WO2001064654A1 - Pyrimidine compounds - Google Patents

Pyrimidine compounds Download PDF

Info

Publication number
WO2001064654A1
WO2001064654A1 PCT/GB2001/000782 GB0100782W WO0164654A1 WO 2001064654 A1 WO2001064654 A1 WO 2001064654A1 GB 0100782 W GB0100782 W GB 0100782W WO 0164654 A1 WO0164654 A1 WO 0164654A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
optionally substituted
formula
sulphamoyl
halo
Prior art date
Application number
PCT/GB2001/000782
Other languages
English (en)
French (fr)
Inventor
Elizabeth Janet Pease
Gloria Anne Breault
Jeffrey James Morris
Original Assignee
Astrazeneca Ab
Astrazeneca Uk Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BRPI0108841A priority Critical patent/BRPI0108841B8/pt
Priority to JP2001563496A priority patent/JP4913305B2/ja
Application filed by Astrazeneca Ab, Astrazeneca Uk Limited filed Critical Astrazeneca Ab
Priority to DK01905990T priority patent/DK1272477T3/da
Priority to MXPA02008370A priority patent/MXPA02008370A/es
Priority to CA2399196A priority patent/CA2399196C/en
Priority to EP01905990A priority patent/EP1272477B1/en
Priority to IL15088301A priority patent/IL150883A0/xx
Priority to NZ520394A priority patent/NZ520394A/en
Priority to US10/220,139 priority patent/US7153964B2/en
Priority to DE60128343T priority patent/DE60128343T2/de
Priority to AU33953/01A priority patent/AU765151B2/en
Publication of WO2001064654A1 publication Critical patent/WO2001064654A1/en
Priority to IL150883A priority patent/IL150883A/en
Priority to NO20024154A priority patent/NO325241B1/no
Priority to CY2015035C priority patent/CY2015035I2/el
Priority to NO2015020C priority patent/NO2015020I1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/47One nitrogen atom and one oxygen or sulfur atom, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/48Two nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the invention relates to pyrimidme derivatives, or pharmaceutically acceptable salts or in vivo hydrolysable esters thereof, which possess cell-cycle inhibitory activity and are accordingly useful for their anti cell proliferation (such as anti-cancer) activity and are therefore useful in methods of treatment of a warm-blooded animal, such as man.
  • the invention also relates to processes for the manufacture of said pyrimidine derivatives, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments or use in the production of an anti-cell-proliferation effect in a warm-blooded animal such as man.
  • Cyclins A family of intracellular proteins called cyclins play a central role in the cell cycle. The synthesis and degradation of cyclins is tightly controlled such that their level of expression fluctuates during the cell cycle. Cyclins bind to cyclin-dependent serine/threonine kinases (CDKs) and this association is essential for CDK (such as CDK1, CDK2, CDK4 and/or CDK6) activity within the cell. Although the precise details of how each of these factors combine to regulate CDK activity is poorly understood, the balance between the two dictates whether or not the cell will progress through the cell cycle.
  • CDKs cyclin-dependent serine/threonine kinases
  • CDKs appear to be downstream of a number of oncogene signalling pathways.
  • Disregulation of CDK activity by upregulation of cyclins and/or deletion of endogenous inhibitors appears to be an important axis between mitogenic signalling pathways and proliferation of tumour cells.
  • an inhibitor of cell cycle kinases particularly inhibitors of CDK2, CDK4 and/or CDK6 (which operate at the S-phase, Gl-S and Gl-S phase respectively) should be of value as a selective inhibitor of cell proliferation, such as growth of mammalian cancer cells.
  • the present invention is based on the discovery that certain 2,4-pyrimidine compounds surprisingly inhibit the effects of cell cycle kinases showing selectivity for CDK2, CDK4 and CDK6, and thus possess anti-cell-proliferation properties.
  • Such properties are expected to be of value in the treatment of disease states associated with aberrant cell cycles and cell proliferation such as cancers (solid tumours and leukemias), fibroproliferative and differentiative disorders, psoriasis, rheumatoid arthritis, Kaposi's sarcoma, haemangioma, acute and chronic nephropathies, atheroma, atherosclerosis, arterial restenosis, autoimmune diseases, acute and chronic inflammation, bone diseases and ocular diseases with retinal vessel proliferation.
  • Q, and Q 2 are independently selected from aryl or carbon linked heteroaryl; and one of Q, and Q, or both Q, and Q 2 is substituted on a ring carbon by one group selected from sulphamoyl, N-(C M alkyl)sulphamoyl (optionally substituted by halo or hydroxy), N,N-di-(C,. 4 alkyl)sulphamoyl (optionally substituted by halo or hydroxy), C M alkylsulphonyl (optionally substituted by halo or hydroxy) or a substituent of the formula (la) or (la'):
  • Y is - ⁇ HS(O) 2 -, -S(O) 2 NH- or -S(O) 2 -;
  • Z is RO-, R b R°N-, R d S-, R e R f NNR g -, C 3 physically 8 cycloalkyl, phenyl or a heterocyclic group; wherein said phenyl, C 3.8 cycloalkyl or heterocyclic group are optionally substituted on a ring carbon by one or more groups selected from R h ; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R'; R a , R b , R c , R d , R e , R f and R g are independently selected from hydrogen, C,.
  • Q 3 is a nitrogen linked heterocycle; wherein said heterocycle is optionally substituted on a ring carbon by one or more groups selected from R k ; and wherein if said heterocyclic group contains an -NH- moiety that nitrogen may be optionally substituted by a group selected from R m
  • G is -O-, -S- or -NR 2 -;
  • R 2 is selected from hydrogen, C, .6 alkyl, C 3 . 6 alkenyl and C 3 . 6 alkynyl; wherein said C, .6 alkyl, C 3.6 alkenyl and C 3 . 6 alkynyl are optionally substituted by one or more groups selected from R n ;
  • R 1 is selected from hydrogen, halo, hydroxy, nitro, amino, N-(C ⁇ . 3 alkyl)amino,
  • Q is optionally substituted on a ring carbon by one to four substituents independently selected from halo, mercapto, nitro, formyl, formamido, carboxy, cyano, amino, ureido, carbamoyl, C,. 4 alkyl, C 2 _ 4 alkenyl, C 2 . 4 alkynyl [wherein said C,. 4 alkyl, C 2 . 4 alkenyl and C 2.4 alkynyl are optionally substituted by one or more groups selected from R°], C,. 4 alkanoyl, C M alkoxycarbonyl, heterocyclic group, C,.
  • Q 2 is optionally substituted on a ring carbon by one to four substituents independently selected from halo, hydroxy, mercapto, nitro, formyl, formamido, carboxy, cyano, amino, ureido, carbamoyl, C M alkyl, C 2 . 4 alkenyl, C 2 _ 4 alkynyl, C alkoxy [wherein said C, .4 alkyl, C 2.4 alkenyl, C 2.4 alkynyl and C M alkoxy are optionally substituted by one or more groups selected from R r ], C,. 4 alkanoyl, C M alkoxycarbonyl, heterocyclic group, C,.
  • Q 2 may be optionally substituted by one to two substituents independently selected from aryl, C 3 . 8 cycloalkyl or a heterocyclic group; wherein said aryl, C 3 .
  • cycloalkyl or heterocyclic group may be optionally substituted on a ring carbon by one or more groups selected from R s ; and wherein if said heterocyclic group contains an - ⁇ H- moiety that nitrogen may be optionally substituted by a group selected from R';
  • R J , R", R° and R r are independently selected from hydroxy, halo, amino, cyano, formyl, formamido, carboxy, nitro, mercapto, carbamoyl, sulphamoyl, N-C,. 4 alkylamino, N,N-di-(C M alkyl)amino, C alkanoyl, C alkanoyloxy, C M alkoxy, C,. 4 alkoxycarbonyl, N-C,. 4 alkylcarbamoyl, N,N-di-(C,. 4 alkyl)carbamoyl, C M alkanoylamino, C,.
  • R, R q , R' and R v are independently selected from C alkyl, C,. 4 alkanoyl, C,. 4 alkylsulphonyl, C M alkoxycarbonyl, carbamoyl, N-(C,. 4 alkyl)carbamoyl, N,N-(C, .4 alkyl)carbamoyl, benzyl, benzyloxycarbonyl, benzoyl and phenylsulphonyl; or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.
  • Aryl is a fully or partially unsaturated, mono or bicyclic carbon ring that contains
  • aryl is a monocyclic ring containing 5 or 6 atoms or a bicyclic ring containing 9 or 10 atoms. More preferably “aryl” is phenyl, naphthyl, tetralinyl or indanyl. Particularly “aryl” is phenyl, naphthyl or indanyl. More particularly “aryl” is phenyl.
  • a “carbon linked heteroaryl” is a fully unsaturated, 5- or 6- membered monocyclic ring or 9- or 10- membered bicyclic ring of which at least one atom is chosen from nitrogen, sulphur or oxygen. This ring is linked via a carbon atom to the - ⁇ H- (for Q t ) or G (for Q 2 ).
  • carbon linked heteroaryl is furanyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, furazanyl, triazolyl, thiadiazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazinyl, indolyl, quinolyl or benzimidazolyl. More preferably "carbon linked heteroaryl” is pyridyl, thiazolyl or pyrazolyl. Particularly “carbon linked heteroaryl” is pyridyl.
  • a “heterocyclic group” is a saturated, partially saturated or unsaturated, mono or bicyclic ring containing 4-12 atoms of which at least one atom is chosen from nitrogen, sulphur or oxygen, which may, unless otherwise specified, be carbon or nitrogen linked, wherein a -CH 2 - group can optionally be replaced by a -C(O)-, and a ring sulphur atom may be optionally oxidised to form S-oxide(s).
  • a "heterocyclic group” is pyrrolidinyl, morpholino, piperidyl, pyridyl, pyranyl, pyrrolyl, isothiazolyl, indolyl, quinolyl, thienyl, furyl, 1,3-benzodioxolyl, thiadiazolyl, piperazinyl, isoxazolyl, thiazolyl, thiazolidinyl, py ⁇ olidinyl, thiomorpholino, pyrazolyl, pyrrolinyl, homopiperazinyl, tetrahydropyranyl, imidazolyl, pyrimidyl, pyrazinyl, pyridazinyl, isoxazolyl, 4-pyridone, 1-isoquinolone, 2-pyrrolidone, 4-thiazolidone, imidazo[l,2-a]pyridine or 3-aza-8-oxabicyclo[3,
  • a “heterocyclic group” is pyrrolidinyl, morpholino, piperidyl, isoxazolyl, thiadiazolyl, thiazolyl, pyridyl, indolyl, thienyl, furyl, piperazinyl, thiomorpholino, pyrazolyl, imidazolyl, 2-py ⁇ olidone, imidazo[l,2-a]pyridine or 3-aza-8-oxabicyclo[3,2,l]hexane.
  • a “heterocyclic group” is morpholino, isoxazolyl, thiadiazolyl, thiazolyl or pyridyl.
  • a “nitrogen linked heterocycle” is a saturated, partially saturated or fully unsaturated, mono or bicyclic ring containing 4-12 atoms, one atom of which is a nitrogen atom (attached to form an amide as shown) and the other atoms are either all carbon atoms or they are carbon atoms and 1-3 heteroatoms chosen from nitrogen, sulphur or oxygen, wherein a -CH 2 - group can optionally be replaced by a -C(O)- and a ring sulphur atom may be optionally oxidised to form the S-oxides. It will be appreciated that in forming this nitrogen link, the nitrogen atom is not quatemised, i.e. a neutral compound is formed.
  • nitrogen linked heterocycle is py ⁇ ol-1-yl, pyrrolin-1-yl, pyrrolidin-1-yl, imidazol-1-yl, imidazolin-1-yl, imidazolidin-1-yl, pyrazol-1-yl, pyrazolin-1-yl, pyrazolidin-1-yl, triazol-1-yl, piperidin-1-yl, piperazin-1-yl, morpholino, thiomorpholino, indol-1-yl, indolidin-1-yl or benzimidazol-1-yl. More preferably "nitrogen linked heterocycle” is piperidin-1-yl.
  • alkyl includes both straight and branched chain alkyl groups but references to individual alkyl groups such as “propyl” are specific for the straight chain version only. An analogous convention applies to other generic terms. "Halo” is fluoro, chloro, bromo and iodo.
  • Examples of C 2.4 alkenyl are vinyl and allyl; examples of C 2 . 6 alkenyl are C 3 . 5 alkenyl, vinyl and allyl; examples of C 3.6 alkenyl are C 3 . 5 alkynyl and allyl; an example of C 3 . 6 alkynyl is propyn-2-yl; examples of C 2.4 alkynyl are ethynyl and propyn-2-yl; examples of C 2 6 alkynyl are ethynyl and propyn-2-yl; examples of Cj. 4 alkanoyl are acetyl and propionyl; examples of C j.4 alkoxycarbonyl are C,.
  • examples of C alkylene are methylene, ethylene and propylene;
  • examples of C ⁇ alkyl are C,_ 3 alkyl, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl;
  • examples of Cj. 6 alkyl are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl and 3-methylbutyl; examples of C,.
  • alkoxy are C ⁇ alkoxy, methoxy, ethoxy, propoxy, isopropoxy and butoxy; an example of C 2.4 alkenyloxy is allyloxy; an example of C ⁇ alkynyloxy is propynyloxy; examples of C ] ⁇ alkylS(O) a wherein a is 0 or 1 are C,. 3 alkylsulphanyl, methylthio, ethylthio, propylthio, methylsulphinyl, ethylsulphinyl and propylsulphinyl; examples of C,.
  • 4 aIkylS(O) a wherein a is 0 to 2 are methylthio, ethylthio, propylthio, methylsulphinyl, ethylsulphinyl, propylsulphinyl, mesyl, ethylsulphonyl and propylsulphonyl; examples of C,. 4 alkylsulphonyl are mesyl and ethylsulphonyl; examples of N-C,.
  • Examples of 4 alkyl)amino are N,N-di-(C,. 3 alkyl)amino, dimethylamino, N-ethyl-N-methylamino, diethylamino, N-methyl-N-propylamino and dipropylamino;
  • examples of C, .4 alkanoylammo are acetamido, propionamido and butyramido;
  • examples of C 3.8 cycloalkyl are cyclopropyl, cyclopentyl and cyclohexyl;
  • examples of C ⁇ alkanoyl are acetyl and propionyl;
  • examples of C,_ 4 alkanoyloxy are acetyloxy and propionyloxy;
  • examples of 7V-(C, .4 alkyl)ureido are N-methylureido and N-ethylureido; examples of N',N -di-(
  • N-(C,. 4 alkyl)-N-(C,. 4 alkyl)ureido are N-methyl-N-ethylureido and N-methyl-N-methylureido; examples of N',N'-di-(C 1.4 alkyl)-N-(C 1 . 4 alkyl)ureido are N',N'-dimethyl-N-ethylureido and N'-methyl-N'-propyl-N-butylureido; examples of N-(C,.
  • 4 alkyl)suIphamoyl are N-methylsulphamoyl and N-isopropylsulphamoyl; examples of N,/V-di-(C, ⁇ alkyI)sulphamoyl are N-methyl-N-ethylsulphamoyl and N,N-dipropylsulphamoyl; and examples of C,. 4 aIkylsulphonylamino are mesylamino, ethylsulphonylamino and propylsulphonylamino.
  • a suitable pharmaceutically acceptable salt of a pyrimidine derivative of the invention is, for example, an acid-addition salt of a pyrimidine derivative of the invention which is sufficiently basic, for example, an acid-addition salt with, for example, an inorganic or organic acid, for example hydrochloric, hydrobromic, sulphuric, phosphoric, trifluoroacetic, citric or maleic acid.
  • a suitable pharmaceutically acceptable salt of a pyrimidine derivative of the invention which is sufficiently acidic is an alkali metal salt, for example a sodium or potassium salt, an alkaline earth metal salt, for example a calcium or magnesium salt, an ammonium salt or a salt with an organic base which affords a physiologically acceptable cation, for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
  • the compounds of the formula (I) may be administered in the form of a pro-drug which is broken down in the human or animal body to give a compound of the formula (I).
  • pro-drugs include in vivo hydrolysable esters of a compound of the formula (I).
  • An in vivo hydrolysable ester of a compound of the formula (I) containing carboxy or hydroxy group is, for example, a pharmaceutically acceptable ester which is hydrolysed in the human or animal body to produce the parent acid or alcohol.
  • Suitable pharmaceutically acceptable esters for carboxy include C,. 6 alkoxym ethyl esters for example methoxymethyl, C,.
  • alkanoyloxymethyl esters for example pivaloyloxymethyl, phthalidyl esters, C 3 . 8 cycloalkoxycarbonyloxyC, .6 alkyl esters for example 1-cyclohexylcarbonyloxyethyl; l,3-dioxolen-2-onylmethyl esters for example 5-methyl-l,3-dioxolen-2-onylmethyl; and C ⁇ alkoxycarbonyloxy ethyl esters for example 1-methoxycarbonyloxyethyl and may be formed at any carboxy group in the compounds of this invention.
  • An in vivo hydrolysable ester of a compound of the formula (I) containing a hydroxy group includes inorganic esters such as phosphate esters and ⁇ -acyloxyalkyl ethers and related compounds which as a result of the in vivo hydrolysis of the ester breakdown to give the parent hydroxy group.
  • inorganic esters such as phosphate esters and ⁇ -acyloxyalkyl ethers and related compounds which as a result of the in vivo hydrolysis of the ester breakdown to give the parent hydroxy group.
  • ⁇ -acyloxyalkyl ethers include acetoxymethoxy and 2,2-dimethylpropionyloxy-methoxy.
  • a selection of in vivo hydrolysable ester forming groups for hydroxy include alkanoyl, benzoyl, phenylacetyl and substituted benzoyl and phenylacetyl, alkoxycarbonyl (to give alkyl carbonate esters), dialkylcarbamoyl and N-(dialkylaminoethyl)-N-alkylcarbamoyl (to give carbamates), dialkylaminoacetyl and carboxy acetyl.
  • substituents on benzoyl include morpholino and piperazino linked from a ring nitrogen atom via a methylene group to the 3- or 4- position of the benzoyl ring.
  • Some compounds of the formula (I) may have chiral centres and/or geometric isomeric centres (E- and Z- isomers), and it is to be understood that the invention encompasses all such optical, diastereo-isomers and geometric isomers that possess CDK inhibitory activity.
