WO2001027248A1 - Prpp-amidotransferase aus nicotiana tabacum - Google Patents

Prpp-amidotransferase aus nicotiana tabacum Download PDF

Info

Publication number
WO2001027248A1
WO2001027248A1 PCT/EP2000/009839 EP0009839W WO0127248A1 WO 2001027248 A1 WO2001027248 A1 WO 2001027248A1 EP 0009839 W EP0009839 W EP 0009839W WO 0127248 A1 WO0127248 A1 WO 0127248A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
prpp amidotransferase
seq
plants
activity
Prior art date
Application number
PCT/EP2000/009839
Other languages
English (en)
French (fr)
Other versions
WO2001027248A8 (de
Inventor
Jens Lerchl
Thomas Ehrhardt
Uwe Sonnewald
Ralf Boldt
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP00969449A priority Critical patent/EP1220894A1/de
Priority to CA002387159A priority patent/CA2387159A1/en
Priority to AU79159/00A priority patent/AU7915900A/en
Publication of WO2001027248A1 publication Critical patent/WO2001027248A1/de
Publication of WO2001027248A8 publication Critical patent/WO2001027248A8/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2430/00Assays, e.g. immunoassays or enzyme assays, involving synthetic organic compounds as analytes
    • G01N2430/20Herbicides, e.g. DDT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to the identification of plant PRPP amidotransferase (phosphoribosyl pyrophosphate A idotransferase, E.C. 2.4.2.14) as a new target for herbicidal active compounds.
  • the present invention further relates to DNA sequences coding for a polypeptide with PRPP amidotransferase activity.
  • the invention relates to the use of a nucleic acid coding for a protein with PRPP amidotransferase activity of plant origin for the production of a test system for identifying inhibitors of PRPP amidotransferase with herbicidal activity and inhibitors of plant PRPP amidotransferase identified using this test system.
  • the invention further relates to the use of the nucleic acid SEQ-ID No. 1 or SEQ-ID No. 3 coding for plant PRPP amidotransferase for the production of plants with increased resistance to inhibitors of PRPP amidotransferase, and for the production of plants with a modified purine nucleotide content.
  • the invention relates to a method for eliminating undesirable plant growth, the plants to be removed being treated with a compound which is specifically PRPP amidotransferase, coded by a DNA sequence SEQ-ID No. 1 or a DNA sequence hybridizing with this DNA sequence, binds and inhibits their function.
  • Plants are able to synthesize their cell components from carbon dioxide, water and inorganic salts.
  • Nucleotides are synthesized de novo in plants. They are of particular importance as part of the nucleic acids. In a covalent bond, nucleotides activate carbohydrates for the biosynthesis of polysaccharides. They also activate head groups for the biosynthesis of lipids. Nucleotides are involved in almost all metabolic pathways. Nucleoside triphosphates, especially ATP, drive most of the cell's energy-intensive reactions. Adenine nucleotides can also be found as a component in essential factors such as coenzyme A, as well as nicotinamide and flavin coenzymes, which are involved in many cellular reactions.
  • GTP guanosine 5 x triphosphate
  • Nucleotides are also the starting metabolites for the biosynthesis of methylxanthines such as caffeine and theobromine in plant families of the Rubiaceae and Theaceae.
  • CDNAs coding for PRPP amidotransferase enzymes could be isolated and characterized from various bacterial, animal and plant organisms.
  • Plant PRPP amidotransferase cDNAs were isolated from Glycine max, Vigna aconitifolia and from Arabid ⁇ psis thaliana by complementation of E. coli purF mutants and by DNA hybridization techniques (Ito et al., Plant Molecular Biology 26 (1994), 529-533; Kim et al., The Plant Journal 7 (1995), 77-86). Sequence homologies indicate that the encoded enzymes, like PRPP amidotransferase from E. coli, contain 4Fe-4S clusters.
  • the PRPP amidotransferase amino acid sequences from plants, which are elongated in comparison to E. coli at the N terminal, are similar to plastid signal sequences.
  • PRPP amidotransferase isoenzymes there are several PRPP amidotransferase isoenzymes in plants that are differentially expressed.
  • the RNA for AtATasel from Arabidopsis thaliana preferentially accumulates in the roots, while the AtATase2 transcripts are found more strongly in young leaves and flowers (Ito et al., Plant Molecular Biology 26 (1994), 529-533).
  • a PRPP amidotransferase RNA accumulates mainly in root nodules and is induced in root tissues by L-glutamine (Kim et al., The Plant Journal 7 (1995), 77-86).
  • ASA adenylosuccinate synthetase
  • Inhibitors for enzymes in purine biosynthesis are also known for their pharmacological activity in animals and microorganisms: Folate analogs inhibit, among other things, the enzyme GAR transformylase and have an antiproliferative, anti-inflammatory and immunosuppressive effect.
  • Mycophenolic acid (MPA) acts as an inhibitor of IMP dehydrogenase in the GMP synthesis pathway, antimicrobial, antivi- ral and immunosuppressive (Kitchin et al., Journal of the American Acade y of Dermatology 37 (1997), 445-449).
  • Bacterial PRPP amidotransferase can be inhibited, for example, by glutamine antagonists such as azaserine, 6-diazo-5-oxo-L-norleucine (DON) or L-2-amino-4-oxo-5-chloropentanoic acid as well as by mercaptopurine and thioguanosine.
  • glutamine antagonists such as azaserine, 6-diazo-5-oxo-L-norleucine (DON) or L-2-amino-4-oxo-5-chloropentanoic acid as well as by mercaptopurine and thioguanosine.
  • Glutamine antagonists are not specific for PRPP amidotransferase and also act on other enzymes of purine biosynthesis, e.g. the formylglycine amide ribotide synthase. A proof of the effectiveness of glutamine antagonists on plant PRPP amidotransferase is still
  • the object of the present invention was to demonstrate that PRPP amidotransferase is a suitable herbicidal target in plants, the isolation of a complete plant cDNA coding for the enzyme PRPP amidotransferase and its functional expression in bacterial or eukaryotic cells, and the production of an efficient and simple PRPP amidotransferase test system for performing inhibitor-enzyme binding studies.
  • the object was achieved by isolating genes which code for the plant enzyme PRPP amidotransferase, the production of antisense constructs of PRPP amidotransferase, and the functional expression of PRPP amidotransferase in bacterial or eukaryotic cells.
  • One object of the present invention relates to the isolation of full-length cDNAs coding for functional PRPP amidotransferase (E.C.2.4.2.14) from tobacco (Nicotiana tabacum).
  • a first object of the present invention is a DNA sequence SEQ-ID NO. 1 or SEQ ID NO. 3 containing the coding region of a plant PRPP amidotransferase from tobacco, see Example 1.
  • the invention further relates to DNA sequences which are derived from SEQ-ID NO. 1 or SEQ ID NO. 3 are derived or hybridize with one of these sequences and which code for a protein which has the biological activity of a PRPP amidotransferase.
  • Nicotiana tabacum cv. Samsun NN which carry an antisense construct of PRPP amidotransferase, were characterized in more detail.
  • the plants show in different ways Measurements of growth retardation and fading of the leaves.
  • the transgenic lines as well as the descendants of the 1st and 2nd generation showed a reduced growth in soil.
  • a reduced amount of PRPP amidotransferase RNA compared to the wild type could be detected in the Northern hybridization.
  • a reduced amount of PRPP amidotransferase activity in the transgenic lines could be detected in comparison with wild type plants, see Example 7.
  • PRPP amidotransferase for the first time as a suitable target protein for herbicidal active ingredients.
  • the expression cassette containing a DNA sequence SEQ-ID No. 1 or SEQ ID NO. 3 are expressed, for example, in other bacteria, in yeasts, fungi, algae, plant cells, insect cells or mammalian cells, see Example 4.
  • the PRPP amidotransferase protein expressed with the aid of the expression cassette according to the invention is particularly suitable for the detection of inhibitors specific for PRPP amidotransferase.
  • the plant PRPP amidotransferase can be used, for example, in an enzyme test in which the activity of the PRPP amidotransferase is determined in the presence and absence of the active substance to be tested. A comparison of the two activity determinations can be used to make a qualitative and quantitative statement about the inhibitory behavior of the active substance to be tested, see Example 3.
  • the invention further relates to a method for identifying substances having a herbicidal action which inhibit PRPP amidotransferase activity in plants, consisting of
  • transgenic plants, plant tissues or plant cells which contain an additional DNA sequence coding for an enzyme with PRPP amidotransferase activity and are able to overexpress an enzymatically active PRPP amidotransferase;
  • the suppression of the growth or survivability of the non-transformed plants, plant cells, plant tissues or plant parts without, however, strongly suppressing the growth or survivability of the transgenic plants, plant cells, plant tissues or plant parts shows that the substance from b) shows herbicidal activity and inhibits PRPP amidotransferase enzyme activity in plants.
  • Another object of the invention is a method for the identification of inhibitors of plant PRPP amidotransferases, with potential herbicidal activity by cloning the gene of a plant PRPP amidotransferase, overexpression in a suitable expression cassette - for example in insect cells - which opens and opens the cells Cell extract is used directly or after enrichment or isolation of the enzyme PRPP amidotransferase in a test system for measuring the enzyme activity in the presence of low molecular weight chemical compounds.
  • the invention further relates to compounds with herbicidal activity which can be identified using the test system described above.
  • Another object of the invention is a method for eliminating undesirable plant growth, wherein the plants to be removed are treated with a compound which specifically binds to plant PRPP amidotransferase and inhibits their function.
  • PRPP amidotransferase inhibitors with herbicidal activity can be used as defoliants, desiccants, haulm killers and in particular as weed killers. Weeds in the broadest sense are understood to mean all plants that grow up in places where they are undesirable. Whether the active ingredients found with the aid of the test system according to the invention act as total or selective herbicides depends, inter alia, on the amount used.
  • PRPP amidotransferase inhibitors with herbicidal activity can be used, for example, against the following weeds:
  • Echinochloa Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleo-charis, Scirpus, Paspalum, Sphenumum, Ischaemum Dactyloctenium, Agrostis, Alopecurus, Apera.
  • the invention also relates to expression cassettes, the sequence of which codes for a PRPP amidotransferase from tobacco or its functional equivalent.
  • the nucleic acid sequence can e.g. be a DNA or a cDNA sequence.
  • an expression cassette according to the invention also contain regulatory nucleic acid sequences which control the expression of the coding sequence in the host cell.
  • an expression cassette according to the invention comprises upstream, ie at the 5 'end of the coding sequence, a promoter and downstream, ie at the 3 'end, a polyadenylation signal and, if appropriate, further regulatory elements which are operatively linked to the intermediate coding sequence for the PRPP amidotransferase gene.
  • An operational link is the sequential one
  • An expression cassette according to the invention is produced by fusing a suitable promoter with a suitable PRPP amidotransferase DNA sequence and a polyadenylation signal according to common recombination and cloning techniques, as described, for example, in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in T.J. Silhavy, M.L. Berman and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, F.M. et al. , Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Inter-science (1987).
  • the invention also relates to functionally equivalent DNA sequences which code for a PRPP amidotransferase gene and which, based on the total length of the DNA sequence, have sequence homology with the DNA sequence SEQ-ID NO. 1 or SEQ ID NO. 3 have from 40 to 100%.
  • Preferred objects of the invention are functionally equivalent DNA sequences which code for a PRPP amidotransferase gene and which, based on the total length of the DNA sequence, have sequence homology with the DNA sequence SEQ-ID NO. 1 or SEQ ID NO. 3 have from 60 to 100%.
  • a particularly preferred object of the invention are functionally equivalent DNA sequences which code for a PRPP amidotransferase gene and which, based on the total length of the DNA sequence, have sequence homology with the DNA sequence SEQ-ID NO. 1 or SEQ-ID No. 3 have from 80 to 100%.
  • Functionally equivalent sequences which code for a PRPP amidotransferase gene are, according to the invention, those sequences which, despite a different nucleotide sequence, still have the desired functions.
  • Functional equivalents thus include naturally occurring variants of the sequences described here as well as artificial ones, for example by chemical synthesis Nucleotide sequences obtained which are adapted to the codon use of a plant.
  • a functional equivalent is also understood to mean, in particular, natural or artificial mutations of an originally isolated sequence coding for a PRPP amidotransferase, which furthermore shows the desired function. Mutations include substitutions, additions, deletions, exchanges or insertions of one or more nucleotide residues.
  • the present invention also encompasses those nucleotide sequences which are obtained by modifying this nucleotide sequence. The aim of such a modification can e.g. further narrowing down the coding sequence contained therein or e.g. also the insertion of further restriction enzyme interfaces.
  • Functional equivalents are also those variants whose function is weakened or enhanced compared to the original gene or gene fragment.
  • the expression cassette according to the invention can also be used to transform bacteria, cyanobacteria, yeasts, filamentous fungi and algae with the aim of producing sufficient quantities of the enzyme PRPP amidotransferase.
  • Another object of the invention is a protein from tobacco characterized by the amino acid sequence SEQ-ID NO: 2 or SEQ-ID No. 4 or derivatives or parts of this protein with PRPP amidotransferase activity.
  • the invention also relates to plant proteins with PRPP amidotransferase activity with an amino acid sequence homology to the tobacco PRPP amidotransferase with SEQ-ID NO: 2 or SEQ-ID NO. 4 of 20 - 100% identity.
  • Vegetable proteins with PRPP amidotransferase activity with an amino acid sequence homology to the tobacco PRPP amidotransferases with the sequences SEQ-ID NO: 2 or SEQ-ID NO are preferred. 4 out of 50 - 100% identity.
  • Plant proteins with PRPP amidotransferase activity with an amino acid sequence homology to the tobacco PRPP amidotransferases with the sequences SEQ-ID NO: 2 or SEQ-ID NO are particularly preferred. 4 of 80 - 100% identity.
  • Another object of the invention was the overexpression of the PRPP amidotransferase gene in plants for the production of plants which are tolerant of inhibitors of PRPP amidotransferase.
  • the effectiveness of the expression of the transgenically expressed PRPP amidotransferase gene can be determined, for example, in vitro by proliferation or by a germination test.
  • a change in the type and level of expression of the PRPP amidotransferase gene and its effect on the resistance to inhibitors of PRPP amidotransferase on test plants can be tested in greenhouse experiments.
  • the invention also relates to transgenic plants, transformed with an expression cassette according to the invention, containing the DNA sequence SEQ-ID No. 1 or SEQ-ID No. 3, which by additional expression of the DNA sequence SEQ-ID No. 1 or SEQ-ID No. 3 have become tolerant of inhibitors of PRPP amidotransferase, as well as transgenic cells, tissues, parts and propagation material of such plants.
  • Transgenic crop plants such as e.g. Barley, wheat, rye, corn, soy, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa, lettuce and the various tree, nut and wine species, as well as legumes ,
  • a change in the nucleotide content in plants can be useful in various cases.
  • Plant-based baby food products are added with nucleotides, for example, in order to achieve a nutritional composition that corresponds to breast milk.
  • an optimized nucleotide content would be useful in the case of enteral feeding of patients.
  • a reduced purine nucleotide content in nutritionally relevant plants is relevant for the dietary nutrition of patients with gout.
  • Nucleotides also have a taste-forming and taste-enhancing effect, so that a changed nucleotide content affects the taste properties of plants.
  • the invention therefore furthermore relates to plants which, after expression of the DNA sequence SEQ-ID No. 1 or SEQ-ID No. 3 have a modified purine nucleotide content in the plant.
  • the content of the purine nucleotides IMP, AMP is preferred and / or GMP or their di- or trinucleotides ADP, ATP or GDP, GTP increased.
  • a plant with a modified purine nucleotide content is, for example, expressed by expressing an additional DNA sequence SEQ-ID No. 1 or SEQ-ID No. 3 produced in the plant in sense or antisense orientation.
  • Modified content of purine nucleotides means that both plants with an increased content of purine nucleotides in sense orientation and also plants with a reduced content in guanosine nucleotides with sense orientation (cosuppression) or antisense orientation can be produced.
  • increasing the purine nucleotide content means, for example, the artificially acquired one
  • Another object of the invention is the use of plant PRPP amidotransferase to change the concentrations of methylxanthines in plants.
  • Sequences are particularly preferred which ensure targeting in the apoplasts, in plastids, the vacuole, the mitochondrium, the endoplasmic reticulum (ER) or, due to the lack of corresponding operative sequences, ensuring that they remain in the compartment of formation, the cytosol (Kermode, Crit. Rev. Plant Sci. 15, 4 (1996), 285-423).
  • the plant expression cassette can be installed in the plant transformation vector pBinAR, see Example 5.
  • any promoter which can control the expression of foreign genes in plants is suitable as promoters of the expression cassette according to the invention.
