WO2001031184A1 - Verfahren und vorrichtung zur variation eines von einer niederdruckpumpe erzeugten und an einer hochdruckpumpe anliegenden vordrucks - Google Patents

Verfahren und vorrichtung zur variation eines von einer niederdruckpumpe erzeugten und an einer hochdruckpumpe anliegenden vordrucks Download PDF

Info

Publication number
WO2001031184A1
WO2001031184A1 PCT/DE2000/003563 DE0003563W WO0131184A1 WO 2001031184 A1 WO2001031184 A1 WO 2001031184A1 DE 0003563 W DE0003563 W DE 0003563W WO 0131184 A1 WO0131184 A1 WO 0131184A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure pump
fuel
internal combustion
combustion engine
pressure
Prior art date
Application number
PCT/DE2000/003563
Other languages
English (en)
French (fr)
Inventor
Klaus Joos
Jens Wolber
Thomas Frenz
Hansjoerg Bochum
Markus Amler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP00972629A priority Critical patent/EP1228304B1/de
Priority to JP2001533303A priority patent/JP2003513193A/ja
Priority to US10/111,612 priority patent/US6708671B1/en
Priority to DE50010188T priority patent/DE50010188D1/de
Publication of WO2001031184A1 publication Critical patent/WO2001031184A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/02Fuel evaporation in fuel rails, e.g. in common rails

