WO2001031025A2 - Formylglycinamidinribotid-synthase aus pflanzen - Google Patents

Formylglycinamidinribotid-synthase aus pflanzen Download PDF

Info

Publication number
WO2001031025A2
WO2001031025A2 PCT/EP2000/010204 EP0010204W WO0131025A2 WO 2001031025 A2 WO2001031025 A2 WO 2001031025A2 EP 0010204 W EP0010204 W EP 0010204W WO 0131025 A2 WO0131025 A2 WO 0131025A2
Authority
WO
WIPO (PCT)
Prior art keywords
synthase
plant
ribotide
purl
formylglycinamidine
Prior art date
Application number
PCT/EP2000/010204
Other languages
English (en)
French (fr)
Other versions
WO2001031025A3 (de
Inventor
Jens Lerchl
Thomas Ehrhardt
Uwe Sonnewald
Ralf Boldt
Gotthard Kunze
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU18535/01A priority Critical patent/AU1853501A/en
Priority to CA002388851A priority patent/CA2388851A1/en
Priority to EP00981201A priority patent/EP1224292A2/de
Publication of WO2001031025A2 publication Critical patent/WO2001031025A2/de
Publication of WO2001031025A3 publication Critical patent/WO2001031025A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/9015Ligases (6)

Definitions

  • the present invention relates to the identification of plant formylglycinamidine ribotide synthase (EC 6.3.5.3.) As a new target for herbicidal active compounds.
  • the present invention further relates to DNA sequences SEQ-ID No. 1, SEQ ID No. 3 or SEQ-ID No. 5 coding for a polypeptide with formylglycinamidine- 0 ribotide synthase activity.
  • the invention relates to the use of a nucleic acid coding for a protein with formylglycinamidine ribotide synthase activity of plant origin for the production of a test system for identifying inhibitors of formylglycinamidine ribotide synthase with herbicidal activity. 5 Furthermore, the invention relates to the use of the nucleic acid SEQ-ID No. 1, SEQ ID No. 3 or SEQ-ID No. 5 coding for plant formylglycinamidine ribotide synthase for the production of plants with increased resistance to inhibitors of formylglycinamidine ribotide synthase.
  • the invention relates to a method for eliminating undesired plant growth, characterized in that the plants to be removed are treated with a compound which is coded specifically for formylglycinamidine ribotide synthase by a DNA sequence SEQ-ID No. 1, SEQ ID No. 3 or SEQ-ID No. 5 or a DNA sequence hybridizing with this DNA sequence, binds and inhibits their 5 function.
  • Plants are able to synthesize their cell components from carbon dioxide, water and inorganic salts.
  • Nucleotides are synthesized de novo in plants. They are of particular importance as part of the nucleic acids. In a covalent bond, nucleotides activate carbohydrates for the biosynthesis of polysaccharides. They also activate head groups for the biosynthesis of lipids. Nucleotides are involved in almost all metabolic pathways. Nucleoside triphosphates, especially ATP, drive most of the cell's energy-intensive reactions. Adenine nucleotides can also be found as a component in essential factors such as coenzyme A, as well as nicotinamide and flavin coenzymes,
  • nucleotides are the starting metabolites for the biosynthesis of methylxanthines such as Cof-5 fein and theobromine in plant families of the Rubiaceae and Theaceae. Since plants rely on an effective nucleotide metabolism, it can be assumed that enzymes which are involved in nucleotide biosynthesis are suitable as target proteins for herbicides. Active substances that inhibit the 5 plant de novo purine biosynthesis have already been described.
  • ASA adenylosuccinate synthetase
  • Bacterial PRPP amidotransferase can be caused by glutamine antagonists, e.g. Acivicin (L- (alpha S, 5S) -alpha-amino-3-chloro-
  • glutamine antagonists e.g. Acivicin (L- (alpha S, 5S) -alpha-amino-3-chloro-
  • Glutamine antagonists are not specific for PRPP amidotransferase but also inhibit mammalian formylglycinamidine ribotide synthase (EC 6.3.5.3.) And have an antiproliferative effect on tumor tissue (Elliot and Weber, Biochemical Pharmacology 34 (1985),
  • formylglycinamidine ribotide synthase converts the carboxa id oxygen of the formylglycinamide ribonucleotide (FGAR) into an imino group.
  • FGAR formylglycinamidine ribotide
  • CDNAs coding for formylglycinamidine ribotide synthase could be isolated and characterized from various bacterial and animal organisms.
  • the coding genes have already been isolated for most enzymes of the purine biosynthetic pathway in plants.
  • formylglycine amide ribotide synthase only two partial EST (expressed sequence tag) sequences from Arabidopsis thaliana (Gen.
  • formylglycinamidine ribotide synthase is a suitable herbicidal target in plants, the isolation of a complete plant cDNA coding for the enzyme formylglycinamidine ribotide synthase and its functional expression in bacterial or eukaryotic cells, as well as the production of an efficient and simple formylglycinamidine ribotide synthase test system for carrying out inhibitor-enzyme binding studies.
  • One object of the present invention accordingly relates to the isolation of cDNAs coding for Fonnylglycinamidinribotid synthase from Arabidopsis thaliana, Nicotiana tabacum and Chilopsis linearis.
  • Another object of the invention relates to methods for identifying inhibitors of formylglycinamidine ribotide synthase in plants by high-throughput methods.
  • the invention therefore relates to the functional expression of plant formylglycine amide ribotide synthase, in particular of formylglycine amide ribotide synthase from Arabidopsis thaliana and tobacco in suitable expression systems, and to the use of the enzymes thus produced in an in vitro test system for measuring the formyl glycine amide ribotide synthase activity ,
  • the object was achieved by isolating genes which code for the plant enzyme formylglycinamidine ribotide synthase, the production of antisense constructs of formylglycinamidine ribotide synthase, and the functional expression of formylglycinai ⁇ idinribotide synthase in bacterial or eukaryotic cells.
  • One object of the present invention relates to the isolation of full-length cDNAs coding for functional formylglycine amidribotide synthase (EC6.3.5.3.) From Arabidopsis thaliana and Nicotiana tabacum and a partial cDNA sequence from Chilopsis linearis.
  • a first object of the present invention is a DNA sequence SEQ-ID NO. 1 or SEQ ID NO. 3 containing the coding region of a plant formylglycinamidine ribotide synthase from Nicotiana tabacum and Arabidopsis thaliana, see Examples 1 and 2.
  • Another object of the invention are DNA sequences which of
  • SEQ ID NO. 1 or SEQ ID NO. 3 are derived or hybridize to one of these sequences and which code for a protein which has the biological activity of a formylglycinamidine ribotide
  • the cDNA sequence of the formylglycinamidine ribotid synthase or suitable fragments of the cDNA sequence of the formylglycinamidine ribotid synthase from Arabidopsis thaliana is cloned into an expression vector (pQE, Qiagen) and overexpressed in E. coli.
  • the expression cassette containing a partial DNA sequence of SEQ-ID No. 1 or SEQ ID NO. 3 can be expressed, for example, in other bacteria, in yeasts, fungi, algae, plant cells, insect cells or mammalian cells.
  • the formylglycaminididine ribotide synthase protein expressed with the aid of an expression cassette is particularly suitable for the detection of inhibitors specific for formylglycinamidine ribotide synthase. 5
  • the vegetable formylglycina idinribotid synthase can be used, for example, in an enzyme test in which the ac Activity of formylglycinamidine ribotide synthase is determined in the presence and absence of the active ingredient to be tested. By comparing the two activity determinations, a qualitative and quantitative statement can be made about the inhibitory behavior of the active substance to be tested, see Example 8.
  • test system With the help of the test system according to the invention, a large number of chemical compounds can be checked quickly and easily for herbicidal properties.
  • the method makes it possible to selectively select those with a high potency from a large number of substances in order to subsequently carry out further in-depth tests known to the person skilled in the art with these substances.
  • Another object of the invention is a method for identifying substances with herbicidal activity which inhibit the formylglycine amide ribotide synthase activity in plants, consisting of
  • transgenic plants, plant tissues, or plant cells which contain an additional DNA sequence coding for an enzyme with formylglycinamidine ribotide synthase activity and are capable of overexpressing an enzymatically active formylglycinamidine ribotide synthase;
  • Another object of the invention is a method for identifying inhibitors of plant formylglycinamidine ribotide synthase, with potentially herbicidal activity by cloning the gene of a plant formylglycinamidine ribotide synthase, for overexpression in a suitable expression cassette - for example in insect cells - which opens and opens the cells uses the cell extract directly or after enrichment or isolation of the enzyme formylglycinamidine ribotide synthase in a test system for measuring the enzyme activity in the presence of low molecular weight chemical compounds.
  • the invention further relates to compounds with a herbicidal action which can be identified using the test system described above.
  • Another object of the invention is a method for eliminating undesirable plant growth, characterized in that the plants to be removed are treated with a compound which is coded specifically for formylglycine amide ribotide synthesis by a DNA sequence SEQ-ID No. 1, SEQ ID No. 3 or SEQ-ID No. 5 or a DNA sequence hybridizing with this DNA sequence, binds and inhibits their function.
  • Effects can be used as defoliants, desiccants, haulm killers and in particular as weed killers. Weeds in the broadest sense are understood to mean all plants that grow up in places where they are undesirable. Whether the active ingredients found with the aid of the test system according to the invention act as total or selective herbicides depends, inter alia, on the amount used.
  • Inhibitors of formylglycinamidine ribotide synthase with herbicidal activity can be used, for example, against the following weeds:
  • Echinochloa Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.
  • the invention also relates to expression cassettes whose encoding sequence for a Formylglycinamidinribotid synthase from Arabidopsis thaliana, Nicotiana tabacum or chilopsis or their functional equivalent.
  • the nucleic acid sequence can be, for example, a DNA or a cDNA sequence.
  • the expression cassettes of the invention also include regulatory nucleic acid sequences which control the expression of the coding sequence in the host cell.
  • an expression cassette according to the invention comprises upstream, ie at the 5 'end of the coding sequence, 5 a promoter and downstream, ie at the 3' end, a polyadenylation signal and optionally further regulatory elements which are associated with the coding sequence for the Formylglycinamidinribotid synthase gene are operatively linked.
  • An operative link is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended when expressing the coding sequence.
  • An expression cassette according to the invention is produced by fusing a suitable promoter with a suitable formylglycinamidine ribotide synthase DNA sequence and a polyadenylation signal according to common recombination and cloning techniques, as described, for example, in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) as in T.J. Silhavy, M.L. Ber an and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, F.M. et al. , Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Inter-science (1987). 5
  • the invention also relates to functionally equivalent DNA sequences which code for a formylglycine amide ribotide synthase gene and which, based on the total length of the DNA sequence, have sequence homology with the DNA sequence SEQ-ID NO. 1, SEQ ID NO. 3 or SEQ-ID No. 5 have from 40 to 100%. 0
  • a preferred object of the invention are functionally equivalent DNA sequences which code for a formylglycinamidine ribotide synthase gene and which, based on the total length of the DNA sequence, have sequence homology with the DNA sequence SEQ-ID NO. 1, SEQ ID NO. 3 5 or SEQ-ID No. 5 have from 60 to 100%.
  • a particularly preferred object of the invention are functionally equivalent DNA sequences which code for a formylglycinamidine ribotide synthase gene and which, based on the total length of the DNA sequence, have sequence homology with the DNA sequence SEQ-ID NO. 5 1, SEQ-ID No. 3 or SEQ-ID No. 5 have from 80 to 100%.
  • Functions equivalent sequences which code for a formylglycine amidribotide synthase gene are, according to the invention, those sequences which, despite a different nucleotide sequence, still have the desired functions.
  • Functional equivalents thus include naturally occurring variants of the sequences described here as well as artificial, e.g. nucleotide sequences obtained by chemical synthesis and adapted to the codon use of a plant.
  • a functional equivalent is also understood to mean, in particular, natural or artificial mutations of an originally isolated sequence coding for a formylglycine amide ribotide synthase, which furthermore shows the desired function. Mutations include substitutions, additions, deletions, exchanges or insertions of one or more nucleotide residues.
  • the present invention also encompasses those nucleotide sequences which are obtained by modifying this nucleotide sequence.
  • the aim of such a modification can e.g. further narrowing down the coding sequence contained therein or e.g. also the insertion of further restriction enzyme interfaces.
  • Functional equivalents are also those variants whose function is weakened or enhanced compared to the original gene or gene fragment.
  • the expression cassette according to the invention can also be used for the transformation of bacteria, cyanobacteria, yeast, filamentous fungi and algae and eukaryotic cells (e.g. insect cells) with the aim of producing sufficient quantities of the enzyme for ylglycinamidine ribotide synthase. 5
  • Another object of the invention is a protein from Arabidopsis thaliana, Nicotiana tabacum or Chilopsis linearis characterized by the amino acid sequence SEQ-ID NO. 2, SEQ ID No. 4 or SEQ-ID No. 6 or derivatives or parts of this protein with formyl glycinamidine ribotide synthase activity.
  • the invention also relates to vegetable proteins with formylglycinamidine ribotid synthase activity with an amino acid sequence homology to formylglycinamidine ribotide synthase from Arabidopsis thaliana, Nicotiana tabacum or Chilopsis linearis with 5 SEQ ID NO. 2, SEQ ID NO. 4 or SEQ-ID No. 6 of 20 - 100% identity.
  • Vegetable proteins with formylglycinamidine ribotide synthase activity with an amino acid sequence homology to the formylglycinamidine ribotide synthase from Arabidopsis thaliana, Nicotiana tabacum or Chilopsis linearis with the sequences 5 SEQ-ID NO are preferred. 2, SEQ ID NO. 4 or SEQ-ID No. 6 out of 50 - 100% identity.
  • Vegetable proteins with formylglycaminamide ribotide synthase activity with an amino acid sequence homology to formylglycinamidine ribotide synthase from Arabidopsis thaliana, Nicotiana tabacum or Chilopsis linearis are particularly preferred with the
  • Another object of the invention was the overexpression of the formyl-5-glycinamidine ribotide synthase gene in plants for the production of plants which are tolerant of inhibitors of the formylglycine amide ribotide synthase.
  • transgenic plants produced in this way are also the subject of the invention. 5
  • the effectiveness of the expression of the transgenically expressed formylglycine amide ribotide synthase gene can be determined, for example, in vitro by proliferation or by a germination test.
  • the invention also relates to transgenic plants transformed with an expression cassette containing the DNA sequence 5 SEQ-ID No. 1 or SEQ-ID No. 3, which by additional expression of the DNA sequence SEQ-ID No. 1 or SEQ-ID No. 3 have become tolerant of inhibitors of formylglycinamidine ribotide synthase, as well as transgenic cells, tissues, parts and propagation material of such plants.
  • Transgenic crop plants such as e.g. Barley, wheat, rye, corn, soy, 0 rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa, lettuce and the various tree, nut and wine species, as well as legumes.
  • Sequences are particularly preferred which target in the 5 apoplasts, in plastids, the vacuole, the mitochondrium, the endoplasmic reticulum (ER) or, owing to the lack of corresponding operative sequences, remain in the compartment of the ent Stand, the cytosol, ensure (Kermode, Crit. Rev. Plant Sei. 15, 4 (1996), 285-423).
  • the plant expression cassette can be installed in the plant transformation vector pBinAR, see Example 5.
  • any promoter which can control the expression of foreign genes in plants is suitable as promoters of the expression cassette according to the invention.
  • a plant promoter or a plant virus-derived promoter is preferably used.
  • the CaMV 35S promoter from the cauliflower mosaic virus (Franck et al., Cell 21 (1980), 285-294) is particularly preferred.
  • This promoter contains different recognition sequences for transcriptional effectors, which in their entirety lead to permanent and constitutive expression of the introduced gene (Benfey et al., EMBO J., 8 (1989), 2195-2202).
  • the expression cassette according to the invention can also contain a chemically inducible promoter, by means of which the expression of the exogenous formylglycinamidine ribotide synthase gene in the plant can be controlled at a specific point in time.
  • a chemically inducible promoter by means of which the expression of the exogenous formylglycinamidine ribotide synthase gene in the plant can be controlled at a specific point in time.
  • promoters as e.g. the PRPl promoter (Ward et al., Plant. Mol. Biol. (1993) 22, 361-366), a salicylic acid-inducible promoter (WO 95/19443), a benzenesufonamide-inducible (EP 388186), a by Tetracycline-inducible (Gatz et al., Plant J. (1992) 2, 397-404), a scisic acid-inducible (EP0335528) or ethanol- or cycl
  • the expression cassette according to the invention can therefore contain, for example, a seed-specific promoter (preferably the phaseolin promoter, the USP or LEB4 promoter), the LEB4 signal peptide, the gene to be expressed and an ER retention signal.
  • a seed-specific promoter preferably the phaseolin promoter, the USP or LEB4 promoter
  • the LEB4 signal peptide the gene to be expressed and an ER retention signal.
  • the inserted nucleotide sequence coding for a formylglycine namidine ribotide synthase can be produced synthetically or naturally be won or contain a mixture of synthetic and natural DNA components.
  • synthetic nucleotide sequences with codons are generated which are preferred by plants. This plant preferred codons kön- g nen be determined from codons with the highest protein frequency which are expressed in the most interesting plant species.
  • various DNA fragments can be manipulated in order to obtain a nucleotide sequence which expediently reads in the correct direction and which is equipped with a correct reading frame.
  • adapters or linkers can be attached to the fragments.
  • artificial DNA sequences are suitable as long as they impart the desired property of increasing the level of purine nucleotides in the plant by overexpressing the formylglycine amidine ribotide synthase gene.