  • a plant promoter or a plant virus-derived promoter is preferably used. The is particularly preferred
  • CaMV 35S promoter from the cauliflower mosaic virus (Franck et al., Cell 21 (1980), 285-294). This promoter contains different recognition sequences for transcriptional effectors, all of which lead to permanent and constitutive expression of the introduced gene (Benfey et al., EMBO J. 8 (1989), 2195-2202).
  • the expression cassette according to the invention can also contain a chemically inducible promoter, by means of which the expression of the exogenous PRPP amidotransferase gene in the plant can be controlled at a specific point in time.
  • Such promoters as for example the PRPl promoter (Ward et al., Plant Mol Biol.
  • promoters are particularly preferred which ensure expression in tissues or parts of plants in which the biosynthesis of purines or their precursors takes place. Promoters that ensure leaf-specific expression should be mentioned in particular.
  • the promoter of the cytosolic FBPase from potato or the ST-LSI promoter from potato (Stockhaus et al., EMBO J., (1989) 8, 2445-245) are to be mentioned.
  • the expression cassette according to the invention can therefore contain, for example, a seed-specific promoter (preferably the phaseolin promoter, the USP or LEB4 promoter), the LEB4 signal peptide, the gene to be expressed and an ER retention signal.
  • a seed-specific promoter preferably the phaseolin promoter, the USP or LEB4 promoter
  • the LEB4 signal peptide the gene to be expressed and an ER retention signal.
  • the inserted nucleotide sequence coding for a PRPP amidotransferase can be produced synthetically or obtained naturally or contain a mixture of synthetic and natural DNA components.
  • synthetic nucleotide sequences with codons are generated which are preferred by plants. These codons preferred by plants can be determined from codons with the highest protein frequency, which are expressed in most interesting plant species.
  • various DNA fragments can be manipulated in order to obtain a nucleotide sequence which expediently reads in the correct direction and which is equipped with a correct reading frame.
  • adapters or linkers can be attached to the fragments.
  • artificial DNA sequences are suitable as long as, as described above, for example, they impart the desired property of increasing the level of purine nucleotides in the plant by overexpressing the PRPP amidotransferase gene in crop plants.
  • Such artificial DNA sequences can be determined, for example, by back-translating proteins constructed using molecular modeling, which have PRPP amidotransferase activity, or by using viüro selection. Coding DNA sequences which are obtained by back-translating a polypeptide sequence according to the codon usage specific for the host plant are particularly suitable. The specific codon usage can easily be determined by a person skilled in plant genetic methods by computer evaluations of other known genes of the plant to be transformed.
  • Sequences which code for fusion proteins are to be mentioned as further suitable equivalent nucleic acid sequences according to the invention, part of the fusion protein being a plant PRPP amidotransferase polypeptide or a functionally equivalent part thereof.
  • the second part of the fusion protein can e.g. be another polypeptide with enzymatic activity or an antigenic polypeptide sequence that can be used to detect PRPP amidotransferase expression (e.g. myc-tag or his-tag).
  • this is preferably a regulatory protein sequence, such as e.g. a signal or transit peptide that directs the PRPP amidotransferase protein to the desired site of action.
  • the promoter and terminator regions according to the invention should expediently be provided in the transcription direction with a linker or polylinker which contains one or more restriction sites for the insertion of this sequence.
  • the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites.
  • the linker has a size of less than 100 bp, often less than 60 bp, but at least 5 bp within the regulatory ranges.
  • the promoter according to the invention can be both native or homologous and foreign or heterologous to the host plant.
  • the expression cassette according to the invention contains, in the 5 '-3' transcription direction, the promoter according to the invention, any sequence and a region for the transcriptional termination. Different termination areas are interchangeable.
  • Preferred polyadenylation signals are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the Ti plasmid pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835) or functional equivalents.
  • an expression cassette according to the invention is inserted as an insert into a recombinant vector whose vector DNA contains additional functional regulatory signals, for example sequences for replication or integration.
  • additional functional regulatory signals for example sequences for replication or integration.
  • Suitable vectors are described, inter alia, in "Methods in Plant Molecular Biology and Biotechnology” (CRC Press, Chapter 6/7, 71-119).
  • transformation The transfer of foreign genes into the genome of a plant is called transformation.
  • the methods described for the transformation and regeneration of plants from plant tissues or plant cells for transient or stable transformation are used. Suitable methods are the protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic approach with the gene cannon, the electroporation, the incubation of dry embryos in DNA-containing solution, the microinjection and the gene transfer mediated by Agrobacterium.
  • the methods mentioned are described, for example, in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by SD Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol.
  • the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711).
  • Agrobacteria transformed with an expression cassette according to the invention can also be used in a known manner to transform plants, in particular crop plants, such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa , Lettuce and the various tree, nut and wine species as well as legumes are used, for example by bathing wounded leaves or leaf pieces in an agrobacterial suspension and then cultivating them in suitable media.
  • crop plants such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa , Lettuce and the various tree, nut and wine species as well as legumes are used, for example by bathing wounded leaves or leaf pieces in an agrobacterial suspension and then cultivating them in suitable media.
  • the biosythesis site of purines is generally the leaf tissue, so that leaf-specific expression of the PRPP amidotransferase gene makes sense.
  • the purine biosynthesis need not be limited to the leaf tissue, but can also be tissue-specific in all other parts of the plant - for example in fatty seeds.
  • constitutive expression of the exogenous PRPP amidotransferase gene is advantageous.
  • inducible expression may also appear desirable.
  • the expression cassettes according to the invention can be cloned into suitable vectors which enable their multiplication, for example in E. coli.
  • suitable cloning vectors include pBR332, pUC series, M13mp series and pA-CYC184.
  • Binary vectors which can replicate both in E. coli and in agrobacteria are particularly suitable.
  • Another object of the invention relates to the use of an expression cassette according to the invention for the transformation of plants, plant cells, plant tissues or parts of plants.
  • the aim of the use is preferably to increase the PRPP amidotransferase content in the plant.
  • the expression can take place specifically in the leaves, in the seeds or in other parts of the plant.
  • Such transgenic plants, their reproductive material and their plant cells, tissue or parts are a further object of the present invention.
  • Cloning methods such as Restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of Escherichia coli cells, cultivation of bacteria and sequence analysis of recombinant DNA were carried out as in Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6).
  • the sequencing of recombinant DNA molecules was carried out with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467). Fragments resulting from a polymerase chain reaction were sequenced and checked to avoid polymerase errors in constructs to be expressed.
  • RNA from plant tissues was, as in Logemann et al. (Anal. Biochem. 163 (1987), 21). For the analysis, 20 ⁇ g RNA were separated in a 1.5% agarose gel containing formaldehyde and transferred to nylon membranes (Hybond, Amersham). The detection of specific transcripts was carried out as described for Amasino (Anal. Biochem. 152 (1986), 304). The DNA fragments used as a probe were radioactively marked with a Random Pri ed DNA Labeling Kit (Röche, Mannheim) and hybridized according to standard methods (see Hybond user instructions, Amersham). Hyridization signals were visualized by autoradiography using X-OMAT AR films from Kodak.
  • DNA-modifying enzymes and molecular biological kits were developed by the companies AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Röche (Mannheim), Genomed (Bad Oeynnhausen), New England Biolabs (Schwalbach / Taunus), Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg) Qiagen (Hilden) and Stratagene (Heidelberg). Unless otherwise stated, they were used according to the manufacturer's instructions.
  • E. coli, XL-1 Blue The bacterial strains used below (E. coli, XL-1 Blue) were obtained from Stratagene.
  • E. coli AT 2465 was obtained from the coli genetic stock center (Yale University, New Haven).
  • the Agrobacterium strain used for plant transformation (Agrobacterium tumefaciens, C58C1 with the plasmid pGV2260 or pGV3850kan) was developed by Deblaere et al. (Nucl. Acids Res. 13 (1985), 4777).
  • the agrobacterial strain LBA4404 (Clontech) or other suitable strains can be used.
  • the vectors pUC19 (anish-Perron, Gene 33 (1985), 103-119) pBluescript SK- (Stratagene), pGEM-T (Promega), pZerO (Invitrogen), pBinl9 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711-8720) and pBinAR (Höfgen and Willmitzer, Plant Science 66 (1990), 221-230).
  • the reaction mixtures contained approx. 1 ng / ⁇ l template DNA, 0.5 UM of oligonucleotides 5 ( -cgc tct aga act agt gga tc-3 'and 5 * -tcg agg tcg acg gta tc-3', 200 ⁇ M deoxy nucleotides (Pharmacia), 50 mM KC1, 10 mM Tris-HCl (pH 8.3 at 25 ° C, 1.5 mM MgCl 2 ) and 0.02 U / ul Taq polymerase (Perkin Elmer).
  • the amplification conditions were set as follows:
  • Annealing temperature 50 ° C, 1 min
  • the resulting fragment of 1.9 kb was used for a heterologous screening of a cDNA library from Nicotiana tabacum var. SR-1 (Stratagene). 3.0 x 10 5 lambda phages from the cDNA library were plated on agar plates with E. coli XLl-blue as a bacterial strain. The phage DNA was transferred to nitrocellulose filters (Gelman Sciences) using standard methods (Sambrook et al. (1989), Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) and fixed on the filters.
  • the PCR fragment described above was used as the hybridization probe and was radioactively labeled with the aid of the “Multiprime DNA labeling System” (Amersham Buchler) in the presence of ⁇ - 32 P-dCTP (specific activity 3000 Ci / mmol) according to the manufacturer's instructions.
  • the membranes were hybridized after prehybridization at 60 ° C. in 3 ⁇ SSPE, 0.1% sodium dodecyl sulfate (w / v), 0.02% polyvinylpyrrolidone (w / v), 0.02% Ficoll 400 (w / v) and 50 mg / ml calf thymus DNA for approx. 12 hours.
  • Ntpurl.l (clone 7.2) containing the DNA sequence SEQ-ID No. 1 and Ntpurl .2 (clone 9.2) containing the DNA sequence SEQ-ID No. 3 are identified which reading frames code with homology to AtATAsel from Arabidopsis thaliana.
  • the amino acid sequences of Ntpurl.l (SEQ-ID No. 2 - length: 573 amino acids) and Ntpurl.2 (SEQ-ID No. 4 - length: 573 amino acids) are 97% identical, see Table 1.
  • the homology at the amino acid level to AtATasel is 81% for Ntpurl.l and 85% for Ntpurl.2.
  • the continuous reading frames begin with nucleotide base 49 (Ntpurl.l) or 25 (Ntpurl.2) and are translated into polypeptides with a length of 573 amino acids.
  • Table 1 nucleotide base 49 (Ntpurl.l) or 25 (Ntpurl.2)
  • NGSIFNTSSDTEWLHLIAISKARPFLLRIVEACEKIEGAYSMVFVTEDK 250 251 LVAVRDPHGFRPLVMGRRSNGAWFASETCALDLIEATYEREVNPGE W 300
  • VDKDGVQSICLMPHPERKSCIFEHIYFALPNSWFGRSVYESRRAFGEIL 350 351 ATEAPVECDVGIAVPDSGIVAALGYAAKAGVPFQQGLIRSHYVGRTFIEP 400
  • the vegetable proteins (Ntpurl.l, Ntpurl.2, AtATasel) show sequences of bacteria and PRPP amidotransferase
  • Ntpurl-2 DV..LKSITG VGLVSDVFNE SKLDQL.
  • PGD MAIGHVRYST AGSSMLKNVQ purl_hum SVPTFKSHKG MGLVNHVFTE DNLKKLYVSN LGIGHTRYAT TGKCELENCQ
  • Ntpurl.2 was expressed in E. coli.
  • a fragment of 1523 bp was amplified in a PCR with Pfu polymerase using the oligonucleotides Jle336: 5 '-ttttgctagcgactcgtattttgacg-3' and Jle337: 5 '-aaaagatctcaggttctaacttcat -3 ⁇ and Ntpurl .2-DNA as template.
  • the generated DNA Fragment codes for an N-terminally shortened PRPP amidotransferase enzyme by 86 amino acids, which no longer contains the assumed transit peptide.
  • This shortened form of the PRPP amidotransferase enzyme begins N-terminally with the amino acids MDSYFDDDD.
  • An Nhel cleavage site and a BglII cut line were inserted by means of the oligonucleotides, via which the fragment generated was ligated into the expression vector pETlla (Novagen) cleaved with Nhel and BamHI.
  • Test system for measuring the activity of plant PRPP amidotransferase activity
  • PRPP phosphoribosyl pyrophosphate
  • PRA phosphoribosylamine
  • APAD 3-acetylpyridine adenine dinucleotide
  • PRAT PRPP amidotransferase
  • reaction mixture (see below) was incubated for up to 60 minutes at 37 ° C and the reaction was stopped by incubating at 95 ° C for 5 minutes.
  • the detection of the glutamate formed was carried out in detection batch 20 (see below) by photometric measurement of the APADH increase at 363 nm after the addition of the glutamate dehydrogenase.
  • test system is particularly suitable for measuring the PRPP amidotransferase activity from plant material and in expression extracts, for example from baculovirus-infected insect cells.
  • the amplification conditions were set as follows:
  • the PCR product was ligated into the Vector pFast-Bacl (GibcoBRL) cut with StuI. The correct orientation of the insert was ensured by control digestion with Kpnl.
  • the transfer vector pFastBacNtpurl.2 obtained was used according to the manufacturer's instructions to generate recombinant baculoviruses using Sf21 insect cells (Invitrogen). Sf21 insect cells were infected with the recombinant baculovirus (BvNtpurl.2). The cells were harvested by centrifugation after 2-4 days. A protein of approx.
  • a whole cell extract was produced by the pressure digestion method ("French Press") in extraction buffer (100 mM HEPES pH 8.0; 2.5 mM EDTA; 10% glycerol; 20 mM DTE; 0.2 mM PEFA block) and after desalting on a PDIO column (Pharmacia) for measuring the PRPP amidotransferase activity in the described assay (see example 3).
  • the clone Ntpurl.l was cleaved with Smal and EcoRV and a 1482 bp fragment was isolated, which was converted into the vector with Smal cleaved pBinAR (Höfgen and Willmitzer, Plant Science 66 (1990), 221-230).
  • the antisense or sense constructs obtained in this way were designated pBinAR-NtpurlA or pBinAR-Ntpurl, see Figure 1.
  • the plasmids pBinAR-NtpurlA and pBinAR-Ntpurl were transformed in Agrobacterium tumefaciens C58Cl: pGV2260 (Deblaere et al., Nucl. Acids. Res. 13 (1984), 4777-4788).
  • Agrobacterium tumefaciens C58Cl: pGV2260 To transform tobacco plants (Nicotiana tabacum cv. Samsun NN), a 1:50 dilution of an overnight culture of a positively transformed agrobacterial colony in Murashige-Skoog medium (Murashige and Skoog Physiol. Plant. 15 (1962), 473) with 2% sucrose (2MS -Medium) is used.
  • Leaf disks of sterile plants were incubated in a Petri dish with a 1:50 agrobacterial dilution for 5-10 minutes. This was followed by a 2-day incubation in the dark at 25 ° C. on 2MS medium with 0.8% Bacto agar. The cultivation was continued after 2 days with 16 hours of light / 8 hours of darkness and on a weekly basis on MS medium with 500 mg / 1 claforan (cefotaxime sodium), 50 mg / 1 kamanycin, 1 mg / 1 benzylaminopurine (BAP ), 0.2 mg / 1 naphthylacetic acid and 1.6 g / 1 glucose. Growing shoots were transferred to MS medium with 2% sucrose, 250 mg / 1 Claforan and 0.8% Bacto agar.
  • Regenerated shoots were obtained on 2MS medium with kanamycin and claforan, transferred to soil after rooting and after cultivation for two weeks in a climatic chamber in a 16 hour light / 8 hour dark rhythm at 60% humidity for PRPP amidotransferase expression and - Activity as well as changes in metabolite levels and phenotypic growth characteristics were examined.
  • Altered nucleotide contents can e.g. according to the method of Stitt et al., FEBS Letters 145 (1982), 217-222.
  • Transgenic plants that have been transformed with the construct with pBinAR-Ntpurl are characterized by different degrees of reduced growth and large-area bleaching of the leaves compared to untransformed control plants (Fig. 2).
  • the RNA analysis by the Northern blot technique showed a reduced amount of Ntpurl.1-RNA in transgenic lines with the described phenotype (Fig. 3). This Effects were also observed in subsequent generations of the transgenic lines.
  • the 5 PRPP amidotransferase activity in the transgenic lines was measured and compared with that in untransformed controls.
  • approx. 30 g leaves of approx. 20 cm high plants were homogenized with 50 ml extraction buffer at + 4 ° C.
  • the digestion extract was filtered through Miracloth (Calbiochem, Bad Soden) and centrifuged at 16000 rpm in the Sorval centrifuge.
  • Fig. 4A shows the PRPP amidotransferase activity based on the pro-
  • Fig. 4B shows the PRPP amidotransferase activity based on the fresh weight.
  • PRPP amidotransferase 5 activity can be prepared from plant tissues, see example 7.
  • a plant PRPP amidotransferase can be found in E. coli, insect cells or another suitable expression system can be expressed.
  • known PRPP amidotransferase inhibitors - such as glutamine antagonists - were identified.
  • Construct pBinAR-Ntpurl were transformed and their successor generation (lines 3.1, 3.2, 3.9., 25.1 and 38.8.), Leaf material (5 disks each with a diameter of 6 mm) were harvested and immediately frozen in liquid nitrogen. TCA extracts were then prepared using standard methods and used to determine the nucleotide contents.
  • AMP is strong in the transgenic lines with the exception of line 38.8 in the green leaf area and less in yellow leaf areas compared to the wild type (WT) (see Fig. 5).