Definitions

  • the present invention relates to a method and a device for varying a pre-pressure generated by a low-pressure pump and applied to a high-pressure pump, the low-pressure pump and the high-pressure pump delivering fuel for an internal combustion engine.
  • pump arrangements are used to supply the internal combustion engines with fuel, which consist of a low-pressure pump, the so-called pre-feed pump, and a high-pressure pump, the so-called main feed pump.
  • the low-pressure pump can be designed as required and then always delivers as much fuel as is currently required by the high-pressure pump.
  • fuel can evaporate in the high-pressure pump.
  • the vapor formation in the high pressure pump is favored by high temperatures in the high pressure pump and by a low admission pressure with which the fuel on the High pressure pump is present. If steam is formed in the high-pressure pump, high pressure can no longer be generated in it, and the internal combustion engine is only insufficiently supplied with fuel, which has negative effects on the functionality of the internal combustion engine.
  • the setpoint of the fuel admission pressure is variable and can be chosen so high that in any case no steam formation occurs in the high-pressure pump.
  • the delivery rate of the low-pressure pump drops by approx. 20 liters per hour for every 1 bar of pressure increase.
  • the low pressure pump In certain operating points of the internal combustion engine, for example in full load operation, when the internal combustion engine has a high need for fuel and at the same time the fuel is applied to the high pressure pump with a high admission pressure, the low pressure pump is very heavily loaded and may even reach its delivery limit, which in turn has negative effects on the functionality of the internal combustion engine.
  • the invention based on the method of the type mentioned at the beginning, proposes that the current temperature of the fuel is determined in the high pressure pump; depending on the fuel temperature, the lowest possible admission pressure is determined, at which evaporation of the fuel in the high-pressure pump is reliably avoided; and the low pressure pump is controlled or regulated in such a way that it generates the determined upstream pressure.
  • the admission pressure is therefore controlled or regulated as a function of the current temperature of the fuel in the high-pressure pump.
  • This has the advantage that steam formation in the high-pressure pump is definitely avoided.
  • the admission pressure is only chosen to be high enough that evaporation of the fuel in the high-pressure pump is reliably avoided.
  • This has the advantage that the admission pressure is not too high at any operating point of the internal combustion engine, for example for safety reasons or for other reasons, and the low-pressure pump is thereby unnecessarily loaded. This leads to a longer service life for the low pressure pump.
  • a low pressure pump requires less energy when the inlet pressure is lowered.
  • a low-pressure pump designed as an electric fuel pump (EKP) has a lower power consumption.
  • EKP electric fuel pump
  • the invention proposes that the fuel temperature be estimated on the basis of a physical model of the high pressure pump as a function of the temperature of the high pressure pump and certain state variables of the internal combustion engine. According to an advantageous development of the present invention, it is proposed that the current throughput of fuel in the internal combustion engine is determined and the fuel temperature in the high-pressure pump is determined taking into account the fuel throughput. The more fuel the internal combustion engine takes from the high-pressure circuit, the more cool fuel from the tank can be fed to the high-pressure circuit via the low-pressure pump. The cool fuel supplied causes a reduction in the
  • the temperature of the high-pressure pump is estimated on the basis of a physical model of the high-pressure pump as a function of certain state variables of the internal combustion engine.
  • the admission pressure be determined on the basis of a fuel vapor pressure characteristic curve, from which a value of the admission pressure associated with the fuel temperature is taken, to which a safety reserve pressure is added.
  • the fuel vapor pressure characteristic curve is a function of the admission pressure as a function of the fuel temperature in the high pressure pump. For a certain fuel temperature, the fuel vapor pressure characteristic curve can be taken from the associated value of the admission pressure, which must prevail so that the fuel is no longer evaporating.
  • the fuel vapor pressure characteristic curve depends on the type of fuel. For example, freshly refueled vaporizes
  • Embodiment of the present invention proposed that the admission pressure is estimated on the basis of a physical model of the high-pressure pump as a function of certain state variables of the internal combustion engine.
  • the same state variables as for the model-based estimation of the fuel temperature are advantageously used as state variables.
  • the state variables are advantageously in particular the temperature of the internal combustion engine, the intake air and / or the ambient temperature, the integral of the fuel throughput and / or the air throughput, the delivery rate, the power loss and / or the
  • Efficiency of the high pressure pump, the speed of the high pressure pump or the internal combustion engine, the fuel / air ratio lambda and / or the control of a quantity or pressure control valve are used.
  • the fuel temperature therefore does not have to be measured separately, but can be estimated on the basis of certain state variables of the internal combustion engine, which are usually recorded anyway and are available anyway.
  • Internal combustion engine depending on the type of Internal combustion engine and weighted from the operating point. For example, immediately after starting the internal combustion engine, it may be necessary to weight the state variables in such a way that the modeled fuel temperature takes into account the fact that the fuel in the high-pressure pump immediately after starting the internal combustion engine regardless of the state variables of the internal combustion engine has relatively low temperature and that this increases slowly with increasing operating time of the internal combustion engine.
  • the fuel vapor pressure characteristic curve be determined and stored for a worst-case scenario.
  • a worst-case scenario exists, for example, for freshly refueled winter fuel.
  • the vapor pressure curve of winter fuel requires relatively high admission pressures.
  • there is a safety reserve so that evaporation of the fuel in the high-pressure pump is reliably avoided even in the worst-case scenario. If there is fuel with low volatility (e.g. summer fuel or old fuel), lower pressures would be possible at the same temperatures than in the worst-case scenario. In this case, the distance of the worst-case characteristic plus the safety reserve from the actual vapor pressure curve of the present fuel is unnecessarily large.
  • the type of fuel that is filled is recognized and the stored fuel vapor pressure characteristic curve is adapted to the type of fuel that is being filled.
  • a refueling detection system is used which can distinguish, for example, summer fuel from winter fuel or fresh fuel from used fuel.
  • the stored fuel vapor pressure characteristic curve can be adapted to the actual fuel vapor pressure characteristic curve and the safety reserve pressure reduced.
  • the invention also proposes a device of the type mentioned at the outset, which has means for carrying out the method according to one of claims 1 to 10.
  • the device according to the invention can be designed as an independent control unit or integrated into a higher-level control unit of the internal combustion engine.
  • the high-pressure pump delivers fuel for a direct-injection internal combustion engine.
  • steam formation in the high-pressure pump has hitherto been possible at certain operating points, which is now effectively prevented by the present invention.
  • the low-pressure pump be designed as an electric fuel pump (EKP). If, according to the present invention, the admission pressure with which the fuel is applied to the high-pressure pump can be reduced at certain operating points of the internal combustion engine, a low-pressure pump designed as an electric fuel pump has the advantage that it has a lower power consumption, i.e. uses less electricity.
  • EKP electric fuel pump
  • Figure 1 is a schematic representation of a
  • Figure 2 is a schematic representation of a method according to the invention according to a preferred embodiment.
  • a direct-injection internal combustion engine is shown symbolically in FIG. 1 and is identified by reference number 1.
  • the internal combustion engine 1 is supplied with fuel from a fuel tank 4 by a combination of low-pressure pump 2 and high-pressure pump 3.
  • the low pressure pump 2 is designed as an electric fuel pump (EKP).
  • EKP electric fuel pump
  • the low-pressure pump 2 conveys the fuel from the fuel tank 4 to the high-pressure pump 3 in a demand-controlled manner.
  • the fuel delivered by the low-pressure pump 2 is applied to the high-pressure pump 3 with a pre-pressure p_soll.
  • the high pressure pump 3 is as one
  • the latter is supplied with fuel by the low-pressure pump 2 and the high-pressure pump 3.
  • the low-pressure pump 2 is supplied with fuel by the low-pressure pump 2 and the high-pressure pump 3.
  • the admission pressure p_soll with which the fuel is applied to the high-pressure pump 3 is controlled or regulated to a value that is as small as possible on the one hand so as not to unnecessarily load the low-pressure pump 2 and on the other hand that the fuel evaporates in the high pressure pump 3 is safely avoided.
  • the control or regulation of the admission pressure p_soll takes place according to the method according to the invention, which is described below with reference to Figure 2 is explained in more detail.
  • a control unit 5 which can be designed as an independent control unit or can be part of a higher-level control unit for controlling the internal combustion engine 1.
  • State variables 6 of the internal combustion engine 1 are recorded during the operation of the internal combustion engine 1.
  • the state variables 6 can be, for example, the temperature of the internal combustion engine 1, the intake air and / or the environment, the integral of the fuel throughput and / or the air throughput, the delivery rate, the power loss and / or the efficiency of the high pressure pump 3, the speed of the high pressure pump 3 or the internal combustion engine 1, the fuel / air ratio lambda and / or the control of a quantity or pressure control valve can be used.
  • the state variables 6 are fed to the control unit 5, where they are used to estimate the temperature T_HDP of the high-pressure pump
  • the physical model of the high pressure pump 3 for estimating the temperature T_HDP of the high pressure pump 3 is contained in a function block 7 of the control device 5.
  • the physical model of the high pressure pump 3 for estimating the fuel temperature T_Krst is contained in a function block 8 of the control unit 5.
  • the fuel temperature T_Krst can be calculated using the same state variables 6, which are also used to estimate the temperature T_HDP
  • High-pressure pump 3 are used, and / or on the basis of other state variables 6.
  • the current throughput r_akt of fuel in the internal combustion engine 1 is determined and the fuel temperature T_Krst in the high-pressure pump 3 is determined taking into account the fuel throughput rakt.
  • a fuel vapor pressure characteristic curve p (T) is stored in a function block 9 of the control unit 5.
  • the fuel vapor pressure characteristic curve p (T) indicates from which admission pressure p the fuel in the high pressure pump 3 changes from the vaporous to the liquid state at a specific temperature T of the fuel.
  • the fuel in the high pressure pump 3 evaporates.
  • the fuel in the high pressure pump 3 is liquid.
  • the modeled fuel temperature T_Krst is fed to the function block 9.
  • the fuel vapor pressure characteristic curve p (T) becomes one of the
  • Fuel temperature T_Krst the associated value of the admission pressure p_dd, to which a safety reserve pressure delta_p is added.
  • the sum of the admission pressure p_dd taken from the fuel vapor pressure characteristic curve p (T) and the safety reserve pressure delta_p results in the admission pressure p_soll to be set with which the fuel is to be applied to the high pressure pump 3, so that evaporation of fuel in the high pressure pump 3 is reliably prevented ,
  • the pre-pressure p_soll to be set is controlled accordingly. Regulation of
  • a control variable s which corresponds to the admission pressure p_soll to be set, is determined in a function block 10 of the control unit 5 and is then fed to the low-pressure pump 2.
  • the input variables of the control unit 5 are the state variables 6 of the internal combustion engine 1.
  • the control variable s is present at the output of the control unit 5 as the output variable.
  • the method according to the invention for varying the form p_soll of the high-pressure pump 3 has the particular advantage that, with a high fuel throughput r_akt of the internal combustion engine 1, the admission pressure p_soll can be reduced, which leads to a relief of the low-pressure pump 2. Furthermore, the low-pressure pump 2 has a lower power consumption when the admission pressure p_soll is lowered.
  • the form p_soll can also be determined on the basis of a physical model of the high-pressure pump 3 as a function of certain ones
  • State variables 6 of the internal combustion engine 1 can be estimated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Variation eines von einer Niederdruckpumpe (2) erzeugten und an einer Hochdruckpumpe (3) anliegenden Vordrucks (p_soll), wobei die Niederdruckpumpe (2) und die Hochdruckpumpe (3) Kraftstoff für eine Brennkraftmaschine (1) fördern. Um den Vordruck (p_soll) einerseits möglichst niedrig zu halten, um die Niederdruckpumpe (2) zu entlasten, und um andererseits den Vordruck (p_soll) so hoch einzustellen, dass ein Verdampfen des Kraftstoffs in der Hochdruckpumpe (3) mit Sicherheit vermieden wird, schlägt die Erfindung vor, dass die aktuelle Temperatur (T_Krst) des Kraftstoffs in der Hochdruckpumpe (3) ermittelt wird; in Abhängigkeit der Kraftstofftemperatur (T_Krst) ein möglichst kleiner Vordruck (p_soll) ermittelt wird, bei dem ein Verdampfen des Kraftstoffs in der Hochdruckpumpe (3) sicher vermieden wird; und die Niederdruckpumpe (2) derart angesteuert bzw. geregelt wird, dass sie den ermittelten Vordruck (p_soll) erzeugt. Das Verfahren wird vorzugsweise anhand physikalischer Modelle der Hochdruckpumpe (3) ausgeführt.

Description

Verfahren und Vorrichtung- zur Variation eines von einer Niederdruckpumpe erzeugten und an einer Hockdrucküumpe anliegenden Vordrucks
Stand der Technik
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Variation eines von einer Niederdruckpumpe erzeugten und an einer Hochdruckpumpe anliegenden Vordrucks, wobei die Niederdruckpumpe und die Hochdruckpumpe Kraftstoff für eine Brennkraftmaschine fördern.
Insbesondere bei modernen, direkeinspritzenden Brennkraftmaschinen werden zur Versorgung der Brennkraftmaschinen mit Kraftstoff Pumpenanordnungen eingesetzt, die aus einer Niederdruckpumpe, der sogenannten Vorförderpumpe, und einer Hochdruckpumpe, der sogenannten Hauptförderpumpe, bestehen. Die Niederdruckpumpe kann bedarfsgeregelt ausgeführt sein und fördert dann stets so viel Kraftstoff, wie von der Hochdruckpumpe gerade benötigt wird.
In bestimmten Betriebspunkten der Brennkraftmaschine kann es zu einem Verdampfen von Kraftstoff in der Hochdruckpumpe kommen. Die Dampfbildung in der Hochdruckpumpe wird durch hohe Temperaturen in der Hochdruckpumpe und durch einen geringen Vordruck begünstigt, mit dem der Kraftstoff an der Hochdruckpumpe anliegt. Bei einer Dampfbildung in der Hochdruckpumpe kann in dieser kein Hochdruck mehr erzeugt werden, und die Brennkraftmaschine wird nur unzureichend mit Kraftstoff versorgt, was negative Auswirkungen auf die Funktionsfähigkeit der Brennkraftmaschine hat.
Aus dem Stand der Technik ist es bekannt, zur Vermeidung von Dampfbildung in der Hochdruckpumpe eine Erhöhung des Vordrucks vorzunehmen, mit dem der Kraftstoff an der Hochdruckpumpe anliegt. Beim Einsatz einer bedarfsgeregelten Niederdruckpumpe ist der Sollwert des Kraftstoffvordrucks variabel und kann so hoch gewählt werden, dass in der Hochdruckpumpe auf jeden Fall keine Dampfbildung auftritt. Mit steigendem Vordruck sinkt allerdings die Förderleistung der Niederdruckpumpe um ca. 20 Liter pro Stunde je 1 bar Druckerhöhung. In bestimmten Betriebspunkten der Brennkraftmaschine, bspw. im Vollastbetrieb, wenn die Brennkraftmaschine einen hohen Bedarf an Kraftstoff hat und gleichzeitig der Kraftstoff an der Hochdruckpumpe mit einem hohen Vordruck anliegt, wird die Niederdruckpumpe sehr stark belastet und kann unter Umständen sogar an ihre Fördergrenze stoßen, was wiederum negative Auswirkungen auf die Funktionsfähigkeit der Brennkraftmaschine hat.
Es ist deshalb die Aufgabe der vorliegenden Erfindung, bei einer Brennkraftmaschine, die aus einer Kombination von Niederdruckpumpe und Hochdruckpumpe mit Kraftstoff versorgt wird, einerseits eine Dampfbildung in der Hochdruckpumpe sicher zu verhindern und andererseits die
Funktionsfähigkeit der Brennkraftmaschine, insbesondere deren Versorgung mit Kraftstoff, in sämtlichen Betriebspunkten sicherzustellen.
Zur Lösung dieser Aufgabe schlägt die Erfindung ausgehend von dem Verfahren der eingangs genannten Art vor, dass die aktuelle Temperatur des Kraftstoffs in der Hochdruckpumpe ermittelt wird; in Abhängigkeit der Kraftstofftemperatur ein möglichst kleiner Vordruck ermittelt wird, bei dem ein Verdampfen des Kraftstoffs in der Hochdruckpumpe sicher vermieden wird; und die Niederdruckpumpe derart angesteuert bzw. geregelt wird, dass sie den ermittelten Vordruck erzeugt.
Gemäß der vorliegenden Erfindung wird also der Vordruck in Abhängigkeit der aktuellen Temperatur des Kraftstoffs in der Hochdruckpumpe gesteuert bzw. geregelt. Das hat den Vorteil, dass eine Dampfbildung in der Hochdruckpumpe auf jeden Fall sicher vermieden wird. Der Vordruck wird in Abhängigkeit der ermittelten Kraftstofftemperatur jeweils nur so hoch gewählt, dass ein Verdampfen des Kraftstoffs in der Hochdruckpumpe sicher vermieden wird. Das hat den Vorteil, dass der Vordruck in keinem Betriebspunkt der Brennkraftmaschine, bspw. aus Sicherheitsgründen oder aus anderen Überlegungen heraus, einen zu hohen Wert hat und die Niederdruckpumpe dadurch unnötig belastet wird. Das führt zu einer längeren Lebensdauer der Niederdruckpumpe . Außerdem benötigt eine Niederdruckpumpe bei abgesenktem Vordruck weniger Energie . Eine als elektrische Kraftstoffpumpe (EKP) ausgebildete Niederdruckpumpe hat eine geringere Leistungsaufnahme. Schließlich ergeben sich durch den abgesenkten Vordruck eine verringerte Tankaufheizung und geringere Permeationsverluste .
Gemäß einer bevorzugten Ausführungsform der vorliegenden
Erfindung wird vorgeschlagen, dass die Kraftstofftemperatur anhand eines physikalischen Modells der Hochdruckpumpe in Abhängigkeit von der Temperatur der Hochdruckpumpe und bestimmter Zustandsgrößen der Brennkraftmaschine abgeschätzt wird. Gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass der aktuelle Durchsatz an Kraftstoff in der Brennkraftmaschine ermittelt und die Kraftstofftemperatur in der Hochdruckpumpe unter Berücksichtigung des Kraftstoffdurchsatzes ermittelt wird. Je mehr Kraftstoff die Brennkraftmaschine aus dem Hochdruckkreislauf entnimmt, desto mehr kühler Kraftstoff aus dem Tank kann dem Hochdruckkreislauf über die Niederdruckpumpe zugeführt werden. Der zugeführte kühle Kraftstoff bewirkt eine Erniedrigung der
Kraftstofftemperatur in der Hochdruckpumpe und wirkt somit einer Dampfbildung in der Hochdruckpumpe entgegen. Demgemäß kann bei einem hohen Durchsatz an Kraftstoff in der Brennkraftmaschine der Vordruck, mit dem der Kraftstoff an der Hochdruckpumpe anliegt, entsprechend erniedrigt werden.
Gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass die Temperatur der Hochdruckpumpe anhand eines physikalischen Modells der Hochdruckpumpe in Abhängigkeit bestimmter Zustandsgrößen der Brennkraftmaschine abgeschätzt wird.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung wird vorgeschlagen, dass der Vordruck anhand einer Kraftstoffdampfdruck-Kennlinie ermittelt wird, der ein der Kraftstofftemperatur zugehöriger Wert des Vordrucks entnommen wird, zu dem ein Sicherheitsreserve-Druck addiert wird. Die Kraftstoffdampfdruck-Kennlinie ist eine Funktion des Vordrucks in Abhängigkeit von der Kraftstofftemperatur in der Hochdruckpumpe. Der Kraftstoffdampfdruck-Kennlinie kann für eine bestimmte Kraftstofftemperatur der zugehörige Wert des Vordrucks entnommen werden, der herrschen muß, damit der Kraftstoff gerade nicht mehr verdampft. Die Kraftstoffdampfdruck-Kennlinie ist abhängig von der Kraftstoffart . So verdampft bspw. frisch getankter
Winterkraftstoff bereits bei niedrigeren Temperaturen als entsprechender Sommerkraftstoff. Dadurch soll eine ordnungsgemäße Verbrennung des Kraftstoffs auch bei extrem kaltem Winterwetter gewährleistet werden. Dementsprechend verläuft die Kraftstoffdampfdruck-Kennlinie von Winterkraftstoff oberhalb der entsprechenden Kennlinie von Sommerkraftstoff. Zu dem aus der Kraftstoffdampfdruck- Kennlinie entnommenen Wert des Vordrucks wird ein Sicherheitsreserve-Druck addiert, der so gewählt ist, dass ein Verdampfen des Kraftstoffs in der Hochdruckpumpe sicher vermieden wird.
Alternativ wird gemäß einer weiteren bevorzugten
Ausführungsform der vorliegenden Erfindung vorgeschlagen, dass der Vordruck anhand eines physikalischen Modells der Hochdruckpumpe in Abhängigkeit bestimmter Zustandsgrößen der Brennkraftmaschine abgeschätzt wird. Als Zustandsgrößen werden vorteilhafterweise dieselben Zustandsgrößen wie zur modellbasierten Abschätzung der Kraftstofftemperatur herangezogen .
Als Zustandsgrößen werden vorteilhafterweise insbesondere die Temperatur der Brennkraftmaschine, der Ansaugluft und/oder der Umgebungstemperatur, das Integral des Kraftstoffdurchsatzes und/oder des Luftdurchsatzes, die Förderleistung, die Verlustleistung und/oder der
Wirkungsgrad der Hochdruckpumpe, die Drehzahl der Hochdruckpumpe bzw. der Brennkraftmaschine, das Kraftstoff-/ Luftverhältnis lambda und/oder die Ansteuerung eines Mengen- bzw. Drucksteuerventils herangezogen. Die Kraftstofftemperatur muss also nicht gesondert gemessen werden, sondern kann anhand bestimmter Zustandsgrößen der Brennkraftmaschine, die in der Regel sowieso erfasst werden und zur Verfügung stehen, abgeschätzt werden.
Vorteilhafterweise werden die Zustandsgrößen der
Brennkraftmaschine in Abhängigkeit von der Art der Brennkraftmaschine und von dem Betriebspunkt gewichtet. So kann es bspw. unmittelbar nach dem Start der Brennkraftmaschine notwendig sein, die Zustandsgrößen derart zu gewichten, dass bei der modellierten Kraftstofftemperatur der Tatsache Rechnung getragen wird, dass der Kraftstoff in der Hochdruckpumpe unmittelbar nach dem Start der Brennkraftmaschine unabhängig von den Zustandsgrößen der Brennkraftmaschine eine relativ niedrige Temperatur hat und dass diese mit zunehmender Betriebsdauer der Brennkraftmaschine langsam ansteigt.
Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung wird vorgeschlagen, dass die Kraftstoffdampfdruck-Kennlinie für einen worst-case-Fall ermittelt und abgespeichert wird. Ein worst-case-Fall liegt bspw. für frisch getankten Winterkraftstoff vor. Die Dampfdruckkurve von Winterkraftstoff erfordert verhältnismäßig hohe Vordrücke. Hinzu kommt eine Sicherheitsreserve, damit auch im worst-case-Fall ein Verdampfen des Kraftstoffs in der Hochdruckpumpe sicher vermieden wird. Liegt Kraftstoff mit niedriger Flüchtigkeit vor (z. B. Sommerkraftstoff oder Altkraftstoff), wären bei gleichen Temperaturen niedrigere Vordrücke möglich als im worst-case-Fall. Der Abstand der worst-case-Kennlinie plus Sicherheitsreserve von der tatsächlichen Dampfdruckkurve des vorliegenden Kraftstoffs ist in diesem Fall unnötig groß.
Gemäß einer anderen vorteilhaften Weiterbildung der vorliegenden Erfindung wird daher vorgeschlagen, dass die Art des getankten Kraftstoffs erkannt wird und die gespeicherte Kraftstoffdampfdruck-Kennlinie an die Art des getankten Kraftstoffs adaptiert wird. Zur Erkennung der Art des getankten Kraftstoffs wird eine Betankungserkennung eingesetzt, die bspw. Sommerkraftstoff von Winterkraftstoff oder Frischkraftstoff von Altkraftstoff unterscheiden kann. Durch die Adaption kann die gespeicherte Kraftstoffdampfdruck-Kennlinie an die tatsächliche Kraftstoffdampfdruck-Kennlinie angepasst sowie der Sicherheitsreserven-Druck reduziert werden.
Als weitere Lösung der vorliegenden Aufgabe schlägt die Erfindung außerdem eine Vorrichtung der eingangs genannten Art vor, die Mittel zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 10 aufweist. Die erfindungsgemäße Vorrichtung kann als eigenständige Steuerungseinheit ausgebildet oder in ein übergeordnetes Steuergerät der Brennkraftmaschine integriert sein.
Gemäß einer vorteilhaften Weiterbildung der vorliegenden Erfindung fördert die Hochdruckpumpe Kraftstoff für eine direkteinspritzende Brennkraftmaschine. Insbesondere bei derartigen Brennkraftmaschinen konnte es bisher in bestimmten Betriebspunkten zu einer Dampfbildung in der Hochdruckpumpe kommen, was nunmehr mit der vorliegenden Erfindung wirksam verhindert wird.
Gemäß einer anderen vorteilhaften Weiterbildung der vorliegenden Erfindung wird vorgeschlagen, dass die Niederdruckpumpe als eine elektrische Kraftstoffpumpe (EKP) ausgebildet ist. Wenn gemäß der vorliegenden Erfindung der Vordruck, mit dem der Kraftstoff an der Hochdruckpumpe anliegt, bei bestimmten Betriebspunkten der Brennkraftmaschine reduziert werden kann, hat eine als elektrische Kraftstoffpumpe ausgebildete Niederdruckpuinpe den Vorteil, dass sie eine geringere Leistungsaufnahme aufweist, d.h. weniger Strom verbraucht.
Ein bevorzugtes Ausführungsbeispiel der vorliegenden Erfindung wird im Folgenden anhand der Zeichnungen näher erläutert. Es zeigen: Figur 1 eine schematische Darstellung einer
Brennkraftmaschine, die aus einer Kombination von Niederdruckpumpe und Hochdruckpumpe mit Kraftstoff versorgt wird; und
Figur 2 eine schematische Darstellung eines erfindungsgemäßen Verfahrens gemäß einer bevorzugten Ausführungsform.
In Figur 1 ist eine direkteinspritzende Brennkraftmaschine symbolisch dargestellt und mit dem Bezugszeichen 1 gekennzeichnet. Die Brennkraftmaschine 1 wird durch eine Kombination aus Niederdruckpumpe 2 und Hochdruckpumpe 3 mit Kraftstoff aus einem Kraftstofftank 4 versorgt. Die Niederdruckpumpe 2 ist als eine elektrische Kraftstoffpumpe (EKP) ausgebildet. Die Niederdruckpumpe 2 fördert den Kraftstoff aus dem Kraftstofftank 4 bedarfsgeregelt zu der Hochdruckpumpe 3. Der von der Niederdruckpumpe 2 geförderte Kraftstoff liegt mit einem Vordruck p_soll an der Hochdruckpumpe 3 an. Die Hochdruckpumpe 3 ist als eine
Kolbenpumpe ausgebildet.
Während des Betriebs der Brennkraftmaschinen 1 wird diese durch die Niederdruckpumpe 2 und die Hochdruckpumpe 3 mit Kraftstoff versorgt. Dabei können insbesondere in der
Hochdruckpumpe 3 sehr hohe Betriebstemperaturen auftreten, die zu einem Verdampfen des Kraftstoffs in der Hochdruckpumpe 3 führen können. Um dem Vorzubeugen, wird der Vordruck p_soll, mit dem der Kraftstoff an der Hochdruckpumpe 3 anliegt, auf einen Wert gesteuert bzw. geregelt, der einerseits möglichst klein ist, um die Niederdruckpumpe 2 nicht unnötig zu belasten, und bei dem andererseits ein Verdampfen des Kraftstoffs in der Hochdruckpumpe 3 sicher vermieden wird. Die Steuerung bzw. Regelung des Vordrucks p_soll erfolgt nach dem erfindungsgemäßen Verfahren, das nachfolgend anhand der Figur 2 näher erläutert wird.
Zur Durchführung des erfindungsgemäßen Verfahrens ist ein Steuergerät 5 vorgesehen, das als eigenständige Steuereinheit ausgebildet oder Teil eines übergeordneten Steuergeräts zur Steuerung der Brennkraftmaschine 1 sein kann. Während des Betriebs der Brennkraftmaschine 1 werden Zustandsgrößen 6 der Brennkraftmaschine 1 erfasst . Als Zustandsgrößen 6 können bspw. die Temperatur der Brennkraftmaschine 1, der Ansaugluft und/oder der Umgebung, das Integral des Kraftstoffdurchsatzes und/oder des Luftdurchsatzes, die Förderleistung, die Verlustleistung und/oder der Wirkungsgrad der Hochdruckpumpe 3, die Drehzahl der Hochdruckpumpe 3 bzw. der Brennkraftmaschine 1, das Kraftstoff-/Luf verhältnis lambda und/oder die Ansteuerung eines Mengen- bzw. Drucksteuerventils herangezogen werden.
Die Zustandsgrößen 6 werden dem Steuergerät 5 zugeführt, wo sie zum Abschätzen der Temperatur T_HDP der Hochdruckpumpe
3 und zum Abschätzen der Kraftstofftemperatur T_Krst anhand von physikalischen Modellen der Hochdruckpumpe 3 benutzt werden. Das physikalische Modell der Hochdruckpumpe 3 zum Abschätzen der Temperatur T_HDP der Hochdruckpumpe 3 ist in einem Funktionsblock 7 des Steuergeräts 5 enthalten. Das physikalische Modell der Hochdruckpumpe 3 zum Abschätzen der Kraftstofftemperatur T_Krst ist in einem Funktionsblock 8 des Steuergeräts 5 enthalten. Die Kraftstofftemperatur T_Krst kann anhand derselben Zustandsgrößen 6 berechnet werden, die auch zum Abschätzen der Temperatur T_HDP der
Hochdruckpumpe 3 herangezogen werden, und/oder anhand anderer Zustandsgrößen 6. Insbesondere wird der aktuelle Durchsatz r_akt an Kraftstoff in der Brennkraftmaschine 1 ermittelt und die Kraftstofftemperatur T_Krst in der Hochdruckpumpe 3 unter Berücksichtigung des Kraftstoffdurchsatzes r akt ermittelt. In einem Funktionsblock 9 des Steuergeräts 5 ist eine Kraftstoffdampfdruck-Kennlinie p(T) abgelegt. Die Kraftstoffdampfdruck-Kennlinie p(T) gibt an, ab welchem Vordruck p der Kraftstoff in der Hochdruckpumpe 3 bei einer bestimmten Temperatur T des Kraftstoffs von dem dampfförmigen in den flüssigen Zustand übergeht. In dem Bereich 11 unterhalb der Kraftstoffdampfdruck-Kennlinie p(T) verdampft der Kraftstoff in der Hochdruckpumpe 3. In dem Bereich 12 oberhalb der Kraftstoffdampfdurck-Kennlinie p(T) ist der Kraftstoff in der Hochdruckpumpe 3 dagegen flüssig.
Dem Funktionsblock 9 wird die modellierte Kraftstoff emperatur T_Krst zugeführt. Der Kraftstoffdampfdruck-Kennlinie p(T) wird ein der
Kraftstofftemperatur T_Krst zugehöriger Wert des Vordrucks p_dd entnommen, zu dem ein Sicherheitsreserve-Druck delta_p addiert wird. Die Summe des aus der Kraftstoffdampfdruck- Kennlinie p (T) entnommenen Vordrucks p_dd und des Sicherheitsreserve-Drucks delta_p ergibt den einzustellenden Vordruck p_soll, mit dem der Kraftstoff an der Hochdruckpumpe 3 anliegen soll, damit ein Verdampfen von Kraftstoff in der Hochdruckpumpe 3 sicher verhindert wird. Der einzustellende Vordruck p_soll wird durch entsprechende Ansteuerung bzwp . Regelung der
Niederdruckpumpe 2 erzeugt . Dazu wird in einem Funktionsblock 10 des Steuergeräts 5 eine dem einzustellenden Vordruck p_soll entsprechende Steuergröße s ermittelt, die dann der Niederdruckpumpe 2 zugeführt wird.
Die Eingangsgrößen des Steuergeräts 5 sind die Zustandsgrößen 6 der Brennkraftmaschine 1. Als Ausgangsgröße liegt die Steuergröße s an dem Ausgang des Steuergeräts 5 an.
Das erfindungsgemäße Verfahren zur Variation des Vordrucks p_soll der Hochdruckpumpe 3 hat insbesondere den Vorteil, dass bei einem hohen Kraf stoffdurchsatz r_akt der Brennkraftmaschine 1 der Vordruck p_soll abgesenkt werden kann, was zu einer Entlastung der Niederdruckpumpe 2 führt Des Weiteren weist die Niederdruckpumpe 2 bei abgesenktem Vordruck p_soll eine geringere Leistungsaufnahme auf.
Alternativ zu dem beschrieben Ausfuhrungsbeispiel kann der Vordruck p_soll auch anhand eines physikalischen Modells der Hochdruckpumpe 3 in Abhängigkeit bestimmter
Zustandsgrößen 6 der Brennkraftmaschine 1 abgeschätzt werden .

Claims

Ansprüche
1. Verfahren zur Variation eines von einer
Niederdruckpumpe (2) erzeugten und an einer Hochdruckpumpe (3) anliegenden Vordrucks (p_soll) , wobei die Niederdruckpumpe (2) und die Hochdruckpumpe (3) Kraftstoff für eine Brennkraftmaschine (1) fördern, dadurch. gekennzeichnet, dass die aktuelle Temperatur (T_Krst) des Kraftstoffs in der Hochdruckpumpe (3) ermittelt wird; in Abhängigkeit der Kraftstofftemperatur (T_Krst) ein möglichst kleiner Vordruck (p_soll) ermittelt wird, bei dem ein Verdampfen des Kraftstoffs in der
Hochdruckpumpe (3) sicher vermieden wird; und die Niederdruckpumpe (2) derart angesteuert bzw. geregelt wird, dass sie den ermittelten Vordruck (p_soll) erzeugt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kraftstofftemperatur (T_Krst) anhand eines physikalischen Modells der Hochdruckpumpe (3) in Abhängigkeit von der Temperatur (T_HDP) der Hochdruckpumpe (3) und bestimmter Zustandsgrößen (6) der Brennkraftmaschine (1) abgeschätzt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der aktuelle Durchsatz (r_akt) an Kraftstoff in der Brennkraftmaschine (1) ermittelt und die
Kraftstofftemperatur (T_Krst) in der Hochdruckpumpe (3) unter Berücksichtigung des Kraftstoffdurchsatzes (r_akt) ermittelt wird.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Temperatur (T_HDP) der Hochdruckpumpe (3) anhand eines physikalischen Modells der Hochdruckpumpe (3) in Abhängigkeit bestimmter Zustandsgrößen (6) der Brennkraftmaschine (1) abgeschätzt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Vordruck (p_soll) anhand einer Kraftstoffdampfdruck-Kennlinie (p(T)) ermittelt wird, der ein der Kraftstofftemperatur (T_Krst) zugehöriger Wert des Vordrucks (p_dd) entnommen wird, zu dem ein
Sicherheitsreserve-Druck (delta_p) addiert wird (p_soll = p_dd + delta_p) .
6. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Vordruck (p_soll) anhand eines physikalischen Modells der Hochdruckpumpe (3) in Abhängigkeit bestimmter Zustandsgrößen (6) der Brennkraftmaschine (1) abgeschätzt wird.
7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass als Zustandsgrößen (6) die Temperatur der Brennkraftmaschine (1) , der Ansaugluft und/oder der Umgebung, das Integral des Kraftstoffdurchsatzes (r__akt) und/oder des Luftdurchsatzes, die Förderleistung, die Verlustleistung und/oder der Wirkungsgrad der
Hochdruckpumpe (3) , die Drehzahl der Hochdruckpumpe (3) bzw. der Brennkraftmaschine (1), das Kraftstoff-/ Luftverhältnis (lambda) und/oder die Ansteuerung eines Mengen- bzw. Drucksteuerventils herangezogen werden.
Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass die Zustandsgrößen (6) der Brennkraftmaschine (1) in Abhängigkeit von der Art der Brennkraftmaschine (1) und von dem Betriebspunkt gewichtet werden.
9. Verfahren nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass die Kraf stoffdampfdruck-Kennlinie (p(T)) für einen worst-case-Fall ermittelt und abgespeichert wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Art des getankten Kraftstoffs erkannt wird und die gespeicherte Kraftstoffdampfdruck-Kennlinie (p(T)) an die Art des getankten Kraftstoffs adaptiert wird.
11. Vorrichtung zur Variation eines von einer Niederdruckpumpe (2) erzeugten und an einer Hochdruckpumpe (3) anliegenden Vordrucks (p_soll) , wobei die Niederdruckpumpe (2) und die Hochdruckpumpe (3) Kraftstoff für eine Brennkraftmaschine (1) fördern, dadurch gekennzeichnet, dass die Vorrichtung Mittel zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 10 auf eist.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Hochdruckpumpe (3) Kraftstoff für eine direkteinspritzende Brennkraftmaschine (1) fördert.
13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Niederdruckpumpe (2) als eine elektrische Kraftstoffpumpe (EKP) ausgebildet ist.
PCT/DE2000/003563 1999-10-26 2000-10-11 Verfahren und vorrichtung zur variation eines von einer niederdruckpumpe erzeugten und an einer hochdruckpumpe anliegenden vordrucks WO2001031184A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00972629A EP1228304B1 (de) 1999-10-26 2000-10-11 Verfahren und vorrichtung zur variation eines von einer niederdruckpumpe erzeugten und an einer hochdruckpumpe anliegenden vordrucks
JP2001533303A JP2003513193A (ja) 1999-10-26 2000-10-11 低圧ポンプによって発生されて高圧ポンプに印加される予備圧力を変える方法及び装置
US10/111,612 US6708671B1 (en) 1999-10-26 2000-10-11 Method and device for varying the supply pressure applied to a high pressure pump and generated by a low pressure pump
DE50010188T DE50010188D1 (de) 1999-10-26 2000-10-11 Verfahren und vorrichtung zur variation eines von einer niederdruckpumpe erzeugten und an einer hochdruckpumpe anliegenden vordrucks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19951410.0 1999-10-26
DE19951410A DE19951410A1 (de) 1999-10-26 1999-10-26 Verfahren und Vorrichtung zur Variation eines von einer Niederdruckpumpe erzeugten und an einer Hochdruckpumpe anliegenden Vordrucks

Publications (1)

Publication Number Publication Date
WO2001031184A1 true WO2001031184A1 (de) 2001-05-03

Family

ID=7926838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003563 WO2001031184A1 (de) 1999-10-26 2000-10-11 Verfahren und vorrichtung zur variation eines von einer niederdruckpumpe erzeugten und an einer hochdruckpumpe anliegenden vordrucks

Country Status (6)

Country Link
US (1) US6708671B1 (de)
EP (1) EP1228304B1 (de)
JP (1) JP2003513193A (de)
KR (1) KR100720847B1 (de)
DE (1) DE19951410A1 (de)
WO (1) WO2001031184A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544447A3 (de) * 2003-12-19 2006-09-06 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum steuern einer Brennkraftmaschine
CN102159821A (zh) * 2008-09-19 2011-08-17 丰田自动车株式会社 用于内燃发动机的燃料供给装置和燃料供给方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137315A1 (de) * 2001-07-31 2003-02-20 Volkswagen Ag Schaltungsanordnung und Verfahren zur Regelung einer elektrischen Kraftstoffpumpe in einem rücklauffreien Kraftstoff-Fördersystem
DE10143509C2 (de) * 2001-09-05 2003-08-21 Siemens Ag Verfahren und Steuereinrichtung zur Steuerung einer Brennkraftmaschine
DE10158950C2 (de) * 2001-12-03 2003-10-02 Bosch Gmbh Robert Verfahren, Computerprogramm, Steuer- und Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
DE10200795A1 (de) * 2002-01-11 2003-07-31 Bosch Gmbh Robert Verfahren, Computerprogramm, Steuer- und/oder Regelgerät zum Betreiben eines Kraftstoffsystems einer Brennkraftmaschine, sowie Brennkraftmaschine
DE10300929B4 (de) * 2003-01-13 2006-07-06 Siemens Ag Kraftstoffeinspritzsystem und Verfahren zur Bestimmung des Förderdrucks einer Kraftstoffpumpe
DE102004045738B4 (de) * 2004-09-21 2013-05-29 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102004062613B4 (de) 2004-12-24 2014-02-20 Volkswagen Ag Verfahren und Vorrichtung zur Kraftstoffversorgung von Verbrennungsmotoren
JP2006233814A (ja) * 2005-02-23 2006-09-07 Toyota Motor Corp 内燃機関の燃料冷却装置
JP4544061B2 (ja) 2005-07-06 2010-09-15 トヨタ自動車株式会社 内燃機関の燃料系統の制御装置
JP2007285235A (ja) * 2006-04-18 2007-11-01 Honda Motor Co Ltd ディーゼルエンジンの燃料供給装置
DE102007050297A1 (de) * 2007-10-22 2009-04-23 Robert Bosch Gmbh Verfahren zur Steuerung eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
US20090211559A1 (en) * 2008-02-22 2009-08-27 Andy Blaine Appleton Engine fuel supply circuit
DE102008018603B4 (de) 2008-04-11 2024-09-26 Volkswagen Ag Steuerung einer Kraftstoffpumpe
JP5234431B2 (ja) * 2009-04-23 2013-07-10 株式会社デンソー 筒内噴射式内燃機関の燃圧制御装置
US8483932B2 (en) * 2009-10-30 2013-07-09 Ford Global Technologies, Llc Fuel delivery system control strategy
DE102010028799B4 (de) * 2010-05-10 2022-06-02 Robert Bosch Gmbh Verfahren zum Betreiben einer Einspritzanlage
JP5672180B2 (ja) * 2011-07-12 2015-02-18 トヨタ自動車株式会社 燃料供給システムの制御装置
EP2762718A4 (de) * 2011-09-28 2015-12-16 Toyota Motor Co Ltd System zur steuerung der kraftstoffeinspritzung in einen verbrennungsmotor
DE102012218643B4 (de) * 2012-10-12 2020-07-09 Vitesco Technologies GmbH Kraftstoffeinspritzsystem für eine Brennkraftmaschine und Verfahren zum Betreiben eines solchen Kraftstoffeinspritzsystems
US9453466B2 (en) * 2013-02-21 2016-09-27 Ford Global Technologies, Llc Methods and systems for a fuel system
US9567915B2 (en) * 2013-03-07 2017-02-14 GM Global Technology Operations LLC System and method for controlling a low pressure pump to prevent vaporization of fuel at an inlet of a high pressure pump
DE102014214284A1 (de) * 2014-07-22 2016-01-28 Robert Bosch Gmbh Verfahren zum Adaptieren eines Kraftstoffdrucks in einem Niederdruckbereich eines Kraftstoffdirekteinspritzungssystems
JP6292163B2 (ja) 2015-04-28 2018-03-14 トヨタ自動車株式会社 内燃機関の制御装置
US9689341B2 (en) 2015-06-08 2017-06-27 Ford Global Technologies, Llc Method and system for fuel system control
DE102016203652A1 (de) * 2016-03-07 2017-09-07 Robert Bosch Gmbh Verfahren zum Betreiben einer elektrischen Kraftstoffpumpe
DE102016204408A1 (de) * 2016-03-17 2017-09-21 Robert Bosch Gmbh Verfahren zum Ermitteln eines Sollwertes für eine Stellgröße zur Ansteuerung einer Niederdruckpumpe
DE102016204410A1 (de) * 2016-03-17 2017-09-21 Robert Bosch Gmbh Verfahren zum Ermitteln eines Sollwertes für eine Stellgröße zur Ansteuerung einer Niederdruckpumpe
JP6386489B2 (ja) * 2016-03-22 2018-09-05 株式会社豊田中央研究所 機関燃料系の燃料温度の推定に用いる適合係数の適合方法及び燃料温度推定装置及びポンプ制御装置
SE539985C2 (en) * 2016-06-27 2018-02-20 Scania Cv Ab Determination of pressurized fuel temperature
DE102016214729B4 (de) 2016-08-09 2023-06-29 Bayerische Motoren Werke Aktiengesellschaft Steuerung eines Vordrucks eines Niederdrucksystems eines Kraftfahrzeugs
US10125715B2 (en) * 2016-09-27 2018-11-13 Ford Global Technologies, Llc Methods and systems for high pressure fuel pump cooling
DE102017210503B4 (de) * 2017-06-22 2019-05-09 Continental Automotive Gmbh Notlaufverfahren zur Ansteuerung einer Kraftstoffpumpe
US10161348B1 (en) * 2017-07-25 2018-12-25 GM Global Technology Operations LLC Method and system for fuel control in a vehicle propulsion system
US10519890B2 (en) 2018-03-26 2019-12-31 Ford Global Technologies, Llc Engine parameter sampling and control method
US10697390B2 (en) * 2018-04-06 2020-06-30 GM Global Technology Operations LLC Gasoline reid vapor pressure detection system and method for a vehicle propulsion system
DE102019126420A1 (de) * 2019-10-01 2021-04-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuereinheit zum Betrieb eines Verbrennungsmotors mit unterschiedlichen Einspritzmodi
KR102472985B1 (ko) * 2021-05-06 2022-12-01 주식회사 현대케피코 가솔린 직접분사엔진의 연료펌프 제어 시스템 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0336060A2 (de) * 1988-04-08 1989-10-11 Pierburg Gmbh Brennstoffversorgungseinrichtung für eine Brennkraftmaschine
US5542395A (en) * 1993-11-15 1996-08-06 Walbro Corporation Temperature-compensated engine fuel delivery
DE19539885A1 (de) * 1995-05-26 1996-11-28 Bosch Gmbh Robert Kraftstoffversorgungsanlage und Verfahren zum Betreiben einer Brennkraftmaschine
DE19818421A1 (de) * 1998-04-24 1999-10-28 Bosch Gmbh Robert Kraftstoffversorgungsanlage einer Brennkraftmaschine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404944A (en) * 1980-08-07 1983-09-20 Nissan Motor Co., Ltd. Fuel supply system for an injection-type internal combustion engine
JP3067478B2 (ja) * 1993-08-19 2000-07-17 トヨタ自動車株式会社 燃料噴射装置
DE19631167B4 (de) * 1996-08-01 2005-08-11 Siemens Ag Referenzdruckventil
DE19756087A1 (de) * 1997-12-17 1999-06-24 Bosch Gmbh Robert Hochdruckpumpe zur Kraftstoffversorgung bei Kraftstoffeinspritzsystemen von Brennkraftmaschinen
JP2001152992A (ja) * 1999-11-30 2001-06-05 Unisia Jecs Corp エンジンの燃料圧力制御装置
US6457460B1 (en) * 2000-11-13 2002-10-01 Walbro Corporation Fuel delivery system with recirculation cooler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0336060A2 (de) * 1988-04-08 1989-10-11 Pierburg Gmbh Brennstoffversorgungseinrichtung für eine Brennkraftmaschine
US5542395A (en) * 1993-11-15 1996-08-06 Walbro Corporation Temperature-compensated engine fuel delivery
DE19539885A1 (de) * 1995-05-26 1996-11-28 Bosch Gmbh Robert Kraftstoffversorgungsanlage und Verfahren zum Betreiben einer Brennkraftmaschine
DE19818421A1 (de) * 1998-04-24 1999-10-28 Bosch Gmbh Robert Kraftstoffversorgungsanlage einer Brennkraftmaschine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544447A3 (de) * 2003-12-19 2006-09-06 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum steuern einer Brennkraftmaschine
CN102159821A (zh) * 2008-09-19 2011-08-17 丰田自动车株式会社 用于内燃发动机的燃料供给装置和燃料供给方法

Also Published As

Publication number Publication date
EP1228304A1 (de) 2002-08-07
KR20020060212A (ko) 2002-07-16
US6708671B1 (en) 2004-03-23
DE19951410A1 (de) 2001-05-10
EP1228304B1 (de) 2005-04-27
KR100720847B1 (ko) 2007-05-25
JP2003513193A (ja) 2003-04-08

Similar Documents

Publication Publication Date Title
EP1228304B1 (de) Verfahren und vorrichtung zur variation eines von einer niederdruckpumpe erzeugten und an einer hochdruckpumpe anliegenden vordrucks
EP1828580B1 (de) Verfahren und vorrichtung zur kraftstoffversorgung von verbrennungsmotoren
DE10158950C2 (de) Verfahren, Computerprogramm, Steuer- und Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
DE102006035394B4 (de) Steuervorrichtung eines Druckspeicherkraftstoffsystems
EP1583900B1 (de) Kraftstoffeinspritzsystem und verfahren zur bestimmung des förderdrucks einer kraftstoffpumpe
DE10059570B4 (de) Kraftstoffdruck-Steuervorrichtung eines Motors
DE10061987A1 (de) Verfahren und Vorrichtung zum Kühlen einer Kraftstoffeinspritzanlage
DE19913477B4 (de) Verfahren zum Betreiben einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
WO2017097614A1 (de) Kraftstoffzumessung für den betrieb eines verbrennungsmotors
DE112016004323T5 (de) Systeme und Verfahren zur Erhöhung der Dieselabgasfluidzufuhrkapazität
EP1339961B1 (de) Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine
EP1273780B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE4039598B4 (de) Heißstartverfahren und -Vorrichtung für eine Brennkraftmaschine
DE4019187C2 (de) Mehrstoff-Maschinensteuerung mit Anfangsverzögerung
DE10343758B4 (de) Verfahren zur Begrenzung des Druckanstieges in einem Hochdruck-Kraftstoffsystem nach Abstellen eines Verbrennungsmotors
DE102019107635B4 (de) Benzin-Reid-Dampfdruck-Erfassungssystem für ein Fahrzeugantriebssystem
DE102017221342B4 (de) Toleranz- und Verschleißkompensation einer Kraftstoffpumpe
EP1379770A1 (de) Verfahren, computerprogramm und steuer- und/oder regeleinrichtung zum betreiben einer brennkraftmaschine sowie brennkraftmaschine
DE102017221333B4 (de) Toleranz- und Verschleißkompensation einer Kraftstoffpumpe
DE102019203424A1 (de) Verfahren zum Betreiben eines Kraftstoffsystems, Steuergerät und Kraftstoffsystem
WO1999001657A1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE102004039311B4 (de) Verfahren und Steuergerät zur Steuerung eines Enspritzdruckaufbaus bei einem Start eines Verbrennungsmotors
DE19951132A1 (de) Verfahren zum Ablassen des Kraftstoffdrucks in einem rücklauffreien Kraftstoffversorgungssystem
DE102016214729B4 (de) Steuerung eines Vordrucks eines Niederdrucksystems eines Kraftfahrzeugs
EP3546738A1 (de) Verfahren zum betreiben einer brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000972629

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 533303

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027005274

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10111612

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027005274

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000972629

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000972629

Country of ref document: EP