  • Such artificial DNA sequences can be determined, for example, by back-translation of proteins constructed using molecular modeling, which have formylglycine amidribotide synthase activity, or by in vitro selection. Coding DNA sequences which are obtained by back-translating a polypeptide sequence according to the codon usage specific for the host plant are particularly suitable.
  • a person skilled in the art familiar with plant genetic methods, can easily determine the specific codon usage by computer evaluations of other, known genes of the plant 5 to be transformed.
  • Sequences which code for fusion proteins are to be mentioned as further suitable equivalent nucleic acid sequences according to the invention, part of the fusion protein being a plant formylglycinamidine ribotide synthase polypeptide or a functionally equivalent part thereof.
  • the second part of the fusion protein can e.g. be another polypeptide with enzymatic activity or an antigenic polypeptide sequence that can be used to detect formylglycinamidine ribotide synthase expression (e.g. mye-tag or his-tag).
  • this is preferably a regulatory protein sequence, such as e.g. a signal or transit peptide that directs the formylglycine amide ribotide protein to the desired site of action.
  • Terminator regions in the direction of transcription are provided with a linker 0 or polylinker which contains one or more restriction sites for the insertion of this sequence.
  • the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites.
  • the linker has a size of less than 100 bp, 5 often less than 60 bp, but at least 5 bp within the regulatory ranges.
  • the promoter according to the invention can be both native or homologous and foreign or heterologous to the host plant.
  • the invention Expression cassette contains the promoter according to the invention, any sequence and a region for the transcriptional termination in the 5 '-3' transcription direction. Different termination areas are interchangeable.
  • Preferred polyadenylation signals are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the Ti plasmid pTiACH5 (Gielen et al., EMBO J. , 3 (1984), 835) or functional equivalents.
  • an expression cassette according to the invention is inserted as an insert into a recombinant vector whose vector DNA contains additional functional regulation signals, for example sequences for replication or integration.
  • additional functional regulation signals for example sequences for replication or integration.
  • transformation The transfer of foreign genes into the genome of a plant is called transformation.
  • the methods described for the transformation and regeneration of plants from plant tissues or plant cells for transient or stable transformation are used. Suitable methods are the protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic approach with the gene cannon, the electroporation, the incubation of dry embryos in DNA-containing solution, the microinjection and the gene transfer mediated by Agrobacterium. The methods mentioned are described, for example, in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1,
  • the construct to be expressed is cloned into a vector that is suitable, Agro-bacteriuu. transform tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711).
  • Agrobacteria transformed with an expression cassette according to the invention can also be used in a known manner to transform plants, in particular crop plants, such as cereals, maize, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rape, Alfalfa, lettuce and the various tree, nut and wine species as well as legumes are used, for example by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • the biosythesis site of purines is generally the leaf tissue, so that leaf-specific expression of the formylglycine amide ribotide synthase gene makes sense.
  • the purine biosynthesis need not be restricted to the leaf tissue, but can also be tissue-specific in all other parts of the plant - for example in fatty seeds.
  • constitutive expression of the exogenous formylglycinamidine ribotide synthase gene is advantageous.
  • inducible expression may also appear desirable.
  • the expression cassettes according to the invention can be cloned into suitable vectors which enable their multiplication, for example in E. coli.
  • suitable cloning vectors include pBR332, pUC series, Ml3mp series and pACYC184.
  • Binary vectors which can replicate both in E. coli and in agrobacteria are particularly suitable.
  • Another object of the invention relates to the use of an expression cassette according to the invention for transforming plants, plant cells, plant tissues or parts of plants.
  • the aim of the use is preferably to increase the formylglycine amidribotide synthase content in the plant. 5
  • the expression can take place specifically in the leaves, in the seeds or in other parts of the plant.
  • Such transgenic plants, their reproductive material and their plant cells, tissue or parts are a further subject of the present invention.
  • the invention is illustrated by the following examples, but is not limited to these.
  • Cloning methods such as Restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of Escherichia coli lines, cultivation of bacteria and sequence analysis of recombinant DNA were carried out as in Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6). Screening of cDNA libraries
  • ⁇ phages from the corresponding cDNA libraries were plated on agar plates with E. coli XLl-Blue as a bacterial strain.
  • the phage DNA was transferred to nitrocellulose filters (Gelman Sciences) using standard methods (Sambrook et al. (1989), Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) and fixed on the filters.
  • PCR fragments or DNA fragments obtained by restriction cleavage were used as hybridization probes and were radioactively labeled with the aid of a "Multiprime DNA labeling System” (Amersham Buchler) in the presence of 32 P-dCTP (specific activity 3000 Ci / mmol) according to the manufacturer's instructions.
  • the membranes were hybridized after prehybridization at 60 ° C. in 3 ⁇ SSPE, 0.1% sodium dodecyl sulfate (w / v), 0.02% polyvinylpyrrolidone (w / v), 0.02% Ficoll 400 (w / v ) and 50 mg / ml calf thymus DNA for 12-16 hours.
  • the filters were then washed in 2 x SSPE, 0.1% sodium dodecyl sulfate (w / v) at 60 ° C. for 60 minutes. Positive hybridizing phages were visualized by autoradiography, isolated using standard techniques (Sambrook et al. (1989); Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) and converted into plasmids (Stratagene).
  • the sequencing of recombinant DNA molecules was carried out with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA, 74 (1977), 5463-5467). Fragments resulting from a polymerase chain reaction were sequenced and checked in order to avoid polymerase errors in constructs to be expressed.
  • RNA from plant tissues was isolated as in Logemann et al. (Anal. Biochem. 163 (1987), 21). For the analysis, 20 ⁇ g RNA were separated in a 1.5% agarose gel containing formaldehyde and transferred to nylon membranes (Hybond, Amersham). The detection of specific transcripts was carried out as described for Amasino (Anal. Biochem. 152 (1986), 304). The DNA fragments used as a probe were radioactively labeled with a random primed DNA labeling kit (Röche, Mannheim) and hybridized according to standard methods, see Hybond user instructions, Amersham. Hyridization signals were visualized by autoradiography using X-OMAT AR films from Kodak.
  • DNA-modifying enzymes and molecular biological kits were developed by the companies AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Röche (Mannheim), Genomed (Bad Oeynnhausen), New England Biolabs (Schwalbach / Taunus), Novagen ( Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg) Qiagen (Hilden) and Stratagene (Heidelberg). Unless otherwise stated, they were named after AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Röche (Mannheim), Genomed (Bad Oeynnhausen), New England Biolabs (Schwalbach / Taunus), Novagen ( Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg) Qiagen (Hilden) and Stratagene (Heidelberg). Unless otherwise stated, they were named after
  • E. coli, XL-1 Blue The bacterial strains used below (E. coli, XL-1 Blue) were obtained from Stratagene.
  • E. coli AT 2465 was obtained from the coli genetic stock center (Yale University, New Haven).
  • the Agrobacterium strain used for plant transformation (Agrobacterium tumefaciens, C58C1 with the plasmid pGV2260 or pGV3850kan) was developed by Deblaere et al. (Nucl. Acids Res. 13 (1985), 4777).
  • the LBA4404 agrobacterial strain (Clontech) or other suitable strains can be used.
  • the vectors pUC19 Yamaphilid, XL-1 Blue
  • an expressed sequence tag (est) partially coding for formylglycinamidine ribotide synthase was obtained from Arabidopsis thaliana (GenBank Accession number AA042492), sequenced and as a template for generating a hybridization probe by means of a poly erase chain reaction (PCR) uses t.
  • the reaction mixtures contained approx.
  • the authorization conditions were set as follows:
  • Annealing temperature 50 ° C, 1 min denaturation temperature: 94 ° C, 1 min
  • the resulting fragment of 465 bp was used for a heterologous screening of 6.5 * 10 5 pfu of a UniZAP XR cDNA bank (Stratagene) created from RNA from Arabidopsis thaliana (whole plant). After restriction and sequence analysis, two distinguishable clones (purL-19 and purL-23) were identified, which encode reading frames with homology to formylglycinamidine ribotide synthase from Escherichia coli, Bacillus subtilis, Saccharomyces ce-revisiae and Drosophila melanogaster.
  • purL-48.1 was identified by means of restriction analysis and then sequenced, see SEQ-ID No. 1.
  • the purL-48.1 cDNA has a length of 4570 base pairs and is identical in the overlapping area (nucleotide 3328-4570) with the shorter purL-19 cDNA.
  • a continuous reading frame codes in purL-4 ⁇ .l for a polypeptide of 1407 amino acids and a calculated mass of 153.952 kda, see SEQ-ID No. 2.
  • the amino acid sequence is similar to formylglycinamidine ribotide synthase from other organisms, see Table 1. There is a relationship to formylglycinamidine ribotide synthase from humans (GenBank number
  • purL-48.1 has an extension of 53 up to 88 amino acids compared to formylglycina idinribotid synthase from other organisms, which indicates its importance as a transit peptide.
  • the computer-aided evaluation of the sequence predicts a possible function as a signal peptide for an import into the plastids for amino acids 1-53. Localization of the enzyme in plastids is consistent with its function in purine biosynthesis. A stop codon is found in the reading frame upstream of the start methionine.
  • PurL-48.1 is the first full-length plant cDNA for a formylglycinamidine ribotide synthase.
  • purL_yeast kdi — ytnst svinelrsc- ihyvngiaq- -seqdt-1— v-lt-dsa-d purL_Drome sa-ee-sv— rlreedg.av -s-rm-r — h -e.ys-qaeh —aldel-v- purL_human -ga-ghtr- kl-gklp.-l qg-e v-.
  • Consensus -DLDYYTD-F EL-KNPT- VELFDFAQSN SEHSRHWFFN GD-VIDG-KQ
  • 351 400 purL_e. coli k - kn -f-ttpdhvl say - aavm e-s - gryfa dhe-g. r. y- purL_yeast qft rn -hklnpeyti says - aavl dsenda-ffa pns-t.
  • Consensus -QQE LF TAETHN-PTA V-PFPGA-TG -GGRIRD - A TGRG-K - AG 451 500 purL_e.coli lv-fs-s — rf. ed-gk-eriv ta-d-mt-gp 1-gaafn-e- purL_yeast ls-fs-sd-1 n.
  • 701 750 purL_e.coli -ea-eelh-s -h- rh fdnq-i— - dvl 1 — m purL_yeast -ha-aeqk-i ve- -1 lkt — im pilf — p — m purL_Drome -w — d — v - -l.ekp d leqa-n-fnr sevs-f ky dr purL_hu ⁇ .an - i - dr-iv -v-drec-vr rngqgd-pt v - rk purL-ara-48- - in-g - c- -i-sta-ac skeg-. , , .p pav -k d k
  • Consensus PD KTVTPD LK-PTG-GDD - LLVDLS- -KG — RLGGS ALAQVF-QLG 1001 1050 purL_e.coli dk-a-vr q fy-ai- —vqk..l —y — ra purL_yeast -ks-tvy-n - i flesli q-hqqkediv —y — r —i purL_Drome kdt-n-trsd v-gka-av— s — gdg ..- iqv cv i purL_human eh lpe n-vra-si— g — kd -..- l es v -vtc purL-ara-48- -de py — nv — gv- —i-en ..- vsi -v —
  • 1101 1150 purL_e.coli r sv-aq h-1-.dcvhy —q-vsgd-f -ita — q- ... -f — s-tt- purL_yeast -skf-ki-ne nk — isi —kpsfq-qe ikii-st-nd viyans purL_Drome —r-rstyek pny-lv tegf-ld -1-ngkse ..
  • SEQ ID No. 3 - a polypeptide of 1017 amino acids in length, see SEQ ID No. 4.
  • the polypeptide shows similarity to the formylglycinamidine ribotide synthase from Arabidopsis thaliana (purL-48.1) (80.1% identity).
  • Double-stranded cDNA was generated from mRNA from Chilopsis linearis and used to produce a cDNA library in the vector pBluescript SKII (la bda ZAP II RI library construction kit, Stratagene). Individual clones from this bank were sequenced. The 3'-sided sequence of the clone 74_chi_005_el0 was similar to purL-Ntl.l from tobacco and purL-48.1 from Arabidopsis thaliana. The clone 74_chi_005_el0 was fully sequenced. It encodes a 478bp partial cDNA for a polypeptide of 97 amino acids. At the amino acid level, 74_chi_005_el0 is 82.4% identical to purL-48.1 and 75.2% identical to purL-Ntl.l.
  • cDNA coded by purL-48.1 it was cloned into suitable expression vectors (for example of the pQE, Qiagen or pET, Novagen series).
  • suitable expression vectors for example of the pQE, Qiagen or pET, Novagen series.
  • fragments of different lengths of the purL-48.1 cDNA can be generated, for example, by PCR and ligated into the vectors prepared by treatment with restriction endonucleases.
  • the expression constructs obtained can be used to convert the E.
  • coli strain CGSC # 4537 (genotype: fhuA2, lacYl, glnV44 (AS), gal-6, ⁇ ⁇ , nadB4, purL66, rpsL9, malTl ( ⁇ R ), xylA7, mtlA2, ⁇ argHl; E. coli genetic stock center, Yale University, New Haven).
  • AS lacYl
  • glnV44 AS
  • gal-6 ⁇ ⁇ , nadB4
  • xylA7, mtlA2, ⁇ argHl E. coli genetic stock center, Yale University, New Haven
  • the minimal media should contain, for example, 0.4% glucose, 0.2% casaminoacids, 100 ⁇ g / ml thiamine, 100 ⁇ g / ml inosine, 100 ⁇ g / ml biotin, 100 ⁇ g / ml nicotinate, 100 ⁇ M IPTG and 50-100 ⁇ g / ml of the antibiotic in question, to which the expression vector mediates resistance.
  • the cloning vector can be transformed into CGSC # 4537 without a purL-48.1 insert as a negative control. It was shown that only the bacteria transformed with purL-48.1 expression constructs are able to grow on minimal media without adenine.
  • the enzyme encoded by purL-48.1 is therefore functional and the first functional formylglycinamidine ribotide synthase isolated from plants.
  • Yeast Sacharomyces cerevisiae
  • Ade6 gene which codes for the yeast-specific formylglycinamidine ribotide synthase, is rendered inoperative.
  • a yeast mutant suitable for complementation the method of Güldener et al. , Nucleic Acids Research 24 (1996), 2519-2524 in application to a suitable starting strain, such as, for example, SEY6210 (Robinson et al., Protoplasma 150 (1989), 79-82).
  • the mutant yeast generated accordingly should not show growth on minimal media without adenine.
  • cDNA encoded by purL-48.1 it is cloned into suitable yeast expression vectors (for example pYEBH2, Riesmeier et al., EMBO J. 11 (1992), 4705-4713 or pYES2, Invitrogen).
  • suitable yeast expression vectors for example pYEBH2, Riesmeier et al., EMBO J. 11 (1992), 4705-4713 or pYES2, Invitrogen.
  • cDNAs of different lengths can be generated, for example, by PCR and ligated into the vectors prepared by treatment with restriction enducleases.
  • the expression constructs obtained are used to complement the yeast mutant generated. To do this, it is transformed with the expression constructs and plated on minimal media (eg SDG media, Clontech, Matchmaker system) without adenine.
  • the cloning vector without purL-48.1 insert is transformed into the yeast mutant as a negative control. It is shown that only the yeasts transformed with purL-48.1 expression constructs are capable of growing on minimal media without adenine.
  • the enzyme encoded by purL-48.1 thus represents the first functional formylglycinamidine ribotide syn- thase isolated from plants.
  • binary vectors were first generated for the plant transformation.
  • the clone purL-19 was cleaved with BamHI and SalI and the fragment of 1127 kb obtained was cleaved in the vector pBinAR (Höfgen and Willmitzer, Plant Science 66 (1990), 221-230), 1990. ligated.
  • the clone purL-19 was cleaved with BamHI and Kpnl and the generated fragment of 964 bp was ligated into the likewise cleaved vector pBinAR.
  • the Binary constructs AtSpurL and AtASpurL Figure 2 obtained in this way were transformed into Arabidopsis thaliana.
  • the binary vectors AtSpurL and AtASpurL were transformed into Agrobacterium tumefaciens C58C1: pGV2260 (Deblaere et al.,
  • Greenhouse 22 ° C day / 18 ° C night temperature, 16 h photoperiod 35, 450 ⁇ E * m- 2 * s " 1 , 68% humidity.
  • the plasmids NtSpurL and NtASpurL were transformed into Agrobacterium tumefaciens C58C1: pGV2260 (Deblaere et al., Nucl. Acids. Res. 13 (1984), 4777-4788).
  • pGV2260 Agrobacterium tumefaciens C58C1: pGV2260 (Deblaere et al., Nucl. Acids. Res. 13 (1984), 4777-4788).
  • Leaf disks of sterile plants were incubated in a Petri dish with a 1:50 agrobacterial dilution for 5-10 minutes. This was followed by a 2-day incubation in the dark at 25 ° C. on 2MS medium with 0.8% Bacto agar. The cultivation was continued after 2 days with 16 hours of light / 8 hours of darkness and in a weekly rhythm on MS medium with 500 mg / 1 claforan (cefotaxime sodium), 50 mg / 1 kanamycin, 1 mg / 1 benzylaminopurine (BAP ), 0.2 mg / 1 naphthylacetic acid and 1.6 g / 1 glucose continued.
  • Growing shoots were transferred to MS medium with 2% sucrose, 250 mg / 1 Claforan and 0.8% Bacto agar. Regenerated shoots were obtained on 2MS medium with kanamycin and claforan, transferred to soil after rooting and analyzed after cultivation in a climatic chamber in a 16 hour light / 8 hour dark rhythm at 60% humidity.
  • Transgenic plants were examined for formylglycinamidine ribotide synthase expression and activity as well as for altered metabolite levels and phenotypic growth characteristics. Altered nucleotide levels can e.g. using the method of Stitt et al. , FEBS Letters 145 (1982), 217-222.
  • Lines of transgenic plants that have been transformed with the constructs AtSpurL, AtASpurL, NtSpurL or NtASpurL are characterized by a different degree of reduced growth compared to untransformed control plants.
  • the RNA analysis by Northernblot-Teehnik showed a reduced amount of purL-48.1 or purL-Ntl.l in transgenic lines with the described phenotype.
  • the formylglycinamidine ribotide synthetic activity can be determined by a method as described in Example 8.
  • the measurement of the formylglycinamidine ribotide synthase activity is carried out with modifications according to the methods described (Methods in Enzymology. 51 (1978), 193-201). After adapting the method to high-throughput methods, it is possible to search for inhibitors of formylglycine amidribotide synthase activity using one of the described in vitro assays. For this purpose, the formylglycinamidine ribotide synthetic activity can be prepared from plant tissues.
  • a complete or shortened plant formylglycinamidine ribotide synthase (preferably formylglycinamidine ribotide synthase from Arabidopsis thaliana) can be generated in a suitable prokaryotic (e.g. E. coli) or eukaryotic (e.g. yeast, insect cell) expression system. After digestion of the plant tissues or cells in suitable buffers and, if necessary, further purification steps e.g. The formylglycinamidine ribotide synthase activity can be quantified using chromatographic methods. In this way it is possible to correlate the growth phenotype with the formylglycine amide ribotide synthase activity in transgenic lines.
  • a suitable prokaryotic e.g. E. coli
  • eukaryotic e.g. yeast, insect cell