  • the invention relates to any and all tautomeric forms of the compounds of the formula
  • certain compounds of the formula (I) can exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms which possess CDK inhibitory activity.
  • Particular preferred compounds of the invention comprise a pyrimidine derivative of the formula (I), or pharmaceutically acceptable salt or in vivo hydrolysable ester thereof, wherein R 1 , Q,, Q 2 , and G have any of the meanings defined hereinbefore, or any of the following values. Such values may be used where appropriate with any of the definitions, claims or embodiments defined hereinbefore or hereinafter.
  • Q, and Q 2 are independently selected from phenyl and pyridyl.
  • Q is phenyl.
  • Q 2 is phenyl or pyridyl.
  • Q is phenyl and Q 2 is selected from phenyl or pyridyl. More preferably Q, and Q 2 are phenyl. Preferably one of Q, and Q 2 or both Q, and Q 2 is substituted on a ring carbon by one group selected from sulphamoyl, N-(C,_ 4 alkyl)sulphamoyl, N,N-di-(C,. 4 alkyl)sulphamoyl (optionally substituted by hydroxy), C ⁇ alkylsulphonyl or a substituent of formula (la) wherein:
  • Y is -S(O) 2 ⁇ H- or -S(O) 2 -;
  • Z is RO-, R ⁇ TSf- or a heterocyclic group; wherein heterocyclic group are optionally substituted on a ring carbon by one or more groups selected from R h ;
  • R a , R b and R c are independently selected from hydrogen, C M alkyl and phenyl; n is 0; m is 2 or in addition m may be 0 when Z is a heterocyclic group. More preferably one of Q, and Q 2 or both of Q, and Q 2 is substituted on a ring carbon by one group selected from sulphamoyl, N- C ⁇ alky ⁇ sulphamoyl, N,N-di-(C, .4 alkyl)sulphamoyl (optionally substituted by hydroxy), C M alkylsulphonyl or a substituent of formula (la) wherein:
  • Y is -S(O) 2 ⁇ H- or -S(O) 2 -;
  • Z is RO-, R b R°N-, thiazolyl, isoxazolyl, thiadiazolyl, pyridyl or morpholino; wherein thiazolyl, isoxazolyl, thiadiazolyl, pyridyl or morpholino are optionally substituted on a ring carbon by one or more methyl;
  • R a , R b and R c are independently selected from hydrogen, C alkyl and phenyl; n is 0; m is 2 or in addition m may be 0 when Z is thiazolyl, isoxazolyl, thiadiazolyl or pyridyl.
  • Q, and Q 2 or both of Q, and Q 2 is substituted on a ring carbon by one group selected from sulphamoyl, mesyl, N-(2-diethylaminoethyl)sulphamoyl, 2-(N-methyl-N-phenylamino)ethylsulphonyl, 2-morpholinoethylsulphonyl, N-(5-methylthiadiazol-2-yl)sulphamoyl, N,N-di-(2-hydroxyefhyl)sulphamoyl, N-(thiazol-2-yl)sulphamoyl, N-(3,4-dimethylisoxazol-5-yl)sulphamoyl, N-(pyrid-2-yl)sulphamoyl and N-methylsulphamoyl.
  • sulphamoyl mesyl, N-(2-diethylaminoethyl)sulphamoyl, 2-(
  • Q, and Q 2 or both of Q, and Q 2 is substituted on a ring carbon by one group selected from sulphamoyl and N-methylsulphamoyl.
  • Q that is substituted by one group selected from sulphamoyl, N-(C, .4 alkyl)sulphamoyl (optionally substituted by halo or hydroxy), N,N-di-(C M alkyl)sulphamoyl (optionally substituted by halo or hydroxy), C,. 4 alkylsulphonyl (optionally substituted by halo or hydroxy) or a substituent of the formula (la) or (la'); and Q 2 is optionally additionally substituted by one group selected from sulphamoyl.
  • Q that is substituted in the para- or meta- position relative to the - ⁇ H- by sulphamoyl, N-(C alkyl)sulphamoyl (optionally substituted by halo or hydroxy), N,N-di-(C ] . 4 alkyl)sulphamoyl (optionally substituted by halo or hydroxy), C,. 4 alkylsulphonyl (optionally substituted by halo or hydroxy) or a substituent of the formula (la) or (la'); and Q 2 is optionally additionally substituted by one group selected from sulphamoyl para to G.
  • Q that is substituted in the para- position relative to the - ⁇ H- by sulphamoyl, N-(C, ⁇ alkyl)sulphamoyl (optionally substituted by halo or hydroxy), N,N-di-(C, .4 alkyl)sulphamoyl (optionally substituted by halo or hydroxy), C ⁇ alkylsulphonyl (optionally substituted by halo or hydroxy) or a substituent of the formula (la) or (la'); and Q 2 is optionally additionally substituted by one group selected from sulphamoyl para to G.
  • G is -O-.
  • G is -S-. In a further aspect of the invention preferably G is - ⁇ R 2 -.
  • G is -O- or - ⁇ R 2 -.
  • G is - ⁇ R 2 -, preferably R 2 is hydrogen. In another aspect of the invention when G is -NR 2 -, preferably R 2 is not hydrogen.
  • G is -O- or-NR 2 - wherein R 2 is selected from hydrogen, C,. 6 alkyl and C 3 . 6 alkenyl; wherein said C,. 6 alkyl and C 3 . 6 alkenyl are optionally substituted by one or more halo, cyano or phenyl. More preferably G is -O- or-NR 2 - wherein R 2 is selected from hydrogen, C, .6 alkyl and
  • C 3 _ 6 alkenyl wherein said C,. 6 alkyl and C 3 _ 6 alkenyl are optionally substituted by one or more halo or phenyl.
  • G is -O-, -NH-, -(4,4,4-trifluorobutyl)N-, -(3-bromo-2-propenyl)N- or -(3-phenyl-2-propenyl)N-. More particularly G is -O- or -NH-.
  • R 1 is hydrogen or halo.
  • R 1 is hydrogen, chloro or bromo.
  • Q is optionally substituted by one C,. 4 alkoxy substituent and is substituted by one group selected from sulphamoyl, N-(C,. 4 alkyl)sulphamoyl (optionally substituted by halo or hydroxy), N,N-di-(C ].4 alkyl)sulphamoyl (optionally substituted by halo or hydroxy), C M alkylsulphonyl (optionally substituted by halo or hydroxy) or a substituent of the formula (la) or (la').
  • Q is substituted by one group selected from sulphamoyl, N-(C, .4 alkyl)sulphamoyl or N,N-di-(C,. 4 alkyl)sulphamoyl.
  • Q 2 is unsubstituted or substituted by one or two groups selected from halo, cyano, C alkyl, C,. 4 alkoxy and a heterocyclic group.
  • Q 2 is optionally substituted on a ring carbon by one to two substituents independently selected from halo, cyano, methyl, methoxy and morpholino.
  • Q 2 is optionally substituted on a ring carbon by one to two substituents independently selected from cyano and methoxy.
  • Q 2 is phenyl, 2-morpholinophenyl, 2-cyanophenyl, 4-bromophenyl, 2-fluoro-5-methylphenyl, 4-methoxyphenyl or 4-sulphamoylphenyl.
  • Q 2 is phenyl, 2-cyanophenyl, 4-methoxyphenyl or 4-sulphamoylphenyl . Therefore, in a prefe ⁇ ed aspect of the invention there is provided a pyrimidine derivative of the formula (I) as depicted above, wherein: Q, and Q 2 are independently selected from phenyl and pyridyl; and one of Q, and Q 2 or both Q, and Q, is substituted on a ring carbon by one group selected from sulphamoyl, N-(C,. 4 alkyl)sulphamoyl, N,N-di-(C M alkyl)sulphamoyl (optionally substituted by hydroxy), C,. 4 alkylsulphonyl or a substituent of formula (la) wherein: Y is -S(O) 2 ⁇ H- or -S(O) 2 -;
  • Z is RO-, R b R°N- or a heterocyclic group; wherein heterocyclic group are optionally substituted on a ring carbon by one or more groups selected from R h ;
  • R a , R b and R c are independently selected from hydrogen, C,. 4 alkyl and phenyl; n is 0; m is 2 or in addition m may be 0 when Z is a heterocyclic group;
  • G is -O- or-NR 2 - wherein R 2 is selected from hydrogen, C,. 6 alkyl and C 3.6 alkenyl; wherein said C,. 6 alkyl and C 3 _ 6 alkenyl are optionally substituted by one or more halo or phenyl;
  • R 1 is hydrogen or halo; or pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.
  • Q is phenyl optionally substituted by one C alkoxy substituent and Q, is phenyl optionally substituted by one or more halo, cyano, methyl, methoxy and mo ⁇ holino; and Q, is substituted in the para- position relative to the -NH- by one group selected from sulphamoyl, mesyl, N-(2-diethylaminoethyl)sulphamoyl, 2-(N-methyl-N-phenylamino)ethylsulphonyl, 2-mo ⁇ holinoethylsulphonyl, N-(5-methylthiadiazol-2-yl)sulphamoyl, N,N-di-(2-hydroxyethyl)sulphamoyl, N-(thiazol-2-yl)sulphamoyl, N-(3,4-dimethylisoxazol-5-yl)sulphamoyl, N-(pyrid-2-yl)sulph
  • G is -O-, - ⁇ H-, -(4,4,4-trifluorobutyl)N-, -(3-bromo-2-propenyl)N- or -(3-phenyl-2-propenyl)N-;
  • R 1 is hydrogen, chloro or bromo or pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.
  • preferred compounds of the invention are those of Examples 1, 20, 21, 29 or 31 or pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.
  • prefe ⁇ ed compounds of the invention include any one of the Examples or pharmaceutically acceptable salt or in vivo hydrolysable ester thereof.
  • Preferred aspects of the invention are those which relate to the compound or a pharmaceutically acceptable salt thereof.
  • a pyrimidine derivative of the formula (I), or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Such processes, when used to prepare a pyrimidine derivative of the formula (I), or a pharmaceutically acceptable salt or an in vivo hydrolysable ester thereof, are provided as a further feature of the invention and are illustrated by the following representative examples in which, unless otherwise stated R 1 , Q grasp Q and G have any of the meanings defined hereinbefore for a pyrimidine derivative of the formula (I) and unless another substituent is drawn on ring Q, or Q 2 the ring may bear any of the substituents described hereinbefore (optionally protected as necessary).
  • process c) can also be use to make compounds of formula (I) wherein one of Q, and Q 2 or both Q, and Q 2 is substituted on a ring carbon by one group selected from sulphamoyl, N-(C,_ 4 alkyl)sulphamoyl (optionally substituted by halo or hydroxy) or N,N-di-(C,. 4 alkyl)sulphamoyl (optionally substituted by halo or hydroxy).
  • L is a displaceable group, suitable values for L are for example, a halo, sulphonyloxy or sulphur group, for example a chloro, bromo, methanesulphonyloxy, toluene-4-sulphonyloxy, mesyl, methylthio and methylsulphinyl.
  • Pyrimidines of formula (II) and compounds of formula (III) may be reacted together: i) optionally in the presence of a suitable acid, for example an inorganic acid such as hydrochloric acid or sulphuric acid, or an organic acid such as acetic acid or formic acid.
  • a suitable acid for example an inorganic acid such as hydrochloric acid or sulphuric acid, or an organic acid such as acetic acid or formic acid.
  • the reaction is preferably carried out in a suitable inert solvent or diluent, for example dichloromethane (DCM), acetonitrile, butanol, tetramethylene sulphone, tetrahydrofuran, 1,2-dimethoxyethane, N,N-dimethylformamide, N,N-dimethylacetamide or N-methylpyrrolidin-2-one, and at a temperature in the range, for example, 0°to 150°C, conveniently at or near reflux temperature; or ii) under standard Buchwald conditions (for example see J. Am. Chem. Soc, 118, 7215; J. Am. Chem. Soc, 119, 8451; J. Org.
  • a suitable inert solvent or diluent for example dichloromethane (DCM), acetonitrile, butanol, tetramethylene sulphone, tetrahydrofuran, 1,2-dimethoxyethane,
  • a suitable solvent for example an aromatic solvent such as toluene, benzene or xylene
  • a suitable base for example an inorganic base such as caesium carbonate or an organic base such as potassium-t-butoxide
  • a suitable ligand such as 2,2'-bis(diphenylphosphino)-l,r-binaphthyl and at a temperature in the range of 25 to 80°C.
  • Pyrimi dines of the formula (II) may be prepared according to the following scheme:
  • L is a displaceable group as defined above.
  • Pyrimi dines of formula (IV) and anilines of formula (V) may be reacted together, i) in the presence of a suitable solvent for example a ketone such as acetone or an alcohol such as ethanol or butanol or an aromatic hydrocarbon such as toluene or N-methyl pyrrolidine, optionally in the presence of a suitable acid such as those defined above (or a suitable Lewis acid) and at a temperature in the range of 0°C to reflux, preferably reflux; or ii) under standard Buchwald conditions as described above.
  • a suitable solvent for example a ketone such as acetone or an alcohol such as ethanol or butanol or an aromatic hydrocarbon such as toluene or N-methyl pyrrolidine
  • a suitable acid such as those defined above (or a suitable Lewis acid) and at a temperature in the range of 0°C to reflux, preferably reflux; or ii) under standard Buchwald conditions as described above.
  • anilines of formula (V) are commercially available or are prepared by processes known in the art.
  • Pyrimidines of the formula (IVA) are commercially available or may be prepared by, for example, reacting a compound of formula (IVA) in which L is -OH (i.e. a uracil), with POCl 3 to give a compound of formula (IVA) in which L is -CI.
  • Process c) Compounds of formula (VI) and amines of formula (VII) may be coupled together in the presence of a base, for example a tertiary amine such as triethylamine and in the presence of a catalyst for example dimethylaminopyridine. Suitable solvents for the reaction include nitriles such as acetonitrile and amides such as dimethylformamide. The reaction is conveniently performed at a temperature in the range of from 0 to 120°C.
  • Compounds of formula (VI) (for example when L is chlorine) may be prepared according to the following scheme:
  • Amines of formula (VIII) may be prepared according to the following scheme:
  • Amines of formula (X) are commercially available or are prepared by processes known in the art.
  • Examples of conversions of a compound of formula (I) into another compound of formula (I) are: i) where G is -NR 2 -; conversion of R 2 as hydrogen into other R 2 for example:
  • a preferred process of the invention is Process b).
  • aromatic substitution reactions include the introduction of a nitro group using concentrated nitric acid, the introduction of an acyl group using, for example, an acyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; the introduction of an alkyl group using an alkyl halide and Lewis acid (such as aluminium trichloride) under Friedel Crafts conditions; and the introduction of a halo group.
  • modifications include the reduction of a nitro group to an amino group by for example, catalytic hydrogenation with a nickel catalyst or treatment with iron in the presence of hydrochloric acid with heating; oxidation of alkylthio to alkylsulphinyl or alkylsulphonyl.
  • a suitable protecting group for an amino or alkylamino group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an alkoxycarbonyl group, for example a methoxycarbonyl, ethoxycarbonyl or t-butoxycarbonyl group, an arylmethoxycarbonyl group, for example benzyloxycarbonyl, or an aroyl group, for example benzoyl.
  • the deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or alkoxycarbonyl group or an aroyl group may be removed for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • an acyl group such as a t-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon, or by treatment with a Lewis acid for example boron tris(trifluoroacetate).
  • a suitable alternative protecting group for a primary amino group is, for example, a phthaloyl group which may be removed by treatment with an alkylamine, for example dimethylaminopropylamine, or with hydrazine.
  • a suitable protecting group for a hydroxy group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmefhyl group, for example benzyl.
  • the deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • an arylmefhyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • a suitable protecting group for a thio group is, for example, an acyl group, for example an alkanoyl group such as acetyl, an aroyl group, for example benzoyl, or an arylmefhyl group, for example benzyl.
  • the deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • an acetyl or benzoyl group may be removed, for example, by cleavage with sodium and ammonia.
  • a suitable protecting group for a carboxy group is, for example, an esterifying group, for example a methyl or an ethyl group which may be removed, for example, by hydrolysis with a base such as sodium hydroxide, or for example a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • a base such as sodium hydroxide
  • a t-butyl group which may be removed, for example, by treatment with an acid, for example an organic acid such as trifluoroacetic acid, or for example a benzyl group which may be removed, for example, by hydrogenation over a catalyst such as palladium-on-carbon.
  • the protecting groups may be removed at any convenient stage in the synthesis using conventional techniques well known in the chemical art. Many of the intermediates defined herein are novel, for example, those of the formula
  • the pyrimidine derivative defined in the present invention possesses anti-cell-proliferation activity such as anti-cancer activity which is believed to arise from the CDK inhibitory activity of the compound.
  • anti-cell-proliferation activity such as anti-cancer activity which is believed to arise from the CDK inhibitory activity of the compound.
  • HEPES is N-(2-Hydroxyethyl)piperazine-N-(2-ethanesulfonic acid)
  • DTT is Dithiothretiol
  • PMSF Phenylmethylsulfonyl fluoride