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft DNA-Sequenzen codierend für ein Polypeptid mit PRPP-Amidotransferase (EC 2.4.2.14) Aktivität. Zudem betrifft die Erfindung die Verwendung dieser Nukleinsäuren zur Herstellung eines Testsystems.

Description

PRPP-Amidotranaferase aus Pflanzen
Beschreibung
Die vorliegende Erfindung betrifft die Identifizierung pflanzlicher PRPP-Amidotransferase (Phosphoribosyl-pyrophosphat- A idotransferase, E.C. 2.4.2.14) als neues Ziel für herbizide Wirkstoffe. Die vorliegende Erfindung betrifft weiterhin DNA- Sequenzen kodierend für ein Polypeptid mit PRPP-Amidotransferase Aktivität. Zudem betrifft die Erfindung die Verwendung einer Nukleinsäiire kodierend für ein Protein mit PRPP-Amidotransferase Aktivität pflanzlichen Ursprungs zur Herstellung eines Testsystems zur Identifizierung von Inhibitoren der PRPP-Amido- transferase mit herbizider Wirkung sowie Inhibitoren pflanzlicher PRPP-Amidotransferase identifiziert unter Verwendung dieses Testsystems. Weiterhin betrifft die Erfindung die Verwendung der Nukleinsäure SEQ-ID No. 1 oder SEQ-ID No . 3 kodierend für pflanzliche PRPP-Amidotransferase zur Herstellung von Pflanzen mit erhöhter Resistenz gegenüber Inhibitoren der PRPP-Amidotransferase, sowie zur Herstellung von Pflanzen mit modifiziertem Gehalt an Purinnukleotiden. Darüber hinaus betrifft die Erfindung ein Verfahren zur Beseitigung von unerwünschtem Pflanzenwuchs, wobei die zu beseitigenden Pflanzen mit einer Verbindung be- handelt werden, die spezifisch an PRPP-Amidotransferase, codiert durch eine DNA-Sequenz SEQ-ID No. 1 oder eine mit dieser DNA- Sequenz hybridisierenden DNA-Sequenz, bindet und deren Funktion inhibiert .
Pflanzen sind in der Lage, aus Kohlendioxid, Wasser und anorganischen Salzen ihre Zellkomponenten zu synthetisieren.
Dieser Prozeß ist nur möglich, indem biochemische Reaktionen zum Aufbau organischer Substanzen genutzt werden. Nukleotide werden in Pflanzen de novo synthetisiert. Als Bestandteil der Nukleinsäuren kommt ihnen besondere Bedeutung zu. In kovalenter Bindung aktivieren Nukleotide Kohlenhydrate für die Biosynthese von Poly- sacchariden. Ferner aktivieren sie Kopfgruppen für die Biosynthese von Lipiden. Nukleotide sind in nahezu alle Stoff- wechselwege eingebunden. Nucleosidtriphosphate, vor allem ATP, treiben die meisten energieaufwändigen Reaktionen der Zelle. Adeninnukleotide sind darüber hinaus auch als Komponente in essentiellen Faktoren wie Coenzym A, sowie Nicotinamid- und Flavin-Coenzymen zu finden, die an vielen zellulären Reaktionen beteiligt sind. Die gekoppelte Hydrolyse von Guanosin-5 x-tri- phosphat (GTP) definiert für diverse zelluläre Prozesse, wie Proteintranslation, Microtubuli-Assemblierung, vesikulären Transport, Signaltransduktion und Zellteilung eine Reaktionsrichtung. Ferner stellen Nukleotide die Ausgangsmetabolite zur Biosynthese von Methylxanthinen wie Coffein und Theobromin in Pflanzenfamilien der Rubiaceae und Theaceae dar.
Gene, die für PRPP-Amidotransferase kodieren, wurden aus verschiedenen Organismen isoliert.
CDNAs die für PRPP-Amidotransferase Enzyme codieren konnten aus diversen bakteriellen, tierischen und pflanzlichen Organismen isoliert und charakterisiert werden. Pflanzliche PRPP-Amidotransferase cDNAs wurden über Komplementation von E. coli purF- Mutanten sowie über DNA-Hybridisierungstechniken aus Glycine max, Vigna aconitifolia sowie aus Arabidσpsis thaliana isoliert (Ito et al., Plant Molecular Biology 26(1994), 529-533; Kim et al . , The Plant Journal 7(1995), 77-86). Sequenzhomologien deuten darauf hin, daß die codierten Enzyme, ebenso wie PRPP-Amidotransferase aus E. coli 4Fe-4S-Cluster enhalten. Die im Vergleich zu E. coli N-terminal verlängerten PRPP-Amidotransferase Amino- säuresequenzen aus Pflanzen ähneln plastidären Signalsequenzen.
In Pflanzen finden sich mehrere PRPP-Amidotransferase Isoenzyme, die differentiell exprimiert werden. Die RNA für AtATasel aus Arabidopsis thaliana akkumuliert beispielsweise präferentiell in den Wurzeln, während die AtATase2-Transkripte stärker in jungen Blättern und Blüten gefunden wird (Ito et al . , Plant Molecular Biology 26(1994), 529-533). In Vigna aconi tifolia accumuliert eine PRPP-Amidotransferase RNA hauptsächlich in Wurzelknöllchen und wird in Wurzelgeweben durch L-Glutamin induziert (Kim et al . , The Plant Journal 7(1995), 77-86).
Da Pflanzen auf einen effektiven Nukleotidstoffwechsel angewiesen sind, läßt sich annehmen, daß sich die beteiligten Enzyme als Ziel für Herbizide eignen. So wurden bereits Wirkstoffe beschrie- ben, welche die pflanzliche de novo Purinbiosynthese inhibieren. Beispielhaft ist der Naturstoff Hydanthocidin zu nennen, welcher nach Phosphorylierung in planta die Adenylosuccinat-Synthetase (ASS), inhibiert (Siehl et al . , Plant Physiol. 110(1996), 753-758) .
Inhibitoren für Enzyme der Purin-Biosynthese sind darüber hinaus für ihre pharmakologische Wirkung in Tieren und Mikroorganismen bekannt: Folat-Analoga inhibieren unter anderem das Enzym GAR- Transformylase und wirken antiproliferativ, antiinflammatorisch und immunosuppressiv. Mycophenolsäure (MPA) wirkt als Hemmstoff der IMP-Dehydrogenase im GMP-Syntheseweg antimikrobiell, antivi- ral und immunosuppressiv (Kitchin et al., Journal of the American Acade y of Dermatology 37(1997), 445-449).
Bakterielle PRPP-Amidotransferase kann beispielsweise durch Glutaminantagonisten, wie Azaserin, 6-Diazo-5-Oxo-L-Norleucin (DON) oder L-2-Amino-4-Oxo-5-Chlorpentansäure sowie durch Mercaptopurin und Thioguanosin gehemmt werden. Glutaminantagonisten sind nicht spezifisch für PRPP-Amidotransferase und wirken auch auf andere Enzyme der Purinbiosynthese, wie z.B. die Formylglycinamidinribotid-Synthase. Ein Nachweis der Wirksamkeit von Glutaminantagonisten auf pflanzliche PRPP-Amidotransferase steht noch aus.
Aufgabe der vorliegenden Erfindung war es zu belegen, daß PRPP- Amidotransferase in Pflanzen ein geeignetes herbizides Target ist, die Isolierung einer vollständigen pflanzlichen cDNA kodierend für das Enzym PRPP-Amidotransferase und deren funktioneile Expression in bakteriellen oder eukaryontisehen Zellen, sowie die Herstellung eines effizienten und einfachen PRPP-Amidotransferase Testsystems für die Durchführung von Inhibitor-Enzym-Bindungs- studien.
Die Aufgabe wurde gelöst durch Isolierung von Genen, die für das pflanzliche Enzym PRPP-Amidotransferase kodieren, der Her- Stellung von Antisensekonstrukten der PRPP-Amidotransferase, sowie der funktionellen Expression der PRPP-Amidotransferase in bakteriellen oder eukaryontisehen Zellen.
Ein Gegenstand der vorliegenden Erfindung betrifft die Isolierung von Vollängen-cDNAs codierend für funktioneile PRPP-Amidotransferase (E.C.2.4.2.14) aus Tabak (Nicotiana tabacυm) .
Ein erster Gegenstand der vorliegenden Erfindung ist eine DNA- Sequenz SEQ-ID NO. 1 oder SEQ-ID NO. 3 enthaltend die Kodierregion einer pflanzlichen PRPP-Amidotransferase aus Tabak, siehe Beispiel 1.
Weiterer Gegenstand der Erfindung sind DNA-Sequenzen, die von SEQ-ID NO. 1 oder SEQ-ID NO. 3 abgeleitet sind oder mit einer dieser Sequenzen hybridisieren und die für ein Protein kodieren, das die biologische Aktivität einer PRPP-Amidotransferase besitzt.
Tabakpflanzen der Linie Nicotiana tabacum cv. Samsun NN, die ein Antisensekonstrukt der PRPP-Amidotransferase tragen, wurden näher charakterisiert. Die Pflanzen zeigen in unterschiedlichem Maße eine Wachstumsretardierung, sowie ein Ausbleichen der Blätter. Die transgenen Linien sowie die Nachkommen der 1. und 2. Generation wiesen ein verringertes Wachstum in Erde auf. In Pflanzen mit verringertem Wachstum konnte eine im Vergleich zum Wildtyp reduzierte PRPP-Amidotransferase RNA-Menge in der Northern-Hybridisierung detektiert werden. Ferner konnte durch Messung der Enzymaktivität eine im Vergleich mit Wildtyppflanzen verringerte Menge der PRPP-Amidotransferase Aktivität in den transgenen Linien detektiert werden, siehe Beispiel 7. Es läßt sich eine Korellation zwischen Wachstumsretardierung und
Reduktion der PRPP-Amidotransferase Aktivität feststellen. Dieser klare Zusammenhang weist PRPP-Amidotransferase erstmals eindeutig als geeignetes Zielprotein für herbizide Wirkstoffe aus.
Um effiziente Hemmstoffe der pflanzlichen PRPP-Amidotransferase finden zu können, ist es notwendig, geeignete Testsysteme, mit denen Inhibitor-Enzym-Bindungsstudien durchgeführt werden können, zur Verfügung zu stellen. Hierzu wird beispielsweise die komplette cDNA-Sequenz der PRPP-Amidotransferase aus Tabak in einen Expressionsvektor (pQE, Qiagen) kloniert und in E. coli über- exprimiert, siehe Beispiel 2.
Alternativ kann jedoch die Expressionskassette enthaltend eine DNA-Sequenz SEQ-ID No . 1 oder SEQ-ID NO. 3 beispielsweise in anderen Bakterien, in Hefen, Pilzen, Algen, Pflanzenzellen, Insektenzellen oder Säugetierzellen exprimiert werden, siehe Beispiel 4.
Das mit Hilfe der erfindungsgemäßen Expressionskassette exprimierte PRPP-Amidotransferase Protein eignet sich besonders zur Auffindung von für die PRPP-Amidotransferase spezifischen Hemmstoffen.
Dazu kann die pflanzliche PRPP-Amidotransferase beispielsweise in einem Enzymtest eingesetzt werden, bei dem die Aktivität der PRPP-Amidotransferase in An- und Abwesenheit des zu testenden Wirkstoffs ermittelt wird. Aus dem Vergleich der beiden Aktivitätsbestimmungen läßt sich eine qualitative und quantitative Aussage über das Hemmverhalten des zu testenden Wirkstoffes machen, siehe Beispiel 3.
Mit Hilfe des erfindungsgemäßen Testsystems kann eine Vielzahl von chemischen Verbindungen schnell und einfach auf herbizide Eigenschaften überprüft werden. Das Verfahren gestattet es, reproduzierbar aus einer großen Anzahl von
Substanzen gezielt solche mit großer Wirkstärke auszuwählen, um mit diesen Substanzen anschließend weitere, dem Fachmann geläufige vertiefte Prüfungen durchzuführen.
Weiterer Gegenstand der Erfindung ist ein Verfahren zur Identifizierung von Substanzen mit herbizider Wirkung, die die PRPP-Amidotransferase Aktivität in Pflanzen hemmen, bestehend aus
a) der Herstellung von transgenen Pflanzen, Pflanzengeweben, oder Pflanzenzellen, die eine zusätzliche DNA-Sequenz codierend für ein Enzym mit PRPP-Amidotransferase Aktivität enthalten und in der Lage sind eine enzymatisch aktive PRPP-Amidotransferase überzuexprimieren;
b) das Aufbringen einer Substanz auf transgene Pflanzen,
Pflanzenzellen, Pflanzengewebe oder Pflanzenteile sowie auf nicht-transformierte Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile;