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft DNA-Sequenzen codierend für ein Polypeptid mit Formylglycinamidinribotid-Synthase (E.C.6.3.5.3) Aktivität. Zudem betrifft die Erfindung die Verwendung dieser Nukleinsäuren zur Herstellung eines Testsystems.

Description

Formylglycinamidinribotid-Synthase aus Pflanzen
Beschreibung
5
Die vorliegende Erfindung betrifft die Identifizierung pflanzlicher Formylglycinamidinribotid-Synthase ( E.C. 6.3.5.3. ) als neues Ziel für herbizide Wirkstoffe. Die vorliegende Erfindung betrifft weiterhin DNA-Sequenzen SEQ-ID No. 1, SEQ-ID No. 3 oder SEQ-ID No. 5 kodierend für ein Polypeptid mit Formylglycinamidin- 0 ribotid-Synthase Aktivität. Zudem betrifft die Erfindung die Verwendung einer Nukleinsäure kodierend für ein Protein mit Formyl- glycinamidinribotid-Synthase Aktivität pflanzlichen Ursprungs zur Herstellung eines Testsystems zur Identifizierung von Inhibitoren der Formylglycinamidinribotid-Synthase mit herbizider Wirkung. 5 Weiterhin betrifft die Erfindung die Verwendung der Nukleinsäure SEQ-ID No. 1, SEQ-ID No . 3 oder SEQ-ID No. 5 kodierend für pflanzliche Formylglycinamidinribotid-Synthase zur Herstellung von Pflanzen mit erhöhter Resistenz gegenüber Inhibitoren der Formylglycinamidinribotid-Synthase. Darüber hinaus betrifft die Erfindung ein Verfahren zur Beseitigung von unerwünschtem 0 Pflanzenwuchs dadurch gekennzeichnet, daß die zu beseitigenden Pflanzen mit einer Verbindung behandelt werden, die spezifisch an Formylglycinamidinribotid-Synthase, codiert durch eine DNA-Sequenz SEQ-ID No. 1, SEQ-ID No . 3 oder SEQ-ID No . 5 oder eine mit dieser DNA-Sequenz hybridisierenden DNA-Sequenz, bindet und deren 5 Funktion inhibiert.
Pflanzen sind in der Lage, aus Kohlendioxid, Wasser und anorganischen Salzen ihre Zellkomponenten zu synthetisieren.
Dieser Prozeß ist nur möglich, indem biochemische Reaktionen zum 0 Aufbau organischer Substanzen genutzt werden. Nukleotide werden in Pflanzen de novo synthetisiert. Als Bestandteil der Nukleinsäuren kommt ihnen besondere Bedeutung zu . In kovalenter Bindung aktivieren Nukleotide Kohlenhydrate für die Biosynthese von Poly- sacchariden. Ferner aktivieren sie Kopfgruppen für die Biosynt- 5 hese von Lipiden. Nukleotide .sind in nahezu alle Stoffwechselwege eingebunden. Nukleosidtriphosphate, vor allem ATP, treiben die meisten energieaufwändigen Reaktionen der Zelle. Adeninnukleotide sind darüber hinaus auch als Komponente in essentiellen Faktoren wie Coenzym A, sowie Nicotinamid- und Flavin-Coenzymen zu finden,
_,, die an vielen zellulären Reaktionen beteiligt sind. Die gekop- 0 pelte Hydrolyse von Guanosm-5 '-triphosphat (GTP) definiert für diverse zelluläre Prozesse, wie Proteintranslation, Microtubuli- Assemblierung, vesikulären Transport, Signaltransduktion und Zellteilung eine Reaktionsrichtung. Ferner stellen Nukleotide die Ausgangsmetabolite zur Biosynthese von Methylxanthinen wie Cof- 5 fein und Theobromin in Pflanzenfamilien der Rubiaceae und Thea- ceae dar . Da Pflanzen auf einen effektiven Nukleotidstoffwechsel angewiesen sind, läßt sich vermuten, daß sich Enzyme, die an der Nucleotid- biosynthese beteiligt sind, als Zielprotein (Target) für Herbizide eignen. So wurden bereits Wirkstoffe beschrieben, welche die 5 pflanzliche de novo Purinbiosynthese inhibieren. Beispielhaft ist der Naturstoff Hydanthocidin zu nennen, welcher nach Phosphory- lierung in planta die Adenylosuccinat-Synthetase (ASS) , inhibiert (Siehl et al . , Plant Physiol. 110(1996), 753-758).
Auch andere Inhibitoren für Enzyme der Purin-Biosynthese sind für 10 ihre pharmakologische Wirkung in Tieren und Mikroorganismen bekannt : Folat-Analoga inhibieren unter anderem das Enzym GAR- Transformylase und wirken antiproliferativ, antiinflammatorisch und immunosuppressiv. Mycophenolsäure (MPA) wirkt als Hemmstoff der IMP-Dehydrogenase im GMP-Syntheseweg antimikrobiell , antivi- ^ ral und immunosuppressiv (Kitchin et al, Journal of the American Academy of Dermatology 37(1997), 445-449).
Bakterielle PRPP-Amidotransferase kann durch Glutaminantagoni- sten, wie z.B. Acivicin (L-(alpha S, 5S) -alpha-amino-3-chloro-
20 4, 5-dihydro-5-isoxazol-Essigsäure) gehemmt werden. Glutaminanta- gonisten sind nicht spezifisch für PRPP-Amidotransferase sondern hemmen auch die Formylglycinamidinribotid-Synthase (E.C. 6.3.5.3.) von Säugetieren und wirken antiproliferativ auf Tumorgewebe (Elliot und Weber, Biochemical Pharmacology 34(1985),
25 243-248) . Formylglycinamidinribotid-Synthase wandelt im vierten Schritt der Purinbiosynthese den Carboxa id-Sauerstoff des For- mylglycinamid-Ribonukleotids (FGAR) in eine Iminogruppe um. Unter Hydrolyse von ATP zu ADP wird der Amidstickstoff vom Glutamin auf FGAR übertragen und es entstehen Formylglycina idin-Ribonukleotid
3° (FGAM) und Glutamat, siehe Abbildung 1. Ein Nachweis der Wirksamkeit von Glutaminantagonisten auf pflanzliche Formylglycinamidin- ribotid-Synthase steht noch aus .
Gene, die für Formylglycinamidinribotid-Synthase kodieren, wurden 35 aus verschiedenen Organismen isoliert.
CDNAs die für Formylglycinamidinribotid-Synthase codieren konnten aus diversen bakteriellen und tierischen Organismen isoliert und charakterisiert werden.
40
Für die meisten Enzyme des Purinbiosynthesewegs in Pflanzen wurden die codierenden Gene bereits isoliert. Im Falle der Formyl- glycinamidinribotid-Synthase liegen bisher nur zwei partielle EST (expressed sequence tag) Sequenzen aus Arabidopsis thaliana (Gen¬
45 bank Nummer AA042492, 1295 bp) und Gerste (Genbank Nummer HVJ000235, 384 bp) vor. Der Nachweis der Eignung eines Enzyms als Herbizid-Target kann durch Verringerung der Enzymaktivität zum Beispiel mittels der Antisensetechnik in transgenen Pflanzen erreicht werden. Wird auf diese Weise ein verringertes Wachstum bewirkt, so läßt sich damit auf eine Eignung des in seiner Aktivität reduzierten Enzyms als Wirkort für herbizide Wirkstoffe schließen. Beispielsweise führt die Antisense-Inhibierung der Acetolactat-Synthase (ALS) in transgenen Kartoffelpflanzen zu vergleichbaren Phänotypen, wie die Behandlung von Kontrollpflanzen mit ALS-inhibierenden Herbzi- den (Höfgen et al . , Plant Physiology 107(1995), 469-477).
Aufgabe der vorliegenden Erfindung war es zu belegen, daß Formyl- glycinamidinribotid-Synthase in Pflanzen ein geeignetes herbizi- des Target ist, die Isolierung einer vollständigen pflanzlichen cDNA kodierend für das Enzym Formylglycinamidinribotid-Synthase und deren funktionelle Expression in bakteriellen oder eukaryon- tischen Zellen, sowie die Herstellung eines effizienten und einfachen Formylglycinamidinribotid-Synthase Testsystems für die Durchführung von Inhibitor-Enzym-Bindungsstudien.
Dazu war es zunächst notwendig, cDNAs codierend für pflanzliche Formylglycinamidinribotid-Synthase zu isolieren. Ein Gegenstand der vorliegenden Erfindung betrifft demnach die Isolierung von cDNAs codierend für Fonnylglycinamidinribotid-Synthase aus Arabi - dopsis thaliana, Nicotiana tabacum und Chilopsis linearis .
Ein weiterer Gegenstand der Erfindung betrifft Verfahren zur Identifizierung von Inhibitoren der Formylglycinamidinribotid- Synthase in Pflanzen durch Hochdurchsatzmethoden. Die Erfindung betrifft daher die funktionale Expression pflanzlicher Formylgly- cinamidinribotid-Synthase insbesondere von Formylglycinamidinri- botid-Synthase aus Arabidopsis thaliana und Tabak in geeigneten Expressionssystemen sowie die Verwendung der so hergestellten Enzyme in einem in vitro Testsystem zur Messung der Formylglycina- midinribotid-Synthase-Aktivität .
Die Aufgabe wurde gelöst durch Isolierung von Genen, die für das pflanzliche Enzym Formylglycinamidinribotid-Synthase kodieren, der Herstellung von Antisensekonstrukten der Formylglycinamidin- ribotid-Synthase, sowie der funktioneilen Expression der Formyl- glycinaiαidinribotid-Synthase in bakteriellen oder eukaryontisehen Zellen.
Ein Gegenstand der vorliegenden Erfindung betrifft die Isolierung von Vollängen-cDNAs codierend für funktioneile Formylglycinami- dinribotid-Synthase (E.C.6.3.5.3.) aus Arabidopsis thaliana und Nicotiana tabacum sowie einer partiellen cDNA-Sequenz aus Chilopsis linearis. Ein erster Gegenstand der vorliegenden Erfindung ist eine DNA-Sequenz SEQ-ID NO. 1 oder SEQ-ID NO. 3 enthaltend die Kodierregion einer pflanzlichen Formylglycinamidinribotid-Synthase aus Nicotiana tabacum und Arabidopsis thaliana, siehe Beispiele 1 und 2.
5
Weiterer Gegenstand der Erfindung sind DNA-Sequenzen, die von
SEQ-ID NO. 1 oder SEQ-ID NO. 3 abgeleitet sind oder mit einer dieser Sequenzen hybridisieren und die für ein Protein kodieren, das die biologische Aktivität einer Formylglycinamidinribotid-
Synthase besitzt. 0
Arabidopsis thaliana Pflanzen und Tabakpflanzen der Linie Nicotiana tabacum cv. Samsun NN, die ein Sense- oder Antisensekon- strukt der Fo:rmylglycinamidinribotid-Synthase tragen, wurden näher charakterisiert. Die Pflanzen zeigen in unterschiedlichem 5 Maße eine Wachstumsretardierung. Die transgenen Linien, sowie die Nachkommen der 1. und 2. Generation, wiesen ein verringertes Wachstum in Erde auf . In Pflanzen mit verringertem Wachstum konnte eine im Vergleich zum Wildtyp reduzierte Formylglycinami- dinribotid-Synthase RNA-Menge in der Northern-Hybridisierung de- tektiert werden. Ferner konnte durch Messung der Enzymaktivität ^ eine im Vergleich mit Wildtyppflanzen verringerte Menge der For- mylglycinamidinribotid-Synthase Aktivität in den transgenen Linien detektiert werden, siehe Beispiele 5 und 6. Das Expressions- niveau sowie die Reduktion der Formylglycinamidinribotid-Synthase Aktivität korrelieren mit der Wachstumsretardierung. Dieser klare 5 Zusammenhang weist Formylglycinamidinribotid-Synthase erstmals eindeutig als geeignetes Zielprotein (Target) für herbizide Wirkstoffe aus.
Um effiziente Hemmstoffe der pflanzlichen Formylglycinamidinribo- tid-Synthase finden zu können, ist es notwendig, geeignete Test- 0 systeme, mit denen Inhibitor-Enzym-Bindungsstudien durchgeführt werden können, zur Verfügung zu stellen. Hierzu wird beispielsweise die cDNA-Sequenz der Formylglycinamidinribotid-Synthase oder geeignete Fragmente der cDNA Sequenz der Formylglycinamidin- ribotid-Synthase aus Arabidopsis thaliana in einen Expressions- 5 vektor (pQE, Qiagen) kloniert und in E. coli überexprimiert .
Alternativ kann jedoch die Expressionskassette enthaltend eine DNA-Teilsequenz der SEQ-ID No . 1 oder SEQ-ID NO. 3 beispielsweise in anderen Bakterien, in Hefen, Pilzen, Algen, Pflanzenzellen, Insektenzellen oder Säugetierzellen exprimiert werden. 0
Das mit Hilfe einer Expressionskassette exprimierte Formylglyci- namidinribotid-Synthase Protein eignet sich besonders zur Auffindung von für die Formylglycinamidinribotid-Synthase spezifischen Hemmstoffen. 5
Dazu kann die pflanzliche Formylglycina idinribotid-Synthase beispielsweise in einem Enzymtest eingesetzt werden, bei dem die Ak- tivität der Formylglycinamidinribotid-Synthase in An- und Abwesenheit des zu testenden Wirkstoffs ermittelt wird. Aus dem Vergleich der beiden Aktivitätsbestimmungen läßt sich eine qualitative und quantitative Aussage über das Hemmverhalten des zu te- _ stenden Wirkstoffes machen, siehe Beispiel 8 .
Mit Hilfe des erfindungsgemäßen Testsystems kann eine Vielzahl von chemischen Verbindungen schnell und einfach auf herbizide Eigenschaften überprüft werden. Das Verfahren gestattet es, reproduzierbar aus einer großen Anzahl von Substanzen gezielt solche ° mit großer Wirkstärke auszuwählen, um mit diesen Substanzen anschließend weitere, dem Fachmann geläufige vertiefte Prüfungen durchzuführe .
Weiterer Gegenstand der Erfindung ist ein Verfahren zur Identifi- 5 zierung von Substanzen mit herbizider Wirkung, die die Formylgly- cinamidinribotid-Synthase Aktivität in Pflanzen hemmen, bestehend aus
a) der Herstellung von transgenen Pflanzen, Pflanzengeweben, o oder Pflanzenzellen, die eine zusätzliche DNA-Sequenz codierend für ein Enzym mit Formylglycinamidinribotid-Synthase Aktivität enthalten und in der Lage sind eine enzymatisch aktive Formylglycinamidinribotid-Synthase überzuexprimieren;
5 b) das Aufbringen einer Substanz auf transgene Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile sowie auf nicht- transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile ;
