WO2001029988A1 - Dispositif adaptatif d'antenne reseau et dispositif adaptatif d'antenne reseau pour station de base - Google Patents

Dispositif adaptatif d'antenne reseau et dispositif adaptatif d'antenne reseau pour station de base Download PDF

Info

Publication number
WO2001029988A1
WO2001029988A1 PCT/JP2000/007332 JP0007332W WO0129988A1 WO 2001029988 A1 WO2001029988 A1 WO 2001029988A1 JP 0007332 W JP0007332 W JP 0007332W WO 0129988 A1 WO0129988 A1 WO 0129988A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
weighting
antenna
adaptive
signals
Prior art date
Application number
PCT/JP2000/007332
Other languages
English (en)
French (fr)
Inventor
Kazunari Kihira
Isamu Chiba
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US09/868,846 priority Critical patent/US6404387B1/en
Priority to EP00969951A priority patent/EP1146662A4/en
Priority to AU79525/00A priority patent/AU7952500A/en
Priority to KR1020017007906A priority patent/KR20010099884A/ko
Publication of WO2001029988A1 publication Critical patent/WO2001029988A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present invention relates to an adaptive array antenna apparatus and an adaptive array antenna apparatus for a base station.
  • the present invention relates to an antenna device for ensuring communication quality in mobile communication, and particularly to an antenna device for a communication system using a CDMA system employing a direct spreading method.
  • FIG. 10 shows an embodiment of an antenna device having an adaptive function disclosed in Japanese Patent Application Laid-Open No. 9-162799. 10 is a transceiver, 19 is an antenna, and 20 is an adaptive control unit.
  • the signals received by the two elements are distributed, and they are input to each transmitter / receiver 10. Then, an adaptive control section 20 is arranged for each transceiver 10 (each user), and interference is removed by each.
  • an adaptive control section 20 is arranged for each transceiver 10 (each user), and interference is removed by each. This is because the algorithm used for mobile communications is usually based on a least squares error method using a reference signal (highly correlated) similar to the desired signal. Evaluation function of the least squares error method The function Q is expressed by the following equation.
  • the present invention has been made to solve the above problems, and has as its object to realize an antenna device in mobile communication that removes an interference signal that causes deterioration of communication quality for other users by a simple configuration. I do. Disclosure of the invention
  • An adaptive array antenna device uses a main antenna, an auxiliary antenna smaller than the main antenna, and a predetermined weighting factor to convert signals output from the main antenna and the auxiliary antenna into signals.
  • Weighting means for performing weighting ; synthesizing means for synthesizing the signals output from the main antenna and the auxiliary antenna weighted by the weighting means; power of a signal output from the synthesizing means being
  • a weighting control device for calculating a weighting factor so as to minimize the weighting factor, outputting the calculated weighting factor to the weighting means and controlling weighting, and adaptive control for outputting a signal output from the combining means to a transceiver. It is equipped with a device.
  • the adaptive array antenna apparatus is a matched filter that despreads a signal obtained by removing an interference signal from a wideband signal spread and modulated on the transmitting side employing the CDMA method, to a narrower band signal than the wideband signal. It is equipped with an adaptive control device that outputs to the transceiver having the evening.
  • the adaptive array antenna device outputs a part of the signals received by the main antenna to the adaptive control device, and outputs the remaining signals to the transceiver without passing through the adaptive control device. This is provided with a distributor that outputs the data.
  • the adaptive array antenna apparatus provides a weighting method for changing a weighting factor by adding a predetermined pseudo noise component to a thermal noise component among components included in a received signal and calculating a weighting factor.
  • a control device is provided.
  • the adaptive array antenna device calculates a weighting coefficient for maximal ratio combining of the high power signals received by the main antenna and the auxiliary antenna, and outputs the weight coefficient to the adaptive control device to output the high power signal.
  • a weighting control device is provided which controls weighting of a signal input from the transceiver to the adaptive control device.
  • An adaptive array antenna device for a base station includes a distribution combiner connected to a main antenna provided in the base station, for distributing and outputting a signal received by the main antenna, and a base station.
  • An auxiliary antenna whose size is determined depending on an interference signal level of an environment in which the signal is output, and weighting means for weighting signals output from the main antenna and the auxiliary antenna using a predetermined weighting factor.
  • Synthesizing means for synthesizing the signals output from the main antenna and the auxiliary antenna weighted by the weighting means, and calculating a weight coefficient so that the power of the signal output from the synthesizing means is minimized
  • a weighting control device for controlling the weighting by outputting the calculated weighting factor to the weighting means;
  • Ru der one provided a Adaputibu controller for outputting a signal to the transceiver.
  • FIG. 1 is a block diagram showing a configuration of an adaptive array antenna device according to Embodiment 1 of the present invention.
  • FIG. 2 is a graph showing the relationship between the SINR of the desired signal and the required gain of the auxiliary antenna.
  • FIG. 3 is a graph showing SINR output characteristics of the adaptive array antenna device according to the present invention.
  • FIG. 4 is a block diagram showing a configuration of an adaptive array antenna device according to Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram showing a configuration of an adaptive array antenna device according to Embodiment 3 of the present invention.
  • FIG. 6 is a block diagram showing a configuration of an adaptive array antenna device according to Embodiment 3 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of an adaptive array antenna device according to Embodiment 1 of the present invention.
  • FIG. 2 is a graph showing the relationship between the SINR of the desired signal and the required gain of the auxiliary antenna.
  • FIG. 3 is a graph showing
  • FIG. 7 is a block diagram showing a configuration of an adaptive array antenna device according to Embodiment 3 of the present invention.
  • FIG. 8 is a diagram showing a configuration of an adaptive array antenna apparatus according to Embodiment 4 of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a base station antenna apparatus according to a fifth embodiment of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a conventional adaptive array antenna device.
  • FIG. 1 is a block diagram showing a configuration of an adaptive array antenna device according to Embodiment 1 of the present invention.
  • 1 is a main antenna
  • 2 is an auxiliary antenna
  • 3 is a user divider / combiner
  • 4 is a multiplier to which the signal from the main antenna 1 is input
  • 5 is a multiplier to which a signal from the auxiliary antenna 2 is input
  • 6 Is an adder
  • 7 is a weight control device
  • 8 is an adaptive control device
  • 9 is an A / D converter
  • 10 is a transceiver
  • 11 is a matching filter.
  • CD MA Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • This is a technology for performing multiple access by communication.
  • broadband signals are used for transmission, high-speed multimedia services can be provided in CDMA, and high-speed data transmission of moving images and the like can be realized.
  • the higher the transmission speed the larger the bandwidth used, and therefore the higher the signal transmission power. Therefore, for a user who performs normal voice transmission or the like, a user who performs these high-speed transmissions becomes an interference signal that significantly deteriorates communication quality.
  • the signals received by the main antenna 1 and the auxiliary antenna 2 are converted into baseband signals by the A / D converter 9 and input to the adaptive control device 8.
  • the adaptive control device 8 performs adaptive control using a power minimization method and outputs an array signal.
  • the weighting control device 7 calculates the amplitude and phase of the received signal of the auxiliary antenna 2 so as to minimize the expected value of the output power of the combined signal, that is, calculates the weighting factor, and uses this weighting factor.
  • the multiplier 5 weights the received signal.
  • the received signal of the weighted auxiliary antenna 2 is input to the adder 6 and
  • the output signal is combined with the output signal to output an array signal.
  • the user distributing / combining unit 3 to which the array signal has been input selectively distributes the signal to the transceiver 10.
  • Each transceiver 10 can despread the input signal at its matching filter 11 to extract the information signal from the desired signal.
  • the present invention takes advantage of the fact that a spread signal spread in a CDMA system on the transmission side is transmitted with a very low SNR (signal power to thermal noise power ratio).
  • SNR signal power to thermal noise power ratio
  • the transmission power increases in proportion to the bit rate. Since high-speed transmission users who transmit images and moving images use many bands (channels), transmission power also increases. That is, an interference signal higher than the thermal noise level is received.
  • a signal before performing despreading processing on the receiving side is in a state where a desired signal for performing voice transmission or the like is buried in noise. Therefore, if the interference signal is removed using a simple power minimization method, only the high-power interference signal above the thermal noise level will be removed.
  • the least-squares error method which is an adaptive control algorithm employed in the conventional adaptive array antenna apparatus, performs adaptive control using the properties of a desired signal in advance.
  • the power minimization method adopted by the present invention does not require such prior knowledge and can perform complete blind processing.
  • An algorithm used for such output power minimization is a power inversion (PI) algorithm.
  • PI power inversion
  • Equation (2) which gives [1 0 ... 0]
  • x, xi2 interference signal components received by the main antenna and auxiliary antenna
