪捽槽 1では不飽和含環炭化水 素系重合体溶液と混合される。 勿論、 触媒サイクル系液体サイクロン 4および触 媒賦活系液体サイクロン 8の上流懸濁液中 (それぞれ および E 2) に含まれる 触媒は系外に除かれるので、 その分を攪拌槽 1に補充する必要がある。
( 2 )バッチプロセス (その 2 ):水素添加反応終了後、 原懸濁液 Cの一部(C を触媒サイクル工程に回し、 他の一部 (C 2) を触媒賦活工程 Zに回す。 その分 配率は触媒の失活の程度を勘案して決定する。 このようなケースは、 触媒の寿命 が短い場合に適する。 その極端な例として、 触媒の寿命が非常に短い場合は、 ノ ツチごとに原懸濁液の全てを触媒陚活工程 Zに回し、 賦活 '再生する。 そして、 攪拌槽 1で不飽和含環炭化水素系重合体溶液と混合される。 勿論、 触媒サイクル 系液体サイクロン 4および触媒賦活系液体サイクロン 8の上流懸濁液 (それぞれ および E 2) 中に含まれる触媒は系外に除かれるので、 その分を攪拌槽 1に補 充する必要がある。
( 3 ) 連続プロセス:水素添加反応後の原懸濁液 Cは、 連続的に触媒サイクルエ 程および触媒賦活工程 Zに分配 ·圧送される。 前者の懸濁液 の内、 上流懸濁 液 は、 必要に応じて連続的にろ過工程 Yに送られ、 下流懸濁液 はそのまま、 攪拌槽 1に連続的に戻される。 また、 後者の懸濁液 C 2の内、 上流懸濁液 E 2は必 要に応じてろ過工程 Yに連続的に送られる。 一方、 下流懸濁液 D 2は、 触媒賦活 工程 Zに連続的に送られ、 触媒を賦活 ·再生後に攪拌槽 1に連続的に送られる。
と C 2の分配率は触媒の寿命を考慮して決定される。 また、 触媒の補充につい ては、 バッチプロセスと同様の方法であるが、 連続的に行われる。
液体サイク口ンを用いた水素添加プロセスを実施する他の例を図 3に示す。 こ のプロセスは、 水添槽 3および液体サイクロン 4から主としてなる。 水素添加反 応後に得られた水素化不飽和含環炭化水素系重合体懸濁液 (以下原懸濁液と言う) Cは、 圧力調節弁 5で水素圧力を調節して、 液体サイクロン 4に圧送される。 そ して、液体サイクロンにより、触媒の含有量において低濃度懸濁液(上流懸濁液) Eと高濃度懸濁液 (下流懸濁液) Dに分離される。 上流懸濁液は、 必要に応じて ろ過工程 Yに圧送される。 一方、 触媒を大量に含む下流懸濁液は一旦回収触媒貯 槽 9に溜められる。 この貯槽中の懸濁液はそのまま水添槽に戻し再度水素添加反 応に使用することができる。 あるいは、 貯槽中の懸濁液はそのまま水添槽に戻さ ずに、 その懸濁液から公知の方法で不均一触媒を分離回収することもできる。 こ の分離回収した触媒は触媒賦活工程 Zに移され賦活 ·再生され、 その後水添槽に 戻され水素添加反応に使用される。 もちろん、 触媒の活性が高ければ賦活 ·再生 せずそのまま水添槽に戻すこともできるし、 あるいは賦活 ·再生する代わりに新 しい触媒を用いてもよい。
次に、 本発明において好適に用いられる液体サイクロンの 1例を図 4および図 5に示す。 図 4において、 D cは液体サイク口ン直径、 1 ' は原懸濁液入口、 2, は下流 (高触媒濃度) 懸濁液出口、 3' は上流 (低触媒濃度) 懸濁液出口、 は下部円筒部、 A2は上部円筒部そして ^は円錐部である。
本発明において、 使用される液体サイクロンは特に限定はないが、 一般には図 4に示すような、 円筒部 (八1と八2からなる) と円錐部 (B とからなるコー ン型液体サイク口ンが好んで用いられる。 原懸濁液は、 液体サイクロン入口 1 ' から液体サイクロン下部円筒部 (A に圧入される。 そして、 懸濁液にかかる 遠心力と重力により、 触媒は液体サイクロン下部円筒部壁から円錐部壁を伝わつ て、 円錐部の底に集まり、 下流懸濁液出口 2' から出て行く。 一方、 触媒濃度の 低下した上流懸濁液は、 下部円筒部 (Ai) から上部円筒部 (A2) に押し上げら れて、 しかる後上流懸濁液出口 3' から出て行く。
本発明において用いられるコーン型液体サイクロンの直径 (Dc) は、 触媒分 離効率、 処理能力などを勘案して選ばれる。 一般には、 例えば Dc = 10〜50 Omm、 好ましくは 20〜25 Omm、 より好ましくは 100〜25 Ommのも のが用いられる。 それを超えると、 液体サイクロンによる触媒の分離駆動力であ る遠心力が不均一触媒に十分働き難くなり、 液体サイク口ンの不均一触媒の分離 性能が悪くなり好ましくない。 また、 それ未満では処理能力が十分でないために 好ましくない。 円錐部の頂角 (0) は、 例えば 6° 〜40° 、 好ましくは 10° 〜30° の範囲が選ばれる。 40° を超えると、 円錐部壁に分離された不均一触 媒が大量に下流懸濁液出口に流れ、 流出しにくくなるために分離効率が悪くなり 好ましくない。 逆に、 6° 未満では、 円錐部の長さ (L2) が大きくなり装置が 大型化し、 さらに、 円錐の頂角部での不均一触媒の閉塞が生じる。 そのために、 頂角をそれ以上小さくする意味がなくなる。 下部円筒部の長さ (1^) は、 例え ば 0. 5Dc〜5Dc、 好ましくは Dc〜3. 5 D cの範囲が用いられる。 それ を超えると、 円錐部で分離されるべき不均一触媒が円筒部壁で分離される。 この 分離された触媒は円筒部壁で堆積していき、 その後、 一旦分離された不均一触媒 が再飛散してしまい、 分離効率が悪くなる。 逆に、 それ未満では、 円筒部で周方 向の回転流れが十分に発達しない。従って、不均一触媒に十分な遠心力が働かず、 分離効率が悪くなるので好ましくない。 本発明では、 液体サイクロンで懸濁液中 に含まれる不均一触媒の量の 70重量%以上を分離回収するのが好ましい。
その他の部分 (図 4中の L2, De, D i , Do, Duで示される部分) の寸 法も含め、 一般には
L1 = DcZ2〜5Dc、
L2 = D cZ2〜D c、
D e=D c/6〜D cZ4、
D i =D cZ8〜D ( 、
D o=D cZ6〜D cZ3、
Du=DcZ7〜Dc/l 0および
0 = 6。 〜40°
の範囲が用いられるが、 本発明はこれに限定されない。
本発明の水素添加反応で用いられる不均一触媒の質量中位径は好ましくは 1 m以上、 より好ましくは 10 zm以上である。 液体サイクロンにおいて、 より小 さい粒径の粒子を分離回収するためには、 液体サイク口ンの直径をより小さくす る必要があるが、 液体サイク口ンの直径が小さくなると液体サイク口ンの処理量 が低下し、 かつ液体サイク口ンでの圧力損失が大きくなりエネルギー的に不利に なりやすい。
また、 不均一触媒の真密度、 または不均一触媒が多孔性を有する場合において は、 その孔内に浸透した水素化重合体の不活性溶媒中の溶液の重量も考慮に入れ た密度 (見掛け密度) と水素化重合体の不活性溶媒中の溶液の密度の差が、 好ま しくは 0. 01 g cm3以上、 より好ましくは 0. 1 gZcm3以上である。 こ こで、 触媒の見掛け密度とは、 多孔質状に粒状成形された不均一触媒の孔内部に 浸透した水素化重合体の溶液も考慮した時の密度を意味する。触媒の重量を Wc、 触媒の真密度を p c、触媒の孔内部に浸透した水素化重合体の溶液の重量を Ws、 水素化重合体の溶液の密度を P sとすると、 見掛け密度 p aは次式で表される。 p a= (Wc+Ws) Z (Wc/p c +Ws/p s)
この触媒の真密度および見掛け密度と水素化重合体の溶液の密度差が 0. 01 gZ cm3未満の場合は、 触媒にかかる遠心力と該溶液にかかる遠心力の差が小 さいために、 分離性が低下して好ましくない。 従って、 液体サイクロンでこの触 媒を分離回収するためにはサイク口ンの直径を非常に小さくする必要が生じ、 液 体サイク口ンでの圧力損失が大きくなりエネルギー的に不利になる。
本発明において、導入する懸濁液中の触媒濃度は、好ましくは 60重量%以下、 より好ましくは 50重量%以下、 さらに好ましくは 20重量%以下である。 60 重量%を超えると液体サイク口ン内で分離回収される不均一触媒の液体サイク口 ン内での堆積量が過剰になりやすくて一旦懸濁液から分離された触媒が再び飛散 し、 液体サイク口ンの分離性能に悪影響を与えるため好ましくない。
本発明において、 原懸濁液中に含まれる水素化重合体の溶液の溶液粘度は、 好 ましくは 500 c p以下、 より好ましくは 100 c p以下、 さらに好ましくは、 50 c p s以下の範囲である。 それを超えると不均一触媒が懸濁液から受ける抗 力が大きくなるため、 懸濁液から分離されにくくなり、 好ましくない。 最も好ま しい態様は、 水素化反応により得られた原懸濁液を希釈や濃縮することなく、 そ のまま用いることである。
本発明において、 原懸濁液は水添反応において用いられた水素圧で液体サイク 口ンに圧入される。 水素添加に用いられる水素圧力は前述のごとく高圧が用いら れる。 従って、 液体サイクロンを用いて触媒を分離する際に、 さらに加圧する必 要はない。 多くの場合は減圧をして、 液体サイクロンに圧入する。 この際、 使用 する溶媒の蒸気圧と操作温度との関係を考慮する必要がある。 すなわち不用意に 減圧すると、 操作温度によっては溶媒が蒸発するので好ましくない。 用いられる 水素圧力は、 好ましくは 0. 5〜250 kg fZcm2、 好ましくは 5〜 200 k g f Zcm2の範囲が用いられる。 それを超えると装置上の制約がかかるため に好ましくない。 逆に、 それ未満では圧力不足のために十分な流速で液体サイク 口ンに懸濁液を送ることができないために好ましくない。
本発明において、 分離効率および処理能力を決める重要な因子の一つとして、 質量流量比が挙げられる。 質量流量比 f は、 上流懸濁液と下流懸濁液の単位時間 に流れる質量流量 (k g Z h r ) をそれぞれ と V 2とすると、 f ^ V iZ、 + V 2) で定義される。 一般に、 f を大きくすると処理能力は大きくなるが、 分 離効率は下がる。 逆に、 小さくすると分離効率は上がるが、 処理能力は下がる。 その範囲は、 触媒の見掛け密度 p aと水素化重合体の溶液との密度との差、 水素 化重合体の溶液の溶液粘度、 触媒の粒径および粒径分布等によるが、 好ましくは f = 0 . 9 9〜0 . 7、 より好ましくは f = 0 . 9 5〜0 . 8の範囲が用いられ る。 f = 0 . 9 9を超えると、 触媒の分離効率が下り、 fが 0 . 7未満では処理 能力が下がるので、 いずれも好ましくない。
以上説明した本発明におけるプロセスは、 バッチプロセスにも連続プロセスに も適応可能である。 さらに、 成形用重合体を得るためには、 例えばフラッシング 工程にかけて溶媒を除去することができる。
本発明において好適な 1つの態様は、 上記の製造方法において回収した水素化 重合体の不活性溶媒中の溶液をさらにろ過に付して、 高度に純化された水素化不 飽和含環炭化水素重合体の水素化物すなわち水素化重合体を製造する方法である。 すなわち、 触媒濃度が低減されかつ水素化重合体を含む上流懸濁液をさらに、 ろ過工程にまわすことにより高度に精製された水素化重合体を得ることが可能で ある。
この場合、 触媒濃度が低減されかつ水素化重合体を含む上流懸濁液は、 可燃性 で爆発性の水素ガスを含むために、 系内に存在する水素ガスを不活性ガスに置換 することが好ましい。 不活性ガスとしては、 例えば窒素ガス、 アルゴンガス、 ネ オンガス、 炭酸ガスなどが好ましく用いられる。 その後、 水素ガスを実質的に含 まない触媒濃度が低減された懸濁液を、 ろ過工程に送液する。