c) das Bestimmen des Wachstums oder der Überlebensfähigkeit der transgenen und der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile nach der Aufbringung der chemischen Substanz; und
d) dem Vergleich des Wachstums oder der Überlebensfähigkeit der transgenen und der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile nach der Aufbringung der chemischen Substanz;
wobei die Unterdrückung des Wachstums oder der Überlebensfähigkeit der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile ohne jedoch das Wachstum oder die Überlebensfähigkeit der transgenen Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile stark zu unterdrücken, belegt, daß die Substanz aus b) herbizide Aktivität zeigt und die PRPP- Amidotransferase Enzymaktivität in Pflanzen inhibiert.
Weiterer Gegenstand der Erfindung ist ein Verfahren zur Identifizierung von Inhibitoren pflanzlicher PRPP-Amidotransferasen, mit potentiell, herbizider Wirkung indem man das Gen einer pflanzlichen PRPP-Amidotransferase kloniert, in einer geeigneten Expressionskassette - beispielsweise in Insektenzellen - zur Überexpression bringt, die Zellen öffnet und den Zellextrakt direkt bzw. nach Anreicherung oder Isolierung des Enzyms PRPP-Amido- transferase in einem Testsystem zur Messung der Enzymaktivität in Gegenwart von niedermolekularen chemischen Verbindungen einsetzt. Ein weiterer Gegenstand der Erfindung sind Verbindungen mit herbizider Wirkung, die mit dem oben beschriebenen Testsystem identifizierbar sind.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Beseitigung von unerwünschtem Pflanzenwuchs, wobei die zu beseitigenden Pflanzen mit einer Verbindung behandelt werden, die spezifisch an pflanzliche PRPP-Amidotransferase bindet und deren Funktion inhibiert .
Inhibitoren der PRPP-Amidotransferase mit herbizider Wirkung können als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, an denen sie unerwünscht sind. Ob die mit Hilfe des erfindungsgemäßen Testsystems gefundenen Wirkstoffe als totale oder selektive Herbizide wirken, hängt unter anderem von der angewandten Menge ab.
Inhibitoren der PRPP-Amidotransferase mit herbizider Wirkung können beispielsweise gegen folgende Unkräuter verwendet werden:
Dikotyle Unkräuter der Gattungen:
Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.
Monokotyle Unkräuter der Gattungen:
Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleo- charis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.
Gegenstand der Erfindung sind auch Expressionskassetten, deren Sequenz für eine PRPP-Amidotransferase aus Tabak oder deren funktionelles Äquivalent kodieren. Die Nukleinsäuresequenz kann dabei z.B. eine DNA- oder eine cDNA-Sequenz sein.
Die erfindungsgemäßen Expressionskassetten beinhalten außerdem regulative Nukleinsäuresequenzen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfaßt eine erfindungsgemäße Expressionskassette stromaufwärts, d.h. am 5 ' -Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3 '-Ende, ein Poly- adenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz für das PRPP-Amidotransferase-Gen operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle
Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, daß jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.
Die Herstellung einer erfindungsgemäßen Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten PRPP-Amidotransferase-DNA Sequenz und einem Polyadenylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al . , Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Inter- science (1987) beschrieben sind.
Gegenstand der Erfindung sind auch funktioneil äquivalente DNA- Sequenzen, die für ein PRPP-Amidotransferase Gen kodieren und die bezogen auf die Gesamtlänge der DNA-Sequenz eine Sequenzhomologie mit der DNA-Sequenz SEQ-ID NO. 1 oder SEQ-ID NO. 3 von 40 bis 100 % aufweisen.
Bevorzugter Gegenstand der Erfindung sind funktioneil äquivalente DNA-Sequenzen, die für ein PRPP-Amidotransferase Gen kodieren und die bezogen auf die Gesamtlänge der DNA-Sequenz eine Sequenzhomologie mit der DNA-Sequenz SEQ-ID NO. 1 oder SEQ-ID NO. 3 von 60 bis 100 % aufweisen.
Besonders bevorzugter Gegenstand der Erfindung sind funktioneil äquivalente DNA-Sequenzen, die für ein PRPP-Amidotransferase Gen kodieren und die bezogen auf die Gesamtlänge der DNA-Sequenz eine Sequenzhomologie mit der DNA-Sequenz SEQ-ID NO. 1 oder SEQ-ID No. 3 von 80 bis 100 % aufweisen.
Funktioneil äquivalente Sequenzen, die für ein PRPP-Amidotransferase Gen kodieren, sind erfindungsgemäß solche Sequenzen, welche trotz abweichender Nukleotidsequenz noch die gewünschten Funktionen besitzen. Funktionelle Äquivalente umfassen somit natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z.B. durch chemische Synthese erhaltene, an den Kodon-Gebrauch einer Pflanze angepaßte Nukleo- tid-Sequenzen.
Unter einem funktionellen Äquivalent versteht man insbesondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten für eine PRPP-Amidotransferase kodierende Sequenz, welche weiterhin die gewünschte Funktion zeigt. Mutationen umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder Insertionen eines oder mehrerer Nukleotidreste. Somit werden beispielsweise auch solche Nukleotidsequenzen durch die vorliegende Erfindung mit umfaßt, welche man durch Modifikation dieser Nukleotidsequenz erhält. Ziel einer solchen Modifikation kann z.B. die weitere Eingrenzung der darin enthaltenen kodierenden Sequenz oder z.B. auch die Einfügung weiterer Restriktions- enzym-Schnittstellen sein.
Funktionelle Äquivalente sind auch solche Varianten, deren Funktion, verglichen mit dem Ausgangsgen bzw. Genfragment, abgeschwächt oder verstärkt ist.
Die erfindungsgemäße Expressionskassette kann darüberhinaus auch zur Transformation von Bakterien, Cyanobakterien, Hefen, filamentösen Pilzen und Algen mit dem Ziel der Herstellung von ausreichenden Mengen des Enzyms PRPP-Amidotransferase eingesetzt werden.
Weiterer Gegenstand der Erfindung ist ein Protein aus Tabak gekennzeichnet durch die Aminosäuresequenz SEQ-ID NO: 2 oder SEQ-ID No. 4 bzw. Derivate oder Teile dieses Proteins mit PRPP- Amidotransferase Aktivität.
Gegenstand der Erfindung sind auch pflanzliche Proteine mit PRPP- Amidotransferase Aktivität mit einer Aminosäuresequenzhomologie zu der Tabak PRPP-Amidotransferase mit den SEQ-ID NO: 2 oder SEQ-ID NO. 4 von 20 - 100 % Identität.
Bevorzugt sind pflanzliche Proteine mit PRPP-Amidotransferase Aktivität mit einer Aminosäuresequenzhomologie zu den Tabak PRPP-Amidotransferasen mit den Sequenzen SEQ-ID NO: 2 oder SEQ-ID NO. 4 von 50 - 100 % Identität.
Besonders bevorzugt sind pflanzliche Proteine mit PRPP-Amidotransferase Aktivität mit einer Aminosäuresequenzhomologie zu den Tabak PRPP-Amidotransferasen mit den Sequenzen SEQ-ID NO: 2 oder SEQ-ID NO. 4 von 80 - 100 % Identität. Weitere Aufgabe der Erfindung war die Überexpression des PRPP- Amidotransferase Gens in Pflanzen zur Herstellung von Pflanzen, die tolerant gegenüber Inhibitoren der PRPP-Amidotransferase sind.
Durch Überexpression der für eine PRPP-Amidotransferase kodierenden Gensequenz SEQ-ID NO. 1 oder SEQ-ID NO. 3 in einer Pflanze wird eine erhöhte Resistenz gegenüber Inhibitoren der PRPP-Amidotransferase erreicht. Die derart hergestellten transgenen Pflan- zen sind ebenfalls Gegenstand der Erfindung.
Die Wirksamkeit der Expression des transgen exprimierten PRPP- Amidotransferase Gens kann beispielsweise in vitro durch Sproßmeristemvermehrung oder durch einen Keimungstest ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression des PRPP- Amidotransferase Gens und deren Auswirkung auf die Resistenz gegenüber Hemmstoffen der PRPP-Amidotransferase an Testpflanzen in Gewächshausversuchen getestet werden.
Gegenstand der Erfindung sind außerdem transgene Pflanzen, transformiert mit einer erfindungsgemäßen Expressionskassette, enthaltend die DNA-Sequenz SEQ-ID No . 1 oder SEQ-ID No . 3 , die durch zusätzliche Expression der DNA-Sequenz SEQ-ID No . 1 oder SEQ-ID No . 3 tolerant gegenüber Inhibitoren der PRPP-Amidotransferase geworden sind, sowie transgene Zellen, Gewebe, Teile und Vermehrungsgut solcher Pflanzen. Besonders bevorzugt sind dabei transgene Kulturpflanzen, wie z.B. Gerste, Weizen, Roggen, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und die ver- schiedenen Baum-, Nuß- und Weinspezies, sowie Leguminosen.
Eine Veränderung des Nukleotidgehaltes in Pflanzen kann in verschiedenen Fällen von Nutzen sein. Säuglingsnahrungsprodukten auf pflanzlicher Basis werden beispielsweise Nukleotide zugesetzt, um eine der Muttermilch entsprechende NährstoffZusammensetzung zu erreichen. Weiterhin wäre ein optimierter Nukleotidgehalt im Falle der enteralen Ernährung von Patienten sinnvoll . Ein reduzierter Purin-Nukleotidgehalt in ernährungsrelevanten Pflanzen ist für die diätetische Ernährung Gicht-kranker Patienten rele- vant. Nukleotide wirken ferner geschmacksbildend und geschmacksverstärkend, so daß sich ein veränderter Nukleotidgehalt auf geschmackliche Eigenschaf en von Pflanzen auswirkt .
Weiterer Gegenstand der Erfindung sind daher Pflanzen, die nach Expression der DNA-Sequenz SEQ-ID No. 1 oder SEQ-ID No . 3 in der Pflanze einen modifizierten Gehalt an Purinnukleotiden aufweisen. Dabei wird vorzugsweise der Gehalt der Purinnukleotide IMP, AMP und/oder GMP bzw. deren Di- bzw. Trinukleotide ADP, ATP oder GDP, GTP erhöht.
Eine Pflanze mit modifiziertem Gehalt an Purinnukleotiden wird beispielsweise durch Expression einer zusätzlichen DNA-Sequenz SEQ-ID No. 1 oder SEQ-ID No. 3 in sense- oder antisense-Orientie- rung in der Pflanze hergestellt. Modifizierter Gehalt an Purinnukleotiden bedeutet, daß sowohl Pflanzen mit erhöhtem Gehalt an Purinnukleotiden bei sense-Orientierung als auch Pflanzen mit er- niedrigtem Gehalt an Guanosinnukleotiden bei sense-Orientierung (Cosuppression) oder antisense-Orientierung hergestellt werden können .
Erhöhung des Gehaltes an Purinnukleotiden bedeutet beispielsweise im Rahmen der vorliegenden Erfindung die künstlich erworbene
Fähigkeit einer erhöhten Biosyntheseleistung für Purinnukleotide durch funktioneile Überexpression des PRPP-Amidotransferase Gens in der Pflanze gegenüber der nicht gentechnisch modifizierten Pflanze für die Dauer mindestens einer Pflanzengeneration.
Ein weiterer Gegenstand der Erfindung ist die Verwendung pflanzlicher PRPP-Amidotransferase zur Veränderung der Konzentrationen von Methylxanthinen in Pflanzen.