  • the weighting factor can be described by the components of the desired signal, the interference signal, and the thermal noise. At this time, the characteristics are determined from the relationship between each signal power and the thermal noise power, and a signal larger than the thermal noise is subject to suppression. In mobile communications, the reception condition changes every moment, so the relationship between signal power and thermal noise power may be reversed. Therefore, by adding a virtual pseudo-noise component to cr 2 in Equation (3), the performance of the adaptive array antenna can be somewhat reduced to make it difficult to suppress the desired signal. By doing so, it is also possible to select a signal to be suppressed by adding appropriate pseudo noise.
  • the interference removal effect of the above-described adaptive array antenna device depends on the size of the auxiliary antenna.
  • the size of the auxiliary antenna is determined according to the level of the interference signal to be removed. Since the degree of interference suppression required to satisfy the required quality varies depending on each base station environment, the size of the auxiliary antenna is determined according to the interference signal suppression level required in the installation environment. The following describes how to determine the size of the auxiliary antenna. First, the required gain (Gain) of the auxiliary antenna with respect to the main antenna is obtained.
  • the required gain of the auxiliary antenna can be obtained by setting the desired SINR and giving the SIR and SNR at the time of reception and the arrival direction, element spacing, and frequency of each signal. From the required gain obtained as described above, the size of the auxiliary antenna can be estimated.
  • Figure 3 shows the results of output SINR (Signal to Interference plus Noise power Ratio) characteristics after adaptive control in an environment where two waves of a desired signal and an interference signal arrive in a two-element configuration of the main antenna and the auxiliary antenna.
  • the horizontal axis shows the SIR (desired signal power vs. interference signal power), and the higher the SINR on the vertical axis, the more the interference signal is removed and the better characteristics are obtained.
  • the input SNR (signal power to thermal noise power ratio) is -5 dB, simulating the state before despreading in CDMA.
  • AGR in Fig. 3 indicates the electric field gain ratio between the auxiliary antenna and the main antenna. The smaller the value, the lower the gain of the auxiliary antenna.
  • the adaptive array antenna device performs adaptive control before distributing to each transceiver (each user), it is not necessary to prepare an adaptive control device in each transceiver. It does not have a significant effect on power consumption, computational complexity, or device scale. Since adaptive control is performed using the power minimization method instead of the least square error method, there is no need to synchronize with the reference signal, and high-power interference signals can be removed with a simple configuration. . By using an auxiliary antenna with a small size, both the miniaturization of the device scale and the interference elimination function can be achieved. Also, since there is no need to synchronize with the reference signal, complete blind processing is possible. Since high-speed sampling is not required, it can be realized with a very simple configuration.
  • the adaptive array antenna device described above can satisfy the required quality by increasing the number of auxiliary antennas according to the number of interferences to be eliminated. If possible it is (the number of auxiliary antennas ing equal to the number of interference signals can be removed.
  • FIG. 4 is a block diagram showing a configuration of the adaptive array antenna device according to the second embodiment.
  • the adaptive array antenna apparatus shown in the first embodiment is suitable for receiving a signal of the CDMA system and removing interference.
  • the adaptive array antenna device described below can use any modulation method, regardless of whether the received signal is a CDMA signal or another signal, if the power of the interference signal is larger than the power of the desired signal. It can also be applied to signals.
  • the signals received by the main antenna 1 and the auxiliary antenna 2 are converted into baseband signals by the A / D converter 9, and adaptive control based on the power minimization method is performed from the outputs using the adaptive control device 8.
  • the weight controller 7 calculates the amplitude and phase of the received signal of the auxiliary antenna 2 so that the expected value of the output power of the array synthesis is minimized, further adjusts the weighting factor, and adds the weight of the main antenna to the adder 6. Combine with the output of 1. By doing so, in a system that is controlled so that all signals requiring the same transmission quality are received with the same power, it is possible to remove only interference signals that are higher in power than the desired signal. Become. Embodiment 3.
  • FIG. 5 is a block diagram showing a configuration of an adaptive array antenna device according to Embodiment 3 of the present invention.
  • Reference numeral 12 denotes a distribution combiner
  • reference numeral 13 denotes a high-power signal path.
  • the same reference numerals as those shown in FIG. 1 denote the same or corresponding parts, and a description thereof will not be repeated.
  • the adaptive array antenna apparatus is configured such that the output of the main antenna 1 is divided into two parts by the divider / synthesizer 12, and one of the outputs is supplied to the adaptive controller 8.
  • the other signal is input to the user divider / combiner 3 via the high power signal path 13 for high power users.
  • the signal received by the main antenna 1 is converted into a baseband signal by the A / D converter 9 and then input to the distribution / combiner 12.
  • the signal received by the auxiliary antenna 2 is converted into a baseband signal by the A / D converter 9 and input to the adaptive control device 8.
  • the divider / combiner 12 distributes the signal received by the main antenna 1, and outputs one to the adaptive control device 8 and the other to the transceiver 10 via the user divider / combiner 3.
  • FIG. 6 is a block diagram showing the adaptive array antenna device shown in FIG.
  • the same reference numerals as those in FIG. 5 indicate the same or corresponding parts, and therefore description thereof will be omitted.
  • a high-power signal including received moving image information and the like is split into two in a splitter / combiner 12, one of which is sent to an adaptive control device 8, and the other is sent to an adaptive control device 8.
  • the adaptive array antenna device shown in FIG. 5 that can suppress the interference caused by the noise and maintain good communication quality of the normal user who transmits voice information.
  • the user distributing / combining unit 3 to which the high-power transmission signal has been input from the transceiver 9 outputs the high-power transmission signal to the adaptive control device 8.
  • the signal is transmitted without passing through the adaptive control device 8.
  • This adaptive control device 8 performs adaptive control using an auxiliary antenna in order to reduce power consumption by scanning a beam in the direction of a high-power user and to reduce interference due to unnecessary radiation to other users. is there. Specifically, when communicating with a high-power user, a weighting factor for maximum ratio combining of input signals to each element at the time of reception is obtained, and this is used as weighting at the time of transmission. If a high-power signal is present, this weighting factor is almost equal to the maximum ratio combining of the high-power signal. Therefore, it becomes possible to transmit by directing the beam toward the high power user, and it is possible to reduce the power consumption of the transmitting station. In addition, unnecessary radiation to other users can be reduced by scanning the beam, so that the communication quality of other users can be improved.
  • FIG. 7 is a block diagram showing a state where a plurality of the adaptive array antenna devices described above are provided in the diversity control device 14. As shown in Fig. 7, it is possible to improve the SNR after reception and improve the communication quality by demodulating the output from each antenna device and diversity-combining them with the diversity controller 14. Becomes Embodiment 4.
  • the A / D converter 9 converts the antenna output into a base-span signal to perform signal processing.
  • the output of the auxiliary antenna is adjusted by the phase shifter 16 and the attenuator 17 and the output of the main antenna 1 is synthesized by the synthesizer 15 to achieve the RF A signal or IF signal may be realized by an analog circuit, and A / D conversion may be performed by an A / D converter 9 provided at a subsequent stage of the adaptive control device 8.
  • the adaptive array antenna device configured as described above can constitute a signal processing system having an interference canceling function immediately below the antenna, and downconverts to baseband and digitizes by an A / D converter in the preceding stage. Since it is not necessary to configure a processing system such as a system, it is possible to reduce the size of the apparatus and to improve its installation.
  • FIG. 9 is a block diagram showing a configuration of a base station antenna apparatus according to Embodiment 5 of the present invention.
  • Reference numeral 18 denotes a base station antenna device.
  • the base station antenna device 18 has an auxiliary antenna 2, an adaptive control device 8, and a distributor / synthesizer 12.
  • the base station antenna device 18 is connected to the main antenna 1 provided in the base station.
  • an interference cancellation function can be added to the function of the base station.
  • the base station antenna device 18 can add an interference canceling function without making significant modifications or specification changes to existing antenna devices such as base stations.
  • the device of the present invention can be inserted, for example, directly below a sector antenna of an existing base station device. Therefore, it is possible to add an interference removal function with almost no effect on the wireless control device such as the transceiver at the subsequent stage.
  • the auxiliary antenna is small enough to perform a sufficient interference canceling function, it is possible to keep the original size from changing much. As described above, the work of installing the base station antenna device in the base station can be performed with low cost and low labor because it is not necessary to modify existing equipment in consideration of adaptive control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