  • CDK4/Cyclin Dl partially-purified enzyme (amount dependent on enzyme activity) diluted in 25 ⁇ l incubation buffer was added to each well then 20 ⁇ l of GST-Rb/ATP/ATP33 mixture (containing 0.5 ⁇ g GST-Rb and 0.2 ⁇ M ATP and 0.14 ⁇ Ci [ ⁇ -33-P]-Adenosine Triphosphate), and the resulting mixture shaken gently, then incubated at room temperature for 60 minutes.
  • the incubation buffer used to dilute the enzyme and substrate mixes contained 50mM HEPES pH7.5, lOmM MnCl 2 , lmM DTT, lOO ⁇ M Sodium vanadate, lOO ⁇ M NaF, lOmM Sodium Glycerophosphate, BSA (lmg/ml final).
  • a control another known inhibitor of CDK4 may be used in place of pl6.
  • E.coli paste was resuspended in lOml/g of NETN buffer (50mM Tris pH 7.5, 120mM NaCl, ImM EDTA, 0.5%v/v NP-40, ImM PMSF, lug/ml leupeptin, lug/ml aprotinin and lug/ml pepstatin) and sonicated for 2 x 45 seconds per 100ml homogenate. After centrifugation, the supernatant was loaded onto a 10ml glutathione Sepharose column 5 (Pharmacia Biotech, Herts, UK), and washed with NETN buffer.
  • NETN buffer 50mM Tris pH 7.5, 120mM NaCl, ImM EDTA, 0.5%v/v NP-40, ImM PMSF, lug/ml leupeptin, lug/ml aprotinin and lug/ml pepstatin
  • kinase buffer 50mM HEPES pH 7.5, lOmM MgC12, ImM DTT, imM PMSF, lug/ml leupeptin, lug/ml aprotinin and lug/ml pepstatin
  • the protein was eluted with 50mM reduced glutathione in kinase buffer.
  • Fractions containing GST-Rb(792-927) were pooled and dialysed overnight against kinase buffer. The final product was analysed by Sodium Dodeca Sulfate
  • CDK4 and Cyclin Dl were cloned from RNA from MCF-7 cell line (obtained from ATCC number:HTB22, breast adenocarcinoma line) as follows.
  • the RNA was prepared from MCF-7 cells, then reverse transcribed using oligo dT primers. PCR was used to amplify the RNA from MCF-7 cell line (obtained from ATCC number:HTB22, breast adenocarcinoma line) as follows.
  • the RNA was prepared from MCF-7 cells, then reverse transcribed using oligo dT primers. PCR was used to amplify the RNA from MCF-7 cell line (obtained from ATCC number:HTB22, breast adenocarcinoma line) as follows.
  • the RNA was prepared from MCF-7 cells, then reverse transcribed using oligo dT primers. PCR was used to amplify the RNA from MCF-7 cell line (obtained from ATCC number:HTB22
  • PCR products were cloned using standard techniques into the insect expression vector pVL1393 (obtained from Invitrogen 1995 catalogue number : V1392-20). The PCR products were then dually expressed [using a standard virus Baculogold co-infection technique] into the insect SF21 cell system (Spodoptera Frugiperda cells derived from ovarian tissue of the Fall Army Worm -Commercially available).
  • Cyclin Dl 1.86 x 10E6 x 500 x 3 31 ml of virus for each 500 ml. bottle.
  • the SF21 cells were then hypotonically lysed by resuspending in lysis buffer (50mM HEPES pH 7.5, lOmM magnesium chloride, ImM DTT, lOmM glycerophosphate, O.lmM PMSF, O.lmM sodium fluoride, O.lmM sodium orthovanadate, 5ug/ml aprotinin, 5ug/ml leupeptin and 20% w/v sucrose), and adding ice cold deionised water. After centrifugation, the supernatant was loaded onto a Poros HQ/M 1.4/100 anion exchange column (PE Biosystems, Hertford, UK).
  • lysis buffer 50mM HEPES pH 7.5, lOmM magnesium chloride, ImM DTT, lOmM glycerophosphate, O.lmM PMSF, O.lmM sodium fluoride, O.lmM sodium orthovanadate, 5ug/ml
  • CDK4 and Cyclin Dl were coeluted with 375mM NaCl in lysis buffer, and their presence checked by western blot, using suitable anti-CDK4 and anti-Cyclin Dl antibodies (obtained from Santa Cruz Biotechnology, California, US).
  • p!6 control (Nature 366.:704-707: 1993: Serrano M. Hannon GJ. Beach D ⁇ pl6 (the natural inhibitor of CDK4/Cyclin Dl) was amplified from HeLa cDNA (Hela cells obtained from ATCC CCL2, human epitheloid carcinoma from cervix; Cancer Res.
  • the mixture was spun down, the supernatant added to nickel chelate beads and mixed for 1 V hours.
  • the beads were washed in sodium phosphate, NaCl pH 6.0 and pi 6 product eluted in sodium phosphate, NaCl pH 7.4 with 200mM imidazole.
  • the pTB NBSE was constructed from pTB 375 NBPE as follows :- p TB375
  • the background vector used for generation of pTB 375 was pZEN0042 (see UK patent 2253852) and contained the tetA/tetR inducble tetracycline resistance sequence from plasmid RP4 and the cer stability sequence from plasmid pKS492 in a pAT153 derived background.
  • pTB375 was generated by the addition of an expression cassette consisting of the T7 gene 10 promoter, multiple cloning site and T7 gene 10 termination sequence.
  • a terminator sequence designed to reduce transcriptional readthrough from the background vector was included upstream of the expression cassette.
  • a new multiple cloning site containing the recognition sequences for the restriction enzymes Ndel, BamHI, Smal and EcoRI was introduced into pTB 375 NBPE between the Ndel and EcoRI sites.
  • the oligonucleotide containing these restriction sites also contained 6 histidine codons located between the Ndel and BamHI sites in the same reading frame as the inititiator codon (ATG) present within the Ndel site.
  • CDK2 EBL Accession No. X62071
  • X62071 EBL Accession No. X62071
  • Cyclin A or Cyclin E (see EMBL Accession No. M73812), and further details for such assays are contained in PCT International Publication No. WO99/21845, the relevant Biochemical & Biological Evaluation sections of which are hereby inco ⁇ orated by reference.
  • CDK2 with Cyclin E partial co-purification may be achieved as follows :- Sf21 cells are resuspended in lysis buffer (50mM Tris pH 8.2, lOmM MgCl 2 , ImM DTT, lOmM glycerophosphate, O.lmM sodium orthovanadate, O.lmM NaF, ImM PMSF, lug/ml leupeptin and lug/ml aprotinin) and homogenised for 2 minutes in a 10ml Dounce homgeniser. After centrifugation, the supernatant is loaded onto a Poros HQ/M 1.4/100 anion exchange column (PE Biosystems, Hertford, UK).
  • lysis buffer 50mM Tris pH 8.2, lOmM MgCl 2 , ImM DTT, lOmM glycerophosphate, O.lmM sodium orthovanadate, O.lmM NaF, ImM PMSF, lug/ml
  • CDK2 and Cyclin E are coeluted at the beginning of a 0-1M NaCl gradient (run in lysis buffer minus protease inhibitors) over 20 column volumes. Co-elution is checked by western blot using both anti-CDK2 and anti-Cyclin E antibodies (Santa Cruz Biotechnology, California, US).
  • the in vivo activity of the compounds of the present invention may be assessed by standard techniques, for example by measuring inhibition of cell growth and assessing cytotoxicity. Inhibition of cell growth may be measured by staining cells with Sulforhodamine B
  • SRB a fluorescent dye that stains proteins and therefore gives an estimation of amount of protein (i.e. cells) in a well
  • SRB a fluorescent dye that stains proteins and therefore gives an estimation of amount of protein (i.e. cells) in a well
  • media was Dulbecco's Modified Eagle media for MCF-7, SK-UT-1B and SK-UT-1.
  • the cells were allowed to attach overnight, then inhibitor compounds were added at various concentrations in a maximum concentration of 1% DMSO (v/v).
  • a control plate was assayed to give a value for cells before dosing.
  • Cells were incubated at 37°C, (5% CO2) for three days. At the end of three days TCA was added to the plates to a final concentration of 16%
  • Typical IC 50 values for compounds of the invention when tested in the SRB assay are in the range ImM to InM.
  • a pharmaceutical composition which comprises a pyrimidine derivative of the formula (I), or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof, as defined hereinbefore in association with a pharmaceutically acceptable diluent or carrier.
  • composition may be in a form suitable for oral administration, for example as a tablet or capsule, for parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion) as a sterile solution, suspension or emulsion, for topical administration as an ointment or cream or for rectal administration as a suppository.
  • parenteral injection including intravenous, subcutaneous, intramuscular, intravascular or infusion
  • sterile solution emulsion
  • topical administration as an ointment or cream or for rectal administration as a suppository.
  • compositions may be prepared in a conventional manner using conventional excipients.
  • the pyrimidine will normally be administered to a warm-blooded animal at a unit dose within the range 5-5000 mg per square meter body area of the animal, i.e. approximately
  • a unit dose form such as a tablet or capsule will usually contain, for example 1-250 mg of active ingredient.
  • a daily dose in the range of 1-50 mg/kg is employed.
  • the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient.
  • the pyrimidine derivatives defined in the present invention are effective cell cycle inhibitors (anti-cell proliferation agents), which property (without being bound by theory) is believed to arise from their CDK inhibitory properties.
  • the compounds of the present invention are expected to be useful in the treatment of diseases or medical conditions mediated alone or in part by CDK enzymes, i.e. the compounds may be used to produce a CDK inhibitory effect in a warm-blooded animal in need of such treatment.
  • the compounds of the present invention provide a method for treating the proliferation of malignant cells characterised by inhibition of CDK enzymes, i.e.
  • the compounds may be used to produce an anti-proliferative effect mediated alone or in part by the inhibition of CDKs.
  • a pyrimidine derivative of the invention is expected to possess a wide range of anti-cancer properties as CDKs have been implicated in many common human cancers such as leukaemia and breast, lung, colon, rectal, stomach, prostate, bladder, pancreas and ovarian cancer. Thus it is expected that a pyrimidine derivative of the invention will possess anti-cancer activity against these cancers.
  • a pyrimidine derivative of the present invention will possess activity against a range of leukaemias, lymphoid malignancies and solid tumours such as carcinomas and sarcomas in tissues such as the liver, kidney, prostate and pancreas.
  • solid tumours such as carcinomas and sarcomas in tissues such as the liver, kidney, prostate and pancreas.
  • compounds of the invention are expected to slow advantageously the growth of primary and recurrent solid tumours of, for example, the colon, breast, prostate, lungs and skin.
  • Such compounds of the invention are expected to inhibit the growth of those primary and recurrent solid tumours which are associated with CDK, especially those tumours which are significantly dependent on CDK for their growth and spread, including for example, certain tumours of the colon, breast, prostate, lung, vulva and skin.
  • a pyrimidine derivative of the present invention will possess activity against other cell-proliferation diseases in a wide range of other disease states including leukemias, fibroproliferative and differentiative disorders, psoriasis, rheumatoid arthritis, Kaposi's sarcoma, haemangioma, acute and chronic nephropathies, atheroma, atherosclerosis, arterial restenosis, autoimmune diseases, acute and chronic inflammation, bone diseases and ocular diseases with retinal vessel proliferation.
  • a pyrimidine derivative of the formula (I), or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof, as defined hereinbefore for use as a medicament and the use of a pyrimidine derivative of the formula (I), or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof, as defined hereinbefore in the manufacture of a medicament for use in the production of an anti-cancer, cell cycle inhibitory (anti-cell-proliferation) effect in a warm-blooded animal such as man.
  • a cell cycle inhibitory effect is produced at the S or Gl-S phase by inhibition of CDK2, CDK4 and or CDK6, especially CDK2.
  • a method for producing an anti-cancer, cell cycle inhibitory (anti-cell-proliferation) effect in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a pyrimidine derivative as defined immediately above.
  • an inhibitory effect is produced at the S or Gl-S phase by inhibition of CDK2, CDK4 and/or CDK6, especially CDK2.
  • the size of the dose required for the therapeutic or prophylactic treatment of a particular cell-proliferation disease will necessarily be varied depending on the host treated, the route of administration and the severity of the illness being treated.
  • a unit dose in the range, for example, 1-100 mg/kg, preferably 1-50 mg/kg is envisaged.
  • the CDK inhibitory activity defined hereinbefore may be applied as a sole therapy or may involve, in addition to a compound of the invention, one or more other substances and/or treatments. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment.
  • the other component(s) of such conjoint treatment in addition to the cell cycle inhibitory treatment defined hereinbefore may be: surgery, radiotherapy or chemotherapy.
  • Such chemotherapy may cover three main categories of therapeutic agent:
  • cytostatic agents such as antioestrogens (for example tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene), progestogens (for example megestrol acetate), aromatase inhibitors (for example anastrozole, letrazole, vorazole, exemestane), antiprogestogens, antiandrogens (for example flutamide, nilutamide, bicalutamide, cyproterone acetate), LHRH agonists and antagonists (for example goserelin acetate, luprolide), inhibitors of testosterone 5 ⁇ -dihydroreductase (for example finasteride), anti-invasion agents (for example metalloproteinase inhibitors like marimastat and inhibitors of urokinase
  • antioestrogens for example tamoxifen, toremifene, raloxi
  • antiproliferative/antineoplastic drugs and combinations thereof, as used in medical oncology such as antimetabolites (for example antifolates like methotrexate, fluoropyrimidines like 5-fluorouracil, purine and adenosine analogues, cytosine arabinoside); antitumour antibiotics (for example anthracyclines like doxorubicin, daunomycin, epirubicin and idarubicin, mitomycin-C, dactinomycin, mithramycin); platinum derivatives (for example cisplatin, carboplatin); alkylating agents (for example nitrogen mustard, melphalan, chlorambucil, busulphan, cyclophosphamide, ifosfamide, nitrosoureas, thiotepa); antimitotic agents (for example vinca alkaloids like vincrisitine and taxoids like taxol, taxotere); topoisome
  • antimetabolites
  • a pharmaceutical product comprising a pyrimidine derivative of the formula (I) as defined hereinbefore, or a pharmaceutically acceptable salt or in vivo hydrolysable ester thereof, and an additional anti -tumour substance as defined hereinbefore for the conjoint treatment of cancer.
  • An anti-emetic may also be usefully administered, for example when using such conjoint treatment as described above.
  • the compounds of formula (I) and their pharmaceutically acceptable salts are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of inhibitors of cell cycle activity in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.
  • Solvent A 95% water, 5% acetonitrile + 0.1 % Formic acid
  • the title compound can be prepared by a method analogous to that used in Method 22 above (parts A-C) using mo ⁇ holine in place of N-methylaniline.
  • the above formulations may be obtained by conventional procedures well known in the pharmaceutical art.
  • the tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
PCT/GB2001/000782 2000-03-01 2001-02-26 Pyrimidine compounds WO2001064654A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
US10/220,139 US7153964B2 (en) 2000-03-01 2001-02-26 Pyrimidine compounds
NZ520394A NZ520394A (en) 2000-03-01 2001-02-26 Pyrimidine compounds
DK01905990T DK1272477T3 (da) 2000-03-01 2001-02-26 Pyrimidinforbindelser
JP2001563496A JP4913305B2 (ja) 2000-03-01 2001-02-26 ピリミジン化合物
CA2399196A CA2399196C (en) 2000-03-01 2001-02-26 Pyrimidine compounds
EP01905990A EP1272477B1 (en) 2000-03-01 2001-02-26 Pyrimidine compounds
DE60128343T DE60128343T2 (de) 2000-03-01 2001-02-26 Pyrimidine verbindungen
BRPI0108841A BRPI0108841B8 (pt) 2000-03-01 2001-02-26 derivado de pirimidina, processo para prepapar o mesmo, e composição farmacêutica
MXPA02008370A MXPA02008370A (es) 2000-03-01 2001-02-26 Compuestos de pirimidina.
IL15088301A IL150883A0 (en) 2000-03-01 2001-02-26 Pyrimidine compounds
AU33953/01A AU765151B2 (en) 2000-03-01 2001-02-26 Pyrimidine compounds
IL150883A IL150883A (en) 2000-03-01 2002-07-23 Pyrimidine compounds, processes for their preparation and medicinal preparations containing them
NO20024154A NO325241B1 (no) 2000-03-01 2002-08-30 Pyrimidinderivat, fremgangsmate for fremstilling og anvendelse derav, samt farmasoytisk sammensetning
CY2015035C CY2015035I2 (el) 2000-03-01 2015-09-07 Ενωσεις πυριμιδινης
NO2015020C NO2015020I1 (no) 2000-03-01 2015-09-10 Ceritinib, 5-klor-N-5-metyl-4-(piperidin-4-yl)-2-[(propan-2-yl)oksy]fenyl-N-[2-(propan-2-sulfonyl)fenyl]pyrimidine-2,4-diamin, eller et farmasøytisk akseptabelt salt derav