Insbesondere bevorzugt sind Sequenzen, die ein Targeting in den Apoplasten, in Piastiden, die Vakuole, das Mitochondrium, das En- doplasmatische Retikulum (ER) oder durch ein Fehlen entsprechender operativer Sequenzen einen Verbleib im Kompartiment des Entstehens, dem Zytosol, gewährleisten (Kermode, Crit. Rev. Plant Sei. 15, 4 (1996), 285-423).
Beispielhaft kann die pflanzliche Expressionskassette in den Pflanzen-Transformationsvektor pBinAR eingebaut werden, siehe Beispiel 5.
Als Promotoren der erfindungsgemäßen Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann. Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der
CaMV 35S-Promotor aus dem Blumenkohl-Mosaik-Virus (Franck et al . , Cell 21(1980), 285-294). Dieser Promotor enthält unterschiedliche ErkennungsSequenzen für transkriptionale Effektoren, die in ihrer Gesamtheit zu einer permanenten und konstitutiven Expression des eingeführten Gens führen (Benfey et al., EMBO J. 8 (1989), 2195-2202) . Die erfindungsgemäße Expressionskassette kann auch einen chemisch induzierbaren Promotor enthalten, durch den die Expression des exogenen PRPP-Amidotransferase Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren wie z.B. der PRPl-Promotor (Ward et al . , Plant.Mol. Biol. (1993) 22, 361-366), ein durch Salizylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer (EP 388186), ein durch Tetrazyklin-induzierbarer (Gatz et al . , Plant J. (1992) 2, 397-404), ein durch Abscisinsäure-induzier- barer (EP0335528) bzw. ein durch Ethanol- oder Cyclohexanon- induzierbarer (WO 93/21334) Promotor sind in der Literatur beschrieben und können u.a. verwendet werden.
Weiterhin sind insbesonders solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen die Biosynthese von Purinen bzw. dessen Vorstufen stattfindet. Insbesondere zu nennen sind Promotoren, die eine blattspezifische Expression gewährleisten. Zu nennen sind der Promotor der cyto- solischen FBPase aus Kartoffel oder der ST-LSI Promotor aus Kar- toffel (Stockhaus et al . , EMBO J., (1989) 8, 2445-245).
Mit Hilfe eines samenspezifischen Promotors kann ein Fremdprotein stabil bis zu einem Anteil von 0,67 % des gesamten löslichen Samenproteins in den Samen transgener Tabakpflanzen exprimiert werden (Fiedler und Conrad, Bio/Technology (1995) 10, 1090-1094). Die erfindungsgemäße Expressionskassette kann daher beispielsweise einen samenspezifischen Promotor (bevorzugt den Phaseolin- Promotor, den USP- oder LEB4-Promotor) , das LEB4-Signalpeptid, das zu exprimierende Gen und ein ER-Retentionssignal enthalten.
Die inserierte Nukleotid-Sequenz kodierend für eine PRPP-Amidotransferase kann synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen DNA-Bestandteilen enthalten. Im allgemeinen werden synthetische Nukleo- tid-Sequenzen mit Kodons erzeugt, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden. Bei der Präparation einer Expressionskassette können verschiedene DNA- Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden. Außerdem sind artifizielle DNA-Sequenzen geeignet, solange sie, wie oben beispielsweise beschrieben, die gewünschte Eigenschaft der Erhöhung des Gehaltes an Purinnukleotiden in der Pflanze durch Überexpression des PRPP-Amidotransferase Gens in Kultur- pflanzen vermitteln. Solche artifiziellen DNA-Sequenzen können beispielsweise durch Rückübersetzung mittels Molecular Modelling konstruierter Proteine, die PRPP-Amidotransferase Aktivität aufweisen oder durch in viüro-Selektion ermittelt werden. Besonders geeignet sind kodierende DNA-Sequenzen, die durch Rückübersetzung einer Polypeptidsequenz gemäß der für die Wirtspflanze spezifischen Kodon-Nutzung erhalten wurden. Die spezifische Kodon-Nut- zung kann ein mit pflanzengenetischen Methoden vertrauter Fachmann durch Computerauswertungen anderer, bekannter Gene der zu transformierenden Pflanze leicht ermitteln.
Als weitere erfindungsgemäße geeignete äquivalente Nukleinsäure- Sequenzen sind zu nennen Sequenzen, welche für Fusionsproteine kodieren, wobei Bestandteil des Fusionsproteins ein pflanzliches PRPP-Amidotransferase Polypeptid oder ein funktioneil äquivalen- ter Teil davon ist. Der zweite Teil des Fusionsproteins kann z.B. ein weiteres Polypeptid mit enzymatischer Aktivität sein oder eine antigene Polypeptidsequenz mit deren Hilfe ein Nachweis auf PRPP-Amidotransferase Expression möglich ist (z.B. myc-tag oder his-tag) . Bevorzugt handelt es sich dabei jedoch um eine regula- tive Proteinsequenz, wie z.B. ein Signal- oder Transitpeptid, das das PRPP-Amidotransferase Protein an den gewünschten Wirkort leitet.
Zweckmäßigerweise sollten die erfindungsgemäßen Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der erfindungsgemäße Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die erfindungsgemäße Expressionskassette beinhaltet in der 5 ' -3 ' -Transkriptionsrich- tung den erfindungsgemäßen Promotor, eine beliebige Sequenz und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar. Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Trans- Versionen in Frage kommen, können in viüro-Mutagenese, "primerre- pair" , Restriktion oder Ligation verwendet werden. Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.
Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadeny- lierungssignale, vorzugsweise solche, die im wesentlichen T-DNA- Polyadenylierungssignale aus Agrobacterium tumefaciens , insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACH5 entsprechen (Gielen et al . , EMBO J. 3 (1984), 835) oder funktioneile Äquivalente.
Zur Transformation einer Wirtspflanze mit einer für eine PRPP- Amidotransferase kodierenden DNA wird eine erfindungsgemäße Ex- pressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktioneile Regulationssignale, beispielsweise Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press, Kapitel 6/7, 71-119) beschrieben.
Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet. Es werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind die Protoplasten- transformation durch Polyethylenglykol-induzierte DNA-Aufnähme , der biolistische Ansatz mit der Genkanone, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993) 128-143 sowie in Potrykus Annu. Rev. Plant Physiol .Plant Molec.Biol. 42 (1991), 205-225 beschrieben. Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBinl9 (Bevan et al . , Nucl. Acids Res . 12 (1984) , 8711) . Mit einer erfindungsgemäßen Expressionskassette transformierte Agrobakterien können ebenfalls in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie Getreide, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und den verschiedenen Baum-, Nuß- und Weinspezies sowie Leguminosen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakteriensuspension gebadet und anschließend in geeigneten Medien kultiviert werden.
Der Biosytheseort von Purinen ist im allgemeinen das Blattgewebe, so daß eine blattspezifische Expression des PRPP-Amidotransferase Gens sinnvoll ist. Es ist jedoch naheliegend, daß die Purin-Bio- synthese nicht auf das Blattgewebe beschränkt sein muß, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in fetthaltigen Samen - gewebespezifisch erfolgen kann.
Darüberhinaus ist eine konstitutive Expression des exogenen PRPP- Amidotransferase Gens von Vorteil. Andererseits kann aber auch eine induzierbare Expression wünschenswert erscheinen.
Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die erfindungsgemäßen Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermeh- rung, beispielsweise in E. coli, ermöglichen. Geeignete Klonie- rungsvektoren sind u.a. pBR332, pUC-Serien, M13mp-Serien und pA- CYC184. Besonders geeignet sind binäre Vektoren, die sowohl in E. coli als auch in Agrobakterien replizieren können.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung einer erfindungsgemäßen Expressionskassette zur Transformation von Pflanzen, Pflanzenzellen, -geweben oder Pflanzenteilen. Vorzugsweise ist Ziel der Verwendung die Erhöhung des PRPP-Amidotransferase Gehaltes in der Pflanze.
Dabei kann je nach Wahl des Promotors die Expression spezifisch in den Blättern, in den Samen oder anderen Teilen der Pflanze erfolgen. Solche transgenen Pflanzen, deren Vermehrungsgut sowie deren Pflanzenzellen, -gewebe oder -teile sind ein weiterer Ge- genstand der vorliegenden Erfindung.
Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt: Beispiele
Gentechnische Verfahren, die den Ausführungsbeispielen zugrunde liegen:
Allgemeine Klonierungsverfahren
Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose- Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von Escherichia coli Zellen, Anzucht von Bakterien und Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al . (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt.
Sequenzanalyse rekombinanter DNA
Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sei. USA 74(1977), 5463-5467). Fragmente resultierend aus einer Polymerase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimierenden Konstrukten sequenziert und überprüft .
Analyse von Gesamt-RNA aus pflanzlichen Geweben:
Gesamt-RNA aus pflanzlichen Geweben wurde wie bei Logemann et al . (Anal. Biochem. 163(1987), 21) isoliert. Für die Analyse wurden jeweils 20 μg RNA in einem Formaldehyd-haltigen l,5%igen Agarose- gel aufgetrennt und auf Nylon Membranen (Hybond, Amersham) überführt. Der Nachweis spezifischer Transkripte wurde wie bei Amasino beschrieben durchgeführt (Anal. Biochem. 152(1986), 304). Die als Sonde eingesetzten DNA-Fragmente wurden mit einem Random Pri ed DNA Labeling Kit (Röche, Mannheim) radioaktiv markiert und nach Standardmethoden hybridisiert (Siehe Hybond-Benutzer- hinweise, Amersham) . Hyridisierungssignale wurden durch Auto- radiographie mithilfe von X-OMAT AR Filmen der Fa. Kodak sichtbar gemacht .
Die verwendeten Chemikalien wurden, sofern nicht anders erwähnt, in p.a. Qualität von den Firmen Fluka (Neu-Ulm) , Merck (Darmstadt) , Roth (Karlsruhe) , Serva (Heidelberg) sowie Sig a (Deisen- hofen) bezogen. Lösungen wurden mit aufbereitetem, pyrogenfreiem Wasser, im weiteren Text als H0 bezeichnet, aus einer Milli-Q Water System Wasseraufbereitungsanlage (Millipore, Eschborn) angesetzt. Restriktionsendonucleasen, DNA-modifizierende Enzyme und molekularbiologische Kits wurden von den Firmen AGS (Heidelberg) , Amersham (Braunschweig) , Biometra (Göttingen) , Röche (Mannheim) , Genomed (Bad Oeynnhausen) , New England Biolabs (Schwalbach/Taunus) , Novagen (Madison, Wisconsin, USA) , Perkin-Elmer (Weiterstadt) , Pharmacia (Freiburg) Qiagen (Hilden) und Stratagene (Hei- delberg) bezogen. Sie wurden, soweit nicht anders erwähnt, nach Herstellerangaben verwendet.