明細書
ァダプティブアレーアンテナ装置及び基地局用ァダプティブアレーアンテナ装置 技術分野
この発明は移動通信において通信品質を確保するアンテナ装置、 特に直接拡散方 式をとる C D MA方式を用いる通信システムのアンテナ装置に関する発明である。 背景技術
移動通信における多重反射波や他ユーザからの干渉を除去するため、 複数のァ ンテナを用いてそれらの重み付けを適応的に制御して干渉信号方向に指向性のヌ ルを向けるァダプティブアレーアンテナがある。 例えば、 第 1 0図は特開平 9— 1 6 2 7 9 9に開示されたァダプティブ機能を有するアンテナ装置の実施例であ る。 1 0は送受信機、 1 9はアンテナ、 2 0はァダプティブ制御部である。
第 1 0図に示されるように、 2素子で受信した信号を分配し、 それらを各送受 信機 1 0の入力とする。 そして、 各送受信機 1 0 (各ユーザ) 毎にァダプティブ 制御部 2 0を配置して、 各々で干渉除去を行う。 このような構成とされるのは、 通常、 移動通信に用いられるアルゴリズムが所望信号に似た (相関の高い) 参照 信号を用いる最小 2乗誤差法に基づいているからである。 最小 2乗誤差法の評価 関数 Qは次式で表される。
Figure imgf000003_0001
E [■ ]:期待値
r(t), y{t) :参照信号およびアレー出力 以上に述べたように従来の構成では、 各送受信機毎にァダプティブ制御装置が 必要となり、 チャネル数の増加とともに装置規模も増大する問題があった。 C D MAシステムにおいては逆拡散後にァダプティブ処理を行う必要があるため、 チ ャネル数の増加に伴い、 装置規模の問題が大きくなる。 また、 既存装置にァダプ ティブ機能を追加する場合などは、 ァダプティブ制御を考慮した送受信機全体の 設計を行い、 すべてを交換する必要があった。 よって、 他の装置への影響も大き く、 また、 消費電力、 設備費、 設置性など各種の面で問題となる。
この発明は上記のような問題点を解決するためになされたもので、 簡易な構成 により他ユーザにとって通信品質劣化の要因となる干渉信号を除去する移動通信 におけるアンテナ装置を実現することを目的とする。 発明の開示
この発明にかかるァダプティブアレーアンテナ装置は、 主アンテナと、 この主 アンテナよりも小型の補助アンテナと、 所定の重み係数を用いて、 前記主アンテ ナおよび前記補助アンテナから出力された信号にそれそれ重み付けをする重み付 け手段、 この重み付け手段にてそれそれ重み付けがされた前記主アンテナおよび 前記補助アンテナから出力された信号を合成する合成手段、 この合成手段から出 力される信号の電力が最小になるように重み係数を演算し、 演算した重み係数を 前記重み付け手段に出力して重み付けを制御する重み付け制御装置を有し、 前記 合成手段より出力された信号を送受信機に出力するァダプティブ制御装置とを設 けたものである。
また、 この発明にかかるァダプティブアレーアンテナ装置は、 C D MA方式を 採用する送信側において拡散変調された広帯域信号から干渉信号を除去した信号 を、 広帯域信号より狭帯域信号に逆拡散する整合フィル夕を有する送受信機に出 力するァダプティブ制御装置を設けたものである。
また、 この発明にかかるァダプティブアレーアンテナ装置は、 主アンテナが受 信した信号のうち、 一部の信号はァダプティブ制御装置に出力し、 残りの信号を 前記ァダプティブ制御装置を通さずに送受信機に出力する分配器を設けたもので ある。
また、 この発明にかかるァダプティブアレーアンテナ装置は、 受信信号に含ま れる成分のうち、 熱雑音成分に所定の擬似雑音成分を付加して重み係数を演算す ることにより重み係数を変化させる重み付け制御装置を設けたものである。 また、 この発明にかかるァダプティブアレーアンテナ装置は、 主アンテナおよ び補助アンテナの受信した電力の大きな信号を最大比合成する重み係数を演算す るとともにァダプティブ制御装置に出力し、電力の大きな信号を送信するときに、 送受信機より前記ァダプティブ制御装置に入力される信号の重み付けを制御する 重み付け制御装置を設けたものである。
この発明にかかる基地局用ァダプティブアレーアンテナ装置は、 基地局に設け られた主アンテナと接続され、 この主アンテナが受信した信号を分配して出力す る分配合成器と、 基地局を設置する環境の干渉信号レベルに依存してサイズが決 定される補助アンテナと、 所定の重み係数を用いて、 前記主アンテナおよび前記 補助アンテナから出力された信号にそれそれ重み付けをする重み付け手段、 この 重み付け手段にてそれそれ重み付けがされた前記主アンテナおよび前記補助ァン テナから出力された信号を合成する合成手段、 この合成手段から出力される信号 の電力が最小になるように重み係数を演算し、 演算した重み係数を前記重み付け 手段に出力して重み付けを制御する重み付け制御装置を有し、 前記合成手段より 出力された信号を送受信機に出力するァダプティブ制御装置とを設けたものであ る。 図面の簡単な説明
第 1図は本発明の実施の形態 1に係るァダプティブアレーアンテナ装置の構成 を示すブロック図である。 第 2図は所望信号の S I N Rと補助アンテナの必要利 得との関係を示すグラフである。 第 3図は本発明にかかるァダプティブァレーア ンテナ装置の S I N R出力特性を示すグラフである。 第 4図は本発明の実施の形 態 2に係るァダプテイブアレーアンテナ装置の構成を示すブロック図である。 第 5図は本発明の実施の形態 3に係るァダプティブアレーアンテナ装置の構成を示 すプロック図である。 第 6図は本発明の実施の形態 3に係るァダプティブアレー アンテナ装置の構成を示すブロック図である。 第 7図は本発明の実施の形態 3に 係るァダプテイブアレーアンテナ装置の構成を示すブロック図である。 第 8図は 本発明の実施の形態 4に係るァダプティブァレ一アンテナ装置の構成を示すプロ ック図である。 第 9図は本発明の実施の形態 5にかかる基地局用アンテナ装置の 構成を示すブロック図である。 第 1 0図は従来のァダプティブアレーアンテナ装 置の構成を示すプロック図である。 発明を実施するための最良の形態