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0004888.4A GB0004888D0 (en) 2000-03-01 2000-03-01 Chemical compounds
GB0004888.4 2000-03-01

Publications (1)

Publication Number Publication Date
WO2001064654A1 true WO2001064654A1 (en) 2001-09-07

Family

ID=9886704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2001/000782 WO2001064654A1 (en) 2000-03-01 2001-02-26 Pyrimidine compounds

Country Status (22)

Country Link
US (1) US7153964B2 (no)
EP (1) EP1272477B1 (no)
JP (1) JP4913305B2 (no)
KR (1) KR100790414B1 (no)
CN (1) CN100445270C (no)
AT (1) ATE361916T1 (no)
AU (1) AU765151B2 (no)
BR (1) BRPI0108841B8 (no)
CA (1) CA2399196C (no)
CY (2) CY1108019T1 (no)
DE (1) DE60128343T2 (no)
DK (1) DK1272477T3 (no)
ES (1) ES2284617T3 (no)
GB (1) GB0004888D0 (no)
IL (2) IL150883A0 (no)
LU (1) LU92824I2 (no)
MX (1) MXPA02008370A (no)
NO (2) NO325241B1 (no)
NZ (1) NZ520394A (no)
PT (1) PT1272477E (no)
WO (1) WO2001064654A1 (no)
ZA (1) ZA200206191B (no)

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002096887A1 (en) * 2001-05-30 2002-12-05 Astrazeneca Ab 2-anilino-pyrimidine derivatives as cyclin dependent kinase inhibitors
WO2003030909A1 (en) * 2001-09-25 2003-04-17 Bayer Pharmaceuticals Corporation 2- and 4-aminopyrimidines n-substtituded by a bicyclic ring for use as kinase inhibitors in the treatment of cancer
US6593326B1 (en) 1998-12-24 2003-07-15 Astrazeneca Ab 2,4-diamino pyrimidine compounds having anti-cell proliferative activity
WO2003076434A1 (en) * 2002-03-09 2003-09-18 Astrazeneca Ab 4- imidazolyl substuited pyrimidine derivatives with cdk inhibitiory activity
WO2003076437A1 (de) * 2002-03-11 2003-09-18 Schering Aktiengesellschaft Cdk inhibitorische 2-heteroaryl-pyrimidine, deren herstellung und verwendung als arzneimittel
US6632820B1 (en) 1998-08-29 2003-10-14 Astrazeneca Ab Pyrimidine compounds
DE10212098A1 (de) * 2002-03-11 2003-10-23 Schering Ag CDK inhibitorische Pyrimidine, deren Herstellung und Verwendung als Arzneimittel
US6649608B2 (en) 2000-03-01 2003-11-18 Astrazeneca Ab 2,4-di(hetero-)arylamino (oxy)-5-substituted pyrimidines as antineoplastic agents
WO2003095448A1 (en) * 2002-05-06 2003-11-20 Bayer Pharmaceuticals Corporation Pyridinyl amino pyrimidine derivatives useful for treating hyper-proliferative disorders
US6670368B1 (en) 1999-04-06 2003-12-30 Astrazeneca Ab Pyrimidine compounds with pharmaceutical activity
US6706717B2 (en) 2000-12-21 2004-03-16 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US6710052B2 (en) 2000-03-01 2004-03-23 Astrazeneca Pyrimidine compounds
US6716831B1 (en) 1999-03-06 2004-04-06 Astrazeneca Ab 2,4-diamino-pyrimidine deprivatives having anti-cell proliferative activity
WO2004039796A1 (de) * 2002-10-28 2004-05-13 Bayer Healthcare Ag Heteroaryloxy-substituierte phenylaminopyrimidine als rho-kinaseinhibitoren
WO2004074244A2 (en) * 2003-02-20 2004-09-02 Smithkline Beecham Corporation Pyrimidine compounds
US6838464B2 (en) 2000-03-01 2005-01-04 Astrazeneca Ab 2,4-Di(hetero-)arylamino(-oxy)-5-substituted pyrimidines as antineaoplastic agents
US6844341B2 (en) 2001-02-17 2005-01-18 Astrazeneca Ab Pyrimidine derivatives for inhibition of cell proliferation
US6855719B1 (en) 1999-08-21 2005-02-15 Astrazeneca Ab Imidazo[1,2-A]pyridine and pyrazolo[2,3-A]pyridine derivatives
US6906065B2 (en) 2000-03-28 2005-06-14 Astrazeneca Ab 4-Amino-5-cyano-2-anilino-pyrimidine derivatives and their use as inhibitors of cell-cycle kinases
DE10349423A1 (de) * 2003-10-16 2005-06-16 Schering Ag Sulfoximinsubstituierte Parimidine als CDK- und/oder VEGF-Inhibitoren, deren Herstellung und Verwendung als Arzneimittel
US6908920B2 (en) 2000-07-11 2005-06-21 Astrazeneca Ab Pyrimidine derivatives
US6969714B2 (en) 2000-09-05 2005-11-29 Astrazeneca Ab Imidazolo-5-YL-2-anilino-pyrimidines as agents for the inhibition of the cell proliferation
WO2006044457A1 (en) * 2004-10-13 2006-04-27 Wyeth N-benzenesulfonyl substituted anilino-pyrimidine analogs
US7105530B2 (en) 2000-12-21 2006-09-12 Smithkline Beecham Corporation Pyrimidineamines as angiogenesis modulators
US7122542B2 (en) 2003-07-30 2006-10-17 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds
WO2006074057A3 (en) * 2004-12-30 2006-10-26 Exelixis Inc Pyrimidine derivatives as kinase modulators and method of use
US7157455B2 (en) 2003-02-10 2007-01-02 Hoffmann-La Roche Inc. 4-Aminopyrimidine-5-one derivatives
FR2888239A1 (fr) * 2005-07-11 2007-01-12 Sanofi Aventis Sa Nouveaux derives de 2,4-dianilinopyrimidines, leur preparation, a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
WO2007006926A2 (fr) * 2005-07-11 2007-01-18 Sanofi-Aventis Nouveaux derives de 2,4-dianilinopyrimidines, leur preparation, a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
US7166599B2 (en) 2001-10-17 2007-01-23 Boehringer Ingelheim Pharma Gmbh & Co. Kg Trisubstituted pyrimidines
US7173028B2 (en) 2001-10-17 2007-02-06 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pyrimidine derivatives
JP2007502260A (ja) * 2003-08-15 2007-02-08 ノバルティス アクチエンゲゼルシャフト 新生物疾患、炎症および免疫障害の処置に有用な2,4−ピリミジンジアミン
US7176212B2 (en) 1998-08-29 2007-02-13 Astrazeneca Ab 2,4-diamino pyrimidine compounds having anti-cell proliferative activity
FR2893941A1 (fr) * 2005-11-25 2007-06-01 Sanofi Aventis Sa Nouveaux derives de 2,4-dianilinopyridines, leur preparation a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
US7288547B2 (en) 2002-03-11 2007-10-30 Schering Ag CDK-inhibitory 2-heteroaryl-pyrimidines, their production and use as pharmaceutical agents
US7312225B2 (en) 2002-08-21 2007-12-25 Bayer Schering Pharma Ag Macrocyclic pyrimidines, their production and use as pharmaceutical agents
WO2007098507A3 (en) * 2006-02-24 2008-01-31 Rigel Pharmaceuticals Inc Compositions and methods for inhibition of the jak pathway
EP1904457A2 (en) * 2005-06-08 2008-04-02 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the jak pathway
WO2008079907A1 (en) * 2006-12-20 2008-07-03 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the jak pathway
FR2911138A1 (fr) * 2007-01-05 2008-07-11 Sanofi Aventis Sa Nouveaux derives de n, n'-2,4-dianilinopyrimidines, leur preparation a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
WO2008005538A3 (en) * 2006-07-05 2008-07-24 Exelixis Inc Methods of using igf1r and abl kinase modulators
US7405220B2 (en) 2004-06-09 2008-07-29 Hoffmann-La Roche Inc. Pyrazolopyrimidines
US7427626B2 (en) 2003-05-16 2008-09-23 Astrazeneca Ab 2-Anilino-4-(imidazol-5-yl)-pyrimidine derivatives and their use as cdk (cdk2) inhibitors
CN101282945A (zh) * 2005-06-08 2008-10-08 里格尔药品股份有限公司 抑制jak途径的组合物和方法
US7446105B2 (en) 2002-03-09 2008-11-04 Astrazeneca Ab Pyrimidine compounds
US7459455B2 (en) 2002-02-08 2008-12-02 Smithkline Beecham Corporation Pyrimidine compounds
US7465728B2 (en) 2002-03-09 2008-12-16 Astrazeneca Ab Derivatives of 4-(imidazol-5-yl)-2-(4-sulfoanilino)pyrimidine with CDK inhibitory activity
US7485638B2 (en) 2002-03-09 2009-02-03 Astrazeneca Ab Pyrimidine compounds
FR2919869A1 (fr) * 2007-08-09 2009-02-13 Sanofi Aventis Sa Nouveaux derives de n, n'-2,4-dianilinopyrimidines, leur preparation a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
US7517886B2 (en) 2002-07-29 2009-04-14 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds
US7579344B2 (en) 2003-05-16 2009-08-25 Astrazeneca Ab Pyrimidine derivatives possessing cell-cycle inhibitors activity
WO2009158571A1 (en) * 2008-06-27 2009-12-30 Avila Therapeutics And Uses Thereof Heteroaryl compounds and uses thereof
US7655652B2 (en) 2004-02-03 2010-02-02 Astrazeneca Ab Imidazolo-5-yl-2-anilinopyrimidines as agents for the inhibition of cell proliferation
US7655797B2 (en) 2002-02-01 2010-02-02 Rigel Pharmaceuticals, Inc. Intermediates for making 2,4-pyrimidinediamine compounds
US7705009B2 (en) 2005-11-22 2010-04-27 Hoffman-La Roche Inc. 4-aminopyrimidine-5-thione derivatives
US7705148B2 (en) 2002-08-09 2010-04-27 Janssen Pharmaceutica N.V. Processes for the preparation of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile
US7745428B2 (en) 2005-09-30 2010-06-29 Astrazeneca Ab Imidazo[1,2-A]pyridine having anti-cell-proliferation activity
US7851480B2 (en) 2004-11-24 2010-12-14 Rigel Pharmaceuticals, Inc. Spiro 2,4-pyrimidinediamine compounds and their uses
US7943627B2 (en) 2002-03-15 2011-05-17 Novartis Ag 2,4-diaminopyrimidine derivatives
US7956063B2 (en) 2001-08-13 2011-06-07 Janssen Pharmaceutica Nv Salt of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile
US7964592B2 (en) 2003-03-14 2011-06-21 Novartis Ag 2,4-di (phenylamino) pyrimidines useful in the treatment of neoplastic diseases, inflammatory and immune system disorders
US8039479B2 (en) 2006-12-08 2011-10-18 Irm Llc Compounds and compositions as protein kinase inhibitors
US8080551B2 (en) 2001-08-13 2011-12-20 Janssen Pharmaceutica N.V. HIV inhibiting pyrimidines derivatives
US8101629B2 (en) 2001-08-13 2012-01-24 Janssen Pharmaceutica N.V. Salt of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile
US8193197B2 (en) * 2006-10-19 2012-06-05 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US20140057913A1 (en) * 2011-03-30 2014-02-27 H. Lee Moffitt Cancer Center And Research Institute, Inc. Aurora kinase inhibitors and methods of making and using thereof
US8785464B2 (en) 2008-11-24 2014-07-22 Boehringer Ingelheim International Gmbh Pyrimidine derivatives that inhibit FAK/PTK2
WO2014126954A1 (en) * 2013-02-13 2014-08-21 OSI Pharmaceuticals, LLC Regioselective synthesis of substituted pyrimidines
US8846689B2 (en) 2008-11-24 2014-09-30 Boehringer Ingelheim International Gmbh Substituted pyrimidines for the treatment of diseases such as cancer
US8975249B2 (en) 2010-11-01 2015-03-10 Celgene Avilomics Research, Inc. Heterocyclic compounds and uses thereof
US9012462B2 (en) 2008-05-21 2015-04-21 Ariad Pharmaceuticals, Inc. Phosphorous derivatives as kinase inhibitors
US9056839B2 (en) 2012-03-15 2015-06-16 Celgene Avilomics Research, Inc. Solid forms of an epidermal growth factor receptor kinase inhibitor
US9096624B2 (en) 2009-06-01 2015-08-04 OSI Pharmaceuticals, LLC Amino pyrimidine anticancer compounds
US9108927B2 (en) 2012-03-15 2015-08-18 Celgene Avilomics Research, Inc. Salts of an epidermal growth factor receptor kinase inhibitor
US9126950B2 (en) 2012-12-21 2015-09-08 Celgene Avilomics Research, Inc. Heteroaryl compounds and uses thereof
US9133224B2 (en) 2010-11-29 2015-09-15 OSI Pharmaceuticals, LLC Macrocyclic kinase inhibitors
US9145387B2 (en) 2013-02-08 2015-09-29 Celgene Avilomics Research, Inc. ERK inhibitors and uses thereof
US9238629B2 (en) 2010-11-01 2016-01-19 Celgene Avilomics Research, Inc. Heteroaryl compounds and uses thereof
US9266912B2 (en) 2005-01-19 2016-02-23 Rigel Pharmaceuticals, Inc. Prodrugs of 2,4-pyrimidinediamine compounds and their uses
US9273077B2 (en) 2008-05-21 2016-03-01 Ariad Pharmaceuticals, Inc. Phosphorus derivatives as kinase inhibitors
US9364476B2 (en) 2011-10-28 2016-06-14 Celgene Avilomics Research, Inc. Methods of treating a Bruton's Tyrosine Kinase disease or disorder
US9409887B2 (en) 2010-11-10 2016-08-09 Celgene Avilomics Research, Inc. Mutant-selective EGFR inhibitors and uses thereof
US9409921B2 (en) 2008-06-27 2016-08-09 Celgene Avilomics Research, Inc. 2,4-disubstituted pyrimidines as kinase inhibitors
US9415049B2 (en) 2013-12-20 2016-08-16 Celgene Avilomics Research, Inc. Heteroaryl compounds and uses thereof
US9492471B2 (en) 2013-08-27 2016-11-15 Celgene Avilomics Research, Inc. Methods of treating a disease or disorder associated with Bruton'S Tyrosine Kinase
US9604936B2 (en) 2010-08-10 2017-03-28 Celgene Car Llc Besylate salt of a BTK inhibitor
US9611283B1 (en) 2013-04-10 2017-04-04 Ariad Pharmaceuticals, Inc. Methods for inhibiting cell proliferation in ALK-driven cancers
US9834571B2 (en) 2012-05-05 2017-12-05 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in EGFR-driven cancers
US9834518B2 (en) 2011-05-04 2017-12-05 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in EGFR-driven cancers
US9908884B2 (en) 2009-05-05 2018-03-06 Dana-Farber Cancer Institute, Inc. EGFR inhibitors and methods of treating disorders
US10005760B2 (en) 2014-08-13 2018-06-26 Celgene Car Llc Forms and compositions of an ERK inhibitor
GB2566622A (en) * 2014-05-08 2019-03-20 Tosoh F Tech Inc 5-(Trifluoromethyl)pyrimidine derivatives and method for producing same
US11351168B1 (en) 2008-06-27 2022-06-07 Celgene Car Llc 2,4-disubstituted pyrimidines useful as kinase inhibitors
US11529350B2 (en) 2019-07-03 2022-12-20 Sumitomo Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (TNK1) inhibitors and uses thereof

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064251A1 (en) * 2004-12-17 2006-06-22 Astrazeneca Ab 4- (4- (imidazol-4-yl) pyrimidin-2-ylamino) benzamides as cdk inhibitors
AU2006274733B2 (en) * 2005-07-30 2010-09-16 Astrazeneca Ab Imidazolyl-pyrimidine compounds for use in the treatment of proliferative disorders
US8604042B2 (en) * 2005-11-01 2013-12-10 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
US8133900B2 (en) 2005-11-01 2012-03-13 Targegen, Inc. Use of bi-aryl meta-pyrimidine inhibitors of kinases
US7528143B2 (en) 2005-11-01 2009-05-05 Targegen, Inc. Bi-aryl meta-pyrimidine inhibitors of kinases
TW200811169A (en) * 2006-05-26 2008-03-01 Astrazeneca Ab Chemical compounds
CA2681015C (en) 2007-03-16 2016-06-21 The Scripps Research Institute Inhibitors of focal adhesion kinase
CN103951658B (zh) 2007-04-18 2017-10-13 辉瑞产品公司 用于治疗异常细胞生长的磺酰胺衍生物
KR101294731B1 (ko) * 2007-06-04 2013-08-16 삼성디스플레이 주식회사 어레이 기판, 이를 갖는 표시패널 및 이의 제조방법
US8138339B2 (en) 2008-04-16 2012-03-20 Portola Pharmaceuticals, Inc. Inhibitors of protein kinases
KR101773313B1 (ko) 2008-04-16 2017-08-31 포톨라 파마슈티컬스, 인코포레이티드 syk 또는 JAK 키나제 억제제로서의 2,6-디아미노-피리미딘-5-일-카르복스아미드
NZ589315A (en) 2008-04-16 2012-11-30 Portola Pharm Inc 2,6-diamino-pyrimidin-5-yl-carboxamides as Spleen tryosine kinase (syk) or Janus kinase (JAK) inhibitors
BRPI0910668A2 (pt) 2008-04-22 2019-09-24 Portola Pharmaceutiacals Inc inibidores de proteína quinases
WO2012061428A2 (en) 2010-11-01 2012-05-10 Portola Pharmaceuticals, Inc. Nicotinamides as jak kinase modulators
WO2012061415A1 (en) 2010-11-01 2012-05-10 Portola Pharmaceuticals, Inc. Oxypyrimidines as syk modulators
CN103282352B (zh) 2010-11-01 2016-08-10 波托拉医药品公司 作为syk调节剂的苯甲酰胺类和烟酰胺类
WO2012060847A1 (en) 2010-11-07 2012-05-10 Targegen, Inc. Compositions and methods for treating myelofibrosis
MX363551B (es) 2011-11-23 2019-03-27 Portola Pharmaceuticals Inc Star Compuestos derivados de pirazina como inhibidores de cinasa.
WO2014058921A2 (en) 2012-10-08 2014-04-17 Portola Pharmaceuticals, Inc. Substituted pyrimidinyl kinase inhibitors
US11203576B2 (en) * 2016-03-11 2021-12-21 H. Lee Moffitt Cancer Center And Research Institute, Inc. Aurora kinase and Janus kinase inhibitors for prevention of graft versus host disease
CN109715620B (zh) 2016-08-29 2022-05-06 密歇根大学董事会 作为alk抑制剂的氨基嘧啶
US20220040324A1 (en) 2018-12-21 2022-02-10 Daiichi Sankyo Company, Limited Combination of antibody-drug conjugate and kinase inhibitor
WO2020206137A1 (en) 2019-04-04 2020-10-08 Dana-Farber Cancer Institute, Inc. Cdk2/5 degraders and uses thereof
US20230404973A1 (en) * 2019-10-11 2023-12-21 Centre National De La Recherche Scientifique New carbazole derivatives sensitizing cells to anti-cancer agents
CN112390760B (zh) * 2020-10-15 2022-07-29 北京师范大学 靶向fak的化合物及其制备方法和应用
WO2023249970A1 (en) * 2022-06-21 2023-12-28 Nikang Therapeutics, Inc. Bifunctional compounds containing pyrimidine derivatives for degrading cyclin-dependent kinase 2 via ubiquitin proteasome pathway