本発明においてろ過は、 それ自体公知の方法で、 所定温度、 所定圧力のもとに 行われる。 ろ過に用いられる濾材としては、 濾材がろ過において腐食または破損 しなければ特に限定されないが、 例えばメンブレンフィルタ、 織布フィル夕、 不 織布フィル夕、 焼結金属フィル夕、 セラミックフィルタ、 ろ紙などが好ましく用 いられる。 本発明において使用する濾材の孔径は、 J I S K 3 8 3 2または八3丁1^ F 3 1 6 - 7 0に記載されているバブルボイント試験で測定した最大孔径として、 好ましくは 0 . 1〜5 0 ^ m、 より好ましくは 0 . 1〜1 0 m、 さらに好まし くは 0 . l〜5 mである。 これより小さい場合は、 ろ過時の圧力損失が大きく なりがちであるし、 これより大きい場合には十分なろ過精度を得ることが難しい のでいずれも好ましくない。
本発明においては、 ろ過精度を上げるために、 ろ過工程を二回以上数回繰り返 すことができる。 二回以上繰り返す場合、 二回目以降のろ過工程は、 一回目のろ 過工程の直後、 フラッシング工程後に、あるいはこれらを組合せて行ってもよい。 しかし、 フラッシング工程時に発生する粒子状の汚染物を除去するために、 フラ ッシング工程後に少なくとも一回ろ過を行うことが好ましい。 その際、 使用する 濾材は、 同一でも、 異なってもよい。 しかし、 濾材の寿命を長くし、 さらに各濾 材のろ過効率を維持するためには、 孔径の大きい濾材から順次小さい濾材にする ことが好ましい。
本発明においては、 ろ過温度は、 ろ過に不都合が生じないかぎり特に制限され ないが、 エネルギー損失を極力防ぐ観点から、 水素ガスを不活性ガスにより置換 する際に用いられる温度近傍において行うことが好ましい。そうすることにより、 引き続き行うフラッシング工程において高度に精製された水素化重合体の溶液の 加熱のために加えるエネルギーを節約することができ、 好ましい。
また、 ろ過時においてろ過助剤を用いることができる。 ろ過助剤を用いたろ過 は、 それ自体公知の方法で行われる。
本発明において好適なもう一つの態様は、 前記製造方法において回収した水素 化重合体の不活性溶媒中の溶液をさらに遠心分離および必要に応じてろ過工程に 付して高度に純化された水素化重合体を製造する方法である。
すなわち、 触媒濃度が低減されかつ水素化重合体を含む上流懸濁液を、 遠心分 離装置にかけ、 必要に応じて引き続き濾材を用いてろ過することより高純度化す る方法である。 この場合、遠心分離装置には、それ自体公知の装置が用いられる。 具体的には、 遠心沈降管型遠心分離機、 円筒型遠心分離機、 分離板型遠心分離機 等の遠心沈降式が好ましく用いられる。 こうすることにより、 ろ過により不均一 触媒の微小な粒を除く前にさらに、 該水素化重合体の懸濁液中の不均一触媒を除 くことができ、 ろ過の負荷を軽減することができる。
なお、 本発明においては、 この段階で安定剤、 紫外線吸収剤、 離型剤などの重 合体溶液に可溶な添加剤を添加してもよい。 添加は、 ろ過前か、 あるいは複数回 ろ過する場合には、 その間のいずれかの工程で添加することが好ましい。 かかる 添加剤は、 それ自体は可溶であっても、 ごみやほこりなどの外因性不純物や添加 物に含まれる不溶性の内因性不純物が含まれるために、 ろ過後に添加すると製品 の純度を低下させるために好ましくない。 添加法は、 特に制限はないが、 例えば 固体のまま、 溶融状態あるいはスラリーや溶液にして添加することができる。 操 作上からは、 スラリーあるいは溶液状で添加するのが特に好ましい。
得られた水素化重合体の溶液から溶媒を除去して、 高度に純化された水素化重 合体を得ることができる。 溶媒除去方法としては、 特には限定はなく、 フラッシ ング法、 非溶媒中に投入して凝固する方法などの公知の方法が採用される。 その 内、 フラッシング法は非溶媒を用いる必要がないので経済的に有利である。
かくして得られた高度に純化された水素化重合体中の、 触媒由来の金属残渣の 総和は、 重合体に対して、 好ましくは 5 p p m以下、 より好ましくは 3 p p m以 下、 さらに好ましくは 1 p p m以下である。 5 p p mを超えると、 光記録媒体の 信号特性が悪くなるために好ましくない。 また、 該水素化重合体中には、 該重合 体に相溶しない異物が含まれることは好ましくない。 かかる異物とは、 触媒由来 の異物、 安定剤、 紫外線吸収剤、 離型剤などの各種添加剤由来の異物をいう。 高 度に純化された水素化重合体中に含まれる粒径 0 . 5 i m以上の異物の含有量は、 好ましくは 3 X 1 0 4個 —重合体以下、 より好ましくは 2 X 1 0 4個 Z g _重 合体以下、 さらに好ましくは 1 X 1 0 4個 Zg—重合体以下である。 3 X 1 0 4個 Zg—重合体を超えると、光記録媒体の信号特性が悪くなるために好ましくない。 本発明によれば、 液体サイクロンに不均一触媒を含む飽和環状 (共) 重合体を 導入する時に、 水素添加反応の水素圧力を利用しているので、 高揚程のスラリー ポンプを用いる必要が無い。 従って、 液体サイクロンの最大の短所を補うことが 可能である。 従って、 本発明は、 不均一触媒含有率の大きく低減された水素化重 合体の懸濁液を、 低生産コストでトラブルの少ない装置で製造できるプロセスと して有用である。
実施例
以下本発明を実施例により説明するが、 本発明はこれらの実施例に限定される ものではない。
なお実施例で使用した原材料、 測定法、 装置等は次のとおりである。
ぐポリマー原料、 触媒、 溶媒等 >
シクロへキサンおよびスチレンは、 すべて蒸留精製を行い、 十分に乾燥して用 いた。 また、 ポリスチレンは、 BASF社製ポリスチレン 「GP 158」 をその まま用いた。 N iZシリカ ·アルミナ触媒 (N i担持率 65%) は A 1 d r i c h社より購入したものをそのまま用いた。また、 P シリカ(P t担持率 10%、 質量中位径 22 m) は試作品を用いた。 また、 トルエン、 8_ェチリデンテト ラシクロ [4. 4. 0. I2' 5. I7' 10] _3—ドデセンは、 常法に従い蒸留精 製を行い十分乾燥して用いた。トリイソブチルアルミニウムは東ソ一'ァクゾ (株) より濃度 2 Mのトルエン溶液を購入しそのまま用いた。 四塩ィ匕チタンは和光純薬 (株) より購入し、 そのまま用いた。
また、 実施例で行った各種物性測定は、 以下の方法で実施した。
a) ガラス転移温度 (Tg): TA I n s t r ume n t s製 2920型 D SCを使用し、 昇温速度は 20 °C/m i nで測定した。
b) 水素化率: 1 H— NMRにより定量した。 J EOL JNM— A—400型 核磁気共鳴吸収装置を用いて測定した。
c) 還元粘度:濃度 0. 5 gZdLのトルエン溶液の、 30 における還元粘度 77 s p/C (dL/g) を測定した。
d) 重合体中の残留金属濃度: I CP発光分光分析法により定量した。
e) 全光線透過率: (株) 島津製作所製、 紫外可視分光器 (UV_240) を使用 して測定した。
f ) 触媒の真密度:浮沈法により求めた。 g)触媒の見かけ密度:一定量(Wc)の触媒(密度 p c)にシクロへキサン(密 度 io s = 0. 78 g/cm3) を吸蔵させ、 シクロへキサンの吸蔵量 (Ws) を 計量した。 このデータから、 触媒孔の空隙率を、 (WsZp S) / (Wc/p c + Ws/p s) により求めた。 しかる後、 この空隙率と使用した水素化不飽和含環 炭化水素系重合体溶液の密度を用いて、 触媒の見かけ密度を求めた。
h)分離懸濁液中の触媒濃度(分離効率):上流懸濁液および下流懸濁液をそれぞ れ目開き 1 ΐηΦのメンブレンフィル夕により加圧ろ過し、 ろ滓をシクロへキサ ンで十分に洗浄して、 秤量することにより求めた。
i ) 含環炭化水素重合体の水素化物 (水素化重合体) の溶液の密度:溶媒の沸点 以下の密度から外揷法により求めた。
j ) 使用した液体サイクロン装置は、 図 5に示したものを用いた。
k) 異物の含有量は、 重合体をシクロへキサンに溶解して、 光散乱式パーテイク ルカウン夕一で測定した。
1 ) 触媒の質量中位径:触媒をシク口へキサンに懸濁させ、 レーザー回折 ·散乱 式の粒度分布測定装置で測定した。
実施例 1
攪拌翼付き容量 10 Lのステンレススチール製ォートクレーブの内部を十分に 乾燥しかつ窒素置換した後、 ポリスチレン 750 g、 P tZシリカ触媒 (見かけ 密度 1. 08 g/cm3、 質量中位径 22 m) 118 gおよびシクロへキサン 3, 700 g仕込んだ。 続いて、 該反応容器を十分に水素置換した後、 100k g f Zcm2の水素圧をかけて、 攪拌しながら 180°C、 6時間水素添加反応を 行った。
得られた水素化ポリスチレン原懸濁液を、 180 に保温された液体サイクロ ン (図 5) 内に水素圧 12 kg f Zcm2で導入した。 その際、 上流懸濁液と下 流懸濁液の出口に取り付けたバルブを制御して、 質量流量比 fを 0. 75に制御 した。 上流懸濁液は、 ほぼ透明であった。 それに対して、 下流懸濁液は高度に濃 縮された黒褐色の懸濁液であった。 原懸濁液中に含まれる触媒量に対する下流懸 濁液の中に含まれる触媒量の比から求めた分離効率は 99. 1重量%であった。 上流懸濁液を孔径 0. 1 / mのメンブレンフィル夕 (住友電工 (株) 製 「フル ォロポア」)を用いて加圧ろ過を行ったところ、無色透明な水素化スチレン重合体 溶液が得られた。 この溶液の、 液体サイクロン操作温度 (180°C) における密 度は 0. 55 gZcm3であり溶液粘度は 4 c p sであった。
得られた水素化スチレン溶液を少量分取して、大量のエタノール中に投入して、 白色沈殿を得た。 この沈殿をろ別、 乾燥して水素化スチレンを得た。 この重合体 の1 H— NMRにより定量した水素化率は 99. 3%であった。 また、 還元粘度 Ti s pZCは 0. 47 dLZgであった。 また、 I CP発光分光分析法により求 めた重合体中の残留金属は、 1:が0. 1 ppm以下そして S iが 0. 23 pp mで高度に純化されていることがわかった。
また、 光散乱法により求められた、 0. 5 //m以上の異物の含有量は 0. 82 X 104個 Zg—重合体でありきわめて高度に純化されていることがわかった。
実施例 2
実施例 1で得られた水素化ポリスチレン原懸濁液を 180でに保温した液体サ イクロン (図 5) へ水素圧 12 kg f Zcm2で導入した。 その際、 質量流量比 f を 0. 92に制御した。 上流懸濁液はほぼ透明であった。 また、 下流懸濁液は 黒褐色の濃厚懸濁液であった。 分離効率は 96. 5重量%であった。
上流懸濁液を孔径 0. 1 mのメンブレンフィル夕 (住友電工 (株) 製 「フル ォロポア」)を用いて加圧ろ過を行ったところ、無色透明な水素化スチレン重合体 溶液が得られた。
この溶液の一部を、 大量のエタノールに投入し、 しかる後沈殿物をろ過乾燥し て、 水素化スチレン重合体の白色フレークを得た。 この重合体の1 H— NMRに より定量した水素化率は 99. 4%であった。 また還元粘度 7? s pZCは 0. 4 7dLZgであった。 また、 I CP発光分光分析法により求めた、 重合体中の残 留金属は P tは、 0. 1 p pm以下および S iは 0. 25 ppmであり、 高度に 純化されていた。 DS Cにより測定したガラス転移温度は 1491:であった。 また、 光散乱法により求められた、 0. 5 m以上の異物の含有量は 0. 82 X 104個 Zg_重合体でありきわめて高度に純ィ匕されていることがわかった。 実施例 3
10Lのステンレススチール製反応容器に 8—ェチリデンテトラシクロ [4. 4. O l 2' 5. I 7' 10] — 3—ドデセン 855 g、 トルエン 3, 300 g、 1一 へキセン 12. 6 g、 トリェチルァミン 22. 5 gおよびトリイソブチルアルミ ニゥム 45 gを加え、 さらに四塩化チタン 8. 4 gを添加し、 — 10 で 2時間 重合を行って開環重合体を得た。 得られた溶液を少量分取して、 常法により精製 して得た重合体の還元粘度 77 s pZCは 0. 65 dLZgであり、 DSCを用い て測定したガラス転移温度 (Tg) は 186t:であった。
得られた反応溶液に 100°Cで乳酸 23. 4 gおよび水 3. O gを攪拌しなが ら添加し、 同温度で 2時間反応させた。 反応液は黒褐色から黒色の濁ったスラリ 一に変色した。 該スラリーを引き続きろ過処理にかけた。 得られたろ液を塩基性 アルミナを用いて吸着処理をして無色の処理液を得た。 力べして得た溶液を大量 のエタノールに添加して、 析出した沈殿をろ別乾燥して無色のフレーク状不飽和 開環重合体を得た。
得られたフレーク状不飽和環状開環重合体を 3, 300 gのトルエンに溶解し た。 該溶液を N iZシリカ—アルミナ触媒 125 gを添加して、 水素圧 100 k § 01112をかけて1 50°Cで 6時間加熱攪拌した。
得られた水素化開環重合体原懸濁液を、 水素圧 1 2 kg f /cm2で 15 O に保温した液体サイクロン (図 5) に導入した。 その際、 質量流量比 f を 0. 9 0に保った。 上流懸濁液はほぼ透明であった。 それに対して、 下流懸濁液は高度 に濃縮された黒色の懸濁液であった。 この分離効率は 98. 0重量%であった。 上記上流懸濁液を孔径 0. 1 mのメンブレンフィルタを用いて加圧ろ過して、 無色透明の水素化開環重合体を得た。 該溶液を少量分取して常法により精製して 得たポリマーの水素化率は1 H— NMRスぺクトルから 99. 9%以上であった。 また還元粘度 7? s pZCは 0. 53 dLZgであり、 DSCを用いて測定した T gは 140°Cであった。 また、 I CP発光分光分析により、樹脂中の残留金属は、 1^ 1が0. 18 p pm、 八 1が0. 28 p pm、 5 1カ 0. 23 ppmであり、 高度に純化されていることがわかった。 実施例 4
攪拌翼付き容量 10 Lのステンレススチール製ォートクレーブの内部を十分に 乾燥し、 かつ窒素置換した後、 ポリスチレン 750 g、 P tZシリカ触媒 (見か け密度 1. 08 gZcm3、 質量中位径 22 ^m) 118 gおよびシクロへキサ ン 3, 700 g仕込んだ。 続いて、 該反応容器を十分に水素置換した後、 100 kg f Zcm2の水素圧をかけて、 攪拌しながら 180 、 6時間水素添加反応 を行った。
得られた水素化ポリスチレン原懸濁液の 80 %を、 1801に保温された触媒 サイクル系液体サイクロン内に水素圧 12 kg fZ cm2で導入した。 その際、 上流懸濁液と下流懸濁液の出口に取り付けたバルブを制御して、 質量流量比 f を 0. 75に制御した。 上流懸濁液は、 ほぼ透明であった。 上流懸濁液は、 減圧後、 ろ過工程に回した。 一方下流懸濁液は、 減圧後、 オートクレープに戻した。 上流 懸濁液中の触媒濃度と原懸濁液中の触媒濃度から求めた分離効率 (原懸濁液中に 含まれる触媒量に対する下流懸濁液中に含まれる触媒量の百分率)は、 99. 1% であった。
得られた水素化ポリスチレン原懸濁液の残りの 20%は、 180でに保温され た触媒賦活系液体サイク口ン内に減圧後、 水素圧 12 k g f Z c m2で導入した。 その際、 質量流量比 f は 0. 75に制御した。 上流懸濁液はほぼ透明であった。 上流懸濁液は、 減圧後ろ過工程に回した。 また、 下流懸濁液は、 賦活 ·再生せず に、 代わりにその量に見合った量の触媒を、 ォ一トクレーブに導入した。 分離効 率は 99. 0%であった。 そして、 新たにポリスチレン 612 g、 シクロへキサ ン 3, 018gを加えて次 (2回目) の水素添加反応に回した。
触媒サイクル系サイク口ンおよび触媒賦活系サイク口ンで分離された上流懸濁 液を合わせ得て、 孔径 0. 1 / mのメンブレンフィルタ (住友電工 (株) 製 「フ ルォロポア」)を用いて加圧ろ過を行ったところ、無色透明な水素化スチレン重合 体溶液が得られた。 この溶液の、 液体サイクロン操作温度 (180°C) における 密度は 0. 55 g/cm3であり溶液粘度は 4 c p sであった。 得られた水素化 スチレン溶液を少量分取して、大量のエタノール中に投入して、白色沈殿を得た。 この沈殿をろ別、 乾燥して水素化スチレンを得た。 この重合体の1 H— NM に より定量した水素化率は 99. 7%であった。 また、 還元粘度 s p/Cは 0. 48dLZgであった。 また、 I CP発光分光分析法により求めた樹脂中の残留 金属は、 ? 1:が0. 1 p pm以下および S iが 0. 25 p pmで高度に純化され ていることがわかった。
この操作を 5回繰り返した。 5回目に得られた水素化ポリスチレンの水素化率 は 99. 7%であり、 還元粘度 7? s pZCは 0. 48dLZgであった。 すなわ ち、 品質の低下は見られなかった。
かくして得られた水素化スチレン重合体溶液を、 フラッシング工程にかけて水 素化重合体のペレットを作製した。 そして、 シリンダー温度 300で、 金型温度 75 :の条件で射出成形を行った。その結果、透明な厚さ 2 mmの成形物を得た。 その透過率は 91%であり、 極めて透明性が高いことが立証された。
実施例 5
攪拌翼付き容量 10 Lのステンレススチール製オートクレーブの内部を十分に 乾燥し、 かつ窒素置換した後、 ポリスチレン 750g、 P tZシリカ触媒 (見か け密度 1. 08 gZcm3、 質量中位径 22 m) 118 gおよびシクロへキサ ン 3, 700 g仕込んだ。 続いて、 該反応容器を十分に水素置換した後、 100 kg f Zcm2の水素圧をかけて、 攪拌しながら 180 、 6時間水素添加反応 を打った。
得られた水素化ポリスチレン原懸濁液のすべてを、 180 に保温された液体 サイクロン内 (図 5) に水素圧 12 kg cm2で導入した。 その際、 上流懸 濁液と下流懸濁液の出口に取り付けたバルブを制御して、 質量流量比 fを 0. 7 5に制御した。 上流懸濁液は、 ほぼ透明であった。 上流懸濁液は減圧後ろ過工程 に回した。 一方、 下流懸濁液は、 そのままオートクレープに戻した。 上流懸濁液 中の触媒濃度と原懸濁液中の触媒濃度から求めた分離効率 (原懸濁液中に含まれ る触媒量に対する下流懸濁液中に含まれる触媒量の百分率) は 99. 0%であつ た。 そして、 新たにポリスチレン 577 g、 シクロへキサン 2, 847 gおよび 上流懸濁液に回った触媒量に見合った少量の触媒を加えて次 (2回目) の水素添 加反応に回した。
液体サイクロンで分離された上流懸濁液を、 孔径 0. 1 mのメンブレンフィ ル夕 (住友電工 (株) 製「フルォロポア」) を用いて加圧ろ過を行ったところ、 無 色透明な水素化スチレン重合体溶液が得られた。 この溶液の、 液体サイクロン操 作温度 (180 ) における密度は 0. 55 gZcm3であり溶液粘度は 4 c p sであった。 得られた水素化スチレン溶液を少量分取して、 大量のエタノール中 に投入して白色沈殿を得た。 この沈殿をろ別、 乾燥して水素化スチレンを得た。 この重合体の1 H— NMRにより定量した水素化率は 99. 0%であた。 また、 還元粘度/] s p/Cは 0. 48dLZgであった。 また、 I CP発光分光分析法 により求めた樹脂中の残留金属は、 ? が0. 1 ppm以下および S iが 0. 2 6 p pmで高度に純化されていることがわかった。
この操作を 5回繰り返し、 5回目に得られた水素化ポリスチレンの水素化率は 84%であった。
実施例 6
lm3のステンレススチール製反応容器に 8—ェチリデンテトラシクロ [4. 4. 012' 5. 17' 10] — 3—ドデセン 85. 5kg、 トルエン 330 kg、 1 —へキセン 1. 26 kg, トリェチルァミン 2. 25 k gおよびトリイソブチル アルミニウム 4. 5 kgを加え、 さらに四塩ィ匕チタン 0. 84 kgを添加し、 一 10°Cで 2時間重合を行い、 開環重合体を得た。 得られた溶液を少量分取して、 常法により精製して得た重合体の還元粘度 7? s p/Cは 0.65dLZgであり、 DSCを用いて測定したガラス転移温度 (Tg) は 186 であった。
得られた反応溶液に 100°Cで乳酸 2. 34kgおよび水 0. 3 kgを攪拌し ながら添加し、 同温度で 2時間反応させた。 反応液は黒褐色から黒色の濁ったス ラリーに変色した。 該スラリーを引き続きろ過処理にかけた。 得られたろ液を塩 基性アルミナを用いて吸着処理をして無色の処理液を得た。 かくして得た溶液を 大量のエタノールに添加して、 析出した沈殿をろ別乾燥して無色のフレーク状不 飽和開環重合体を得た。
得られたフレーク状不飽和環状開環重合体 7 O kg, N iZシリカ—アルミナ 触媒 10. 5 k gおよびシクロへキサン 280 k gの割合でそれらを含む水素添 加反応懸濁液を調製した。 その懸濁液を lm3の水添槽に入れた。 そして、 該懸 濁液を攪拌槽に入れた。 そして、 水素圧 100 kg f Zcm2をかけて 150で で連続水添反応を行った。 その際、 水添反応後の懸濁液を 3 k gZmi nの速度 で原懸濁液として連続的に水添槽から抜き取り、 それに見合った水素添加反応懸 濁液 (開環重合体懸濁液) を攪拌槽から水添槽に 3kgZmi nの速度で導入し た。 そして、 攪拌槽には攪拌槽から水添槽への導入量に見合う不飽和環状開環重 合体の 20重量%溶液を連続的に補給するようにした。
水添槽から抜き取られた原懸濁液を水素圧 12kg fZcm2で 150 に保 温した触媒サイクル系液体サイク口ンおよび触媒賦活系液体サイク口ンに流量比 50: 50でに連続的に分割 ·導入した。 その際、 サイクロンの質量流量比 fは いずれも 0. 90に設定した。 そして、 触媒サイクル系サイクロンに送られた懸 濁液の内、 上流懸濁液は減圧後ほぼ透明な懸濁液として取り出し、 減圧後ろ過ェ 程に送った。 一方、 下流懸濁液は、 攪拌槽 1に連続的に送った。 一方、 触媒賦活 系液体サイクロンに送られた懸濁液の内、 上流懸濁液は、 減圧後ほぼ透明な懸濁 液としてろ過工程に送られた。 また、 下流懸濁液の触媒量およびろ過工程に回つ た触媒ロス分に見合った量の触媒を攪拌槽 1に連続的に補給した。 このようにし て、 連続水素添加反応を行った。
触媒サイクル系液体サイク口ンおよび触媒賦活系液体サイク口ンでの触媒分離 効率はいずれも 98. 0%であった。
分離された上流懸濁液を孔径 0. 1 μΐΏのメンブレンフィルタを用いて加圧ろ 過して、 無色透明の水素化開環重合体を得た。 そして、 連続反応が定常状態にな つてからの試料 1と定常状態になつてから 20時間後の試料 2を採取して分析を 行った。 常法により精製して得た試料 1と試料 2のポリマーの水素化率は1 Η— NMRスペクトルからいずれも 99. 5%以上であった。 また還元粘度 ?7 s ρΖ Cはいずれも 0. 53dLZgであり、 DSCを用いて測定した Tgはいずれも 140°Cであった。 かくして本連続反応で得られた水素化不飽和環状開環重合体 は極めて品質が一定であることがわかった。 また、 かくして得られた重合体溶液 をフラッシン工程にかけてペレツトを作製した。そして、シリンダー温度 30 o , 金型温度 75 :で射出成形を行い、 2mm厚の透明板を得た。 この透明板の透過 率は 91%であり、 極めて高い透明性が確認された。

Claims

請求の範囲
1 . 主たる繰返し単位中に少なくとも 1個の脂肪族炭素一炭素二重結合および Z または少なくとも 1個の芳香族炭化水素基を含有する不飽和含環炭化水素重合体 を、 不均一触媒の存在下、 不活性溶媒中で水素加圧下に水素添加反応に付し、 得られた水素化重合体と不均一触媒を含有する懸濁液を、 水素添加反応に用い られた水素圧力によつて液体サイクロンに圧送し、 そして該液体サイクロンで該 懸濁液から不均一触媒を分離して回収するとともに該水素化重合体を不活性溶媒 中の溶液として回収する、
ことを特徴とする水素化重合体の製造法。
2 . 回収した不均一触媒の少なくとも一部を水素添加反応の不均一触媒として循 環して使用する請求項 1に記載の方法。
3 . 回収した不均一触媒の少なくとも一部を賦活せしめたのち、 水素添加反応の 不均一触媒として使用する請求項 1に記載の方法。
4. 上記不飽和含環炭化水素重合体、 不均一触媒および不活性溶媒からなる水素 添加反応用原料懸濁液を攪拌装置中で調製し、 この懸濁液を水素添加反応装置に 移送して水素添加反応に付し、 そして液体サイク口ンで分離回収した不均一触媒 を、 そのままあるいは賦活せしめたのち、 上記原料懸濁液調製のための不均一触 媒の一部として循環して使用する請求項 1に記載の方法。
5 . 該不飽和含環炭化水素重合体が、 環状ジェンと α—才レフインとの付加重合 体である請求項 1に記載の方法。
6 . 該不飽和含環炭化水素重合体が、 環状ォレフィンの開環重合体である請求項 1に記載の方法。
7 .該不飽和含環炭化水素重合体がスチレン重合体である請求項 1に記載の方法。
8 . 該不均一触媒が、 ニッケル、 白金、 パラジウム、 ルテニウムおよびロジウム よりなる群から選ばれた少なくとも 1種の金属、 その酸化物、 その塩またはその 錯体である請求項 1に記載の方法。
9 . 該不均一触媒が、 ニッケル、 白金、 パラジウム、 ルテニウムおよびロジウム よりなる群から選ばれた少なくとも 1種の金属、 その酸化物、 その塩またはその 錯体を多孔性担体に担持した固体触媒である請求項 1に記載の方法。
1 0 . 該不均一触媒の質量中位径が 1 / m以上である請求項 1に記載の方法。
1 1 . 該不均一触媒の真密度と水素化重合体の不活性溶媒中の溶液の密度の差、 または不均一触媒が多孔性担体に担持した固体触媒のときには、 その孔内に浸透 した溶液の重量も考慮に入れたに密度 (見掛け密度) と該水素化重合体の不活性 溶媒中の溶液の密度の差が、 0 . 0 1 g / c m3以上である請求項 1に記載の方 法。
1 2 . 該懸濁液中の不均一触媒の重量基準の濃度が 6 0重量%以下である請求項 1に記載の方法。
1 3 . 水素化重合体の不活性溶媒中の溶液の溶液粘度が 5 0 0 c p s以下である 請求項 1に記載の方法。
1 4. 該液体サイクロンが、 円筒部と円錐部からなるコーン型液体サイクロンで ある請求項 1に記載の方法。
1 5. 該コーン型液体サイクロンの円筒部の直径 (Dc) が、 10mm〜500 mmである請求項 14に記載の方法。
16. 該コーン型液体サイクロンの円錐部の頂角 (Θ) が、 6° 〜40° である 請求項 14に記載の方法。
17. 該コーン型液体サイクロンの円筒部が連通部を介して上部円筒部と下部円 筒部に仕切られており、 そして下部円筒部の長 (L が、 0. 5Dc〜5Dc である請求項 14に記載の方法。
18. 該コーン型液体サイクロンを、 上流懸濁液と下流懸濁液の単位時間に流れ る質量流量 (kgZh r) をそれぞれ Viと V2とすると、 質量流量比 f VtZ
(Vi + Va) が 0. 99〜0. 7となる範囲で操作する請求項 14に記載の方法。
19. 該懸濁液を水素圧力 0. 5 k g f Zcm2〜250 k g f /cm2の範囲で 液体サイクロンに圧送する請求項 1に記載の方法。
20. 該懸濁液中に含まれる該不均一触媒の量の 70重量%以上を液体サイク口 ンで分離回収する請求項 1に記載の方法。
2 1. 回収した水素化重合体の不活性溶媒中の溶液をさらにろ過に付す請求項 1 に記載の方法。
22. ろ過に用いる濾材の孔径が、 バブルポイント試験で測定した最大孔径にお いて 0. 1〜50 以下である請求項 2 1に記載の方法。
23. 回収した水素化重合体の不活性溶媒中の溶液を、 さらに遠心分離および必 要によりろ過に付す請求項 1に記載の方法。
24. 得られた水素化重合体中の不均一触媒由来の金属の含量が 5 p pm以下で ある請求項 21〜 23のいずれか 1項に記載の方法。
25. 得られた水素化重合体中の粒径 0. 5 m以上の異物の含有量が、 2X 1 04個 Zg—重合体以下である請求項 21〜23のいずれか 1項に記載の方法。
26. 請求項 21〜 23のいずれか 1項に記載の方法で得られた水素化重合体。
PCT/JP2001/001511 2000-03-01 2001-02-28 Procede de production d'un polymere hydrogene d'hydrocarbure a cycle insature WO2001064759A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001236000A AU2001236000A1 (en) 2000-03-01 2001-02-28 Process for producing hydrogenated unsaturated ring-containing hydrocarbon polymer
EP01908149A EP1270607A4 (en) 2000-03-01 2001-02-28 PROCESS FOR PRODUCING HYDROGEN POLYMER OF UNSATURATED CYCLE HYDROCARBON

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000055514 2000-03-01
JP2000-55514 2000-03-01
JP2000-93996 2000-03-30
JP2000093996 2000-03-30
JP2001-440 2001-01-05
JP2001000440 2001-01-05

Publications (1)

Publication Number Publication Date
WO2001064759A1 true WO2001064759A1 (fr) 2001-09-07

Family

ID=27342550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001511 WO2001064759A1 (fr) 2000-03-01 2001-02-28 Procede de production d'un polymere hydrogene d'hydrocarbure a cycle insature

Country Status (5)

Country Link
US (1) US20030139535A1 (ja)
EP (1) EP1270607A4 (ja)
AU (1) AU2001236000A1 (ja)
TW (1) TW575589B (ja)
WO (1) WO2001064759A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520685A (ja) * 2002-03-19 2005-07-14 ビーピー ケミカルズ リミテッド サイクロンを使用するガスと固形物との分離
US8020707B2 (en) 2005-02-04 2011-09-20 Samsung Electronics Co., Ltd. Cyclone, apparatus for separating slurry having the cyclone, and system and method of supplying slurry using the apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002021517A1 (ja) 2000-09-04 2004-01-15 日本ゼオン株式会社 磁気ディスク基板及び磁気ディスク
PT2419393E (pt) * 2009-04-16 2013-10-21 Biochemtex Spa Método para a hidrogenólise de álcoois derivados de açúcar
JP6403951B2 (ja) * 2013-12-25 2018-10-10 出光興産株式会社 水素添加石油樹脂の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595749A (en) * 1984-11-23 1986-06-17 Shell Oil Company Direct removal of NI catalysts
US5462995A (en) * 1991-06-11 1995-10-31 Nippon Zeon Co., Ltd. Hydrogenated products of thermoplastic norbornene polymers, their production, substrates for optical elements obtained by molding them, optical elements and lenses

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH1303H (en) * 1990-05-24 1994-04-05 Shell Oil Company Removal of nickel catalyst from polymer solutions by water addition and centrifugation
US5223579A (en) * 1991-01-28 1993-06-29 Shell Oil Company Solid viscosity index improvers which provide excellant low temperature viscosity
JP3719271B2 (ja) * 1995-01-31 2005-11-24 日本ゼオン株式会社 金属汚染物の除去方法
US5612422A (en) * 1995-05-04 1997-03-18 The Dow Chemical Company Process for hydrogenating aromatic polymers
WO1998014499A1 (fr) * 1996-09-30 1998-04-09 Nippon Zeon Co., Ltd. Polymere de norbornene et son procede de preparation
SE508111C2 (sv) * 1996-12-23 1998-08-31 Kvaerner Process Systems As Förfarande för framställning av väteperoxid genom hydrering av en kinonlösning samt anordning för utövande av förfarandet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595749A (en) * 1984-11-23 1986-06-17 Shell Oil Company Direct removal of NI catalysts
US5462995A (en) * 1991-06-11 1995-10-31 Nippon Zeon Co., Ltd. Hydrogenated products of thermoplastic norbornene polymers, their production, substrates for optical elements obtained by molding them, optical elements and lenses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1270607A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520685A (ja) * 2002-03-19 2005-07-14 ビーピー ケミカルズ リミテッド サイクロンを使用するガスと固形物との分離
US8020707B2 (en) 2005-02-04 2011-09-20 Samsung Electronics Co., Ltd. Cyclone, apparatus for separating slurry having the cyclone, and system and method of supplying slurry using the apparatus

Also Published As

Publication number Publication date
US20030139535A1 (en) 2003-07-24
EP1270607A1 (en) 2003-01-02
TW575589B (en) 2004-02-11
AU2001236000A1 (en) 2001-09-12
EP1270607A4 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
CN113164925B (zh) 氢化反应用催化剂及其制备方法
CN102382259B (zh) 一种加氢石油树脂的工业制造方法
US6433104B1 (en) Hydrogenation process
WO2008146239A2 (en) Removal of fine particles from a fischer tropsch stream
WO2001064759A1 (fr) Procede de production d'un polymere hydrogene d'hydrocarbure a cycle insature
WO2023279022A1 (en) Methods for treatment of mixed plastic waste pyrolysis oil
CN111574645B (zh) 一种高含硫石油树脂加氢的方法
CA3103179A1 (en) Suspension process for preparing ethylene copolymers in a reactor cascade
JPWO2018168654A1 (ja) 水素添加石油樹脂の製造方法
CN114106878A (zh) 一种处理含固原料油的系统、方法及其加氢滤后油的用途
JP5978972B2 (ja) 環状オレフィン開環重合体水素添加物の製造方法
JP2004513190A (ja) 不飽和ポリマーの改良水素化方法
TWI491629B (zh) A method for producing a polymer, a polymer solution, and a polymer
JP3719271B2 (ja) 金属汚染物の除去方法
SA04250177B1 (ar) عملية لإنتاج هيدروكربونات hydrocarbons من غاز التخليق synthesis gas بطريقة مستمرة
JPH04108809A (ja) 重合体の水素化方法
CN115010829A (zh) 一种用于连续生产溶聚丁苯橡胶和低顺顺丁橡胶的装置及方法
CN114433212B (zh) 一种芳烃烷基转移反应的保护型催化剂及其制备方法与应用
US20240150562A1 (en) Functionalized porous composites
US20240150537A1 (en) Functionalized porous composites containing chemical scavengers
CN116948118A (zh) 一种聚合物间歇加氢方法和系统
KR20090100167A (ko) 고분자량 폴리올레핀의 제조방법
CN116948063A (zh) 催化剂闭路循环回用的聚合物连续加氢系统及方法
JPS6261202B2 (ja)
WO2024097348A2 (en) Process and device for removing contaminants from a fluid stream

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 564251

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001908149

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10220246

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001908149

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001908149

Country of ref document: EP