0 c) das Bestimmen des Wachstums oder der Überlebensfähigkeit der transgenen und der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile nach der Aufbringung der chemischen Substanz; und
5 d) dem Vergleich des Wachstums oder der Überlebensfähigkeit der transgenen und der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile nach der Aufbringung der chemischen Substanz;
0 wobei die Unterdrückung des Wachstums oder der Überlebensfähigkeit der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile ohne jedoch das Wachstum oder die Überlebensfähigkeit der transgenen Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile stark zu unterdrücken, belegt, 5 daß die Substanz aus b) herbizide Aktivität zeigt und die Formyl- glycinamidinribotid-Synthase Enzymaktivität in Pflanzen inhibiert.
Weiterer Gegenstand der Erfindung ist ein Verfahren zur Identifi- zierung von Inhibitoren pflanzlicher Formylglycinamidinribotid- Synthase, mit potentiell herbizider Wirkung indem man das Gen einer pflanzlichen Formylglycinamidinribotid-Synthase kloniert, in einer geeigneten Expressionskassette - beispielsweise in Insektenzellen - zur Überexpression bringt, die Zellen öffnet und den Zellextrakt direkt bzw. nach Anreicherung oder Isolierung des Enzyms Formylglycinamidinribotid-Synthase in einem Testsystem zur Messung der Enzymaktivität in Gegenwart von niedermolekularen chemischen Verbindungen einsetzt.
Ein weiterer Gegenstand der Erfindung sind Verbindungen mit her- bizider Wirkung, die mit dem oben beschriebenen Testsystem identifizierbar sind.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Beseitigung von unerwünschtem Pflanzenwuchs, dadurch gekennzeich- net, daß die zu beseitigenden Pflanzen mit einer Verbindung behandelt werden, die spezifisch an Formylglycinamidinribotid-Syn- thase codiert durch eine DNA-Sequenz SEQ-ID No . 1, SEQ-ID No . 3 oder SEQ-ID No. 5 oder eine mit dieser DNA-Sequenz hybridisierenden DNA-Sequenz, bindet und deren Funktion inhibiert.
Inhibitoren der Formylglycinamidinribotid-Synthase mit herbizider
Wirkung können als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, an denen sie unerwünscht sind. Ob die mit Hilfe des erfindungsgemäßen Testsystems gefundenen Wirkstoffe als totale oder selektive Herbizide wirken, hängt unter anderem von der angewandten Menge ab.
Inhibitoren der Formylglycinamidinribotid-Synthase mit herbizider Wirkung können beispielsweise gegen folgende Unkräuter verwendet werden :
Dikotyle Unkräuter der Gattungen:
Sinapis, Lepidium, Galiu , Stellaria, Matricaria, Anthemis, Ga- linsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthiu , Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanu , Rorippa, Rotala, Lindernia, Lamiu , Veronica, Abutilon, E ex, Datura, Viola, Galeopsis, Papa- ver, Centaurea, Trifolium, Ranunculus , Taraxacum. Monokotyle Unkräuter der Gattungen:
Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus , Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleo- charis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.
5 Gegenstand der Erfindung sind auch Expressionskassetten, deren Sequenz für eine Formylglycinamidinribotid-Synthase aus Arabidopsis thaliana, Nicotiana tabacum oder Chilopsis linearis oder deren funktionelles Äquivalent kodiert. Die Nukleinsäuresequenz kann dabei z.B. eine DNA- oder eine cDNA-Sequenz sein. 0 Die erfindungsgemäßen Expressionskassetten beinhalten außerdem regulative Nukleinsäuresequenzen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfaßt eine erfindungsgemäße Expressionskassette stromaufwärts, d.h. am 5 ' -Ende der kodierenden Sequenz, 5 einen Promotor und stromabwärts, d.h. am 3 '-Ende, ein Polyadeny- lierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz für das Formylglycinamidinribotid-Synthase Gen operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequen- zielle Anordnung von Promotor, kodierender Sequenz, Terminator ^ und ggf. weiterer regulativer Elemente derart, daß jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.
Die Herstellung einer erfindungsgemäßen Expressionskassette er- 5 folgt durch Fusion eines geeigneten Promotors mit einer geeigneten Formylglycinamidinribotid-Synthase DNA Sequenz und einem Po- lyadenylierungssignal nach gängigen Rekombinations- und Klonie- rungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) so0 wie in T.J. Silhavy, M.L. Ber an und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel , F.M. et al . , Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Inter- science (1987) beschrieben sind. 5
Gegenstand der Erfindung sind auch funktionell äquivalente DNA- Sequenzen, die für ein Formylglycinamidinribotid-Synthase Gen kodieren und die bezogen auf die Gesamtlänge der DNA-Sequenz eine Sequenzhomologie mit der DNA-Sequenz SEQ-ID NO. 1, SEQ-ID NO. 3 oder SEQ-ID No . 5 von 40 bis 100 % aufweisen. 0
Bevorzugter Gegenstand der Erfindung sind funktionell äquivalente DNA-Sequenzen, die für ein Formylglycinamidinribotid-Synthase Gen kodieren und die bezogen auf die Gesamtlänge der DNA-Sequenz eine Sequenzhomologie mit der DNA-Sequenz SEQ-ID NO. 1, SEQ-ID NO. 3 5 oder SEQ-ID No . 5 von 60 bis 100 % aufweisen. Besonders bevorzugter Gegenstand der Erfindung sind funktionell äquivalente DNA-Sequenzen, die für ein Formylglycinamidinribotid- Synthase Gen kodieren und die bezogen auf die Gesamtlänge der DNA-Sequenz eine Sequenzhomologie mit der DNA-Sequenz SEQ-ID NO. 5 1, SEQ-ID No. 3 oder SEQ-ID No. 5 von 80 bis 100 % aufweisen.
Funktionen äquivalente Sequenzen, die für ein Formylglycinami- dinribotid-Synthase Gen kodieren, sind erfindungsgemäß solche Sequenzen, welche trotz abweichender Nukleotidsequenz noch die gewünschten Funktionen besitzen. Funktionelle Äquivalente umfassen ° somit natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z.B. durch chemische Synthese erhaltene, an den Kodon-Gebrauch einer Pflanze angepaßte, Nukleotid- Sequenzen. 5 Unter einem funktioneilen Äquivalent versteht man insbesondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten für eine Formylglycinamidinribotid-Synthase kodierende Sequenz, welche weiterhin die gewünschte Funktion zeigt. Mutationen umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder Insertionen eines oder mehrerer Nukleotidreste . Somit 0 werden beispielsweise auch solche Nukleotidsequenzen durch die vorliegende Erfindung mit umfaßt, welche man durch Modifikation dieser Nukleotidsequenz erhält. Ziel einer solchen Modifikation kann z.B. die weitere Eingrenzung der darin enthaltenen kodierenden Sequenz oder z.B. auch die Einfügung weiterer Restriktionsen- 5 zym-Schnittstellen sein.
Funktionelle Äquivalente sind auch solche Varianten, deren Funktion, verglichen mit dem Ausgangsgen bzw. Genfragment, abgeschwächt oder verstärkt ist. 0 Die erfindungsgemäße Expressionskassette kann darüberhinaus auch zur Transformation von Bakterien, Cyanobakterien, Hefen, filamen- tösen Pilzen und Algen und eukaryontisehen Zellen (z.B. Insektenzellen) mit dem Ziel der Herstellung von ausreichenden Mengen des Enzyms For ylglycinamidinribotid-Synthase eingesetzt werden. 5
Weiterer Gegenstand der Erfindung ist ein Protein aus Arabidopsis thaliana, Nicotiana tabacum oder Chilopsis linearis gekennzeichnet durch die Aminosäuresequenz SEQ-ID NO. 2, SEQ-ID No . 4 oder SEQ-ID No. 6 bzw. Derivate oder Teile dieses Proteins mit Formyl- glycinamidinribotid-Synthase Aktivität . 0
Gegenstand der Erfindung sind auch pflanzliche Proteine mit For- mylglycinamidinribotid-Synthase Aktivität mit einer Aminosäurese- quenzhomologie zu der Formylglycinamidinribotid-Synthase aus Arabidopsis thaliana, Nicotiana tabacum oder Chilopsis linearis mit 5 den SEQ-ID NO. 2, SEQ-ID NO. 4 oder SEQ-ID No . 6 von 20 - 100 % Identität . Bevorzugt sind pflanzliche Proteine mit Formylglycinamidinribo- tid-Synthase Aktivität mit einer Aminosäuresequenzhomologie zu der Formylglycinamidinribotid-Synthase aus Arabidopsis thaliana, Nicotiana tabacum oder Chilopsis linearis mit den Sequenzen 5 SEQ-ID NO. 2, SEQ-ID NO. 4 oder SEQ-ID No . 6 von 50 - 100 % Identität.
Besonders bevorzugt sind pflanzliche Proteine mit Formylglycina- midinribotid-Synthase Aktivität mit einer Aminosäuresequenzhomologie zu der Formylglycinamidinribotid-Synthase aus Arabidopsis ° thaliana, Nicotiana tabacum oder Chilopsis linearis mit den
Sequenzen SEQ-ID NO. 2, SEQ-ID NO. 4 oder SEQ-ID No . 6 von 80 - 100 % Identität.
Weitere Aufgabe der Erfindung war die Überexpression des Formyl- 5 glycinamidinribotid-Synthase Gens in Pflanzen zur Herstellung von Pflanzen, die tolerant gegenüber Inhibitoren der Formylglycinami- dinribotid-Synthase sind.
Durch Überexpression der für eine Formylglycinamidinribotid-Syn- thase kodierenden Gensequenz SEQ-ID NO. 1 oder SEQ-ID NO. 3 in 0 einer Pflanze wird eine erhöhte Resistenz gegenüber Inhibitoren der Formylglycinamidinribotid-Synthase erreicht. Die derart hergestellten transgenen Pflanzen sind ebenfalls Gegenstand der Erfindung. 5 Die Wirksamkeit der Expression des transgen exprimierten Formyl- glycinamidinribotid-Synthase Gens kann beispielsweise in vitro durch Sproßmeristemvermehrung oder durch einen Keimungstest ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression des Formylglycinamidinribotid-Synthase Gens und deren Auswirkung auf die Resistenz gegenüber Hemmstoffen der Formylgly- 0 cinamidinribotid-Synthase an Testpflanzen in Gewächshausversuchen getestet werden.
Gegenstand der Erfindung sind außerdem transgene Pflanzen, transformiert mit einer Expressionskassette, enthaltend die DNA-Se- 5 quenz SEQ-ID No . 1 oder SEQ-ID No . 3, die durch zusätzliche Expression der DNA-Sequenz SEQ-ID No . 1 oder SEQ-ID No . 3 tolerant gegenüber Inhibitoren der Formylglycinamidinribotid-Synthase geworden sind, sowie transgene Zellen, Gewebe, Teile und Vermehrungsgut solcher Pflanzen. Besonders bevorzugt sind dabei transgene Kulturpflanzen, wie z.B. Gerste, Weizen, Roggen, Mais, Soja, 0 Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und die verschiedenen Baum-, Nuß- und Weinspezies, sowie Leguminosen.
Insbesondere bevorzugt sind Sequenzen, die ein Targeting in den 5 Apoplasten, in Piastiden, die Vakuole, das Mitochondrium, das En- doplasmatische Retikulum (ER) oder durch ein Fehlen entsprechender operativer Sequenzen einen Verbleib im Kompartiment des Ent- Stehens, dem Zytosol, gewährleisten (Kermode, Crit. Rev. Plant Sei. 15, 4 (1996) , 285-423) .
Beispielhaft kann die pflanzliche Expressionskassette in den Pflanzen-Transformationsvektor pBinAR eingebaut werden, siehe Beispiel 5.
Als Promotoren der erfindungsgemäßen Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann. Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der CaMV 35S-Promotor aus dem Blumenkohl-Mosaik-Virus (Franck et al . , Cell 21(1980), 285-294). Dieser Promotor enthält unterschiedliche ErkennungsSequenzen für transkriptionale Effektoren, die in ihrer Gesamtheit zu einer permanenten und konstitutiven Expression des eingeführten Gens führen (Benfey et al . , EMBO J., 8 (1989), 2195-2202) .
Die erfindungsgemäße Expressionskassette kann auch einen chemisch induzierbaren Promotor enthalten, durch den die Expression des exogenen Formylglycinamidinribotid-Synthase Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren wie z.B. der PRPl-Promotor (Ward et al . , Plant.Mol. Biol . (1993) 22, 361-366), ein durch Salizylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzenesufonamid-induzierbarer (EP 388186), ein durch Tetrazyklin-induzierbarer (Gatz et al . , Plant J. (1992) 2, 397-404), ein durch Abscisinsäure-induzierba- rer (EP0335528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer (WO 93/21334) Promotor sind in der Literatur beschrieben und können u.a. verwendet werden .
Weiterhin s nd insbesonders solche Promotoren bevorzugt, die die
Expression in Geweben oder Pflanzenteilen sicherstellen, in denen die Biosynthese von Purinen bzw. deren Vorstufen stattfindet. Insbesondere zu nennen sind Promotoren, die eine blattspezifische Expression gewährleisten. Zu nennen sind der Promotor der cytoso- lischen FBPase aus Kartoffel oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al . , EMBO J. , 8 (1989) 2445-245).