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019065A1 (en) * 1995-11-20 1997-05-29 Celltech Therapeutics Limited Substituted 2-anilinopyrimidines useful as protein kinase inhibitors
EP0945443A1 (en) * 1998-03-27 1999-09-29 Janssen Pharmaceutica N.V. HIV inhibiting pyrimidine derivatives
WO2000012485A1 (en) * 1998-08-29 2000-03-09 Astrazeneca Ab Pyrimidine compounds
WO2000039101A1 (en) * 1998-12-24 2000-07-06 Astrazeneca Ab Pyrimidine compounds
WO2000059892A1 (en) * 1999-04-06 2000-10-12 Astrazeneca Ab Pyrimidine compounds with pharmaceutical activity

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432493A (en) * 1966-06-27 1969-03-11 Abbott Lab Substituted sulfanilamides
US4946956A (en) 1988-09-21 1990-08-07 Uniroyal Chemical Company, Inc. Arylenediamine substituted pyrimidines
HU206337B (en) 1988-12-29 1992-10-28 Mitsui Petrochemical Ind Process for producing pyrimidine derivatives and pharmaceutical compositions
US4983608A (en) 1989-09-05 1991-01-08 Hoechst-Roussell Pharmaceuticals, Inc. N-substituted-4-pyrimidinamines and pyrimidinediamines
GB9012592D0 (en) 1990-06-06 1990-07-25 Smithkline Beecham Intercredit Compounds
WO1992020642A1 (en) 1991-05-10 1992-11-26 Rhone-Poulenc Rorer International (Holdings) Inc. Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase
TW225528B (no) 1992-04-03 1994-06-21 Ciba Geigy Ag
US5521184A (en) 1992-04-03 1996-05-28 Ciba-Geigy Corporation Pyrimidine derivatives and processes for the preparation thereof
US5516775A (en) 1992-08-31 1996-05-14 Ciba-Geigy Corporation Further use of pyrimidine derivatives
DE69329067T2 (de) 1992-10-05 2001-05-10 Ube Industries, Ltd. Pyridmidin-derivate
US5543520A (en) 1993-10-01 1996-08-06 Ciba-Geigy Corporation Pyrimidine derivatives
NZ273617A (en) 1993-10-01 1996-11-26 Ciba Geigy Ag N-phenyl-2-pyrimidineamine derivatives pharmaceutical compositions
US5612340A (en) 1993-10-01 1997-03-18 Ciba-Geigy Corporation Pyrimidineamine derivatives and processes for the preparation thereof
DE69434721T2 (de) 1993-10-01 2006-11-09 Novartis Ag Pharmacologisch wirksame pyrimidinderivate und verfahren zu deren herstellung
GB9325217D0 (en) 1993-12-09 1994-02-09 Zeneca Ltd Pyrimidine derivatives
CA2197298C (en) 1994-08-13 1999-10-19 Jong Wook Lee Novel pyrimidine derivatives and processes for the preparation thereof
DK0813525T3 (da) 1995-03-10 2004-02-16 Berlex Lab Benzamidinderivater, deres fremstilling og anvendelse som antikoagulanter
IL118544A (en) 1995-06-07 2001-08-08 Smithkline Beecham Corp History of imidazole, the process for their preparation and the pharmaceutical preparations containing them
US5739143A (en) 1995-06-07 1998-04-14 Smithkline Beecham Corporation Imidazole compounds and compositions
US6096739A (en) 1996-03-25 2000-08-01 Smithkline Beecham Corporation Treatment for CNS injuries
AU2381397A (en) 1996-04-19 1997-11-12 Novo Nordisk A/S Modulators of molecules with phosphotyrosine recognition units
TW440563B (en) 1996-05-23 2001-06-16 Hoffmann La Roche Aryl pyrimidine derivatives and a pharmaceutical composition thereof
JP3418624B2 (ja) 1996-06-10 2003-06-23 メルク エンド カンパニー インコーポレーテッド サイトカイン阻害活性を有する置換イミダゾール類
GB9619284D0 (en) 1996-09-16 1996-10-30 Celltech Therapeutics Ltd Chemical compounds
AU5147598A (en) 1996-10-17 1998-05-11 Smithkline Beecham Corporation Methods for reversibly inhibiting myelopoiesis in mammalian tissue
GB9622363D0 (en) 1996-10-28 1997-01-08 Celltech Therapeutics Ltd Chemical compounds
ZA9711092B (en) 1996-12-11 1999-07-22 Smithkline Beecham Corp Novel compounds.
WO1998033798A2 (en) 1997-02-05 1998-08-06 Warner Lambert Company Pyrido[2,3-d]pyrimidines and 4-amino-pyrimidines as inhibitors of cell proliferation
DE19710435A1 (de) 1997-03-13 1998-09-17 Hoechst Ag Verwendung von Pyrimidinderivaten zur Prävention von Krebs allein oder in Kombination mit anderen therapeutischen Maßnahmen
GB9705361D0 (en) 1997-03-14 1997-04-30 Celltech Therapeutics Ltd Chemical compounds
JP2002501532A (ja) 1997-05-30 2002-01-15 メルク エンド カンパニー インコーポレーテッド 新規血管形成阻害薬
CZ9904452A3 (cs) 1997-06-12 2002-02-13 Rhone-Poulenc Rorer Limited Cyklické acetaly imidazolylu, způsob jejich přípravy, jejich pouľití a farmaceutický prostředek, který je obsahuje
TW517055B (en) 1997-07-02 2003-01-11 Smithkline Beecham Corp Novel substituted imidazole compounds
EP1019391A1 (en) 1997-10-02 2000-07-19 Merck & Co. Inc. Inhibitors of prenyl-protein transferase
CA2316296A1 (en) 1997-10-10 1999-04-22 Imperial College Of Science, Technology And Medicine Use of csaidtm compounds for the management of uterine contractions
AU1507199A (en) 1997-12-15 1999-07-05 Yamanouchi Pharmaceutical Co., Ltd. Novel pyrimidine-5-carboxamide derivatives
AR017219A1 (es) 1997-12-19 2001-08-22 Smithkline Beecham Corp Derivados de imidazol 1,4,5 sustituidos, composiciones que los comprenden, procedimiento para la preparacion de dichos derivados, uso de los derivados parala manufactura de un medicamento
EA200000840A1 (ru) 1998-02-17 2001-02-26 Туларик, Инк. Антивирусные производные пиримидина
DE69932828T2 (de) * 1998-08-29 2007-10-18 Astrazeneca Ab Pyrimidine verbindungen
JP2002526500A (ja) 1998-09-18 2002-08-20 ビーエーエスエフ アクチェンゲゼルシャフト プロテインキナーゼ阻害剤としてのピロロピリミジン
PL347138A1 (en) 1998-09-18 2002-03-25 Basf Ag 4-aminopyrrolopyrimidines as kinase inhibitors
US6531477B1 (en) 1998-10-13 2003-03-11 Dupont Pharmaceuticals Company 6-substituted pyrazolo [3,4-d] pyrimidin-4-ones useful as cyclin dependent kinase inhibitors
WO2000025780A1 (en) 1998-10-29 2000-05-11 Bristol-Myers Squibb Company Compounds derived from an amine nucleus that are inhibitors of impdh enzyme
WO2000026209A1 (en) 1998-11-03 2000-05-11 Novartis Ag Anti-inflammatory 4-phenyl-5-pyrimidinyl-imidazoles
GEP20033092B (en) 1999-02-01 2003-10-27 Cv Therapeutics Inc Us Purine Inhibitors of Cyclin Dependent Kinase 2 and Ik-Aa
GB9903762D0 (en) 1999-02-18 1999-04-14 Novartis Ag Organic compounds
GB9905075D0 (en) 1999-03-06 1999-04-28 Zeneca Ltd Chemical compounds
US6627633B2 (en) 1999-03-17 2003-09-30 Albany Molecular Research, Inc. 6-substituted biaryl purine derivatives as potent cyclin/CDK inhibitors and antiproliferative agents
GB9914258D0 (en) 1999-06-18 1999-08-18 Celltech Therapeutics Ltd Chemical compounds
GB9919778D0 (en) 1999-08-21 1999-10-27 Zeneca Ltd Chemical compounds
GB9924862D0 (en) 1999-10-20 1999-12-22 Celltech Therapeutics Ltd Chemical compounds
ES2254238T3 (es) 1999-10-27 2006-06-16 Novartis Ag Compuestos de tiazol e imidazo(4,5-b)piridina y su uso farmaceutico.
WO2001037835A1 (en) 1999-11-22 2001-05-31 Smithkline Beecham Plc. Novel compounds
AU2735201A (en) 1999-12-28 2001-07-09 Pharmacopeia, Inc. Pyrimidine and triazine kinase inhibitors
HUP0301117A3 (en) 2000-02-17 2004-01-28 Amgen Inc Thousand Oaks Imidazole derivatives kinase inhibitors, their use, process for their preparation and pharmaceutical compositions containing them
GB0004887D0 (en) * 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0004886D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0004890D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0007371D0 (en) 2000-03-28 2000-05-17 Astrazeneca Uk Ltd Chemical compounds
GB0016877D0 (en) 2000-07-11 2000-08-30 Astrazeneca Ab Chemical compounds
GB0021726D0 (en) 2000-09-05 2000-10-18 Astrazeneca Ab Chemical compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019065A1 (en) * 1995-11-20 1997-05-29 Celltech Therapeutics Limited Substituted 2-anilinopyrimidines useful as protein kinase inhibitors
EP0945443A1 (en) * 1998-03-27 1999-09-29 Janssen Pharmaceutica N.V. HIV inhibiting pyrimidine derivatives
WO2000012485A1 (en) * 1998-08-29 2000-03-09 Astrazeneca Ab Pyrimidine compounds
WO2000039101A1 (en) * 1998-12-24 2000-07-06 Astrazeneca Ab Pyrimidine compounds
WO2000059892A1 (en) * 1999-04-06 2000-10-12 Astrazeneca Ab Pyrimidine compounds with pharmaceutical activity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EL-KERDAWY, M. M. ET AL: "2,4-bis(substituted) 5-nitropyrimidines of expected diuretic action", EGYPT. J. CHEM. (1987), VOLUME DATE 1986, 29(2), 247-51, XP000999986 *
GHOSH, DOLLY: "2,4-Bis(arylamino)-6-methylpyrimidines as antimicrobial agents", J. INDIAN CHEM. SOC. (1981), 58(5), 512-13, XP000918018 *

Cited By (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176212B2 (en) 1998-08-29 2007-02-13 Astrazeneca Ab 2,4-diamino pyrimidine compounds having anti-cell proliferative activity
US6632820B1 (en) 1998-08-29 2003-10-14 Astrazeneca Ab Pyrimidine compounds
US6593326B1 (en) 1998-12-24 2003-07-15 Astrazeneca Ab 2,4-diamino pyrimidine compounds having anti-cell proliferative activity
US6716831B1 (en) 1999-03-06 2004-04-06 Astrazeneca Ab 2,4-diamino-pyrimidine deprivatives having anti-cell proliferative activity
US6670368B1 (en) 1999-04-06 2003-12-30 Astrazeneca Ab Pyrimidine compounds with pharmaceutical activity
US6855719B1 (en) 1999-08-21 2005-02-15 Astrazeneca Ab Imidazo[1,2-A]pyridine and pyrazolo[2,3-A]pyridine derivatives
US6838464B2 (en) 2000-03-01 2005-01-04 Astrazeneca Ab 2,4-Di(hetero-)arylamino(-oxy)-5-substituted pyrimidines as antineaoplastic agents
US7067522B2 (en) 2000-03-01 2006-06-27 Astrazeneca Ab 2,4,DI (hetero-) arylamino (-oxy)-5-substituted pyrimidines as antineoplastic agents
US6710052B2 (en) 2000-03-01 2004-03-23 Astrazeneca Pyrimidine compounds
US6649608B2 (en) 2000-03-01 2003-11-18 Astrazeneca Ab 2,4-di(hetero-)arylamino (oxy)-5-substituted pyrimidines as antineoplastic agents
US6906065B2 (en) 2000-03-28 2005-06-14 Astrazeneca Ab 4-Amino-5-cyano-2-anilino-pyrimidine derivatives and their use as inhibitors of cell-cycle kinases
US6908920B2 (en) 2000-07-11 2005-06-21 Astrazeneca Ab Pyrimidine derivatives
US6969714B2 (en) 2000-09-05 2005-11-29 Astrazeneca Ab Imidazolo-5-YL-2-anilino-pyrimidines as agents for the inhibition of the cell proliferation
US7858626B2 (en) 2000-12-21 2010-12-28 Glaxosmithkline Llc Pyrimidineamines as angiogenesis modulators
US7105530B2 (en) 2000-12-21 2006-09-12 Smithkline Beecham Corporation Pyrimidineamines as angiogenesis modulators
US7241781B2 (en) 2000-12-21 2007-07-10 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US7037926B2 (en) 2000-12-21 2006-05-02 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US6706717B2 (en) 2000-12-21 2004-03-16 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US6956045B2 (en) 2000-12-21 2005-10-18 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US7262203B2 (en) 2000-12-21 2007-08-28 Smithkline Beecham Corporation Pyrimidineamines as angiogenesis modulators
US6958336B2 (en) 2000-12-21 2005-10-25 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US8114885B2 (en) 2000-12-21 2012-02-14 Glaxosmithkline Llc Chemical compounds
US6953795B2 (en) 2000-12-21 2005-10-11 Bristol-Myers Squibb Company Thiazolyl inhibitors of Tec family tyrosine kinases
US6844341B2 (en) 2001-02-17 2005-01-18 Astrazeneca Ab Pyrimidine derivatives for inhibition of cell proliferation
WO2002096887A1 (en) * 2001-05-30 2002-12-05 Astrazeneca Ab 2-anilino-pyrimidine derivatives as cyclin dependent kinase inhibitors
US6939872B2 (en) 2001-05-30 2005-09-06 Astrazeneca Ab 2-anilino-pyrimidine derivatives as cyclin dependent kinase inhibitors
US8080551B2 (en) 2001-08-13 2011-12-20 Janssen Pharmaceutica N.V. HIV inhibiting pyrimidines derivatives
US9580392B2 (en) 2001-08-13 2017-02-28 Janssen Pharmaceutica Nv HIV replication inhibiting pyrimidines
US9981919B2 (en) 2001-08-13 2018-05-29 Janssen Pharmaceutical N.V. HIV replication inhibiting pyrimidines
US10611732B2 (en) 2001-08-13 2020-04-07 Janssen Pharmaceutica Nv HIV replication inhibiting pyrimidines
US7956063B2 (en) 2001-08-13 2011-06-07 Janssen Pharmaceutica Nv Salt of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile
US10370340B2 (en) 2001-08-13 2019-08-06 Janssen Pharmaceutica Nv HIV replication inhibiting pyrimidines
US8101629B2 (en) 2001-08-13 2012-01-24 Janssen Pharmaceutica N.V. Salt of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile
WO2003030909A1 (en) * 2001-09-25 2003-04-17 Bayer Pharmaceuticals Corporation 2- and 4-aminopyrimidines n-substtituded by a bicyclic ring for use as kinase inhibitors in the treatment of cancer
US7709480B2 (en) 2001-10-17 2010-05-04 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pyrimidine derivatives
US7166599B2 (en) 2001-10-17 2007-01-23 Boehringer Ingelheim Pharma Gmbh & Co. Kg Trisubstituted pyrimidines
US8420630B2 (en) 2001-10-17 2013-04-16 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pyrimidine derivatives
US7173028B2 (en) 2001-10-17 2007-02-06 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pyrimidine derivatives
US7655797B2 (en) 2002-02-01 2010-02-02 Rigel Pharmaceuticals, Inc. Intermediates for making 2,4-pyrimidinediamine compounds
US10682350B2 (en) 2002-02-01 2020-06-16 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US10709703B2 (en) 2002-02-01 2020-07-14 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US8835430B2 (en) 2002-02-01 2014-09-16 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US9416112B2 (en) 2002-02-01 2016-08-16 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US7820819B2 (en) 2002-02-01 2010-10-26 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US9913842B2 (en) 2002-02-01 2018-03-13 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US9018204B1 (en) 2002-02-01 2015-04-28 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US7803939B2 (en) 2002-02-01 2010-09-28 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US9346765B2 (en) 2002-02-01 2016-05-24 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US8334296B2 (en) 2002-02-01 2012-12-18 Rigel Pharmaceuticals, Inc. 2,4-pyrimidinediamine compounds and their uses
US7459455B2 (en) 2002-02-08 2008-12-02 Smithkline Beecham Corporation Pyrimidine compounds
US7446105B2 (en) 2002-03-09 2008-11-04 Astrazeneca Ab Pyrimidine compounds
WO2003076434A1 (en) * 2002-03-09 2003-09-18 Astrazeneca Ab 4- imidazolyl substuited pyrimidine derivatives with cdk inhibitiory activity
US7465728B2 (en) 2002-03-09 2008-12-16 Astrazeneca Ab Derivatives of 4-(imidazol-5-yl)-2-(4-sulfoanilino)pyrimidine with CDK inhibitory activity
US7442697B2 (en) 2002-03-09 2008-10-28 Astrazeneca Ab 4-imidazolyl substituted pyrimidine derivatives with CDK inhibitory activity
US7485638B2 (en) 2002-03-09 2009-02-03 Astrazeneca Ab Pyrimidine compounds
US7288547B2 (en) 2002-03-11 2007-10-30 Schering Ag CDK-inhibitory 2-heteroaryl-pyrimidines, their production and use as pharmaceutical agents
WO2003076437A1 (de) * 2002-03-11 2003-09-18 Schering Aktiengesellschaft Cdk inhibitorische 2-heteroaryl-pyrimidine, deren herstellung und verwendung als arzneimittel
DE10212098A1 (de) * 2002-03-11 2003-10-23 Schering Ag CDK inhibitorische Pyrimidine, deren Herstellung und Verwendung als Arzneimittel
US8431589B2 (en) 2002-03-15 2013-04-30 Novartis Ag 2,4-diaminopyrimidine derivatives
US7943627B2 (en) 2002-03-15 2011-05-17 Novartis Ag 2,4-diaminopyrimidine derivatives
WO2004046118A2 (en) * 2002-05-06 2004-06-03 Bayer Pharmaceuticals Corporation 2-4-(di-phenyl-amino)-pyrimidine derivatives useful for treating hyper-proliferative disorders
WO2003095448A1 (en) * 2002-05-06 2003-11-20 Bayer Pharmaceuticals Corporation Pyridinyl amino pyrimidine derivatives useful for treating hyper-proliferative disorders
WO2004046118A3 (en) * 2002-05-06 2004-08-12 Bayer Pharmaceuticals Corp 2-4-(di-phenyl-amino)-pyrimidine derivatives useful for treating hyper-proliferative disorders
US7825116B2 (en) 2002-07-29 2010-11-02 Rigel Pharmaceuticals, Inc. N2, N4-bis-aryl-5-fluoro-2,4-pyrimidinediamines
US7812029B1 (en) 2002-07-29 2010-10-12 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds
US7517886B2 (en) 2002-07-29 2009-04-14 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds
US7705148B2 (en) 2002-08-09 2010-04-27 Janssen Pharmaceutica N.V. Processes for the preparation of 4-[[4-[[4-(2-cyanoethenyl)-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile
US7312225B2 (en) 2002-08-21 2007-12-25 Bayer Schering Pharma Ag Macrocyclic pyrimidines, their production and use as pharmaceutical agents
WO2004039796A1 (de) * 2002-10-28 2004-05-13 Bayer Healthcare Ag Heteroaryloxy-substituierte phenylaminopyrimidine als rho-kinaseinhibitoren
US7737153B2 (en) 2002-10-28 2010-06-15 Bayer Schering Pharma Aktiengesellschaft Heteroaryloxy-substituted phenylaminopyrimidines as rho-kinase inhibitors
US7157455B2 (en) 2003-02-10 2007-01-02 Hoffmann-La Roche Inc. 4-Aminopyrimidine-5-one derivatives
US7615634B2 (en) 2003-02-10 2009-11-10 Hoffmann-La Roche Inc. 4-aminopyrimidine-5-one derivatives
JP2006518386A (ja) * 2003-02-20 2006-08-10 スミスクライン ビーチャム コーポレーション ピリミジン化合物
WO2004074244A3 (en) * 2003-02-20 2004-11-11 Smithkline Beecham Corp Pyrimidine compounds
US7514446B2 (en) 2003-02-20 2009-04-07 Smithkline Beecham Corporation Pyrimidine compounds
WO2004074244A2 (en) * 2003-02-20 2004-09-02 Smithkline Beecham Corporation Pyrimidine compounds
US8263590B2 (en) 2003-03-14 2012-09-11 Carlos Garcia-Echeverria Pyrimidine derivatives
US7964592B2 (en) 2003-03-14 2011-06-21 Novartis Ag 2,4-di (phenylamino) pyrimidines useful in the treatment of neoplastic diseases, inflammatory and immune system disorders
US7579344B2 (en) 2003-05-16 2009-08-25 Astrazeneca Ab Pyrimidine derivatives possessing cell-cycle inhibitors activity
US7427626B2 (en) 2003-05-16 2008-09-23 Astrazeneca Ab 2-Anilino-4-(imidazol-5-yl)-pyrimidine derivatives and their use as cdk (cdk2) inhibitors
US9751893B2 (en) 2003-07-30 2017-09-05 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds
US8178671B2 (en) 2003-07-30 2012-05-15 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2, 4-pyrimidinediamine compounds
US7122542B2 (en) 2003-07-30 2006-10-17 Rigel Pharmaceuticals, Inc. Methods of treating or preventing autoimmune diseases with 2,4-pyrimidinediamine compounds
US7893074B2 (en) 2003-08-15 2011-02-22 Novartis Ag 2, 4-pyrimidinediamines useful in the treatment of neoplastic diseases, inflammatory and immune system disorders
JP2007502260A (ja) * 2003-08-15 2007-02-08 ノバルティス アクチエンゲゼルシャフト 新生物疾患、炎症および免疫障害の処置に有用な2,4−ピリミジンジアミン
DE10349423A1 (de) * 2003-10-16 2005-06-16 Schering Ag Sulfoximinsubstituierte Parimidine als CDK- und/oder VEGF-Inhibitoren, deren Herstellung und Verwendung als Arzneimittel
US7338958B2 (en) 2003-10-16 2008-03-04 Schering Ag Sulfoximine-substituted pyrimidines as CDK-and/or VEGF inhibitors, their production and use as pharmaceutical agents
US8507510B2 (en) 2003-10-16 2013-08-13 Bayer Intellectual Property Gmbh Sulfoximine-substituted pyrimidines as CDK- and/or VEGF inhibitors, their production and use as pharmaceutical agents
US7655652B2 (en) 2004-02-03 2010-02-02 Astrazeneca Ab Imidazolo-5-yl-2-anilinopyrimidines as agents for the inhibition of cell proliferation
US7405220B2 (en) 2004-06-09 2008-07-29 Hoffmann-La Roche Inc. Pyrazolopyrimidines
US7799915B2 (en) 2004-10-13 2010-09-21 Wyeth Llc Anilino-pyrimidine analogs
WO2006044457A1 (en) * 2004-10-13 2006-04-27 Wyeth N-benzenesulfonyl substituted anilino-pyrimidine analogs
US7851480B2 (en) 2004-11-24 2010-12-14 Rigel Pharmaceuticals, Inc. Spiro 2,4-pyrimidinediamine compounds and their uses
US8211929B2 (en) 2004-12-30 2012-07-03 Exelixis, Inc. Pyrimidine derivatives as kinase modulators and method of use
WO2006074057A3 (en) * 2004-12-30 2006-10-26 Exelixis Inc Pyrimidine derivatives as kinase modulators and method of use
US9532998B2 (en) 2005-01-19 2017-01-03 Rigel Pharmaceuticals, Inc. Prodrugs of 2,4-pyrimidinediamine compounds and their uses
US10577381B2 (en) 2005-01-19 2020-03-03 Rigel Pharmaceuticals, Inc. Prodrugs of 2,4-pyrimidinediamine compounds and their uses
US9266912B2 (en) 2005-01-19 2016-02-23 Rigel Pharmaceuticals, Inc. Prodrugs of 2,4-pyrimidinediamine compounds and their uses
AU2006254840B2 (en) * 2005-06-08 2012-08-02 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US9593082B2 (en) 2005-06-08 2017-03-14 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
CN101282945A (zh) * 2005-06-08 2008-10-08 里格尔药品股份有限公司 抑制jak途径的组合物和方法
US9248190B2 (en) 2005-06-08 2016-02-02 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
JP2012229217A (ja) * 2005-06-08 2012-11-22 Rigel Pharmaceuticals Inc Jak経路の阻害のための組成物および方法
US10421752B2 (en) 2005-06-08 2019-09-24 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US7491732B2 (en) 2005-06-08 2009-02-17 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US11827628B2 (en) 2005-06-08 2023-11-28 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US8399472B2 (en) 2005-06-08 2013-03-19 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
NO341966B1 (no) * 2005-06-08 2018-03-05 Riegel Pharmaceuticals Inc Sammensetninger og fremgangsmåter for inhibering av JAK-reaksjonsveien.
US8415365B2 (en) 2005-06-08 2013-04-09 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
EP1904457A4 (en) * 2005-06-08 2010-06-02 Rigel Pharmaceuticals Inc COMPOSITIONS AND METHODS FOR INHIBITING THE JAK PATH
US9732073B2 (en) 2005-06-08 2017-08-15 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US11198689B2 (en) 2005-06-08 2021-12-14 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
EP1904457A2 (en) * 2005-06-08 2008-04-02 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the jak pathway
JP2008543778A (ja) * 2005-06-08 2008-12-04 ライジェル ファーマシューティカルズ, インコーポレイテッド Jak経路の阻害のための組成物および方法
WO2007006926A3 (fr) * 2005-07-11 2007-03-22 Sanofi Aventis Nouveaux derives de 2,4-dianilinopyrimidines, leur preparation, a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
WO2007006926A2 (fr) * 2005-07-11 2007-01-18 Sanofi-Aventis Nouveaux derives de 2,4-dianilinopyrimidines, leur preparation, a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
FR2888239A1 (fr) * 2005-07-11 2007-01-12 Sanofi Aventis Sa Nouveaux derives de 2,4-dianilinopyrimidines, leur preparation, a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
US7745428B2 (en) 2005-09-30 2010-06-29 Astrazeneca Ab Imidazo[1,2-A]pyridine having anti-cell-proliferation activity
US7705009B2 (en) 2005-11-22 2010-04-27 Hoffman-La Roche Inc. 4-aminopyrimidine-5-thione derivatives
FR2893941A1 (fr) * 2005-11-25 2007-06-01 Sanofi Aventis Sa Nouveaux derives de 2,4-dianilinopyridines, leur preparation a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
US11667611B2 (en) 2006-02-24 2023-06-06 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
WO2007098507A3 (en) * 2006-02-24 2008-01-31 Rigel Pharmaceuticals Inc Compositions and methods for inhibition of the jak pathway
US8962643B2 (en) 2006-02-24 2015-02-24 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
AU2007269540B2 (en) * 2006-07-05 2013-06-27 Exelixis, Inc. Methods of using IGF1R and Abl kinase modulators
US8222256B2 (en) 2006-07-05 2012-07-17 Exelixis, Inc. Methods of using IGFIR and ABL kinase modulators
WO2008005538A3 (en) * 2006-07-05 2008-07-24 Exelixis Inc Methods of using igf1r and abl kinase modulators
US8193197B2 (en) * 2006-10-19 2012-06-05 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US9040543B2 (en) 2006-10-19 2015-05-26 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US8729087B2 (en) 2006-10-19 2014-05-20 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
US8039479B2 (en) 2006-12-08 2011-10-18 Irm Llc Compounds and compositions as protein kinase inhibitors
US8399450B2 (en) 2006-12-08 2013-03-19 Irm Llc Compounds and compositions as protein kinase inhibitors
US8957081B2 (en) 2006-12-08 2015-02-17 Irm Llc Compounds and compositions as protein kinase inhibitors
US8377921B2 (en) 2006-12-08 2013-02-19 Irm Llc Compounds and compositions as protein kinase inhibitors
US8372858B2 (en) 2006-12-08 2013-02-12 Irm Llc Compounds and compositions as protein kinase inhibitors
WO2008079907A1 (en) * 2006-12-20 2008-07-03 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the jak pathway
WO2008099073A1 (fr) * 2007-01-05 2008-08-21 Sanofi-Aventis Derives de n, n' - 2, 4 -dianilino pyrimidines, leur utilisation comme inhibiteurs de ikk, leur preparation et leur compositions pharmaceutiques
FR2911138A1 (fr) * 2007-01-05 2008-07-11 Sanofi Aventis Sa Nouveaux derives de n, n'-2,4-dianilinopyrimidines, leur preparation a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
WO2009056693A1 (fr) * 2007-08-09 2009-05-07 Sanofi-Aventis Nouveaux derives de n, n'- 2, 4-dianilinopyrimidines, leur preparation, a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
FR2919869A1 (fr) * 2007-08-09 2009-02-13 Sanofi Aventis Sa Nouveaux derives de n, n'-2,4-dianilinopyrimidines, leur preparation a titre de medicaments, compositions pharmaceutiques et notamment comme inhibiteurs de ikk
US9273077B2 (en) 2008-05-21 2016-03-01 Ariad Pharmaceuticals, Inc. Phosphorus derivatives as kinase inhibitors
US9012462B2 (en) 2008-05-21 2015-04-21 Ariad Pharmaceuticals, Inc. Phosphorous derivatives as kinase inhibitors
US10596172B2 (en) 2008-06-27 2020-03-24 Celgene Car Llc 2,4-disubstituted pyrimidines useful as kinase inhibitors
US9987276B2 (en) 2008-06-27 2018-06-05 Celgene Car Llc Substituted 2,4-diaminopyrimidines as kinase inhibitors
US10010548B2 (en) 2008-06-27 2018-07-03 Celgene Car Llc 2,4-disubstituted pyrimidines useful as kinase inhibitors
WO2009158571A1 (en) * 2008-06-27 2009-12-30 Avila Therapeutics And Uses Thereof Heteroaryl compounds and uses thereof
US9409921B2 (en) 2008-06-27 2016-08-09 Celgene Avilomics Research, Inc. 2,4-disubstituted pyrimidines as kinase inhibitors
US9296737B2 (en) 2008-06-27 2016-03-29 Celgene Avilomics Research, Inc. Substituted 2,4-diaminopyrimidines as kinase inhibitors
US10828300B2 (en) 2008-06-27 2020-11-10 Celgene Car Llc Substituted 2,4-diaminopyrimidines as kinase inhibitors
AU2009262068B2 (en) * 2008-06-27 2014-12-11 Celgene Car Llc Heteroaryl compounds and uses thereof
US9212181B2 (en) 2008-06-27 2015-12-15 Celgene Avilomics Research, Inc. Substituted 2,4-diaminopyrimidines as kinase inhibitors
AU2009262068C1 (en) * 2008-06-27 2015-07-02 Celgene Car Llc Heteroaryl compounds and uses thereof
US11351168B1 (en) 2008-06-27 2022-06-07 Celgene Car Llc 2,4-disubstituted pyrimidines useful as kinase inhibitors
US8846689B2 (en) 2008-11-24 2014-09-30 Boehringer Ingelheim International Gmbh Substituted pyrimidines for the treatment of diseases such as cancer
US9676762B2 (en) 2008-11-24 2017-06-13 Boehringer Ingelheim International Gmbh Pyrimidine compounds containing seven-membered fused ring systems
US8785464B2 (en) 2008-11-24 2014-07-22 Boehringer Ingelheim International Gmbh Pyrimidine derivatives that inhibit FAK/PTK2
US9908884B2 (en) 2009-05-05 2018-03-06 Dana-Farber Cancer Institute, Inc. EGFR inhibitors and methods of treating disorders
US9096624B2 (en) 2009-06-01 2015-08-04 OSI Pharmaceuticals, LLC Amino pyrimidine anticancer compounds
AU2010343055B2 (en) * 2009-12-29 2016-11-10 Celgene Car Llc Heteroaryl compounds and uses thereof
US9604936B2 (en) 2010-08-10 2017-03-28 Celgene Car Llc Besylate salt of a BTK inhibitor
US9765038B2 (en) 2010-11-01 2017-09-19 Celgene Car Llc Heteroaryl compounds and uses thereof
US11096942B2 (en) 2010-11-01 2021-08-24 Celgene Car Llc Heterocyclic compounds and uses thereof
US8975249B2 (en) 2010-11-01 2015-03-10 Celgene Avilomics Research, Inc. Heterocyclic compounds and uses thereof
US9375431B2 (en) 2010-11-01 2016-06-28 Celgene Avilomics Research, Inc. 2,4-disubstituted pyrimidine compounds useful as kinase inhibtors
US9238629B2 (en) 2010-11-01 2016-01-19 Celgene Avilomics Research, Inc. Heteroaryl compounds and uses thereof
US10081606B2 (en) 2010-11-01 2018-09-25 Celgene Car Llc Heteroaryl compounds and uses thereof
US10434101B2 (en) 2010-11-01 2019-10-08 Celgene Car Llc Heterocyclic compounds and uses thereof
US9867824B2 (en) 2010-11-01 2018-01-16 Celgene Car Llc Heterocyclic compounds and uses thereof
US9409887B2 (en) 2010-11-10 2016-08-09 Celgene Avilomics Research, Inc. Mutant-selective EGFR inhibitors and uses thereof
US9868723B2 (en) 2010-11-10 2018-01-16 Celgene Car Llc Mutant-selective EGFR inhibitors and uses thereof
US9133224B2 (en) 2010-11-29 2015-09-15 OSI Pharmaceuticals, LLC Macrocyclic kinase inhibitors
US20140057913A1 (en) * 2011-03-30 2014-02-27 H. Lee Moffitt Cancer Center And Research Institute, Inc. Aurora kinase inhibitors and methods of making and using thereof
US9249124B2 (en) * 2011-03-30 2016-02-02 H. Lee Moffitt Cancer Center And Research Institute, Inc. Aurora kinase inhibitors and methods of making and using thereof
US9597329B2 (en) 2011-03-30 2017-03-21 H. Lee Moffitt Cancer Center And Research Institute, Inc Aurora kinase inhibitors and methods of making and using thereof
US9834518B2 (en) 2011-05-04 2017-12-05 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in EGFR-driven cancers
US9364476B2 (en) 2011-10-28 2016-06-14 Celgene Avilomics Research, Inc. Methods of treating a Bruton's Tyrosine Kinase disease or disorder
US10005738B2 (en) 2012-03-15 2018-06-26 Celgene Car Llc Salts of an epidermal growth factor receptor kinase inhibitor
US9056839B2 (en) 2012-03-15 2015-06-16 Celgene Avilomics Research, Inc. Solid forms of an epidermal growth factor receptor kinase inhibitor
US9108927B2 (en) 2012-03-15 2015-08-18 Celgene Avilomics Research, Inc. Salts of an epidermal growth factor receptor kinase inhibitor
US11292772B2 (en) 2012-03-15 2022-04-05 Celgene Car Llc Salts of an epidermal growth factor receptor kinase inhibitor
US10004741B2 (en) 2012-03-15 2018-06-26 Celgene Car Llc Solid forms of an epidermal growth factor receptor kinase inhibitor
US10946016B2 (en) 2012-03-15 2021-03-16 Celgene Car Llc Solid forms of an epidermal growth factor receptor kinase inhibitor
US9540335B2 (en) 2012-03-15 2017-01-10 Celgene Avilomics Research, Inc. Salts of an epidermal growth factor receptor kinase inhibitor
US9539255B2 (en) 2012-03-15 2017-01-10 Celgene Avilomics Research, Inc. Solid forms of an epidermal growth factor receptor kinase inhibitor
US10570099B2 (en) 2012-03-15 2020-02-25 Celgene Car Llc Salts of an epidermal growth factor receptor kinase inhibitor
US9834571B2 (en) 2012-05-05 2017-12-05 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in EGFR-driven cancers
US9549927B2 (en) 2012-12-21 2017-01-24 Celgene Avilomics Research, Inc. Heteroaryl compounds and uses thereof
US9126950B2 (en) 2012-12-21 2015-09-08 Celgene Avilomics Research, Inc. Heteroaryl compounds and uses thereof
US9145387B2 (en) 2013-02-08 2015-09-29 Celgene Avilomics Research, Inc. ERK inhibitors and uses thereof
US9980964B2 (en) 2013-02-08 2018-05-29 Celgene Car Llc ERK inhibitors and uses thereof
US9504686B2 (en) 2013-02-08 2016-11-29 Celgene Avilomics Research, Inc. ERK inhibitors and uses thereof
US9561228B2 (en) 2013-02-08 2017-02-07 Celgene Avilomics Research, Inc. ERK inhibitors and uses thereof
US9796700B2 (en) 2013-02-08 2017-10-24 Celgene Car Llc ERK inhibitors and uses thereof
WO2014126954A1 (en) * 2013-02-13 2014-08-21 OSI Pharmaceuticals, LLC Regioselective synthesis of substituted pyrimidines
US9611283B1 (en) 2013-04-10 2017-04-04 Ariad Pharmaceuticals, Inc. Methods for inhibiting cell proliferation in ALK-driven cancers
US9492471B2 (en) 2013-08-27 2016-11-15 Celgene Avilomics Research, Inc. Methods of treating a disease or disorder associated with Bruton'S Tyrosine Kinase
US9415049B2 (en) 2013-12-20 2016-08-16 Celgene Avilomics Research, Inc. Heteroaryl compounds and uses thereof
GB2566622A (en) * 2014-05-08 2019-03-20 Tosoh F Tech Inc 5-(Trifluoromethyl)pyrimidine derivatives and method for producing same
GB2566622B (en) * 2014-05-08 2019-07-10 Tosoh F Tech Inc 5-(Trifluoromethyl)pyrimidine derivatives and method for producing same
US10202364B2 (en) 2014-08-13 2019-02-12 Celgene Car Llc Forms and compositions of an ERK inhibitor
US10005760B2 (en) 2014-08-13 2018-06-26 Celgene Car Llc Forms and compositions of an ERK inhibitor
US11529350B2 (en) 2019-07-03 2022-12-20 Sumitomo Pharma Oncology, Inc. Tyrosine kinase non-receptor 1 (TNK1) inhibitors and uses thereof

Also Published As

Publication number Publication date
AU765151B2 (en) 2003-09-11
JP2003525277A (ja) 2003-08-26
GB0004888D0 (en) 2000-04-19
ATE361916T1 (de) 2007-06-15
ZA200206191B (en) 2003-11-03
US7153964B2 (en) 2006-12-26
BRPI0108841B8 (pt) 2021-05-25
NO20024154L (no) 2002-10-28
CY1108019T1 (el) 2013-09-04
NO2015020I2 (no) 2015-09-10
CY2015035I1 (el) 2016-04-13
KR20020075462A (ko) 2002-10-04
CN100445270C (zh) 2008-12-24
JP4913305B2 (ja) 2012-04-11
CY2015035I2 (el) 2016-04-13
CA2399196A1 (en) 2001-09-07
AU3395301A (en) 2001-09-12
DE60128343D1 (de) 2007-06-21
CN1406231A (zh) 2003-03-26
NO2015020I1 (no) 2015-09-21
IL150883A (en) 2008-08-07
EP1272477A1 (en) 2003-01-08
NZ520394A (en) 2004-04-30
EP1272477B1 (en) 2007-05-09
KR100790414B1 (ko) 2008-01-02
DK1272477T3 (da) 2007-09-03
US20030149064A1 (en) 2003-08-07
ES2284617T3 (es) 2007-11-16
NO20024154D0 (no) 2002-08-30
BR0108841A (pt) 2003-05-06
LU92824I2 (fr) 2015-11-24
CA2399196C (en) 2010-05-04
PT1272477E (pt) 2007-07-16
DE60128343T2 (de) 2008-01-17
IL150883A0 (en) 2003-02-12
BRPI0108841B1 (pt) 2016-08-02
NO325241B1 (no) 2008-03-03
MXPA02008370A (es) 2002-12-13

Similar Documents

Publication Publication Date Title
EP1272477B1 (en) Pyrimidine compounds
US6710052B2 (en) Pyrimidine compounds
US6593326B1 (en) 2,4-diamino pyrimidine compounds having anti-cell proliferative activity
EP1268444B1 (en) 2,4-di(hetero-)arylamino(-oxy)-5-substituted pyrmidines as antineoplastic agents
US7067522B2 (en) 2,4,DI (hetero-) arylamino (-oxy)-5-substituted pyrimidines as antineoplastic agents
EP1161428B1 (en) Pyrimidine compounds
AU2001235768A1 (en) Pyrimidine compounds
WO2000059892A1 (en) Pyrimidine compounds with pharmaceutical activity
AU2001233979A1 (en) 2,4,di(hetero-)arylamino(-oxy)-5-substituted pyrimidines as antineoplastic agents
MXPA01006575A (en) Pyrimidine compounds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001905990

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 150883

Country of ref document: IL

Ref document number: 33953/01

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 520394

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2399196

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002/06191

Country of ref document: ZA

Ref document number: 200206191

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/008370

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 10220139

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 018058450

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027011407

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2001 563496

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020027011407

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001905990

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 33953/01

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 520394

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 520394

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2001905990

Country of ref document: EP