WO2001047827A1 - Procede de production de panneau de verre et panneau de verre - Google Patents

Procede de production de panneau de verre et panneau de verre Download PDF

Info

Publication number
WO2001047827A1
WO2001047827A1 PCT/JP2000/009066 JP0009066W WO0147827A1 WO 2001047827 A1 WO2001047827 A1 WO 2001047827A1 JP 0009066 W JP0009066 W JP 0009066W WO 0147827 A1 WO0147827 A1 WO 0147827A1
Authority
WO
WIPO (PCT)
Prior art keywords
suction hole
metal solder
glass
gap
glass panel
Prior art date
Application number
PCT/JP2000/009066
Other languages
English (en)
French (fr)
Inventor
Hideo Yoshizawa
Hisakazu Yasui
Shunji Kuramoto
Original Assignee
Nippon Sheet Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP36727499A external-priority patent/JP2001180985A/ja
Priority claimed from JP2000331884A external-priority patent/JP2002137940A/ja
Application filed by Nippon Sheet Glass Co., Ltd. filed Critical Nippon Sheet Glass Co., Ltd.
Priority to EP00985809A priority Critical patent/EP1160217B1/en
Priority to CA002363272A priority patent/CA2363272A1/en
Priority to DE60014333T priority patent/DE60014333T2/de
Publication of WO2001047827A1 publication Critical patent/WO2001047827A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10972Degassing during the lamination
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/08Joining glass to glass by processes other than fusing with the aid of intervening metal
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • E06B3/6775Evacuating or filling the gap during assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • a large number of spacers are interposed between a pair of glass sheets, and a gap between the glass sheets is formed by sealing between the outer peripheral portions of the glass sheets with an outer peripheral sealing portion.
  • a suction hole for sucking the gas in the gap is provided in one of the glass sheets, and the gas in the gap is sucked through the suction hole to reduce the pressure in the gap.
  • the present invention relates to a method for manufacturing a glass panel having a suction hole sealed therein and the glass panel.
  • a glass tube is fixedly connected to a suction hole provided in one of the glass sheets in a communicating state, and gas in a gap is sucked through the glass tube.
  • the suction hole is sealed by heating and melting the portion, and therefore, in a conventional glass panel, a part of the glass tube protrudes from the suction hole portion and remains.
  • the applicant applied the solder plate and the closing plate to the upper surface of the glass plate provided with the suction hole while closing the suction hole. After the solder plate is heated and melted, the molten solder plate is cooled and solidified to integrate the plate glass and the closing plate to seal the suction hole. According to this method, the amount of protrusion of the closing plate from the surface of the sheet glass can be made extremely small, and the closing plate is damaged by contact with another object, and the possibility that the reduced pressure state in the gap is impaired is also reduced.
  • the closing plate is strongly adhered to the glass sheet by the molten solder plate. To do so, it is necessary to apply metallizing to the surface of the sheet glass in advance. In other words, it was necessary to form a special layer on the surface of the glass sheet by sintering silver paste, etc., and there was some room for improvement in this regard.
  • the present invention has been made in view of the above circumstances, and has as its object the object of the present invention is to reduce the amount of protrusion from the surface of a glass sheet and to provide an aesthetically pleasing appearance, and to reduce the pressure in the gap due to contact with other objects. It is an object of the present invention to provide a method of manufacturing a glass panel and a method of manufacturing a glass panel capable of reliably sealing a suction hole by a relatively simple method, while reducing the risk of damage to the glass panel. Disclosure of the invention
  • the feature of the invention of claim 1 is that a large number of spacers 2 are interposed between a pair of plate glasses 1A and 1B, and that both plate glasses 1A and IB
  • the gap between the outer peripheral portions is sealed by an outer peripheral sealing portion 3 to form a gap V between the two glass sheets 1A and 1B.
  • the gap V is formed in one of the two glass sheets 1A and 1B.
  • a method for manufacturing a glass panel comprising: providing a suction hole 4 for reducing pressure; sucking the gas in the gap V from the suction hole 4; and sealing the suction hole 4.
  • a metal solder 6 is used as a sealing material for sealing the suction hole 4, and the metal solder piece 6A is heated and melted in the vicinity of the suction hole 4 to oxidize the surface of the molten metal solder piece 6A.
  • the film 6a is broken, the content of the metal solder 6 flows out, and the metal solder 6 that has flowed out is brought into direct contact with the one plate glass 1A to be cooled and solidified to seal the suction hole 4.
  • metal solder is used as a sealing material to seal the suction hole provided in one of the glass sheets, and the metal solder piece is heated and melted in the vicinity of the suction hole, and the surface of the metal solder piece in the molten state is melted. This breaks down the oxide film of the metal solder, causing the metal solder to flow out, and bringing the metal solder into direct contact with the glass sheet and cooling and solidifying to seal the suction holes. Without intervening, the metal solder directly adheres to the glass sheet, and the suction hole can be sealed with high adhesive strength.
  • the feature of the invention according to claim 2 is that the inflow preventing material 5 for preventing the outflow of the metal solder 6 from flowing into the gap V is formed in the longitudinal direction of the suction hole 4. It is located in the middle part.
  • the inflow prevention material for preventing the outflow of the metal solder into the void is provided at the longitudinally intermediate portion of the suction hole, for example, when the inflow prevention material is provided on the surface of the sheet glass. In comparison, the amount of protrusion of the metal solder from the surface of the sheet glass can be reduced.
  • a feature of the invention according to claim 3 is that, as illustrated in FIG. 9, the inflow-inhibiting member 5 includes a getter 5a that adsorbs the gas in the gap V.
  • the inflow prevention member has a getter that adsorbs gas in the gap, even if there is residual gas in the gap, the getter adsorbs the remaining gas, and the pressure in the gap is maintained. Is assured.
  • the characteristic configuration of the invention of claim 4 is that, as illustrated in FIG. 4, the suction hole 4 and the metal solder piece 6 A are surrounded by an annular regulating member 7 that regulates the outflow of the outflowing metal solder 6, In a state where the regulating member 7 is arranged in contact with the surface of the one plate glass 1A, the oxide film 6a on the surface of the molten metal piece 6A in the molten state is broken and the metal solder 6 flows out. It is where to let.
  • a feature of the invention according to claim 5 is that the metal solder 6 is indium or an alloy containing indium.
  • the metal solder is indium or an alloy containing indium, the metal solder has a high adhesive strength to glass and an excellent sealing performance, and more strongly seals a suction hole provided in one of the glass sheets. be able to.
  • the feature of the invention according to claim 6 is that a large number of spacers 2 are interposed between a pair of plate glasses 1A and 1B, and both plate glasses 1A , 1B are sealed by an outer sealing portion 3 to form a gap V between the two glass sheets 1A, IB, and the gap is formed in one of the two glass sheets 1A, 1B.
  • the suction holes provided in the pair of glass sheets are sealed with metal solder, and the metal solder is sealed in the suction holes, the metal solder is sealed inside the suction holes.
  • the suction hole can be sealed, and a glass panel in which the suction hole is effectively and reliably sealed with a small amount of metal solder is provided.
  • a feature of the invention according to claim 7 is that, as exemplified in FIG. 3, an inflow-inhibiting material 5 that prevents the metal solder 6 from flowing into the gap V is disposed at an intermediate portion in the longitudinal direction of the suction hole 4. However, the metal solder 6 is inserted into the inflow prevention material 5.
  • an inflow-inhibiting material for inhibiting the inflow of the metal solder into the gap is provided at the longitudinally intermediate portion of the suction hole, and the metal solder is inserted into the inflow-inhibiting material and sealed.
  • a glass panel is provided in which the suction holes are effectively and reliably sealed, and the inflow of the metal solder into the voids is reliably prevented.
  • a glass panel in which a metal solder and a surface of a sheet glass are substantially flush.
  • the inflow-inhibiting member 5 includes a gas inlet 5a that adsorbs the gas in the gap V.
  • the inflow prevention member includes the getter that adsorbs the gas in the gap, even if there is residual gas in the gap, the getter adsorbs the remaining gas, so that the pressure in the gap is reliably maintained.
  • a glass panel is provided.
  • a feature of the invention according to claim 9 is that the metal solder 6 is indium or an alloy containing indium.
  • the metal solder is indium or an alloy containing indium, a suction hole is firmly and surely formed by an indium-indium alloy having a high adhesive strength to glass and an excellent sealing performance.
  • a glass panel sealed is provided.
  • the characteristic configuration of the invention described in claim 10 is, as exemplified in FIGS. 1, 13 and 14, that a large number of spacers 2 are interposed between a pair of plate glasses 1 A and 1 B, and The gap between the outer peripheral portions of the two glass sheets 1A, 1B is sealed by an outer peripheral sealing portion 3 to form a gap V between the two glass sheets 1A, 1B, and one of the two glass sheets 1A, 1B is formed.
  • a suction hole 4 for sucking the gas in the gap V is provided in the plate glass 1A, and the gas in the gap V is sucked through the suction hole 4 to reduce the pressure in the gap V.
  • a method of manufacturing a glass panel for sealing the suction hole 4 is provided in the plate glass 1A, and the gas in the gap V is sucked through the suction hole 4 to reduce the pressure in the gap V.
  • a metal solder 6 is used as a sealing material for sealing the suction hole 4, and the metal solder piece 6 A is heated and melted in the vicinity of the suction hole 4, and the surface of the metal solder piece 6 A in the molten state is melted.
  • the oxide film 6a is broken to flow the metal solder 6 therein into the gap V through the suction hole 4, and the metal solder 6 flowing into the gap V is drawn into the suction hole 4
  • the suction hole 4 is sealed by cooling and solidifying in a state where the suction hole 4 is in direct contact with the portion, thereby blocking the communication between the suction hole 4 and the gap V. Therefore, the molten metal solder is supplied not only to the area around the suction hole on the plate surface on the gap side of the sheet glass provided with the suction hole, but also to the other sheet glass in the gap. Cooling and solidification while directly contacting the area near the suction hole on the plate surface on the gap side of the hole, shuts off the communication between the suction hole and the space and easily seals the suction hole can do. Therefore, even if another object comes into contact with the surface of the sheet glass (glass panel), there is almost no possibility that the metal solder is damaged.
  • the contact portions are unlikely to deteriorate due to corrosion or the like.
  • the good contact state with the plate glass plate surface is maintained, and the possibility that the depressurized state in the gap is damaged is reduced.
  • the metal solder flows into the gap through the suction hole and fills the gap with the metal solder, the amount of the metal solder to be melted is adjusted, so that the surface of the plate glass (glass panel) can be easily formed. In this case, the amount of protrusion of the metal solder from the suction hole can be reduced.
  • the amount of protrusion from the surface of the glass sheet can be made very small, and the glass panel can be excellent in aesthetic appearance and can reduce the possibility that the reduced pressure state in the gap portion is impaired by contact with other objects. Can be manufactured.
  • the molten metal solder that flows into the voids heats and melts the metal solder pieces in the vicinity of the suction holes, breaks the oxide film on the surface of the molten metal solder pieces, and allows the metal solder to flow out. Therefore, the molten metal solder comes into direct contact with the glass plate surface without the oxide film interposed therebetween, and the suction hole can be sealed with high adhesive strength.
  • the suction hole is filled in a state in which it is in direct contact with the vicinity of the suction hole, and the suction hole is sealed by blocking the communication between the suction hole and the cavity. Therefore, the state of the suction hole itself (the suction hole itself is completely sealed) Irrespective of whether or not the sealing is performed, for example, whether or not the peripheral wall is tightly filled with metal solder, etc.), it is possible to reliably maintain the depressurized state of the gap, which is simple and reliable.
  • the portion of the gap between the two glass sheets that is in direct contact with the metal solder is previously processed into a smooth surface, so that the molten glass solder that has flowed into the gap has a portion corresponding to the sheet glass.
  • the wettability to the plate surface is improved. Therefore, the metal solder can be filled in the gap in a state of being more closely adhered to the surface of the glass sheet. As a result, the contact state between the surface of the glass sheet and the metal solder in the above-described gap becomes more closely contacted, and the communication between the suction hole and the gap is more reliably blocked, and the suction hole is sealed. be able to.
  • a feature of the invention according to claim 12 is that the metal solder is an alloy containing indium or indium.
  • the metal solder is indium or an alloy containing indium
  • the metal solder has a high adhesive strength to glass, has excellent sealing performance, and more firmly adheres to the surface of the glass plate in the gap, and more reliably.
  • the communication between the suction hole and the gap can be blocked to seal the suction hole.
  • a characteristic configuration of the invention according to claim 13 is that a large number of spacers 2 are interposed between a pair of plate glasses 1 A and 1 B, and both plate glasses 1 A , 1B is sealed by an outer peripheral sealing portion 3 to form a gap V between the two glass sheets 1A, 1B, and the one glass sheet 1A of the two glass sheets 1A, 1B
  • a suction hole 4 for sucking the gas in the gap V is provided, the gas in the gap V is sucked through the suction hole 4, the pressure in the gap V is reduced, and the suction hole 4 is sealed.
  • the metal solder 6 is provided in the gap V, a portion of the plate glass 1A provided with the suction hole 4 around the suction hole 4 on the plate surface on the gap V side, and the other portion of the plate glass 1B.
  • the suction hole 4 is filled in a state in which the suction hole 4 is in direct contact with the vicinity of the suction hole 4 on the plate surface on the side of the gap V, and the communication between the suction hole 4 and the gap V is cut off. It is in a sealed place.
  • the metal solder is sucked into the gap, the portion around the suction hole on the plate surface on the gap side of the sheet glass provided with the suction hole, and the suction on the plate surface on the gap side of the other sheet glass. Filling the area near the hole so that it is in direct contact with the hole and blocking the communication between the hole and the cavity, so that the suction hole is sealed, so that metal solder from the surface of the glass plate. It is possible to provide a glass panel that has a small amount of protrusion and is excellent in aesthetic appearance, and that is less likely to impair the depressurized state in the gap due to contact with another object. In addition, the suction holes can be effectively and reliably sealed with a small amount of metal solder.