実施の形態 1 .
第 1図は、 本発明の実施の形態 1に係るァダプティブアレーアンテナ装置の構 成を示すブロック図である。 1は主アンテナ、 2は補助アンテナ、 3はユーザ用 分配合成器、 4は主アンテナ 1からの信号が入力される乗算器、 5は補助アンテ ナ 2からの信号が入力される乗算器、 6は加算器、 7は重み付け制御装置、 8は ァダプティブ制御装置、 9は A/D変換器、 1 0は送受信機、 1 1は整合フィル 夕である。
C D MA (Code Divis ion Multiple Access ) とは符号分害 ij多元接続のこ とで、 情報信号のスぺクトルをその帯域幅に比べて十分に広い帯域に拡散して伝 送するスぺクトル拡散通信によって多元接続を行う技術である。 つまり、 伝送に は広帯域信号を用いるため、 C D MAにおいては高速マルチメディアサービスの 提供が可能となり、 動画などの高速データ伝送が実現できる。 しかしながら、 高 速伝送になるほど多くの帯域を使用するために信号の送信電力も大きくなる。 し たがって、 通常の音声伝送などを行うユーザにとってはこれらの高速伝送を行う ユーザは通信品質を著しく劣化させる干渉信号となる。
次に第 1図に示すァダプティブアレーアンテナ装置の動作について説明する。 まず主アンテナ 1および補助アンテナ 2で受信された信号を A/D変換器 9によ りベースバンド信号に変換してァダプティブ制御装置 8に入力する。 ァダプティ ブ制御装置 8は電力最小化法を用いてァダプティブ制御を行いアレー信号を出力 する。 具体的にはァレ一合成の出力電力の期待値が最小化されるよう重み付け制 御装置 7により補助アンテナ 2の受信信号の振幅位相を演算、 すなわち重み係数 を演算し、 この重み係数を用いて乗算器 5にて受信信号の重み付けを行う。 そし て、 重み付けされた補助アンテナ 2の受信信号を加算器 6に入力して、 乗算器 4 より出力された信号と合成してアレー信号を出力する。 アレー信号が入力された ユーザ用分配合成器 3は送受信機 1 0に信号を選択的に分配する。 各送受信機 1 0は入力された信号をそれそれの整合フィル夕 1 1にて逆拡散処理して所望信号 より情報信号を取り出すことができる。
本発明は、送信側である C D MAシステムにおいて拡散された拡散信号が、 SNR (信号電力対熱雑音電力比) が非常に低い状態で送信される性質であることを利 用している。 通常、 音声などの低速伝送ユーザにおいては熱雑音レベル以下の送 信電力で送信される。 また、 ビットレートに比例して送信電力も大きくなる。 画 像、 動画などの伝送を行う高速伝送ユーザは多くの帯域 (チャネル) を使用する ので送信電力も大きくなる。 つまり、 熱雑音レベル以上の干渉信号が受信される ことになる。 このような C D MAならではの状況において、 受信側で逆拡散処理 をする前の信号では、 音声伝送などを行う所望信号は雑音に埋もれた状態となつ ている。 従って、 単純な電力最小化法を用いて干渉信号を除去すると、 熱雑音レ ベル以上の大電力の干渉信号のみ除去されることになる。
従来のァダプティブアレーアンテナ装置の採用していたァダプティブ制御アル ゴリズムである最小 2乗誤差法は、 所望信号の性質を事前知識としてァダプティ ブ制御を行うものであった。 これに対して、 本発明が採用する電力最小化法は、 このような事前知識を必要とせず、 完全なブラインド処理が可能である。 このよ うな出力電力最小化に用いるアルゴリズムとしてパワーインバージョン (P I : Power Invers ion) アルゴリズムがある。 以下、 P Iアルゴリズムについて説 明する。 重み係数 Wは次式で与えられる。
Figure imgf000007_0001
:入力信号の相関行列
S :主アンテナの重みを固定として [1 0 ... 0 となる 式 (2 ) を 2素子 2波モデルに書き下すと以下のようになる。
Figure imgf000008_0001
_ x + a
D 一 一
Xdl '> Xd 主アンテナ、 補助アンテナで受信される所望信号成分
x , xi2 :主アンテナ、 補助アンテナで受信される干渉信号成分
σ2 :熱雑音電力
Z) = d J ( 4 ) このように所望信号と干渉信号が無相関であれば、 重み係数は所望信号、 干渉 信号、 熱雑音の各成分により記述できる。 このとき、 各信号電力と熱雑音電力の 関係から特性が決まることになり、 熱雑音に比べて大きな信号ほど抑圧対象とな る。 移動通信においては受信状態は時々刻々と変化するために信号電力と熱雑音 電力の関係が逆転することも考えられる。そこで、仮想的な擬似雑音成分を式( 3 ) の cr2に加えることでァダプティブアレーアンテナの性能を多少鈍らせて、 所望信 号を抑圧しにく くすることが可能となる。 またこうすることにより、 適切な擬似 雑音を付加することで抑圧対象とする信号を選択することもできる。
また、 上記説明したァダプティブアレーアンテナ装置が有する干渉除去効果は 補助アンテナの大きさに依存している。 そして、 補助アンテナのサイズは除去す ベき干渉信号のレベルに応じて決定される。 要求品質を満足するために必要な干 渉抑圧の程度は各基地局環境によって異なるので、 補助アンテナのサイズは設置 環境において必要な干渉信号の抑圧レベルに応じて決定される。 以下、 補助アン テナのサイズの決定法について説明する。 まず、 主アンテナに対する補助アンテ ナの必要利得 (Gain) を求める。
- b : ■4ac
rain ( 5 )
2a a = 2xjX; (l - p)- SINR . (2« -
Figure imgf000009_0001
+ o2 xd~ + x )2}
b = 2χ χ:σ2(\ -p)- SINR . σ2 + x f + 2o2{xd 2 + xf)} ( g )