Die im folgenden verwendeten Bakterienstämme (E. coli, XL-1 Blue) wurden von Stratagene bezogen. E. coli AT 2465 wurde bei dem coli genetic stock centre (Yale University, New Haven) bezogen. Der zur Pflanzentransformation verwendete Agrobakterienstamm (Agrobacterium tumefaciens, C58C1 mit dem Plasmid pGV2260 oder pGV3850kan) wurde von Deblaere et al . beschrieben (Nucl. Acids Res . 13 (1985), 4777). Alternativ können auch der Agrobakterien- stamm LBA4404 (Clontech) oder andere geeignete Stämme eingesetzt werden. Zur Klonierung können die Vektoren pUC19 ( anish-Perron, Gene 33(1985), 103-119) pBluescript SK- (Stratagene), pGEM-T (Promega) , pZerO (Invitrogen) , pBinl9 (Bevan et al . , Nucl. Acids Res. 12(1984), 8711-8720) und pBinAR (Höfgen und Willmitzer, Plant Science 66 (1990), 221-230) benutzt werden.
Beispiel 1
Isolierung von cDNAs codierend für eine funktioneile PRPP-Amido- transferase aus Tabak.
Zur Isolierung von für PRPP-Amidotransferase codierenden cDNAs aus Nicotiana tabacum wurde ein für PRPP-Amidotransferase codierender cDNA-Klon aus Arabidopsis (AtATasel; Ito et al . , Plant Molecular Biology 26(1994), 529-533; GenBank Accession nu ber D28868) als Matrize zur Erzeugung einer Hybridisierungssonde mittels PCR verwendet.
Die Reaktionsgemische enthielten ca. 1 ng/μl Matrizen DNA, 0,5 UM der Oligonukleotide 5(-cgc tct aga act agt gga tc-3 ' und 5*-tcg agg tcg acg gta tc-3', 200 μM Desoxy-Nukleotide (Pharmacia), 50 mM KC1, 10 mM Tris-HCl (pH 8,3 bei 25°C, 1,5 mM MgCl2) und 0,02 U/μl Taq Polymerase (Perkin Eimer). Die Amplifikationsbedingungen wurden wie folgt eingestellt:
Anlagerungstemperatur: 50°C, 1 min
Denaturierungstemperatur : 94°C, 1 min Elongationstemperatur : 72°C, 2 min
Anzahl der Zyklen: 30
Das resultierende Fragment von 1,9 kb wurde für ein heterologes Screening einer cDNA Bank von Nicotiana tabacum var. SR-1 (Stratagene) verwendet. Es wurden 3,0 x 105 Lambda Phagen der cDNA-Bibliothek auf Agarplatten mit E. coli XLl-blue als Bakterienstamm ausplattiert. Die Phagen-DNA wurde mittels Standardverfahren (Sambrook et al . (1989), Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) auf Nitrocellulosefilter (Gelman Sciences) überführt und auf den Filtern fixiert. Als Hybridisierungssonde diente das oben beschriebene PCR-Fragment , das mit Hilfe des "Multiprime DNA labelling Systems" (Amersham Buchler) in Anwesenheit von α-32P-dCTP (spezifische Aktivität 3000 Ci/mmol) nach Herstellerangaben radioaktiv markiert wurde. Die Hybridisierung der Membranen erfolgte nach Prähybridisierung bei 60°C in 3 x SSPE, 0,1 % Natriumdodecylsulfat (w/v) , 0,02 % Polyvinylpyrrolidon (w/v), 0,02 % Ficoll 400 (w/v) und 50 mg/ml Kalbsthymus DNA für ca. 12 Stunden. Anschließend wurden die Filter 60 Minuten in 2 x SSPE, 0,1 % Natriumdodecylsulfat (w/v) bei 60°C gewaschen. Positiv hybridisierende Phagen wurden durch Autoradiographie sichtbar gemacht und mittels Standardtechniken vereinzelt (Sambrook et al . (1989); Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) und in Plasmide überführt (Strate- gene) .
Nach Restriktions- und Sequenzanalyse konnten zwei unterscheidbare Klone Ntpurl.l (Klon 7.2) enthaltend die DNA- Sequenz SEQ-ID No. 1 und Ntpurl .2 (Klon 9.2) enthaltend die DNA-Sequenz SEQ-ID No. 3 identifiziert werden, welche Leseraster mit Homolo- gie zu AtATAsel aus Arabidopsis thaliana codieren. Die Aminosäuresequenzen von Ntpurl.l (SEQ-ID No. 2 - Länge: 573 Aminosäuren) und Ntpurl.2 (SEQ-ID No. 4 - Länge: 573 Aminosäuren) sind zu 97 % identisch, siehe Tabelle 1. Die Homologie auf Aminosäureebene zu AtATasel beträgt für Ntpurl.l 81 % und für Ntpurl.2 85 %. Die durchgehenden Leseraster beginnen mit Nukleotidbase 49 (Ntpurl.l) bzw. 25 (Ntpurl.2) und werden in Polypeptide von 573 Aminosäuren Länge übersetzt. Tabelle 1
Aminosäurevergleich Ntpurl .1 x Ntpurl .2 :
1 MAATVSTASAAATNKSPLSQPLDKPFCSPSQKLLSLSPKTLPKPYRTLVT 50 MIMIMMM IMIIMIMI
1 MAATVSTASAAATNKYPLSQPLDKPFCSLSQKLLSLSPKTHPKPYRTLIT 50 51 ASSKNPLNDWSFKKSADNTLDSYFDDEDKPREECGWGIYGDSEASRLC 100 51 ASSKNPLNDVISFKKSADNTLDSYFDDDDKPREECGWGIYGDSEASRLC 100 101 YLALHALLHRGQEGAGIVAVNDDVLKSITGVGLVSDVFNESKLDQLPGDM 150
MIM
101 YLALHALQHRGQEGAGIVAVNDDVLKSITGVGLVSDVFNESKLDQLPGDM 150 151 AIGHVYSTAGSSMLKNVQPFVANYKFGSVGVAHNGNLVNYKLLRGELEE 200
MIM MMMI MIMMMMMIMMMIMMMIMI MM 151 AIGHVRYSTAGSSMLKNVQPFVASYKFGSVGVAHNGNLVNYKLLRSELEE 200
201 NGSIFNTSSDTΞWLHLIAISKARPFLLRIVEACEKIEGAYSMVFVTEDK 250
MMMMMMMMMMMMMMMMMMMMMMMIMI
201 NGSIFNTSSDTEWLHLIAISKARPFLLRIVEACEKIEGAYSMVFVTEDK 250 251 LVAVRDPHGFRPLVMGRRSNGAWFASETCALDLIEATYEREVNPGE W 300
MMMMMMMMMMMMMMMMMMMMMMMMM
251 LVAVRDPHGFRPLVMGRRSNGAWFASETCALDLIEATYEREVNPGEVW 300 301 VDKDGVHSIYLMPHPEHKSCIFEHIYFALPNSWFGRSVYESRRAFGEIL 350
MMM I! MMM II M I M M M I M M M M M M M M M M I
301 VDKDGVQSICLMPHPERKSCIFEHIYFALPNSWFGRSVYESRRAFGEIL 350 351 ATEAPVECDVGIAVPDSGIVAALGYAAKAGVPFQQGLIRSHYVGRTFIEP 400
IMMIIMI MMIMMMMMMMMMMMIMMMIMM
351 ATEAPVECDWIAVPDSGWAALGYAAKAGVPFQQGLIRSHYVGRTFIEP 400 401 SQKIRDFGVKLKLSPVRALLEGKRVVVVDDSIVRGTTSSKIVRLLKEAGA 450
MMMMMMMMM-MMMMMMMMMMMMMIMM
401 SQKIRDFGVKLKLSPVRAVLEGKRVWVDDSIVRGTTSSKIVRLLKEAGA 450 451 KEVHMRIASPPIIASCYYGVDTPSSDELIS RMSVEEIKEFIGSDSLAFL 500
MMMMMMMMMMMMMMMMMMMMMMMIMI
451 KEVHMRIASPPIIASCYYGVDTPSSDELIS RMSVEEIKEFIGSDSLAFL 500 501 PMDSLNKLLGNDSKSFCYACFSGYPVEPTGKVKRIGDFMDDGLSGDMDS 550
1111111111 i 1111111 II 1111111 ! 111111111111111 M 11111
501 PMDSLNKLLGNDSKSFCYACFSGNYPVEPTGKVKRIGDFMDDGLSGDMDS 550 551 IDGGLPGSSRVQKTILNEVRTG 573
11111111 ! 1111111111111 551 IDGGWLPGSSRVQKTILNEVRTS 573
Die pflanzlichen Proteine (Ntpurl.l, Ntpurl.2, AtATasel) weisen gegenüber PRPP-Amidotransferase Sequenzen von Bakterien und
Mensch einen verlängerten N-Terminus mit einem großen Anteil basischer Aminosäuren auf (Tabelle 2), was auf die Funktion eines
Transitpeptides für den plastidären Import hinweist (von Heijne et al., Eur. J. Biochem. 180(1989), 535-545). Tabelle 2
Sequenzgegenüberstellung PRPP-Amidotransferase Proteine aus Arabidopsis thaliana (AtATasel) , Bacillus subtilis (BacSu__purF) Mensch (purl_hum) und Nicotiana tabaccum (Ntpurl.l, Ntpurl.2)
1 50
AtATasel SLN QTILLTPINL SLSSPNPSLN
BacSu_purF
Ntpurl LAPHLLFLLS SFFPPPMAAT VSTASAAATN KSPLSQPLDK PFCSPSQKL.
Ntpurl-2 LS SFFPPP AAT VSTASAAATN KYPLSQPLDK PFCSLSQKL . purl_hum
51 100
AtATasel LHISLS.FLL PSPLLLLHSS MESPPTSPLL HHPKNNSHAP FDYHNDEDDE
BacSu_purF MLAEIK
Ntpurl ..LSLSP TL PKPYRTLVTA SSKPLNDW SFKKSADNTL DSYFDDED.. Ntpurl-2 ..LSLSPKTH PKPYRTLITA SSKNPL DVI SFKKSADNTL DSYFDDDD.. purl_hum MELEEL
101 150
AtATasel KPREECGWG IYGDPE. .ASRLFYLA LHALQHRGQE GAGIVTVSPE
BacSu_purF GLNEECGVFG I GHEE. .APQITYYG LHSLQHRGQE GAGIVATDGE
Ntpurl KPREECGWG IYGDSE. .ASRLCYLA LHALLHRGQE GAGIVAVN.D
Ntpurl-2 KPREECGWG IYGDSE. .ASRLCYLA LHALQHRGQE GAGIVAVN.D purl_hum GIREECGVFG CIASGEWPTQ LDVPHVITLG LVGLQHRGQE SAGIVTSDGS 151 200
AtATasel KV..LQTITG VGLVSEVFNE SKLDQL . PGE FAIAHVRYST AGASMLKNVQ
BacSu_purF K...LTAHKG QGLITEVFQN GELSKV.KGK GAIGHVRYAT AGGGGYENVQ
Ntpurl DV..LKSITG VGLVSDVFNE SKLDQL. PGD MAIGHV YST AGSSMLKNVQ
Ntpurl-2 DV..LKSITG VGLVSDVFNE SKLDQL. PGD MAIGHVRYST AGSSMLKNVQ purl_hum SVPTFKSHKG MGLVNHVFTE DNLKKLYVSN LGIGHTRYAT TGKCELENCQ
201 250
AtATasel PFV.AGYRFG SIGVAHNGNL VNYKTLRAML EENGSIFNTS SDTEWLHLI
BacSu_purF PLLFRSQNNG SLALAHNGNL VNATQLKQQL ENQGSIFQTS SDTEVLAHLI
Ntpurl PFV.ANYKFG SVGVAHNGNL VNYKLLRGEL EENGSIFNTS SDTEWLHLI
Ntpurl-2 PFV.ASYKFG SVGVAHNGNL VNYKLLRSEL EENGSIFNTS SDTEWLHLI purl_hum PFWETLH.G KIAVAHNGEL VNAARLRKKL LRHGIGLSTS SDSEMITQLL
251 300
AtATasel AISKAR. .PFFMRIID ACEKLQGAYS MVFVTEDKLV AVRDPYGFRP BacSu_purF KRSGHF. .TLKDQIKN SLSMLKGAYA FLIMTETEMI VALDPNGLRP
Ntpurl AISKAR. .PFLLRIVE ACEKIEGAYS MVFVTEDKLV AVRDPHGFRP
Ntpurl-2 AISKAR. .PFLLRIVΞ ACEKIEGAYS MVFVTEDKLV AVRDPHGFRP purl_hum AYTPPQEQDD TPDWVARIKN LMKEAPTAYS LLIMHRDVIY AVRDPYGNRP 301 350
AtATasel LVMGR R SNGAWFASE TCALDLIEAT YEREVYPGEV
BacSu_purF LSIGM M GD.AYWASE TCAFDWGAT YLREVEPGEM
Ntpurl LVMGR R SNGAWFASE TCALDLIEAT YEREVNPGEV
Ntpurl-2 LVMGR R SNGAWFASE TCALDLIEAT YEREVNPGEV purl_hum LCIGRLIPVS DINDKEKKTS ETEGWWSSE SCSFLSIGAR YYREVLPGEI 351 400 AtATasel LWDKDGVKS QCLMPKFEPK Q. .CIFEHI YFSLPNSIVF GRSVYESRHV
BacSu_purF LIINDEGMKS ERFSMNINRS I. .CSMEYI YFSRPDSNID GINVHSARKN
Ntpurl VWDKDGVHS IYLMPHPEHK S. .CIFEHI YFALPNSWF GRSVYESRRA
Ntpurl-2 WVDKDGVQS ICLMPHPERK S. .CIFEHI YFALPNSWF GRSVYESRRA purl_hum VEISRHNVQT LDIISRSEGN PVAFCIFEYV YFARPDSMFE DQMVYTVRYR 401 450
AtATasel FGEILATESP VECDWIAVP DSGWAALGY AAKSGVPFQQ GLIRSHYVGR
BacSu_purF LGKMLAQESA VEADWTGVP DSSISAAIGY AEATGIPYEL GLIKNRYVGR
Ntpurl FGEILATEAP VECDVGIAVP DSGIVAALGY AAKAGVPFQQ GLIRSHYVGR
Ntpurl-2 FGEILATEAP VECDWIAVP DSGWAALGY AAKAGVPFQQ GLIRSHYVGR purl_hum CGQQLAIEAP VDADLVSTVP ESATPAALAY AGKCGLPYVE VLCKNRYVGR
451 500
AtATasel TFIEPSQKIR DFGVKLKLSP VRGVLEGKRV VWDDSIVRG TTSSKIVRLL
BacSu_purF TFIQPSQALR EQGVRMKLSA VRGWEGKRV VMVDDSIVRG TTSRRIVTML
Ntpurl TFIEPSQKIR DFGVKLKLSP VRALLEGKRV VWDDSIVRG TTSSKIVRLL
Ntpurl-2 TFIEPSQKIR DFGVKLKLSP VRAVLEGKRV VWDDSIVRG TTSSKIVRLL purl_hum TFIQPNMRLR QLGVAKKFGV LSDNFKGKRI VLVDDSIVRG NTISPIIKLL
501 550
AtATasel REAGAKEVHM RIASPPIVAS CYYGVDTPSS EELISNRLSV EEINEFIGSD
BacSu_purF REAGATEVHV KISSPPIAHP CFYGIDTSTH EELIASSHSV GEIRQEIGAD
Ntpurl KEAGAKEVHM RIASPPIIAS CYYGVDTPSS DELISNRMSV EEIKEFIGSD Ntpurl-2 KEAGAKEVHM RIASPPIIAS CYYGVDTPSS DELISNRMSV EEIKEFIGSD purl_hum KESGAKEVHI RVASPPIKYP CFMGINIPTK EELIANKPEF DHLAEYLGAN
551 600
AtATasel SLAFLSFDTL KKHL GK... .DSK. SFCYA
BacSu_purF TLSFLSVEGL LKGI GRKYD . DSNCGQCLA
Ntpurl SLAFLPMDSL NKLL GN... .DSK. SFCYA
Ntpurl-2 SLAFLPMDSL NKLL GN... .DSK. SFCYA purl_hum SWYLSVEGL VSSVQEGIKF KKQKEKKHDI MIQENGNGLE CFEKSGHCTA
601 650
AtATasel CFTGDYPVKP TEVKVKRGGG DFIDDGLVGS FENIEAGVR
BacSu_purF CFTGKYPTEI YQDTVLPHVK EAVLTK Ntpurl CFSGNYPVEP TG.KVKR.IG DFMDDGLSGD MDSIDGGLP GSSRVQKTIL Ntpurl-2 CFSGNYPVEP TG.KVKR.IG DFMDDGLSGD MDSIDGGWLP GSSRVQKTIL purl_hum CLTGKYPVEL EW
651
AtATasel
BacSu_purF
Ntpurl NEVRTG Ntpurl-2 NEVRTS purl_hum
Beispiel 2
Expression von PRPP-Amidotransferase aus Tabak in E.coli
Mit dem Ziel, die Aktivität des durch Ntpurl.2 codierten PRPP- Amidotransferase Enzyms nachzuweisen, wurde Ntpurl.2 in E.coli exprimiert. Dazu wurde in einer PCR mit Pfu-Polymerase mit den Oligonucleotiden Jle336 : 5 '-ttttgctagcgactcgtattttgacg-3 ' und Jle337: 5 '-aaaaagatctcaggttctaacttcat -3 λ und Ntpurl .2-DNA als Matrize ein Fragment von 1523 bp amplifizier . Das erzeugte DNA- Fragment codiert für ein N-terminal um 86 Aminosäuren verkürztes PRPP-Amidotransferase Enzym, welches das anzunehmende Transitpeptid nicht mehr enthält. Diese verkürzte Form des PRPP-Amidotransferase Enzyms beginnt N-terminal mit den Aminosäuren MDSYFDDDD. Mittels der Oligonucleotide wurden eine Nhel-Schnittstelle sowie eine Bglll-Schnitts eile eingefügt, über die das erzeugte Fragment in den mit Nhel und BamHI gespaltenen Expressionsvektor pETlla (Novagen) ligiert wurde.