  • a feature of the invention according to claim 14 is that the metal solder is an alloy containing indium or indium.
  • the metal solder is indium or an alloy containing indium
  • the communication between the suction hole and the cavity is strengthened by an indium-indium alloy having a high adhesive strength to glass and excellent sealing performance.
  • Figure 1 is a partially cutaway perspective view of a glass panel.
  • Figure 2 is a perspective view of the glass panel and the sealing device
  • FIG. 3 is a cross-sectional view of a main part of the glass panel according to the first embodiment
  • FIG. 4 is a cross-sectional view showing the sealing operation of the suction hole in the first embodiment
  • FIG. 5 is a cross-sectional view of a main part of a glass panel showing another embodiment
  • FIG. 6 is a cross-sectional view of a main part of a glass panel showing another embodiment
  • FIG. 7 is a cross-sectional view of a main part of a glass panel showing another embodiment
  • FIG. 8 is a cross-sectional view of a main part of a glass panel showing another embodiment
  • FIG. 9 is a cross-sectional view of a main part of a glass panel showing another embodiment
  • FIG. 10 is a cross-sectional view of a main part of a glass panel showing another embodiment
  • FIG. 11 is a cross-sectional view showing another embodiment of the sealing device.
  • FIG. 12 is a cross-sectional view showing still another embodiment of the sealing device.
  • FIG. 13 is a sectional view of a main part of a glass panel according to the second embodiment
  • FIG. 14 is a cross-sectional view illustrating the operation of sealing the suction hole in the second embodiment.
  • FIG. 15 is a cross-sectional view of a main part of a glass panel showing another embodiment
  • FIG. 16 is a cross-sectional view of a main part of a glass panel showing another embodiment
  • FIG. 17 is a cross-sectional view of a main part of a glass panel showing another embodiment
  • FIG. 18 is a cross-sectional view showing another embodiment of the sealing device. BEST MODE FOR CARRYING OUT THE INVENTION
  • a large number of spacers 2 are interposed between a pair of glass sheets 1A and 1B to form a gap V between the glass sheets 1A and 1B.
  • the outer peripheral portions of the glasses 1 A and 1 B are sealed from each other by an outer peripheral sealing portion 3.
  • Voids V for example, 1 is a 33 Pa (1 corresponding to 0 x 1 0 2 T orr) following reduced pressure, therefore, the one of the glass sheets 1 A, the suction holes 4 are provided for the depressurized suction The suction hole 4 is sealed after the suction operation.
  • the glass sheets 1 A and 1 B used for this glass panel have, for example, a thickness of 2.65 mn! It is a float glass plate of about 3.2 mm.
  • plate glass such as, for example, template glass, ground glass, meshed glass, tempered glass, and a plate glass having a function of absorbing heat rays and ultraviolet rays.
  • the thickness of the sheet glass can be appropriately selected and used according to the type of glass to be used.
  • Scan Bae colonel 2 compressive strength, 4. 9 X 1 0 8 P a ( corresponding to 5 t / cm 2) or more materials, for example, by using stainless steel (SUS 304), the diameter 0. 3mn! It is preferably a cylinder having a height of about 1.0 mm and a height of about 0.15 mm to 1.0 mm, and the distance between the spacers 2 is preferably about 20 mm.
  • the material of the spacer 2 is not particularly limited to stainless steel.
  • the spacer 2 is formed of various materials such as Inconel 718, other metal materials, quartz glass, and ceramic.
  • the shape thereof is not limited to a columnar shape, but may be a prismatic shape, and the distance between the spacers 2 can be appropriately changed.
  • the outer peripheral sealing portion 3 is formed of a low-melting glass such as a solder glass, and seals between the outer peripheral edges of the two glass plates 1 A and 1 B to maintain the internal gap V in a sealed state. be able to.
  • the area of the one glass sheet 1A is slightly smaller than that of the other glass sheet 1B, so that the outer peripheral edge of the other glass sheet 1B It protrudes from the outer peripheral edge of the sheet glass 1A. Therefore, when the outer peripheral sealing portion 3 is formed, a sealing material such as solder glass is placed on the protruding portion, so that the sealing operation of the gap V by the outer peripheral sealing portion 3 can be performed efficiently and reliably. Can be done at any time.
  • the suction hole 4 is formed of, for example, a stepped hole including a large-diameter hole 4a having a diameter of 3 mm and a small-diameter hole 4b having a diameter of 2 mm.
  • An inflow prevention member 5 for preventing the inflow of the metal solder 6 into the gap V can be arranged in the step.
  • the suction hole 4 is sealed with the metal solder 6 in a state where the inflow preventing material 5 is interposed in the step formed between the large-diameter hole 4a and the small-diameter hole 4b.
  • a guide plate 7 as an annular regulating member is adhered to the surface of the plate glass 1A, and the cover plate 8 covers the guide plate 7 and the metal solder 6. .
  • the inflow-inhibiting member 5 is made of, for example, a stainless steel thin wire having a wire diameter of 0.04 mm and an opening ratio of 36.8%. However, it is sufficient that the suction from the suction hole 4 is not hindered and the flow of the metal solder 6 is prevented, and for example, it may be made of glass cloth.
  • the metal solder 6 preferably has a melting temperature of about 120 ° C to 250 ° C,
  • indium having a melting temperature of 156.4 ° C can be used.
  • Indium has strong adhesion to glass, excellent sealing performance, and an oxide film formed on the surface Since it is thin, it is suitable as the metal solder 6 used in the present invention.
  • indium is a relatively expensive metal
  • an alloy of 50% indium and 50% tin (the solidus is located at 15.6 ° C and the liquidus is 12.6 9%) or an alloy of 40% indium and 60% lead (solidus is located at 173.0 ° C, liquidus is located at 25.0 ° C)
  • Various alloys can also be used.
  • the use of indium or indium alloy as the metal solder 6 has the following advantages.
  • the ambient temperature changes after the metal solder 6 is solidified while directly contacting the sheet glass 1A, 1B. Accordingly, even if a stress occurs at the bonding interface between the metal solder 6 and the glass sheets 1A and 1B, the indium-dium alloy is soft, so the stress is relieved and the metal solder 6 peels off. The fear can be reduced. Therefore, it can be expected that the depressurized state of the gap is stably maintained for a long period of time.
  • the guide plate 7 is for regulating the flow of the metal solder 6, it may be made of any material that can prevent the flow of the metal solder 6. However, since it is preferable that the occluded gas on the surface can be easily degassed in a vacuum, a porous material is not suitable. For example, a metal or ceramic plate or a stainless steel net is used, and the thickness is made small. Approximately 0.1 mm is optimal.
  • the cover material 8 can also be made of various materials, but it has a strong adhesive force to the metal solder 6 and a thermal expansion coefficient close to the thermal expansion coefficient of the glass sheets 1A and 1B constituting the glass panel. It is preferable to use a glass plate having the same composition as those of the plate glasses 1A and 1B because it is preferable to have them.
  • this sealing device has a pedestal 10 having a rectangular through hole 9 formed in the center at a plan view.
  • the pedestal 10 is provided with a weight horizontal axis 11 and a weight 12 that can swing around the weight horizontal axis 11.
  • the pedestal 10 is provided with a rotator horizontal shaft 13 parallel to the weight horizontal shaft 11 and a rotator 14 swingable about the rotator horizontal shaft 13.
  • the weights 12 and the rotators 14 are disposed so as to face each other with the through hole 9 of the pedestal 10 interposed therebetween.
  • weights 12, and rotator 14 only rotator 14 is made of a magnetic material such as iron, and the other pedestals 10 and weights 12 are made of a non-magnetic material. It is made of material.
  • the pedestal 10 and the like constituting the sealing device are configured to be housed in a cylindrical tube 15 made of a non-magnetic material.
  • the upper surface of the cylindrical body 15 is hermetically sealed by a glass plate 16, and the lower surface of the cylindrical body 15 is provided with an O-ring 17 for hermetically sealing the space between the cylindrical body 15 and the glass sheet 1A.
  • An electromagnet 18 is provided at a position corresponding to a position above the free end of the rotor 14 in the area of the upper surface of the glass plate 16. Further, the cylindrical body 15 is provided with a flexible pipe 19 for sucking the gas in the gap V of the glass panel through the internal space of the cylindrical body 15.
  • the inflow prevention material is previously inserted into the large diameter hole 4a of the suction hole 4.
  • the pedestal 10 is placed on the flat glass 1A. At this time, the pedestal 10 is placed so that the intake hole 4 is located in the through hole 9 of the pedestal 10.
  • the guide plate 7 is placed on the area surrounded by the through hole 9 of the pedestal 10 on the plate glass 1 A, and the metal solder pieces 6 A are placed inside the guide plate 7. . That is, the guide plate 7 is placed on the plate glass 1A in a state where the suction hole 4 and the metal solder piece 6A are surrounded by the annular guide plate 7.
  • the distance between the mounting position of the metal solder piece 6A and the suction hole 4 is appropriately set according to the type and amount of the metal solder piece 6A to be used. As an example, if the diameter of the suction hole 4 is 2 mm and the thickness of the layer of the void V is 0.2 mm, the amount of the metal solder piece 6 A made of indium alone is reduced to about 0.3 g. When the space between the mounting position of the metal solder piece 6 A and the suction hole 4 is set to about 8 mm, the space V can be uniformly filled.
  • cover member 8 is engaged with one side of the cover member 8 on one end of the guide plate 7 and the other side of the cover member 8 is engaged with the upper surface of the free end of the rotator 14.
  • On the top surface of material 8 Eight and 12 are placed in a state of being placed.
  • the glass panel and the sealing device are housed in a heating furnace 20 in a state where the glass panel is horizontal, and for example, vacuum evacuation is performed through a flexible pipe 19 while heating to 200 ° C. . Then, while the air in the cylindrical body 15 is sucked, the air in the gap V is also sucked through the inflow prevention member 5 composed of a stainless wire thin wire mesh or the like. Is obtained.
  • the electromagnet 18 is energized. Is rotated upward around the rotator's horizontal axis 13, and the engagement with the governor member 8 is released.
  • the cover material 8 falls onto the molten metal solder piece 6A located below, based on the cooperative action of its own weight and the weight of the weight 12.
  • the molten metal solder pieces 6 A are instantaneously crushed by the falling force bar material 8. That is, as shown in FIG. 4 (b), the oxide film 6a on the surface is broken by impact, and the contents of the metal solder piece 6A flow out.
  • a guide plate 7 is adhered around a suction hole 4 sealed with a metal solder 6, and a cover material 8 is provided. Covers the guide plate 7 and the metal solder 6.
  • a glass panel without the guide plate 7 or the cover material 8 can be formed.
  • the sealing device described in the previous embodiment is used, and the suction hole 4 is sealed in exactly the same manner.
  • the guide plate 7 and the cover material 8 are removed, leaving only the metal solder 6 fixed in and around the suction hole 4. Therefore, it is preferable that the guide plate 7 and the cover member 8 are formed of a material that is difficult to adhere to the solidified metal solder 6, for example, aluminum.
  • the metal solder 6 is exposed as a final state, it is preferable to apply a waterproof coat or attach a cap for protection.
  • the suction hole 4 was formed as a stepped hole composed of the large-diameter hole 4a and the small-diameter hole 4b.
  • the large-diameter hole is a trumpet-shaped large-diameter hole 4c whose diameter increases upward, and the suction hole 4 is composed of the trumpet-shaped large-diameter hole 4c and the small-diameter hole 4b. You can also.
  • a fine uneven surface 1a is formed on the surface of the sheet glass 1A where the metal solder piece 6A is placed, and the metal solder piece 6A is formed on the uneven surface 1a. It can be placed and melted. In this case, when the content of the metal solder piece 6A flows out, the oxide film 6a of the metal solder piece 6A is caught on the uneven surface 1a, so that the oxide film 6a may flow into the suction hole 4. Since this is prevented, the contents of the metal solder pieces 6A flow into the suction holes 4 more smoothly, and the sealing of the suction holes 4 becomes more reliable.
  • the inflow-inhibiting material 5 is arranged at the longitudinally intermediate portion of the suction hole 4, and the metal solder piece 6A is caused to flow out, so that the upper part of the suction hole 4
  • the configuration in which the portion was sealed with metal solder 6 was shown.
  • the inflow-inhibiting material 5 is provided at the upper end of the suction hole 4 and the metal solder piece 6 A flows out, so that the metal solder 6 is removed from the suction hole 4. It is also possible to adopt a configuration in which only the upper part is covered and sealed, and the inside of the suction hole 4 is not sealed.
  • the suction hole 4 is constituted by a stepped hole composed of the small-diameter hole 4 b and the large-diameter hole 4 a having a depth equal to the thickness of the inflow-inhibiting material 5. If 5 is arranged, a state where the upper surface of the inflow prevention material 5 and the surface of the sheet glass 1A are flush with each other can be obtained. In this state, if the metal solder 6 flows out, the metal solder 6 does not flow into the suction hole 4, but directly contacts only the surface of the sheet glass 1 A to seal the suction hole 4. A configuration in which 6 is covered with a cover material 8 is obtained. Further, in the embodiment shown in FIG. 7, if the guide plate 7 and the cover material 8 are removed after the metal solder 6 is solidified, a glass panel without the guide plate 7 and the cover material 8 can be formed. .
  • the suction hole 4 when the suction hole 4 is formed as a stepped hole composed of the large-diameter holes 4a and 4c and the small-diameter hole 4b, the suction hole 4 flows into the large-diameter hole 4a as shown in FIG.
  • the blocking material 5 may be inserted beforehand so that the inflowing metal solder 6 exists only in the large-diameter hole 4a. In this case, as shown in FIG. 8, by controlling the amount of the metal solder 6, the metal solder 6 and the surface of the sheet glass 1A can be made substantially flush. Further, if necessary, the metal solder 6 may be covered with a cover material 8.
  • a getter 5a may be attached to the inflow-inhibiting member 5 for implementation.
  • the getter 5a is for adsorbing the gas in the void V.
  • the gate 5a is formed in a cylindrical shape and inserted into the large-diameter hole 4a so that one surface of the gate 5a is exposed in the gap V.
  • the gate 5 a is supported by, for example, the inflow-inhibiting material 5, that is, the getter 5 a is provided on the surface of the inflow-inhibiting material 5 that is exposed to the void V. 5a can also be carried.
  • the suction hole 4 is constituted by the stepped hole.
  • the suction hole 4 may be constituted by a straight through hole. Wear.
  • the inflow-inhibiting material 5 is sandwiched between the two glass sheets 1A and IB. It is good.
  • an inflow prevention material 5 may be adhered to a longitudinal middle portion of the straight suction hole 4 to prevent the metal solder piece 6A from flowing into the gap V.
  • a glass panel without the guide plate 7 and the cover member 8 can be formed.
  • the sealing device for sealing the suction hole 4 with the metal solder 6 is not limited to the one described in the above embodiment, and various structures can be used.
  • the sealing device shown in FIG. 11 has a hermetic seal provided with a flexible pipe 19 for sucking the gas in the gap V and a 0 ring 17 for sealing between the plate glass 1A. Box 21.
  • An injector 24 composed of a cylindrical portion 22 and a slider 23 slidably disposed in the cylindrical portion 22 is mounted inside the box-shaped body 21.
  • An injection hole 25 communicates with the cylindrical portion 22 of the injector 24.
  • a filter 26 made of a stainless steel net or the like is provided in the cylinder 22.
  • the box-shaped body 21 is set so that the injection hole 25 faces the suction hole 4, and the metal solder piece 6A is inserted into the cylinder 22 to heat the injector 24. Then, the metal solder pieces 6 A in the cylinder 22 are melted.
  • the metal solder piece 6A if the metal solder piece 6A is waited for cooling, the molten metal solder piece 6A solidifies, and the sealing of the suction hole 4 by the metal solder 6 is completed.
  • the landing position of the metal solder piece 6 A flowing out of the injection hole 25 of the injector 24 is determined by the direction, length and inner diameter of the injection hole 25, the extrusion speed of the slider 23, and the flow of the metal solder 6. It can be controlled by appropriately setting factors such as mobility.
  • the sealing device shown in FIG. 12 is similar to the sealing device of FIG. 11 in that an airtight box-like body 27 having a flexible pipe 19 and an o-ring 17 is formed. Have. In the box 27, an injector 30 including a cylinder 28 and a slider 29 is provided. A filter 31 is provided in the cylinder 28 of the injector 30. The injector 30 is configured to be vertically slidable with respect to the box-like body 27 while maintaining a sealed state.
  • the box-like body 27 is set so that the mouth of the cylinder 28 is located above the suction hole 4. Therefore, by heating the injector 24, the metal solder piece 6A inserted into the cylinder 22 is melted. Next, or simultaneously with the melting, the whole of the injector 30 is slid downward so that the tip of the cylinder 28 faces the suction hole 4.
  • the oxide film 6a is prevented from flowing out of the cylinder 28 by the filter 31.Only the contents of the metal solder piece 6A are injected into the suction hole 4, and the molten metal solder piece 6A is solidified by the subsequent cooling. Thus, the sealing of the suction hole 4 with the metal solder 6 is completed.
  • a glass panel manufacturing method and a second embodiment of the glass panel according to the present invention will be described with reference to the drawings.
  • the appearance of the completed glass panel (see Fig. 1), the decompressed state in the gap V, the configuration of the used glass sheets 1A and IB, the configuration and arrangement of the spacers 2 themselves, the outer peripheral sealing part 3
  • the composition of the metal solder 6, the composition of the guide plate 7, and the composition of the cover member 8 are not particularly different from those of the first embodiment, and thus detailed descriptions thereof are omitted.
  • one of the two glass sheets 1A and IB is one of the two glass sheets 1A and IB so that the sealing operation of the gap V by the outer peripheral sealing part 3 can be performed efficiently and reliably. It is the same that the area is smaller than B.
  • the suction hole 4 is formed of, for example, a hole having a diameter of 2 mm. Then, the portion around the suction hole 4 on the plate surface on the gap V side of the sheet glass 1A and the vicinity of the suction hole 4 on the plate surface on the gap V side of the other sheet glass 1B are brought into direct contact.
  • the suction hole 4 is sealed by blocking the communication between the suction hole 4 and the gap V by the filled metal solder 6. Further, a guide plate 7 as an annular regulating member is adhered to the surface of the plate glass 1A, and a cover material 8 is configured to cover these guide plates 7 and the metal solder 6. ing.
  • a glass panel is set so that the plate surfaces of the plate glasses 1A and 1B are substantially horizontal, and the pedestal 10 is placed on the plate glass 1A having the suction holes 4. Place. At this time, the suction hole 4 is placed so as to be located in the through hole 9 of the pedestal 10.
  • the guide plate 7 is placed on an area surrounded by the through hole 9 of the pedestal 10 on the plate glass 1 A, and the metal solder pieces 6 A are placed inside the guide plate 7. I do. That is, the guide plate 7 is placed on the plate glass 1A in a state where the suction hole 4 and the metal solder piece 6A are surrounded by the annular guide plate 7.
  • the subsequent procedure may be exactly the same as that of the first embodiment.
  • the contents of the spilled metal solder pieces 6A flow on the surface of the sheet glass 1A, but the spill area is almost restricted to the guide plate 7. Therefore, the content of the metal solder piece 6A that has flowed out flows into the suction hole 4 and further flows through the suction hole 4 into the gap V to form the sheet glass 1A provided with the suction hole 4. A state is brought into direct contact with the portion around the suction hole 4 on the plate surface on the gap V side and the vicinity of the suction hole 4 on the plate surface on the same gap V side of the other glass plate 1B.
  • the ease of flow of the metal solder 6 is substantially rotationally symmetric with respect to the virtual center line of the suction hole 4. It must be configured so that As a specific method for achieving this, the glass panels must be installed so that the plate surfaces of the glass plates 1A and 1B are substantially horizontal, and the axis of the suction hole 4 is accurately set to the glass plates 1A and 1B.
  • the suction holes 4 should be drilled so as to be perpendicular to the surface of the plate, and no objects such as the spacer 2 that would impede the free flow of the metal solder 6 should be placed in the area where the metal solder 6 is to be filled. And the like.
  • the molten metal solder pieces 6A that have flowed into the gap V flow out into the gap V almost concentrically from the outlet of the suction hole 4 on the gap V side.
  • the metal solder 6 is easy to be uniformly filled around the void V-side outlet of the hole 4.
  • the volume of the metal solder 6 to be used is reduced by the metal required to fill the gap V with such a diameter.
  • Volume of solder 6 and volume of metal solder 6 required to fill suction hole 4 and metal solder 6 required to fill inside cover material 8 on the surface side of glass plate 1 A of suction hole 4 May be adjusted so as to be the total volume.
  • the molten metal solder piece 6A flowing into the gap V through the suction hole 4 is moved from the outlet of the hole V side of the hole of the suction hole 4 to the gap V. It flows out almost concentrically into the inside, but the outflow speed changes depending on the temperature and the size of the diameter of the suction hole 4, and when it flows out into the gap V to some extent, it decreases and saturates to a constant speed. You.
  • the size of the diameter of the suction hole 4 is appropriately set in advance to a predetermined value, if the temperature and the time from when the metal solder piece 6 A starts flowing out to when it is solidified are constant, the void portion can be formed.
  • the amount of the metal solder pieces 6 A flowing into the V can be made substantially constant, and the time required for the temperature to be constant and the metal solder pieces 6 A to solidify becomes almost saturated with the outflow speed. If the time is set so as to match, the metal solder 6 can be stably and appropriately filled in the gap V.
  • a guide plate 7 is attached around the suction hole 4 sealed with the metal solder 6, and the guide plate 7 and the metal solder 6 are covered with the cover material 8.
  • the cover material 8 are removed, and as shown in Fig. 15, the guide plate 7 And a glass panel without the cover material 8.
  • the guide plate 7 and the cover material 8 are preferably formed of a material that is difficult to adhere to the metal solder 6, for example, aluminum, etc. Further, since the metal solder 6 or the suction hole 4 is exposed, It is preferable to apply a water-proof coating or attach a cap to protect.
  • the metal solder 6 is uniformly filled in consideration of the points ⁇ 1> to ⁇ 3> described above.
  • the present invention is not limited to this embodiment.
  • the damming material 35 by placing the damming material 35 at an appropriate position near the outlet of the suction hole 4 on the side of the gap V, the damping material 35 can flow into the gap V.
  • the flow of the melted metal solder piece 6A in the molten state can be intentionally damped and the void V can be uniformly filled with the metal solder 6.
  • this embodiment will be described in detail.
  • the damping material 35 a material having a relatively low affinity with the molten metal solder, that is, a material that is difficult to wet is suitable, and for example, a plate material made of stainless steel can be used.
  • a damming material 35 is used, a ring with an inner diameter of 6 mm, an outer diameter of 10 mm, and a thickness of 0.1 mm. What is necessary is just a shape.
  • the thickness of the damming member 35 is smaller than the thickness of the layer in the gap V in order to secure a space for deaeration when the pressure in the gap V is reduced. It should be noted that even if such a gap exists, Since the damping material 35 has poor wettability with the molten metal solder, there is almost no possibility that the molten metal solder will flow over the damping material 35 and diffuse into the void V.
  • the damping material 35 itself is provided with air permeability, when the pressure in the gap V is reduced, the gas resistance when degassing the gas inside the gap V is further reduced, so that degassing can be performed more easily. It can be easier.
  • the damming member 5 is formed from a stainless steel mesh plate having air permeability, the deaeration resistance is reduced, and the shape processing is simpler than a stainless steel plate or the like.
  • a stainless wire having a wire diameter of 0.05 mm may be made into a plain weave of 200 mesh, and the opening is 0.077 mm and the aperture ratio is 36.8%. .
  • a protrusion may be formed in a part of the damping material in advance.
  • the damming material thus configured abuts against the surfaces of both glass sheets in the gap V, and the damping material is difficult to move when the glass panel is tilted or the gap is depressurized. This also makes it possible to more reliably fill the predetermined location with the metal solder.
  • FIG. 17 An example of such a dam member provided with such a movement restricting means is shown in FIG.
  • the damming material 36 shown in FIG. 17 is obtained by substantially folding the ring-shaped damping material 36 in two, and forming a cross-sectional shape of a part of the ring-shaped damping material 36 so that the shape becomes substantially horizontal.
  • a protrusion 36A is formed. If the damming material 36 is arranged in the gap V in the position shown in the conceptual diagram of Fig. 17, the bottom side 36B of the damping material 36 contacts the plate surface of the lower sheet glass 1B.
  • the projecting portion 36 A is intended to contact the upper surface of the sheet glass 1 A above the portion where the suction hole 4 is sandwiched by the elastic action of the damming member 36 itself.
  • the dam member 36 can be easily and reliably fixed at an appropriate position.
  • the molten metal solder 6 and the plate glass 1A, 1B adheres almost without gaps, exhibits high sealing performance, and can maintain the reduced pressure state of the gap V for a long time.
  • the contact between the molten metal solder 6 and the plate glass 1 A: 1 B has a non-contact part, and the high-pressure state of the gap V cannot be maintained. May occur. Therefore, at least the portion of the plate surface on the gap V side of the plate glass 1A, 1B that directly contacts the metal solder 6 has microscopic unevenness to the extent that this kind of problem does not occur. It is preferable to process the surface into a smooth surface. Such processing can be easily performed by polishing, for example, as follows. First, sand with a coarse mesh (for example, No. 150, etc.) and then gradually change to fine mesh (for example, No. 400, etc.) sand. As a result, the polishing efficiency can be improved.
  • a coarse mesh for example, No. 150, etc.
  • fine mesh for example, No. 400, etc.
  • polishing is then performed using a finishing abrasive (fine powder of cerium oxide, etc.).
  • a finishing abrasive fine powder of cerium oxide, etc.
  • the sealing device for sealing the suction hole 4 with the metal solder 6 is not limited to the one shown in the above embodiment, and for example, the one having the following configuration can be used. Wear.
  • the sealing device shown in Fig. 18 has a hermetic seal with a flexible pipe 19 for sucking the gas in the gap V and a 0 ring 17 for sealing between the flat glass 1A.
  • Box-shaped body 32 Inside the box-shaped body 32, an injector 35 composed of a cylinder 33 and a slider 34 slidably disposed in the cylinder 33 is mounted.
  • An injection hole 36 is formed in communication with the cylinder 33 of the injector 35, and a filter 37 is provided in the cylinder 33.
  • the injector 35 is configured to be slidable up and down with respect to the box-shaped body 32 while maintaining a sealed state with respect to the box-shaped body 32.
  • the procedure of this sealing work may be performed, for example, as follows. First, the box-shaped body 32 is set so that the injection hole 36 of the injector 35 is positioned above the suction hole 4. The metal solder piece 6A in the cylinder 33 is melted by inserting the metal solder piece 6A into the cylinder 33 and heating the injector 35 from the outside. And the injector 24 Slide it downward so that the injection hole 36 faces the suction hole 4 (or inserts it).
  • the molten metal solder 6 is injected into the gap V from the injection hole 36 through the suction hole 4 by sliding the slider 34 downward.
  • the oxide film 6a mixed into the molten metal solder 6 is blocked by the filter 37, so that the oxide film 6a is prevented from flowing into the injection hole 25, and Only the contents of the solder pieces 6 A are injected into the gap V from the suction holes 4.
  • a method of manufacturing a glass panel for sealing the suction hole 4 after simply performing a suction operation of degassing the gas in the gap V to reduce the pressure, and the glass panel thereof was explained.
  • the method for manufacturing a glass panel and the glass panel according to the present invention are not limited to such an embodiment.
  • a gas other than air for example, a rare gas or the like
  • the present invention may also be applied to a glass panel (for example, a plasma display panel or the like) in which the suction hole 4 is sealed in order to keep the suction hole 4 in a closed state.
  • the plate glass used in the glass panel of the present invention is limited to one having a different length or width dimension between one plate glass and the other plate glass as exemplified in the above embodiments. Instead of using the one having the same dimensions, it may be used.
  • the composition of the glass may be soda silicate glass (soda lime silica glass), borosilicate glass, aluminosilicate glass, or various crystallized glasses.
  • the glass panel according to the present invention may be sealed with a metal solder containing indium, lead, tin, zinc, or the like as a sealing material between the outer peripheral portions of the plate glass.
  • the glass panel according to the invention can be used for a wide variety of applications, for example, for buildings and vehicles (automobile window glass, railway vehicle window glass, ship window glass) '' For equipment elements (plasma display surface glass, refrigerator doors and doors, walls, heat insulation doors And walls).
  • buildings and vehicles automobile window glass, railway vehicle window glass, ship window glass
  • equipment elements plasma display surface glass, refrigerator doors and doors, walls, heat insulation doors And walls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