Mit Hilfe eines samenspezifischen Promotors kann ein Fremdprotein stabil bis zu einem Anteil von 0,67% des gesamten löslichen Samenproteins in den Samen transgener Tabakpflanzen exprimiert wer- den (Fiedler und Conrad, Bio/Technology 10 (1995), 1090-1094). Die erfindungsgemäße Expressionskassette kann daher beispielsweise einen samenspezifischen Promotor (bevorzugt den Phaseolin- Promotor, den USP- oder LEB4-Promotor) , das LEB4-Signalpeptid, das zu exprimierende Gen und ein ER-Retentionssignal enthalten.
Die inserierte Nukleotid-Sequenz kodierend für eine Formylglyci- namidinribotid-Synthase kann synthetisch hergestellt oder natür- lieh gewonnen sein oder eine Mischung aus synthetischen und natürlichen DNA-Bestandteilen enthalten. Im allgemeinen werden synthetische Nukleotid-Sequenzen mit Kodons erzeugt, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons kön- g nen aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Pflanzenspezies exprimiert werden. Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Se- quenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet 0 ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.
Außerdem sind artifizielle DNA-Sequenzen geeignet, solange sie, die gewünschte Eigenschaft der Erhöhung des Gehaltes an Purin- 5 nukleotiden in der Pflanze durch Überexpression des Formylglycin- amidinribotid-Synthase Gens vermitteln. Solche artifiziellen DNA- Sequenzen können beispielsweise durch Rückübersetzung mittels Molecular Modelling konstruierter Proteine, die Formylglycinami- dinribotid-Synthase Aktivität aufweisen, oder durch in vi tro- Selektion ermittelt werden. Besonders geeignet sind kodierende DNA-Sequenzen, die durch Rückübersetzung einer Polypeptidsequenz gemäß der für die Wirtspflanze spezifischen Kodon-Nutzung erhalten wurden. Die spezifische Kodon-Nutzung kann ein mit pflanzengenetischen Methoden vertrauter Fachmann durch Computerauswertungen anderer, bekannter Gene der zu transformierenden Pflanze 5 leicht ermitteln.
Als weitere erfindungsgemäße geeignete äquivalente Nukleinsäure- Sequenzen sind zu nennen Sequenzen, welche für Fusionsproteine kodieren, wobei Bestandteil des Fusionsproteins ein pflanzliches Formylglycinamidinribotid-Synthase Polypeptid oder ein funktio0 nell äquivalenter Teil davon ist. Der zweite Teil des Fusionsproteins kann z.B. ein weiteres Polypeptid mit enzymatischer Aktivität sein oder eine antigene Polypeptidsequenz mit deren Hilfe ein Nachweis auf Formylglycinamidinribotid-Synthase Expression möglich ist (z.B. mye-tag oder his-tag) . Bevorzugt handelt es sich 5 dabei jedoch um eine regulative Proteinsequenz, wie z.B. ein Signal- oder Transitpeptid, das das Formylglycinamidinribotid-Syn- thase Protein an den gewünschten Wirkort leitet .
Zweckmäßigerweise sollten die erfindungsgemäßen Promotor- und die
Terminator-Regionen in Transkriptionsrichtung mit einem Linker 0 oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, 5 häufig weniger als 60 bp, mindestens jedoch 5 bp. Der erfindungsgemäße Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die erfindungsgemäße Expressionskassette beinhaltet in der 5 ' -3 ' -Transkriptionsrichtung den erfindungsgemäßen Promotor, eine beliebige Sequenz und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.
Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in vitro-Mutagenese, "primerre- pair" , Restriktion oder Ligation verwendet werden. Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden. Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadeny- lierungssignale, vorzugsweise solche, die im wesentlichen T-DNA- Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACH5 entsprechen (Gielen et al . , EMBO J., 3 (1984), 835) oder funktioneile Äquivalente.
Zur Transformation einer Wirtspflanze mit einer für eine Formyl- glycinamidinribotid-Synthase kodierenden DNA wird eine erfindungsgemäße Expressionskassette als Insertion in einen rekombi- nanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktio- nelle Regulationssignale, beispielsweise Sequenzen für Replika- tion oder Integration enthält . Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press, Kapitel 6/7, 71-119) beschrieben.
Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet. Es werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind die Protoplasten- transformation durch Polyethylenglykol-induzierte DNA-Aufnähme , der biolistische Ansatz mit der Genkanone, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1,
Engineering and Utiiization, herausgegeben von S.D. Kung und
R. Wu, Academic Press (1993), 128-143 sowie in Potrykus Annu.
Rev. Plant Physiol . Plant Molec.Biol. 42 (1991), 205-225 beschrieben. Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agro-bacteriuu. tumefaciens zu transformieren, beispielsweise pBinl9 (Bevan et al . , Nucl. Acids Res. 12 (1984) , 8711) . Mit einer erfindungsgemäßen Expressionskassette transformierte Agrobakterien können ebenfalls in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie Getreide, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, _ Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und den verschiedenen Baum-, Nuß- und Weinspezies sowie Leguminosen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden. 0 Der Biosytheseort von Purinen ist im allgemeinen das Blattgewebe, so daß eine blattspezifische Expression des Formylglycinamidinri- botid-Synthase Gens sinnvoll ist. Es ist jedoch naheliegend, daß die Purin-Biosynthese nicht auf das Blattgewebe beschränkt sein muß, sondern auch in allen übrigen Teilen der Pflanze - bei- spielsweise in fetthaltigen Samen - gewebespezifisch erfolgen kann.
Darüberhinaus ist eine konstitutive Expression des exogenen For- mylglycinamidinribotid-Synthase Gens von Vorteil. Andererseits kann aber auch eine induzierbare Expression wünschenswert er0 scheinen.
Unter Verwendung der oben zitierten Rekombinations- und Klonie- rungstechniken können die erfindungsgemäßen Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, bei- 5 spielsweise in E. coli, ermöglichen. Geeignete KlonierungsVektoren sind u.a. pBR332, pUC-Serien, Ml3mp-Serien und pACYC184. Besonders geeignet sind binäre Vektoren, die sowohl in E. coli als auch in Agrobakterien replizieren können.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung ei0 ner erfindungsgemäßen Expressionskassette zur Transformation von Pflanzen, Pflanzenzellen, -geweben oder Pflanzenteilen. Vorzugsweise ist Ziel der Verwendung die Erhöhung des Formylglycinami- dinribotid-Synthase Gehaltes in der Pflanze. 5 Dabei kann je nach Wahl des Promotors die Expression spezifisch in den Blättern, in den Samen oder anderen Teilen der Pflanze erfolgen. Solche transgenen Pflanzen, deren Vermehrungsgut sowie deren Pflanzenzellen, -gewebe oder -teile sind ein weiterer Gegenstand der vorliegenden Erfindung. 0 Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt.
Beispiele 5 Gentechnische Verfahren, die den Ausführungsbeispielen zugrunde liegen: Allgemeine Klonierungsverfahren
Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose- Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nu- kleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von Escherichia coli Zeilen, Anzucht von Bakterien und Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al . (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt. Durchmusterung von cDNA-Bibliotheken
Es wurden λ-Phagen der entsprechenden cDNA-Bibliotheken auf Agar- platten mit E. coli XLl-Blue als Bakterienstamm ausplattiert. Die Phagen-DNA wurde mittels Standardverfahren (Sambrook et al . (1989), Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) auf Nitrocellulosefilter (Gelman Sciences) überführt und auf den Filtern fixiert. Als Hybridisierungssonden dienten PCR-Fragmente oder durch Restriktionsspaltung erhaltene DNA-Fragmente, die mit Hilfe eines "Multiprime DNA labelling Systems" (Amersham Buchler) in Anwesenheit von 32P-dCTP (spezifische Aktivität 3000 Ci/mmol) nach Herstellerangaben radioaktiv markiert wurden. Die Hybridisierung der Membranen erfolgte nach Prähybridisierung bei 60°C in 3 x SSPE, 0,1% Natriumdodecylsulfat (w/v) , 0,02% Polyvinylpyrro- lidon (w/v), 0,02% Ficoll 400 (w/v) und 50 mg/ml Kalbsthymus DNA für 12-16 Stunden. Anschließend wurden die Filter 60 Minuten in 2 x SSPE, 0,1% Natriumdodecylsulfat (w/v) bei 60°C gewaschen. Positiv hybridisierende Phagen wurden durch Autoradiographie sichtbar gemacht, mittels Standardtechniken vereinzelt (Sambrook et al . (1989); Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) und in Plasmide überführt (Stratagene) .
Sequenzanalyse rekombinanter DNA
Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al . , Proc . Natl. Acad. Sei. USA, 74(1977), 5463-5467). Fragmente resultierend aus einer Polymerase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern in zu expri- mierenden Konstrukten sequenziert und überprüft.
Analyse von Gesamt-RNA aus pflanzlichen Geweben
Gesamt-RNA aus pflanzlichen Geweben wurde wie bei Logemann et al.(Anal. Biochem. 163(1987), 21) isoliert. Für die Analyse wurden jeweils 20 μg RNA in einem Formaldehyd-haltigen l,5%igen Aga- rosegel aufgetrennt und auf Nylon Membranen (Hybond, Amersham) überführt. Der Nachweis spezifischer Transkripte wurde wie bei Amasino beschrieben durchgeführt ( Anal. Biochem. 152(1986), 304) . Die als Sonde eingesetzten DNA-Fragmente wurden mit einem Random Primed DNA Labeling Kit (Röche, Mannheim) radioaktiv markiert und nach Standardmethoden hybridisiert, siehe Hybond-Benut- zerhinweise, Amersham. Hyridisierungssignale wurden durch Autora- diographie mithilfe von X-OMAT AR Filmen der Fa. Kodak sichtbar gemacht .
Die verwendeten Chemikalien wurden, sofern nicht anders erwähnt, in p.a. Qualität von den Firmen Fluka (Neu-Ulm) , Merck (Dar - stadt) , Roth (Karlsruhe) , Serva (Heidelberg) sowie Sigma (Deisen- hofen) bezogen. Lösungen wurden mit aufbereitetem, pyrogenfreiem Wasser, im weiteren Text als H0 bezeichnet, aus einer Milli-Q Water System Wasseraufbereitungsanlage (Millipore, Eschborn) angesetzt. Restriktionsendonukleasen, DNA-modifizierende Enzyme und molekularbiologische Kits wurden von den Firmen AGS (Heidelberg) , Amersham (Braunschweig) , Biometra (Göttingen) , Röche (Mannheim) , Genomed (Bad Oeynnhausen) , New England Biolabs (Schwalbach/Taunus) , Novagen (Madison, Wisconsin, USA) , Perkin-Elmer (Weiterstadt) , Pharmacia (Freiburg) Qiagen (Hilden) und Stratagene (Heidelberg) bezogen. Sie wurden, soweit nicht anders erwähnt, nach
Herstellerangaben verwendet.
Die im folgenden verwendeten Bakterienstämme (E. coli, XL-1 Blue) wurden von Stratagene bezogen. E. coli AT 2465 wurde bei dem coli genetic stock centre (Yale University, New Haven) bezogen. Der zur Pflanzentransformation verwendete Agrobakterienstamm (Agro- bacterium tumefaciens, C58C1 mit dem Plasmid pGV2260 oder pGV3850kan) wurde von Deblaere et al . beschrieben (Nucl. Acids Res . 13 (1985), 4777) . Alternativ können auch der Agrobakterienstamm LBA4404 (Clontech) oder andere geeignete Stämme eingesetzt werden. Zur Klonierung können die Vektoren pUC19 (Yanish-Perron,
Gene 33(1985), 103-119) pBluescript SK- (Stratagene), pGEM-T
(Promega) , pZerO (Invitrogen) , pBinl9 (Bevan et al . , Nucl. Acids
Res. 12(1984), 8711-8720) und pBinAR (Höfgen und Willmitzer, Plant Science 66 (1990), 221-230) benutzt werden.
Beispiel 1
Isolierung einer For ylglycinamidinribotid-Synthase-cDNA voller Länge aus Arabidopsis thaliana.
Zur Isolierung von Formylglycinamidinribotid-Synthase codierenden cDNAs wurde ein partiell für Formylglycinamidinribotid-Synthase codierender expressed sequence tag (est) aus Arabidopsis thaliana (GenBank Accession number AA042492) bezogen, sequenziert und als Matrize zur Erzeugung einer Hybridisierungssonde mittels Poly e- rase Kettenreaktion (PCR) verwend t. Die Reaktionsgemische enthielten ca. 1 ng/μl Matrizen DNA, 0,5 μM der Oligonukleotide 5 ' -GCTGCTTCAATAAGGTTCAAC-3 ' und 5'-CGCTATTC- CCAACGGCACACC-3 ' , 200 μ_l Desoxy-Nukleotide (Pharmacia), 50 mM KC1, 10 mM Tris-HCl (pH 8,3 bei 25 °C, 1,5 mM MgCl2) und 0.02 U/μl Taq Polymerase (Perkin Eimer) .
Die A plifikationsbedingungen wurden wie folgt eingestellt:
Anlagerungstemperatur: 50°C, 1 min Denaturierungstemperatur : 94°C, 1 min
Elongationstemperatur : 72°C, 2 min
Anzahl der Zyklen: 30
Das resultierende Fragment von 465 bp wurde für ein heterologes Screening von 6,5*105 pfu einer UniZAP XR cDNA Bank (Stratagene) erstellt aus RNA von Arabidopsis thaliana (ganze Pflanze) verwendet. Nach Restriktions- und Sequenzanalyse konnten zwei unterscheidbare Klone (purL-19 und purL-23) identifiziert werden, welche Leseraster mit Homologie zu Formylglycinamidinribotid-Syn- thase aus Escherichia coli, Bacillus subtilis, Saccharomyces ce- revisiae und Drosophila melanogaster codieren. Die Sequenzvergleiche legen dar, daß es sich bei purL-19 (Länge: 1267 bp) als auch bei purL-23 (Länge: 917 bp) um partielle Klone, codierend für 3 ' -Bereiche von Formylglycinamidinribotid-Synthase handelt. Zur Isolierung einer cDNA voller Länge war es notwendig eine größenfraktionierte cDNA-Bank zur Durchmusterung einzusetzen, da aus anderen cDNA-Banken nur weitere partielle Klone isoliert werden konnten. Es wurde daher ein durch Spaltung von purL-19 mit EcoRI und Kpnl erhaltenes Fragment von 964 bp zur Durchmusterung von 5*105 pfu einer Arabidopsis thaliana cDNA Bank im Vektor la bda- ZAP-Express (Stratagene) verwendet. Die Bank wurde hergestellt aus RNA von ganzen Pflanzen. Es wurde eine Fraktion von cDNA mit > 2 kbp Länge präpariert, um die cDNA-Bank zu erzeugen.
Ein positiv hybridisierender Klon mit dem längsten Insert
(purL-48.1) wurde mittels Restriktionsanalyse identifiziert und anschließend sequenziert, siehe SEQ-ID No . 1. Die purL-48.1 cDNA weist eine Länge von 4570 Basenpaaren auf und ist im überlappenden Bereich (Nukleotid 3328- 4570) identisch mit dem kürzeren purL-19 cDNA. Ein durchgehendes Leseraster codiert in purL-4δ.l für ein Polypeptid von 1407 Aminosäuren und einer berechneten Masse von 153,952 kda, siehe SEQ-ID No . 2. Die Aminosäuresequenz weist Ähnlichkeit zu Formylglycinamidinribotid-Synthase aus anderen Organismen auf, siehe Tabelle 1. Verwandtschaft besteht zu Formylglycinamidinribotid-Synthase aus Mensch (GenBank Nummer
AB002359) mit 51,4 % Identität bzw. 59,7 % Ähnlichkeit auf Aminosäureebene. N-terminal weist purL-48.1 eine Verlängerung von 53 bis 88 Aminosäuren im Vergleich zu Formylglycina idinribotid-Syn- thase aus anderen Organismen auf, was auf eine Bedeutung als Transitpeptid hinweist. Die computergestütze Auswertung der Sequenz sagt für die Aminosäuren 1-53 eine mögliche Funktion als Signalpeptid für einen Import in die Piastiden vorher. Eine Lokalisation des Enzyms in Piastiden steht im Einklang mit seiner Funktion in der Purinbiosynthese. Im Leserahmen stromaufwärts des Start-Methionins findet sich ein Stopcodon. Bei purL-48.1 handelt es sich damit um die erste pflanzliche Vollängen cDNA für eine Formylglycinamidinribotid-Synthase.
Tabelle 1
Sequenzgegenüberstellung von Formylglycinamidinribotid-Synthase- Sequenzen aus verschiedenen Organismen (E.coli, Saccharomyces ce- revisiae, Drosophila melanogaster, Homo sapiens, Arabidopsis thaliana) . Angegeben sind nur jene Aminosäuren, die nicht der Konsensussequenz entsprechen.
1 50 purL_e.coli purL veast purL_Drome purL_human pur -ara-48- mntsqatraa lflngsnrqa mllgrssmsq lwgsvrmrts rlslnrtkav Consensus
51 100 purL_e.coli e.-lr a -saf-ink-1 purL_yeast tdy-lp-pka -sqf—dn-i purL_Drome m- ilr-ydvqa- purL_human aasasst nlihl-skgh ispakdt—q qrtpa- -h—vr-sg- purL-ara-48- slrcsaqpnk pkaav-tgsf vtadelp—v ekpaa- ... - ih liq
Consensus S SL I-EGSPV L-FYRVP-LH
101 150 purL_e.coli a...rfqaa- lpvhniya— -hfad.-nap —dd-haq— r-1—gpa- . purL_yeast kdi—ytnst svinelrsc- ihyvngiaq- -seqdt-1— v-lt-dsa-d purL_Drome sa-ee-sv— rlreedg.av -s-rm-r—h -e.ys-qaeh —aldel-v- purL_human -g-a-ghtr- kl-gklp.-l qg-e v-. t-ea-p -aeetkk-m- purL-ara-48- -s—a-.l-k av-tkisnqi -slt—qsf- ig.l-s-lkd ..e-lsv-k- Consensus E-ANSE—LR —Q EY V-V-TELCYN LN—EAK-LE SL-KY—LL 151 200 purL_e.coli —ha-q .... -k...- -1-t—pgti s sk-td- purL_yeast iand—arql -d-v-nn—s sa-.-edty- ir-v—sgti s sk-tn- purL_Drome lvk skgq s-s-qpa-q. ..s —sq— —i fn-s —y c-n- purL_human lfgc—11. d dv—e-w-.. .. -p—nd— n-s —t i-sv purL-ara-48- il.-etyepe —gtd-f-er kkqe-lhavi v s-t -a s-
Consensus QPL NLARAS-LP- —L-GS— L LEVGPRL-F- TPWSTNAV-I
201 250 purL_e.coli ahn . q- n gva-y iea..-tltn -qwqqvtae. m-tvf purL_ east ahv k- q-i—glal- iktvp-f —lnd-slkc vy qql- purL_Drome fqnl-y.s— r-m-tst v..t gsk apea-r-vpl -g qcl- purL_human cra — .gp- d-v-tt r l..s-ah-ps aeve—al-t qhf purL-ara-48- cra . t s 1.. fsk —qike-a-m v cv- Consensus CGLQDEV -RLER-RRYL FGEPLL EN—AIF-A- LHDRMTE—Y
251 300 purL_e.coli fa.lddaeql -ahhq-t—t s-d-lgqg -q—id- -Ir ae purL_yeast lt-ppntm-i —hee-k-lv h t-kdtk qspkdi-s— -t s purL_Drome -e-nt-ka— d.eql—rqa -whf— .. — a ri fnd purL_human ph...-iq— spesm— .pl -g-.in..i- g 1 s purL-ara-48- -qk...lv— e-nw—e- . ..ky— .. -m -k—k ei m f-e
Consensus T-E—P—SF FT PEPV- NVPLVP— L EEGR-ALEKA NQELGLALD-
301 350 purL_e.coli dei—lq-a- tk.-g nd i—ym a- c— i— a-w eq- purL_ east geme-liha- vetmk-d—d m v- c—ki— a-wt i— purL_Drome y h-1- ak—g 1 c r -rm ve- pur _human w f—kr- . q—q st —a—1 k -qlhv—q-1 purL-ara-48- q—q rl- redik-d—n i a -nm kpm
Consensus -DLDYYTD-F —EL-KNPT- VELFDFAQSN SEHSRHWFFN GD-VIDG-KQ
351 400 purL_e . coli k — kn -f-ttpdhvl say — aavm e-s — gryfa dhe-g . r . y- purL_yeast qft rn -hklnpeyti says — aavl dsenda-ffa pns-t . kewt purL_Drome ir — md — ahtn 1 ik-s m v — dhqtiv- sswa-gavr pur__human vh es-ms ssn lk-c i q-k — r — r- ed — r-srfq purL-ara-48- d m-ivks -w-anm-s- ig-k i r — 1-nq-r- 11-gsvcll-
Consensus PKSLFQMI — TQE PNNV — F-DNSSA- -GFΞV-FL-P — PT-P D
401 450 purL_e . coli fh — pahi-m kv h is-w a — s — e eg- a-pk — purL_yeast stk-ripl-i kv h -s a — s — e eg- s-tkc- purL_Drome 1-svqsdli- m -a — s — — t 1 — vqg v gvpi — purL_human q — glrhw- f — g -c — s — — t vqc ahw — purL-ara-48- vsardldi — f-c- -a-y e — a th- sfw-s
Consensus -QQE LF TAETHN-PTA V-PFPGA-TG -GGRIRD — A TGRG-K — AG 451 500 purL_e.coli lv-fs-s—r f . ed-gk-eriv ta-d-mt-gp 1-gaafn-e- purL_yeast ls-fs-sd-1 n . -nigk-yhi- -a-d-m p 1-saafn-e- purL_Drome -a a— k—y-p -d-k—atf- p—qvl purL_human -a f nl -s-q—g-f- r—eva purL-ara-48- -s n e-sya ss-q—s-1- q-l-d—
Consensus T-GYCVGNLH IPGYEQPWED L-F-YP-N-A SPL-I-IEAS NGASDYGNKF
501 550 purL_e.coli -r-al f- -yee— shn -.e-l-gy— la n i—d-vq— . purL_yeast -r-c f- -ltt—lnhq -ke-i-gf— ia—f— v-pqfal-nt purL_Drome s-fal sy—nsaada s— ..d-yv- 1— mp-tmre-lp purL_human la-fa- sl—q..-pd .. —wi- s me-d—s-ea purL-ara-48- m-q—t- -f-mr..-ps -d- .. — l- a q idh —t—e
Consensus GEPVINGY-R T-GLKV- — GQRE-RE-HK PIMFSGGIGT -RA-HI-KG-
551 600 purL_e.coli e-nv-ak—v 1 amn—1 m.a s as dn purL_yeast — p-sc-iv 1—qsml—1 .a —egs as n purL_Drome -.ar-q—a- i v v ei q-sg—e n a— purL_human -.-p—ev— v v v qv q-dnts g purL-ara-48- -.-v v— i a m m.v n—e n a—
Consensus PIE-GMLLVK -GGP-YRIG- GGGAASSV— SGQ-DADLDF -AVQRGDPEM
601 650 purL_e.coli -rrcqe—dr -wq—da -f v ls-amp s d-gr-g-fel purL_yeast -rrcqq—d- —a—nn q v ls-a-p h dndl f— purL_Drome -n-ln—v— -ld q -a -g e —f v-fs purL_human -q-mn apkg c-1 -g sd -.. i-yt purL-ara-48- sq-ly—v— -i-m—k i -c— —iiy -..q—e Consensus E-K—RVIRA CVELGE-NPI LSIHDQGAGG N-NVLKELV- PG-AGAKIDI
651 700 purL_e.coli —ilsde-g- -p cn-s yv-a-a- —lplfd-1- a-y—i purL_yeast -kvlsle-g- -pm cn-s yv-g-sp qdlsif a-f purL_Drome k-fql y ta—1 — n-i-cn- 1—k— r c-isf- srfql 1 na — sn lrs pn-df-thvs a c-acf- purL-ara-48- -avw — h — -v — qd-i — k- es — i-qs — lsm — i
Consensus RE GDPTM S-LEIWGAEY QER-ALLV-A DQRE-LEEIC KRER-P-AW
701 750 purL_e.coli -ea-eelh-s -h- rh fdnq-i— - dvl 1—m purL_yeast -ha-aeqk-i ve- -1 lkt—i m pilf—p—m purL_Drome -w—d—v- -l.ekp d leqa-n-fnr sevs-f ky d r purL_huπ.an — i — dr-iv -v-drec-vr rngqgd-p-t v - rk purL-ara-48- — in-g — c- -i-sta-a-c skeg- . . . .p pav -k d k
Consensus GT-TG-GRLT L-D APK- L-A-P- PPPTP-DLEL E-VLGKMPK- 751 800 purL_e.coli -r-v-tlkak .gdalare-i tia— k h— -ae-t- -v-ig purL_yeast sretit—In -pean-seip s-q—iq n—s-g—s- -i-ig purL_Drome -y—k—qtp -ke-s—k-1 1-de—e s-va-g —n c-g purL_human eff kppm -qp-a— -1 svhq—e a-a y —n g purL-ara-48- -fkfn-i-ya rep-diap-i t-m k s-s c—
Consensus T-DLQREA— —L-LP-G- -L-DAL-RVL RLP-V-SKRF LTTKVDRSVT
801 850 purL_e.coli -m—rd-m— -w v-nc- —ta-ldsyy ... m -rapva f purL_yeast —idrd-f— -w v g —gt-lgeti is m-m- - —na-isa p_rL_Drome —i a y- 1-tv-hfsh. . s-i-ts— t—1-g— purL_human t -val-hee-. . i-a-t-1- s— purL-ara-48- t— it -iaqtftd-. -g-c i-g— Consensus GLVAQQQCVG PLQVPLADVA VT—S L- —TGEA-AIG EQPVK-LLDP
851 900 purL_e.coli a-s g- iaatqi g-ikri-1-a a—gh— -d-g—e-v- purL_yeast s-s-k-s s-1-ifa-d- ks-nhi-1-a sp-shq- —sk—e-vq purL_Drome a-m—mc —s fv-i se-a c— rmf—c- p rL_human kva f-1- r c— —ce purL-ara-48- k-m g- w -a-s a— y e- —s-m ai
Consensus -A-ARLAVAE ALTNLV-AKV TDL-DVK-SG NWMWAAKLPG EGAALYDA-K
901 950 purL_e .coli -v-e—c -lt-pv m—ktr-qeg neeremts-1 f-rv purL_yeast ld-c -v—pv m— mk- ... . ddke-t—1 —n-t-f—v purL_Drome e- . cqilee- hi k.... -g—tiks— t 1 purL_human -m. vavma— -v-v purL-ara- 8- — . s-amie- -i h.... ad—v-k n vt-
Consensus ALG-EL-PAL G-AIDGGKDS LSMAA-W V-GE-V-APG SLVISAYAPC
951 1000 purL_e.coli e-vrh-i—q -..s-...e- na i—g. . —nna—at r purL_yeast fnts—w—1 -nrn-... — sv-v a kqetks—a- —1—yn-v- purL_Drome —vrlk —g-.-a-sk ts— in-e. ..nsa aya-q- purL_human —ita —h-e-r-.. .h—y-a— . .p-qh 1 c-s purL-ara-48- —it — ..1-. gi—h a. . —kr g-i-
Consensus PD—KTVTPD LK-PTG-GDD — LLVDLS- -KG—RLGGS ALAQVF-QLG 1001 1050 purL_e.coli dk-a-vr q fy-ai- —v-q-k..l —y—r a purL_yeast -ks-tvy-n- i flesli q-hqqkediv —y—r —i purL_Drome kdt-n-trsd v-gka-av— s—gdg..-i q v cv i purL_human eh lpe n-vra-si— g—kd-..-l es v -vtc purL-ara-48- -de p y—nv—gv- —i-en..-v s i -v—a
Consensus N-PPDLDDVA -LKG-FD-TQ ALLA-R—L- LAGHD-SDGG LLVTLLEMAF 1051 1100 purL_e.coli —h—ida-i atl— .. d r—a—n -a-iq-r-a- purL_yeast -sr eini dg. —les q-tn—n -a-fqi—kn purL_Drome g-ls—r—1 se-lak-knf dksveklnrp e a—c -w-v—ld— purL_human q—v pv-rvdv -s —p -1 qep- purL-ara-48- k-inl-1 asngis- fe —s -1 i-k-n
Consensus AGNCGL-VD- —P L GD -LAVLF-EEL G-VLEVSATD
1101 1150 purL_e.coli r sv-aq h-1-.dcvhy —q-vsgd-f -ita—q- .. . -f—s-tt- purL_yeast -skf-ki-ne n k—isi —kpsfq-qe ikii-st-nd viyans purL_Drome —r-rstyek pny-l-v tegf-ld -1-ngkse.. .1-dqplrv- purL_huiϊ.an -aq-lkry-d — lhclel-h t-e — pha - r-s av . . . — e-pvg — purL-ara-48- -d — mek — a fd-ta-ii-n -td . . . spli e d-i- . . . h kt-f-
Consensus LEAVE — LR- AGVA-EY-G- VG-AG — SRV WKVNG-T — -VLSE-RSEL
1151 1200 purL_e.coli -vw- —tw- mqr-rd -dq-hqaksn da nv— s-dine-vaa purL_yeast eqt-sk—ye mq—rd—kt fasitd dr q-a- ty—ad-mki purL_Drome ykk—r—ye -e a —a-yns-ey -qa-..q-rg pq-v.q.-el purL_human -al f- -dr—ae-r- va—erg-re -mg- .. s-c- pptfpk.-sv purL-ara-48- -dm—d—f- -e rlas- v-m-keg-kf -he-..nw— s-i-ss.tnn
Consensus R—WEETS-Q L-KLQ-NPEC AEEE L— R-DPGL-YKL -FNP—DA—
1201 1250 purL_e.coli -yiatg q shv dai—h 1—t- purL_yeast gl-l-sq —i q -qm wc-q q nsv -t e—fh purL_Drome tlkr-s-pvr se m-cll —n h q-tas purL_human -r-pggps-r —i s- d 1 -q—cs-a— purL-ara-48- nymsqdvk— i s- s y a p v a-d-t
Consensus P-E-S-ARPK VAVLREEGVN GDREMAAAFH RAGFEVWDVT MSDLL-GRIG
1251 1300 purL_e.coli -ed-ha-vac g age k —d—rde-a t—h. —q-1 purL_yeast —d-i—aac g aga k-v- yheg-r s k—ne-q purL_Drome vsqy i-p t— n— h-p-llp—e a.-kr-q-v- purL_human —t va-v avt -hp-agaelr r.-r purL-ara-48- —q iv-v d r —ep-1 q e.-y
Consensus LD-FRGL-F- GGFSYADVLG SAKGWAASIL FN-RV-SQF- -FF-KRPDTF
1301 1350 purL_e.coli a—v m -sn- r-li- g— .1 ..r-t-d purL_yeast af-a f lsr- kdii- gc-.n—s-e ..r-v-eqy- purL_Drome i -t-i-f— .. ..saks a d -dva -1—k-q purL_human v la d pnedaa-m— d-qpar-gll -r—1 y- purL-ara-48- i -a p-p q—g sldtsq .. —e
Consensus SLG-CNGCQL M-LLGWVGG EVGP -SE— PRFV L-HN-SGRFE 1351 1400 purL_e.coli a-fsl-evt- 1 1-q— —q -ia-s vev. —aah- purL_yeast a-vcm-q-s- ekdns-ee-v f-n—a—k- -ia k at-sksa-q- purL_Drome c-w-t-k- p-nr-i —gs-kdl— gc f— . —ek-i purL_human s-w rv gpg-al —r a— -v-s y — .ssp—q purL-ara-48- c-f —t- kd i —k 1- gv-a ay-.p-egv-
Consensus -R-ASV-I-Q SSPS- ML-GMEGSVL P-WVAHGEGR -AF-RD-ΞLL
1401 1450 purL_e.coli -a k—va nf-k- — —a tavtt es—vti purL_yeast ekf-kd—cc i ny —rf-f -t k- -n— purL_Drome s—q-eq-vt -q v-kp —1—1 —q 1— s 1— purL_human -qi-ar—a- -hwa p —q—1 —g-v c v— purL-ara-48- d-mlhsd-a- c —a—f-1— —1 a
Consensus AHLES-GL-P LRYVDDDGNV TE-YP-NPNG SPNGIAGICS PDGRHLAMMP
1451 1495 purL_e.coli v— vs ns-h- -nw-edg—m -i kql g purL_yeast vc-lea ns eg.ky -e —yg—i -1—s—r-v g purL_Drome css-y- wpyv-s—e- sptqse q im-n—y—c vk-nq purL_human av-p— wa-r-pp— . ..tltt qlsi 1-gsc purL-ara-48- c-1 fp t-w— -ka.-p km-q d-. 1—c~
Consensus HPER-FRMWQ —WYP-SFDV E—GG-SPWL R-FRNARNW- -ES—
Beispiel 2
Isolierung einer cDNA codierend für eine Formylglycinamidinribo- tid-Synthase aus Tabak
Zur Isolierung weiterer pflanzlicher For ylglycinamidinribotid- Synthase cDNAs wurde ein EcoRI/XhoI-Fragment des Klons purL-48.1 zur Durchmusterung einer Tabak cDNA Bank aus Blattgeweben (Nicotiana tabacum var. Samsun NN) verwendet. 19 positive Klone konnten identifiziert und isoliert werden. Nach Restriktionsanalyse und Sequenzierung wurde Klon purL-Ntl.l identifiziert. purL-Ntl.l codiert auf einem partiellen Leseraster von 3434 bp - siehe
SEQ-ID No . 3 - ein Polypeptid von 1017 Aminosäuren Länge, siehe SEQ-ID No. 4. Das Polypeptid weist im überlappenden Bereich Ähnlichkeit zur Formylglycinamidinribotid-Synthase aus Arabidopsis thaliana (purL-48.1) auf (80,1 % Identität). Beispiel 3
Isolierung einer cDNA codierend für eine Formylglycinamidinribo- tid-Synthase aus Chilopsis linearis
Aus mRNA von Chilopsis linearis wurde doppeisträngige cDNA erzeugt und zur Herstellung einer cDNA-Bank im Vektor pBluescript SKII verwendet (la bda ZAP II RI Library construction Kit, Stratagene) . Einzelne Klone dieser Bank wurden ansequenziert. Die 3'-seitige Sequenz des Klons 74_chi_005_el0 wies Ähnlichkeit zu purL-Ntl.l aus Tabak und purL-48.1 aus Arabidopsis thaliana auf. Der Klon 74_chi_005_el0 wurde vollständig sequenziert. Er codiert auf einer partiellen cDNA von 478bp Länge für ein Polypeptid von 97 Aminosäuren. Auf Aminosäureebene ist 74_chi_005_el0 zu 82,4% Identisch zu purL-48.1 und zu 75,2% identisch zu purL-Ntl.l.
Beispiel 4
Funktionsnachweis für purL-48.1 durch Komplementation von E. coli
Zum Nachweis der Funktion der von purL-48.1 codierten cDNA wurde diese in geeignete Expressionsvektoren (z.B. der Serie pQE, Qia- gen oder pET, Novagen) kloniert . Dazu können Fragmente verschiedener Länge der purL-48.1 cDNA beipielsweise durch PCR erzeugt und in die durch Behandlung mit Restriktionsendonukleasen präparierten Vektoren ligiert werden. Die erhaltenen Expressionskon- strukte können verwendet werden, um den E. coli-Stamm CGSC#4537 (Genotyp: fhuA2 , lacYl, glnV44(AS), gal-6, λ~, nadB4, purL66, rpsL9, malTl(λR), xylA7 , mtlA2 , ΔargHl; E.coli genetic stock centre, Yale University, New Haven) zu komplementieren. Dazu wird der Stamm mit dem entsprechenden Expressionskonstrukt transformiert und auf M9-Minimalmedien ohne Adenin plattiert. Die Minimalmedien sollten beispielhaft enthalten 0,4 % Glucose, 0,2 % Casaminoacids, 100 μg/ml Thiamin, 100 μg/ml Inosin, 100 μg/ml Bio- tin, 100 μg/ml Nicotinat, 100 μM IPTG und 50 -100 μg/ml des betreffenden Antibiotikums, gegen welches der Expressionsvector eine Resistenz vermittelt. Im Parallelexperiment kann der Klonie- rungsvektor ohne purL-48.1-Insert als Negativkontrolle in CGSC#4537 transformiert werden. Es zeigte sich, daß nur die mit purL-48.1-Expressionskonstrukten transformierten Bakterien zu einem Wachstum auf Minimalmedien ohne Adenin fähig sind. Das durch purL-48.1 codierte Enzym ist demnach funktionell und die erste aus Pflanzen isolierte funktioneile Formylglycinamidinribotid- Synthase . Ferner kann auch Hefe (Saccharomyces cerevisiae) zur Komplementa- tion genutzt werden. Hierzu wird eine Hefemutante erzeugt, deren Ade6-Gen, welches für die Hefe-eigene Formylglycinamidinribotid- Synthase codiert, funktionslos gemacht wird. Zur Erzeugung einer solchen für die Komplementation geeigneten Hefemutante kann z.B. die Methode von Güldener et al . , Nucleic Acids Research 24(1996), 2519-2524 in Anwendung auf einen geeigneten Ausgangsstamm, wie z.B. SEY6210 (Robinson et al . , Protoplasma 150(1989), 79-82) herangezogen werden. Die entsprechend erzeugte Hefemutante sollte kein Wachstum auf Minimalmedien ohne Adenin zeigen. Zum Nachweis der Funktion der von purL-48.1 codierten cDNA wird diese in geeignete Hefe-Expressionsvektoren (z.B. pYEBH2 , Riesmeier et al . , EMBO J. 11(1992), 4705-4713 oder pYES2 , Invitrogen) kloniert . Dazu können purL-48.1 cDNAs verschiedener Länge beipielsweise durch PCR erzeugt und in die durch Behandlung mit Restriktionsen- donukleasen präparierten Vektoren ligiert werden. Die erhaltenen Expressionskonstrukte werden verwendet, um die erzeugte Hefe- mutante zu komplementieren. Dazu wird diese mit den Expressions- konstrukten transformiert und auf Minimalmedien (z.B. SDG-Medien, Clontech, Matchmaker-System) ohne Adenin plattiert. Im Parallelexperiment wird der Klonierungsvektor ohne purL-48.1-Insert als Negativkontrolle in die Hefemutante transformiert. Es zeigt sich, daß nur die mit purL-48.1-Expressionskonstrukten transformierten Hefen zu einem Wachstum auf Minimalmedien ohne Adenin fähig sind. Das durch purL-48.1 codierte Enzym stellt somit die erste aus Pflanzen isolierte funktioneile Formylglycinamidinribotid-Syn- thase dar.
Beispiel 5
Erzeugung transgener Arabidopsis thaliana Pflanzen
Zum Nachweis der Eignung von Formylglycinamidinribotid-Synthase als Target für herbizide Wirkstoffe wurde die Expression von For- mylglycinaittidinribotid-Synthase durch Cosuppressions- bzw. Anti- senseinhibierung in transgenen Arabidopsispflanzen erniedrigt.
Zu diesem Zweck wurden zunächst binäre Vektoren für die Pflanzentransformation erzeugt. Um eine Inhibierung durch Cosuppression in Arabidopsis thaliana zu erreichen wurde der Klon purL-19 mit BamHI und Sall gespalten und das erhaltene Fragment von 1127 kb in den ebenso gespaltenen Vektor pBinAR (Höfgen und Willmitzer, Plant Science 66(1990), 221-230) ligiert. Um eine Antisense-Inhibierung in Arabidopsis thaliana zu erreichen, wurde der Klon purL-19 mit BamHI und Kpnl gespalten und das erzeugte Fragment von 964 bp in den ebenso gespaltenen vector pBinAR ligiert. Die so erhaltenen binären Konstrukte AtSpurL und AtASpurL (Abbildung 2) wurden in Arabidopsis thaliana transformiert.
Dazu wurde die Vakuuminfiltrationsmethode nach Bechtold et al . 5 (C.R. Acad.Sci. Paris, Life Sciences 316(1993), 1194-1199) in leicht modifizierter Form angewandt.
Dazu wurden die binären Vektoren AtSpurL und AtASpurL in Agrobacterium tumefaciens C58C1 :pGV2260 transformiert (Deblaere et al . ,
10 Nucl. Acids. Res. 13(1984), 4777-4788). 20 ml einer Übernachtkultur in YEB-Medium mit 50 μg/ml Kanamycin (Sambrook et al . (1989), Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) wurden in 500 ml YEB/Kanamycin verdünnt und übernacht bei 28 °C geschüttelt. Die Bakterien wurden durch Zentrifugation geerntet und in
15 500 ml Infiltrationsmedium (2,15 g/L Murashige and Skoog Basal- salt-mixture (Sig a) , 50 g/L Saccharose, 1 mg/L Nicotinsäure, 1 mg/L Pyridoxin, 10 mg/L Thiamin, 100 mg/L myo-Inositol, lmg/L Glycin, 44 μM N6-Benzylaminopurin, pH 5,7) resuspendiert. Die überirdischen Teile blühender Arabidopsispflanzen wurden in die
20 Bakteriensuspension getaucht und bei 10-15 mbar für 10 - 15 Minuten infiltriert. Anschließend wurden die Pflanzen bis zur Samenreife im Gewächshaus weiter kultiviert. Die Samen wurden nach Sterilisation auf Festmedium (2,15 g/L Murashige and Skoog Basal- salt-mixture (Sigma), 0,1 g/L myo-Inositol, 0,5 g/L MES, 10 g/L,
25 8 g/L Agar-Agar, 1 mg/L Nicotinsäure, 1 mg/L Pyridoxin, 10 mg/L Thiamin, 100 mg/L myo-Inositol, lmg/L Glycin, pH 5,7) mit 15 μg/ml Hygromycin ausgelegt und nach 2-4 Wochen Sterilkultur in Erde übertragen.
30 Kulturbedingungen:
Sterilkultur: 21 °C, 150μE*ιrr2*s-1, 75% Luftfeuchtigkeit
Gewächshaus: 22 °C Tages- / 18 °C Nachttemperatur, 16 h Photope- 35 riode, 450 μE*m-2*s"1, 68 % Luftfeuchtigkeit.
Beispiel 6
Erzeugung transgener Tabakpflanzen
40
Zur Inhibierung der Formylglycinamidinribotid-Synthase durch Co- suppression in Tabak wurde der Klon purL-Ntl.l mit Xbal und Sall gespalten und das erhaltene Fragment von 3 , 6 kbp in den ebenso geschnittenen Vector pBinAR ligiert. Zur Antisense-Inhibierung
45 der Formylglycinamidinribotid-Synthase in Tabak wurde der Klon purL-Ntl.l mit Asp718 und Xbal gespalten und das erhaltene Fragment von 3 , 6 kbp in den ebenso geschnittenen Vector pBinAR ligiert . Die so erhaltenen binären Konstrukte NtSpurL und NtAS- purL - siehe Abbildung 2 - wurden in Tabak transformiert .
Dazu wurden die Plasmide NtSpurL und NtASpurL in Agrobacterium tumefaciens C58C1 :pGV2260 transformiert (Deblaere et al . , Nucl. Acids. Res. 13(1984), 4777-4788). Zur Transformation von Tabakpflanzen (Nicotiana tabacum cv. Samsun NN) wurde eine 1:50 Verdünnung einer Übernachtkultur einer positiv transformierten Agro- bakterienkolonie in Murashige-Skoog Medium (Murashige und Skoog , Physiol. Plant. 15(1962), 473) mit 2% Saccharose (2MS-Medium) benutzt. Blattscheiben steriler Pflanzen (zu je ca. 1 cm2) wurden in einer Petrischale mit einer 1:50 Agrobakterienverdünnung für 5-10 Minuten inkubiert. Es folgte eine 2-tägige Inkubation in Dunkelheit bei 25°C auf 2MS-Medium mit 0,8 % Bacto-Agar. Die Kultivie- rung wurde nach 2 Tagen mit 16 Stunden Licht/8 Stunden Dunkelheit weitergeführt und in wöchentlichem Rhythmus auf MS-Medium mit 500 mg/1 Claforan (Cefotaxime-Natrium) , 50 mg/1 Kanamycin, 1 mg/1 Benzylaminopurin (BAP) , 0,2 mg/1 Naphthylessigsaure und 1,6 g/1 Glukose weitergeführt . Wachsende Sprosse wurden auf MS-Medium mit 2% Saccharose, 250 mg/1 Claforan und 0,8% Bacto-Agar überführt. Regenerierte Sprosse wurden auf 2MS-Medium mit Kanamycin und Claforan erhalten, nach Bewurzelung in Erde überführt und nach Kultivierung in einer Klimakammer im 16 Stunden hell/8 Stunden dunkel-Rhythmus bei 60% Luftfeuchte analysiert.
Beispiel 7
Analyse transgener Pflanzen
Transgene Pflanzen wurden auf Formylglycinamidinribotid-Synthase- Expression und -Aktivität sowie auf veränderte Metabolitgehalte und phänotypische Wachstumsmerkmale untersucht. Veränderte Nu- kleotidgehalte können z.B. nach der Methode von Stitt et al . , FEBS Letters 145(1982), 217-222 bestimmt werden.
Linien transgener Pflanzen, die mit den Konstrukten AtSpurL, AtASpurL, NtSpurL bzw. NtASpurL transformiert wurden, sind gekennzeichnet durch ein in unterschiedlichem Maße verringertes Wachstum im Vergleich zu untransformierten Kontrollpflanzen. Die RNA-Analyse durch die Northernblot-Teehnik wies in transgenen Linien mit dem beschriebenen Phänotyp eine verringerte Menge an purL-48.1 bzw. purL-Ntl.l auf. Die Formylglycinamidinribotid-Syn- thase-Aktivität kann nach einer Methode wie in Beispiel 8 beschrieben bestimmt werden. Diese Daten stellen einen direkten Zusammenhang zwischen verringerter Formylglycinamidinribotid-Synthase-Expression und verringertem Wachstum bei Arabidopsis thaliana bzw. Tabakpflanzen her und weisen daher Formylglycinamidinribotid-Synthase als geeigne- tes Zielprotein (Target) für herbizide Wirkstoffe aus.
Beispiel 8
Messung der Formylglycinamidinribotid-Synthase-Aktivität
Die Messung der Formylglycinamidinribotid-Synthase-Aktivität erfolgt mit Modifikationen nach beschriebenen Verfahren (Methods in Enzymology. 51(1978), 193-201). Nach Anpassung der Methode an Hochdurchsatzmethoden kann nach Inhibitoren der Formylglycinami- dinribotid-Synthase-Aktivität mit einem der beschriebenen in vi tro Assays gesucht werden. Die Formylglycinamidinribotid-Syn- thase-Aktivität kann dazu aus Pflanzengeweben präpariert werden. Alternativ kann eine vollständige oder verkürzte pflanzliche For- mylglycinamidinribotid-Synthase (vorzugsweise Formylglycinamidin- ribotid-Synthase aus Arabidopsis thaliana) in einem geeigneten prokaryontischen (z.B. E.coli) oder eukaryontisehen (z.B. Hefen, Insektenzellen) Expressionssystem erzeugt werden. Nach Aufschluß der Pflanzengewebe oder Zellen in geeigneten Puffern und ggf. weiteren Aufreinigungsschritten z.B. über chromatographische Me- thoden kann die Formylglycinamidinribotid-Synthase-Aktivität quantifiziert werden. Auf diese Weise ist es möglich, in transgenen Linien den Wachstumsphänotyp mit der Formylglycinamidinri- botid-Synthase-Aktivität zu korellieren.
Mit Hilfe dieser Methode können bekannte Formylglycinamidinribo- tid-Synthase Inhibitoren, wie Glutaminantagonisten sowie insbesondere neue Inhibitoren der planzlichen Formylglycinamidinribo- tid-Synthase identifiziert werden.

Claims

Patentansprüche
1. DNA-Sequenz, enthaltend die Kodierregion einer pflanzlichen 5 Formylglycinamidinribotid-Synthase, dadurch gekennzeichnet, daß diese DNA-Sequenz die Nukleotidabfolge SEQ-ID No. 1, SEQ-ID No. 3 oder SEQ-ID No. 5 aufweist.
2. DNA-Sequenzen, die mit der DNA-Sequenz SEQ-ID No. 1,
10 SEQ-ID No. 3 oder SEQ-ID No. 5 gemäß Anspruch 1 oder Teilen davon oder Derivaten, die durch Insertion, Deletion oder Substitution von diesen Sequenzen abgeleitet sind, hybridisieren und für ein Protein kodieren, das die biologische Aktiviät einer Formylglycinamidinribotid-Synthase besitzt.
15
3. Protein mit Formylglycinamidinribotid-Synthase Aktivität, dadurch gekennzeichnet, daß es als Aminosäuresequenz die in SEQ-ID No. 2 dargestellte Sequenz enthält.
2" 4. Protein mit Formylglycinamidinribotid-Synthase Aktivität, enthaltend eine Aminosäuresequenz, die eine Teilsequenz von mindestens 100 Aminosäuren aus SEQ-ID No. 2 darstellt.
5. Verwendung einer DNA-Sequenz nach Anspruch 1 oder 2 zur Ein- " führung in pro- oder eukaryontisehe Zellen, wobei diese Sequenz gegebenenfalls mit Steuerelementen, die die Transkription und Translation in den Zellen gewährleisten, verknüpft ist und zur Expression einer translatierbaren mRNA, die die Synthese einer pflanzlichen Formylglycinamidinribotid-Syn-
30 thase bewirkt, führt.
6. Verwendung einer DNA-Sequenz nach Anspruch 1 oder 2 zur Herstellung eines Testsystems zur Identifizierung von Inhibitoren der pflanzlichen Formylglycinamidinribotid-Synthase mit
35 herbizider Wirkung.
7. Verfahren zum Auffinden von Substanzen, die die Aktivität der pflanzlichen Formylglycinamidinribotid- Synthase inhibieren, dadurch gekennzeichnet, daß in einem ersten Schritt unter
40 Verwendung einer DNA-Sequenz nach Anspruch 1 oder 2 Formylglycinamidinribotid- Synthase hergestellt wird und in einem zweiten Schritt die Aktivität der pflanzlichen Formylglycinamidinribotid- Synthase in Anwesenheit einer Testsubstanz gemessen wird. 5
Zeichn.
8. Verfahren zur Identifizierung von Substanzen mit herbizider Wirkung, die die Formylglycinamidinribotid- Synthase Aktivität in Pflanzen hemmen, bestehend aus
a) der Herstellung von transgenen Pflanzen, Pflanzengeweben, oder Pflanzenzellen, die eine zusätzliche DNA-Sequenz codierend für ein Enzym mit Formylglycinamidinribotid-Synthase Aktivität enthalten und in der Lage sind eine enzy- matisch aktive Formylglycinamidinribotid-Synthase über- zuexprimieren;
b) das Aufbringen einer Substanz auf transgene Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile sowie auf nicht-transformierte Pflanzen, Pflanzenzellen, Pflan- zengewebe oder Pflanzenteile;
c) das Bestimmen des Wachstums oder der Überlebensfähigkeit der transgenen und der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile nach der Aufbringung der chemischen Substanz; und
d) dem Vergleich des Wachstums oder der Überlebensfähigkeit der transgenen und der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile nach der Aufbringung der chemischen Substanz;
wobei die Unterdrückung des Wachstums oder der Überlebensfähigkeit der nicht-transformierten Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile ohne jedoch das Wachstum oder die Überlebensfähigkeit der transgenen Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile stark zu unterdrücken, belegt, daß die Substanz aus b) herbizide Aktivität zeigt und die Formylglycinamidinribotid- Synthase Enzymaktivität in Pflanzen inhibiert.
9. Testsystem basierend auf der Expression einer DNA-Sequenz SEQ-ID No. 1, SEQ-ID No . 3 oder SEQ-ID No . 5 nach Anspruch 1 oder 2 zur Identifizierung von Inhibitoren der pflanzlichen For ylglycinamidinribotid-Synthase mit herbizider Wirkung.
10. Testsystem gemäß Anspruch 9 zur Identifizierung von Inhibitoren pflanzlicher Formylglycinamidinribotid- Synthase, dadurch gekennzeichnet, daß das Enzym mit einem zu untersuchenden Testsubstrat inkubiert und nach einer geeigneten Re- aktionszeit die enzymatische Aktivität des Enzyms im Ver- gleich zur Aktivität des nicht gehemmten Enzyms ermittelt wird.
11. Inhibitoren pflanzlicher Formylglycinamidinribotid- Synthase. 5
12. Inhibitoren pflanzlicher Formylglycinamidinribotid- Synthase, identifiziert unter Verwendung eines Testsystems nach Anspruch 9 oder 10.
10 13. Inhibitoren, identifiziert nach einem der Ansprüche 9 oder 10, zur Verwendung als Herbizid.
14. Verfahren zur Beseitigung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, daß die zu beseitigenden Pflanzen mit 15 einer Verbindung behandelt werden, die spezifisch an Formyl - glycinamidinribotid-Synthase, codiert durch eine DNA- Sequenz nach Anspruch 1 oder 2, bindet und deren Funktion inhibiert.
20
25
30
35
0
5
PCT/EP2000/010204 1999-10-25 2000-10-17 Formylglycinamidinribotid-synthase aus pflanzen WO2001031025A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU18535/01A AU1853501A (en) 1999-10-25 2000-10-17 Formylglycinamidinribotide synthase from plants
CA002388851A CA2388851A1 (en) 1999-10-25 2000-10-17 Formylglycinamidinribotide synthase from plants
EP00981201A EP1224292A2 (de) 1999-10-25 2000-10-17 Formylglycinamidinribotid-synthase aus pflanzen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19951443.7 1999-10-25
DE19951443 1999-10-25

Publications (2)

Publication Number Publication Date
WO2001031025A2 true WO2001031025A2 (de) 2001-05-03
WO2001031025A3 WO2001031025A3 (de) 2001-11-29

Family

ID=7926861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/010204 WO2001031025A2 (de) 1999-10-25 2000-10-17 Formylglycinamidinribotid-synthase aus pflanzen

Country Status (4)

Country Link
EP (1) EP1224292A2 (de)
AU (1) AU1853501A (de)
CA (1) CA2388851A1 (de)
WO (1) WO2001031025A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131939A1 (ja) * 2011-03-30 2012-10-04 株式会社インプランタイノベーションズ 果実特異的プロモーター

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019576A1 (en) * 1994-12-22 1996-06-27 Novartis Ag Plant adenylosuccinate synthetase and dna coding therefor
WO1998010074A2 (de) * 1996-09-04 1998-03-12 Basf Aktiengesellschaft Adenylosuccinat synthetase
US5780253A (en) * 1995-05-04 1998-07-14 Sandoz Ltd. Screening method for detection of herbicides
US5780254A (en) * 1995-05-04 1998-07-14 Sandoz Ltd Method for detection of herbicides
WO1999027119A1 (en) * 1997-11-26 1999-06-03 Novartis Ag Method and compositions useful for the activation of silent transgenes
WO1999050400A1 (de) * 1998-04-01 1999-10-07 Basf Aktiengesellschaft Amp-deaminase

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019576A1 (en) * 1994-12-22 1996-06-27 Novartis Ag Plant adenylosuccinate synthetase and dna coding therefor
US5780253A (en) * 1995-05-04 1998-07-14 Sandoz Ltd. Screening method for detection of herbicides
US5780254A (en) * 1995-05-04 1998-07-14 Sandoz Ltd Method for detection of herbicides
WO1998010074A2 (de) * 1996-09-04 1998-03-12 Basf Aktiengesellschaft Adenylosuccinat synthetase
WO1999027119A1 (en) * 1997-11-26 1999-06-03 Novartis Ag Method and compositions useful for the activation of silent transgenes
WO1999050400A1 (de) * 1998-04-01 1999-10-07 Basf Aktiengesellschaft Amp-deaminase

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1985 ELLIOTT W L ET AL: "IN-VIVO INACTIVATION OF FORMYLGLYCINAMIDINE RIBONUCLEOTIDE SYNTHETASE EC-6.3.5.3 IN RAT HEPATOMA" Database accession no. PREV198579088050 XP002170331 & BIOCHEMICAL PHARMACOLOGY, Bd. 34, Nr. 2, 1985, Seiten 243-248, ISSN: 0006-2952 *
DATABASE EMBL [Online] ACCESSION NO: AA042492, 6. September 1996 (1996-09-06) NEWMAN, T., ET AL.: "24845 CD4-16 Arabidopsis thaliana cDNA clone H9G9T7, mRNA sequence." XP002170230 *
DATABASE EMBL [Online] ACCESSION NO: AC020579, 6. Januar 2000 (2000-01-06) LIN X., ET AL.: "Arabidopsis thaliana chromosome 1 BAC F1O17 genomic sequence, complete sequence." XP002170231 *
DATABASE EMBL [Online] ACCESSION NO: AF000377, 2. Januar 2000 (2000-01-02) VAGHCHHIPAWALA Z.,, ET AL.: "Glycine max putative phosphoribosylformylglycineamidine synthase mRNA, partial cds." XP002170232 *
DATABASE EMBL [Online] ACCESSION NO: AI896106, 28. Juli 1999 (1999-07-28) "EST265549 tomato callus, TAMU Lycopersicon esculentum cDNA clone cLEC13J8,mRNA sequence." XP002170262 *
DATABASE EMBL [Online] ACCESSION NO: AI899294, 28. Juli 1999 (1999-07-28) ALCALA J., ET AL.: " EST268737 tomato ovary, TAMU Lycopersicon esculentum cDNA clone cLED38J23, mRNA sequence" XP002170274 *
DATABASE EMBL [Online] ACCESSION NO: AI973421, 26. August 1999 (1999-08-26) WALBOT V.; ET AL.: "496022H05.x1 496 - stressed shoot cDNA library from Wang/Bohnert lab Zea mays cDNA, mRNA sequence." XP002170275 *
DATABASE EMBL [Online] ACCESSION NO: AJ000235, 22. Juli 1997 (1997-07-22) HESS W.R., ET AL.: "Hordeum vulgare mRNA for expressed sequence tag" XP002170233 *
DATABASE EMBL [Online] ACCESSION NO: BE346122, 21. Juli 2000 (2000-07-21) " sp20a05.y1 Gm-c1042 Glycine max cDNA clone GENOME SYSTEMS CLONE ID: Gm-c1042-1065 5' similar to SW:PUR4_DROME P35421 PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE ;, mRNA sequence." XP002170276 *
KNORR, K.M., ET AL.: "Molecular characterization of Arabidopsis thaliana cDNAs encoding three purine biosynthetic enzymes" THE PLANT JOURNAL, Bd. 6, Nr. 1, 1994, Seiten 113-121, XP002170329 *
SCHENDEL F J ET AL: "FORMYLGLYCINAMIDE RIBONUCLEOTIDE SYNTHETASE FROM ESCHERICHIA-COLI CLONING SEQUENCING OVERPRODUCTION ISOLATION AND CHARACTERIZATION" BIOCHEMISTRY, Bd. 28, Nr. 6, 1989, Seiten 2459-2471, XP002170330 ISSN: 0006-2960 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131939A1 (ja) * 2011-03-30 2012-10-04 株式会社インプランタイノベーションズ 果実特異的プロモーター

Also Published As

Publication number Publication date
EP1224292A2 (de) 2002-07-24
WO2001031025A3 (de) 2001-11-29
CA2388851A1 (en) 2001-05-03
AU1853501A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
Huang et al. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake
US8735555B2 (en) Transgenic plants comprising a mutant phytochrome and showing altered photomorphogenesis
DE19853778C1 (de) DNA-Sequenzen kodierend einen Glutamat/Malat-Translokator, Plasmide Bakterien, Hefen und Pflanzen enthaltend diesen Transporter
EP1224292A2 (de) Formylglycinamidinribotid-synthase aus pflanzen
EP1259623B1 (de) Aspartat-carbamyltransferase als herbizides target
EP1222293A2 (de) Gmp-synthetase aus pflanzen
EP1070120A1 (de) Amp-deaminase
EP1294925A2 (de) Phosphoribosyl-pyrophosphat synthetase 1 als herbizides target
EP1210437B1 (de) Dihydroorotase aus pflanzen
EP1220894A1 (de) Prpp-amidotransferase aus nicotiana tabacum
EP1307561B1 (de) Nucleinsäuren, mit deren hilfe pflanzen mit verändertem metabolit-gehalt erzeugt werden können
EP0927246A2 (de) Adenylosuccinat synthetase
Junhao Regulation of Amino Acid Metabolism: Gene Expression during Seed Development and the Possible Roles of GCN2
EP1198578A2 (de) Planzliche s-adenosylmethionin: mg-protoporphyrin-ix-o-methyltransferase, pflanzen mit verändertem chlorophyllgehalt und/oder herbizidtoleranz

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA CN IL JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA CN IL JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000981201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10110753

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2388851

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2000981201

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000981201

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP