WO2002004619A2 - Dehydroquinat dehydratase/shikimat dehydrogenase als herbizides target - Google Patents

Dehydroquinat dehydratase/shikimat dehydrogenase als herbizides target Download PDF

Info

Publication number
WO2002004619A2
WO2002004619A2 PCT/EP2001/007763 EP0107763W WO0204619A2 WO 2002004619 A2 WO2002004619 A2 WO 2002004619A2 EP 0107763 W EP0107763 W EP 0107763W WO 0204619 A2 WO0204619 A2 WO 0204619A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
plant
shikimate dehydrogenase
dehydroquinate dehydratase
Prior art date
Application number
PCT/EP2001/007763
Other languages
English (en)
French (fr)
Other versions
WO2002004619A3 (de
Inventor
Annette Freund
Uwe Sonnewald
Li Ding
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to JP2002509473A priority Critical patent/JP2004502457A/ja
Priority to IL15368501A priority patent/IL153685A0/xx
Priority to AU2001289626A priority patent/AU2001289626A1/en
Priority to EP01969344A priority patent/EP1315808A2/de
Priority to CA002415382A priority patent/CA2415382A1/en
Publication of WO2002004619A2 publication Critical patent/WO2002004619A2/de
Publication of WO2002004619A3 publication Critical patent/WO2002004619A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/527Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving lyase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2430/00Assays, e.g. immunoassays or enzyme assays, involving synthetic organic compounds as analytes
    • G01N2430/20Herbicides, e.g. DDT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to the identification of plant dehydroquinate dehydratase / shikimate dehydrogenase (DHD / SHD) as a new target for herbicidal active compounds.
  • the present invention further relates to a method for producing a test system based on the use of the DNA sequence SEQ-ID No. 1 or SEQ-ID No. 3, functional equivalents of SEQ-ID No: 1 or SEQ ID NO: 3 or parts of SEQ-ID No: 1 or SEQ-ID No: 3 coding for a plant polypeptide with dehydroquinate dehydratase / shikimate dehydrogenase activity for identifying Inhibitors of plant dehydroquinate dehydratase / shikimate dehydrogenase.
  • the invention further relates to substances identified using these methods or this test systems and their use as herbicides or the use of the polypeptide with dehydroquinate dehydratase / shikimate dehydrogenase activity as a target for herbicide
  • the present invention also relates to a method for producing transgenic plants containing SEQ-ID No: 1 or SEQ-ID No: 3, functional equivalents of SEQ-ID No: 1 or SEQ ID NO: 3 or parts of SEQ-ID No : l or SEQ-ID No: 3, which have an increased dry matter and / or an increased content of aromatic amino acids compared to a non-transgenic plant of the same type.
  • the invention relates to methods for identifying nucleic acid sequences of dehydroquinate dehydratase / shikimate dehydrogenase variants which are resistant to the inhibitors of plant de-hydroquinate dehydratase / shikimate dehydrogenase identified by the methods according to the invention, and to transgenic plants in that they characterize the nucleic acid sequences said dehydroquinate dehydratase / shikimate dehydrogenase variants contain.
  • dehydroquinate dehydratase / shikimate dehydrogenase is involved in the biosynthesis of chorismate, the precursor of the aromatic amino acids phenylalanine, tyrosine and tryptophan, see Figure 1.
  • the precursors for the formation of aromatic amino acids are erythrosis-4-phosphate and phosphoenolpyruvate.
  • the two substances condense to split off the two phosphates 2-keto-3-deoxy-D-arabinoheptulosonate-7-phosphate, a C7 compound that cyclizes to dehydroquinate.
  • dehydroquinate dehydratase EC 4.2.1.10
  • shikimate dehydrogenase 5 EC 1.1.1.25
  • shikimate dehydrogenase EC 1.1.1.25
  • Dehydroquinate dehydratase / shikimate dehydrogenase is a bifunctional enzyme that catalyzes the third and fourth steps in chorismate bio-synthesis, see also Mitsuhashi, S., Davis, BD,
  • Inhibitors were also identified for the dehydroquinate dehydratase. Acetates, succinates, D- (+) tartrate and diethyl dicarbonates inhibit the dehydroquinate dehydratase in Escherichia coli (Chaudhuri, S., Lambert, JM, McColl, LA, Coggins, JR, Biochem. J., 239, 699-704
  • 35 acid biosynthesis are involved as a target protein (target) for herbicides. Active substances have been described which inhibit plant de novo amino acid biosynthesis.
  • glyphosate which inhibits amino acid biosynthesis in planta.
  • the shikimate pathway plays a role in a large number of other substances which are produced in large quantities by the plant, such as ubiquinone, folate, flavonoids, coumarins, lignin, alkaloids, cyanogenic glucosides, plastoquinone and tocopherols.
  • ubiquinone folate
  • flavonoids flavonoids
  • coumarins lignin
  • alkaloids cyanogenic glucosides
  • plastoquinone and tocopherols tocopherols.
  • the sum of all these substances can make up up to 50% of the dry substance of a plant.
  • the suitability of an enzyme as a target for herbicides can be demonstrated by reducing the enzyme activity, for example using antisense technology in transgenic plants. If reduced growth is brought about by introducing an antisense DNA for a specific gene into a plant, this indicates the suitability of the enzyme whose activity is reduced as a site of action for herbicidal active ingredients.
  • the antisense inhibition of acetolactate synthase (ALS) in transgenic potato plants leads to comparable phenotypes, such as the treatment of control plants with ALS-inhibiting herbicides (Höfgen et al., Plant Physiology 107, 469-477 (1995)).
  • Transgenic in the sense of the invention means that the nucleic acids used in the method are not in their natural place in the genome of an organism, and the nucleic acids can be expressed homologously or heterologously.
  • Tansgen also means that the nucleic acids according to the invention are in their natural place in the genome of an organism, but that the sequence has been changed compared to the natural sequence and / or that the regulatory sequences of the natural sequences have been changed.
  • Transgenic is preferably to be understood as meaning the expression of the nucleic acids at a non-natural location in the genome, that is to say there is homologous or preferably heterologous expression of the nucleic acids. The same applies to the nucleic acid construct according to the invention or the vector.
  • the object of the present invention was to demonstrate that dehydroquinate dehydratase / shikimate dehydrogenase is a suitable herbicidal target in plants, and to produce an efficient and simple dehydroquinate dehydratase / shikimate dehydrogenase test system for carrying out inhibitor-enzyme binding studies. Furthermore, the object was to identify dehydroquinate dehydratase / shikimate dehydrogenase variants which are resistant to the inhibitors found according to the invention.
  • the object was achieved by isolating DNA sequences which code for the plant enzyme dehydroquinate dehydratase / shikimate dehydrogenase, the production of antisense or co-suppression constructs of the plant dehydroquinate dehydrogenase. tase / Shikimate dehydrogenase and its expression in plants, as well as the functional expression of the vegetable dehydroquinate dehydratase / Shikimate dehydrogenase in prokaryotic or eukaryotic cells.
  • Tobacco (variety Samsun NN) was used as a model plant for the expression of the dehydroquinate dehydratase / shikimate dehydrogenase in sense and antisense orientation.
  • the dehydroquinate dehydratase / shikimate dehydrogenase was expressed heterologously in E. coli for the production of recombinant enzyme for carrying out enzyme assays.
  • a cDNA coding for plant dehydroquinate dehydratase / shikimate dehydrogenase was isolated from tobacco and sequenced, see example 1 or sequence listing SEQ-ID No. 1, SEQ ID No. 3 and Bonner, C. and Jensen, R. Biochem. J., 302, 11-14 (1994).
  • the gene can be functionally overexpressed in various heterologous systems such as in E. coli, yeast or baculovirus and in test systems for the identification of
  • Inhibitors are used. The evidence that dehydroquinate dehydratase / shikimate dehydrogenase is an essential gene for plants was first demonstrated with the help of antisense or cosuppression plants.
  • the plants show growth retardation to different degrees. Wild type and transgenic DHD / SHD plants are shown in side view ( Figure 2) and in top view ( Figures 3 and 4). There is a clear inhibition of growth in transgenic DHD / SHD plants compared to the wild type ( Figure 2, wild type on the far left).
  • the activity of the DHD / SHD enzyme was measured by the method as described in Example 5. It was found that the DHD / SHD enzyme activity is zero in cosuppression plants and an enzyme activity of 0.025 - 0.06 ⁇ M / min / g can be measured in wild type plants.
  • a nucleic acid sequence for identifying inhibitors of plant dehydroquinate dehydratase / shikimate dehydrogenase can be used to produce these test systems, the said nucleic acid sequence being, for example, the DNA sequence SEQ-ID No. 1 or SEQ-ID No. 3 containing the coding region of a vegetable dehydroquinate dehydratase / shikimate dehydrogenase, or a nucleic acid sequence which is associated with the DNA sequence SEQ-ID No. 1 or SEQ-ID No.
  • 3 or parts or derivatives which are derived from these sequences by insertion, deletion or substitution, can be hybridized and encoded for a protein which has the biological activity of a plant dehydroquinate dehydratase / shikimate dehydrogenase.
  • Another object of the invention thus relates to methods for identifying new herbicides based on the use of a protein with dehydroquinate dehydratase / shikimate dehydrogenase activity encoded by a nucleic acid sequence, said nucleic acid sequence comprising the following sequence:
  • nucleic acid sequence which, on the basis of the degenerate genetic code, can be derived from the amino acid sequences represented by reverse 2 translation of the amino acid sequences shown in SEQ ID NO: 2 or SEQ ID NO: 4; or c) functional analogues of those in SEQ ID NO: 1 or
  • SEQ ID NO: 3 nucleic acid sequences shown coding for a polypeptide with the amino acid sequences shown in SEQ ID NO: 2 or SEQ ID NO: 4; or
  • SEQ ID NO: 3 nucleic acid sequence shown coding for functional analogs of the amino acid sequences shown in SEQ ID NO: 2 or SEQ ID NO: 4; or
  • homology between two nucleic acid sequences or polypeptide sequences is defined by the identity of the nucleic acid sequence / polypeptide sequence over the respective total sequence length, which can be determined by comparison using the program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group ( GCG), Madison, USA) using the following parameters:
  • Gap Weight 12 Length Weight: 4
  • Nucleotide sequence still have the desired functions. Functional equivalents thus encompass naturally occurring variants of the sequences described herein as well as artificial, 'e .g. artificial nucleotide sequences obtained by chemical synthesis and adapted to the codon use of an organism (see above), but also sequences that hybridize with the sequences according to the invention or parts of these sequences.
  • oligonucleotides for example the conserved or other regions, which can be determined by comparison with other related genes in a manner known to the person skilled in the art, are advantageously used.
  • longer fragments of the nucleic acids according to the invention or the complete sequences can also be used for the hybridization.
  • the hybridization conditions for DNA: DN hybrids are advantageously 0.1 ⁇ SSC and temperatures between approximately 20 ° C. to 45 ° C., preferably between approximately
  • the hybridization conditions are advantageously 0.1 ⁇ SSC and temperatures between approximately 30 ° C. to 55 ° C., preferably between approximately 45 ° C. to 55 ° C.
  • These specified temperatures for the hybridization are, for example, calculated melting temperature values for a nucleic acid
  • a functional equivalent is understood to mean, in particular, natural or artificial mutations of an originally isolated one for a dehydroquinate dehydratase / shikimate dehydro- genes coding sequence, which still shows the desired function. Mutations include substitutions, additions, deletions, exchanges or insertions of one or more nucleotide residues.
  • the present invention also encompasses those nucleotide sequences which are obtained by modifying this nucleotide sequence. The aim of such a modification can, for example, be to further narrow down the coding sequence contained therein or, for example, also to insert further restriction enzyme interfaces.
  • Functional equivalents are also those variants whose function is weakened or enhanced compared to the original gene or gene fragment.
  • nucleotide sequence according to the invention can be produced synthetically or obtained naturally or contain a mixture of synthetic and natural DNA components.
  • synthetic nucleotide sequences with codons are generated which are preferred by the respective host organism. These preferred codons can be determined from the highest protein abundance codons expressed in most interesting species.
  • nucleic acid sequences which, based on the total length of the DNA sequence, have sequence homology with the DNA sequence SEQ-ID NO. 1 or SEQ ID NO. 3 advantageously from 40 to 100%, preferably from 60 to 100% and particularly preferably from 70 to 100%, very particularly preferably 80-100%, or 85-100%, or 90-100%, or 95-100 %, or 96-100%, or 97-100%, or 98-100%, or 99-100%.
  • the method according to the invention can be carried out in individual, separate method approaches. However, the implementation in a high-throug put screening is preferred.
  • substances with herbicidal activity can be determined which reduce or block the transcription, expression, translation or the activity of a polypeptide with dehydroquinate dehydratase / shikimate dehydrogenase activity.
  • These substances are potential herbicides, the effects of which can be further improved via classic chemical synthesis.
  • Test systems suitable for this are both in vitro and in vivo test systems.
  • proteins with dehydroquinate dehydratase / shikimate dehydrogenase activity can be used, the preferred
  • the enzyme quantities required for the in vitro test systems are preferably provided via the functional expression of plant dehydroquinate dehydratase / shikimate dehydrogenase, in particular dehydroquinate dehydratase / shikimate dehydrogenase from tobacco in suitable expression systems.
  • the enzyme isolated from plants, here preferably from tobacco can also be used instead of the recombinantly produced enzyme.
  • transgenic organisms are also preferred for in vivo test systems.
  • nucleic acid sequence such as the DNA sequence SEQ-ID No. 1 or SEQ-ID No. 3 containing the coding region of a plant dehydroquinate dehydratase / shikimate dehydrogenase, or a nucleic acid sequence which is associated with the DNA sequence SEQ-ID No. 1 or SEQ-ID No.
  • Expression cassettes are therefore a further subject of the invention, the sequence of which for a dehydroquinate dehydratase / shikimate dehydrogenase from tobacco or its functional equivalent code for the production of a test system for finding compounds with herbicidal activity.
  • the nucleic acid sequence can a) be a nucleic acid sequence with the sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3; or
  • SEQ ID NO: 2 or SEQ ID NO: 4 can be derived amino acid sequences
  • e) contain parts of the nucleic acid sequences a), b), c) or d); or
  • f) comprise at least 300 nucleotide building blocks of the nucleic acid sequences a), b), c) or d);
  • artificial DNA sequences are suitable as long as they impart the desired property of the expression of the dehydroquinate dehydratase / shikimate dehydrogenase gene, as described above, for example.
  • Such artificial DNA sequences can be determined, for example, by back-translation of proteins constructed by means of molecular modeling, which have dehydroquinate dehydratase / shikimate dehydrogenase activity, or by in vitro selection. Coding DNA sequences obtained by back-translating a polypeptide sequence according to the codon usage specific for the host organism are particularly suitable. A specific expert familiar with genetic methods can easily determine the specific codon usage by computer evaluations of other, known genes of the organism to be transformed. This methodology can also be used here for the expression of the target protein in bacteria, fungi, plants, insect cells and mammalian cells.
  • DNA fragments When preparing an expression cassette, various DNA fragments can be manipulated in order to obtain a nucleotide sequence which expediently reads in the correct direction and which is equipped with a correct reading frame.
  • For the Connection of the DNA fragments to one another can be applied to the fragments adapters or linkers.
  • This methodology can be used in the expression of the target protein in bacteria, fungi, plants, insect cells and mammalian cells.
  • an expression cassette according to the invention comprises upstream, i.e. at the 5 'end of the coding sequence, a promoter and downstream, i.e. at the 3 'end, a terminator and optionally a polyadenylation signal and optionally further regulatory elements which are operatively linked to the sequence coding for the polypeptide with dehydroquinate dehydratase / shikimate dehydrogenase activity.
  • An operative link is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended in the expression of the coding sequence.
  • Such an expression cassette is produced by fusing a suitable promoter or a genetic control sequence with a suitable dehydroquinate dehydratase / shikimate dehydrogenase DNA sequence and a polyadenylation signal according to common recombination and cloning techniques, as described, for example, in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in T.J. Silhavy, M.L. Berman and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, F.M. et al. , Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987).
  • Genetic control sequences also include further promoters, promoter elements or minimal promoters that can modify the expression-controlling properties.
  • tissue-specific expression can also take place depending on certain stress factors.
  • Corresponding elements are, for example, for water stress, abseic acid (Lam E and Chua NH, J Biol Chem 1991; 266 (26): 17131 -17135) and heat stress (Schoffl F et al., Molecular & General Genetics 217 (2-3): 246-53, 1989).
  • Advantageous control sequences for the expression cassettes or vectors according to the invention are, for example, in promoters such as cos, tac, trp, tet, Ipp, lac, laclq, T7, T5, T3, gal, trc -, ara-, SP6 ⁇ , 1-PR or in the 1-PL promoter, which can be used to express the dehydroquinate dehydratase / shikimate dehydrogenase in gram-negative bacterial strains.
  • promoters such as cos, tac, trp, tet, Ipp, lac, laclq, T7, T5, T3, gal, trc -, ara-, SP6 ⁇ , 1-PR or in the 1-PL promoter, which can be used to express the dehydroquinate dehydratase / shikimate dehydrogenase in gram-negative bacterial strains.
  • control sequences are, for example, in the amy and SP02 promoters, which can be used to express the dehydroquinate dehydratase / shikimate dehydrogenase in gram-positive bacterial strains, and in the yeast or fungal promoter.
  • any promoter 20 that can control the expression of foreign genes in plants is suitable for expression in plants.
  • a plant promoter or a plant virus-derived promoter is preferably used.
  • the CaMV 35S promoter from the cauliflower mosaic virus is particularly preferred, see Franck et al., Cell 21, 285-294 (1980). 25
  • This promoter contains different recognition sequences for transcriptional effectors, which in their entirety lead to permanent and constitutive expression of the introduced gene, Benfey et al. , EMBO J., 8, 2195-2202 (1989).
  • the expression cassette to be used for plants can also contain a chemically inducible promoter, by means of which the expression of the exogenous dehydroquinate dehydratase / shikimate dehydrogenase gene in the plant can be controlled at a specific point in time.
  • a chemically inducible promoter by means of which the expression of the exogenous dehydroquinate dehydratase / shikimate dehydrogenase gene in the plant can be controlled at a specific point in time.
  • promoters as e.g. the
  • promoters of the phosphoribosyl pyrophosphate amidotransferase from Glycine max see also Genbank Accession number U87999
  • a node-specific promoter as in EP 249676.
  • promoters are particularly preferred which ensure expression in tissues or parts of plants in which the biosynthesis of amino acids or their precursors takes place. Promoters that ensure leaf-specific expression should be mentioned in particular.
  • the promoter of the cytosolic FBPase from potato or the ST-LSI promoter from potato are to be mentioned (Stockhaus et al., EMBO J., 8, 2445-245 (1989)).
  • a foreign protein can be stably expressed up to a proportion of 0.67% of the total soluble seed protein in the seeds of transgenic tobacco plants (Fiedler and Conrad, Bio / Technology 10, 1090-1094 (1995)).
  • promoters such as the Napingen promoter from rapeseed (US Pat. No. 5,608,152), the oleosin promoter from Arabidopsis (WO 98/45461), the phaseolin promoter from Phaseolus vulgaris (US5, 504, 200), the Bce4 promoter from Brassica (WO91 / 13980) or the leguminous B4 promoter (LeB4, Baeumlein et al., Plant J., 2, 2, 1992: 233-239) or for Monocot-suitable promoters such as the promoters of the barley Ipt2 or Iptl gene promoters (WO95 / 15389 and WO95 / 23230) or the barley Hordein gene promoters, the glutelin rice gene, the orycin rice gene, or the prolamin rice Gene, the wheat gliadin gene, the wheat glutelin gene, the corn zein gene, the
  • the biosythesis site of amino acids is generally the leaf tissue, so that leaf-specific expression of the dehydroquinate dehydratase / shikimate dehydrogenase gene is useful.
  • the amino acid biosynthesis need not be limited to the leaf antlers, but also in all others Parts of the plant - for example in fatty seeds - can be tissue-specific.
  • Expression cassettes can also be constructed for expression in plants, the DNA sequence of which codes for a dehydroquinate dehydratase / shikimate dehydrogenase fusion protein, part of the fusion protein being a transit peptide which controls the translocation of the polypeptide.
  • Preferred transit peptides are preferred for the chloroplasts, which are enzymatically split off from the dehydroquinate dehydratase / Shikimate dehydrogenase part after translocation of the dehydroquinate dehydratase / shikimate dehydrogenase gene into the chloroplasts.
  • the transit peptide derived from the plastidic dehydroquinate dehydratase / shikimate dehydrogenase or a functional equivalent of this transit peptide e.g. the transit peptide of the Rubisco small subunit or the ferredoxin NADP oxidoreductase.
  • a plant expression cassette according to the invention can contain, for example, a constitutive promoter (preferably the CaMV 35 S promoter), the LeB4 signal peptide, the gene to be expressed and the ER retention signal.
  • the amino acid sequence KDEL lysine, aspartic acid, glutamic acid, leucine
  • the plant expression cassette can, for example, be built into the plant transformation vector pBinAR.
  • constitutive expression of the exogenous dehydroquinate dehydratase / shikimate dehydrogenase gene can be advantageous.
  • inducible expression may also appear desirable.
  • promoters can be functionally linked to the nucleic acid sequence to be expressed, which enable expression in other plant tissues or in other organisms, such as E. coli bacteria.
  • all promoters described above can be used as plant promoters.
  • preferred polyadenylation signals are those which essentially contain T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the Ti plasmid correspond to pTiACH5 (Gielen et al., EMBO J., 3, 835 (1984)) or functional equivalents.
  • the promoter and terminator regions in the transcription direction can optionally be provided with a linker or polylinker which contains one or more restriction sites for the insertion of this sequence.
  • the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites.
  • the linker has a size of less than 100 bp, often less than 60 bp, but at least 5 bp within the regulatory ranges.
  • the promoter according to the invention can be both native or homologous and foreign or heterologous to the host plant.
  • the expression cassette according to the invention contains in the
  • the promoter according to the invention, any sequence and a region for the transcriptional termination. Different termination areas are interchangeable.
  • Manipulations which provide suitable restriction sites or which remove superfluous DNA or restriction sites can also be used. Where insertions, deletions or substitutions such as, for example, transitions and trans versions can be used, vi ro mutagenesis, "primer pair", restriction or ligation can be used. With suitable manipulations, such as, for example, restriction, "chewing-back” or filling in overhangs for "blunt ends”, complementary ends of the fragments can be made available for the ligation.
  • an expression cassette is inserted as an insertion into a vector whose vector DNA contains additional functional regulation signals, for example sequences for replication or integration.
  • vectors are also understood to mean all other vectors known to the person skilled in the art, such as phages, viruses such as SV40, CMV, baculovirus, adenovirus, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA. These vectors can be replicated autonomously in the host organism or replicated chromosomally. Chromosomal replication is preferred.
  • the nucleic acid construct according to the invention can also advantageously be introduced into the organisms in the form of a linear DNA and integrated into the genome of the host organism via heterologous or homologous recombination.
  • This linear DNA can consist of a linearized plasmid or only of the nucleic acid construct as a vector or the nucleic acid sequences used.
  • nucleic acid sequences used in the method according to the invention can also be introduced into an organism alone.
  • nucleic acid sequences in addition to the nucleic acid sequences, further genes are to be introduced into the organism, all of them can be introduced into the organism together in a single vector or each individual gene can be introduced into the organism, the different vectors being able to be introduced simultaneously or successively.
  • the vector advantageously contains at least one copy of the nucleic acid sequences used and / or the nucleic acid construct according to the invention.
  • the expression cassettes according to the invention and the vectors derived from them, as already indicated above, can also contain other functional elements in addition to the promoters mentioned above. Examples include, but are not limited to:
  • Reporter genes code for easily quantifiable proteins. Via a growth, fluorescence, Che o, bioluminescence or resistance assay or via a photometric measurement (self- staining) or enzyme activity, these genes can be used to evaluate the transformation efficiency or the place or time of expression. Reporter proteins (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13 (1): 29-44) such as the "green fluorescence protein" (GFP) (Gerdes HH and Kaether C, FEBS Lett 1996; 389 (1): 44-47; Chui WL et al., Curr Biol 1996, 6: 325-330; Leffel SM et al., Biotechniques.
  • GFP green fluorescence protein
  • Selection markers that confer resistance to antibiotics include the npt gene which confers resistance to the aminoglyciside antibiotics neomycin (G 418), kanamycin and paromycin (Deshayes A et al., EMBO J. 4 (1985) 2731-2737), the hygro gene (Marsh JL et al., Gene. 1984; 32 (3): 481-485), the sul gene (Guerineau F et al., Plant Mol Biol. 1990; 15 (1): 127-136) and the she- ble gene that confers resistance to the bleomycin antibiotic zeocin.
  • selection marker genes are genes which confer resistance to 2-deoxyglucose-6-phosphate (WO 98/45456) or phosphinotricin etc. or those which confer resistance to antimetabolites, for example the dhfr gene ( Reiss, Plant Physiol. (Life Sei. Adv.) 13 (1994) 142-149). Also suitable are genes such as trpB or hisD (Hartman SC and Mulligan RC, Proc Natl Acad Sei U S A. 85 (1988) 8047-8051).
  • Mannose phosphate iso erase WO 94/20627
  • ODC ornithine decarboxylase
  • McConlogue 1987 in: Current Communications in Molecular Biology, Cold Spring Harbor Laboratory, ed.
  • Deaminase from Aspergillus terreus Teamura K et al., Biosci Biotechnol Biochem. 59 (1995) 2336-2338).
  • affinity tags coding for a peptide or polypeptide, the nucleic acid sequence of which can be fused with the sequence coding for the target protein directly or by means of a linker using common cloning techniques.
  • the affinity tag is used to isolate the recombinant target
  • teins by means of affinity chromatography can also be used for the detection of the expressed fusion protein.
  • the above-mentioned linker can optionally contain a protease interface (eg for thrombin or factor Xa), as a result of which the affinity tag can be cleaved from the target protein if necessary.
  • affinity tags are the "His tag”, for example from Quiagen, Hilden, "Strep tag”, the “Myc tag”, the domain consisting of a chitin-binding domain and an integer from New England Biolab and that so-called CBD day from Novagen.
  • Examples of vectors for expression in E. coli are pGEX [Pharmacia Biotech Ine; Smith, D.B. and Johnson, K.S. (1988) Gene 67: 31-40], pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which contains glutathione S-transferase (GST), maltose binding protein, or Protein A, the pTrc- Vectors (Amann et al., (1988) Gene 69: 301-315), the "pQE” vectors from Qiagen (Hilden), the "pKK233-2” from CLONTECH, Palo Alto, CA and the "pET” -, and the "pBAD” vector series from Strategagen, La Jolla as well as the Ml3mp series and pACYC184.
  • vectors for vectors for use in yeast are pYepSecl (Baldari, et al., (1987) E bo J. 6: 229-234), pMFa (Kur- jan and Herskowitz, (1982) Cell 30: 933-943) , pJRY88 . (Schultz et al., (1987) Gene 54: 113-123), and pYES derivatives, pGAPZ derivatives, pPICZ derivatives and the vectors of the "Pichia Expression Kit” (all from Invitrogen Corporation, San Diego, CA).
  • insect cell expression vectors for example for expression in Sf 9 cells, are the vectors of the pAc series (Smith et al. (1983) Mol. Cell Biol. 3: 2156-2165) and the pVL series (Luck-low and Summers (1989) Virology 170: 31-39).
  • plant expression vectors for expression in plant cells or algal cells can be found in Becker, D., et al. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20: 1195-1197 or in Bevan, MW (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acid. Res. 12: 8711-8721.
  • Other suitable vectors are described, inter alia, in “Methods in Plant Molecular Biology and Biotechnology” (CRC Press, Chapter 6/7, 71-119).
  • Examples of expression vectors to be used in mammalian cells are pCDM8 and pMT2PC mentioned in: Seed, B. (1987) Nature 329: 840 or Kaufman et al. (1987) EMBO J. 6: 187-195).
  • Promoters to be used are preferably of viral origin, e.g. Promoters of polyoma, adenovirus 2, cytomegalovirus or simian virus 40.
  • Further prokaryotic and eukaryotic expression systems are mentioned in chapters 16 and 17 in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989. Further advantageous vectors are described in Hellens et al. (Trends in plant science, 5, 2000).
  • the expression cassette and the vectors derived therefrom can also be used to transform bacteria, cyano-bacteria, yeasts, filamentous fungi and algae with the aim of increasing the content of ubiquinone, folate, flavonoids, cumarins, lignins, alkaloids, cyanogenic glucosides, Plastoquinones, tocopherols and aromatic amino acids can be used.
  • bacteria of the genus Escherichia (Escherichia coli), Erwinia, Flavobacterium, Alcaligenes or cyanobacteria, for example of the genus Synechocystis or Anabena, are preferred.
  • Bacteria of the genus Escherichia coli are particularly preferred here for economic reasons as well as for the many possibilities of genetic manipulation.
  • Preferred yeasts are Candida, Saccharomyces, Hansenula or Pichia.
  • Preferred fungi are Aspergillus, Trichoderma, Ashbya, Mortierella, Saprolegnia, Pythium, Neurospora, Fusarium, Beauveria or others in Indian Chem Engr. Section B.
  • eukaryotic cell lines are e.g. common insect or mammalian cell lines known to those skilled in the art.
  • transgenic animals are also suitable as host organisms, for example C. elegans.
  • transgenic plants which have a functional or non-functional nucleic acid construct according to the invention or a functional or not according to the invention functional vector included.
  • Functional in the sense of the invention is to be understood that the nucleic acids used in the method are expressed alone or in the nucleic acid construct or in the vector and a biologically active gene product is produced.
  • non-functional means that the nucleic acids used in the method, alone or in the nucleic acid construct or in the vector, are not transcribed, are not expressed and / or a biologically inactive gene product is produced.
  • the so-called antisense RNAs are also nonfunctional nucleic acids or, when inserted into the nucleic acid construct or the vector, a nonfunctional nucleic acid construct or nonfunctional vector.
  • Both the nucleic acid construct according to the invention and the vector according to the invention can be used advantageously for the production of transgenic organisms, preferably plants.
  • Baculovirus expression systems “MaxBac 2.0 Kit” from Invitrogen, Calsbald or “Bac-PAK Baculovirus ExpressionsSystem” from CLONTECH, Palo Alto, CA Expression systems for yeasts such as the “Easy Select Pichia Expression Kit", the "Pichia Expression Kit” (all from Invitrogen, Calsbad
  • the vegetable dehydroquinate dehydratase / shikimate dehydrogenase protein expressed with the aid of an expression cassette is particularly suitable for the detection of inhibitors specific for dehydroquinate dehydratase / shikimate dehydrogenase in in vitro test systems.
  • the cDNA sequence of the dehydroquinate dehydratase / shikimate dehydrogenase or suitable fragments of the cDNA sequence of the dehydroquinate dehydratase / shikimate dehydrogenase from tobacco can be in one of the above-mentioned expression vectors such as, for example, the vector pQE is cloned and in one of the above-mentioned organisms or expression systems such as e.g. E. coli can be overexpressed because E. coli from the ones already mentioned! Reasons is particularly suitable for the expression of recombinant protein.
  • the method according to the invention for identifying inhibitors of a polypeptide with dehydroquinate, the hydratase / shikimate dehydrogenase activity, with herbicidal action is based on the transcription, expression, translation or the activity of the gene product selected from the group by a nucleic acid sequence:
  • nucleic acid sequence which can be derived on the basis of the degenerate genetic code from the amino acid sequences shown in SEQ ID NO: 2 or SEQ ID NO: 4, or
  • encoded amino acid sequence is influenced and selects those substances which reduce or block the transcription, expression, translation or the activity of the gene product.
  • the method is carried out in an organism, bacteria, yeasts, fungi or plants being used as the organism.
  • an organism can be used which is a conditional or natural mutant of the sequences SEQ ID NO: 1 or SEQ ID NO: 3.
  • a method is preferred in which the organism used is a transgenic organism.
  • a transgenic organism is an organism that has been transformed with an expression cassette according to the invention or a vector according to the invention.
  • transformation the transfer of foreign genes into the genome of an organism.
  • the described methods for transforming and regenerating plants can be used for the transformation of plants
  • Suitable methods are the protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic approach with the gene cannon, the electroporation, the incubation of dry embryos in DNA-containing solution, the microinjection and the gene transfer mediated by Agrobacterium.
  • the methods mentioned are described, for example, in B. Jenes et al. , Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press (1993), 128-143 and in Potrykus Annu.
  • An expression cassette according to the invention which binds to a dehydroquinate dehydratase / shikimate dehydrogenase gene, is preferably cloned into a vector, for example pBINAR, which is suitable for transforming Agrobacterium tumefaciens, for example pBinl9 (Bevan et al., Nucl. Acids Res 12, 8711 (1984)). Agrobacts transformed with such a vector. Rien can then be used in a known manner to transform plants, in particular crop plants, such as tobacco plants, for example by bathing wounded leaves or leaf pieces in an agrobacterial solution and then be cultivated in suitable media.
  • Transgenic plants can be regenerated in a known manner from the transformed cells of the wounded leaves or leaf pieces , which contain a gene integrated into the expression cassette for the expression of a dehydroquinate dehydratase / shikimate dehydrogenase gene.
  • Agrobacteria transformed with an expression cassette can also be used in a known manner to transform plants, in particular crop plants, such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa, Salad and the various tree, nut and wine species and legumes can be used, for example by bathing wounded leaves or leaf pieces in an agrobacteria solution and then cultivating them in suitable media.
  • crop plants such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa, Salad and the various tree, nut and wine species and legumes can be used, for example by bathing wounded leaves or leaf pieces in an agrobacteria solution and then cultivating them in suitable media.
  • Another object of the invention are in vitro methods for identifying substances having a herbicidal action which inhibit the activity of the vegetable dehydroquinate dehydratase / shikimate dehydrogenase.
  • the method according to the invention consists of the following steps:
  • a polypeptide with dehydroquinate dehydratase / shikimate dehydrogenase activity is either expressed in one of the above-described embodiments of a transgenic organism in an enzymatically active form or an organism containing the protein according to the invention is cultured;
  • step b) the protein obtained in step a) is incubated in the growing or resting organism as a whole, in the cell disruption of the transgenic organism, in partially purified form or in a form purified to homogeneity with redox equivalents and with a chemical compound;
  • redox equivalents include, but are not limited to: NADPH / NADP + , NADH / NAD + and FAD / FADH.
  • a chemical compound is selected by step b) which inhibits a polypeptide with dehydroquinate dehydratase / shikimate dehydrogenase activity in comparison to a sample not incubated with the chemical compound.
  • This method is particularly suitable for high-throughput screening.
  • the plant dehydroquinate dehydratase / shikimate dehydrogenase can be used, for example, in an enzyme test in which the activity of the dehydroquinate dehydratase / shikimate dehydrogenase is determined in the presence and absence of the active substance to be tested. By comparing the two activity determinations, a qualitative and quantitative statement can be made about the inhibitory behavior of the active substance to be tested.
  • test system With the help of the test system according to the invention, a large number of chemical compounds can be checked quickly and easily for herbicidal properties.
  • the method makes it possible to selectively reproducibly select those with a high potency from a large number of substances, in order to subsequently carry out further in-depth tests known to the person skilled in the art with these substances.
  • inhibitors of the enzyme dehydroquinate dehydratase / shikimate dehydrogenase can be detected using techniques which show the interaction between protein and ligand.
  • three preferred embodiments are to be mentioned here, which in connection with the present invention are also suitable for high-throughput methods:
  • FCS fluorescence correlation spectroscopy
  • the average diffusion rate of a fluorescence molecule can be determined as a function of mass in a small sample volume.
  • FCS can be used to determine protein-ligand interactions.
  • the chemical compounds identified in this way, which bind to the dehydroquinate dehydratase / shikimate dehydrogenase, may be suitable as inhibitors.
  • the dehydroquinate dehydratase / shikimate dehydrogenase is then immobilized on a suitable carrier and incubated with the chemical compound to be investigated. After one or more suitable washing steps, the molecules of the chemical compound additionally bound to the protein can be detected using the above-mentioned methodology and thus possible inhibitors can be selected.
  • the chemical compounds identified in this way, which bind to the dehydroquinate dehydratase / shikimate dehydrogenase may be suitable as inhibitors.
  • Biacore is based on the change in the refractive index on a surface when a chemical compound binds to a protein immobilized on said surface. Since the change in the refractive index for a defined change in the mass concentration at the surface is virtually identical for all proteins and polypeptides, this method can in principle be applied to any protein (Lindberg et al. Sensor Actuators 4 (1983) 299-304; Malmquist Nature 361 (1993)
  • the chemical compound is injected into a reaction cell with a volume of 2-5ml, on the walls of which the protein has been immobilized.
  • the binding of the corresponding chemical compound to the protein and thus the identification of possible inhibitors can be done via Surface
  • Plasmon resonance can be made by picking up the laser light reflected from the surface.
  • the chemical compounds identified in this way which bind to the dehydroquinate dehydratase / shikimate dehydrogenase may be suitable as inhibitors.
  • the invention furthermore relates to in vivo methods for identifying substances having a herbicidal action which inhibit the dehydroquinate dehydratase / shikimate dehydrogenase activity in plants, consisting of
  • the following organisms or cell types are used to produce a transient organism: bacteria, in yeast, fungi, algae, plant cells, insect cells or mammalian cells.
  • Chemical compounds which reduce the biological activity, the growth or the vitality of the organisms are to be understood as compounds, the biological activity, the growth or the vitality of the organisms by at least 10%, advantageously by at least 30%, preferably by inhibit at least 50%, particularly preferably by at least 70%, very particularly preferably by at least 90%.
  • transgenic plants, plant cells, plant tissue or plant parts are used as transgenic organisms.
  • the invention further relates to compounds with herbicidal activity which can be identified using the test systems described above.
  • Another object of the invention is a method which consists in transferring the substances identified via the abovementioned methods to a plant in order to test their herbicidal activity and to select the substances which show herbicidal activity.
  • the identified substances can be chemically synthesized or microbiologically produced substances. be and e.g. in cell extracts of e.g. Plants, animals or microorganisms occur.
  • the reaction mixture may be a cell-free extract or comprise a cell or cell culture. Suitable methods are known to the person skilled in the art and are described, for example, generally in Alberts, Molecular Biology the cell, 3rd Edition (1994), e.g. Chapter 17.
  • the substances mentioned can be added to the reaction mixture or the culture medium, for example, or injected into the cells or sprayed onto a plant.
  • the sample can be divided into different groups, e.g. if it consists of a large number of different components, so as to reduce the number of different substances per sample and then to repeat the method according to the invention with such a "sub-sample" of the original sample.
  • the steps described above can be repeated several times, preferably until the sample identified according to the method according to the invention only comprises a small number of substances or only one substance.
  • the substance or derivative thereof identified according to the method according to the invention is further formulated so that it is suitable for use in plant breeding or plant row or tissue culture.
  • the substances which have been tested and identified in accordance with the method according to the invention can be: expression libraries, for example cDNA expression libraries, peptides, proteins, nucleic acids ren, antibodies, small organic substances, hormones, PNAs or the like (Milner, N ture Medicin 1 (1995), 879-880; Hupp, Cell. 83 (1995), 237-245; Gibbs, Cell. 79 (1994), 193-198 and references cited therein). These substances can also be functional derivatives or analogs of the known inhibitors or activators. Methods for the production of chemical derivatives or analogs are known to the person skilled in the art. The derivatives and analogs mentioned can be tested according to methods according to the prior art.
  • the cell or tissue which can be used for the method according to the invention is preferably a host cell according to the invention, a plant cell or a plant tissue, as described in the above-mentioned embodiments.
  • a further embodiment of the invention are substances which have been identified by the methods according to the invention described above and which are an antibody against the protein encoded by the sequences SEQ ID NO: 1 or SEQ ID NO: 3 or a functional equivalent of the protein encoded by the sequence SEQ ID NO: 1 or SEQ ID NO: 3.
  • Inhibitors of dehydroquinate dehydratase / shikimate dehydrogenase with herbicidal activity can be used as defoliants, desiccants, herbicides and in particular as weed killers. Weeds in the broadest sense are understood to mean all plants that grow up in places where they are undesirable. Whether the active ingredients found with the aid of the test system according to the invention act as total or selective herbicides depends, inter alia, on the amount used.
  • Inhibitors of dehydroquinate dehydratase / shikimate dehydrogenase with herbicidal activity can be used, for example, against the following weeds:
  • Echinochloa Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bro us, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbris yslis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.
  • the substances identified or agents containing them in the process according to the invention can advantageously also be used in a further number of crop plants for eliminating undesired plants.
  • the following crops are considered, for example:
  • the substances found by the process according to the invention can advantageously also be used in crops which are tolerant to the action of herbicides by breeding, including genetic engineering methods.
  • the substances according to the invention or the herbicidal compositions comprising them can be sprayed, for example, in the form of directly sprayable aqueous solutions, powders, suspensions, and also high-strength aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, spreading agents or granules , Atomizing, dusting, scattering or pouring can be used.
  • the application forms depend on. the uses; in any case, they should ensure the finest possible distribution of the active compounds according to the invention.
  • Inert liquid and / or solid carriers include liquid additives such as mineral oil fractions from medium to high boiling points, such as kerosene or diesel oil, also coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example paraffin, tetrahydronaphthalene, alkylated Naphthalenes or their derivatives, alkylated benzenes or their derivatives, alcohols such as methanol, ethanol, propanol, butanol, cyclohexanol, ketones such as cyclohexanone or strongly polar solvents, for example amines such as N-methylpyrrolidone or water.
  • liquid additives such as mineral oil fractions from medium to high boiling points, such as kerosene or diesel oil, also coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example paraffin, tetrahydronaphthalene, alkylated Naphthalen
  • aqueous forms of use such as emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules, which can be prepared, for example, by adding water.
  • emulsion concentrates such as emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules
  • the substances and / or agents, the so-called substrates as such or dissolved in an oil or solvent can be homogenized in water by means of wetting agents, adhesives, dispersants or emulsifiers.
  • concentrates consisting of an active substance, wetting agent, tackifier, dispersant or emulsifier and possibly solvent or oil, which are suitable for dilution with water.
  • alkali, alkaline earth, ammonium salts of aromatic sulfonic acids e.g. Lignin, phenol, naphthalene and dibutylnaphthalenesulfonic acid, as well as of fatty acids, alkyl and alkylarylsulfonates, alkyl, lauryl ether and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols as well as of fatty alcohol glycol ethers, condensation products of sulfonated naphthalene and its derivatives Formaldehyde, condensation products of naphthalene or naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl, octyl or nonylphenol, alkylphenyl, tributylphenyl poly
  • Powders, materials for broadcasting and dusts can advantageously be produced as solid carriers by mixing or grinding the active substances together with a solid carrier.
  • Granules for example coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active ingredients to solid carriers.
  • Solid carriers are, for example, mineral such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and vegetable products such as flour, tree bark, wood and nutshell flour, cellulose powder or other solid carriers.
  • the concentrations of the substances and / or agents according to the invention in the preparations ready for use can be varied within wide ranges.
  • the formulations generally contain 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of at least one active ingredient.
  • the active ingredients are used in a purity of 90 ° s to 100%, preferably 95% to 100% (according to the NMR spectrum).
  • the herbicidal compositions or the substances can be applied pre- or post-emergence. If the active ingredients are less compatible with certain crop plants, application techniques can be used in which the herbicidal compositions or substances are sprayed with the aid of sprayers in such a way that the leaves of the sensitive crop plants are not struck wherever possible, while the active ingredients are applied to the leaves below them unwanted plants or the uncovered floor area (post-directed, lay-by).
  • the substances and / or agents according to the invention can be mixed with numerous representatives of other herbicidal or growth-regulating active compound groups and applied together.
  • active compound groups for example, 1, 2, 4-thiadiazoles, 1, 3, 4-thiadiazoles, amides, aminophosphoric acid and their derivatives, aminotriazoles, anilides, (het) -aryloxyalkanoic acid and their derivatives, benzoic acid and their derivatives, benzothiadiazinones , 2-aroyl-l, 3-cyclohexanediones, hetaryl aryl ketones, benzylisoxazolidinones, meta-CF3-phenyl derivatives, carbamates, quinolinic acid and their derivatives, chloroacetanilides, cyclohexane-1, 3-dione derivatives, diazines, dichloropropionic acid its derivatives, dihydrobenzofurans, dihydrofuran-3-ones
  • reesters phenylacetic acid and its derivatives, phenylpropionic acid and its derivatives, pyrazoles, phenylpyrazoles, pyridazines, pyridinecarboxylic acid and their derivatives, pyrimidyl ethers, sulfonamides, Sulfonylureas, triazines, triazinones, triazolinones, triazole carboxamides, uraciles into consideration.
  • the application rates of active ingredient are 0.001 to 3.0, preferably 0.01 to 1.0 kg / ha of active substance, depending on the control target, season, target plants and growth stage.
  • Another object of the invention is the use of a substance identified by one of the methods or agents according to the invention containing these substances as a herbicide or for regulating the growth of plants.
  • the invention also relates to transgenic organisms, preferably plants, transformed with an expression cassette containing the DNA sequence SEQ-ID No. 1 or SEQ-ID No. 3 or their functional equivalents, which are obtained by additional expression of the DNA sequence SEQ-ID No. 1 or SEQ-ID No. 3 or a functional equivalent of one of these sequences have become tolerant towards inhibitors of dehydroquinate dehydratase / shikimate dehydrogenase, as well as transgenic cells, tissues, parts and propagation material of such transgenic organisms, preferably plants.
  • Transgenic crop plants such as e.g. Barley, wheat, rye, corn, soybean, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato,
  • Another object of the invention is thus the use of an expression cassette containing DNA sequences SEQ-ID No. 1, SEQ ID No. 3 or with these hybridizing DNA sequences for the transformation of plants, cells, tissues or parts of plants.
  • the aim of the use is preferably the production of plants with herbicide-resistant forms of the dehydroquinate dehydratease / shikimate dehydrogenase.
  • the gene coding for a polypeptide with dehydroquinate dehydratase / shikimate dehydrogenase activity can impart resistance to inhibitors.
  • the expression of such a gene leads to a herbicide-resistant plant, as could be shown for another enzyme from chorismate biosynthesis, the enolpyruvylshikimate-3-phosphate synthase.
  • the provision of the herbicidal target further enables a method for identifying a dehydroquinate dehydratase / shikimate dehydrogenase which is not inhibited by the inhibitors according to the invention.
  • an enzyme which differs from the dehydroquinate dehydratase / shikimate dehydrogenase according to the invention is referred to as the dehydroquinate dehydratase / shikimate dehydrogenase variant.
  • the above method is also the subject of the present invention.
  • the above-mentioned method for generating variants of the nucleic acid sequences SEQ ID NO: 1 or SEQ ID NO: 3 consists of the following steps:
  • a further subject of the invention is therefore an organism produced by this method, preferably the organism is a plant. Then whole plants are regenerated and the resistance to the herbicide in intact plants is checked.
  • Modified proteins and / or nucleic acids which can impart resistance to herbicides in plants can also be produced from the sequences SEQ ID NO: 1 or SEQ ID NO: 3 by means of the so-called "site directed mutagenesis" Stability and / or enzymatic activity of enzymes or the properties such as binding of the above-mentioned inhibitors according to the invention can be very specifically improved or changed.
  • Zhu et al. (Nature Biotech., Vol. 18, May 5, 2000: 555-558) describes a "site directed mutagenisis" method in plants which can be used advantageously.
  • EP-A-0 909 821 describes a method for changing proteins using the microorganism E. coli 5 XL-1 Red. During replication, this microorganism generates mutations in the introduced nucleic acids and thus leads to a change in the genetic information. Isolation of the modified nucleic acids or the modified proteins and testing for resistance can easily identify advantageous nucleic acids and the proteins encoded by them. After introduction into plants, these can then express resistance there and thus lead to resistance to the herbicides.
  • mutagenesis and selection are, for example, methods such as the in vivo mutagenesis of seeds or pollen and selection of resistant alleles in the presence of the invention Inhibitors, followed by genetic and molecular identification of the altered, resistant alley. Furthermore, the mutagenesis and selection of resistances in cell culture by multiplying the culture in the presence of successively increasing concentrations of the inhibitors according to the invention. The increase in the spontaneous mutation rate can be exploited by chemical / physical mutagenic treatment. As described above, modified genes can also be isolated with microorganisms which have an endogenous or recombinant activity of the proteins coded by the nucleic acids used in the Q method according to the invention and which are sensitive to the inhibitors identified according to the invention. The cultivation of the microorganisms on media with an increasing concentration of inhibitors according to the invention allows the selection and evolution of 5 resistant variants of the targets according to the invention. The frequency of the mutations can in turn be increased by mutagenic treatments.
  • a further subject of the invention is therefore a method for creating nucleotide sequences which code for gene products which have a changed biological activity, the biological activity being changed in contrast to the fact that there is increased activity.
  • Increased activity is to be understood as an activity which is at least 10%, preferably at least 30%, particularly preferably at least 50%, very particularly preferably at least 100% higher than that of the starting organism or of the starting gene product.
  • the biological activity may have been changed so that the substances and / or agents according to the invention no longer or no longer correctly target the nucleic acid sequences. and / or bind the gene products encoded by them.
  • not more or no longer correct means that the substances have changed by at least 30%, preferably at least 50%, particularly preferably by at least 70%, very particularly preferably by at least 80% or not at all Bind nucleic acids and / or gene products in comparison to the starting gene product or the starting nucleic acids.
  • Yet another aspect of the invention therefore relates to a transgenic plant genetically modified by the method according to the invention described above.
  • transgenic plants which are resistant to the substances and / or agents comprising these substances found by the method according to the invention can also be produced by overexpression of the nucleic acids SEQ ID NO: 1 or SEQ ID NO: 3 used in the methods according to the invention.
  • a further subject of the invention is therefore a method for producing transgenic plants which are resistant to substances found by a method according to the invention, characterized in that nucleic acids with the sequences SEQ ID NO: 1 or SEQ ID NO: 3 overexpressed.
  • a similar method is described by way of example in Lermantova et al. Plant Physiol., 122, 2000: 75-83.
  • the present invention therefore furthermore includes the use of plants which have genes which have been hit by the T-DNA insertion and have the nucleic acid sequences SEQ ID NO: 1 or SEQ ID NO: 3 for the development of new herbicides.
  • Alternative methods for identifying the homologous nucleic acids for example in other plants with similar sequences, such as using transposons, are known to those skilled in the art.
  • This invention therefore also relates to the use of alternative insertion utagenesis methods for inserting foreign nucleic acid into the nucleic acid sequences SEQ ID NO: 1 or SEQ ID NO: 3, in sequences derived from these sequences on the basis of the genetic code and / or their derivatives in others Plants.
  • Another method variant for identifying polypeptides resistant to the inhibitors according to the invention with dehydroquinate dehydratase / shikimate dehydrogenase activity is based on the fact that the dehydroquinate dehydratase / shikimate dehydrogenase pathway occurs not only in plants but also in bacteria and fungi. Some of these microorganisms may now contain dehydroquinate dehydratase / shikimate dehydrogenase variants.
  • the method according to the invention for the targeted detection of said dehydroquinate dehydratase / shikimate dehydrogenase variants is based on the fact that an organism is incubated with an inhibitor identified using the method according to the invention. If there is no or only partial inhibition of growth, the dehydroquinate dehydratase / shikimate dehydrogenase is isolated from the said organism and characterized with regard to its nucleic acid sequence. Partial inhibition of growth is understood here to mean that the growth is reduced by only 50%, preferably 45%, particularly preferably 20%, compared to an organism which has not been incubated. If necessary, the existing resistance is reinforced by further mutations.
  • the methods for mutagenesis described above can be used here. Any organism that has enzymes of the Shikimate pathway can be used here. Bacteria, plants and fungi are particularly preferred.
  • the present invention furthermore relates to transgenic organisms, preferably plants, their reproductive material and their plant cells, tissue or parts, transformed with an expression cassette containing the sequence of a dehydroquinate dehydratase / shikimate dehydrogenase variant which is not inhibited by the inhibitors according to the invention.
  • the expression cassette is identical to the above-described embodiments of an expression cassette for the expression of the dehydroquinate dehydratase / shikimate dehydrogenase, except for the fact that instead of the nucleic acid sequence of the dehydroquinate dehydratase / shikimate dehydrogenase, said dehydroquinate dehydratase / shikimate drogenase is present.
  • transgenic plants are produced using one of the above-described embodiments of the expression cassette according to the invention using the common transformation methods also described above.
  • the effectiveness of the expression of the transgenically expressed dehydroquinate dehydratase / shikimate dehydrogenase gene can be determined, for example, in vitro by increasing the number of shoots or by a germination test.
  • a change in the type and level of expression of the dehydroquinate dehydratase / shikimate dehydrogenase gene and its effect on the resistance to inhibitors of dehydroquinate dehydratase / shikimate dehydrogenase on test plants can be tested in greenhouse experiments.
  • Another object of the invention relates to the use of an expression cassette according to the invention for the transformation of plants, plant cells, plant tissues or parts of plants.
  • the aim of the use is preferably to increase the dehydroquinate dehydratase / shikimate dehydrogenase content or the content of a polypeptide with dehydroquinate dehydratase / shikimate dehydrogenase activity in the plant.
  • the transgenic plants are produced as described above by transforming a plant with at least one expression cassette according to the invention or at least one vector according to the invention. However, increased expression can also be achieved by targeted mutagenesis of the promoter region of the respective natural dehydroquinate dehydratase / shikimate dehydrogenase gene.
  • the following further embodiments of the invention are also based on overexpression of the dehydroquinate dehydratase / shikimate dehydrogenase.
  • the overexpression of dehydroquinate dehydratase / shikimate dehydrogenase can be mediated by means of an expression cassette according to the invention or a vector according to the invention, each containing one of the nucleic acid sequences described above coding for a polypeptide with increased dehydroquinate dehydratase / shikimate dehydrogenase activity.
  • increased activity means that at least 10%, preferably by at least 30%, particularly preferably by at least 50%, very particularly preferably by at least one, compared to the dehydroquinate dehydratase / shikimate dehydrogenase encoded by SEQ ID NO: 1 or SEQ ID NO: 2 Understand 100% higher activity.
  • the dry matter of a plant can also be increased by increasing the chorismate and the aromatic amino acids. This leads to an increase in dry matter and increases the overall yield of the plants.
  • biosynthesis of the aromatic amino acids phenylalanine, tyrosine and tryptophan in plants can be increased by overexpression of the dehydroquinate dehydratase / shikimate dehydrogenase.
  • Plants to be used preferably are crop plants, such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa, lettuce and the various tree, nut and and wine species as well as legumes.
  • crop plants such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa, lettuce and the various tree, nut and and wine species as well as legumes.
  • transgenic plants Depending on the choice of the promoter, the expression can take place specifically in the leaves, in the seeds or in other parts of the plant.
  • Such transgenic plants, their reproductive material and their plant cells, tissues or parts are a further object of the present invention.
  • the invention is illustrated by the following examples, but is not limited to these.
  • Cloning methods such as: restriction cleavage, DNA isolation, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. coli cells, cultivation of bacteria, recombinant sequence analysis DNA was according to Sambrook et al. , Cold Spring Harbor Laboratory Press (1989); ISBN 0-87969-309-6.
  • the transformation of Agrobacterium tumefaciens was carried out according to the method of Höfgen and Willmitzer (Nucl. Acid Res. 16, 9877 (1988)).
  • Agrobacteria were grown in YEB medium (Vervliet et al., Gen. Virol. 26, 33 (1975)).
  • the bacterial strains used below (E. coli, XL-I Blue) were obtained from Stratagene or Qiagen.
  • the Agrobacterium strain used for plant transformation (Agrobacterium tumefaciens, C58C1 with the plasmid pGV2260 or pGV3850kan) was developed by Deblaere et al. in nucl. Acids Res. 13, 4777 (1985).
  • the LBA4404 agrobacterial strain (Clontech) or other suitable strains can be used.
  • the vectors pUC19 (Yanish-Perron, Gene 33, 103-119 (1985)) pBluescript SK- (Stratagene), pGEM-T (Promega), pZerO (Invitrogen), pBinl9 (Bevan et al., Nucl. Acids Res. 12,
  • the sequencing of recombinant DNA molecules was carried out with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA, 74, 5463-5467 (1977)). Fragments resulting from a polymerase chain reaction were sequenced and checked to avoid polymerase errors in constructs to be expressed.
  • H0 Water system water treatment plant (Millipore, Eschborn).
  • DNA-modifying enzymes and molecular biological kits were developed by the companies AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Röche (Mannheim), Genomed (Bad Oeynnhausen), New England Biolabs (Schwalbach / Taunus), Novagen ( Madison, Wisconsin, USA), Perkin-Elmer (further adt), Pharmacia (Freiburg) Qiagen (Hilden) and Stratagene (Heidelberg). Unless otherwise stated, they were used according to the manufacturer's instructions.
  • the dehydroquinate dehydratase / shikimate dehydrogenase was cloned from tobacco flowers using the RT-PCR method. A sequencing analysis confirmed that the dehydroquinate dehydratase / shikimate dehydrogenase is from tobacco. The following primers were used for this procedure:
  • the PCR product is 1088 base pairs in size and was used for the antisense and co-suppression inhibition of the dehydroquinate dehydratase / shikimate dehydrogenase gene.
  • the full-length clone was amplified using the PCR method from tobacco flower DNA.
  • This 1668 base pair long cDNA fragment contains an open reading frame of 1668 bases and codes for a protein with 556 amino acids.
  • the transit peptide belonging to the pre-protein was not cloned by this procedure.
  • Analyzes of the polypeptide using the GCG program (Oxford Molecular) showed a value of 100% identity at the nucleic acid and amino acid level with a protein from Nicotiana tabacum described in the database (Acc number: L 32794).
  • the 1088 base pair fragment of the Nicotiana tabacum dehydroquinate dehydratase / shikimate dehydrogenase was cloned in the sense orientation and in the antisense orientation into the binary vector pBINAR under the control of the 35S promoter, see Figure 6.
  • For cloning the dehydroquinate dehydratase / Shikimate dehydrogenase in the binary vector could use the BamHI interfaces specified by the primers.
  • the PCR product was purified using the Gene Clean Kit (Dianova GmbH, Hilden) and digested with BamHI.
  • the vector pBinl9AR was also cut with BamHI for ligation.
  • This construct was transformed into tobacco by Agrobacterium-mediated transformation. Regenerated plants were examined for dehydroquinate dehydratase / shikimate dehydrogenase mRNA amounts. All investigated antisense and sense plants with reduced dehydroquinate dehydratase / Shiki at dehydrogenase mRNA levels showed a clear phenotype. A strict correlation between the phenotype and the reduced amount of mRNA was found. Plants with reduced dehydroquinate dehydrogenase / Shikimate dehydrogenase mRNA showed mosaic leaves, reduced size - see Figures 2 to 4 - and died during plant development.
  • transgenic tobacco plants (Nicotiana tabacum L. cv. Samsun NN) tobacco leaf disks were transformed with sequences of the dehydroquinate dehydratase / shikimate dehydrogenase.
  • tobacco plants 10 ml of an overnight culture of Agrobacterium tumefaciens grown under selection were centrifuged off, the supernatant was discarded and the bacteria were resuspended in the same volume of antibiotic-free medium.
  • Leaf disks of sterile plants (diameter approx. 1 cm) were bathed in this bacterial suspension in a sterile petri dish. The leaf disks were then placed in Petri dishes on MS medium (Murashige and Skoog, Physiol.
  • RNA from plant tissues was determined as in Logemann et al., Anal. Biochem. 163, 21 (1987) isolated. For the analysis, 20 ⁇ g of RNA were separated in a 1.5% agarose gel containing formaldehyde and transferred to nylon membranes (Hybond, Amersham). The detection of specific transcripts was carried out as described for Amasino (Anal. Biochem. 152,
  • the DNA fragments used as a probe were radioactively labeled with a random primed DNA labeling kit (Boehringer, Mannheim) and hybridized according to standard methods (see Hybond user instructions, Amersham). Hyridization signals were visualized by autoradiography using X-OMAT AR films from Kodak.
  • Figure 5 shows a Northern analysis of five tobacco plants (19-1, 19-4, 19-5, 83-2, 83-5), which contain a pBinAR antisense construct from DHD / SDH were transformed. As a control, the RNA from two wild-type plants is applied. The expression of DHD / SDH is reduced in the transgenic tobacco plants.
  • Wild type and transgenic DHD / SDH plants are shown in side view ( Figure 2) and in top view ( Figures 3 and 4). There is a clear inhibition of growth compared to the wild type ( Figure 2, wild type on the left). The reduced growth correlates with a decrease in DHD / SDH gene expression ( Figure 5 A and 5 B).
  • Figure 5 A shows Northern analyzes of transgenic DHD / SHD plants from the TI generation with strong phenotypic changes. The analysis shows that DHD / SHD gene expression is inhibited in plants with a strong phenotypic change.
  • Figure 5 B shows Northern analyzes of transgenic DHD / SHD plants of the T1 generation with a normal phenotype.
  • the formation of NADPH can be measured at an OD of 334 nm over 10 minutes.
  • the reaction is started by adding 1 microliter of the extracted crude protein.
  • the reaction buffer contains:
  • Another enzyme assay of dehydroquinate dehydratase / shikimate dehydrogenase is carried out by measuring both enzymes in a coupled back reaction:
  • Expression vectors are suitable for the expression of recombinant proteins in E. coli, but also baculovirus vectors for the expression of dehydroquinate dehydratase / shikimate dehydrogenase in insect cells (Gibco BRL).
  • Bacterial expression vectors are e.g. derived from pBR322 and carry a bacteriophage T7 promoter for expression.
  • the plasmid is propagated in an E. coli strain which carries an inducible gene for the T7 polymerase (e.g. JM109 (DE3); Promega).
  • the expression of the recombinant protein is activated via the induction of the T7 polymerase by IPTG.
  • IPTG-inducible systems from Quiagen (pQE vectors) or Novagen (pET vectors) are suitable. Depending on the interfaces available, there are vectors with different reading frames.
  • the full-length dehydroquinate dehydratase / shikimate dehydrogenase gene was cloned into the pQE vector ( Figure 7) and transformed into E. coli.
  • a single colony of this E. coli strain was transferred to "2xYT" (1 l: Bacto-trypton 16 g, yeast extract 10 g, 5 g NaCl, 5 mg, 50 mg / 1 ampicillin and 50 mg / 1 kanamycin per 1 liter) Incubated overnight at 37 ° C. The next day, 50 ml of 2 * YT were inoculated with 0.5 ml of the overnight culture and grown at 25 ° C. to an ODgoo of 0-6.
  • Figure 8 shows the expressed DHD / SDH protein with a size of approx. 60 kD in SDS-Page gel electrophoresis.
  • Lane 1 (left to right): protein markers, molecular weights from top to bottom: 97.4 KD; 66 KD; 46 KD; 30 KD; 21.5 KD and 14.3 KD
  • Lane 2 induced DHD / SHD protein (crude extract, denatured) in the presence of 2 mM IPTG, 37 ° C. molecular weight DHD / SHD: approx. 60 KD
  • Lane 4 induced DHD / SHD protein (crude extract, native) in the presence of 0.05 mM IPTG, 25 ° C
  • Lane 5 induced DHD / SHD protein (purified on Ni-NTA material, native)
  • Lemna inor is grown under non-sterile conditions in plastic trays in 17 mMOl / 1 MES buffer pH 5.5 + 1.5 mmol / 1 CaCl — 2 + 1 g / 1 Hakaphos special.
  • the Lemna cultures are washed and separated in 0.5 ml fresh nutrient solution in 48-well microtiter plates.
  • the active ingredients are dissolved in 5 mmol / 1 in DMSO and diluted 1: 5 in water. 2501 of this solution are used for the test.
  • the fluorescence of chlorophyll is measured during the treatment.
  • a herbicidal action can be detected by comparison with an untreated control and is abbreviated to H in Table 1.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Nukleinsäuresequenzen codierend für ein Polypeptid mit Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität zur Herstellung eines Testsystems zum Auffinden von Inhibitoren der Dehydroquinat Dehydratase/Shikimat Dehydrogenase. Erstmals wurde mit Hilfe der Antisense-Technologie gezeigt, dass Dehydroquinat Dehydratase/Shikimat Dehydrogenase ein Herbizides Target darstellt. Desweiteren betrifft die Anmeldung die Herstellung transgener Pflanzen enthaltend eine Nukleinsäuresequenz codierend für ein Polypeptid mit Dehydroquinat Dehydratase/Shikimat Dehydrogenase (E.C. 4.2.1.10/E.C. 1.1.1.25) Aktivität gekennzeichnet durch eine erhöhte Biomasseproduktion oder/und einen erhöhten Gehalt an aromatischen Aminosäuren im Vergleich mit einer nicht transgenen Pflanze.

Description

Dehydroquinat Dehydratase/Shikimat Dehydrogenase als herbizides Target
Beschreibung
Die vorliegende Erfindung betrifft die Identifizierung pflanzlicher Dehydroquinat Dehydratase/Shikimat Dehydrogenase (DHD/SHD) als neues Ziel für herbizide Wirkstoffe. Die vorliegende Erfin- düng betrifft weiterhin ein Verfahren zur Herstellung eines Test- systems basierend auf der Verwendung der DNA-Sequenz SEQ-ID No. 1 oder SEQ-ID No. 3, funktioneller Äquivalente der SEQ-ID No:l oder SEQ ID NO: 3 oder Teile der SEQ-ID No:l oder SEQ-ID No: 3 kodierend für ein pflanzliches Polypeptid mit Dehydroquinat Dehydra- tase/Shikimat Dehydrogenase Aktivität zur Identifizierung von Inhibitoren der pflanzlichen Dehydroquinat Dehydratase/Shikimat Dehydrogenase. Die Erfindung betrifft weiterhin Substanzen identifiziert unter Verwendung dieser Verfahren bzw. dieses Testsysteme sowie deren Verwendung als Herbizide bzw. die Verwendung des Polypeptides mit Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität als Target für Herbizide.
Ebenfalls Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung transgener Pflanzen enthaltend die SEQ-ID No:l oder SEQ-ID No: 3, funktionelle Äquivalente der SEQ-ID No:l oder SEQ ID NO: 3 oder Teile der SEQ-ID No:l oder SEQ-ID No: 3, die eine erhöhte Trockenmasse und/oder einen erhöhten Gehalt an aromatischen Aminosäuren gegenüber einer nicht transgenen Pflanze des gleichen Typs aufweisen.
Des weiteren betrifft die Erfindung Verfahren zur Identifizierung von Nukleinsauresequenzen von Dehydroquinat Dehydratase/Shikimat Dehydrogenase-Varianten, die gegenüber den nach den erfindungsgemäßen Verfahren identifizierten Inhibitoren der pflanzlichen De- hydroquinat Dehydratase/Shikimat Dehydrogenase resistent sind, sowie transgene Pflanzen dadurch gekennzeichnet, dass sie die Nukleinsauresequenzen besagter Dehydroquinat Dehydratase/Shikimat Dehydrogenase-Varianten enthalten.
Die Dehydroquinate Dehydratase/Shikimat Dehydrogenase ist beteiligt an der Biosynthese von Chorismat, der Vorstufe der aromatischen Aminosäuren Phenylalanin, Tyrosin und Tryptophan, siehe Abbildung 1.
Vorläufer für die Bildung aromatischer Aminosäuren sind Eryt- hrose-4-phosphat und Phosphoenolpyruvat. Die beiden Substanzen kondensieren unter Abspaltung der beiden Phosphate zu 2-Keto-3-Desoxy-D-arabinoheptulosonat-7-phosphat, einer C7-Ver- bindung, die zu Dehydroquinat cyclisiert. Nach Abspaltung von Wasser durch die Dehydroquinat-Dehydratase (E.C. 4.2.1.10) und Reduktion der Carbonylgruppe durch die Shikimat-Dehydrogenase 5 (E.C. 1.1.1.25) entsteht Shikimat, siehe Voet und Voet, Biochemie, 1994, Verlag Chemie. Es handelt sich bei der Dehydroquinate Dehydratase/Shikimat Dehydrogenase um ein bifunktionelles Enzym, welches den dritten und den vierten Schritt in der Chorismat-Bio - Synthese katalysiert, siehe auch Mitsuhashi, S., Davis, B.D.,
10 Biochim. Biophys. Acta, 15, 54-61(1954); Jacobson, J.W. , Hart, B.A., Doy, C.H., Giles, N.H., Biochim. Biophys. Acta 289, 1-12(1972); Polley, L.D., Biochim. Biophys. Acta 526, 259-266(1978); Chaudhuri, S., Coggins, J.R. Biochem. J. 226, 217-223(1985) .
15
Für die Shikimat Dehydrogenase konnten verschiedene Inhibitoren identifiziert werden. Zum einen wirken verschiedene Metall-Verbindungen und Metall-Ionen, wie ZnCl , CdS04, CuS04, HgCl2, Hg2+, Zn2+, Cu2+ und Borate inhibierend auf die Shikimat Dehydrogenase
20 (Lourenco, E.J., Neves, V.A., Phytochemistry, 23, 497-499(1984); Lemos Silva, G.M. , Lourenco, E.J., Neves, V.A. J. Food Biochem. 9, 105-116(1985)), zum anderen konnte gezeigt werden, daß sich Arsenite, p-Chloromercuribenzoate und N-Ethylmaleimide inhibierend auf das Enzym auswirken (Sanderson, G.W. Biochem. J. , 98,
25 248-252(1966)). Auch für die Dehydroquinate Dehydratase konnten Inhibitoren identifiziert werden. So wirken Acetate, Succinate, D- (+) -Tartrate und Diethyl-Dicarbonate hemmend auf die Dehydroquinate Dehydratase bei Escherichia coli (Chaudhuri, S., Lambert, J.M., McColl, L.A., Coggins, J.R., Biochem. J. , 239, 699-704
30 (1986) ; Chaudhuri, S., Duncan, K. , Coggins, J.R. Methods Enzy- mol.,142, 320-324(1987)).
Da Pflanzen auf einen effektiven Aminosäurestoffwechsel angewiesen sind, läßt sich vermuten, daß sich Enzyme, die an der Amino-
35 säurebiosynthese beteiligt sind, als Zielprotein (Target) für Herbizide eignen. So wurden bereits Wirkstoffe beschrieben, welche die pflanzliche de novo Aminosäurebiosynthese inhibieren. Beispielhaft ist Glyphosate zu nennen, welches in planta die Aminosäurebiosynthese inhibiert.
40
Bisher sind pflanzliche Gensequenzen für die Dehydroquinate Dehydratase/Shikimat Dehydrogenase aus Glycine max, Gossypium hirsutum, Lycopericum esculentum, Oryza sativa, Nicotiana tabacum, Arabidopsis thaliana bekannt.
45 Neben der Biosynthese der aromatischen Aminosäuren spielt der Shikimatweg eine Rolle bei einer Vielzahl von weiteren Substanzen, die von der Pflanze in großen Mengen gebildet werden, wie z.B. Ubichinon, Folat, Flavonoide, Cumarine, Lignin, Alkaloide, cyanogene Glucoside, Plastochinon und Tocopherole. Die Summe aller dieser Substanzen kann bis zu 50% der Trockensubstanz einer Pflanze ausmachen.
Der Nachweis der Eignung eines Enzyms als Target für Herbizide kann durch Verringerung der Enzymaktivität zum Beispiel mittels Antisensetechnik in transgenen Pflanzen erfolgen. Wird durch Einbringen einer Antisense-DNA für ein bestimmtes Gen in eine Pflanze ein verringertes Wachstum bewirkt, so deutet dies auf die Eignung des in seiner Aktivität reduzierten Enzyms als Wirkort für herbizide Wirkstoffe hin. Beispielsweise führt die Antisense- Inhibierung der Acetolactat-Synthase (ALS) in transgenen Kartoffelpflanzen zu vergleichbaren Phänotypen, wie die Behandlung von Kontrollpflanzen mit ALS-inhibierenden Herbiziden (Höfgen et al . , Plant Physiology 107, 469-477(1995)).
Unter transgen im Sinne der Erfindung ist zu verstehen, daß die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden. Tansgen bedeutet aber auch, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Gleiches gilt für das erfindungsgemäße Nukleinsäurekonstrukt oder den Vektor.
Aufgabe der vorliegenden Erfindung war es zu belegen, daß Dehydroquinat Dehydratase/Shikimat Dehydrogenase in Pflanzen ein geeignetes herbizides Target ist, sowie die Herstellung eines effizienten und einfachen Dehydroquinat Dehydratase/Shikimat Dehydrogenase Testsystems für die Durchführung von Inhibitor-Enzym-Bin- dungsstudien. Weiterhin bestand die Aufgabe darin, gegen die erfindungsgemäß gefundenen Inhibitoren resistene Dehydroquinat Dehydratase/Shikimat Dehydrogenase Varianten zu identifizieren.
Die Aufgabe wurde gelöst durch Isolierung von DNA-Sequenzen, die für das pflanzliche Enzym Dehydroquinat Dehydratase/Shikimat Dehydrogenase kodieren, der Herstellung von Antisense- oder Co- suppressionskonstrukten der pflanzlichen Dehydroquinat Dehydra- tase/Shikimat Dehydrogenase und deren Expression in Pflanzen, sowie der funktioneilen Expression der pflanzlichen Dehydroquinat Dehydratase/Shikimat Dehydrogenase in prokaryontischenoder euka- ryontischen Zellen.
Als Modellpflanze für die Expression der Dehydroquinate Dehydratase/Shikimat Dehydrogenase in Sense- und Antisense-Orientierung wurde Tabak (Varietät Samsun NN) eingesetzt.
Zur Herstellung von rekombinantem Enzym zur Durchführung von En- zymassays wurde die Dehydroquinate Dehydratase/Shikimat Dehydrogenase in E. coli heterolog exprimiert.
Zur Lösung der Aufgabe wurde eine cDNA codierend für pflanzliche Dehydroquinat Dehydratase/Shikimat Dehydrogenase aus Tabak isoliert und sequenziert, siehe Beispiel 1 bzw. Sequenzprotokoll SEQ-ID No. 1, SEQ-ID No . 3 und Bonner, C. and Jensen, R. Biochem. J. , 302, 11-14(1994). Das Gen kann funktioneil in verschiedenen heterologen Systemen wie in E. coli, Hefen oder Baculoviren über- exprimiert und in Testsystemen zur Identifizierung von
Inhibitoren eingesetzt werden. Der Nachweis, daß Dehydroquinate Dehydratase/Shikimat Dehydrogenase ein essentielles Gen für Pflanzen darstellt wurde erstmals mit Hilfe von Antisense- bzw. Cosuppressionspflanzen erbracht.
Tabakpflanzen, die ein Antisensekonstrukt der Dehydroquinat Dehydratase/Shikimat Dehydrogenase - siehe Beispiel 2 und 3 -tragen, wurden näher charakterisiert. Die Pflanzen zeigen in unterschiedlichem Maße eine Wachstumsretardierung. So sind Wildtyp und transgene DHD/SHD Pflanzen in der Seitenansicht (Abbildung 2) und in der Aufsicht (Abbildung 3 und 4) gezeigt. Deutlich zu sehen ist bei transgenen DHD/SHD-Pflanzen eine starke Wachstumshemmung im Vergleich zum Wildtyp (Abbildung 2, Wildtyp links außen ) .Die transgenen Linien, sowie die Nachkommen der 1. und 2. Generation, wiesen ein verringertes Wachstum in Erde auf. In Pflanzen mit verringertem Wachstum konnte eine im Vergleich zum Wildtyp reduzierte Dehydroquinat Dehydratase/Shikimat Dehydrogenase - RNA- Menge in der Northern-Hybridisierung detektiert werden, siehe Ab bildung 5 A. Ferner konnte durch Messung der Enzymaktivität (Bei- spiel 5) eine im Vergleich mit Wildtyppflanzen verringerte Menge der Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität in transgenen DHD/SHD-Linien detektiert werden. Das Expressionsni- veau sowie die Reduktion der Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität korrelieren mit der Wachstumsretardie- rung. Es wurde gefunden, daß durch Einbringen eines Dehydroquinat Dehydratase/Shikimat Dehydrogenase-Antisensekonstruktes eine Verringerung des Wachstums der Pflanze zu beobachten ist.
Bei Wildtyp Tabakpflanzen und bei DHD/SHD-Cosuppressionspflanzen wurde die Aktivität des DHD/SHD-Enzyms nach der Methode wie in Beispiel 5 beschrieben gemessen. Dabei stellte sich heraus, daß bei Cosuppressionspflanzen die DHD/SHD-Enzymaktivität gleich null ist und bei Wildtyppflanzen eine Enzymaktivität von 0.025 - 0.06 μM/min/g gemessen werden kann.
Dieser klare Zusammenhang weist Dehydroquinat Dehydratase/Shikimat Dehydrogenase erstmals eindeutig als geeignetes Zielprotein (Target) für herbizide Wirkstoffe aus.
Um effiziente Hemmstoffe der pflanzlichen Dehydroquinat Dehydratase/Shikimat Dehydrogenase finden zu können, ist es notwendig, geeignete Testsysteme, mit denen Inhibitor-Enzym-Bindungsstudien durchgeführt werden können, zur Verfügung zu stellen.
Zur Herstellung dieser Testsysteme kann eine Nukleinsauresequenz zur Identifizierung von Inhibitoren pflanzlicher Dehydrochinat Dehydratase/Shikimat Dehydrogenase verwendet werden, wobei die besagte Nukleinsauresequenz zBsp. die DNA-Sequenz SEQ-ID No. 1 oder SEQ-ID No. 3 enthaltend die Kodierregion einer pflanzlichen Dehydrochinat Dehydratase/Shikimat Dehydrogenase, oder eine Nu- kleinsäuesequenz, die mit der DNA-Sequenz SEQ-ID No. 1 oder SEQ-ID No. 3 oder Teilen oder Derivaten, die durch Insertion, De- letion oder Substitution von diesen Sequenzen abgeleitet sind, hybridisiert und für ein Protein kodiert, das die biologische Ak- tiviät einer pflanzlichen Dehydrochinat Dehydratase/Shikimat Dehydrogenase besitzt, umfassen kann.
Genauer gesagt, betrifft ein weiterer Gegenstand der Erfindung somit Verfahren zur Identifizierung neuer Herbizide basierend auf der Verwendung eines Proteins mit Dehydroquinate Dehydratase/ Shikimat Dehydrogenase Aktivität codiert durch eine Nukleinsauresequenz, wobei diese Nukleinsauresequenz die folgene Sequenz umfaßt:
a) eine Nukleinsauresequenz mit der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestell en Sequenz; oder
b) einer Nukleinsauresequenz, die sich aufgrund des degenerierten genetischen Codes aus den durch Rück2- Übersetzung der in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen ableiten läßt; oder c) funktionelle Analoga der in SEQ ID NO: 1 oder
SEQ ID NO: 3 dargestellten Nukleinsauresequenzen, die für ein Polypeptid mit den in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen codieren; oder
d) funktionelle Analoga der in SEQ ID NO: 1 oder
SEQ ID NO: 3 dargestellten Nukleinsauresequenz, die für funktionelle Analoga der in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen codieren; oder
e) Teile der Nukleinsauresequenzen a) , b) , c) oder d) ; oder
f) mindestens 300 Nukleotidbausteine der Nukleinsäuresequen- zen a) , b) , c) oder d) ;
Vorteilhaft ist hierbei die Verwendung von Polypeptiden mit Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität mit einer Aminosäuresequenzhomologie zu der Dehydroquinat Dehydratase/Shi- kimat Dehydrogenase aus Tabak mit den SEQ-ID NO. 2 bzw. SEQ-ID NO. 4 von 20 - 100 %, bevorzugt 50-100%, , besonders bevorzugt 70-100%, ganz besonders bevorzugt 80-100%, oder 85-100%, oder 90-100%, oder 95-100%, oder 96-100%, oder 97-100%, oder 98-100%, oder 99-100%.
Der Begriff der Homologie zwischen zwei Nukleinsauresequenzen oder Polypeptidsequenzen wird durch die Identität der Nukleinsäu- resequenz/Polypeptidsequenz über die jeweils gesamte Sequenzlänge definiert, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, üniversity of Wisconsin, Ge- netics Computer Group (GCG) , Madison, USA) unter Einstellung folgender Parameter berechnet wird:
Gap Weight: 12 Length Weight: 4
Average Match: 2,912 Average Mismatch:-2, 003
Funktionelle Analoga oder funktionell äquivalente Sequenzen, die für ein Dehydroquinat Dehydratase/Shikimat Dehydrogenase Gen ko- dieren, sind solche Sequenzen, welche trotz abweichender
Nukleotidsequenz noch die gewünschten Funktionen besitzen. Funktionelle Äquivalente umfassen somit natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, ' z .B. durch chemische Synthese erhaltene, an den Kodon-Gebrauch eines Organismus angepaßte, künstliche Nukleotid-Sequenzen (so) , aber auch Sequenzen, die mit den erfindungsgemäßen Sequenzen oder Teilen dieser Sequenzen hybridisieren.
Zur Hybrisierung werden vorteilhaft kurze Oligonukleotide bei- 5 spielsweise der konservierten oder sonstigen Bereiche, die über Vergleiche mit anderen verwandten Genen in dem Fachmann bekannter Weise- ermittelt werden können, verwendet. Es können aber auch längere Fragmente der erfindungsgemäßen Nukleinsäuren oder die vollständigen Sequenzen für die Hybridisierung verwendet werden.
10 Je nach der verwendeten Nukleinsäure: Oligonukleotid, längeres Fragment oder vollständige Sequenz oder je nachdem welche Nu- kleinsäureart DNA oder RNA für die Hybridisierung verwendet werden, variieren diese Standardbedingungen. So liegen beispielsweise die Schmelztemperaturen für DNA:DNA-Hybride ca 10 °C niedriger
15 als die von DNA:RNA-Hybriden gleicher Länge.
Unter Standardbedingungen sind beispielsweise je nach Nukleinsäure Temperaturen zwischen 42 und 58°C in einer wäßrigen Pufferlösung mit einer Konzentration zwischen 0,1 bis 5 x SSC (1 X SSC
20 = 0,15 M NaCl, 15 mM Natriumeitrat, pH 7,2) oder zusätzlich in Gegenwart von 50 % Formamid wie beispielsweise 42°C in 5 x SSC, 50 % Formamid zu verstehen. Vorteilhafterweise liegen die Hybridisierungsbedingungen für DNA:DN -Hybride bei 0,1 x SSC und Temperaturen zwischen etwa 20°C bis 45°C, bevorzugt zwischen etwa
25 30°C bis 45°C. Für DNA:RNA-Hybride liegen die Hybridisierungsbedingungen vorteilhaft bei 0,1 x SSC und Temperaturen zwischen etwa 30°C bis 55°C, bevorzugt zwischen etwa 45°C bis 55°C. Diese angegebenen Temperaturen für die Hybridisierung sind beispielhaft kalkulierte Schmelztemperaturwerte für eine Nukleinsäure mit ein¬
30 er Länge von ca. 100 Nukleotiden und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid. Die experimentellen Bedingungen für die DNA-Hybridisierung sind in einschlägigen Lehrbüchern der Genetik wie beispielsweise Sambrook et al., "Molecular Cloning" , Cold Spring Harbor Laboratory, 1989, beschrieben und lassen sich
35 nach dem Fachmann bekannten Formeln beispielsweise abhängig von der Länge der Nukleinsäuren, der Art der Hybride oder dem G + C- Gehalt berechnen. Weitere Informationen zur Hybridisierung kann der Fachmann folgenden Lehrbüchern entnehmen: Ausubel et al . (eds) , 1985, Current Protocols in Molecular Biology, John Wiley & Sons, New York; Harnes and Higgins (eds), 1985, Nucleic Acids
40 Hybridization: A Practical Approach, IRL Press at Oxford üniversity Press, Oxford; Brown (ed) , 1991, Essential Molecular Biology: A Practical Approach, IRL Press at Oxford üniversity Press, Oxford.
45 Unter einem funktioneilen Äquivalent versteht man insbesondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten für eine Dehydroquinat Dehydratase/Shikimat Dehydro- genäse kodierende Sequenz, welche weiterhin die gewünschte Funktion zeigt. Mutationen umfassen Substitutionen, Additionen, Dele- tionen, Vertauschungen oder Insertionen eines oder mehrerer Nu- kleotidreste. Somit werden beispielsweise auch solche Nukleotid- Sequenzen durch die vorliegende Erfindung mit umfaßt, welche man durch Modifikation dieser Nukleotidsequenz erhält. Ziel einer solchen Modifikation kann z.B. die weitere Eingrenzung der darin enthaltenen kodierenden Sequenz oder z.B. auch die Einfügung weiterer Restriktionsenzym-Schnittstellen sein.
Funktionelle Äquivalente sind auch solche Varianten, deren Funktion, verglichen mit dem Ausgangsgen bzw. Genfragment, abgeschwächt oder verstärkt ist.
Umfaßt im Begriff des funktioneilen Äquivalentes ist, daß die erfindungsgemäße Nukleotid-Sequenz synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen DNA-Bestandteilen enthalten kann. Im allgemeinen werden synthetische Nukleotid-Sequenzen mit Kodons erzeugt, die von dem jeweiligen Wirtsorganismus bevorzugt werden. Diese bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Spezies exprimiert werden.
Funktionelle Analoga bzw. funktionelle Äquivalente der Nukleinsauresequenzen umfassen weiterhin auch Nukleinsauresequenzen, die bezogen auf die Gesamtlänge der DNA-Sequenz eine Sequenzhomologie mit der DNA-Sequenz SEQ-ID NO. 1 oder SEQ-ID NO. 3 vorteilhaft von 40 bis 100 %, bevorzugt von 60 bis 100 % und besonders bevor- zugt von 70 -bis 100 %, ganz besonders bevorzugt 80-100%, oder 85-100%, oder 90-100%, oder 95-100%, oder 96-100%, oder 97-100%, oder 98-100%, oder 99-100% aufweisen.
Das erfindungsgemäße Verfahren kann in einzelnen getrennten Ver- fahrensansätzen durchgeführt werden. Bevorzugt ist hierbei jedoch die Durchführung in einem High-Throug put-Screening.
Im vorgenannten Verfahren können Substanzen mit herbizider Wirkung ermittelt werden, welche die Tanscription, Expression, Translation oder die Aktivität eines Polypeptides mit Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität reduzieren oder blockieren. Diese Substanzen sind potentielle Herbizide, die über die klassische chemische Synthese in ihrer Wirkung weiter verbessert werden können. Hierfür geeignete Testsysteme sind sowohl in vitro als auch in vivo Testsysteme. Für die Herstellung eines' Testsystems zur Identifizierung von Substanzen, die die pflanzliche Dehydrochinat Dehydratase/Shikimat Dehydrogenase inhibieren, können Proteine mit Dehydrochinat Dehydratase/Shikimat Dehydrogenase Aktivität verwendet werden, die bevorzugt
a) die in SEQ-ID No. 2 oder SEQ-ID No. 4 dargestellte Aminosäursequenz enthalten; oder
b) eine Aminosäureteilsequenz, von mindestens 100 Aminosäuren aus SEQ-ID No. 2 oder SEQ-ID No. 4 gemäß Anspruch 5 enthalten.
Die Bereitstellung der für die in vitro Testsysteme benötigten Enzymmengen erfolgt bevorzugt über die funktionale Expression pflanzlicher Dehydroquinat Dehydratase/Shikimat Dehydrogenase insbesondere von Dehydroquinat Dehydratase/Shikimat Dehydrogenase aus Tabak in geeigneten ExpressionsSystemen. Allerdings kann auch das aus Pfanzen, hierbei bevorzugt aus Tabak, isolierte Enzym an- stelle des rekombinant hergestellten Enzyms verwendet werden.
Aber auch für in vivo Testsysteme werden transgene Organismen bevorzugt verwendet.
Somit kann beispielsweise eine Nukleinsauresequenz wie die DNA- Sequenz SEQ-ID No. 1 oder SEQ-ID No. 3 enthaltend die Kodierregion einer pflanzlichen Dehydrochinat Dehydratase/Shikimat Dehydrogenase, oder eine Nukleinsäuesequenz, die mit der DNA-Sequenz SEQ-ID No. 1 oder SEQ-ID No . 3 oder Teilen oder Derivaten, die durch Insertion, Deletion oder Substitution von diesen Sequenzen abgeleitet sind, hybridisiert und für ein Protein kodiert, das die biologische Aktiviät einer pflanzlichen Dehydrochinat Dehydratase/Shikimat Dehydrogenase besitzt, zur Einführung in pro- oder eukaryontische Zellen in in vivo und in vitro Test- Systemen verwenden, wobei diese Sequenz gegebenenfalls mit Steuerelementen, die die Transkription und Translation in den Zellen gewährleisten, verknüpft ist und zur Expression einer transla- tierbaren mRNA, die die Synthese einer pflanzlichen Dehydrochinat Dehydratase/Shikimat Dehydrogenase bewirkt, führt.
Daher sind Expressionskassetten ein weiterer Gegenstand der Erfindung, deren Sequenz für eine Dehydroquinat Dehydratase/Shikimat Dehydrogenase aus Tabak oder deren funktionelles Äquivalent, kodieren zur Herstellung eines Testsystems zum Auffinden von Verbindungen mit herbizider Wirkung. Die Nukleinsauresequenz kann dabei a) eine Nukleinsauresequenz mit der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Sequenz sein; oder
b) eine Nukleinsauresequenz, die sich aufgrund des degenerierten genetischen Codes aus den durch Rückübersetzung der in SEQ ID
NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen ableiten läßt sein; oder
c) funktionelle Analoga der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Nukleinsauresequenzen, die für ein Polypeptid mit den in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen codieren sein; oder
d) funktionelle Analoga der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Nukleinsauresequenz, die für funktionelle Analoga der in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen codiert sein; oder
e) Teile der Nukleinsauresequenzen a) , b) , c) oder d) beinhal- ten; oder
f) mindestens 300 Nukleotidbausteine der Nukleinsauresequenzen a) , b) , c) oder d) umfassen; und
g) optional weitere regulative Elemente.
Des weiteren sind artifizielle DNA-Sequenzen geeignet, solange sie, wie oben beispielsweise beschrieben, die gewünschte Eigenschaft der Expression des Dehydroquinat Dehydratase/Shikimat Dehydrogenase Gens vermitteln. Solche artifiziellen DNA-Sequenzen können beispielsweise durch Rückübersetzung mittels Molecular Mo- delling konstruierter Proteine, die Dehydroquinat Dehydratase/ Shikimat Dehydrogenase Aktivität aufweisen, oder durch in vitro- Selektion ermittelt werden. Besonders geeignet sind kodierende DNA-Sequenzen, die durch Rückübersetzung einer Polypeptidsequenz gemäß der für den Wirtsorganismus spezifischen Kodon-Nutzung erhalten wurden. Die spezifische Kodon-Nutzung kann ein mit genetischen Methoden vertrauter Fachmann durch Computerauswertungen an-- derer, bekannter Gene des zu transformierenden Organismus leicht ermitteln. Diese Methodik kann auch hier sowohl bei der Expression des Zielproteins in Bakterien, Pilzen, Pflanzen, Insektenzellen und Säugerzellen angewendet werden.
Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden. Diese Methodik kann sowohl bei der Expression des Zielproteins in Bakterien, Pilzen, Pflanzen, Insektenzellen und Säugerzellen angewendet werden.
Wie bereits erwähnt, enthalten die oben erwähnten Expressionskas- setten außerdem optional sogenannte regulative Nukleinsauresequenzen auch genetische Funktionselemente, regulative SEquenzen, Kontrollsequenzen oder Kontrollelemente genannt. Imter geneti- sehen Funktionselementen sind alle Sequenzen zu verstehen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfaßt eine erfindungs- gemäße Expressionskassette stromaufwärts, d.h. am 5' -Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3 '-Ende, einen Terminator und optional ein Polyadenylierungssi- gnal sowie gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden für das Polypeptid mit Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität kodierenden Sequenz operativ verknüpft sind. Unter einer operativen Verknüpfung ver- steht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, daß jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann.
Die Herstellung einer derartigen Expressionskassette erfolgt durch Fusion eines geeigneten Promotors bzw. einer genetischen Kontrollsequenz mit einer geeigneten Dehydroquinat Dehydratase/ Shikimat Dehydrogenase DNA Sequenz und einem Polyadenylierungssi- gnal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Labo- ratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al . , Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987) beschrieben sind.
Genetische Kontrollsequenzen umfassen auch weitere Promotoren, Promotorelemente oder Minimalpromotoren, die die expressionssteuernden Eigenschaften modifizieren können. So kann durch genetische KontrollSequenzen zum Beispiel die gewebespezifische Expression zusätzlich abhängig von bestimmten Stressf ktoren erfolgen. Entsprechende Elemente sind zum Beispiel für Wasserstress, Absei - sinsäure (Lam E und Chua NH, J Biol Chem 1991; 266(26): 17131 -17135) und Hitzestress (Schoffl F et al . , Molecular & General Genetics 217 (2-3) : 246-53 , 1989) beschrieben.
Vorteilhafte Kontrollsequenzen für die erfindungsgemäßen Expres- 5 sionskassetten oder Vektoren sind beispielsweise in Promotoren wie cos- , tac- , trp-, tet-, Ipp- , lac- , laclq- , T7- , T5-, T3- , gal- , trc-, ara-, SP6~ , 1-PR- oder im 1-PL-Promotor, die zur Expression der Dehydroquinat Dehydratase/Shikimat Dehydrogenase in gram-negativen Bakterienstämmen verwendet werden können.
10
Weitere vorteilhafte Kontrollsequenzen sind beispielsweise in den Promotoren amy und SP02, die zur Expression der Dehydroquinat Dehydratase/Shikimat Dehydrogenase in gram-positiven Bakterienstämmen verwendet werden können, sowie in den Hefe- oder Pilzpromoto-
15 ren ADC1 , MFa , AC, P-60, CYC1 , GAPDH, TEF, rp28, ADH, AOX1 und GAP enthalten, die zur Expression der Dehydroquinat Dehydratase/ Shikimat Dehydrogenase in Hefestämmen verwendet werden können.
Für die Expression in Pflanzen ist grundsätzlich jeder Promotor 20 geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann. Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der CaMV 35S-Promotor aus dem Blumenkohl-Mosaik-Virus , siehe Franck et al., Cell 21, 285-294(1980). 25 Dieser Promotor enthält unterschiedliche ErkennungsSequenzen für transkriptionale Effektoren, die in ihrer Gesamtheit zu einer permanenten und konstitutiven Expression des eingeführten Gens führen, Benfey et al . , EMBO J., 8, 2195-2202 (1989).
30 Die für Pflanzen zu verwendende Expressionskassette kann auch einen chemisch induzierbaren Promotor enthalten, durch den die Expression des exogenen Dehydroquinat Dehydratase/Shikimat Dehydrogenase Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren wie z.B. der
35 PRPl-Promotor (Ward et al., Plant.Mol. Biol. 22, 361-366(1993)), ein durch Salizylsäure induzierbarer Promotor (WO 95/19443) , ein durch Benzenesufonamid-induzierbarer (EP 0 388 186) , ein durch Tetrazyklin-induzierbarer (Gatz et al., Plant J. 2, 397-404(1992)), ein durch Abscisinsäure-induzierbarer (EP 0 335-
40 528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer (WO 93/21334) Promotor sind in der Literatur beschrieben und können u.a. verwendet werden.
45 Weitere vorteilhafte Pflanzenpromotoren sind Promotor der Phosphoribosylpyrophosphat Amidotransferase aus Glycine max (siehe auch Genbank Accession Nummer U87999) oder ein Nodien- spezifischen Promotor wie in EP 249676.
Weiterhin sind insbesonders solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen die Biosynthese von Aminosäuren bzw. deren Vorstufen stattfindet. Insbesondere zu nennen sind Promotoren, die eine blattspezifische Expression gewährleisten. Zu nennen sind der Promotor der cyto- solischen FBPase aus Kartoffel oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al., EMBO J. , 8, 2445-245(1989)).
Mit Hilfe eines samenspezifischen Promotors kann ein Fremdprotein stabil bis zu einem Anteil von 0,67% des gesamten löslichen Samenproteins in den Samen transgener Tabakpflanzen exprimiert werden (Fiedler und Conrad, Bio/Technology 10, 1090-1094(1995)). Die erfindungsgemäße Expressionskassette kann daher beispielsweise einen samenspezifischen Promotor (bevorzugt den Phaseolin- Promotor (US 5,504,200), den USP-Promotor (USP=unbekanntes Samenprotein, Baeu lein et al . , Mol Gen Genet, 1991, 225 (3):459-67), Napin- oder LEB4-Promotor oder der Promotor Oleosin-Gens aus Arabidopsis (W098/45461) ) , das LEB4-Signalpeptid (Baeumlein et al . , 1992, Plant Journal, 2 (2):233-9), das zu exprimierende Gen und ein ER-RetentionsSignal enthalten.
Weitere vorteilhafte samenspezifische Promotoren, die für monokotyle und dikotyle Pflanzen verwendet werden können, sind Promotoren wie der Napingen-Promotor aus Raps (US 5,608,152), der Oleo- sin-Promotor aus Arabidopsis (WO 98/45461) , der Phaseolin-Promotor aus Phaseolus vulgaris (US5, 504, 200) , der Bce4-Promotor aus Brassica (WO91/13980) oder der Leguminosen B4-Promotor (LeB4, Baeumlein et al., Plant J. , 2, 2, 1992: 233-239) oder für Monokotyle geeignete Promotoren wie die Promotoren die Promotoren des lpt2- oder Iptl-Gens aus Gerste (W095/15389 und WO95/23230) oder die Promotoren des Gersten Hordein-Gens, des Reis Glutelin-Gens, des Reis Oryzin-Gens, des Reis Prolamin-Gens, des Weizen Gliadin- Gens, des Weizen Glutelin-Gens, des Mais Zein-Gens, des Hafer Glutelin-Gens, des Sorghum Kasirin-Gens oder des Roggen Secalin- Gens, die in WO99/16890 beschrieben werden.
Der Biosytheseort von Aminosäuren ist im allgemeinen das Blattgewebe, so daß eine blattspezifische Expression des Dehydroquinat Dehydratase/Shikimat Dehydrogenase Gens sinnvoll ist. Es ist je- doch naheliegend, daß die Aminosäure-Biosynthese nicht auf das Blattgewehe beschränkt sein muß, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in fetthaltigen Samen - gewebespezifisch erfolgen kann.
Bei der Herstellung von Ξxpressionskassetten geeignet für die Herstellung transgener Pflanzen sind insbesondere bevorzugt weitere regulatorische Sequenzen, die ein Targeting in den Apopla- sten, in Piastiden, die Vakuole, das Mitochondrium, das Endoplas- matische Retikulum (ER) oder durch ein Fehlen entsprechender operativer Sequenzen einen Verbleib im Kompartiment des Entstehens, dem Zytosol, gewährleisten, besonders bevorzugt in Piastiden, siehe Kermode, Grit. Rev. Plant Sei. 15(4), 285-423(1996).
Es können auch Expressionskassetten für die Expression in Pflanzen konstruiert werden, deren DNA-Sequenz für ein Dehydroquinate Dehydratase/Shikimat Dehydrogenase-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die Translokation des Polypeptides steuert. Bevorzugt sind für die Chloroplasten spezifische Transitpeptide, welche nach Translokation des Dehydroquinate Dehydratase/Shikimat Dehydrogenase-Gens in die Chloroplasten vom Dehydroquinate Dehydratase/Shikimat De- hydrogenase-Teil enzymatisch abgespalten werden. Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Dehydroquinate Dehydratase/Shikimat Dehydrogenase oder einem funktioneilen Äquivalent dieses Transitpeptids (z.B. dem Transitpeptid der kleinen Untereinheit der Rubisco oder der Ferredoxin NADP Oxido- reduktase) abgeleitet ist.
Von Bedeutung für den erfindungsgemäßen Erfolg kann u.a. das Anhängen des spezifischen ER-Retentionssignals SEKDEL sein, siehe Schouten, A. et al . , Plant Mol. Biol . 30, 781 - 792(1996), die durchschnittliche Expressionshöhe wird damit verdreifacht bis vervierfacht. Es können auch andere Retentionssignale, die natürlicherweise bei im ER lokalisierten pflanzlichen und tierischen Proteinen vorkommen, für den Aufbau der Kassette eingesetzt wer- den.
Eine erfindungsgemäße, pflanzliche Expressionskassette kann beispielsweise einen konstitutiven Promotor (bevorzugt den CaMV 35 S-Promotor) , das LeB4-Signalpeptid, das zu exprimierende Gen und das ER-Retentionssignal enthalten. Als ER-Retentionssignal wird bevorzugt die Aminosäuresequenz KDEL (Lysin, Asparaginsäure, Glutaminsäure, Leucin) verwendet. Weiterhin kann beispielhaft die pflanzliche Expressionskassette in den Pflanzen-Transformations- vektor pBinAR eingebaut werden. So kann generell eine konstitutive Expression des exogenen Dehydroquinat Dehydratase/Shikimat Dehydrogenase Gens von Vorteil sein. Andererseits kann aber auch eine induzierbare Expression wünschenswert erscheinen.
Es können ferner weitere Promotoren funktionell mit der zu expri- mierenden Nukleinsauresequenz verknüpft sein, die eine Expression in weiteren Pflanzengeweben oder in anderen Organismen, wie zum Beispiel E.coli Bakterien ermöglichen. Als Pflanzenpromotoren kommen im Prinzip alle oben beschriebenen Promotoren in Frage.
Bei einer planzlichen Expressionskassette, die optional Polyade- nylierungssignale enthalten kann, sind bevorzugte Polyadenylie- rungssignale solche, die im wesentlichen T-DNA-Polyadenylierungs- signale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACH5 entsprechen (Gielen et al . , EMBO J. , 3, 835(1984)) oder funktionelle Äquivalente.
Optional können bei einer erfndungsgemäßen Expressionskassette die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der erfindungsgemäße Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die erfindungsgemäße Expressionskassette beinhaltet in der
5' -3 ' -Transkriptionsrichtung den erfindungsgemäßen Promotor, eine beliebige Sequenz und eine Region für die transkriptionale Termi- nation. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.
Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Trans - Versionen in Frage kommen, können in vi ro-Mutagenese, "primerre- pair" , Restriktion oder Ligation verwendet werden. Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "blunt ends", können komplementäre Endender Fragmente für die Ligation zur Verfügung gestellt werden. Zur Transformation einer Wirtspflanze mit einer für eine Dehydroquinat Dehydratase/Shikimat Dehydrogenase kodierenden DNA wird eine Expressionskassette als Insertion in einen Vektor eingebaut, dessen Vektor-DNA zusätzliche funktionelle Regulationssignale, beispielsweise Sequenzen für Replikation oder Integration enthält.
Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannten Vektoren wie beispielsweise Phagen, Viren wie SV40, CMV, Baculovirus, Adenovirus, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden bevorzugt ist eine chromosomale Replikation.
In einer weiteren Ausgestaltungsform des Vektors kann die erfindungsgemäße Nukleinsäurekonstrukt auch vorteilhafterweise in Form einer linearen DNA in die Organismen eingeführt werden und über heterologe oder homologe Rekombination in das Genom des Wirtsorganismus integriert werden. Diese lineare DNA kann aus einem linearisierten Plasmid oder nur aus dem Nukleinsäurekonstrukt als Vektor oder den verwendeten Nukleinsauresequenzen bestehen.
In einer weiteren vorteilhaften Ausführungsform können die im erfindungsgemäßen Verfahren verwendeten Nukleinsauresequenzen auch alleine in einen Organismus eingebracht werden.
Sollen neben den Nukleinsauresequenzen weitere Gene in den Organismus eingeführt werden, so können alle zusammen in einem einzigen Vektor oder jedes einzelne Gen in je einem Vektor in den Organismus eingebracht werden, wobei die verschiedenen Vektoren gleichzeitig oder sukzessive eingebracht werden können.
Der Vektor enthält vorteilhaft mindestens eine Kopie der verwendeten Nukleinsauresequenzen und/oder des erfindungsgemäßen Nukleinsäurekonstrukts .
Die erfindungsgemäßen Expressionskassetten und die von ihnen ab- geleiteten Vektoren können wie obenstehend bereits angedeutet neben den oben erwähnten Promotoren auch weitere Funktionselemente enthalten. Beispielhaft aber nicht einschränkend seien hier zu nennen:
1. Reportergene kodieren für leicht quantifizierbare Proteine. Über .Wachstums-, Fluoreszenz-, Che o-, Biolumineszenz- oder Resistenzassay oder über eine photometrische Messung (Eigen- färbe) oder Enzymaktivität kann mittels dieser Gene eine Bewertung der Transformationseffizienz oder des Expressionsor- tes oder -Zeitpunktes vorgenommen werden. Ganz besonders bevorzugt sind dabei Reporter-Proteine (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13(l):29-44) wie das "green fluore- scence protein" (GFP) (Gerdes HH and Kaether C, FEBS Lett. 1996; 389 (1) :44-47; Chui WL et al., Curr Biol 1996, 6:325-330; Leffel SM et al . , Biotechniques . 23(5):912-8, 1997) , die Chloramphenicolacetyltransferase, eine Luziferase (Giacomin, Plant Sei 1996, 116:59-72; Scikantha, J Bact 1996, 178:121; Millar et al . , Plant Mol Biol Rep 1992 10:324-414), sowie Luziferasegene, das ß-Galactosidase, oder das ß-Glucu- ronidasegen (Jefferson et al . , EMBO J. 1987, 6, 3901-3907), das das Ura3-Gen, das Ilv2-Gen, das 2-Desoxyglucose-6-phos- phat-Phosphatasegen, b-Lactamasegen, das Neo ycinphospho- transferasegen, das Hygromycinphosphotransferasegen oder das BASTA (= Gluphosinatresistenz) -Gen;
Replikationsursprünge;
3. Selektionsmarker, die eine Resistenz gegen Antibiotika verleihen. Beispielhaft zu nennen seien hier das npt Gen, das eine Resistenz gegen die Aminoglycisid-Antibiotika Neomycin (G 418) , Kanamycin, und Paromycin verleiht (Deshayes A et al., EMBO J. 4 (1985) 2731-2737), das hygro Gen (Marsh JL et al., Gene. 1984; 32 (3) :481-485) , das sul Gen (Guerineau F et al., Plant Mol Biol. 1990; 15 (1) : 127-136) und das she-ble Gen, das eine Resistenz gegen das Bleomycin Antibiotikum Zeo- cin verleiht. Weitere Beispiele für Selektionsmarker-Gene sind Gene, die eine Resistenz gegen 2-Desoxyglucose-6-phos- phat (WO 98/45456) oder Phosphinotricin etc. verleihen oder solche, die eine Antimetaboliten-Resistenz verleihen, zum Beispiel das dhfr-Gen (Reiss, Plant Physiol. (Life Sei. Adv.) 13 (1994) 142-149) . Geeignet sind ferner Gene wie trpB oder hisD (Hartman SC and Mulligan RC, Proc Natl Acad Sei U S A. 85 (1988) 8047-8051) . Geeignet ist auch das Gen der Mannose- Phosphat Iso erase (WO 94/20627) , das ODC (Ornithin-Decarbo- xylase) Gen (McConlogue, 1987 in: Current Communications in Molecular Biology, Cold Spring Harbor Laboratory, Hrsg.) oder die Deaminase aus Aspergillus terreus (Tamura K etal., Biosci Biotechnol Biochem. 59 (1995) 2336-2338) .
4. sogenannte Affinitäts-Tags codierend für ein Peptid oder Polypeptid, dessen Nukleinsauresequenz mit der für das Zielpro- tein codierenden Sequenz direkt oder mittels eines Linkers über gängige Klonierungstechniken fusioniert werden kann. Das Affinitäts-Tag dient zur Isolation des rekombinanten Zielpro- teins mittels Affinitäts-Chromatographie kann aber auch u.U. zur Detektion des exprimierten Fusionsproteins verwendet werden. Der oben erwähnte Linker kann optional eine Protease- Schnittstelle (z.B. für Thrombin oder Faktor Xa) enthalten, wodurch das Affinitäts-Tag bei Bedarf vom Zielprotein abgespalten werden kann. Beispiele für gängige Affinitäts-Tags sind das "His-Tag" z.B. von Quiagen, Hilden, "Strep-Tag", das "Myc-Tag" das aus einer Chitin bindenden Domäne und einem In- tein bestehende Tag von New England Biolab und das sogenannte CBD-Tag von Novagen.
Für die Expression der Dehydroquinat Dehydratase/Shikimat Dehydrogenase ist weiterhin die Verwendung von Expressionsystemen und Vektoren, die öffentlich zugänglich oder kommerziell erhältlich sind, möglich. Die folgende Aufzählung ist exemplarisch aber nicht abschließend.
Beispiele für Vektoren für die Expression in E. coli sind pGEX [Pharmacia Biotech Ine; Smith, D.B. and Johnson, K.S. (1988) Gene 67:31-40], pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) welches Glutathion S-transferase beinhaltet (GST) , Maltose Bindeprotein, oder Protein A, die pTrc- Vektoren (Amann et al., (1988) Gene 69:301-315), die "pQE" -Vektoren von Qiagen (Hilden) , der "pKK233-2" von CLONTECH, Palo Alto, CA und die "pET"-, und die "pBAD"-Vektor-Serien von Strata- gene, La Jolla sowie die Ml3mp-Serien und pACYC184.
Beispiele für Vektoren für Vektoren zur Verwendung in Hefe sind pYepSecl (Baldari, et al., (1987) E bo J. 6:229-234), pMFa (Kur- jan and Herskowitz, (1982) Cell 30:933-943), pJRY88. (Schultz et al., (1987) Gene 54:113-123), and pYES-Derivate, pGAPZ-Derivate, pPICZ-Derivate sowie die Vektoren des "Pichia Expression Kit" (alle von Invitrogen Corporation, San Diego, CA) .
Beispiele für Vektoren für die Nutzung in filamentösen Pilzen sind beschrieben in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamen- tous fungi, in: Applied Molecular Genetics of Fungi, J.F. Pe- berdy, et al . , eds., p. 1-28, Cambridge üniversity Press: Cam- bridge.
Beispiele für Insektenzellexpressionsvektoren z.B. für die Expression in Sf 9 Zellen sind die Vektoren der pAc Serie (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) und der pVL series (Luck- low and Summers (1989) Virology 170:31-39). Beispiele für Pflanzenexpressionsvektoren für die Expression in Pflanzenzellen oder Algenzellen finden sich in Becker, D., et al . (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20: 1195-1197 oder in Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation" , Nucl. Acid. Res . 12: 8711-8721. Weitere geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press, Kapitel 6/7, 71-119) beschrieben.
Beispiele für ExpressionsVektoren zu verwenden in Säugerzellen sind pCDM8 und pMT2PC genannt in: Seed, B. (1987) Nature 329:840 oder Kaufman et al . (1987) EMBO J. 6:187-195). Dabei sind vorzugsweise zu nutzende Promotoren viralen Ursprungs wie z.B. Pro- motoren des Polyoma, Adenovirus 2, Cytomegalovirus oder Simian Virus 40. Weitere prokaryotische und eukaryotische Expressionssysteme sind genannt in Kapitel 16 und 17 in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Har- bor, NY, 1989. Weitere vorteilhafte Vektoren werden in Hellens et al . (Trends in plant science, 5, 2000) beschrieben.
Die Expressionskassette sowie die davon abgeleiteten Vektoren kann darüberhinaus auch zur Transformation von Bakterien, Cyano- bakterien, Hefen, filamentösen Pilzen und Algen mit dem Ziel einer Erhöhung des Gehaltes an Ubichinon, Folat, Flavonoiden, Cu- marinen, Ligninen, Alkaloiden, cyanogene Glucosiden, Plastochino- nen, Tocopherolen und aromatischen Aminosäuren eingesetzt werden.
Innerhalb der Bakterien sind Bakterien der Gattung Escherichia (Escherichia coli) , Erwinia, Flavobacterium, Alcaligenes oder Cyanobakterien zum Beispiel der Gattung Synechocystis oder Ana- bena bevorzugt. Baktieren der Gattung Escherichia coli sind hierbei aus ökonomischen Gründen sowie aus Gründen der vielfältigen Möglichkeiten der genetischen Manipulation besonders bevorzugt. Bevorzugte Hefen sind Candida, Saccharomyces , Hansenula oder Pi- chia. Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Mortierella, Saprolegnia, Pythium, Neurospora, Fusarium, Beauve- ria oder weitere in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) beschriebene Pilze. Bevorzugte eukaryontisehe Zellinien sind z.Bsp. gängige, dem Fachmann bekannte Insekten- oder Säuger- zellinien. Prinzipiell sind als Wirtsorganismen auch transgene Tiere geeignet beispielsweise C. elegans.
Bevorzugt sind weiterhin transgene Pflanzen, die ein erfindungs- gemäßes funktionelles oder nicht funktionelles Nukleinsäurekon- strukt oder einen erfindungsgemäßen funktionellen oder nicht funktioneilen Vektor enthalten. Unter funktionell ist im Sinne der Erfindung zu verstehen, daß die im Verfahren verwendeten Nukleinsäuren allein oder im Nukleinsäurekonstrukt oder im Vektor exprimiert werden und ein biologisch aktives Genprodukt herge- stellt wird. Unter nicht funktioneil ist im Sinne der Erfindung zu verstehen, daß die im Verfahren verwendeten Nukleinsäuren allein oder im Nukleinsäurekonstrukt oder im Vektor nicht transcri- biert, nicht exprimiert werden und/oder ein biologisch inaktives Genprodukt hergestellt wird. In diesem Sinne handelt es sich bei den sogenannten Antisense-RNAs auch um nicht funktionelle Nukleinsäuren bzw. bei Insertion in das Nukleinsäurekonstrukt oder den Vektor um ein nicht funktionelles Nukleinsäurekonstrukt oder nicht funktioneilen Vektor. Sowohl das erfindungsgemäße Nukleinsäurekonstrukt als auch der erfindungsgemäße Vektor kann zur Her- Stellung von transgenen Organismen bevorzugt Pflanzen vorteilhaft verwendet werden.
Bevorzugt ist auch die Verwendung kommerziell erhältliche Systeme zur Expression der rekombinanten Dehydroquinat Dehydratase/Shiki- mat Dehydrogenase, wie beispielsweise die Baculovirus Expressionssysteme "MaxBac 2.0 Kit" von Invitrogen, Calsbald oder "Bac- PAK Baculovirus ExpressionsSystem" von CLONTECH, Palo Alto, CA, Expressionssysteme für Hefen wie der "Easy Select Pichia Expression Kit", der "Pichia Expression Kit" (alle von Invitrogen, Calsbad) oder der "Yeast Protein Expression and Purification System" von Stratagene, La Jolla.
Das mit Hilfe einer Expressionskassette exprimierte pflanzliche Dehydroquinat Dehydratase/Shikimat Dehydrogenase Protein eignet sich besonders zur Auffindung von für die Dehydroquinat Dehydratase/Shikimat Dehydrogenase spezifischen Hemmstoffen in in vi tro- Testystemen. Hierfür kann beispielsweise die cDNA-Sequenz der Dehydrochinat Dehydratase/Shikimat Dehydrogenase oder geeignete Fragmente der cDNA-Sequenz der Dehydrochinat Dehydratase/Shikimat Dehydrogenase aus Tabak in einem der oben genannten Expressions - vektoren wie z.Bsp. der Vektor pQE kloniert und in einem der oben genannten Organismen bzw. Expressionssysteme wie z.Bsp. E. coli überexprimiert werden, da E. coli aus den bereits oben erwähnten! Gründen besonders für die Expression rekombinanter Proteins geei- gnet ist.
Prinzipiell basiert das erfindungsgemäße Verfahren zur Identifizierung von Inhibitoren eines Polypeptides mit Dehydroquinat Der hydratase/Shikimat Dehydrogenase Aktivität, mit herbizider Wir- kung darauf, dass man die Tanscription, .Expression, Translation oder die Aktivität des Genprodukt der durch eine Nukleinsauresequenz ausgewählt aus der Gruppe:
a) eine Nukleinsauresequenz mit der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Sequenzen, oder
b) einer Nukleinsauresequenz, die sich aufgrund des degenerierten genetischen Codes aus den durch Rückübersetzung der in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäurese- quenzen ableiten läßt, oder
c) funktionelle Analoga der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Nukleinsauresequenzen, die für ein Polypeptid mit den in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Ami - nosäuresequenzen codieren; oder
d) funktionelle Analoga der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Nukleinsauresequenz, die für funktionelle Analoga der in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Ami - nosäuresequenzen codieren; oder
e) Teile der Nukleinsauresequenzen a) , b) , c) oder d) ; oder
f) mindestens 300 Nukleotidbausteine der Nukleinsauresequenzen a) , b) , c) oder d) ;
kodierten Aminosäuresequenz, beeinflußt und solche Substanzen auswählt, die die Tanscription, Expression, Translation oder die Aktivität des Genprodukt reduzieren oder blockieren.
Hierbei ist -wie bereits oben erwähnt, d'ie Durchführung besagten Tests in einem High-Through-Put Screening besonders vorteilhaft.
Zur Überprüfung der herbiziden Eigenschaften einer über das er- findungsgemäße Verfahren bietet es sich an, die herbiziden Eigenschaften durch Applikation der Substanzen auf eine Pflanze zu testen, und besagte Pflanze mit einer Pflanze, die nicht mit einer über das Verfahren identifizierten Substanz inkubiert wurde, zu vergleichen.
In einer bevorzugten Ausführungsform wird das Verfahren in einem Organismus durchgeführt, wobei als Organismus Bakterien, Hefen, Pilze oder Pflanzen verwendet werden. Hierbei kann ein Organismus verwendet werden, der eine konditionale oder natürliche Mutante der Sequenzen SEQ ID NO: 1 oder SEQ ID NO: 3 ist. Besonders be- vorzugt ist ein Verfahren, in dem der eingesetzte Organismus ein transgener Organismus ist.
Als transgener Organismus wird hier Organismus, der mit einer er- findungsgemäßen Expressionskassette oder einem erfindungsgemäßen Vektor transformiert wurde bezeichnet. Hierbei bezeichnet man die Übertragung von Fremdgenen in das Genom eines Organismus als Transformation.
Für die Transformation diverser Organismen sind dem Fachmann eine Reihe von Standartprozeduren bekannt (Sambrook et al., Cold Spring Harbor Laboratory Press (1989) und Ausubel, F.M. et al . , Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1994) ISBN 0-87969-309-6).
Einige der für Pflanzen verwendeten Transformationsprozeduren sollen nun im folgenden kurz erläutert werden:
Für die Transformation von Pflanzen lassen sich die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus
Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation nutzen. Geeignete Methoden sind die Protoplasten- transformation durch Polyethylenglykol-induzierte DNA-Aufnähme, der biolistische Ansatz mit der Genkanone, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al . , Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993) , 128-143 sowie in Potrykus Annu.
Rev. Plant Physiol . Plant Molec.Biol. 42, 205-225(1991) beschrieben. Ein weiteres dem Fachmann bekanntes Verfahren zur Herstellung transgener Pflanzen ist die sogenannte Plastid Transformation. Eine Übersicht bezüglich gängiger, hierfür zu verwendender Techniken ist in Aart van Bei et al., Curr. Op. Bitechmol (2001)12 144-149 beschrieben.
Vorzugsweise wird eine erfindungsgemäße Expressionskassette, die für ein Dehydroquinate Dehydratase/Shikimat Dehydrogenase-Gen kb- diert, in einen Vektor, beispielsweise pBINAR, kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBinl9 (Bevan et al . , Nucl. Acids Res . 12, 8711(1984)). Mit einem solchen Vektor transformierte Agrobakte- . rien können dann in bekannter Weise zur Transformation von Pflan- zen, insbesondere von Kulturpflanzen, wie z.B. von Tabakpflanzen, verwendet .werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden. Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15 - 38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die ein in die Expressionskassette integriertes Gen für die Expression eines Dehydroquinate Dehydratase/Shikimat Dehydrogenase -Gens enthalten.
Mit einer Expressionskassette transformierte Agrobakterien können ebenfalls in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie Getreide, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und den verschiedenen Baum-, Nuß- und Weinspezies sowie Leguminosen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobak- terienlösung gebadet und anschließend in geeigneten Medien kulti- viert werden.
Ein weiterer Gegenstand der Erfindung sind, wie bereits oben kurz erwähnt in vitro Verfahren zur Identifizierung von Substanzen mit herbizider Wirkung, die die Aktivität der pflanzlichen Dehydro- quinat Dehydratase/Shikimat Dehydrogenase inhibieren.
In einer bevorzugten Ausführungsform besteht das erfindungsgemäße Verfahren aus folgenden Schritten:
a) ein Polypeptid mit Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität wird entweder in einem der oben beschriebenen Ausführungsformen eines transgenen Organismus in enzy- matisch aktiver Form exprimiert oder ein das erfindungsgemäße Protein enthaltender Organismus wird kultiviert;
b) das in Schritt a) erhaltene Protein wird in dem wachsenden oder ruhenden Organismus als Ganzem, im Zellaufschluss des transgenen Organismus, in partiell gereinigter Form oder in zur Homogenität gereinigten Form mit Redoxäquivalenten sowie mit einer chemischen Verbindung inkubiert; Hierbei sind als Redoxäquivalente alle dem Fachmann bekannten zu verwenden. Beispielhaft aber nicht abschließend seien hier genannt: NADPH/NADP+, NADH/NAD+ und FAD/FADH. c) eine chemische Verbindung durch Schritt b) selektiert wird, welche ein Polypeptid mit Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität inhibiert im Vergleich zu einer nicht mit der chemischen Verbindung inkubierten Probe.
Dieses Verfahren eignet sich besonders für High-Throughput-Scree- ning.
In diesem verfahren kann die pflanzliche Dehydroquinat Dehydratase/Shikimat Dehydrogenase beispielsweise in einem Enzymtest eingesetzt werden, bei dem die Aktivität der Dehydroquinat Dehydratase/Shikimat Dehydrogenase in An- und Abwesenheit des zu testenden Wirkstoffs ermittelt wird. Aus dem Vergleich der beiden Aktivitätsbestimmungen läßt sich eine qualitative und quantitative Aussage über das Hemmverhalten des zu testenden Wirkstoffes machen.
Mit Hilfe des erfindungsgemäßen Testsystems kann eine Vielzahl von chemischen Verbindungen schnell und einfach auf herbizide Eigenschaften überprüft werden. Das Verfahren gestattet es, repro- duzierbar aus einer großen Anzahl von Substanzen gezielt solche mit großer Wirkstärke auszuwählen, um mit diesen Substanzen anschließend weitere, dem Fachmann geläufige vertiefte Prüfungen durchzuführe .
In einer weiteren Ausführungsform der Erfindung kann man Inhibitoren des Enzyms Dehydroquinat Dehydratase/Shikimat Dehydrogenase anhand von Techniken, welche die Wechselwirkung zwischen Protein und Ligand aufzeigen, detektieren. Hierbei sind insbesondere drei bevorzugte Ausführungsformen zu nennen, die in Zusammenhang mit der vorliegenden Erfindung ebenfalls auch für Hochdurchsatzmethoden geeignet sind:
a) Über Fluoreszenz Korrelations Spektroskopie (FCS) (Proc.
Natl. Acad. Sei. USA (1994) 11753-11575) läßt sich die durch- schnittliche Diffusionsrate eines Fluoreszenzmoleküls in Abhängigkeit zur Masse in einem kleinen Probenvolumen bestimmen. Durch Messen der Massenänderung bzw. der daraus resultierenden veränderten Diffunsionsrate einer chemischen Verbindung beim Binden an die Dehydroquinat Dehydratase/Shikimat Dehydrogenase läßt sich FCS zur Bestimmung von Protein-Li- gand-Wechselwirkungen einsetzten. Die so identifizierten, an die Dehydroquinat Dehydratase/Shikimat Dehydrogenase bindenden chemischen Verbindungen sind möglicherweise als Inhibitoren geeignet. b) Surface Enhanced-Laser Desorption/Ionisation (SELDI) in Kombination mit einem Time of Flight Massenspektrometer (MALDI- TOF) ermöglicht die schnelle Analyse von Molekülen auf einem Träger und kann zur Analyse von Protein-Ligand Wechselwirkun- gen verwendet werden (Worral et al . , (1998) Anal. Biochem. 70:750-756). In einer bevorzugten Ausführungsform verknüpft man nun die Dehydroquinat Dehydratase/Shikimat Dehydrogenase auf einem geeigneten Träger immobilisiert und inkubiert diesen mit der zu untersuchenden chemischen Verbindung. Nach ei- nem oder mehreren geeigneten Waschschritten können die an das Protein zusätzlich gebundenen Moleküle der chemischen Verbindung mittels der oben erwähnten Methodik detektiert und somit mögliche Inhibitoren selektiert werden. Die so identifizierten, an die Dehydroquinat Dehydratase/Shikimat Dehydrogenase bindenden chemischen Verbindungen sind möglicherweise als Inhibitoren geeignet.
c) Biacore basiert auf der Änderung des Brechnungsindexes an einer Oberfläche beim Binden einer chemischen Verbindung an ein auf besagter Oberfläche immobilisierten Protein. Da die Änderung des Brechungsindex für eine definierte Änderung der Massenkonzentration an der Oberfläche quasi für alle Proteine und Polypeptide identisch ist, kann diese Methode prinzipiell auf jedes Protein angewendet werden (Lindberg et al . Sensor Actuators 4 (1983) 299-304; Malmquist Nature 361 (1993)
186-187) . Hierbei wird die chemische Verbindung in eine Reaktionszelle mit einem Volumen von 2-5ml injeziert, an deren Wänden das Protein immobilisiert wurde. Die Bindung der entsprechenden chemischen Verbindung an das Protein und somit die Identifizierung möglicher Inhibitoren kann über Surface
Plasmon Resonance (SPR) vorgenommen werden durch Aufnahme des von der Oberfläche reflektierten Laser Licht. Die so identifizierten an die Dehydroquinat Dehydratase/Shikimat Dehydrogenase bindenden chemischen Verbindungen sind möglicherweise als Inhibitoren geeignet.
d) Auch besteht die Möglichkeit, über Aufklärung der dreidimensionalen Struktur der Dehydroquinat Dehydratase/Shikimat Dehydrogenase mittels Röntgenstrukturanalyse weitere poten- tielle herbizide Wirkstoffe mittels "Molecular Modelling" zu detektieren. Die Herstellung von für die Röntgenstrukturanalyse benötigten Proteinkristallen sowie die entsprechenden Messungen und anschließenden Auswertungen besagter Messungen sowie die Methodik des "Molecular Modelling" sind dem Fach- mann bekannt. Über "Molecular Modelling" ist prinzipiell auch eine Optimierung der über die oben genannten Verfahren identifizierten Wirkstoffe möglich.
Weiterer Gegenstand der Erfindung sind in vivo Verfahren zur Identifizierung von Substanzen mit herbizider Wirkung, die die Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität in Pflanzen hemmen, bestehend aus
a) der Herstellung eines transgenen Organismus enthaltend eine erfindugnsgemäße Expressionskassette oder Vektor, der eine zusätzliche Nukleinsauresequenz codierend für ein Enzym mit Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität enthält und in der Lage ist, eine enzymatisch aktive Dehydroquinat Dehydratase/Shikimat Dehydrogenase überzuexprimieren;
b) das Aufbringen einer Substanz auf den transgenen Organismus ,-
c) das Bestimmen des Wachstums oder der Überlebensfähigkeit der transgenen und der nicht-transgenen Organismus nach der Auf- bringung der chemischen Substanz; und
d) dem Vergleich des Wachstums oder der Überlebensfähigkeit der transgenen und der nicht-transformierten Organismus nach der Aufbringung der chemischen Substanz;
Für die Herstellung eines trangenen Organismus folgende Organismen bzw. Zelltypen verwendet werden: Bakterien, in Hefen, Pilzen, Algen, Pflanzenzellen, Insektenzellen oder Säugetierzellen.
Hierbei belegt die Unterdrückung des Wachstums oder der Überlebensfähigkeit des nicht-transformierten Organismus ohne daß das Wachstum oder die Überlebensfähigkeit des transgenen Organismus beeinflußt werden, daß die Substanz aus b) die Dehydroquinat Dehydratase/Shikimat Dehydrogenase Enzymaktivität in Pflanzen inhi- biert und somit herbizide Aktivität zeigt.
Unter chemischen Verbindungen, welche die biologische Aktivität, das Wachstum oder die Vitalität der Organismen reduzieren, sind ' Verbindungen zu verstehen, die biologische Aktivität, das Wachs - turn oder die Vitalität der Organismen mindestens um 10 %, vorteilhaft um mindestens 30 %, bevorzugt um mindestens 50 %, besonders bevorzugt um mindestens 70 %, ganz besonders bevorzugt um mindestens 90 % hemmen. In einer bevorzugten Ausführungsform des oben genannten Verfahrens werden als transgene Organismen transgene Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile eingesetzt.
Ein weiterer Gegenstand der Erfindung sind Verbindungen mit herbizider Wirkung, die mit den oben beschriebenen Testsystemen identifizierbar sind.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren welches darin besteht, dass man die über die oben genannten Verfahren identifizierten Substanzen auf eine Pflanze verbringt, um deren herbizide Aktivität zu testen und die Substanzen auswählt, die eine herbizide Aktivität zeigen.
Die identifizierten Substanzen können chemisch synthetisierte oder mikrobiologisch produzierte Stoffe. sein und z.B. in Zellextrakten von z.B. Pflanzen, Tieren oder Mikroorganismen auftreten. (Weiterhin können die genannten Stoffe zwar im Stand der Technik bekannt sein, aber bisher nicht bekannt sein als Herbizid. Das Reaktionsgemisch kann ein zellfreier Extrakt sein oder eine Zelle oder Zellkultur umfassen. Geeignete Methoden sind dem Fachmann bekannt und werden z.B. allgemein beschrieben in Alberts, Molecular Biology the cell, 3rd Edition (1994), z.B. Kapitel 17. Die genannten Stoffe können z.B. zu dem Reaktionsgemisch oder dem Kulturmedium zugegeben werden oder den Zellen injiziert werden oder auf eine Pflanze gesprüht werden.
Wenn eine Probe, die eine nach der erfindungsgemäßen Methode de- tektierte aktive Substanz beinhaltet, identifiziert wurde, dann ist es entweder möglich, den Stoff direkt von der ursprünglichen Probe zu isolieren. Alternativ kann man kann die Probe in verschiedene Gruppen teilen, z.B. wenn sie aus einer Vielzahl von verschiedenen Komponenten besteht, um so die Zahl der verschiedenen Substanzen pro Probe zu reduzieren und dann das erfindungsge- mäße Verfahren mit einer solchen "Unterprobe" der ursprünglichen Probe zu wiederholen. Abhängig von der Komplexität der Probe können die oben beschriebenen Schritte mehrmals wiederholt werden, vorzugsweise bis die gemäß der erfindungsgemäßen Methode identifizierte Probe nur noch eine geringe Anzahl von Substanzen oder nur noch eine Substanz umfaßt. Vorzugsweise wird der gemäß der erfindungsgemäßen Methode identifizierte Stoff oder Derivate davon weiter formuliert, so, daß er für die Anwendung in der Pflanzenzüchtung oder Pflanzenzeil- oder Gewebekultur geeignet ist.
Die Stoffe, die gemäß dem erfindungsgemäßen Verfahren getestet und identifiziert wurden, können sein: Expressionsbibliotheken, z.B. cDNA-Expressionsbibliotheken, Peptide, Proteine, Nukleinsäu- ren, Antikörper, kleine organische Stoffe, Hormone, PNAs oder ähnliches (Milner, N ture Medicin 1 (1995), 879-880; Hupp, Cell. 83 (1995), 237-245; Gibbs, Cell. 79 (1994), 193-198 und darin zitierte Referenzen) . Diese Stoffe könne auch funktionelle Derivate oder Analoga der bekannten Inhibitoren oder Aktivatoren sein. Verfahren zur Herstellung von chemischen Derivaten oder Analoga sind dem Fachmann bekannt. Die genannten Derivate und Analoga können gemäß Verfahren nach dem Stand der Technik getestet werden. Weiterhin kann computergestütztes Design oder Peptidomime- tics zur Herstellung geeigneter Derivate und Analogon verwendet werden. Die Zelle oder das Gewebe, die/das für das erfindungsgemäße Verfahren verwendet werden kann, ist vorzugsweise eine er- findungsgemäße Wirtszelle, P lanzenzelle oder ein Pflanzengewebe, wie in den oben genannten Ausführungsformen beschrieben.
Eine weitere Ausführungsform der Erfindung sind Substanzen, die nach den erfindungsgemäßen oben beschriebenen Verfahren identifiziert wurden und wobei es sich bei den Substanzen um einen Antikörper gegen das durch die Sequenzen SEQ ID NO: 1 oder SEQ ID NO: 3 kodierte Protein oder ein funktionelles Äquivalent des durch die Sequenz SEQ ID NO: 1 oder SEQ ID NO: 3 kodierten Proteins handelt.
Inhibitoren der Dehydroquinat Dehydratase/Shikimat Dehydrogenase mit herbizider Wirkung können als Defoliants, Desiccants, Krau- tabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, an denen sie unerwünscht sind. Ob die mit Hilfe des erfindungsgemäßen Test- Systems gefundenen Wirkstoffe als totale oder selektive Herbizide wirken, hängt unter anderem von der angewandten Menge ab.
Inhibitoren der Dehydroquinat Dehydratase/Shikimat Dehydrogenase mit herbizider Wirkung können beispielsweise gegen folgende Unkräuter verwendet werden:
Dikotyle Unkräuter der Gattungen:
Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Ga- linsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthiu , Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papa- ver, Centaurea, Trifolium, Ranunculus, Taraxacum.
Monokotyle Unkräuter der Gattungen:
Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bro us, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbris yslis, Sagittaria, Eleo- charis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.
In Abhängigkeit von der jeweiligen Applikationsmethode können die im erfindungsgemäßen Verfahren identifizierten Substanzen bzw. sie enthaltende Mittel vorteilhaft noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kultu- ren:
Alliu cepa, Ananas comosus, Arachis hypogaea, Asparagus offici- nalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinc- torius, Carya illinoinensis, Citrus limon, Citrus sinensis, Cof- fea arabica (Coffea canephora, Coffea liberica) , Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria ve- sca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossy- pium herbaceum, Gossypium vitifolium) , Helianthus annuus, Hevea brasiliensis, Hordeum vulgäre, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec, Manihot esculenta, Medicago sativa, Musa spec, Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec, Pisum sativum, Prunus avium, Prunus persica, Pyrus commu- nis, Ribes sylestre, Ricinus communis, Saccharum officinarum, Seeale cereale, Solanum tuberosum, Sorghum bicolor (s. vulg re), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera, Zea mays .
Die nach dem erfindungsgemäßen Verfahren gefundenen Substanzen können vorteilhaft auch in Kulturen verwandt werden, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind.
Die erfindungsgemäßen Substanzen bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren wässrigen Lösungen, Pulvern, Suspensionen, auch hochprozenti- gen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach. den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten. Als inerte flüssige und/oder feste Trägerstoffe kommen flüssige Zusatzstoffe wie Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cycli- sehe und aromatische Kohlenwasserstoffe, z.B. Paraffin, Tetrahy- dronaphthalin, alkylierte Naphthaline oder deren Derivate, alky- lierte Benzole oder deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Butanol, Cyclohexanol , Ketone wie Cyclohexanon oder stark polare Lösungsmittel, z.B. Amine wie N-Methylpyrroli- don oder Wasser in Frage.
Weitere vorteilhafte Anwendungsformen der erfindungsgemäßen Substanzen und/oder Mittel sind Wäßrige Anwendungsformen wie Emulsionskonzentrate, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten, die beispielsweise durch Zusatz von Wasser bereitet werden können. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen und/oder Mittel die sog. Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emul- giermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.
Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfonierte Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalin- sulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphe- nolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Al- kylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheral- kohole, Isotridecylalkohol, Fettalkoholet ylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxy- propylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbi ester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.
Pulver-, Streu- und Stäubemittel können als feste Trägerstoffe vorteilhaft durch Mischen oder gemeinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind beispielsweise Mineraler- den wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammo- niumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.
Die Konzentrationen der erfindungsgemäßen Substanzen und/oder Mittel in den anwendungsfer igen Zubereitungen können in weiten Bereichen variiert werden. Die Formulierungen enthalten im allgemeinen 0,001 bis 98 Gew.-%, vorzugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90°s bis 100%, vorzugsweise 95% bis 100% (nach NMR- Spektrum), eingesetzt.
Die Applikation der herbiziden Mittel bzw. der Substanzen kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel oder Substanzen mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by) .
Zur Verbreiterung des WirkungsSpektrums und zur Erzielung synergistischer Effekte können die erfindungsgemäßen Substanzen und/ oder Mittel mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1, 2 , 4-Thiadiazole, 1, 3 , 4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, (Het) -Aryloxyalkan- säure und deren Derivate, Benzoesäure und deren Derivate, Benzo- thiadiazinone, 2-Aroyl-l, 3-cyclohexandione, Hetaryl-Aryl-Ketone, Benzylisoxazolidinone, Meta-CF3-phenylderivate, Carbamate, Chino- linsäure und deren Derivate, Chloracetanilide, Cyclohe- xan-1, 3-dionderivate, Diazine, Dichlorpropionsäure und deren Derivate, Dihydrobenzofurane, Dihydrofuran-3-one, Dinitroaniline,; Dinitrophenole, Diphenylether, Dipyridyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phenyluracile, Imidazole, I i- dazolinone, N-Phenyl-3 , 4, 5, 6-tetrahydrophthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- oder Heteroaryloxyphenoxypropionsäu- . reester, Phenylessigsäure und deren Derivate, Phenylpropionsäure und deren Derivate, Pyrazole, Phenylpyrazole, Pyridazine, Pyri- dincarbonsäure und deren Derivate, Pyrimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazinone, Triazolinone, Triazol- carboxamide, Uracile in Betracht.
Außerdem kann es von Nutzen sein, die erfindungsgemäßen Substan- zen und/oder Mittel allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkon- zentrate zugesetzt werden.
Die Aufwandmengen an Wirkstoff (= Substanze und/oder Mittel) be- tragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und WachstumsStadium 0.001 bis 3.0, vorzugsweise 0.01 bis 1.0 kg/ha aktive Substanz.
Ein weiterer erfindungsgemäßer Gegenstand ist die Verwendung ei- ner Substanz identifiziert nach einem der erfindungsgemäßen Verfahren oder Mittel enthaltend diese Substanzen als Herbizid oder zur Wachstumsregulierung von Pflanzen.
Gegenstand der Erfindung sind außerdem transgene Organismen, be- vorzugt Pflanzen, transformiert mit einer Expressionskassette, enthaltend die DNA-Sequenz SEQ-ID No. 1 oder SEQ-ID No. 3 oder deren funktionelle Äquivalente, die durch zusätzliche Expression der DNA-Sequenz SEQ-ID No. 1 oder SEQ-ID No. 3 oder eines funktioneilen Äquivalentes einer dieser Sequenzen tolerant gegenüber Inhibitoren der Dehydroquinat Dehydratase/Shikimat Dehydrogenase geworden sind, sowie transgene Zellen, Gewebe, Teile und Vermehrungsgut solcher transgenen Organismen, bevorzugt Pflanzen. Besonders bevorzugt sind dabei transgene Kulturpflanzen, wie z.B. Gerste, Weizen, Roggen, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate,
Raps, Alfalfa, Salat und die verschiedenen Baum-, Nuß- und Weinspezies, sowie Leguminosen.
Somit ist ein weiterer Gegenstand der Erfindung die Verwendung einer Expressionskassette enthaltend DNA-Sequenzen SEQ-ID No. 1, SEQ-ID No. 3 oder mit diesen hybridisierende DNA-Sequenzen zur Transformation von Pflanzen, -Zellen, -geweben oder Pflanzenteilen. Vorzugsweise ist Ziel der Verwendung die Herstellung von Pflanzen mit herbizidresistenen Formen der Dehydroquinate Dehy- dratase/Shikimat Dehydrogenase. In einer modifizierten oder zur Überexpression führenden Form kann das Gen kodierend für ein Polypeptid mit Dehydroquinate Dehydratase/Shikimat Dehydrogenase Aktivität eine Resistenz gegenüber Inhibitoren vermitteln. Die Expression eines solchen Gens führt zu einer Herbizid-resistenten Pflanze, wie für ein weiteres Enzym aus der Chorismat-Biosynthese, der Enolpyruvylshiki- mat-3-phosphat-synthase, gezeigt werden konnte.
Mit anderen Worten, die Bereitstellung des herbiziden Targets er- möglicht weiterhin ein Verfahren zur Identifizierung einer Dehydroquinat Dehydratase/Shikimat Dehydrogenase, die nicht durch die erfindungsgemäßen Inhibitoren gehemmt werden. Im folgenden wird ein sich derart von der erfindungsgemäßen Dehydroquinat Dehydratase/Shikimat Dehydrogenase unterscheidendes Enzym als Dehydro- quinat Dehydratase/Shikimat Dehydrogenase - Variante bezeichnet. Das oben genannte Verfahren ist ebenfalls Gegenstand der vorliegenden Erfindung.
In einer bevorzugten Ausführungsform besteht das oben genannte Verfahren zur Erzeugung von Varianten der Nukleinsauresequenzen SEQ ID NO: 1 oder SEQ ID NO: 3 aus folgenden Schritten:
a) Expression der von den SEQ ID NO: 1 oder SEQ ID NO: 3 kodierten Proteine in einem heterologen System oder in einem Zell- freiensystem;
b) Randomisierte oder gerichtete Mutagenese des Proteins durch Modifikation der Nukleinsäure;
c) Messung der Interaktion des veränderten Genprodukts mit dem Herbizid,
d) Identifizierung von Derivaten des Proteins die eine geringere Interaktion aufweisen,
e) Testung der biologischen Aktivität des Proteins nach Applikation des Herbizides,
f) Auswahl der Nukleinsauresequenzen, die eine veränderte biologische Aktivität gegenüber dem Herbizid aufweisen.
Die nach dem oben beschriebenen Verfahren nach ausgewählten Sequenzen werden vorteilhaft in einen Organismus eingebracht. Deshalb ist ein weiterer Erfindungsgegenstand ein nach diesem Verfahren hergestellter Organismus bevorzugt ist der Organismus eine Pflanze. Anschließend erfolgt die Regeneration ganzer Pflanzen und Überprüfung der Resistenz gegenüber dem Herbizid in intakten Pflanzen.
5 Veränderte Proteine und/oder Nukleinsäuren, die in Pflanzen Resistenz gegen Herbizide vermitteln können, können aus den Sequenzen SEQ ID NO: 1 oder SEQ ID NO: 3 auch Über die sogenannte "site directed mutagenesis" hergestellt werden, durch diese Mutagenese kann beispielsweise die Stabilität und/oder enzymatische 0 Aktivität von Enzymen oder die Eigenschaften wie Bindung der oben genannten erfindungsgemäßen Inhibitoren sehr gezielt verbessern bzw. verändert werden.
Beispielsweise wurde von Zhu et al . (Nature Biotech., Vol. 18, 5 May 2000: 555 - 558) eine "site directed mutagenisis"-Methode in Pflanzen beschrieben, die vorteilhaft verwendet werden kann.
Weiterhin können Veränderungen über die von Spee et al. (Nucleic Acids Research, Vol. 21, No. 3, 1993: 777- 78) beschriebenen Q PCR-Methode unter Verwendung von dITP zur zufälligen Mutagenese erzielt werden oder durch die von Rellos et al . (Protein Expr. Purif., 5, 1994 : 270-277) weiter verbessert Methode.
Eine weitere Möglichkeit zur Herstellung dieser veränderten Pro5 teine und/oder von Nukleinsäuren ist eine von Stemmer et al . (Proc Natl. Acad. Sei. USA, Vol. 91, 1994: 10747-10751) beschriebene "in vitro" Rekombinationstechnik für die molekulare Evolution oder die von Moore et al. (Nature Biotechnology Vol. 14, 1996: 458-467) beschriebene Kombination der PCR- und Rekombinationsmethode. 0
Ein weiterer Weg zur Mutagenese von Proteinen wird von Greener et al. in Methods in Molecular Biology (Vol. 57, 1996: 375-385) beschrieben. In EP-A-0 909 821 wird eine Methode zur Veränderung von Proteinen unter Verwendung des Mikroorganismus E. coli 5 XL-1 Red beschrieben. Dieser Mikroorganismus erzeugt bei der Replikation Mutantionen in den eingeführten Nukleinsäuren und führt so zu einer Veränderung der genetischen Information. Über Isolierung der veränderten Nukleinsäuren bzw. der veränderten Proteine und Testung auf Resistenz lassen sich leicht vorteil - 0 hafte Nukleinsäuren und die durch sie kodierten Proteine identifizieren. Diese können dann nach Einbringen in Pflanzen dort die Resistenz ausprägen und so zur Resistenz gegen die Herbizide führen.
5 weitere Methoden der Mutagenese und Selektion sind beispielsweise Methoden wie die in vivo Mutagenese von Samen oder Pollen und Selektion resistenter Allele in Anwesenheit der erfindungsgemäßen Inhibitoren, gefolgt von genetischer und molekularer Identifizierung des veränderten, resistenten Alleis. Weiterhin die Mutagenese und Selektion von Resistenzen in der Zellkultur durch Vermehrung der Kultur in Anwesenheit von sukzessiv steigenden Kon- 5 zentrationen der erfindungsgemäßen Inhibitoren. Dabei kann die Erhöhung der spontanten Mutationsrate durch chemische/physikalische mutagene Behandlung ausgenutzt werden. Wie vorgehend beschrieben lassen sich auch mit Mikroorgansimen, die eine endogene oder rekombinante Aktivität der durch die im erfindungsgemäßen Q Verfahren verwendeten Nukleinsäuren codierten Proteine haben, und die gegenüber den erfindungsgemäß identifizierten Inhibitoren sensitiv sind, veränderte Gene isolieren. Die Anzucht der Mikroorganismen auf Medien mit steigenden Konzentration von erfindungsgemäßen Inhibitoren erlaubt die Selektion und Evolution von 5 resistenten Varianten der erfindungsgemäßen Targets. Die Frequenz der Mutationen kann wiederum durch mutagene Behandlungen erhöht werden.
Daneben stehen Verfahren zur gezielten Veränderungen von Nuklein0 säuren zur Verfügung (Zhu et al. Proc Natl. Acad. Sei. USA, Vol. 96, 8768 - 8773 und Beethem et al., Proc. Natl. Acad. Sei. USA, Vol 96, 8774 - 8778) .
Diese Methoden ermöglichen es, in den Proteinen solche Aminosäuren, die für die Bindung von Inhibitoren von Bedeutung sind, durch funktionell äquivalente Aminosäuren zu ersetzen, die jedoch 5 die Bindung des Inhibitors verhindern.
Ein weiterer Erfindungsgegenstand ist deshalb ein Verfahren zur Erstellung von Nukleotidsequenzen welche für Genprodukte kodieren, die eine veränderte biologische Aktivität aufweisen, 0 wobei die biologische Aktivität dahingegen verändert wurde, daß eine erhöhte Aktivität vorliegt. Unter erhöhter Aktivität ist eine gegenüber dem Ausgangsorganismus bzw. gegenüber dem Ausgangsgenprodukt um mindestens 10 % , bevorzugt um mindestens 30 %, besonders bevorzugt um mindestens 50 %, ganze besonders 5 bevorzugt um mindestens 100 % höhere Aktivität zu verstehen. Weiterhin kann die biologische Aktivität dahingegen verändert worden sein, daß die erfindungsgemäßen Substanzen und/oder Mittel nicht mehr oder nicht mehr richtig an die Nukleinsauresequenzen. und/oder die durch sie kodierten Genprodukte binden. Unter nicht 0 mehr oder nicht mehr richtig ist im Sinne der Erfindung zu verstehen, daß die Substanzen um mindestens 30 %, bevorzugt mindestens 50 %, besonders bevorzugt um mindestens 70 %, ganz besonders bevorzugt um mindestens 80 % oder gar nicht mehr an die veränderten Nukleinsäuren und/oder Genprodukte im Vergleich zum 5 Ausgangsgenprodukt oder den Ausgangsnukleinsäuren binden. Noch ein weiterer Aspekt der Erfindung betrifft deshalb eine nach dem oben beschriebenen erfindungsgemäßen Verfahren genetisch veränderte transgene Pflanze.
Genetisch veränderten transgene Pflanzen, die gegen die nach den erfindungsgemäßen Verfahren gefundenen Substanzen und/oder Mittel enthaltend diese Substanzen resistent sind, können auch durch Überexpression der in den erfindungsgemäße Verfahren verwendeten Nukleinsäuren SEQ ID NO: 1 oder SEQ ID NO: 3 erzeugt werden. Des- halb ist ein weiterer Erfindungsgegenstand ein Verfahren zur Erzeugung transgener Pflanzen, die gegen Substanzen, die nach einem erfindungsgemäßen Verfahren gefunden wurden, resistent sind, dadurch gekennzeichnet, daß in diesen Pflanzen Nukleinsäuren mit den Sequenzen SEQ ID NO: 1 oder SEQ ID NO: 3 überexprimiert wer- den. Ein ähnliches Verfahren wird beispielhaft in Lermantova et al.. Plant Physiol., 122, 2000: 75 --83 beschrieben.
Die oben beschriebenen erfindungsgemäßen Verfahren zur Erzeugung resistenter Pflanzen ermöglichen die Entwicklung neuer Herbizide, die eine möglichst umfassende Pflanzenspezies unabhängige Wirkung aufweisen (sog. Totalherbizide) , in Kombination mit der Entwicklung von gegenüber dem Totalherbizid resistenten Nutzpflanzen. Gegenüber Totalherbiziden resistente Nutzpflanzen sind bereits verschiedentlich beschrieben worden. Dabei können mehrere Prinzipien zur Erzielung einer Resistenz unterschieden werden:
a) Resistenzerzeugung in einer Pflanze über Mutationsverfahren oder gentechnische Verfahren, indem das als Zielort für das Herbizid dienende Protein deutlich überproduziert wird und indem auf Grund des großen Überschusses des als Zielort für das Herbizid dienende Protein, die von diesem Protein in der Zelle ausgeübte Funktion auch nach Applikation des Herbizides beibehalten wird.
b) Veränderung der Pflanze dahingehend, daß eine modifizierte Version des als Zielort des Herbizid fungierenden Proteins eingeführt wird und daß das neu eingeführte modifizierte Protein vom Herbizid nicht in seiner Funktion beeinträchtigt wird.
c) Veränderung der Pflanze dahingehend, daß ein neues Protein/ eine neue RNA eingeführt wird welches dadurch gekennzeichnet ist, daß die für die herbizide Wirkung der niedermolekularen Substanz verantwortliche chemische Struktur des Proteins oder der Nukleinsäure wie der RNA oder der DNA so verändert wird, daß durch die veränderte Struktur keine herbizide Wirkung mehr entfaltet werden kann, daß heißt die Interaktion des Herbizids mit dem Zielort nicht mehr erfolgen kann.
d) das die Funktion des Targets durch ein neues in die Pflanze eingebrachtes Gen ersetzt wird, und so ein sogenannter "alternativer Pathway" geschaffen wird.
e) Das die Funktion des Targets durch ein anderes in der Pflanze vorhandenes Gen bzw. dessen Genprodukt übernommen wird.
Die vorliegende Erfindung umfaßt daher weiterhin die Verwendung von Pflanzen, die durch die T-DNA Insertion getroffene Gene mit den Nukleinsauresequenzen SEQ ID NO: 1 oder SEQ ID NO: 3 zur Entwicklung von neuen Herbiziden. Dem Fachmann sind alternative Verfahren zur Identifizierung von den homologen Nukleinsäuren beispielsweise in anderen Pflanzen mit ähnlichen Sequenzenwie beispielsweise unter Verwendung von Transposons, bekannt. Gegenstand dieser Erfindung ist daher auch die Verwendung von alternativen Insertions utageneseverfahren zur Insertion von fremder Nu- kleinsäurein die Nukleinsauresequenzen SEQ ID NO: 1 oder SEQ ID NO: 3, in von diesen Sequenzen aufgrund des genetischen Codes abgeleitete Sequenzen und/oder deren Derivate in anderen Pflanzen.
Eine weitere Verfahrensvariante zur Identifizierung gegen die er- findungsgemäßen Inhibitoren resistenter Polypeptide mit Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität basiert darauf, dass der Dehydroquinat Dehydratase/Shikimat Dehydrogenase- Weg nicht nur in Pflanzen, sondern auch in Bakterien und Pilzen vorkommt. Einige dieser Mikroorganismen könnten nun Dehydroquinat Dehydratase/Shikimat Dehydrogenase Varianten enthalten.
Das erfindungsgemäße Verfahren zur gezielten Detektion besagter Dehydroquinat Dehydratase/Shikimat Dehydrogenase Varianten basiert darauf, dass ein Organismus mit einem über das erfindungs - gemäße Verfahren identifizierten Inhibitor inkubiert wird. Tritt keine oder nur eine partielle Wachstumshemmung auf, wird die Dehydroquinat Dehydratase/Shikimat Dehydrogenase aus dem besagten Organismus isoliert und bezüglich ihrer Nukleinsauresequenz charakterisiert. Hierbei ist unter einer partiellen Wachstumshemmung zu verstehen, daß das Wachstum im Vergleich zu einem nicht inkubierten Organismus nur 50 %, bevorzugt 45 %, besonders bevorzugt 20 % reduziert ist. Gegebenenfalls wird die bereits vorhandene Resistenz durch weitere Mutationen verstärkt. Hier kann auf die oben beschriebenen Methoden zur Mutagenese zurückgegriffen wer- den. Hierbei kann jeder beliebige Organismus verwendet werden, der Enzyme des Shikimat-Wegs besitzt. Besonders bevorzugt sind hierbei Bakterien, Pflanzen und Pilze.
Weiterer Gegenstand der vorliegenden Erfindung sind transgene Organnismen, bevorzugt Pflanzen, deren Vermehrungsgut sowie deren Pflanzenzellen, -gewebe oder -teile, transformiert mit einer Expressionskassette enthaltend die Sequenz einer Dehydroquinat Dehydratase/Shikimat Dehydrogenase Variante, die durch die erfindungsgemäßen Inhibitoren nicht gehemmt wird. Die Expressionskassette ist mit den oben beschriebenen Ausführungsformen einer Expressionskassette für die Expression der Dehydroquinat Dehydratase/Shikimat Dehydrogenase identisch bis auf die Tatsache, dass anstelle der Nukleinsauresequenz der Dehydroquinat De- hydratase/Shikimat Dehydrogenase sich die besagte Dehydroquinat Dehydratase/Shikimat Dehydrogenase Variante befindet.
Die Herstellung der transgenen Pflanzen erfolgt mit einer der oben beschrieben Ausführungsformen der erfindungsgemäßen Expres- sionskassette nach ebenfalls oben beschriebenen gängigen Trans - formationsmethoden.
Die Wirksamkeit der Expression des transgen exprimierten Dehydroquinat Dehydratase/Shikimat Dehydrogenase Gens kann beispiels- weise in vitro durch Sproßmeristemvermehrung oder durch einen Keimungstest ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression des Dehydroquinat Dehydratase/Shikimat Dehydrogenase Gens und deren Auswirkung auf die Resistenz gegenüber Hemmstoffen der Dehydroquinat Dehydratase/Shikimat Dehydro- genäse an Testpflanzen in Gewächshausversuchen getestet werden.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung einer erfindungsgemäßen Expressionskassette zur Transformation von Pflanzen, Pflanzenzellen, -geweben oder Pflanzenteilen. Vorzugsweise ist Ziel der Verwendung die Erhöhung des Dehydroquinat Dehydratase/Shikimat Dehydrogenase Gehaltes bzw. des Gehaltes eines Polypeptides mit Dehydroquinat Dehydratase/Shikimat Dehydrogenase Aktivität in der Pflanze. Die Herstellung der transgenen Pflanzen erfolgt wie weiter oben beschrieben über Transformation einer Pflanze mit mindestens einer erfindungsgemäßer Expressionskassette oder mindestens einem erfindungsgemäßen Vektor. Eine erhöhte Expression kann allerdings auch durch gezielte Mutagenese der Promotorregion des jeweiligen natürlichen Dehydroquinat Dehydratase/Shikimat Dehydrogenase Gens erreicht werden. So kann durch Überexpression der für eine Dehydroquinat Dehydratase/Shikimat Dehydrogenase kodierenden Gensequenz SEQ-ID NO. 1 oder SEQ-ID NO. 3 oder deren funktioneller Äquivalente in einer Pflanze eine erhöhte Resistenz gegenüber den erfindungsgemäßen Inhibitoren der Dehydroquinat Dehydratase/Shikimat Dehydrogenase erreicht. Die derart hergestellten transgenen Pflanzen sind ebenfalls Gegenstand der Erfindung.
Die nun folgenden weiteren Ausführungsformen der Erfindung basie- ren ebenfalls auf Überexpression der Dehydroquinate Dehydratase/ Shikimat Dehydrogenase. Hierbei kann zusätzlich zur oben erwähnten Methodik die Überexpression von Dehydroquinate Dehydratase/ Shikimat Dehydrogenase mittels einer erfindungsgemäßen Expressionskassette oder eines erfindungsgemäßen Vektors vermittelt werden jeweils enthaltend eine der weiter oben beschriebenen Nukleinsauresequenzen codieren für ein Polypeptid mit erhöhter Dehydroquinate Dehydratase/Shikimat Dehydrogenase Aktivität. Hierbei ist unter erhöter Aktivität eine gegenüber der durch die SEQ ID NO:l oder SEQ ID NO: 2 codierten Dehydroquinate Dehydratase/ Shikimat Dehydrogenase um mindestens 10 % , bevorzugt um mindestens 30 %, besonders bevorzugt um mindestens 50 %, ganze besonders bevorzugt um mindestens 100 % höhere Aktivität zu verstehen.
Durch Überexpression der Dehydroquinate Dehydratase/Shikimat Dehydrogenase kann über die Steigerung von Chorismat und der aromatischen Aminosäuren auch die Trockensubstanz einer Pflanze gesteigert werden. Dies führt zu einer Erhöhung der Trockenmasse und steigert den Gesamtertrag der Pflanzen.
Des weiteren kann durch Überexpression der Dehydroquinate Dehydratase/Shikimat Dehydrogenase die Biosynthese der aromatischen Aminosäuren Phenylalanin, Tyrosin und Tryptophan in Pflanzen gesteigert werden.
Bevorzugt zu verwendende Pflanzen sind hierbei Kulturpflanzen, wie Getreide, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Al- falfa, Salat und den verschiedenen Baum-, Nuß- und Weinspezies sowie Leguminosen.
Dabei kann je nach Wahl des Promotors die Expression spezifisch in den Blättern, in den Samen oder anderen Teilen der Pflanze erfolgen. Solche transgenen Pflanzen, deren Vermehrungsgut sowie deren Pflanzenzellen, -gewebe oder -teile sind ein weiterer" Ge- genstand der vorliegenden Erfindung. Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt.
Gentechnische Verfahren, die den Ausführungsbeispielen zugrunde liegen:
Allgemeine Klonierungsverfahren
Klonierungsverfahren wie z.B.: Restriktionsspaltungen, DNA-Iso- lierung, Agarose-Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Sequenzanalyse rekombinanter DNA wurden nach Sambrook et al. , Cold Spring Harbor Laboratory Press (1989); ISBN 0-87969-309-6 beschrieben durchgeführt. Die Transformation von Agrobacterium tumefaciens wurde entsprechend der Methode von Höfgen und Willmitzer (Nucl. Acid Res . 16, 9877(1988)) ausgeführt. Die Anzucht der Agrobacterien erfolgte in YEB Medium (Vervliet et al . , Gen. Virol. 26, 33(1975)).
Die im folgenden verwendeten Bakterienstämme (E. coli , XL-I Blue) wurden von Stratagene oder Qiagen bezogen. Der zur Pflanzentransformation verwendete Agrobakterienstamm (Agrobacterium tumefaciens, C58C1 mit dem Plasmid pGV2260 oder pGV3850kan) wurde von Deblaere et al. in Nucl. Acids Res. 13, 4777(1985) beschrieben. Alternativ können auch der Agrobakterienstamm LBA4404 (Clontech) oder andere geeignete Stämme eingesetzt werden. Zur Klonierung können die Vektoren pUC19 (Yanish-Perron, Gene 33, 103-119(1985)) pBluescript SK- (Stratagene), pGEM-T (Promega) , pZerO (Invitrogen), pBinl9 (Bevan et al., Nucl. Acids Res. 12,
8711-8720(1984)) und pBinAR (Höfgen und Willmitzer, Plant Science 66, 221-230(1990)) benutzt werden.
Sequenzanalyse rekombinanter DNA
Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al . , Proc. Natl. Acad. Sei. USA, 74, 5463-5467(1977)). Fragmente resultierend aus einer Polymerase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimierenden Konstrukten sequenziert und überprüft.
Die verwendeten Chemikalien wurden, sofern nicht anders erwähnt, in p.a. Qualität von den Firmen Fluka (Neu-Ulm) , Merck (Darm- Stadt) , Roth (Karlsruhe) , Serva (Heidelberg) sowie Sigma (Deisen- hofen) bezogen. Lösungen wurden mit aufbereitetem, pyrogenfreiem Wasser, im weiteren Text als H0 bezeichnet, aus einer Milli-Q Water System Wasseraufbereitungsanlage (Millipore, Eschborn) angesetzt. Restriktionsendonukleasen, DNA-modifizierende Enzyme und molekularbiologische Kits wurden von den Firmen AGS (Heidelberg) , Amersham (Braunschweig) , Biometra (Göttingen) , Röche (Mannheim) , Genomed (Bad Oeynnhausen) , New England Biolabs (Schwalbach/Taunus) , Novagen (Madison, Wisconsin, USA) , Perkin-Elmer (Weiters adt) , Pharmacia (Freiburg) Qiagen (Hilden) und Stratagene (Heidelberg) bezogen. Sie wurden, soweit nicht anders erwähnt, nach Herstellerangaben verwendet.
Beipiel 1
Klonierung des Dehydroquinat-Dehydratase/Shikimat-Dehydrogenase- Gens aus Nicotiana tabacum
Die Dehydroquinat-Dehydratase/Shikimat-Dehydrogenase wurde über die Methode der RT-PCR aus Tabak-Blüten kloniert. Durch eine Sequenzieranalyse wurde bestätigt, daß es sich um die Dehydroqui- nat-Dehydratase/Shikimat-Dehydrogenase aus Tabak handelt. Für dieses Vorgehen wurden folgende Primer verwendet:
5 ' DHD-BamHI : AAG GAT CCG GAA GTT CGA TTG GAT AGC
3'DHD-BamHI: AAG GAT CCT TCT CTC GCT CGT TCA TAG G
Das PCR-Produkt hat die Größe von 1088 Basenpaaren und wurde für die Antisense- und Co-Supressions-Inhibierung des Dehydroquinat- Dehydratase/Shikimat-Dehydrogenase-Gens verwendet .
Zur Überexpression des Proteins wurde der Volllangenklon über die Methode der PCR aus Tabak-Blüten-DNA amplifiziert.
Für dieses Vorgehen wurden folgende Primer verwendet:
5'GGG GAG GCA ATG ACG AGG AAC GAA ACA CTA 3'
5' ATT CCT CCG AAG CAC AAA TGG TAG GGC AGA 3'
Dieses 1668 Basenpaar lange cDNA-Fragment enthält ein offenes Leseraster von 1668 Basen und kodiert für ein Protein mit 556 Aminosäuren. Das zum Prä-Protein gehörende Transit-Peptid wurde durch diese Vorgehensweise nicht kloniert. Analysen des Poly- peptids unter Verwendung des Programms GCG (Oxford Molecular) ergaben einen Wert von 100 % Identität auf Nukleinsäure- und Amino- säureebene mit einem in der Datenbank beschriebenen Protein aus Nicotiana tabacum (Acc Nummer: L 32794) . Beispiel 2
Herstellung von Dehydroquinat-Dehydratase/Shikimat-Dehydrogenase- Antisense-und Cosupressions-Konstrukten
Das 1088 Basenpaar-Fragment der Nicotiana tabacum Dehydroquinat- Dehydratase/Shikimat-Dehydrogenase wurde in Sense-Orientierung und in Antisense-Orientierung in den binären Vektor pBINAR unter der Kontrolle des 35S-Promotors kloniert, siehe Abbildung 6. Zur Klonierung der Dehydroquinat-Dehydratase/Shikimat-Dehydrogenase in den binären Vektor konnten die durch die Primer vorgegebenden BamHI-Schnittstellen verwendet werden. Das PCR-Produkt wurde mittels Gene-Clean-Kit (Dianova GmbH, Hilden) gereinigt und mit BamHI verdaut. Zur Ligation wurde der Vektor pBinl9AR ebenfalls mit BamHI geschnitten.
Dieses Konstrukt wurde durch Agrobakterium-vermittelte Transformation in Tabak übertragen. Regenerierte Pflanzen wurden auf De- hydroquinat-Dehydratase/Shikimat-Dehydrogenase mRNA-Mengen hin untersucht. Alle untersuchten Antisense- und Sense-Pflanzen mit reduzierten Dehydroquinat-Dehydratase/Shiki at-Dehydrogenase- mRNA-Mengen zeigten einen eindeutigen Phänotyp. Es konnte eine strenge Korrelation zwischen Phänotyp und reduzierter mRNA-Menge festgestellt werden. Pflanzen mit reduzierter Dehydroquinat-Dehy- dratase/Shikimat-Dehydrogenase-mRNA zeigten Mosaik-Blätter, reduzierte Größe - siehe Abbildung 2 bis 4 - und starben während der pflanzlichen Entwicklung.
Beipiel 3
Herstellung von transgenen Tabakpflanzen
Für die Herstellung transgener Tabakpflanzen (Nicotiana tabacum L. cv. Samsun NN) wurden Tabakblattscheiben mit Sequenzen der De- hydroquinat-Dehydratase/Shikimat-Dehydrσgenase transformiert. Zur Transformation von Tabakpflanzen wurden 10 ml einer unter Selektion gewachsenen Übernachtkultur von Agrobacterium tumefaciens abzentrifugiert, der Überstand verworfen und die Bakterien in gleichem Volumen Antibiotika-freien Medium resuspendiert. In einer sterilen Petrischale wurden Blattscheiben steriler Pflanzen (Durchmesser ca. 1 cm) in dieser Bakteriensuspension gebadet. Anschließend wurden die Blattscheiben in Petrischalen auf MS-Medium (Murashige und Skoog, Physiol. Plant 15, 473(1962)) mit 2 % Saccharose und 0.8 % Bacto-Agar ausgelegt. Nach 2-tägiger Inkubation im Dunkeln bei 25°C wurden sie auf MS-Medium mit 100 mg/1 Kanamy- cin, 500 mg/1 Claforan, 1 mg/1 Benzylaminopurin (BAP) , 0.2 mg/1 Naphtylessigsaure (NAA) , 1.6 % Glukose und 0.8 % Bacto-Agar über- tragen und die Kultivierung (16 Stunden Licht / 8 Stunden Dunkelheit) fortgesetzt. Wachsende Sprosse wurden auf hormonfreies MS- Medium mit 2 % Saccharose, 250 mg/1 Claforan und 0.8 % Bacto- Agar überführt.
Beipiel 4
Analyse von Gesamt-RNA aus pflanzlichen Geweben
Gesamt-RNA aus pflanzlichen Geweben wurde wie bei Logemann et al., Anal. Biochem. 163, 21(1987) isoliert. Für die Analyse wurden jeweils 20 μg RNA in einem Formaldehyd-haltigen 1,5 % igen Agarosegel aufgetrennt und auf Nylon Membranen (Hybond, Amersham) überführt. Der Nachweis spezifischer Transkripte wurde .wie bei Amasino beschrieben durchgeführt ( Anal. Biochem. 152,
304(1986)). Die als Sonde eingesetzten DNA-Fragmente wurden mit einem Random Primed DNA Labeling Kit (Boehringer, Mannheim) radioaktiv markiert und nach Standardmethoden hybridisiert (siehe Hybond-Benutzerhinweise, Amersham) . Hyridisierungssignale wurden durch Autoradiographie mit Hilfe von X-OMAT AR Filmen der Fa. Kodak sichtbar gemacht.
In der Abbildung 5 ist eine Northern-Analyse dargestellt von fünf Tabak-Pflanzen (19-1, 19-4, 19-5, 83-2, 83-5), die mit einem pBi- nAR antisense-Konstrukt der DHD/SDH transformiert wurden. Zur Kontrolle ist die RNA von zwei Wildtyp-Pflanzen aufgetragen. Die Expression der DHD/SDH ist in den transgenen Tabakpflanzen reduziert.
Wildtyp und transgene DHD/SDH Pflanzen sind in der Seitenansicht (Abbildung 2) und in der Aufsicht (Abbildung 3 und 4) gezeigt. Deutlich zu sehen ist eine starke Wachstumshemmung im Vergleich zum Wildtyp (Abbildung 2, Wildtyp links außen). Das verminderte Wachstum korreliert mit einer Abnahme der DHD/SDH Genexpression (Abbildung 5 A und 5 B) . In Abbildung 5 A sind Northern Analysen von transgenen DHD/SHD-Pflanzen der TI- Generation mit starker phänotypischen Veränderungen zu sehen. Die Analyse ergibt, daß bei Pflanzen mit starker phänotypischer Veränderung die DHD/SHD- Genexpression gehemmt ist. In Abbildung 5 B sind Northern Analy- sen von transgenen DHD/SHD-Pflanzen der Tl-Generation mit normalem Phänotyp zu sehen. Deren Analyse ergibt, daß bei diesen Pflanzen keine Hemmung der DHD/SHD-Genexpression zu beobachten ist, obwohl ein starkes Signal des transferierten Fragmentes vorhanden ist. Zusammenfassend läßt sich festhalten, daß eine deut- liehe Korrelation zwischen Phänotyp mit verringertem Wachstum und der Inhibiton der DHD/SHD-Genexpression gefunden wird. Beispiel 5
Nachweis der enzymatischen Aktivität der Dehydroquinat-Dehydra- tase/Shikimat-Dehydrogenase
A. Die Shikimat-Dehydrogenase des bifunktionellen Enzyms der De- hydroquinat-Dehydratase/Shikimat-Dehydrogenase katalysiert folgende Reaktion:
Shikimat + NADP ++ DehydroShikimat + NADPH
Die Entstehung von NADPH kann bei einer OD von 334 nm über 10 Minuten gemessen werden. Die Reaktion wird durch Zugabe von 1 Mikroliter des extrahierten Roh-Proteins gestartet. Der Reak- tionpuffer enthält:
100 mM Glycine-NaOH, pH: 9.9;
0.1 mM Shikimat (Sigma);
0.1 M NADP (AppliChem) .
B. Durch Zugabe von 3 -Dehydroshikimat läßt sich die Abnahme von NADPH photometrisch bestimmten und damit die Aktivität der 3 -Dehydroquinate-Dehydratase messen. Dies stellt die Rück-Re- aktion von Shikimat 3 -Dehydroquinate zu der DHD/SHD dar.
C. Ein weiterer Enzym-Assay der Dehydroquinat-Dehydratase/Shikimat-Dehydrogenase erfolgt durch die Messung beider Enzyme in einer gekoppelten Rück-Reaktion:
3-Dehydroquinate + NADP <= 3-DehydroShikimat + NADPH <= Shikimat + NADP
in diesem Enzym-Assay kann durch photometrische Messung bei einer OD von 334 die Abnahme von NADPH detektiert werden. Bei dieser Reaktion wird die enzymatische Aktivität beider Enzyme in einem Assay nachgewiesen. Beispiel 6
Klonierung der Dehydroquinat-Dehydratase/Shikimat-Dehydrogenase aus Nicotiana tabacum in Expressionsvektoren heterologer Expres- sionsSysteme
Geeignet sind Expressionsvektoren für die Expression rekombinanter Proteine in E. coli , aber auch Baculoviren-Vektoren zur Expression von Dehydroquinat-Dehydratase/ Shikimat-Dehydrogenase in Insektenzellen (Gibco BRL) . Bakterielle Expressionsvektoren sind z.B. abgeleitet von pBR322 und tragen für die Expression einen Bakteriophagen-T7-Promotor. Zur Expression wird das Plasmid in einem E. coli-Stamm vermehrt, welcher ein induzierbares Gen für die T7-Polymerase trägt (z.B. JM109 (DE3) ; Promega) . Die Expres- sion des rekombinanten Proteins wird aktiviert über die Induktion der T7-Polymerase durch IPTG. Soll das rekombinante Protein zur verbesserten Aufreinigung über eine Ni-Affinitätschromatographie mit einem His-Tag versehen werden, bieten sich IPTG-induzierbare Systeme von Quiagen (pQE-Vektoren) oder Novagen (pET-Vektoren) an. Je nach zur Verfügung stehenden Schnittstellen gibt es Vektoren mit unterschiedlichen Leserastern.
Das Volllängen Dehydroquinat-Dehydratase/Shikimat-Dehydrogenase- Gen wurde in den pQE-Vektor kloniert (Abbildung 7) und in E. coli transformiert. Eine Einzel-Kolonie dieses E. coli-Stammes wurde im Anzuchtsmedium "2xYT" (pro 1 1: Bacto-Trypton 16 g, Hefe-Extrakt 10 g, NaCl 5 g, 50 mg/1 Ampicillin und 50 mg/1 Kanamycin) über Nacht bei 37°C inkubiert. 50 ml 2*YT wurden am nächsten Tag mit 0.5 ml der Übernachtkultur inokuliert und bei 25°C bis zu einer ODgoo von 0-6 angezogen. Die Expression des Gens wurde durch Zugabe von IPTG (finale Konzentration: 0.05 mM) induziert und weitere 3 h bei 25°C inkubiert. Die Zellen wurden bei 4°C durch eine Zentrifugation von 8000 rpm für 10 Minuten, geerntet. Das Pellet wurde in 3 ml Extraktionspuffer aufgenommen (50 mM NaHP04, 300 mM NaCl, 10 mM Imidazol, 15% Glycerol, 5 mM Mercapto-Ethanol) . Das Pellet wurde in flüssigem Stickstoff eingefroren und auf Eis wieder aufgetaut. Die Zellen wurden mit Ultraschall aufgebrochen (4 x 45 Sekunden, 1 Minute auf Eis) . Die Zellen wurden für 20 Minuten bei 4°C und 1500 rpm abzentrifugiert und der Überstand direkt für die Enzym-Messungen verwendet.
Abbildung 8 zeigt das exprimierte DHD/SDH Protein mit einer Größe von ca. 60 kD in der SDS-Page-Gelelektrophorese. Lane 1 (von links nach rechts) : Proteinmarker, Molekulargewichte von oben nach unten: 97,4 KD; 66 KD; 46 KD; 30 KD; 21.5 KD und 14,3 KD
Lane 2: induziertes DHD/SHD Protein (Rohextrakt, denaturiert) in Gegenwart von 2 mM IPTG, 37°C Molekulargewicht DHD/SHD: ca. 60 KD
Lane 3: nicht induzierte Kontrolle
Lane 4: induziertes DHD/SHD Protein (Rohextrakt, nativ) in Gegenwart von 0,05 mM IPTG, 25°C
Lane 5: induziertes DHD/SHD Protein (gereinigt an Ni-NTA Mate- rial, nativ)
Lane 6: siehe Lane 5, jedoch Beladung mit doppelter Proteinmenge
Ausführungsbeispiel
In einem breitangelegten Screening basierend auf dem in Beispiel 5 A beschriebenen Aktivitätstest wurden 6 Substanzen identifiziert, deren IC50-Wert im μM-Bereich liegt (s. Tabelle 1).
Figure imgf000047_0001
Figure imgf000048_0001
Tabelle 1
Der Einfluß der erfindungsgemäßen herbiziden Verbindungen auf das Wachstum der Wasserlinse Lemna paucicostatag geht aus den folgenden Testergebnissen hervor:
Die Anzucht von Lemna inor erfolgt unter nicht sterilen Bedingungen in Kunststoffschalen in 17 mMOl/1 MES-Puffer pH 5.5 + 1.5 mMol/1 CaCl—2 + 1 g/1 Hakaphos spezial.
Zur Testdurchführung werden die Lemna-Kulturen gewaschen und in 0.5 ml frischer Nährlösung in 48-Loch Mikrotiterplatten vereinzelt. Die Wirkstoffe werden zu 5 mMol/1 in DMSO gelöst und 1:5 in Wasser verdünnt. Für den Test werden 2501 dieser Lösung eingesetzt.
Gemessen wird die Fluoreszenz des Chlorophylls während der Behandlung. Eine herbizide Wirkung kann durch Vergleich mit einer unbehandelten Kontrolle detektiert werden und wird in Tabelle 1 mit H abgekürzt.

Claims

Patentansprüche
1. Expressionskassette enthaltend
a) eine Nukleinsauresequenz mit der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Sequenz; oder
b) eine Nukleinsauresequenz, die sich aufgrund des degenerierten genetischen Codes aus den durch Rückübersetzung der in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen ableiten läßt; oder
c) funktionelle Analoga der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Nukleinsauresequenzen, die für ein Polypeptid mit den in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen codieren; oder
d) funktionelle Analoga der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Nukleinsauresequenz, die für funktionelle Analoga der in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen codieren; oder
e) Teile der Nukleinsauresequenzen a) , b) , c) oder d) codierend für ein Polypeptid mit Dehydrochinat Dehydratase/ Shikimat Dehydrogenase Aktivität; oder
f) mindestens 300 Nukleotidbausteine der Nukleinsäuresequen- zen a) , b) , c) oder d) codierend für ein Polypeptid mit
Dehydrochinat Dehydratase/Shikimat Dehydrogenase Aktivität;
und mindestens ein zusätzliches Funktionselement.
2. Vektor enthaltend eine Expressionskassette nach Anspruch 2,
3. Transgener Organismus enthaltend eine Expressionskassette nach Ansprüchen 1 oder einen Vektor ausgewählt aus der Gruppe bestehend aus Bakterien, Hefen, Pilzen, tierischen oder pflanzlichen Zelleng emäß Anspruch 2.
Transgener Organismus nach Anspruch 3 ausgewählt aus der Gruppe bestehend aus Bakterien und pflanzlichen Zellen.,
Verfahren zur Identifizierung von Substanzen mit herbizider Wirkung, dadurch gekennzeichnet, dass man die Tanscription, Expression, Translation oder die Aktivität des Genprodukt der durch eine Nukleinsauresequenz ausgewählt aus der Gruppe:
a) eine Nukleinsauresequenz mit der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Sequenzen, oder
b) eine Nukleinsauresequenz, die sich aufgrund des degenerierten genetischen Codes aus den durch Rückübersetzung der in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen ableiten läßt, oder
c) funktionelle Analoga der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Nukleinsauresequenzen, die für ein Polypeptid mit den in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen codieren; oder
d) funktionelle Analoga der in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellten Nukleinsauresequenz, die für funktionelle Analoga der in SEQ ID NO: 2 oder SEQ ID NO: 4 dargestellten Aminosäuresequenzen codieren; oder
e) Nukleinsauresequenz bestehend aus einem Teilbereichen der Nukleinsauresequenzen a) , b) , c) oder d) codierend für ein Polypeptid mit Dehydrochinat Dehydratase/Shikimat Dehydrogenase Aktivität; oder
f) Nukleinsauresequenz bestehend aus mindestens 300 Nukleo- tidbausteine der Nukleinsauresequenzen a) , b) , c) oder d) codierend für ein Polypeptid mit Dehydrochinat Dehydratase/Shikimat Dehydrogenase Aktivität;
kodierten Aminosäuresequenz, beeinflußt und solche Substanzen auswählt, die, im Vergleich mit dem nicht mit der Substanz inkubierten Genprodukt, die Tanscription, Expression, Translation oder die Aktivität des Genprodukt reduzieren oder blockieren.
Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Verfahren in einem Organismus aus der Gruppe der Bakterien, Hefen, Pilze oder Pflanzen durchgeführt wird.
7. Verfahren nach den Ansprüchen 5 bis 6, dadurch gekennzeichnet, dass das Verfahren in einem Organismus aus der Gruppe der Bakterien, Hefen und Pilze durchgeführt wird..
8. Verfahren nach den Anspruch 7, dadurch gekennzeichnet, dass ein Organismus verwendet wird, der eine konditionale oder natürliche Mutante der Sequenzen SEQ ID NO: 1 oder SEQ ID NO: 3 ist.
9. Verfahren nach den Anspruch 5, dadurch gekennzeichnet, dass ein transgener Organismus nach Anspruch 3 oder 4 verwendet wird.
10. Verfahren zum Auffinden von Substanzen, welche die Aktivitiät eines Polypetides mit Dehydrochinat Dehydratase/Shikimat
Dehydrogenase Aktivität inhibieren, dadurch gekennzeichnet, dass
a) das Polypeptid entweder in einem transgenen Organismus nach Anspruch 3 oder 4 in enzymatisch aktiver Form exprimiert wird oder ein das erfindungsgemäße Protein enthaltender Organismus kultiviert wird;
b) das im Schritt a) erhaltene Polypeptid in dem ruhenden oder wachsenden Organismus direkt, im Zellaufschluss des
Organismus, in partiell gereinigter Form oder in zur Homogenität gereinigten Form mit Redoxäquivalenten sowie mit einer chemischen Verbindung inkubiert wird;
c) eine chemische Verbindung durch Schritt b) selektiert wird, welche das Polypeptid mit Dehydrochinat Dehydratase/Shikimat Dehydrogenase Aktivität inhibiert; und
d) nach einer geeigneten Reaktionszeit die enzymatische Aktivität des Polypeptides im Vergleich zur Aktivität des nicht gehemmten Enzyms ermittelt wird.
11. Verfahren zur Identifizierung von Substanzen mit herbizider Wirkung, die die Dehydrochinat Dehydratase/Shikimat Dehydro- genäse Aktivität in Pflanzen hemmen, bestehend aus den folgenden Schritten:
a) der Herstellung von Organismen, die nach Transformation mit einer Expressionskassette nach Anspruch 1 oder 'einem Vektor nach Anspruch 2 eine zusätzliche DNA-Sequenz codierend für ein Enzym mit Dehydrochinat Dehydratase/Shikimat Dehydrogenase Aktivität enthalten und in der Lage sind eine enzymatisch aktive Dehydrochinat Dehydratase/ Shikimat Dehydrogenase überzuexprimieren;
b) das Aufbringen einer Substanz auf den Organismus nach An- 5 Spruch a) ;
c) das Bestimmen des Wachstums oder der Überlebensfähigkeit des transgenen und des nicht-transformierten Organismus nach der Aufbringung der chemischen Substanz; und
10
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass als transgene Organismen transgene Pflanzen, Pflanzenzellen, Pflanzengewebe oder Pflanzenteile eingesetzt werden.
15 13. Verfahren nach Anspruch 5-12, dadurch gekennzeichnet, dass die Identifizierung der Substanzen in einem High-Throughput- Screening durchgeführt wird.
14. Verfahren dadurch gekennzeichnet, dass man die über die Ver- 20 fahren nach Ansprüchen 5 bis 13 identifizierten Substanzen auf eine Pflanze verbringt, um deren herbizide Aktivität zu testen und die Substanzen auswählt, die eine herbizide Aktivität zeigen.
25 15. Herbizide identifiziert über Verfahren nach Ansprüchen 5 bis 14.
16. Verwendung von Substanzen nach Anspruch 15 als Herbizide oder Wachstumsregulatoren .
30
17. Verfahren zur Erzeugung von Varianten der Nukleinsauresequenzen SEQ ID NO: 1 oder SEQ ID NO: 3, dadurch gekennzeichnet, daß es folgende Prozessschritte umfaßt:
35 a) Expression der von den SEQ ID NO: 1 oder SEQ ID NO: 3 kodierten Proteine in einem heterologen System oder in einem Zellfreiensystem;
b) Randomisierte oder gerichtete Mutagenese des Proteins
40 durch Modifikation der Nukleinsäure;
c) Messung der Interaktion des veränderten Genprodukts mit dem Herbizid,
45 d) Identifizierung von Derivaten des Proteins sowie der für das Protein codierenden Nukleinsauresequenzen, die eine geringere Interaktion aufweisen,
5 e) Testung der biologischen Aktivität des Proteins nach Applikation des Herbizides.
18. Verfahren nach Anspruch 17 gekennzeichnet dadurch, dass der Organismus ein Bakterium, eine Pflanze oder ein Pilz ist.
10
19. Verfahren zur Erzeugung von Varianten der Nukleins uresequenzen SEQ ID NO: 1 oder SEQ ID NO: 3, dadurch gekennzeichnet, daß es folgende Prozessschritte umfaßt:
15 (a) Detektion von Organismen, die durch Substanzen gemäß Anspruch 15 nicht oder nur partiell gehemmt werden;
(b) Isolation und Charakterisierung der für ein Polypeptid mit Dehydrochinat Dehydratase/Shikimat Dehydrogenase Ak-
20 tivität aus den über Schritt (a) identifizierten Organismen;
(c) gegebenfalls Optimierung der Resistenz durch randomi- sierte oder gerichtete Mutagenese der über Schritt (b)
25 identifizierten Nukleinsäure.
20. Verfahren nach Anspruch 19 gekennzeichnet dadurch, dass der Organismus aus der Gruppe der Bakterien und Pilze stammt.
30 21. Verfahren zur Erzeugung transgener Pflanzen, Pflanzengeweben, oder Pflanzenzellen, die gegen Substanzen gefunden nach einem Verfahren gemäß den Ansprüchen 5 bis 15 resistent sind, dadurch gekennzeichnet, daß in diesen Pflanzen Nukleinsäuren mit den Sequenzen SEQ ID NO: 1, SEQ ID NO: 3 oder Nukleinsäu-
35 resequenzen nach Ansprüchen 19, 20, 21 oder 22 überexprimiert werden .
22. Verfahren zur Herstellung einer transgenen Pflanze dadurch gekennzeichnet, dass man eine Expressionskassette nach An- 40 spruch 1 oder einen Vektor nach Anspruch 2 in eine Pflanze transformiert .
23. Transgene Pflanze nach Anspruch 21 oder 22 gekennzeichnet durch eine erhöhte Trockensubstanz gegenüber einer nicht 45 transgenen Pflanze.
24. Transgene Pflanze nach Anspruch 21 oder 22 gekennzeichnet durch eine erhöhte Menge an aromatischen Aminosäuren gegenüber einer nicht transgenen Pflanze.
25. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, gekennzeichnet dadurch dass man eine Substanz nach Anspruch 15 auf die unerwünschten Pflanzen appliziert.
26. Verwendung einer Substanz nach Anspruch 15 zur Bekämpfung un- erwünschten Pflanzenwuchses.
27. Ein Polypeptid nach Anspruch als Target für herbizide Wirkstoffe.
PCT/EP2001/007763 2000-07-07 2001-07-06 Dehydroquinat dehydratase/shikimat dehydrogenase als herbizides target WO2002004619A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002509473A JP2004502457A (ja) 2000-07-07 2001-07-06 除草剤標的としてのデヒドロキナ酸デヒドラターゼ/シキミ酸デヒドロゲナーゼ
IL15368501A IL153685A0 (en) 2000-07-07 2001-07-06 Dehydroquinate dehydrase/shikimate dehydrogenase as a herbicide target
AU2001289626A AU2001289626A1 (en) 2000-07-07 2001-07-06 Dehydroquinate dehydrase/shikimate dehydrogenase as a herbicide target
EP01969344A EP1315808A2 (de) 2000-07-07 2001-07-06 Dehydroquinat dehydratase/shikimat dehydrogenase als herbizides target
CA002415382A CA2415382A1 (en) 2000-07-07 2001-07-06 Dehydroquinate dehydrase/shikimate dehydrogenase as a herbicide target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10032593 2000-07-07
DE10032593.9 2000-07-07

Publications (2)

Publication Number Publication Date
WO2002004619A2 true WO2002004619A2 (de) 2002-01-17
WO2002004619A3 WO2002004619A3 (de) 2003-03-20

Family

ID=7647824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/007763 WO2002004619A2 (de) 2000-07-07 2001-07-06 Dehydroquinat dehydratase/shikimat dehydrogenase als herbizides target

Country Status (7)

Country Link
US (1) US20030145348A1 (de)
EP (1) EP1315808A2 (de)
JP (1) JP2004502457A (de)
AU (1) AU2001289626A1 (de)
CA (1) CA2415382A1 (de)
IL (1) IL153685A0 (de)
WO (1) WO2002004619A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532790A (ja) * 2002-03-20 2005-11-04 ビーエーエスエフ アクチェンゲゼルシャフト 除草剤の標的としてのセリンヒドロキシメチルトランスフェラーゼ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068625A1 (en) * 2004-01-05 2005-07-28 The Regents Of The University Of California Plants transformed for elevated levels of gallic acid and methods of producing said plants
US9756871B2 (en) * 2012-11-20 2017-09-12 J.R. Simplot Company TAL-mediated transfer DNA insertion
CN113174395B (zh) * 2021-04-30 2022-06-24 中国烟草总公司郑州烟草研究院 与烟气苯酚释放量相关的突变基因dhq-sdh1

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861895A2 (de) * 1997-02-21 1998-09-02 Smithkline Beecham Corporation AroE Shikimate 5 Dehydrogenase aus Staphylococcus Aureus
WO2000005387A1 (en) * 1998-07-21 2000-02-03 E.I. Du Pont De Nemours And Company Chorismate biosynthesis enzymes
WO2000044923A1 (en) * 1999-01-29 2000-08-03 Board Of Trustees Operating Michigan State Universyty Biocatalytic synthesis of shikimic acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290926A (en) * 1990-09-14 1994-03-01 Ciba-Geigy Corporation Isolated DNA Encoding plant histidinol dehydrogenase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861895A2 (de) * 1997-02-21 1998-09-02 Smithkline Beecham Corporation AroE Shikimate 5 Dehydrogenase aus Staphylococcus Aureus
WO2000005387A1 (en) * 1998-07-21 2000-02-03 E.I. Du Pont De Nemours And Company Chorismate biosynthesis enzymes
WO2000044923A1 (en) * 1999-01-29 2000-08-03 Board Of Trustees Operating Michigan State Universyty Biocatalytic synthesis of shikimic acid

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BAILLIE A C ET AL: "INHIBITORS OF SHIKIMATE DEHYDROGENASE AS POTENTIAL HERBICIDES" BIOCHEMICAL JOURNAL, PORTLAND PRESS, LONDON, GB, Bd. 126, Nr. 3, 1972, Seite 21P XP001056406 ISSN: 0264-6021 *
BISCHOFF MARKUS ET AL: "Molecular characterization of tomato 3-dehydroquinate dehydratase-shikimate:NADP oxidoreductase" PLANT PHYSIOLOGY, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, US, Bd. 125, Nr. 4, April 2001 (2001-04), Seiten 1891-1900, XP002191791 ISSN: 0032-0889 *
BONNER C A ET AL: "CLONING OF CDNA ENCODING THE BIFUNCTIONAL DEHYDROQUINASE.SHIKIMATE DEHYDROGENASE OF AROMATIC-AMINO-ACID BIOSYNTHESIS IN NICOTIANA TABACUM" BIOCHEMICAL JOURNAL, THE BIOCHEMICAL SOCIETY, LONDON, GB, Bd. 302, Nr. 1, 1994, Seiten 11-14, XP001056357 ISSN: 0264-6021 in der Anmeldung erw{hnt *
DEKA ET AL: "The characterisation of the shikimate pathway enzyme dehydroquinase from Pisum sativum" FEBS LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 349, 1994, Seiten 397-402, XP002122643 ISSN: 0014-5793 *
DIAZ J ET AL: "SHIKIMATE DEHYDROGENASE FROM PEPPER (CAPSICUM ANNUUM) SEEDLINGS. PURIFICATION AND PROPERTIES" PHYSIOLOGIA PLANTARUM, MUNKSGAARD INTERNATIONAL PUBLISHERS, COPENHAGEN, DK, Bd. 100, Nr. 1, 1997, Seiten 147-152, XP001055330 ISSN: 0031-9317 *
DOWSETT J R ET AL: "THEANOMALOUS INHIBITION OF SHIKIMATE DEHYDROGENASE BY ANALOGUES OF DEHYDROSHIKIMATE" BIOCHIMICA ET BIOPHYSICA ACTA, AMSTERDAM, NL, Bd. 276, Nr. 2, 1972, Seiten 344-349, XP001056424 ISSN: 0006-3002 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532790A (ja) * 2002-03-20 2005-11-04 ビーエーエスエフ アクチェンゲゼルシャフト 除草剤の標的としてのセリンヒドロキシメチルトランスフェラーゼ

Also Published As

Publication number Publication date
WO2002004619A3 (de) 2003-03-20
AU2001289626A1 (en) 2002-01-21
US20030145348A1 (en) 2003-07-31
EP1315808A2 (de) 2003-06-04
IL153685A0 (en) 2003-07-06
CA2415382A1 (en) 2002-01-17
JP2004502457A (ja) 2004-01-29

Similar Documents

Publication Publication Date Title
EP1362059A2 (de) Verfahren zur identifizierung von substanzen mit herbizider wirkung
EP1487975A2 (de) Serin hydroxymethyltransferase als target für herbizide
EP1525304A1 (de) Nadh-abhängige cytochrom b5 reduktase als target für herbizide
EP1315808A2 (de) Dehydroquinat dehydratase/shikimat dehydrogenase als herbizides target
EP1587920A1 (de) Malat dehydrogenase als target für herbizide
EP1694833B1 (de) 2-methyl-6-solanylbenzochinon-methyltransferase als ziel für herbizide
EP1527168B1 (de) Saccharose-6-phosphat phosphatase als target für herbizide
WO2005047513A2 (de) Der glycin decarboxylase komplex als herbizides target
EP1222293A2 (de) Gmp-synthetase aus pflanzen
EP1530640A2 (de) Verfahren zur identifizierung von substanzen mit herbizider wirkung
DE10107843A1 (de) Verfahren zur Identifizierung von Substanzen mit herbizider Wirkung
EP1210437B1 (de) Dihydroorotase aus pflanzen
DE102004012481A1 (de) UMP-Synthase (Orotat Phosphoribosyltransferase und Orotidin 5&#39;-Phosphate Decarboxylase) als herbizides Target
DE112005000590T5 (de) Polynukleotidphosphorylase (PNPase) als Ziel für Herbizide
DE10125537A1 (de) Verfahren zur Identifizierung von Substanzen mit herbizider Wirkung
EP1259623A2 (de) Aspartat-carbamyltransferase als herbizides target
DE19949000A1 (de) PRPP-Amidotransferase aus Pflanzen
WO2001009355A2 (de) PFLANZLICHE S-ADENOSYLMETHIONIN:Mg-PROTOPORPHYRIN-IX-O-METHYLTRANSFERASE, PFLANZEN MIT VERÄNDERTEM CHLOROPHYLLGEHALT UND/ODER HERBIZIDTOLERANZ UND VERFAHREN ZU DEREN HERSTELLUNG

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2001969344

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 509473

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 153685

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 10332149

Country of ref document: US

Ref document number: 2415382

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001289626

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2001969344

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001969344

Country of ref document: EP