明 細 書 ガラスパネルの製造方法とそのガラスパネル 技術分野
本発明は、 一対の板ガラス間に多数のスぺ一サを介在させ、 かつ、 その両板ガ ラスの外周部間を外周密閉部で密閉して両板ガラス間に空隙部を形成し、 前記両 板ガラスのうちの一方の板ガラスに前記空隙部の気体を吸引するための吸引孔を 設け、 その吸引孔を介して前記空隙部の気体を吸引して、 前記空隙部を減圧状態 にした後、 前記吸引孔を封止してあるガラスパネルの製造方法とそのガラスパネ ルに関する。 背景技術
この種のガラスパネルでは、 従来、 一方の板ガラスに設けられた吸引孔にガラ ス管を連通状態に固着しておき、 そのガラス管を通して空隙部の気体を吸引し、 その後、 ガラス管の突出先端部を加熱溶融させて吸引孔を封止する方法が一般的 であり、 したがって、 従来のガラスパネルでは、 吸引孔部分にガラス管の一部が 突出して残っていた。
このように板ガラスの表面にガラス管の一部が突出して残っていると、 ガラス パネルの美観を損ねるのみならず、 他物との接当によってガラス管が損傷して空 隙部を減圧状態に維持し得なくなり、 断熱性能の低下を招く虞がある
そこで、 本出願人は、 先に出願した特願平 1 0— 1 9 8 6 8 6号によって、 吸 引孔が設けられた板ガラスの上面に、 その吸引孔を塞ぐ状態ではんだ板と閉塞板 とを載置しておき、 はんだ板を加熱溶融させた後、 溶融させたはんだ板を冷却固 化させて板ガラスと閉塞板とを一体化して吸引孔を封止する方法を提案した。 この方法によれば、 板ガラス表面からの閉塞板の突出量を極めて小さくするこ とができ、 他物との接当によって閉塞板が損傷し、 空隙部内の減圧状態が損なわ れる虞も少なくなる。
しかし、 溶融させたはんだ板によって板ガラスに対して閉塞板を強固に接着さ せるためには、 予め板ガラスの表面にメタライジングを施す必要がある。つまり、 銀ペーストの焼結などにより板ガラスの表面に特殊な層を形成しておく必要があ り、 この点において多少改良の余地が残されていた。
本発明は、 上記実情に鑑みてなされたものであって、 その目的は、 板ガラス表 面からの突出量が小さくて美観的に優れ、 かつ、 他物との接当により空隙部の減 圧状態が損なわれる虞を低減することができるとともに、 比較的簡易な方法で確 実に吸引孔を封止できるガラスパネルの製造方法とそのガラスパネルを提供する と ろにある。 発明の開示
請求項 1の発明の特徴構成は、 図 1〜図 4に例示するごとく、 一対の板ガラス 1 A , 1 B間に多数のスぺーサ 2を介在させ、 かつ、 その両板ガラス 1 A, I B の外周部間を外周密閉部 3で密閉して両板ガラス 1 A, 1 B間に空隙部 Vを形成 し、 前記両板ガラス 1 A, 1 Bのうちの一方の板ガラス 1 Aに前記空隙部 Vを減 圧するための吸引孔 4を設け、 その吸引孔 4から前記空隙部 Vの気体を吸引した 後、 前記吸引孔 4を封止してあるガラスパネルの製造方法であって、
前記吸引孔 4を封止する封止材として金属はんだ 6を使用し、 その金属はんだ 片 6 Aを前記吸引孔 4の近傍で加熱溶融し、 その溶融状態にある金属はんだ片 6 A表面の酸化皮膜 6 aを破って中身の金属はんだ 6を流出させ、 その流出した金 属はんだ 6を前記一方の板ガラス 1 Aに直接接触させて冷却固化させて前記吸引 孔 4を封止するところにある。
したがって、 一方の板ガラスに設けられた吸引孔を封止する封止材として金属 はんだを使用し、 しかも、 その金属はんだ片を吸引孔の近傍で加熱溶融し、 その 溶融状態にある金属はんだ片表面の酸化皮膜を破って中身の金属はんだを流出さ せ、 その流出した金属はんだを板ガラスに直接接触させ、 かつ、 冷却固化させて 吸引孔を封止するものであるから、 金属はんだの酸化皮膜が介在しない状態で、 金属はんだが直接板ガラスに接着することになり、 高い接着強度で吸引孔を封止 することができる。
その結果、 板ガラス表面に特殊な層などを形成しておく必要もなく、 板ガラス 表面からの突出量を小さくすることもでき、 美観的に優れ、 かつ、 他物との接当 による損傷も少ないガラスパネルを製造することができる。 請求項 2の発明の特徴構成は、 図 3および図 4に例示するごとく、 前記流出し た金属はんだ 6の前記空隙部 Vへの流入を阻止する流入阻止材 5を前記吸引孔 4 の長手方向中間部に配設してあるところにある。
したがって、 流出した金属はんだの空隙部への流入を阻止する流入阻止材を、 吸引孔の長手方向中間部に配設してあるので、 例えば、 流入阻止材を板ガラスの 表面に配設するのに比べて、 板ガラス表面からの金属はんだの突出量を小さくす ることができる。
そして、 特に、 吸引孔の上部に金属はんだ流入のための空間を置いた状態で、 吸引孔の長手方向中間部に流入阻止材を配設する場合には、 酸化皮膜を破って流 出した金属はんだの中身を吸引孔内へ流入させて、 その吸引孔の内部において金 属はんだにより吸引孔を封止することができ、 吸引孔の封止がより一層確実なも のとなる。 更に、 金属はんだと板ガラス表面とをほぼ面一にすることによって、 金属はんだの中身のほぼ全量を吸引孔内へ流入させることもできる。
請求項 3の発明の特徴構成は、 図 9に例示するごとく、 前記流入阻止材 5が、 前記空隙部 Vの気体を吸着するゲッタ 5 aを備えているところにある。
したがって、 前記流入阻止材が、 空隙部の気体を吸着するゲッタを備えている ので、 たとえ空隙部に残存気体があっても、 ゲッ夕が残存気体を吸着することに なり、 空隙部の減圧維持が確実となる。
請求項 4の発明の特徴構成は、 図 4に例示するごとく、 前記流出した金属はん だ 6の流出を規制する環状の規制部材 7により前記吸引孔 4と金属はんだ片 6 A とを囲い、 かつ、 前記規制部材 7を前記一方の板ガラス 1 Aの表面に接触させて 配置した状態で、 前記溶融状態にある金属はんだ片 6 A表面の酸化皮膜 6 aを破 つて中身の金属はんだ 6を流出させるところにある。
したがって、 流出した金属はんだの流出を規制する環状の規制部材により吸引 孔と金属はんだ片とを囲い、 かつ、 規制部材を一方の板ガラスの表面に接触させ て配置した状態で、 溶融状態にある金属はんだ片表面の酸化皮膜を破って中身の 金属はんだを流出させるので、 吸引孔の封止に必要な箇所を極力少ない量の金属 はんだにより効果的に封止することができる。
請求項 5の発明の特徴構成は、 前記金属はんだ 6が、 インジウムまたはインジ ゥムを含む合金であるところにある。
したがって、 前記金属はんだが、 インジウムまたはインジウムを含む合金であ るから、 ガラスに対する接着強度が強く、 かつ、 シール性能にも優れ、 一方の板 ガラスに設けられた吸引孔を一層強固に封止することができる。
請求項 6の発明の特徴構成は、 図 1および図 3に例示するごとく、 一対の板ガ ラス 1 A , 1 B間に多数のスぺ一サ 2を介在させ、 かつ、 その両板ガラス 1 A , 1 Bの外周部間を外周密閉部 3で密閉して両板ガラス 1 A, I B間に空隙部 Vを 形成し、 前記両板ガラス 1 A, 1 Bのうちの一方の板ガラス 1 Aに前記空隙部 V を減圧するための吸引孔 4を設け、 その吸引孔 4から前記空隙部 Vの気体を吸引 した後、 前記吸引孔 4を封止してあるガラスパネルであって、
前記吸引孔 4内に金属はんだ 6を入り込ませた状態で、 前記金属はんだ 6によ り前記吸引孔 4を封止してあるところにある。
したがって、 一対の板ガラスに設けられた吸引孔を金属はんだにより封止し、 しかも、 その金属はんだを吸引孔内に入り込ませた状態で封止するものであるか ら、 吸引孔の内部において金属はんだにより吸引孔を封止することができ、 少な い量の金属はんだによって吸引孔を効果的に、 かつ、 確実に封止されたガラスパ ネルが提供される。
請求項 7の発明の特徴構成は、 図 3に例示するごとく、 前記吸引孔 4の長手方 向中間部に金属はんだ 6の前記空隙部 Vへの流入を阻止する流入阻止材 5を配設 し、 その流入阻止材 5のところまで前記金属はんだ 6を入り込ませてあるところ に る。
したがって、 吸引孔の長手方向中間部に金属はんだの前記空隙部への流入を阻 止する流入阻止材を配設し、 その流入阻止材のところまで金属はんだを入り込ま せて封止するので、 上述したように吸引孔が効果的に、 かつ、 確実に封止され、 しかも、 空隙部への金属はんだの流入を確実に阻止されたガラスパネルが提供さ れる。 更に、 金属はんだのほぼ全量を吸引孔に入り込ませて封止する場合には、 金属はんだと板ガラス表面とがほぼ面一になつたガラスパネルが提供される。 請求項 8の発明の特徴構成は、 図 9に例示するごとく、 前記流入阻止材 5が、 前記空隙部 Vの気体を吸着するゲッ夕 5 aを備えているところにある。
したがって、 前記流入阻止材が、 空隙部の気体を吸着するゲッタを備えている ので、 たとえ空隙部に残存気体があっても、 ゲッタが残存気体を吸着するので、 空隙部が確実に減圧維持されたガラスパネルが提供される。
請求項 9の発明の特徴構成は、 前記金属はんだ 6が、 インジウムまたはインジ ゥムを含む合金であるところにある。
したがって、 前記金属はんだが、 インジウムまたはインジウムを含む合金であ るから、 ガラスに対する接着強度が強く、 かつ、 シール性能にも優れたインジゥ ムゃインジウムの合金により、 吸引孔が強固に、 かつ、 確実に封止されたガラス パネルが提供される。
請求項 1 0記載の発明の特徴構成は、 図 1、 図 1 3および図 1 4に例示するご とく、 一対の板ガラス 1 A , 1 B間に多数のスぺ一サ 2を介在させ、 かつ、 その 両板ガラス 1 A, 1 Bの外周部間を外周密閉部 3で密閉して両板ガラス 1 A , 1 B間に空隙部 Vを形成し、 前記両板ガラス 1 A , 1 Bのうちの一方の板ガラス 1 Aに前記空隙部 Vの気体を吸引するための吸引孔 4を設け、 その吸引孔 4を介し て前記空隙部 Vの気体を吸引して、 前記空隙部 Vを減圧状態にした後、 前記吸引 孔 4を封止するガラスパネルの製造方法であって、
前記吸引孔 4を封止する封止材料として金属はんだ 6を使用し、 その金属はん だ片 6 Aを前記吸引孔 4の近傍で加熱溶融し、 その溶融状態にある金属はんだ片 6 A表面の酸化被膜 6 aを破って中身の金属はんだ 6を、 前記吸引孔 4を介して 前記空隙部 V内に流入させ、 その前記空隙部 V内に流入させた金属はんだ 6を、 前記吸引孔 4を設けてある板ガラス 1 Aの前記空隙部 V側の板面の前記吸引孔 4 のまわりの部分、 及び他方の前記板ガラス 1 Bの前記空隙部 V側の板面の前記吸 引孔 4の近辺部分に直接接触させた状態で、 冷却固化させて、 前記吸引孔 4と前 記空隙部 Vとの連通を遮断することにより前記吸引孔 4を封止するところにある。 したがって、 溶融状態にある金属はんだを、 空隙部内にて、 吸引孔を設けてあ る板ガラスの空隙部側の板面の吸引孔のまわりの部分だけでなく、 他方の板ガラ スの空隙部側の板面の吸引孔の近辺部分に直接接触させた状態で、 冷却固化させ るので、 吸引孔と空隙部との空間による連通を遮断して、 簡易に吸引孔を封止す ることができる。 よって、 板ガラス (ガラスパネル) 表面に他物が接当したとし ても、 かかる金属はんだが損傷する虞が殆どない。 しかも、 このように空隙部 V 内にて直接接触する金属はんだと板ガラス板面とは、 大気に直接触れないので、 それらの接触箇所が腐食等により劣化し難いので、 空隙部内での金属はんだと板 ガラス板面との良好な接触状態が維持され、 空隙部内の減圧状態が損なわれる虞 は低減される。 また、 かかる金属はんだを吸引孔を介して空隙部へ流入させ、 そ の空隙部内に金属はんだを充填するので、 溶融させる金属はんだの量を調節する ことにより、 簡便に、 板ガラス (ガラスパネル) 表面における吸引孔からの金属 はんだの突出量を小さくすることもできる。
従って、 板ガラス表面からの突出量を非常に小さくすることができ、 美観的に 優れ、 かつ、 他物との接当により空隙部内の減圧状態が損なわれる虞の少ないを 低減することができるガラスパネルを製造することができる。
また、 空隙部内に流入させる溶融状態の金属はんだは、 金属はんだ片を吸引孔 の近傍で加熱溶融し、 その溶融状態にある金属はんだ片表面の酸化被膜を破って 中身の金属はんだを流出させるものであるため、 酸化被膜が介在しない状態で、 溶融状態の金属はんだが直接板ガラス板面に接触することになり、 高い接着強度 で吸引孔を封止することができる。
従って、 確実に吸引孔と空隙部との連通を遮断し、 空隙部の減圧状態を長期間 維持させ易いガラスパネルを製造することができる。
尚、 以上のように、 金属はんだが、 空隙部において、 吸引孔を設けてある板ガ ラスの空隙部側の板面の吸引孔のまわりの部分、 及び他方の板ガラスの空隙部側 の板面の吸引孔の近辺部分に直接接触した状態で充填されて、 吸引孔と空隙部と の連通を遮断することにより吸引孔を封止するので、 吸引孔自体の状態 (吸引孔 自体が完全に封をされているか否か、 例えばその周壁に金属はんだを密着充填し てあるか否かなど) にかかわらず、 確実に空隙部の減圧状態を維持することが可 能となり、 簡便かつ確実でもある。
請求項 1 1記載の発明の特徴構成は、 前記両板ガラスの前記空隙部側の板面の うちの、 前記金属はんだを直接接触させる部分を、 予め、 平滑面に加工しておく と ろにある。
したがって、 両板ガラスの空隙部側のうちの、 金属はんだを直接接触させる部 分を、 予め、 平滑面に加工しておくので、 空隙部内に流入させた溶融状態の金属 はんだの、 かかる部分の板ガラス板面への濡れ性が向上される。 故に、 空隙部内 に金属はんだを、 より板ガラス板面に密着した状態で充填させることができる。 その結果、 上述した空隙部内での板ガラス板面と金属はんだとの接触状態はよ り密着したものとなり、 一層確実に、 吸引孔と空隙部との連通を遮断して、 吸引 孔を封止することができる。
請求項 1 2記載の発明の特徴構成は、 前記金属はんだが、 インジウムまたはィ ンジゥムを含む合金であるところにある。
したがって、 前記金属はんだが、 インジウムまたはインジウムを含む合金であ るから、 ガラスに対する接着強度が強く、 かつ、 シール性能にも優れ、 一層強固 に空隙部内で板ガラス板面と接着し、 一層確実に、 吸引孔と空隙部との連通を遮 断して、 吸引孔を封止することができる。
請求項 1 3記載の発明の特徴構成は、 図 1 と図 1 3に例示するごとく、 一対の 板ガラス 1 A , 1 B間に多数のスぺーサ 2を介在させ、 かつ、 その両板ガラス 1 A , 1 Bの外周部間を外周密閉部 3で密閉して両板ガラス 1 A , 1 B間に空隙部 Vを形成し、 前記両板ガラス 1 A , 1 Bのうちの一方の板ガラス 1 Aに前記空隙 部 Vの気体を吸引するための吸引孔 4を設け、 その吸引孔 4を介して前記空隙部 Vの気体を吸引して、 前記空隙部 Vを減圧状態にして、 前記吸引孔 4を封止して あるガラスパネルであって、
前記空隙部 V内に金属はんだ 6を、 前記吸引孔 4を設けてある板ガラス 1 Aの 前記空隙部 V側の板面の前記吸引孔 4のまわりの部分、 及び他方の前記板ガラス 1 Bの前記空隙部 V側の板面の前記吸引孔 4の近辺部分に直接接触させた状態に 充填して、 前記吸引孔 4と前記空隙部 Vとの連通を遮断することにより、 前記吸 引孔 4を封止してあるところにある。
したがって、 空隙部内に金属はんだを、 吸引孔を設けてある板ガラスの空隙部 側の板面の吸引孔のまわりの部分、 及び他方の板ガラスの空隙部側の板面の吸引 孔の近辺部分に直接接触させた状態に充填して、 吸引孔と空隙部との連通を遮断 することにより、 吸引孔を封止してあるので、 板ガラス (ガラスパネル) 表面か らの金属はんだの突出量が小さく美観的に優れ、 かつ、 他物との接当により空隙 部内の減圧状態が損なわれる虞も少ないガラスパネルを提供することができる。 しかも、 少ない量の金属はんだによって吸引孔を効果的に、 かつ、 確実に封止す ることもできる。
請求項 1 4記載の発明の特徴構成は、 前記金属はんだが、 インジウムまたはィ ンジゥムを含む合金であるところにある。
したがって、 前記金属はんだが、 インジウムまたはインジウムを含む合金であ るから、 ガラスに対する接着強度が強く、 かつ、 シール性能にも優れたインジゥ ムゃインジウムの合金により吸引孔と空隙部との連通を強固に、 かつ、 確実に遮 断し、 吸引孔を封止することができる。
なお、 上述のように、 図面との対照を便利にするために符号を記したが、 該記 入により本発明は添付図面の構成に限定されるものではない。 図面の簡単な説明
図 1は、 ガラスパネルの一部切欠き斜視図
図 2は、 ガラスパネルと封止用装置の斜視図、
図 3は、 第 1実施形態によるガラスパネルの要部の断面図、
図 4は、 第 1実施形態における吸引孔の封止動作を示す断面図、
図 5は、 他の実施形態を示すガラスパネルの要部の断面図、
図 6は、 他の実施形態を示すガラスパネルの要部の断面図、
図 7は、 他の実施形態を示すガラスパネルの要部の断面図、
図 8は、 他の実施形態を示すガラスパネルの要部の断面図、
図 9は、 他の実施形態を示すガラスパネルの要部の断面図、
図 1 0は、 他の実施形態を示すガラスパネルの要部の断面図、
図 1 1は、 封止用装置の他の実施形態を示す断面図、
図 1 2は、 封止用装置のさらに他の実施形態を示す断面図、
図 1 3は、 第 2実施形態によるガラスパネルの要部の断面図、 図 1 4は、 第 2実施形態における吸引孔の封止動作を示す断面図、
図 1 5は、 他の実施形態を示すガラスパネルの要部の断面図、
図 1 6は、 他の実施形態を示すガラスパネルの要部の断面図、
図 1 7は、 他の実施形態を示すガラスパネルの要部の断面図、
図 1 8は、 封止用装置の他の実施形態を示す断面図である。 発明を実施するための最良の形態
本発明によるガラスパネルの製造方法とそのガラスパネルの第 1の実施形態を 図面に基づいて説明する。
(第 1実施形態)
図 1に示すガラスパネルは、 一対の板ガラス 1 A, 1 Bの間に多数のスぺ一サ 2を介在させて、 両板ガラス 1 A, 1 B間に空隙部 Vを形成するとともに、 両板 ガラス 1 A, 1 Bの外周部が、 外周密閉部 3によって互いに密閉されて構成され ている。
空隙部 Vは、 例えば、 1. 33 Pa ( 1. 0 x 1 02T o r rに相当) 以下の 減圧状態とされ、 そのため、 一方の板ガラス 1 Aには、 吸引減圧用の吸引孔 4が 設けられていて、 その吸引孔 4が、 吸引操作後に封止されている。
このガラスパネルに使用される板ガラス 1 A, 1 Bは、 例えば、 厚みが 2. 6 5mn!〜 3. 2 mm程度のフロート板ガラスである。 しかし、 例えば、 型板ガラ ス、 すりガラス、 網入りガラス、 強化ガラス、 熱線や紫外線を吸収する機能など を備えた板ガラスなど、 その他の各種の板ガラスを使用することができる。また、 板ガラスの厚みについても、 使用するガラスの種類などに応じて適宜選択して使 用することができる。
また、 両板ガラス 1 A, 1 Bは、 必ずしも、 同一種類で同一厚みのものを使用 する必要はなく、 種類と厚みの異なる板ガラスを使用することもできる。
スぺ一サ 2は、 圧縮強度が、 4. 9 X 1 08P a ( 5 t / c m2に相当) 以上の 材料、 例えば、 ステンレス鋼 (SUS 304 ) を使用して、 直径が 0. 3mn!〜 1. 0 mm程度で、 高さが 0. 1 5mm〜l . 0 mm程度の円柱形が好ましく、 また、 各スぺーサ 2間の間隔は、 20 mm程度が好ましい。 ただし、 スぺ一サ 2の材料は、 特にステンレス鋼に限るものではなく、 例えば、 インコネル 7 1 8や他の金属材料、 石英ガラス、 セラミックなどの各種の材料で スぺ一サ 2を形成することができ、 また、 その形状についても、 円柱形に限らず、 角柱形などにすることができ、 各スぺ一サ 2間の間隔についても、 適宜変更が可 能である。
外周密閉部 3は、 はんだガラスなどの低融点ガラスで形成されており、 両板ガ ラス 1 A , 1 Bの外周縁部間を封止して、 内部の空隙部 Vを密閉状態に維持する ことができる。
なお、 両板ガラス 1 A , 1 Bのうち、 一方の板ガラス 1 Aの方が、 他方の板ガ ラス 1 Bよりも面積が若干小さく、 そのため、他方の板ガラス 1 Bの外周縁部が、 一方の板ガラス 1 Aの外周縁部から突出している。 したがって、 外周密閉部 3を 形成する際、 その突出部上にはんだガラスなどの封止用材料を載置することで、 外周密閉部 3による空隙部 Vの密閉作業を効率的に、 かつ、 確実に行うことがで きる。
吸引孔 4は、 図 3に詳しく示すように、 例えば、 直径 3 m mの大径孔 4 aと直 径 2 m mの小径孔 4 bからなる段部付きの孔で構成されている。 前記段部には、 空隙部 Vへの金属はんだ 6の流入を阻止する流入阻止材 5を配置することができ る。 このように、 吸引孔 4は、 大径孔 4 aと小径孔 4 bの間に形成された段部に 流入阻止材 5を介在させた状態で、 金属はんだ 6によって封止される。 更に、 板 ガラス 1 Aの表面には、 環状の規制部材としてのガイ ド板 7が貼着され、 そのガ ィ ド板 7と金属はんだ 6とをカバ一材 8が覆うように構成されている。
流入阻止材 5は、 例えば、 線径 0 . 0 4 m mのステンレス製の細線を使用し、 開口率が 3 6 . 8 %の金網で構成される。但し、 吸引孔 4からの吸引を阻害せず、 かつ、 金属はんだ 6の通流を阻止するものであるばよく、 例えば、 ガラスクロス などで構成することもできる。
金属はんだ 6は、 ガラスパネル使用時の温度 (一 3 0 °C〜 1 0 0 °C ) を考慮す ると、 融解温度が 1 2 0 °C〜 2 5 0 °C程度のものが好ましく、 例えば、 融解温度 が 1 5 6 . 4 °Cのインジウムを使用することができる。 インジウムは、 ガラスに 対する接着力が強く、 シール性能にも優れ、 かつ、 表面に形成される酸化皮膜も 薄いところから、 本発明に用いる金属ハンダ 6として好適である。
ただし、 インジウムは、 比較的高価な金属であるため、 例えば、 インジウム 5 0 %と錫 5 0 %の合金 (固相線が 1 1 5 . 6 °Cに位置し、 液相線が 1 2 6 . 9 °C に位置する) や、 インジウム 4 0 %と鉛 6 0 %の合金 (固相線が 1 7 3 . 0 °Cに 位置し、 液相線が 2 2 5 . 0 °Cに位置する) などの各種の合金を使用することも できる。
因みに、 金属はんだ 6として、 ンジウムやインジウム合金を用いた場合、 次 のような利点も有する。 つまり、 金属はんだ 6と板ガラス 1 A, I Bとの線膨張 係数が異なることに基づいて、 仮に金属はんだ 6を板ガラス 1 A , 1 Bに直接接 触させた状態で固化した後に、 雰囲気温度の変化に伴って、 かかる金属はんだ 6 と板ガラス 1 A, 1 Bとの接着界面に応力が発生したとしても、 インジウムゃィ ンジゥム合金は柔らかいため、 かかる応力を緩和させて、 金属はんだ 6が剥離す る虞を低減させることもできるのである。 従って、 空隙部の減圧状態が、 安定し て長期間保持されることを期待することもできる。
ガイ ド板 7は、 金属はんだ 6の流動を規制するためのものであるから、 金属は んだ 6の流動を阻止し得るものであればいかなる材料で構成してもよい。 但し、 真空中において容易に表面の吸蔵気体を脱気できるのが好ましいため、 多孔質の 材料は適さず、 例えば、 金属やセラミック製の板、 あるいは、 ステンレス製の網 などで構成し、 厚みが 0 . 1 m m程度のものが最適である。
カバ一材 8についても、 種々の材料で構成することができるが、 金属はんだ 6 に対する接着力が強く、 かつ、 ガラスパネルを構成する板ガラス 1 A , 1 Bの熱 膨脹係数に近似した熱膨脹係数を有するのが好ましいところから、板ガラス 1 A, 1 Bと同じ組成のガラス板を使用するのが好ましい。
つぎに、 吸引孔 4を金属はんだ 6で封止するための装置について説明する。 この封止用装置は、 図 2および図 4に示すように、 平面視で長方形の貫通孔 9 が中央部に形成された台座 1 0を有する。 先ず、 台座 1 0には、 ウェイ ト用横軸 1 1 と、ウェイ ト用横軸 1 1周りに揺動自在なウェイ ト 1 2とが設けられている。 さらに、 台座 1 0には、 ウェイ ト用横軸 1 1 と平行な回動子用横軸 1 3と、 回動 子用横軸 1 3周りに揺動自在な回動子 1 4とが設けられている。 ウェイ ト 1 2と回動子 1 4とは、 台座 1 0の貫通孔 9を挟んで互いに相対向す る状態に配設されている。 これら台座 1 0、 ウェイ ト 1 2、 回動子 1 4のうち、 回動子 1 4のみが鉄などの磁性体で構成され、 他の台座 1 0とウェイ ト 1 2とは 非磁性体の材料で構成されている。
封止用装置を構成する台座 1 0などは、 非磁性体材料からなる円筒状の筒体 1 5内に収納可能に構成されている。 筒体 1 5の上面は、 ガラス板 1 6により密閉 され、 筒体 1 5の下面には、 板ガラス 1 Aとの間を密閉する 0リング 1 7が設け られている。
ガラス板 1 6上面の領域の中で、 回動子 1 4の遊端部の上方に相当する位置に は、 電磁石 1 8が設けられている。 更に、 筒体 1 5には、 筒体 1 5の内部空間を 介してガラスパネルの空隙部 V内の気体を吸引するためのフレキシブルパイプ 1 9が設けられている。
次に、 この封止装置を用いて吸引孔 4を封止してガラスパネルを製造する方法 について説明する。
まず、 図 4の (a ) に示すように、 吸引孔 4の大径孔 4 a内に予め流入阻止材
5を挿入しておいて、 板ガラス 1 A上に台座 1 0を載置する。 その際、 吸気孔 4 が、 台座 1 0の貫通孔 9内に位置するように載置する。
板ガラス 1 Aの上の、 台座 1 0の貫通孔 9によって包囲された領域の上に、 ガ イ ド板 7を載置し、 このガイ ド板 7の内側に金属はんだ片 6 Aを載置する。 つま り、 吸引孔 4と金属はんだ片 6 Aとが、 環状のガイ ド板 7によって囲まれた状態 で、 ガイ ド板 7を板ガラス 1 A上に載置する。
この金属はんだ片 6 Aの載置箇所と吸引孔 4との間の間隔は、 使用する金属は んだ片 6 Aの種類や量などに応じて適宜設定する。 その一例を示すと、 吸引孔 4 の孔の径が 2 m m、 空隙部 Vの層の厚みが 0 . 2 m mの場合、 インジウム単体か らなる金属はんだ片 6 Aの量を約 0 . 3 gとし、 金属はんだ片 6 Aの載置箇所と 吸引孔 4との間の間隔を 8 m m程度に設定すると、 空隙部 V内にて均一に充填さ せることができる。
そして、 カバー材 8を、 カバー材 8の一辺がガイ ド板 7の一端上に、 カバ一材 8の他辺が、 回動子 1 4の遊端部上面に係合され、 且つ、 カバ一材 8の上面にゥ エイ ト 1 2が載置された状態で配置する。次に、 その上方から筒体 1 5を被せて、 台座 1 0と金属はんだ片 6 Aとカバ一材 8を含む全体が、 筒体 1 5内に収納され るように設置する。
このガラスパネルと封止装置とをガラスパネルが水平になる状態で加熱炉 2 0 内に収納し、 例えば、 2 0 0 °Cにまで加熱しながら、 フレキシブルパイプ 1 9を 介して真空引きを行う。 すると、 筒体 1 5内の空気が吸引されるとともに、 ステ ンレス製細線の金網等で構成された流入阻止材 5を通して、 空隙部 V内の空気も 吸引され、 空隙部 V内に前述した所定の減圧状態が得られる。
金属はんだ片 6 Aとしてのインジウムは、 1 5 6 . 4 °C以上になると融解する が、上記の温度条件のみでは、 表面張力によって加熱前の形状がほぼ保持される。 因みに、 融解により金属はんだ片 6 Aが活性化しても、 筒体 1 5内は真空に近い ため、 金属はんだ片 6 A表面の酸化促進は阻止される。
このようにして金属ばんだ片 6 Aが溶融状態となり、 かつ、 空隙部 Vが所定の 減圧状態になった時点で、 電磁石 1 8に通電すると、 電磁石 1 8の吸引力により 回動子 1 4が回動子用横軸 1 3周りで上方に回動されて、 ガバ一材 8に対する係 合が解除される。
すると、 カバ一材 8が、 自重とウェイ ト 1 2の重みとの協働作用に基づいて、 下方に位置する溶融状態の金属はんだ片 6 A上に落下する。 この落下して来る力 バ一材 8によって、 溶融状態の金属はんだ片 6 Aが瞬間的に潰れる。 つまり、 図 4の (b ) に示すように、 表面の酸化皮膜 6 aが衝撃的に破られて、 金属はんだ 片 6 Aの中身が流出する。
流出した金属はんだ片 6 Aの中身は、 板ガラス 1 Aに直接接触しながら流動す るが、 その流出範囲は、 ほぼガイ ド板 7内に規制される。 そこで、 流出した金属 はんだ片 6 Aの中身は、吸引孔 4内へ流入し、吸引孔 4の外周面に直接接触する。 但し、 空隙部 V内への流入は、 流入阻止材 5によって阻止される。
この状態で加熱炉 2 0による加熱を停止し、 冷却されるのを待てば、 溶融した 金属はんだ片 6 Aが固化して、 金属はんだ 6による吸引孔 4の封止が完了し、 必 要に応じて、 シリコーンのような防水シ一ラントを塗布したり、 キャップを貼着 することでガラスパネルの製造が完了する。 ここで第 1実施形態に関連の深い他の実施形態について解説する。
< 1 - 1 >先の第 1実施形態に示された完成後のガラスパネルでは、 金属はん だ 6により封止した吸引孔 4の周りにガイ ド板 7が貼着され、 カバ一材 8がその ガイ ド板 7と金属はんだ 6とを覆っている。 しかし、 図 5に示すように、 ガイ ド 板 7やカバ一材 8の無いガラスパネルを構成することもできる。
この図 5のガラスパネルにおいても、 先の実施形態で説明した封止装置を使用 し、 かつ、 全く同じ方法で吸引孔 4を封止する。 しかし、 その後、 ガイ ド板 7と カバ一材 8とが取り除かれ、 吸引孔 4内と吸引孔 4の周りに固着された金属はん だ 6のみが残る。 したがって、 ガイ ド板 7とカバ一材 8とは、 固化した金属はん だ 6と接着し難い材料、 例えば、 アルミニウムなどで形成するのが好ましい。 ま た、 最終的な状態として、 金属はんだ 6がむき出しとなるため、 防水コートを施 したり、 キャップを貼着して保護するのが好ましい。
く 1 一 2 >これまでの実施形態では、 吸引孔 4を、 大径孔 4 aと小径孔 4 bか らなる段部付き孔で構成した例を示した。 しかし、 図 6に示すように、 大径孔の 方を上方ほど大径となるラッパ状の大径孔 4 cとし、 そのラッパ状大径孔 4 cと 小径孔 4 bから吸引孔 4を構成することもできる。
また、 この図 6に示すように、 金属はんだ片 6 Aを載置する箇所の板ガラス 1 A表面に細かい凹凸面 1 aを形成しておき、 その凹凸面 1 a上に金属はんだ片 6 Aを載置して融解させることもできる。 この場合には、 金属はんだ片 6 Aの中身 が流出する際、金属はんだ片 6 Aの酸化皮膜 6 aが凹凸面 1 aに引っ掛かるので、 酸化皮膜 6 aが吸引孔 4内へ流入することが阻止されるため、 金属はんだ片 6 A の中身の吸引孔 4内へ流入がより円滑に行われ、 吸引孔 4の封止がより確実とな る。
< 1 - 3〉これまでの実施形態では、 吸引孔 4の長手方向中間部に流入阻止材 5を配置しておいて、 金属はんだ片 6 Aを流出させることによって、 吸引孔 4の 上方の一部を金属はんだ 6が封止した構成を示した。 しかし、 図 7に示すように、 吸引孔 4の上方の端部に流入阻止材 5を配設しておいて、 金属はんだ片 6 Aを流 出させることによって、 金属はんだ 6が、 吸引孔 4の上方を覆ってこれを封止す るのみで、 吸引孔 4内を封止しない構成としても良い。 つまり、 吸引孔 4を、 小径孔 4 bと、 流入阻止材 5の厚さと等しい深さの大径 孔 4 aとからなる段付き孔で構成し、 この大径孔 4 a内に流入阻止材 5を配置す れば、 流入阻止材 5の上面と板ガラス 1 Aの表面とが面一に揃った状態が得られ る。 この状態で、 金属はんだ 6を流出させれば、 金属はんだ 6は吸引孔 4内に流 入させずに、 板ガラス 1 Aの表面にのみ直接接触させて吸引孔 4を封止し、 その 金属はんだ 6をカバー材 8で覆つだ構成が得られる。 また、 この図 7に示す実施 形態において、金属はんだ 6の固化後に、 ガイ ド板 7やカバ一材 8を取り外せば、 ガイ ド板 7やカバ一材 8の無いガラスパネルを構成することもできる。
< 1 一 4 >更に、 吸引孔 4を大径孔 4 a, 4 cと小径孔 4 bとからなる段付き 孔で構成する場合、 図 8に示すように、 大径孔 4 a内に流入阻止材 5を挿入して おき、 流入した金属はんだ 6が大径孔 4 a内にのみ存在するように構成すること もできる。 この場合、 特に図 8に示すように、 金属はんだ 6の量を制御すること によって、 その金属はんだ 6と板ガラス 1 Aの表面とをほぼ面一にすることも出 来る。 また、 必要に応じて、 金属はんだ 6をカバ一材 8で覆って構成することも できる。
但し、 このような流出操作を円滑に行うためには、 後述する封止用装置 (図 1 1および図 1 2参照) を使用することが有効である。
< 1 一 5 >これまでの実施形態では、 ステンレス製の細線を使用した金網ゃガ ラスクロスなどからなる流入阻止材 5を単独で使用した例を示した。 しかし、 図 9に示すように、 流入阻止材 5にゲッタ 5 aを付設して実施することもできる。 このゲッタ 5 aは、 空隙部 Vの気体を吸着するためのもので、 例えば、 Z r、 Z r— A l、 Z r—A l— T i、 Z r - V— F e、 B a— A 1などで形成されて おり。 そして、 ゲッ夕 5 aは、 筒状にして大径孔 4 a内に挿入されて、 空隙部 V にゲヅタ 5 aの一面が露出するように構成されている。
なお、 このゲヅ夕 5 aについては、 図 9に示す構成以外に、 例えば、 流入阻止 材 5に担持させて、 つまり、 流入阻止材 5のうちの空隙部 Vに露出する側の面に ゲッタ 5 aを担持させて実施することもできる。
< 1 - 6 >これまでの実施形態では、 吸引孔 4を段付き孔で構成した例を示し たが、 図 1 0に示すように、 吸引孔 4をストレートの貫通孔で構成することもで きる。
その場合、 溶融状態にある金属はんだ片 6 Aの空隙部 Vへの流入を防止する必 要があれば、 図示したように、 流入阻止材 5を両板ガラス 1 A, I Bの間に挟み 込んでおけば良い。 また、 ストレートな吸引孔 4の長手方向中間部に流入防止材 5を貼着しておいて、 金属はんだ片 6 Aの空隙部 Vへの流入を防止することもで ぎる。
また、 この図 1 0に示す実施形態においても、 ガイ ド板 7やカバー材 8をなく したガラスパネルを構成することもできる。
< 1一 7 >更に、 吸引孔 4を金属はんだ 6で封止する封止用装置についても、 先の実施形態で示したものに限らず、種々の構成のものを使用することができる。 例えば、 図 1 1に示す封止用装置は、 空隙部 V内の気体を吸引するためのフレ キシブルパイプ 1 9と、 板ガラス 1 Aとの間を密閉する 0リング 1 7を備えた気 密状の箱状体 2 1を備える。 箱状体 2 1の内部には、 円筒部 2 2と円筒部 2 2内 に摺動自在に配設されたスライダ 2 3とからなるインジェクタ 2 4が取付けられ ている。 インジェク夕 2 4の円筒部 2 2には、 注入孔 2 5が連通されている。 ま た、 円筒 2 2内には、 ステンレススチール製網などからなるフィルタ 2 6が配設 されている。
この封止用装置によれば、 注入孔 2 5が吸引孔 4に臨むように箱状体 2 1を設 置し、 円筒 2 2内に金属はんだ片 6 Aを挿入してィンジェクタ 2 4を加熱して、 円筒 2 2内の金属はんだ片 6 Aを融解させる。
そして、 スライダ 2 3の摺動により、 溶融状態にある金属はんだ 6を注入孔 2 5から吸引孔 4内に注入すると、 金属はんだ片 6 Aの中身のみが吸引孔 4に注入 される。 すなわち、 溶融状態にある金属はんだ 6内に混入している酸化皮膜 6 a は、 フィルタ 2 6によって堰きとめられて、 酸化皮膜 6 aが注入孔 2 5へ流出し て注入孔 2 5内を閉塞する事態が阻止される。
したがって、 先の封止用装置と同様に、 冷却されるのを待てば、 溶融した金属 はんだ片 6 Aが固化して、 金属はんだ 6による吸引孔 4の封止が完了する。 イン ジェクタ 2 4の注入孔 2 5から流れ出す金属はんだ片 6 Aの着地位置は、 注入孔 2 5の向き、 長さおよび内径、 スライダ 2 3の押し出し速度、 金属はんだ 6の流 動性などのファクタ一を適当に設定することで、 制御できる。
< 1 - 8 >更に、 図 1 2に示す封止用装置は、 図 1 1の封止用装置と同様に、 フレキシブルパイプ 1 9と 0リング 1 7を有する気密状の箱状体 2 7を有する。 箱状体 2 7内には、 円筒 2 8とスライダ 2 9とからなるインジェクタ 3 0が備え られている。 また、 ィンジェクタ 3 0の円筒 2 8内には、 フィルタ 3 1が配設さ れている。 インジェクタ 3 0は、 箱状体 2 7に対して密閉状態を維持したままで 上下方向に摺動可能に構成されている。
したがって、 この封止用装置においては、 先ず、 円筒 2 8の口が吸引孔 4の上 方に位置するように箱状体 2 7を設置する。 そこで、 インジヱクタ 2 4を加熱す ることで、 円筒 2 2内に挿入した金属はんだ片 6 Aを融解させる。次に、 或いは、 融解と同時に、 インジヱクタ 3 0の全体を下方へ摺動させることで、 円筒 2 8の 先端を吸引孔 4に臨ませる。
そして、 円筒 2 8を固定したままスライダ 2 9を下に押し下げると、 溶融した 金属はんだ 6が吸引孔 4内に注入される。
酸化皮膜 6 aの円筒 2 8からの流出は、 フィルタ 3 1によって阻止され、 金属 はんだ片 6 Aの中身のみが吸引孔 4に注入され、 その後の冷却によって溶融した 金属はんだ片 6 Aが固化して、 金属はんだ 6による吸引孔 4の封止が完了する。 次に、 本発明によるガラスパネルの製造方法とそのガラスパネルの第 2の実施 形態を図面に基づいて説明する。
(第 2実施形態)
完成後のガラスパネルの外観 (図 1を参照)、 空隙部 V内の減圧状態、 使用され る板ガラス 1 A, I Bの構成、 スぺ一サ 2自身の構成やそれらの配置、 外周密閉 部 3の構成、 金属はんだ 6の組成、 ガイ ド板 7の構成、 および、 カバー材 8の構 成は、 第 1実施形態と特に変わるところは無いので、 ここでの詳細な記述は省略 する。
なお、 外周密閉部 3による空隙部 Vの密閉作業を効率的に、 かつ、 確実に行え るように、 両板ガラス 1 A, I Bのうち、 一方の板ガラス 1 Aの方が、 他方の板 ガラス 1 Bよりも面積が若千構成されている点も同じである。 以下、 第 2実施形 態の第 1実施形態と異なる点を中心に記載する。 吸引孔 4は、 図 1 3に詳しく示すように、 例えば、 直径 2 m mの孔で構成され る。 そして、 板ガラス 1 Aの空隙部 V側の板面の吸引孔 4のまわりの部分、 及び 他方の板ガラス 1 Bの空隙部 V側の板面の吸引孔 4の近辺部分に直接接触させた 状態に充填してある金属はんだ 6によって、 吸引孔 4と空隙部 Vとの連通を遮断 することにより吸引孔 4が封止される。 更に、 板ガラス 1 Aの表面には、 環状の 規制部材としてのガイ ド板 7が貼着されており、 カバ一材 8が、 これらのガイ ド 板 7と金属はんだ 6とを覆うように構成されている。
次に、 第 1実施形態のものと同一の封止装置を用いて吸引孔 4を封止してガラ スパネルを製造する方法について説明する。
まず、 図 1 4の (a ) に示すように、 板ガラス 1 A , 1 Bの板面が略水平とな るようガラスパネルを設置し、 吸引孔 4を有する板ガラス 1 A上に台座 1 0を載 置する。 その際、 吸引孔 4が、 台座 1 0の貫通孔 9内に位置するように載置する。 次に、板ガラス 1 A上の、 台座 1 0の貫通孔 9によって包囲された領域の上に、 ガイ ド板 7を載置し、 このガイ ド板 7の内側に金属はんだ片 6 Aを載置する。 つ まり、 吸引孔 4と金属はんだ片 6 Aとが環状のガイ ド板 7によって囲まれた状態 で、 ガイ ド板 7を板ガラス 1 A上に載置する。 後の手順は第 1実施形態のものと 全く同じで良い。
流出した金属はんだ片 6 Aの中身は、 板ガラス 1 A表面上を流動するが、 その 流出範囲は、 ほぼガイ ド板 7内に規制される。 そこで、 流出した金属はんだ片 6 Aの中身は、 吸引孔 4内へ流入し、 さらにその吸引孔 4を介して、 空隙部 V内へ 流入して、 吸引孔 4を設けてある板ガラス 1 Aの空隙部 V側の板面の吸引孔 4の まわりの部分、 及び、 他方の板ガラス 1 Bの同じく空隙部 V側の板面の吸引孔 4 の近辺部分に直接接触した状態となる。
この状態で加熱炉 2 0による加熱を停止して冷却されるのを待てば、 溶融した 金属はんだ片 6 Aが固化する。 その結果、 かかる板ガラス 1 A, I Bの空隙部 V 側の板面に直接接触した状態で空隙部 V内に充填された金属はんだ 6が、 吸引孔 4と空隙部 Vとの連通を遮断し、 吸引孔 4の封止が完了する。 そして、 必要に応 じて、 シリコーンのような防水シ一ラントを塗布したり、 キャップを貼着するこ とでガラスパネルの製造が完了する。 因みに、 吸引孔 4と空隙部 Vの間の空間的な連通を確実に遮断するには、 金属 はんだ片 6 Aの中身を空隙部 V内へ流入させ、 金属はんだ 6を充填する際に、 吸 引孔 4の空隙部 V側の出口のまわりに均一に金属はんだ 6が、 充填されることが 有効である。 このような充填状態が得られるためには、 以下の点に留意すると良 い。
< 1 > 空隙部 Vの隙間空間のうち少なく とも金属はんだ 6を充填しょうとする 領域については、 金属はんだ 6の流れ易さが、 吸引孔 4の孔の前記仮想中心線に 関して略回転対称であるように構成しておくこと。 これを実現するための具体的 な手法としては、 板ガラス 1 A, 1 Bの板面が略水平となるようガラスパネルを 設置すること、 吸引孔 4の軸芯が正確に板ガラス 1 A , 1 Bの板面と直交するよ うに吸引孔 4を穿孔すること、 および、 金属はんだ 6を充填しょうとする領域に は、 スぺーサ 2など金属はんだ 6の自由な流動を阻害する物体を配置しないこと 等が挙げられる。
この条件を満たせば、空隙部 V内に流入させた溶融状態の金属はんだ片 6 Aが、 吸引孔 4の空隙部 V側の出口から略同心円状に、 空隙部 V内へ流れ出るので、 吸 引孔 4の空隙部 V側の出口のまわりに均一に金属はんだ 6が、 充填され易い。
〈2〉 溶融状態で空隙部 V内に流入する金属はんだ片 6 Aの量が、 適量となる ように、 金属はんだ 6の量を調節すること。
例えば、 直径 2 m mの吸引孔 4のまわりに、 直径 6 m m程度に金属はんだ 6を 充填したい場合、 使用する金属はんだ 6の体積を、 かかる径で空隙部 Vを充填す るのに必要な金属はんだ 6の体積と、 吸引孔 4を充填するのに必要な金属はんだ 6の体積と、 吸引孔 4の板ガラス 1 Aの表面側にてカバ一材 8内を充填するのに 必要な金属はんだ 6の体積の合計量となるように調節しておけばよい。
〈3〉 金属はんだ片 6 Aが流出し始めてから固化するまでの温度と時間の管理 を適切に行うこと。
つまり、 前記 〈 1〉 の項目により、 吸引孔 4を介して空隙部 V内へ流入する溶 融状態の金属はんだ片 6 Aは、 吸引孔 4の孔の空隙部 V側の出口から空隙部 V内 へ略同心円状に流出するが、 その流出速度は、 温度や吸引孔 4の径の大きさにと より変化し、 また、 ある程度空隙部 V内へ流出すると低下して一定速度に飽和す る。
よって、 吸引孔 4の径の大きさは、 予め適宜所定の値に設定されているので、 金属はんだ片 6 Aが、 流出し始めてから固化するまでの温度と時間を一定にすれ ば、 空隙部 V内に流入する金属はんだ片 6 Aの量を、 略一定にすることができ、 また、 温度を一定にし、 金属はんだ片 6 Aを固化するまでの時間を、 その流出速 度がほほ飽和するまでの時間と一致するように設定すれば、 安定して適切に空隙 部 V内に金属はんだ 6を充填することができる。
次に、 第 2実施形態に関連の深い他の実施形態について解説する。
< 2 - 1〉上記の第 2実施形態では、 金属はんだ 6により封止した吸引孔 4の 周りにガイ ド板 7を貼着し、 そのガイ ド板 7と金属はんだ 6とをカバー材 8が覆 つた構成のガラスパネルを示したが、 金属はんだ 6の流出と冷却固化の後で、 ガ イ ド板 7やカバ一材 8を除去すれば、 図 1 5に示すように、 ガイ ド板 7やカバ一 材 8の無いガラスパネルを構成することができる。 この場合、 ガイ ド板 7とカバ —材 8とは、 金属はんだ 6と接着し難い材料、 例えば、 アルミニウムなどで形成 するのが好ましく、 また、 金属はんだ 6又は吸引孔 4がむき出しとなるため、 防 水コートを施したり、 キャップを貼着して保護するのが好ましい。
く 2— 2 >先の第 2実施形態では、 上述の 〈 1〉 から 〈3〉 の点に留意して、 金属はんだ 6を均一に充填するようにした。 しかし、 かかる実施形態に限らず、 図 1 6に示す如く、 せき止め材 3 5を、 吸引孔 4の空隙部 V側の出口近辺の適切 な位置に配置することで、 空隙部 V内へ流入させた溶融状態の金属はんだ片 6 A の流れを、 意図的にせき止めて、 その空隙部 V内に金属はんだ 6を均一に充填す ることもできる。 以下、 この実施形態について詳述する。
すなわち、 せき止め材 3 5としては、 溶融状態の金属はんだとの親和性の比較 的悪い物質、 つまり濡れ難い物質が好適であり、 例えばステンレススチール製の 板材などを用いることができる。 空隙部 Vの層が 0 . 2 m m、 吸引孔 4の孔の径 が 2 m mの時には、 せき止め材 3 5を、 内径が 6 m m、 外径が 1 0 m m、 厚みが 0 . 1 m mのリング形状とすれば良い。 このように、 空隙部 V内を減圧する際に、 脱気用の隙間空間を確保するために、 せき止め材 3 5の厚みは、 空隙部 V内の層 の厚さよりも小さく してある。 尚、 かかる隙間空間が存在していたとしても、 せ き止め材 3 5は、 溶融状態の金属はんだとの濡れ性が悪いため、 溶融状態の金属 はんだがせき止め材 3 5を乗り越えて空隙部 V内へ流出拡散する虞はほとんどな い。
更に、 せき止め材 3 5自体に通気性を備えさせておけば、 空隙部 Vを減圧する 際に、 その内部の気体を脱気するときの気体の抵抗は更に小さくなり、 一層簡便 に脱気し易くすることがでる。 例えば、 せき止め材 5を、 通気性を有するステン レススチールのメッシュ板から形成すれば、 脱気抵抗が小さくなると共に、 ステ ンレス板等と比べ形状加工も簡易である。 この場合、 例えば、 線径が 0 . 0 5 m mのステンレス線を 2 0 0メッシュの平織りにすればよく、 そのときの、 開目 0 . 0 7 7 m m, 開口率 3 6 . 8 %となる。
因みに、 せき止め材を、 空隙部に配置するにあたっては、 予め、 せき止め材の 一部に突出部を形成しておけば良い。 このように構成されたせき止め材は、 空隙 部 V内にて両板ガラスの板面に接当し、 ガラスパネルを傾けたり、 空隙部を減圧 したりする際などに、 せき止め材が移動し難いので、 より確実に所定の箇所に金 属はんだを充填することができるようにもなる。
このような、移動規制手段を備えたせき止め材の一例が図 1 7に示されている。 図 1 7に示されたせき止め材 3 6は、 リング形状のせき止め材 3 6を、 略均等に 二つ折りにし、 その一部の断面形状が略横向きの 「く」 の字状となるように、 突 出部 3 6 Aが形成されている。せき止め材 3 6を、 図 1 7の概念図に示す姿勢で、 空隙部 V内に配置すれば、 せき止め材 3 6の底面側 3 6 Bは下側の板ガラス 1 B の板面に接当し、 突出部 3 6 Aはせき止め材 3 6自体の弾性作用により吸引孔 4 を挟むような箇所の上側の板ガラス 1 Aの板面に接当しょうとする。したがって、 簡便にかつ確実に、 せき止め材 3 6を適切な箇所に位置固定することができる。 く 2— 3 >以上の各実施形態では、 板ガラス 1 A, I Bの空隙部 V側の表面が 平坦である場合には、微視的にみても、溶融状態の金属はんだ 6と板ガラス 1 A , 1 Bがほとんど隙間なく密着し、 高度なシール性を示し、 空隙部 Vの減圧状態を 長期間保持することができる。
ところが、 板ガラス 1 A, 1 Bの空隙部 V側の表面に当初から微視的な凹凸が ある場合 (例えば、 板ガラス 1 A, 1 Bが、 すりガラスや、 板面表面に被覆を施 した L o w— Eガラス等からなる場合)、溶融状態の金属はんだ 6と板ガラス 1 A : 1 Bの接触部分に、 未接触の部分が生じ、 空隙部 Vの高度な減圧状態を保持でき ない問題が生じる虞がある。 したがって、 板ガラス 1 A , 1 Bの空隙部 V側の板 面のうちの、 少なく とも金属はんだ 6を直接接触させる部分を、 予め、 この種の 問題が生じない程度に、微視的な凹凸がない平滑面に加工しておくのが好ましい。 かかる加工は、 例えば、 次のように、 研磨すれば、 簡易に行うことができる。 先ず、 始めに粗いメッシュ (例えば 1 5 0番等) の砂で研磨し、 次第に適宜、 細かいメッシュ (例えば 4 0 0番等) の砂に変えて研磨を行う。 これにより、 研 磨の効率を向上させることができる。
ある程度のメッシュの砂により研磨を仕上げたら、次に、仕上げ用の研磨剤(酸 化セリウムの微粉等) を用いて、 研磨 (ポリヅシュ) を行う。 前述の砂だけの研 磨仕上げでは、 かなり細かいメッシュ (例えば 1 0 0 0番等) の砂で仕上げても、 微視的には凹凸があるが、 かかるポリッシュを行えば、 空隙部 Vの減圧状態を長 期間保持するのに問題ない程度の平滑面に仕上げることができる。
< 2— 4〉吸引孔 4を金属はんだ 6で封止する封止用装置についても、 先の実 施形態で示したものに限らず、 例えば次のような構成のものを使用することがで きる。
例えば、 図 1 8に示す封止用装置は、 空隙部 V内の気体を吸引するためのフレ キシブルパイプ 1 9と、 板ガラス 1 Aとの間を密閉する 0リング 1 7を備えた気 密状の箱状体 3 2を備えている。 箱状体 3 2の内部には、 円筒 3 3と円筒 3 3内 に摺動自在に配設されたスライダ 3 4とからなるィンジヱクタ 3 5が取付けられ ている。 ィンジヱクタ 3 5の円筒 3 3には、 注入孔 3 6が連通形成されており、 且つ、 円筒 3 3内には、 フィルタ 3 7が配設されている。 そして、 インジェクタ 3 5は、 箱状体 3 2に対して密閉状態を維持したままで、 箱状体 3 2に対して上 下方向に摺動可能に構成されている。
この封止作業の手順は、 例えば、 次のように行えば良い。 先ず、 インジェク夕 3 5の注入孔 3 6が吸引孔 4の上方に位置するように箱状体 3 2を設置する。 円 筒 3 3内に金属はんだ片 6 Aを挿入してィンジェクタ 3 5を外部などから加熱し て、 円筒 3 3内の金属はんだ片 6 Aを融解させる。 そして、 インジヱクタ 2 4を 下方へ摺動させて、 注入孔 3 6を吸引孔 4に臨ませる (又は挿入する)。
そして、溶融状態にある金属はんだ 6を、 スライダ 3 4の下向きの摺動により、 注入孔 3 6から吸引孔 4を介して空隙部 V内に注入する。 この時、 溶融状態にあ る金属はんだ 6内に混入した酸化皮膜 6 aは、 フィルタ 3 7によって堰き止めら れるため、 酸化皮膜 6 aが注入孔 2 5内へ流出することは阻止され、 金属はんだ 片 6 Aの中身のみが吸引孔 4から空隙部 V内へ注入される。
この後、 先の封止用装置と同様に、 適当な冷却期間を設ければ、 溶融した金属 はんだ片 6 Aが固化して、 金属はんだ 6により吸引孔 4と空隙部 Vとの連通が遮 断されて、 吸引孔 4の封止が完了する。
< 2— 5 >上記の各実施形態では、 一例として、 単に空隙部 Vの気体を脱気し て減圧状態にする吸引操作後、 吸引孔 4を封止するガラスパネルの製造方法及び そのガラスパネルについて説明した。 しかし、 本発明に係るガラスパネルの製造 方法及びそのガラスパネルは、 このような形態に限るものではない。 例えば、 吸 引孔 4から、 空隙部 Vを脱気した後、 新たに空気以外の気体 (例えば希ガス等) を空隙部 V内に充填した後に、 かかる空隙部を気体の封入された減圧状態に保持 するために、 吸引孔 4を封止する形態のガラスパネル (例えばプラズマディスプ レイパネル等) にも勿論実施してもよい。
< 2— 6 >本発明のガラスパネルに使用する板ガラスは、 上記の各実施例で例 示したような、 一方の板ガラスと他方の板ガラスとが、 長さや巾寸法が異なるも のに限定されるものではなく、 同寸法に形成してあるものを使用するものであつ ても良い。
また、 ガラスの組成については、 ソ一ダ珪酸ガラス (ソ一ダ石灰シリカガラス) や、 ホウ珪酸ガラスや、 アルミノ珪酸ガラスや、 各種結晶化ガラスであっても良 い。
そして、 本発明に係るガラスパネルは、 板ガラスの外周部間を封止用材料とし てのインジウム、 鉛、 錫または亜鉛などを主成分とする金属はんだで封着してあ つても良い。
産業上の利用可能性
本発明に係るガラスパネルは、 多種にわたる用途に使用することが可能で、 例 えば、 建築用 ·乗物用 (自動車の窓ガラス、 鉄道車両の窓ガラス、 船舶の窓ガラ ス) '機器要素用 (プラズマディスプレイの表面ガラスや、 冷蔵庫の開閉扉や壁部、 保温装置の開閉扉や壁部) 等に用いることが可能である。

Claims

請 求 の 範 囲
1. 一対の板ガラス ( 1 A, I B) 間に多数のスぺ一サ ( 2 ) を介在させ、 かつ、 その両板ガラス ( 1 A, 1 B) の外周部間を外周密閉部 ( 3 ) で密閉して両板ガ ラス ( 1 A, 1 B) 間に空隙部 (V) を形成し、 前記両板ガラス ( 1 A, 1 B) のうちの一方の板ガラス ( 1 A) に前記空隙部 (V) の気体を吸引するための吸 引孔 (4) を設け、 その吸引孔 (4) を介して前記空隙部 (V) の気体を吸引し て、 前記空隙部 (V) を減圧状態にした後、 前記吸引孔 (4) を封止してあるガ ラスパネルの製造方法であって、
前記吸引孔 (4) を封止する封止材として金属はんだ ( 6) を使用し、 その 金属はんだ片 ( 6 A) を前記吸引孔 (4) の近傍で加熱溶融し、 その溶融状態に ある金属はんだ片( 6 A)表面の酸化皮膜( 6 a)を破って中身の金属はんだ( 6 ) を流出させ、 その流出した金属はんだ ( 6 ) を前記一方の板ガラス ( 1 A) に直 接接触させて冷却固化させて前記吸引孔 (4) を封止するガラスパネルの製造方 法。
2. 前記流出した金属はんだ (6) の前記空隙部 (V) への流入を阻止する流入 阻止材 ( 5 ) を前記吸引孔 (4) の長手方向中間部に配設してある請求項 1に記 載のガラスパネルの製造方法。
3. 前記流入阻止材 ( 5 ) が、 前記空隙部 (V) の気体を吸着するゲッタ ( 5 a) を備えている請求項 2に記載のガラスパネルの製造方法。
4. 前記流出した金属はんだ (6 ) の流出を規制する環状の規制部材 (7 ) によ り前記吸引孔 (4) と金属はんだ片 ( 6 A) とを囲い、 かつ、 前記規制部材 ( 7) を前記一方の板ガラス ( 1 A) の表面に接触させて配置した状態で、 前記溶融状 態にある金属はんだ片 ( 6 A) 表面の酸化皮膜 (6 a) を破って中身の金属はん だ ( 6) を流出させる請求項 1 ~ 3のいずれか 1項に記載のガラスパネルの製造 方法。
5. 前記金属はんだ ( 6 ) が、 インジウムまたはインジウムを含む合金である請 求項 1〜4のいずれか 1項に記載のガラスパネルの製造方法。
6. 一対の板ガラス ( 1 A, 1 B) 間に多数のスぺ一サ ( 2 ) を介在させ、 かつ、 その両板ガラス ( 1 A, I B) の外周部間を外周密閉部 ( 3 ) で密閉して両板ガ ラス ( 1 A, 1 B) 間に空隙部 (V) を形成し、 前記両板ガラス ( 1 A, I B) のうちの一方の板ガラス ( 1 A) に前記空隙部 (V) の気体を吸引するための吸 引孔 (4) を設け、 その吸引孔 (4) を介して前記空隙部 (V) の気体を吸引し て、 前記空隙部 (V) を減圧状態にした後、 前記吸引孔 (4) を封止してあるガ ラスパネルであって、
前記吸引孔 (4) 内に金属はんだ ( 6 ) を入り込ませた状態で、 前記金属は んだ (6) により前記吸引孔 (4) を封止してあるガラスパネル。
7. 前記吸引孔 (4) の長手方向中間部に金属はんだの前記空隙部 (V) への流 入を阻止する流入阻止材 ( 5) を配設し、 その流入阻止材 ( 5 ) のところまで前 記金属はんだ ( 6) を入り込ませてある請求項 6に記載のガラスパネル。
8. 前記流入阻止材 ( 5) が、 前記空隙部 (V) の気体を吸着するゲッタ (5 a) を備えている請求項 7に記載のガラスパネル。
9. 前記金属はんだ ( 6) が、 インジウムまたはインジウムを含む合金である請 求項 6〜 8のいずれか 1項に記載のガラスパネル。
1 0. 一対の板ガラス ( 1 A, 1 B) 間に多数のスぺーサ ( 2 ) を介在させ、 か つ、 その両板ガラス ( 1 A, I B) の外周部間を外周密閉部 ( 3 ) で密閉して両 板ガラス ( 1 A, 1 B) 間に空隙部 (V) を形成し、 前記両板ガラス ( 1 A, 1 B) のうちの一方の板ガラス ( 1 A) に前記空隙部 (V) の気体を吸引するため の吸引孔 (4) を設け、 その吸引孔 (4) を介して前記空隙部 (V) の気体を吸 引して、 前記空隙部 (V) を減圧状態にした後、 前記吸引孔 (4) を封止するガ ラスパネルの製造方法であって、
前記吸引孔 (4) を封止する封止材料として金属はんだ ( 6) を使用し、 そ の金属はんだ片 ( 6 A) を前記吸引孔 (4) の近傍で加熱溶融し、 その溶融状態 にある金属はんだ片 ( 6 A) 表面の酸化被膜 ( 6 a) を破って中身の金属はんだ ( 6) を、 前記吸引孔 (4) を介して前記空隙部 (V) 内に流入させ、 その前記 空隙部 (V) 内に流入させた金属はんだ ( 6 ) を、 前記吸引孔 (4) を設けてあ る板ガラス ( 1 A) の前記空隙部 (V) 側の板面の前記吸引孔 (4) のまわりの 部分、 及び他方の前記板ガラス ( 1 B) の前記空隙部 (V) 側の板面の前記吸引 孔 (4) の近辺部分に直接接触させた状態で、 冷却固化させて、 前記吸引孔 (4) と前記空隙部 (V) との連通を遮断することにより前記吸引孔 (4) を封止する ガラスパネルの製造方法。
1 1. 前記両板ガラス ( 1 A, 1 B) の前記空隙部 (V) 側の板面のうちの、 前 記金属はんだ (6) を直接接触させる部分を、 予め、 平滑面に加工しておく請求 項 1 0記載のガラスパネルの製造方法。
12. 前記金属はんだ (6) が、 インジウムまたはインジウムを含む合金である 請求項 1 0又は 1 1記載のガラスパネルの製造方法。
1 3. 一対の板ガラス ( 1 A, 1 B) 間に多数のスぺ一サ ( 2 ) を介在させ、 か つ、 その両板ガラス ( 1 A, I B) の外周部間を外周密閉部 (3) で密閉して両 板ガラス ( 1 A, 1 B) 間に空隙部 (V) を形成し、 前記両板ガラス (1 A, 1 B) のうちの一方の板ガラス ( 1 A) に前記空隙部 (V) の気体を吸引するため の吸引孔 (4) を設け、 その吸引孔 (4) を介して前記空隙部 (V) の気体を吸 引して、 前記空隙部 (V) を減圧状態にした後、 前記吸引孔 (4) を封止してあ るガラスパネルであって、
前記空隙部 (V) 内に金属はんだ (6) を、 前記吸引孔 (4) を設けてある 板ガラス ( 1 A) の前記空隙部 (V) 側の板面の前記吸引孔 (4) のまわりの部 分、 及び他方の前記板ガラス ( 1 B) の前記空隙部 (V) 側の板面の前記吸引孔 (4) .の近辺部分に直接接触させた状態に充填して、 前記吸引孔 (4) と前記空 隙部 (V) との連通を遮断することにより、 前記吸引孔 (4) を封止してあるガ ラスパネル。
14. 前記金属はんだ (6) が、 インジウムまたはインジウムを含む合金である 請求項 1 3記載のガラスパネル。
PCT/JP2000/009066 1999-12-24 2000-12-20 Procede de production de panneau de verre et panneau de verre WO2001047827A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00985809A EP1160217B1 (en) 1999-12-24 2000-12-20 Production method of glass panel and glass panel
CA002363272A CA2363272A1 (en) 1999-12-24 2000-12-20 Production method of glass panel and glass panel
DE60014333T DE60014333T2 (de) 1999-12-24 2000-12-20 Verfahren zur herstellung einer glasplatte und glasplatte

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP36727499A JP2001180985A (ja) 1999-12-24 1999-12-24 ガラスパネルの製造方法とそのガラスパネル
JP11/367274 1999-12-24
JP2000/331884 2000-10-31
JP2000331884A JP2002137940A (ja) 2000-10-31 2000-10-31 ガラスパネルの製造方法とそのガラスパネル

Publications (1)

Publication Number Publication Date
WO2001047827A1 true WO2001047827A1 (fr) 2001-07-05

Family

ID=26581887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009066 WO2001047827A1 (fr) 1999-12-24 2000-12-20 Procede de production de panneau de verre et panneau de verre

Country Status (5)

Country Link
US (1) US20020121111A1 (ja)
EP (1) EP1160217B1 (ja)
CA (1) CA2363272A1 (ja)
DE (1) DE60014333T2 (ja)
WO (1) WO2001047827A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035566A1 (fr) * 2001-10-25 2003-05-01 Nippon Sheet Glass Co., Ltd. Panneau de verre et procede de fabrication correspondant

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152530A (ja) * 2002-10-29 2004-05-27 Nippon Sheet Glass Co Ltd ガラスパネルの製法とその製法によるガラスパネル
US8137494B2 (en) * 2007-12-14 2012-03-20 Guardian Industries Corp. Vacuum insulating glass unit with large pump-out port, and/or method of making the same
CN102079619B (zh) * 2009-11-27 2012-02-15 洛阳兰迪玻璃机器股份有限公司 一种玻璃板复合封接方法
WO2011092100A2 (de) * 2010-01-26 2011-08-04 Amx Automation Technologies Gmbh Verfahren und vorrichtung zur evakuierung von hohlräumen
CN103253856A (zh) * 2012-02-16 2013-08-21 东元奈米应材股份有限公司 用于真空隔热玻璃的抽气烧结组件与封装方法
CN103570229B (zh) * 2012-08-10 2015-11-25 北京新立基真空玻璃技术有限公司 真空抽取装置、真空玻璃制作系统以及相关方法
CN103806807B (zh) * 2014-01-24 2016-07-06 北京昌益和自动化设备制造有限公司 中空玻璃间隔条专用插件及通过预留孔充气的方法
WO2017028870A1 (en) * 2015-08-20 2017-02-23 Vkr Holding A/S Evacuation head with ceramic heater for vig unit manufacture
WO2017056422A1 (ja) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 ガラスパネルユニットおよびガラス窓
US10858279B2 (en) * 2016-03-31 2020-12-08 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit manufacturing method, building component manufacturing method, glass panel unit manufacturing system, and glass panel unit
CN109476524B (zh) * 2016-07-06 2021-11-09 朴在壹 真空绝热玻璃板的制造方法及密封盖封闭装置
JP6735509B2 (ja) * 2016-09-30 2020-08-05 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法、およびガラス窓の製造方法
US11193322B2 (en) * 2016-09-30 2021-12-07 Panasonic Intellectual Property Management Co., Ltd. Manufacturing method of glass panel unit and manufacturing method of glass window
EP3583285A1 (en) 2017-02-17 2019-12-25 VKR Holding A/S Vacuum insulated glazing unit
JP6890278B2 (ja) * 2017-05-31 2021-06-18 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法
CN111315702B (zh) * 2017-11-10 2022-06-21 日本板硝子株式会社 玻璃面板
JPWO2019093321A1 (ja) * 2017-11-10 2020-12-17 日本板硝子株式会社 ガラスパネル
JP7018588B2 (ja) * 2018-05-30 2022-02-14 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法
US20200217125A1 (en) * 2019-01-04 2020-07-09 Guardian Glass, LLC Internal tube for vacuum insulated glass (vig) unit evacuation and hermetic sealing, vig unit including internal tube, and associated methods
CN115745429A (zh) * 2022-11-23 2023-03-07 四川零零昊科技有限公司 真空玻璃在线封口系统、在线封口方法和连续生产系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126413A (en) * 1976-04-16 1977-10-24 Dainippon Toryo Kk Method of sealing ceramics and glass
WO1993015296A1 (en) * 1992-01-31 1993-08-05 The University Of Sydney Improvements to thermally insulating glass panels
JPH102161A (ja) * 1996-06-17 1998-01-06 Nippon Sheet Glass Co Ltd 真空複層ガラス及びその製造方法
JPH11278877A (ja) * 1998-03-31 1999-10-12 Central Glass Co Ltd 低圧空間を有する複層ガラスおよびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE520889A (ja) *
US2717840A (en) * 1952-02-25 1955-09-13 Fox Wells And Company Method of forming a coating of metal on glass
US3249408A (en) * 1962-01-04 1966-05-03 Corning Glass Works Flux free bonded article
US3543383A (en) * 1967-02-20 1970-12-01 Gen Electrodynamics Corp Indium seal
US3590467A (en) * 1968-11-15 1971-07-06 Corning Glass Works Method for bonding a crystal to a solid delay medium
US3632008A (en) * 1969-10-15 1972-01-04 Tektronix Inc Indium alloy seal and cathode-ray tube envelope employing such seal
JPS52130274A (en) * 1976-04-24 1977-11-01 Ise Electronics Corp Vacuum part and device for sealing same
US4153317A (en) * 1977-12-02 1979-05-08 The Singer Company Indium seal for gas laser
US4159075A (en) * 1977-12-02 1979-06-26 The Singer Company Hermetic bonded seal
GB2132601B (en) * 1982-12-23 1986-08-20 Ferranti Plc Joining articles of materials of different expansion coefficients
EP0645516B1 (fr) * 1993-09-27 2002-01-23 Saint-Gobain Glass France Procédé pour réaliser le vide dans un vitrage isolant et vitrage isolant
JPH11199279A (ja) * 1998-01-12 1999-07-27 Asahi Glass Co Ltd 真空複層ガラス
FR2774373B1 (fr) * 1998-02-04 2000-03-10 Saint Gobain Vitrage Procede pour realiser le vide dans un vitrage isolant
JP2000203892A (ja) * 1999-01-18 2000-07-25 Nippon Sheet Glass Co Ltd ガラスパネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126413A (en) * 1976-04-16 1977-10-24 Dainippon Toryo Kk Method of sealing ceramics and glass
WO1993015296A1 (en) * 1992-01-31 1993-08-05 The University Of Sydney Improvements to thermally insulating glass panels
JPH102161A (ja) * 1996-06-17 1998-01-06 Nippon Sheet Glass Co Ltd 真空複層ガラス及びその製造方法
JPH11278877A (ja) * 1998-03-31 1999-10-12 Central Glass Co Ltd 低圧空間を有する複層ガラスおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1160217A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035566A1 (fr) * 2001-10-25 2003-05-01 Nippon Sheet Glass Co., Ltd. Panneau de verre et procede de fabrication correspondant
US7115308B2 (en) 2001-10-25 2006-10-03 Nippon Sheet Glass Co., Ltd. Glass panel and method of manufacturing the glass panel

Also Published As

Publication number Publication date
CA2363272A1 (en) 2001-07-05
DE60014333T2 (de) 2005-10-06
EP1160217A4 (en) 2002-05-22
US20020121111A1 (en) 2002-09-05
DE60014333D1 (de) 2004-11-04
EP1160217B1 (en) 2004-09-29
EP1160217A1 (en) 2001-12-05

Similar Documents

Publication Publication Date Title
WO2001047827A1 (fr) Procede de production de panneau de verre et panneau de verre
JP4251609B2 (ja) ガラスパネル
US10661534B2 (en) Multiple pane
US10280680B2 (en) Vacuum insulating glass (VIG) unit with pump-out port sealed using metal solder seal, and/or method of making the same
US8137494B2 (en) Vacuum insulating glass unit with large pump-out port, and/or method of making the same
US10012019B2 (en) Vacuum insulating glass (VIG) unit with metallic peripheral edge seal and/or methods of making the same
WO2013172034A1 (ja) 複層ガラスの製造方法
CA2298673A1 (en) Glass panel and method of forming the same
CN104185520B (zh) 包括以滑动平移关系彼此接合的第一和第二元件以及由热膨胀材料制成的密封部件、耐火元件的喷嘴组件、生产耐火元件的方法、接合两个耐火元件的方法
JPS63501728A (ja) 熱絶縁作用する建築要素および/または採光要素およびそれらの製造方法およびこの方法を行うための装置
WO2001023700A1 (en) Vacuum insulation glass window unit with peripheral
JP5381845B2 (ja) 気体吸着デバイスの作製方法、気体吸着デバイス、および気体吸着デバイスの使用方法
WO2001002685A9 (en) Peripheral seal for vacuum ig window unit
JP2005320229A (ja) 減圧ガラスパネル及びその製造方法
JP2004323317A (ja) ガラスパネルの中間膜圧着方法
EP1195496A2 (en) Glass panel
JP2002137940A (ja) ガラスパネルの製造方法とそのガラスパネル
JP2001180985A (ja) ガラスパネルの製造方法とそのガラスパネル
JP2018203549A (ja) 真空断熱部材及びその製造方法
EP1157976A1 (en) Glass panel and production method therefor
US20100199719A1 (en) Architectural glass block with a formed slot and method of making same
EP1298101A1 (en) Glass panel and method of manufacturing the glass panel
WO1999059931A1 (fr) Panneau de verre
JP2001172059A (ja) 低圧複層ガラスおよびその製造方法
JP2002226236A (ja) ガラスパネル及びガラスパネル製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref document number: 2363272

Country of ref document: CA

Ref country code: CA

Ref document number: 2363272

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000985809

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09914107

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000985809

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000985809

Country of ref document: EP