Zur Expression wurde der E.coli Stamm BL21 (DE3 )LysS (Novagen) mit dem auf diese Weise erzeugten Konstrukt pETNtpurl.2 transformiert. Nach Übernachtkultur wurde eine Tageskultur auf ODÖOO = 0,1 angeimpft und nach Erreichen einer OD6oo = 0,7 mit ImM IPTG induziert . Ein Gesamtzellextrakt wurde nach der Druckaufschlußmethode ("French-Press") in 50mM Tris-HCl, pH 7,4; 150mM NaCl erzeugt. Ein überexprimiertes Protein von ca. 65 kDa wurde nach SDS-Poly- acrylamid-Gelelektrophorese aus dem Gel ausgeschnitten. Das Protein wurde zur Erzeugung von Antiseren in Kaninchen injiziert (im Auftrag durchgeführt durch die Firma Eurogentec, Herstal, Belgien) .
Beispiel 3
Testsystem zur Messung der Aktivität pflanzlicher PRPP-Amido- transferase Aktivität
Die vorbeschriebene Methode zur Messung pflanzlicher PRPP-Amidotransferase Aktivität nach Reynolds et al . (Archieves of Bio- chemistry and Biophysics 229 (1984) , 623-631) ist aufgrund der Verwendung radioaktiver Substrate nicht für eine Testung im Hochdurchsatz geeignet. Es wurde daher auf Basis der bei Shid und Ishii (Journal of Biological Chemistry 66 (1969), 175-181) für PRPP-Amidotransferase aus E.coli beschriebenen Methode ein alternatives Testsystem entwickelt, mit dem die pflanzliche PRPP-Ami- dotransferase Aktivität im Proteinextrakt anhand der Bildung des Reaktionsproduktes Glutamat nachgewiesen wird. Die Konzentration des entstehenden Glutamats wird dabei durch Umsetzung mit Gluta- mat-Dehydrogenase (GluDH) und photometrische Verfolgung der APADH-Bildung bei 363 nm gemessen.
PRPP + L-Glutamin PRAT1» PRA + L-Glutamat + PPi
GluDH _ L-Glutamat + APAD + H20 ► α-Oxoglutarat + APADH + NH4 + (PRPP = Phosphoribosylpyrophosphat , PRA = Phosphoribosylamin, APAD = 3-Acetylpyridin-Adenin-Dinucleotid, PRAT = PRPP-Amidotransferase)
5 Dazu wurde der Reaktionsansatz (s.u.) für bis zu 60 Minuten bei 37°C inkubiert und die Reaktion durch 5-minütige Inkubation bei 95°C gestoppt.
Reaktionsansatz :
10
375 μL 100 mM Tris/HCl-Puffer pH 8.0
75 μL 100 mM MgCl2
75 μL 30 mM Phosphoribosyl-Pyrophosphat
75 μL 100 mM L-Glutamin 15 5500 μμLL H20
100 _U — Proteinextrakt 750 μL
Der Nachweis des gebildeten Glutamats erfolgte im Nachweisansatz 20 (s.u.) durch photometrische Messung der APADH-Zunahme bei 363 nm nach Zugabe der Glutamat-Dehydrogenase.
Nachweisansatz :
25 375 μL 100 mM Tris/HCl-Puffer pH 8.0
75 μL 500 mM KC1
125 μL H20
75 μL 3 mM APAD
100 μL des Reaktionsansatzes
30 750 μL
Start der Nachweisreaktion mit 2 μl (ca. 4 Units) Glutamat Dehydrogenase (Sigma) .
35 Das Testsystem eignet sich in besonderer Weise zur Messung der PRPP-Amidotransferase Aktivität aus Pflanzenmaterial und in Expressionsextrakten zum Beispiel aus Baculovirus-infizierten Insektenzellen.
40 Beispiel 4
Funktionale Expression von PRPP-Amidotransferase aus Tabak in Insektenzellen
45 Zur Expression von Ntpurl.l in Baculovirus-infizierten Insektenzellen wurde das Bac-to-Bac Expressionssystem der Firma GibcoBRL eingestzt. Dazu wurde Ntpurl.l für eine PCR eingesetzt. Die Reak- tionsgemische enthielten ca. 1 ng/μl Ntpurl.l DNA, 0,5 μM der Oligonukleotide 5λ-tat agg atc cat gga ctc cta ttt tga cg-3 ' und 5v-atg aat tct agc tgg ttc taa ctt c-3 ' , 200 μM Desoxy-Nukleotide (Pharmacia), 0.04 U/μl Pfu Polymerase (Stratagene) und wurde auf Pufferbedingungen nach Angaben des Herstellers eingestellt.
Die Amplifikationsbedingungen wurden wie folgt eingestellt:
Step 1:
Denaturierungstemperatur : 95°C , 0 , 5 min Anlagerungstemperatur : 40°C , 0 , 5 min Elongationstemperatur : 72°C , 2 min Anzahl der Zyklen für Step 1: 2
Step 2 :
Denaturierungstemperatur : 95°C, 0,5 min Anlagerungstemperatur : 50°C, 0,5 min Elongationstemperatur: 72°C, 3 min
Anzahl der Zyklen für Step 2 : 25
Das PCR-Produkt wurde in den mit StuI geschnittenen Vector pFast- Bacl (GibcoBRL) ligiert. Die korrekte Orientierung des Inserts wurde durch Kontrollverdau mit Kpnl sichergestellt. Der erhaltene Transfervector pFastBacNtpurl.2 wurde nach Herstellerangaben zur Erzeugung rekombinanter Baculoviren mittels Sf21 Insektenzellen (Invitrogen) verwendet. Mit dem rekombinanten Baculovirus (BvNtpurl.2) wurden Sf21 Insektenzellen infiziert. Die Zellen wurden nach 2-4 Tagen durch Zentrifugation geerntet. Durch SDS- Polyacrylamid-Gelelektrophorese konnte im Gesamtextrakt ein Protein von ca. 54kDal entprechend der erwarteten Größe der PRPP- Amidotransferase identifiziert werden. Ein Gesamtzellextrakt wurde nach der Druckaufschlußmethode ( "French-Press" ) in Extrak- tionspuffer (100 mM HEPES pH 8,0; 2,5 mM EDTA; 10 % Glycerol ; 20 mM DTE; 0,2 mM PEFA-Block) erzeugt und nach Entsalzung über eine PDIO-Säule (Pharmacia) zur Messung der PRPP-Amidotransferase Aktivität im beschriebenen Assay (siehe Beispiel 3) verwendet.
Beispiel 5
Erzeugung von Vektoren zur Pflanzentransformation
Zur Erzeugung binärer Vektoren für die Pflanzentransformation wurde der Klon Ntpurl.l mit Smal und EcoRV gespalten und ein 1482 bp umfassendes Fragment isoliert, welches in den mit Smal gespaltenen Vektor pBinAR (Höfgen und Willmitzer, Plant Science 66(1990), 221-230) ligiert wurde. Die auf diese Weise erhaltenen Antisense- bzw. Sense-Konstrukte wurden mit pBinAR-NtpurlA bzw. pBinAR-Ntpurl bezeichnet, siehe Abbildung 1.
Beispiel 6
Erzeugung transgener Tabakpflanzen
Die Plasmide pBinAR-NtpurlA bzw. pBinAR-Ntpurl wurden in Agrobac- terium tumefaciens C58Cl:pGV2260 transformiert (Deblaere et al . , Nucl. Acids. Res. 13(1984), 4777-4788). Zur Transformation von Tabakpflanzen (Nicotiana tabacum cv. Samsun NN) wurde eine 1:50 Verdünnung einer Übernachtkultur einer positiv transformierten Agrobakterienkolonie in Murashige-Skoog Medium (Murashige und Skoog Physiol. Plant. 15(1962), 473) mit 2 % Saccharose (2MS-Me- dium) benutzt. Blattscheiben steriler Pflanzen (zu je ca. 1 cm2) wurden in einer Petrischale mit einer 1:50 Agrobakterienverdün- nung für 5-10 Minuten inkubiert. Es folgte eine 2-tägige Inkubation in Dunkelheit bei 25°C auf 2MS-Medium mit 0,8 % Bacto-Agar. Die Kultivierung wurde nach 2 Tagen mit 16 Stunden Licht/8 Stunden Dunkelheit weitergeführt und in wöchentlichem Rhythmus auf MS-Medium mit 500 mg/1 Claforan (Cefotaxime-Natrium) , 50 mg/1 Ka- namycin, 1 mg/1 Benzylaminopurin (BAP) , 0,2 mg/1 Naphtylessig- säure und 1,6 g/1 Glukose weitergeführt. Wachsende Sprosse wurden auf MS-Medium mit 2 % Saccharose, 250 mg/1 Claforan und 0,8 % Bacto-Agar überführt .
Regenerierte Sprosse wurden auf 2MS-Medium mit Kanamycin und Claforan erhalten, nach Bewurzelung in Erde überführt und nach Kul- tivierung für zwei Wochen in einer Klimakammer im 16 Stunden hell/8 Stunden dunkel-Rhythmus bei 60 % Luftfeuchte auf PRPP-Amidotransferase Expression und -Aktivität sowie auf veränderte Me- tabolitgehalte und phänotypische Wachstumsmerkmale untersucht. Veränderte Nukleotidgehalte können z.B. nach der Methode von Stitt et al., FEBS Letters 145(1982), 217-222 bestimmt werden.
Beispiel 7
Analyse transgener Pflanzen
Transgene Pflanzen, die mit dem Konstrukt mit pBinAR-Ntpurl transformiert wurden sind gekennzeichnet durch ein in unterschiedlichem Maße verringertes Wachstum sowie ein großflächiges Ausbleichen der Blätter im Vergleich zu untransformierten Kon- trollpflanzen (Abb. 2 ) . Die RNA-Analyse durch die Northernblot- Technik wies in transgenen Linien mit dem beschriebenen Phänotyp eine verringerte Menge an Ntpurl.1-RNA auf (Abb. 3) . Diese Effekte waren auch in Folgegenerationen der transgenen Linien zu beobachten.
Um die Korellation zur Wachstumsreduktion zu testen, wurde die 5 PRPP-Amidotransferase Aktivität in den transgenen Linien gemessen und mit jener in untransformierten Kontrollen verglichen. Dazu wurden je ca. 30 g Blätter von ca. 20 cm hohen Pflanzen mit 50 ml Extraktionspuffer bei +4°C homogenisiert.
10 Extraktionspuffer:
100 mM HEPES pH 8 , 0
2 , 5 mM EDTA
10 % Glycerol
15 20 mM DTE
0,2 M PEFA-Block (40mM)
Der Aufschlußextrakt wurde durch Miracloth (Calbiochem, Bad Soden) filtriert und bei 16000 rpm in der Sorval Zentrifuge zentri-
20 fugiert . Der resultierende Überstand wurde mit Ammoniumsulfat bei 4°C gefällt. Die 30 % - 60 %-Stufe wurde im Extraktionspuffer solubilisiert und über eine PD-10-Säule (Pharmacia, Schweden) entsalzt. Der so gewonnene Extrakt ist mindestens 24 h stabil, und kann bei -20°C nach Zusatz von Glycerol (50 % Endkonzen-
25 tration) für längere Zeit gelagert werden. Der Extrakt kann direkt zur Aktivitätsbestimmung eingesetzt werden. Die PRPP-Amidotransferase Aktivität war in den transgenen Linien im Vergleich zu Wildtyppflanzen deutlich verringert, siehe Abb. 4. Abb. 4A zeigt die PRPP-Amidotransferase Aktivität bezogen auf die Pro-
30 teinmenge. Abb. 4B zeigt die PRPP-Amidotransferase Aktivität bezogen auf das Frischgewicht.
Diese Daten stellen einen direkten Zusammenhang zwischen verringerter PRPP-Amidotransferase Aktivität und verringertem Wachstum 35 der Tabakpflanzen her und weisen daher PRPP-Amidotransferase erstmals als geeignetes Zielprotein für herbizide Wirkstoffe aus.
Beispiel 8 0 Suche nach Inhibitoren der PRPP-Amidotransferase Aktivität
Zur Suche nach Inhibitoren der PRPP-Amidotransferase Aktivität kann der in Beispiel 3 beschriebene in vitro Assay mit Hochdurchsatzmethoden verwendet werden. Die PRPP-Amidotransferase 5 Aktivität kann dazu aus Pflanzengeweben präpariert werden, siehe Beispiel 7. Alternativ kann eine pflanzliche PRPP-Amidotransferase in E.coli, Insektenzellen oder einem anderen geeigneten Expressionssystem exprimiert werden. Auf diese Weise wurden bekannte PRPP-Amidotransferase Inhibitoren - wie Glutaminantagonisten - identifiziert.
Beispiel 9
Analyse der der Adenin- und Guanin-Nukleotidgehalte in transgenen Pflanzen.
Von Wildtyppflanzen und transgenen Pflanzen, die mit dem
Konstrukt pBinAR-Ntpurl transformiert wurden sowie deren Nachfolgegeneration (Linien 3.1, 3.2, 3.9., 25.1 und 38.8.) wurde Blattmaterial (je 5 Scheiben von 6 mm Durchmesser) geerntet und sofort in flüssigem Stickstoff eingefroren. Anschließend wurden TCA-Extrakte nach Standardmethoden hergestellt und für die Bestimmung der Nukleotidgehalte eingesetzt.
AMP ist in den transgenen Linien mit Ausnahme der Linie 38.8 im grünen Blattbereich stark und in gelben Blattbereichen schwächer im Vergleich zum Wildtyp (WT) reduziert (siehe Abb. 5) .
Für die Guanosin-Nukleotide GTP, GDP und GMP konnte keine Veränderung im Vergleich zum Wildtyp festgestellt werden.