c = χ σ - SINR · (jccr4 + a6)
b 4flc≥0
あるいは、 干渉信号電力が所望信号電力に比べて非常に大きく所望信号が無視 できるとすれば、 a = 2x;x,4(l - p)- SINR . {σ2 4 }
b = 2χ]χ.σ2{1 -p)- SINR a2 c' + 2σ2χ[ } (7)
c = χ]σ'一 SINR · (x o4 + σ6 )
Xd :主アンテナでの所望信号の受信振幅
:主アンテナでの干渉信号の受信振幅
σ2 :熱雑音電力
SINR:所望の SINR値 p = cos(kd(s θά一 sin β ))
ん:波数
^素子間隔
, :所望信号、 干渉信号の到来方向 すなわち、 所望の SINRを設定し、 受信時の SIR、 SNRおよび各信号の到来方向、 素子間隔、 周波数を与えることにより補助アンテナの必要利得が求められる。 以 上のようにして求めた必要利得から補助アンテナのサイズが概算可能となる。 例 として、 SIR=— 1 0 dB、 SNR=0 dBの場合の必要利得を第 2図に示す。 横軸が 所望の SINR、 縦軸が補助アンテナの必要利得を表す。 図より、 SINR=— 1 0 dB を達成した場合は補助アンテナの必要利得は約- 1 OdBとなり、 主アンテナに対 して 1 0分の 1程度のサイズでよいことがわかる。
以上説明したァダプティブアレーアンテナ装置の効果について説明する。 主ァ ンテナと補助アンテナの 2素子の構成において所望信号と干渉信号の 2波が到来 する環境におけるァダプティブ制御後の出力 SINR (Signal to Interference plus Noise power Ratio) 特性の結果を第 3図に示す。 横軸は S IR (所望信 号電力対干渉信号電力) を示し、 縦軸の SINRが大きいほど干涉信号を除去し、 良 好な特性が得られることを示す。 入力 SNR (信号電力対熱雑音電力比) は— 5 dB とし、 C D MAにおける逆拡散前の状態を模擬している。 第 3図中の AGRは補助 アンテナと主アンテナの電界利得比を表し、 小さいほど補助ァンテナの利得が低 いことを表す。
つまり、 アンテナのサイズが小さくなることを表している。 第 3図の実線で示 す主アンテナのみでの受信に対して本発明のァダプティブ制御をおこなうことで、 特性の大きな改善が見られる。 よって、 利得の小さいアンテナすなわちサイズの 小さな補助アンテナを用いることでアンテナ装置の小形化を図りながら干渉除去 機能の実現も可能となる。 また、 SIRが大きい、 すなわち大きな干渉信号がない 場合でも所望信号をほとんど除去していないことがわかる。
以上説明したように、 本発明にかかるァダプティブアレーアンテナ装置は、 ァ ダブティブ制御を各送受信機 (各ユーザ) に分配する前に行うため、 各送受信機 においてァダプティブ制御装置を用意する必要がなく、 消費電力や演算量、 装置 規模に大きな影響を与えない。 そして、 最小 2乗誤差法ではなく電力最小化法を 用いてァダプティブ制御を行うので、 参照信号との同期などを取る必要がなくな り簡易な構成により大電力の干渉信号の除去が可能である。 サイズの小さな補助 アンテナを用いることで装置規模の小型化と干渉除去機能を両立させることがで きる。 また、 参照信号との同期を取る必要がないので完全なブラインド処理が可 能となった。 高速サンプリングも必要ないので非常に簡易な構成により実現でき る。
なお、 以上説明したァダプティブアレーアンテナ装置は、 除去したい干渉の数 に応じて補助アンテナの数を増加させることにより、 要求品質を満足することが 可能である ( の場合、 補助アンテナの数が除去できる干渉信号の数と等しくな る。 実施の形態 2 .
第 4図は実施の形態 2に係るァダプティブアレーアンテナ装置の構成を示すプ ロック図である。 第 4図において、 第 1図に示すものと同一の符号は同一または 相当部分を示すものであるため説明は省略する。 実施の形態 1に示すァダプティ ブアレーアンテナ装置は、 C D MA方式の信号の受信および干渉除去に適するも のであった。 以下説明するァダプティブアレーアンテナ装置は、 受信した信号が C D MA方式の信号かその他の方式の信号かに関わらず、 干渉信号の電力が所望 信号の電力に比べて大きければ、 あらゆる変調方式の信号に対しても適用できる ものである。
主アンテナ 1および補助アンテナ 2で受信された信号を A/D変換器 9により ベースバンド信号に変換し、 それら出力よりァダプティブ制御装置 8を用いて電 力最小化法に基づくァダプティブ制御を行う。 具体的にはアレー合成の出力電力 の期待値が最小化されるよう重み付け制御装置 7により補助アンテナ 2の受信信 号の振幅位相を演算し、 さらに重み係数を調整して加算器 6により主アンテナ 1 の出力と合成する。 こうすることにより、 同じ伝送品質を要求される信号がすべ て同一の電力で受信されるように制御されたシステムでは、 所望信号に対して大 きい電力の干渉信号のみを除去することが可能となる。 実施の形態 3 .
実施の形態 1、 2にて説明したァダプティブアレーアンテナ装置は、 電力の大 きい信号は干渉として除去の対象としていた。 しかしながら、 動画像などの情報 を伝送する高速伝送信号は多くの帯域を使用するために送信電力も大きくなる。 従って、 電力の大きい信号を一律に干渉として除去すると、 動画像を含む所望信 号まで除去してしまう可能性がある。 第 5図は本発明の実施の形態 3に係るァダ プティブアレーアンテナ装置の構成を示すプロック図である。 第 5図において、 1 2は分配合成器、 1 3は大電力信号用経路である。 第 5図において第 1図に示 すものと同一の符号は同一または相当部分を示すので説明は省略する。 実施の形 態 3に係るァダプティブアレーアンテナ装置は、 第 5図に示すように、 主アンテ ナ 1の出力を分配合成器 1 2により 2分酉己し、一方をァダプティブ制御装置 8に、 もう一方の信号を大電力ユーザ用の大電力信号用経路 1 3を介してユーザ用分配 合成器 3に入力する。
次に第 5図に示すァダプティブァレ一アンテナ装置の動作について説明する。 主アンテナ 1が受信した信号は A/D変換器 9によりベ一スバンド信号に変換さ れた後、 分配合成器 1 2に入力される。 一方、 補助アンテナ 2が受信した信号は A/D変換器 9によりベースバンド信号に変換されてァダプティブ制御装置 8に 入力される。 分配合成器 1 2は、 主アンテナ 1が受信した信号を分配し、 一方を ァダプティブ制御装置 8に、 もう一方をユーザ用分配合成器 3を経由して送受信 機 1 0に出力する。
大電力ユーザに関しては、 このように分配合成器 1 2のもう一方の系統をその まま後段の送受信機に入力することで対応可能である。 このような構成を採用す ることで大電力ユーザとの通信に支障をきたすことのない構成となる。 また、 も しァダプティブ制御後に抽出した信号のレベルが小さいなら、 大電力ユーザ用の 系統を用いて、 両者の出力レベルの比較を行うなどして、 より高い出力レベルの 系統を選択することも可能となる。
また、 第 6図は第 5図に示すァダプティブアレーアンテナ装置を示すブロック 図である。 第 6図において第 5図と同一の符号は同一または相当部分を示すので 説明は省略する。 第 6図に示すァダプティブアレーアンテナ装置は、 分配合成器 1 2において、受信した動画像情報などを含む電力の大きな信号は 2分配されて、 一方はァダプティブ制御装置 8に、 もう一方は大電力ユーザ用経路 1 3によって ユーザ用分配合成器 3に出力される。 従って、 ァダプティブ制御装置 8に入力さ れた信号から大電力信号が除去されても、 大電力ユーザ用経路に出力された信号 から所望信号を取り出すことができるので、 大電力ユーザを保護することができ る。 以上説明したように、 大電力ユーザを保護するとともに、 電力の大きな信号 の及ぼす干渉を抑制し、 音声情報を伝達する通常ユーザの通信品質を良好に保つ ことができるのは第 5図に示すァダプティブアレーアンテナ装置と同様である。 一方、 電力の大きな信号を送信するときには、 送受信機 9より大電力の送信信号 を入力されたユーザ用分配合成器 3は、 大電力送信信号をァダプティブ制御装置 8に出力する。 また、 電力の小さな信号を送信するときには、 ァダプティブ制御 装置 8を介さずに送信する。
このァダプティブ制御装置 8は、 大電力ユーザ方向にビーム走査することによ り消費電力の低減および他ュ一ザへの不要放射による干渉を低減するために補助 アンテナを利用したァダプティブ制御を行うものである。 具体的には大電力のュ 一ザと通信を行う際には、 受信時に各素子への入力信号を最大比合成する重み係 数を求めておき、 これを送信時の重み付けとして用いる。 大電力の信号が存在す ればこの重み係数は大電力信号を最大比合成するものにほぼ等しくなる。よって、 大電力ユーザ方向にビームを向けて送信可能となり、 送信局の消費電力削減を実 現することができる。 また、 ビームを走査することにより他のユーザへの不要放 射を低減できるので、 他ユーザの通信品質の改善も可能となる。
また、 第 7図は、 以上説明したァダプティブアレーアンテナ装置を複数個、 ダ ィバーシチ制御装置 1 4に設けた状態を示すブロック図である。 第 7図に示すよ うに各アンテナ装置からの出力を復調し、 それらをダイバーシチ制御装置 1 4に よりダイバ一シチ合成することにより受信後の SNRを改善し、 通信品質を向上さ せることが可能となる。 実施の形態 4 .
実施の形態 1〜 3にて説明したァダプティブアレーアンテナ装置では、 アンテ ナ出力を A/D変換器 9によりべ一スパンド信号に変換して信号処理を行ってい た。 これを第 8図に示すように、 補助アンテナ出力を移相器 1 6と減衰器 1 7に より調整し、 合成器 1 5にて主アンテナ 1の出力と合成する構成にすることで、 R F信号あるいは I F信号のままアナログ回路により実現し、 ァダプティブ制御 装置 8の後段に設けた A/ D変換器 9にて A / D変換するようにしてもよい。 このように構成したァダプティブアレーアンテナ装置は、 アンテナ直下に干渉 除去機能を有する信号処理系を構成することができ、 前段にてベースバンドへの ダウンコンバートおよび A/D変換器によるディジ夕ル化等の処理系の構成を行う 必要がないために装置の小型化、 設置性の改善が可能となる。 実施の形態 5 .
第 9図は本発明の実施の形態 5に係る基地局用アンテナ装置の構成を示すプロ ヅク図である。 1 8は基地局用アンテナ装置である。 第 9図において第 5図に示 すものと同一の符号は同一または相当部分を示すので説明は省略する。 基地局用 アンテナ装置 1 8は補助アンテナ 2、 ァダプティブ制御装置 8、 分配合成器 1 2 を有しており、 この基地局用アンテナ装置 1 8を基地局に設けられた主アンテナ 1と接続して、 既存の設備に追加することにより、 基地局の機能に干渉除去機能 を付加することができる。
上記基地局用アンテナ装置 1 8は、 基地局など既存のアンテナ装置に大幅な改 造、 仕様変更を施すことなく干渉除去機能の追加を行うことが可能となる。 また、 受信信号を各送受信機に分配する前にァダプティブ制御を行うので、 例えば、 既 存の基地局装置のセクタアンテナなどの直下に本発明の装置を挿入することがで きる。 従って、 後段の送受信機など無線制御装置へほとんど影響を与えることな く干渉除去機能の追加が可能である。 また、 補助アンテナも小型のもので十分な 干渉除去機能を果たすので、 元のサイズからあまり変わることのないようにでき る。 以上説明したような、 基地局用アンテナ装置を基地局に設置する作業は、 ァ ダブティブ制御を考慮して既存の設備を改造する必要性も小さいので、低コスト、 低労力にて実施できる。

Claims

請求の範囲
1 . 主アンテナと、 この主アンテナよりも小型の補助アンテナと、 所定の重み 係数を用いて、 前記主アンテナおよび前記補助アンテナから出力された信号にそ れそれ重み付けをする重み付け手段、 この重み付け手段にてそれそれ重み付けが された前記主アンテナおよび前記補助アンテナから出力された信号を合成する合 成手段、 この合成手段から出力される信号の電力が最小になるように重み係数を 演算し、 演算した重み係数を前記重み付け手段に出力して重み付けを制御する重 み付け制御装置を有し、 前記合成手段より出力された信号を送受信機に出力する ァダプティブ制御装置とを設けたことを特徴とするァダプティブアレーアンテナ
2 . ァダプティブ制御装置は、 C D MA方式を採用する送信側において拡散変 調された広帯域信号から干渉信号を除去した信号を、 広帯域信号より狭帯域信号 に逆拡散する整合フィル夕を有する送受信機に出力することを特徴とする請求の 範囲第 1項に記載のァダプテイブアレーアンテナ装置。
3 . 主アンテナが受信した信号のうち、 一部の信号はァダプティブ制御装置に 出力し、 残りの信号を前記ァダプティブ制御装置を通さずに送受信機に出力する 分配器を設けたことを特徴とする請求の範囲第 1項に記載のァダプティブアレー
4 . 重み付け制御装置は、 受信信号に含まれる成分のうち、 熱雑音成分に所定 の擬似雑音成分を付加して重み係数を演算することにより重み係数を変化させる ことを特徴とする請求の範囲第 3項に記載のァダプティブアレーマ +
5 . 重み付け制御装置は、 主アンテナおよび補助アンテナの受信した電力の大 きな信号を最大比合成する重み係数を演算するとともにァダプティブ制御装置に 出力し、 電力の大きな信号を送信するときに、 送受信機より前記ァダプティブ制 御装置に入力される信号の重み付けを制御することを特徴とする請求の範囲第 3 項に記載のァダプティブァレ一アンテナ装置。
6 . 基地局に設けられた主アンテナと接続され、 この主アンテナが受信した信 号を分配して出力する分配合成器と、 基地局を設置する環境の干渉信号レベルに 依存してサイズが決定される補助アンテナと、 所定の重み係数を用いて、 前記主 アンテナおよび前記補助アンテナから出力された信号にそれぞれ重み付けをする 重み付け手段、 この重み付け手段にてそれそれ重み付けがされた前記主アンテナ および前記補助アンテナから出力された信号を合成する合成手段、 この合成手段 から出力される信号の電力が最小になるように重み係数を演算し、 演算した重み 係数を前記重み付け手段に出力して重み付けを制御する重み付け制御装置を有し、 前記合成手段より出力された信号を送受信機に出力するァダプティブ制御装置と を設けたことを特徴とする基地局用ァダプティブアレーアンテナ装置。
PCT/JP2000/007332 1999-10-22 2000-10-20 Dispositif adaptatif d'antenne reseau et dispositif adaptatif d'antenne reseau pour station de base WO2001029988A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/868,846 US6404387B1 (en) 1999-10-22 2000-10-20 Adaptive array antenna device and base station adaptive array antenna device
EP00969951A EP1146662A4 (en) 1999-10-22 2000-10-20 ADAPTIVE ANTENNA GROUP ASSEMBLY AND BASE STATION FOR ADAPTIVE ANTENNA GROUPS ASSEMBLY
AU79525/00A AU7952500A (en) 1999-10-22 2000-10-20 Adaptive array antenna device and base station adaptive array antenna device
KR1020017007906A KR20010099884A (ko) 1999-10-22 2000-10-20 적응 어레이 안테나 장치 및 기지국용 적응 어레이 안테나장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/300757 1999-10-22
JP30075799 1999-10-22

Publications (1)

Publication Number Publication Date
WO2001029988A1 true WO2001029988A1 (fr) 2001-04-26

Family

ID=17888742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007332 WO2001029988A1 (fr) 1999-10-22 2000-10-20 Dispositif adaptatif d'antenne reseau et dispositif adaptatif d'antenne reseau pour station de base

Country Status (5)

Country Link
US (1) US6404387B1 (ja)
EP (1) EP1146662A4 (ja)
KR (1) KR20010099884A (ja)
AU (1) AU7952500A (ja)
WO (1) WO2001029988A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767799B2 (ja) * 2001-04-09 2006-04-19 日本電気株式会社 アレーアンテナのヌル方向制御方法及び装置
US20030171834A1 (en) * 2002-03-07 2003-09-11 Silvester Kelan C. Method and apparatus for connecting a portable media player wirelessly to an automobile entertainment system
KR20040038383A (ko) * 2002-10-31 2004-05-08 이노에이스(주) 알에프 및 아이에프 대역 신호 합성부를 내장한 간섭제거무선중계장치
JP4090331B2 (ja) * 2002-11-20 2008-05-28 三洋電機株式会社 受信方法と装置
JP2004325239A (ja) * 2003-04-24 2004-11-18 Sharp Corp アンテナゲイン特定装置および無線通信装置
JP4177761B2 (ja) 2003-11-12 2008-11-05 株式会社エヌ・ティ・ティ・ドコモ ウエイト決定装置及びウエイト決定方法
US8102803B2 (en) * 2007-05-31 2012-01-24 Interdigital Technology Corporation Method and apparatus for wireless communication of packet data using transmit diversity weighting
US20090323872A1 (en) * 2008-06-30 2009-12-31 Sirius Xm Radio Inc. Interface between a switched diversity antenna system and digital radio receiver
US8614644B2 (en) * 2010-04-22 2013-12-24 The Aerospace Corporation Systems and methods for protecting a receiving antenna from interference by a transmitting antenna

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129508A (ja) * 1987-11-14 1989-05-22 Toshiba Corp マルチビームアンテナ
JPH03239019A (ja) * 1990-02-16 1991-10-24 Nippon Telegr & Teleph Corp <Ntt> 一周波数交互通信方式におけるダイバーシチ回路
JPH0661893A (ja) * 1992-08-05 1994-03-04 Nec Corp 干渉波除去装置
JPH06181446A (ja) * 1992-12-14 1994-06-28 Nec Corp サイドローブキャンセラ
JPH06181410A (ja) * 1992-12-15 1994-06-28 Toshiba Corp アンテナ
JPH07297733A (ja) * 1994-04-28 1995-11-10 Nec Corp 干渉波除去装置
JPH07321681A (ja) * 1994-05-30 1995-12-08 Nec Corp 干渉波除去装置
JPH10270928A (ja) * 1997-03-25 1998-10-09 Toyota Central Res & Dev Lab Inc アダプティブ受信機
JPH10303808A (ja) * 1997-05-01 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> 移動通信用基地局装置及びその放射指向性制御方法
JPH11274976A (ja) * 1998-03-19 1999-10-08 Fujitsu Ltd 無線基地局のアレーアンテナシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101906A (ja) * 1982-12-02 1984-06-12 Mitsubishi Electric Corp アンテナ装置
US4553146A (en) * 1983-10-19 1985-11-12 Sanders Associates, Inc. Reduced side lobe antenna system
JPS6429508A (en) 1987-07-24 1989-01-31 Takeo Inaba Paving material and method of paving joining section of bridge beam edge by using said material
US5796779A (en) * 1992-06-29 1998-08-18 Raytheon Company Adaptive signal processor for non-stationary environments and method
JPH09162799A (ja) 1995-12-14 1997-06-20 N T T Ido Tsushinmo Kk 移動通信の基地局アンテナ装置
JP2853742B2 (ja) * 1997-06-10 1999-02-03 日本電気株式会社 直接拡散/符号分割多重方式干渉除去受信装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129508A (ja) * 1987-11-14 1989-05-22 Toshiba Corp マルチビームアンテナ
JPH03239019A (ja) * 1990-02-16 1991-10-24 Nippon Telegr & Teleph Corp <Ntt> 一周波数交互通信方式におけるダイバーシチ回路
JPH0661893A (ja) * 1992-08-05 1994-03-04 Nec Corp 干渉波除去装置
JPH06181446A (ja) * 1992-12-14 1994-06-28 Nec Corp サイドローブキャンセラ
JPH06181410A (ja) * 1992-12-15 1994-06-28 Toshiba Corp アンテナ
JPH07297733A (ja) * 1994-04-28 1995-11-10 Nec Corp 干渉波除去装置
JPH07321681A (ja) * 1994-05-30 1995-12-08 Nec Corp 干渉波除去装置
JPH10270928A (ja) * 1997-03-25 1998-10-09 Toyota Central Res & Dev Lab Inc アダプティブ受信機
JPH10303808A (ja) * 1997-05-01 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> 移動通信用基地局装置及びその放射指向性制御方法
JPH11274976A (ja) * 1998-03-19 1999-10-08 Fujitsu Ltd 無線基地局のアレーアンテナシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1146662A4 *

Also Published As

Publication number Publication date
EP1146662A1 (en) 2001-10-17
KR20010099884A (ko) 2001-11-09
AU7952500A (en) 2001-04-30
EP1146662A4 (en) 2005-01-12
US6404387B1 (en) 2002-06-11

Similar Documents

Publication Publication Date Title
JP3302340B2 (ja) 移動通信基地局のスマートアンテナシステム用送受信装置
US9270327B2 (en) Interference cancellation in a spread spectrum communication system
US6560300B2 (en) CDMA communication system using an antenna array
US7203519B2 (en) Implementation method of pilot signal
JP3092798B2 (ja) 適応送受信装置
US9160427B1 (en) Transmit diversity with formed beams in a wireless communications system using a common pilot channel
JP2003264501A (ja) 適応アンテナ基地局装置
US7342912B1 (en) Selection of user-specific transmission parameters for optimization of transmit performance in wireless communications using a common pilot channel
JPH08274687A (ja) Cdma無線伝送装置およびcdma無線伝送システム
JP2001127699A (ja) 送信ビーム制御装置および制御方法
JP2002077010A (ja) 基地局装置および無線受信方法
WO2001029988A1 (fr) Dispositif adaptatif d&#39;antenne reseau et dispositif adaptatif d&#39;antenne reseau pour station de base
JP2003051775A (ja) W−cdma/tdd基地局及びアレイアンテナ指向性制御方法
JP3370621B2 (ja) 移動通信用基地局アンテナ装置
JP4153208B2 (ja) Cdma方式における基地局アンテナ指向性制御装置およびcdmaセルラー方式における基地局アンテナ指向性制御装置
JP4161502B2 (ja) 無線基地局装置
JP3664943B2 (ja) Cdma基地局アレイ・アンテナ指向性形成装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2001 531226

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000969951

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017007906

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09868846

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000969951

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000969951

Country of ref document: EP