Claims

Patentansprüche
1. DNA-Sequenz, enthaltend die Kodierregion einer pflanzlichen PRPP-Amidotransferase, dadurch gekennzeichnet, daß diese DNA- Sequenz die Nukleotidabfolge SEQ-ID No. 1 oder SEQ-ID No . 3 aufweist.
2. DNA-Sequenzen, die mit der DNA-Sequenz SEQ-ID No . 1 oder SEQ-ID No. 3 gemäß Anspruch 1 oder Teilen davon oder
Derivaten, die durch Insertion, Deletion oder Substitution von diesen Sequenzen abgeleitet sind, hybridisieren und für ein Protein kodieren, das die biologische Aktivität einer PRPP-Amidotransferase besitzt.
3. Protein mit PRPP-Amidotransferase Aktivität, enthaltend eine Aminosäuresequenz, die eine Teilsequenz von mindestens 100 Aminosäuren aus SEQ-ID No . 2 oder SEQ-ID No . 4 darstellt.
4. Protein nach Anspruch 3, dadurch gekennzeichnet, daß es als Aminosäuresequenz die Teilsequenz 100 - 450 aus SEQ-ID No. 2 oder SEQ-ID No . 4 enthält.
5. Protein nach Anspruch 4, dadurch gekennzeichnet, daß es als Aminosäuresequenz die in SEQ-ID No. 2 oder SEQ-ID No. 4 dargestellte Sequenz enthält.
6. Verwendung einer DNA-Sequenz nach Anspruch 1 oder 2 zur Einführung in pro- oder eukaryontisehe Zellen, wobei diese Sequenz gegebenenfalls mit Steuerelementen, die die Transkription und Translation in den Zellen gewährleisten, verknüpft ist und zur Expression einer translatierbaren mRNA, die die Synthese einer pflanzlichen PRPP-Amidotransferase bewirkt , führt .
7. Verwendung einer DNA-Sequenz nach Anspruch 1 oder 2 zur Herstellung eines Testsystems zur Identifizierung von Inhibitoren der pflanzlichen PRPP-Amidotransferase mit herbizider Wirkung.
Zeichn.
8. Verfahren zum Auffinden von Substanzen, die die Aktivität der pflanzlichen PRPP-Amidotransferase inhibieren, dadurch gekennzeichnet, daß in einem ersten Schritt unter Verwendung einer DNA-Sequenz nach Anspruch 1 oder 2 PRPP-Amido- transferase hergestellt wird und in einem zweiten Schritt die Aktivität der pflanzlichen PRPP-Amidotransferase in Anwesenheit einer Testsubstanz gemessen wird.
9. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Messung der pflanzlichen PRPP-Amidotransferase in einem High- Throughput-Screening (HTS) ausgeführt wird.
10. Verfahren zur Identifizierung von Substanzen mit herbizider Wirkung, die die PRPP-Amidotransferase Aktivität in Pflanzen hemmen, bestehend aus
a) der Herstellung von transgenen Pflanzen, Pflanzengeweben, oder Pflanzenzellen, die eine zusätzliche DNA-Sequenz codierend für ein Enzym mit PRPP-Amidotransferase Aktivität enthalten und in der Lage sind eine enzymatisch aktive PRPP-Amidotransferase überzuexprimieren;
b) das Aufbringen einer Substanz auf transgene Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile sowie auf nicht-transformierte Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile;
c) das Bestimmen des Wachstums oder der Überlebensfähigkeit der transgenen und der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile nach der Aufbringung der chemischen Substanz; und
d) dem Vergleich des Wachstums oder der Überlebensfähigkeit der transgenen und der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile nach der Auf ringung der chemischen Substanz ;
wobei die Unterdrückung des Wachstums oder der Überlebensfähigkeit der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile ohne jedoch das Wachstum oder die Überlebensfähigkeit der transgenen Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile stark zu unterdrücken, belegt, daß die Substanz aus b) herbizide Aktivität zeigt und die PRPP-Amidotransferase Enzymaktivität in Pflanzen inhibiert.
11. Testsystem basierend auf der Expression einer DNA-Sequenz SEQ-ID No. 1 oder SEQ-ID No . 3 nach Anspruch 1 oder 2 zur Identifizierung von Inhibitoren der pflanzlichen PRPP-Amidotransferase mit herbizider Wirkung.
5
12. Testsystem gemäß Anspruch 11 zur Identifizierung von Inhibitoren pflanzlicher PRPP-Amidotransferase, dadurch gekennzeichnet, daß das Enzym mit einem zu untersuchenden Testsubstrat inkubiert und nach einer geeigneten Reaktions-
10 zeit die enzymatische Aktivität des Enzyms im Vergleich zur Aktivität des nicht gehemmten Enzyms ermittelt wird.
13 . Inhibitoren pflanzlicher PRPP-Amidotransferase .
15 14. Inhibitoren pflanzlicher PRPP-Amidotransferase, identifiziert unter Verwendung eines Testsystems nach Anspruch 11 oder 12.
15. Inhibitoren nach einem der Ansprüche 13 oder 14 zur Verwendung als Herbizid. 20
16. Verfahren zur Beseitigung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß die zu beseitigenden Pflanzen mit einer Verbindung behandelt werden, die spezifisch an PRPP-Amidotransferase, codiert durch eine DNA-Sequenz nach
25 Anspruch 1 oder 2, bindet und deren Funktion inhibiert.
17. Pflanze mit modifiziertem Gehalt an Purinnukleotiden hergestellt durch zusätzliche Expression einer DNA-Sequenz SEQ-ID No. 1 oder SEQ-ID No . 3 nach Anspruch 1 oder 2 in
30 Sense- oder Antisense-Orientierung.
5
0
5
PCT/EP2000/009839 1999-10-11 2000-10-07 Prpp-amidotransferase aus nicotiana tabacum WO2001027248A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00969449A EP1220894A1 (de) 1999-10-11 2000-10-07 Prpp-amidotransferase aus nicotiana tabacum
CA002387159A CA2387159A1 (en) 1999-10-11 2000-10-07 Prpp-amidotransferase from plants
AU79159/00A AU7915900A (en) 1999-10-11 2000-10-07 Prpp-amidotransferase from plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19949000.7 1999-10-11
DE1999149000 DE19949000A1 (de) 1999-10-11 1999-10-11 PRPP-Amidotransferase aus Pflanzen

Publications (2)

Publication Number Publication Date
WO2001027248A1 true WO2001027248A1 (de) 2001-04-19
WO2001027248A8 WO2001027248A8 (de) 2001-08-09

Family

ID=7925270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009839 WO2001027248A1 (de) 1999-10-11 2000-10-07 Prpp-amidotransferase aus nicotiana tabacum

Country Status (5)

Country Link
EP (1) EP1220894A1 (de)
AU (1) AU7915900A (de)
CA (1) CA2387159A1 (de)
DE (1) DE19949000A1 (de)
WO (1) WO2001027248A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780253A (en) * 1995-05-04 1998-07-14 Sandoz Ltd. Screening method for detection of herbicides
WO1998033925A1 (en) * 1997-02-03 1998-08-06 Yale University Glutrnagln amidotransferase - a novel essential translational component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780253A (en) * 1995-05-04 1998-07-14 Sandoz Ltd. Screening method for detection of herbicides
WO1998033925A1 (en) * 1997-02-03 1998-08-06 Yale University Glutrnagln amidotransferase - a novel essential translational component

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BEVAN M. ET AL.: "Arabidopsis thaliana DNA chromosome 4, BAC clone T4L20 (ESSA project)", EMBL DATABASE ENTRY ATT4L20; ACCESSION NO. AL023094, 29 April 1998 (1998-04-29), XP002163129 *
ITO T. ET AL.: "Two amidophosphoribosyltransferase genes of Arabidopsis thaliana expressed in different organs", PLANT MOLECULAR BIOLOGY, vol. 26, 1994, pages 529 - 533, XP000990353 *

Also Published As

Publication number Publication date
DE19949000A1 (de) 2001-04-12
AU7915900A (en) 2001-04-23
WO2001027248A8 (de) 2001-08-09
CA2387159A1 (en) 2001-04-19
EP1220894A1 (de) 2002-07-10

Similar Documents

Publication Publication Date Title
WO2001014569A2 (de) Erhöhung des polysaccharidgehaltes in pflanzen
EP1212439B1 (de) Pflanzen mit verändertem aminosäuregehalt und verfahren zu deren herstellung
DE19752647C1 (de) Reduktiion des Chlorophyllgehaltes in Ölpflanzensamen
EP1222293A2 (de) Gmp-synthetase aus pflanzen
EP1220894A1 (de) Prpp-amidotransferase aus nicotiana tabacum
EP1259623B1 (de) Aspartat-carbamyltransferase als herbizides target
EP1070120A1 (de) Amp-deaminase
WO2001064861A2 (de) Phosphoribosyl-pyrophosphat synthetase 1 als herbizides target
WO2001031025A2 (de) Formylglycinamidinribotid-synthase aus pflanzen
EP1587920A1 (de) Malat dehydrogenase als target für herbizide
EP1210437B1 (de) Dihydroorotase aus pflanzen
EP0927246A2 (de) Adenylosuccinat synthetase
WO2002004619A2 (de) Dehydroquinat dehydratase/shikimat dehydrogenase als herbizides target
DE10104721B4 (de) Verfahren zur Erhöhung des Gehalts von Schwefelverbindungen in Pflanzen
EP1307561B1 (de) Nucleinsäuren, mit deren hilfe pflanzen mit verändertem metabolit-gehalt erzeugt werden können
EP1527168B1 (de) Saccharose-6-phosphat phosphatase als target für herbizide
DE19632121C2 (de) Transgene Pflanzenzellen und Pflanzen mit veränderter Acetyl-CoA-Bildung
WO2005047513A2 (de) Der glycin decarboxylase komplex als herbizides target
EP1198578A2 (de) Planzliche s-adenosylmethionin: mg-protoporphyrin-ix-o-methyltransferase, pflanzen mit verändertem chlorophyllgehalt und/oder herbizidtoleranz
DE102004012481A1 (de) UMP-Synthase (Orotat Phosphoribosyltransferase und Orotidin 5'-Phosphate Decarboxylase) als herbizides Target
DE112005000590T5 (de) Polynukleotidphosphorylase (PNPase) als Ziel für Herbizide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

CFP Corrected version of a pamphlet front page

Free format text: REVISED TITLE RECEIVED BY THE INTERNATIONAL BUREAU AFTER COMPLETION OF THE TECHNICAL PREPARATIONS FOR INTERNATIONAL PUBLICATION

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000969449

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10089370

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2387159

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2000969449

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000969449

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP