WO2001023345A1 - Procede de preparation de derive piperazine - Google Patents

Procede de preparation de derive piperazine Download PDF

Info

Publication number
WO2001023345A1
WO2001023345A1 PCT/JP2000/006650 JP0006650W WO0123345A1 WO 2001023345 A1 WO2001023345 A1 WO 2001023345A1 JP 0006650 W JP0006650 W JP 0006650W WO 0123345 A1 WO0123345 A1 WO 0123345A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
formula
reaction
solution
salt
Prior art date
Application number
PCT/JP2000/006650
Other languages
English (en)
French (fr)
Inventor
Chiharu Maeda
Eiichi Iishi
Weigi Wang
Yoshiyuki Imamiya
Original Assignee
Sumika Fine Chemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Fine Chemicals Co., Ltd. filed Critical Sumika Fine Chemicals Co., Ltd.
Priority to CA002351528A priority Critical patent/CA2351528C/en
Priority to JP2001526500A priority patent/JP4330836B2/ja
Priority to DE60036076T priority patent/DE60036076D1/de
Priority to AU74455/00A priority patent/AU751629B2/en
Priority to EP00962874A priority patent/EP1136470B1/en
Publication of WO2001023345A1 publication Critical patent/WO2001023345A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • C07C209/74Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by halogenation, hydrohalogenation, dehalogenation, or dehydrohalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/04Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reaction of ammonia or amines with olefin oxides or halohydrins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/22Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated
    • C07C215/28Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated and containing six-membered aromatic rings
    • C07C215/30Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated and containing six-membered aromatic rings containing hydroxy groups and carbon atoms of six-membered aromatic rings bound to the same carbon atom of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/84Nitriles
    • C07D213/85Nitriles in position 3

Definitions

  • the present invention relates to a method for producing a piperazine derivative. More specifically, the present invention relates to a method for producing a piperazine derivative which can be suitably used as an intermediate for producing mirtazapine useful as an antidepressant.
  • Conventional technology relates to a method for producing a piperazine derivative which can be suitably used as an intermediate for producing mirtazapine useful as an antidepressant.
  • Mirtazapine is a compound useful as an antidepressant.
  • a piperazine derivative has been known as an intermediate for producing mirtazapine.
  • a method for producing a piperazine derivative a method is known in which 1-methyl-13-phenylbiperazine is reacted with 2-chloro-3-cyanopyridine in the presence of potassium fluoride (Japanese Patent Publication No. No. 9-426678).
  • An object of the present invention is to provide a piperazine derivative useful as an intermediate for producing mirtazapine and an important intermediate for producing mirtazapine without the need for complicated operations.
  • An object of the present invention is to provide a method for industrially and easily producing 1-methyl-3-phenylbiperazine. Disclosure of the invention
  • (1) comprising reacting styrene oxide with N-methylethanolamine in an aprotic polar organic solvent, comprising:
  • Formula (III) comprising: salting the diol compound obtained in the above (1) with an acid, and then subjecting the salt to a chlorinated compound.
  • FIG. 1 is a photomicrograph of 2- (4-methyl-2-phenenylbiperazine-11-yl) -13-cyanopyridine oxalate obtained in Example 11; BEST MODE FOR CARRYING OUT THE INVENTION
  • the amount of N-methylethanolamine is not particularly limited, but is usually about 0.8 to 1.2 mol per mol of styrene oxide in consideration of economy and post-reaction treatment. Is preferred.
  • aprotic polar organic solvent examples include dimethylformamide, dimethylethylacetamide, dimethylsulfoxide, 1,3-dimethylimidazolidin-2-one, N-methyl-2-pyrrolidone, and the like. These can be used alone or in combination of two or more. Among them, dimethylformamide and 1,3-dimethylimidazolidin-2-one can be suitably used in the present invention.
  • the amount of the aprotic polar organic solvent is not particularly limited, it is usually about 100 to 600 parts by volume, preferably about 150 to 400 parts by volume, based on 100 parts by weight of styrene oxide. It is desirable that
  • the reaction is preferably carried out by dropping N-methylethanolamine into styrene oxide.
  • the reaction temperature is preferably 50 ° C. or higher, preferably 70 ° C. or higher, and more preferably 80 ° C. or higher, from the viewpoint of accelerating the reaction. It is desirable that the temperature be 120 ° C. or lower, and more preferably 100 ° C. or lower, since a product is generated.
  • the atmosphere during the reaction is not particularly limited.
  • the atmosphere may be air, for example, an inert gas such as nitrogen gas.
  • the reaction time is not particularly limited, but is usually about 2 to 5 hours.
  • the end point of the reaction is
  • the time can be set to the time when the area percentage of N-methylethanolamine becomes 0.5% or less by gas chromatography or the like.
  • the diol compound can be converted to a dichloro compound by subjecting the diol compound to chlorination.
  • the diol compound be converted to a salt before the chlorination, from the viewpoint of reducing the amount of by-products and facilitating the reaction.
  • Examples of a method for converting a diol compound into a salt include a method of introducing an acid [H X in the formula (I U)] into a reaction solution containing the generated diol compound.
  • Acids that can be suitably used to convert the diol compound into a salt include hydrochloric acid (hydrogen chloride gas), hydrobromic acid, mesylic acid, besylic acid, p-toluenesulfonic acid and the like. Of these, hydrochloric acid (hydrogen chloride gas), mesylic acid and besylic acid are preferred, and hydrochloric acid (hydrogen chloride gas) and mesylic acid are more preferred.
  • the amount of the acid is preferably at least 1 equivalent to 1 equivalent of the diol compound, and more preferably 1.0 to 1.2 equivalent to the diol compound in order to sufficiently convert the diol compound into a salt.
  • diol compound or a salt of the diol compound (hereinafter, both are collectively referred to as a diole compound (salt)) are converted into a clopohydrate.
  • the reaction solution is used without isolation of the diol compound (salt) from the reaction solution containing the diol compound (salt) obtained above. can do.
  • the diol compound (salt) can be chromatized using, for example, a clotting agent such as thionyl chloride, phosphorus oxychloride, oxalyl chloride, and phosgene.
  • a clotting agent such as thionyl chloride, phosphorus oxychloride, oxalyl chloride, and phosgene.
  • the amount of the clotting agent is not particularly limited, but is usually about 2 to 3.5 equivalents, preferably about 2 to 3 equivalents per equivalent of the diol compound (salt).
  • the lipolysis of a diol compound (salt) using a clotting agent can be performed, for example, by mixing the clotting agent with the reaction solution obtained above and stirring appropriately, or by adding , Dimethylformamide, 1,3-dimethylimidazolidine-12-one or the like, dissolved in an organic solvent, and mixed with the organic solvent solution of the clotting agent and the reaction solution obtained in the above, It can be easily performed by stirring appropriately.
  • the amount of the organic solvent is usually preferably about 100 to 500 parts by weight based on 100 parts by weight of the clotting agent.
  • the diol compound (salt) can be easily prepared by dropping the diol compound (salt) into the chlorinating agent at 0 to 30 ° C.
  • the time required for the diol compound (salt) to be converted into chromium is not particularly limited, but is usually about 1 to 12 hours. Further, the end point of the chromatization can be easily confirmed by, for example, gas chromatography. In this way, by subjecting the diol compound (salt) to a cyclochlorination, a dichloro compound represented by the formula (II) or a salt of the dichloro compound represented by the formula ( ⁇ ) can be obtained.
  • the obtained reaction solution containing the dichloro compound or a salt of the dichloro compound is first added to water in order to remove a water-soluble organic solvent such as a clotting agent such as thionyl chloride and dimethylformamide.
  • a water-soluble organic solvent such as a clotting agent such as thionyl chloride and dimethylformamide.
  • the reaction solution is added dropwise.
  • the amount of water is usually
  • the amount is preferably 100 to 300 parts by weight based on 100 parts by weight of a water-soluble organic solvent such as dimethylformamide.
  • the dropping temperature is usually from 0 to 30 ° C, preferably from 0 to 25 ° C.
  • an alkaline aqueous solution is added dropwise to the reaction solution, and the pH is adjusted to 0.8 to 1.0.
  • a potassium hydroxide aqueous solution or a sodium hydroxide aqueous solution having a concentration of 10 to 40% by weight can be used as the alkaline aqueous solution.
  • Dropping temperature 0 ⁇ 2 5 ° C, it is desirable that preferably 0 to 2 0 e C. It is preferable that the alkaline aqueous solution be cooled to 5 to 10 ° C. in advance.
  • an alkaline aqueous solution is added to the reaction solution so that the pH of the reaction solution is 4 to 5.
  • the aqueous alkaline solution preferably flows at a temperature of 0 to 25 ° C.
  • an ether-based solvent such as diisopropyl ether, an ester-based solvent such as ethyl acetate or butyl acetate, or a hydrocarbon-based solvent such as toluene, preferably toluene is desirable. If necessary, washing can be carried out, dried over anhydrous magnesium sulfate, anhydrous sodium sulfate, or the like, and activated clay can be added thereto.
  • the reaction of the dichloro compound or a salt of the dichloro compound [hereinafter, referred to as a dichloro compound (salt)] with ammonia can be performed, for example, in a solvent.
  • the solvent is selected from, for example, aprotic polar organic solvents such as dimethylformamide; hydrocarbon solvents such as toluene; ester solvents such as ethyl acetate and butyl acetate; and ether solvents such as diisopropyl ether.
  • aprotic polar organic solvents such as dimethylformamide
  • hydrocarbon solvents such as toluene
  • ester solvents such as ethyl acetate and butyl acetate
  • ether solvents such as diisopropyl ether.
  • One or more solvents described above can be suitably used. Among them, a mixed solvent of dimethylformamide and toluene is preferred.
  • the amount of the solvent is usually 100 to 100 parts by volume, preferably 120 to 800 parts by volume, based on 100 parts by weight of the dichloro compound (salt).
  • Ammonia may be directly blown into the solvent in a gaseous state, or may be dissolved in water and used as ammonia water.
  • the ammonia concentration in the aqueous ammonia is usually preferably about 15 to 28%.
  • the amount of ammonia is from 10 to 50 mol, preferably from 15 to 30 mol, more preferably from 20 to 30 mol, per mol of the dichloro compound (salt). It is desirable from the viewpoint of economy.
  • a dichloro compound (salt) with ammonia it is preferable to use a quaternary ammonium salt from the viewpoint of promoting the reaction by phase transfer.
  • quaternary ammonium salts include tetrabutylammonium bromide, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltriethylammonium chloride, bromide Benzylethylammonium, tricaprylmethylammonium chloride, tetrabutylammonium iodide and the like can be mentioned, and these can be used alone or in combination of two or more.
  • the amount of the quaternary ammonium salt is preferably from 200 to 111 £ to 508, more preferably from 200 to 118, and more preferably from 200 to 111 mol per mole of the dichloro compound (salt). It is preferably 1 to 30 g.
  • the temperature at which the dichloro compound (salt) is reacted with ammonia is not particularly limited, but is usually from 10 to 80, preferably from 20 to 50 ° C, and more preferably from 30 to 50 ° C. C is desirable.
  • the reaction time is not particularly limited, but is usually about 1 to 10 hours.
  • the end point of the reaction can be easily confirmed by, for example, high performance liquid chromatography, gas chromatography and the like.
  • aqueous solution of sodium hydroxide or the like is added to the thus obtained reaction solution containing 1-methyl-3-phenylphenylperazine represented by the formula (IV) to make the solution more alkaline.
  • concentration of the aqueous alkali solution is preferably about 20 to 50% by weight.
  • the reaction solution may be alkaline, for example, the pH may be about 11 to 12.
  • the alkalinized solution is, for example, toluene, ethyl acetate, ether, and the like, preferably at least once with toluene.
  • 1-methyl-3-phenylbiperazine can be isolated by a method such as distillation.
  • perazine-1-yl) -13-cyanopyridine can be accomplished, for example, by reacting 1-methyl-13-phenylbiperazine with 2-chloro-13-cyanopyridine in the presence of a base and an alkali metal halide.
  • the reaction can be easily carried out by reacting in a protic polar organic solvent.
  • the amount of 1-methyl-3-phenylbiperazine is 0.7 from the viewpoint of sufficiently proceeding the reaction with 2-chloro-3-cyanopyridin, relative to 1 mol of 2-cyclo-3-cyanopyridine. It is desirably from 0.1 to 1.1 mol, preferably from 0.8 to 1.1 mol, and more preferably from 0.8 to 0 mol.
  • an aprotic polar organic solvent is used.
  • the non-protonic polar organic solvent include dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethylimidazolidin-1-one, and the like. Among these, dimethylformamide can be suitably used.
  • the amount of the solvent is not particularly limited, it is usually 100 to 800 parts by volume, preferably 150 to 50 parts by weight, per 100 parts by weight of 1-methyl-3-phenylbiperazine. It is desirably 0 parts by volume.
  • a base is used to promote the reaction and suppress the generation of by-products.
  • the base include alkylamines such as triethylamine and diisopropylethylamine; cyclic amines such as N-methylmorpholine; organic bases such as allylamine such as pyridine and picoline; and inorganic bases such as potassium carbonate and sodium carbonate.
  • the amount of the base is from 0.5 to 20 moles per mole of 2-chloro-3-cyanopyridine from the viewpoint of rapidly proceeding the reaction between 1-methyl-3-phenylbiperazine and 2-chloro-3-cyanopyridine. Preferably, it is 0.7 to 2 mol.
  • an alkali metal halide is used to promote the reaction.
  • the alkali metal halide include potassium iodide and sodium iodide.
  • the amount of alkali metal halide depends on its solubility and From the viewpoints of economy and economy, it is desirable that the amount is 0.05 to 1.5 mol, preferably 0.07 to 2 mol, per 1 mol of 2-chloro-3-cyanopyridine.
  • an appropriate amount of a quaternary ammonium salt such as tetrabutylammonium iodide, tetrabutylammonium bromide, benzyltrimethylammonium chloride, or the like may be used as the catalyst. Good.
  • the reaction between 1-methyl-3-phenylbiperazine and 2-chloro-1-cyanopyridine is preferably carried out in an inert gas such as nitrogen gas or argon gas.
  • the reaction temperature is usually 90 to 160 ° C, preferably 110 to 150 ° C, from the viewpoint of improving the reaction rate and suppressing the generation of by-products. desirable.
  • the reaction time cannot be determined unconditionally because it depends on the reaction temperature, but it is usually about 12 to 24 hours.
  • the reaction was refluxed at a reaction temperature of 110 to 125 ° C for 8 to 12 hours, and a low volatile fraction was distilled off at 125 to 135 ° C.
  • the reaction may be performed under the reaction conditions of heating at 40 ° C. for 5 to 10 hours.
  • 2- (4-Methyl-2-phenylvinylperazine-1-yl) -13-cyanopyridine which is a piperazine derivative represented by the following formula, can be easily isolated.
  • the reaction solution was heated at an internal temperature of 70 to 95 and at a reduced pressure of 7 to 2.7 kPa, and 75 to 95% of the dimethylformamide used was distilled off to 70 to 80.
  • 100 to 250 parts by weight of water is added to 100 parts by weight of 1-methyl-3 monophenylbiperazine.
  • the pH is adjusted to 8 to 9 with alkali.
  • the alkali include sodium hydroxide and sodium carbonate. When sodium hydroxide is used as the alkali, it can be usually used as a 10 to 40% by weight aqueous sodium hydroxide solution.
  • the reaction solution is extracted with ethyl acetate.
  • the amount of ethyl acetate is preferably from 300 to 150 parts by weight based on 100 parts by weight of 1-methyl-3-phenylbiperazine. Further, the extraction temperature is preferably 40 to 50 ° C.
  • the produced 2- (4-methyl-2-phenylbiperazin-1-yl) -13-cyanopyridine is dissolved in an organic solvent such as ethyl acetate, methanol or ethanol, and an acid is added thereto. Added, filtered, dried and the resulting salt of 2- (4-methyl-12-phenylbiperazine-11-yl) -13-cyanopyridine can be used as a piperazine derivative.
  • the acid for example, organic acids such as oxalic acid, succinic acid, maleic acid, methanesulfonic acid, and toluenesulfonic acid, and inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid can be used.
  • organic acids such as oxalic acid, succinic acid, maleic acid, methanesulfonic acid, and toluenesulfonic acid
  • inorganic acids such as sulfuric acid, hydrochloric acid, and phosphoric acid.
  • oxalic acid is preferred from the viewpoint of crystallinity, purity and yield.
  • oxalic acid 100 parts by weight of 1-methyl-3-phenylpyrazine is added to a solution containing 2- (4-methyl-2-phenylbiperazine-11-yl) -3-cyanopyridine extracted from the reaction solution.
  • oxalic acid 100 parts by weight of oxalic acid, or 100 to 150 parts by weight of methanol and 100 to 50 parts by weight of oxalic acid.
  • a solution in which oxalic acid is dissolved in methanol at a ratio of about 400 parts by weight may be dropped.
  • the amount of oxalic acid is preferably 0.9 to 1.5 mol per 1 mol of 1-methyl-3-phenylbiperazine.
  • the solution is cooled to 15 to 25 ° C, aged for 10 to 10 hours, filtered, and a mixed solvent of methanol and ethyl acetate (for example, ethyl acetate acetate per 1 part by volume of methanol) 3 to 4 parts by volume). Thereafter, by drying at a drying temperature of 50 to 60 ° C., the formula (VI):
  • Styrene oxide 25 g, 0.2 mol was added to dimethylformamide (50 ml), and N-methylethanolamine (14.3 g, 0.19 mol) was added dropwise at 80 ° C. The mixture was stirred at 80 for 3 hours, the end point of the reaction was confirmed by gas chromatography, and the mixture was cooled.
  • reaction solution was added dropwise to a solution obtained by dissolving 45 kg of thionyl chloride in 67.4 kg of toluene. Thereafter, the mixture was stirred at 45 to 55 for 2 hours.
  • reaction solution After cooling the obtained reaction solution to 25 ° C or lower, 95 kg of water is added dropwise to the reaction solution, and then 50.8 kg of a 30% by weight aqueous hydration solution is added dropwise at 20 to 25 ° C. The mixture was allowed to stand still and liquid was separated.
  • reaction solution was separated, and the aqueous layer was extracted twice with 30 ml of ethyl acetate at 40 to 45 ° C, and the organic layers were combined. Thereafter, the organic layer was distilled under reduced pressure to obtain 7.1 g of a product (yield from the hydrochloride of the diclo-mouth compound 53.8%).
  • the container containing the mixed solution was washed with 70.8 kg of toluene, added to the reaction solution, and stirred at 45 to 52 for 2 hours. Analysis by gas chromatography revealed that N- (2-hydroxyethyl) -1-N-methyl-hydroxy-1-phenyl After confirming that the ethylamine had disappeared, the reaction solution was cooled to about 10 ° C., and added dropwise to 998 kg of water over 2 to 29 to hydrolyze excess thionyl chloride.
  • the reactor was washed with 105.3 kg of toluene, and the washing solution was added to the hydrolysis solution.
  • a 25% aqueous sodium hydroxide solution is added dropwise until the pH becomes 1, and at 6 to 25 ° C, a 25% aqueous sodium hydroxide solution is added until the pH becomes 4.2 (1073 kg).
  • the organic layer was separated, the aqueous layer was extracted with 71 1 kg of toluene, and the organic layers were combined.
  • 71.4 kg of activated clay V2 (trade name, manufactured by Mizusawa Chemical Co., Ltd.) was added, the mixture was decolorized, and then filtered.
  • the mixture was stirred at 40 to 44 ° C for 2 hours, and the end point of the reaction was confirmed by gas chromatography.
  • a solution obtained by dissolving 10.9 kg of sodium hydroxide in 246.3 kg of a 25% aqueous sodium hydroxide solution was added to adjust the pH to 11.7.
  • the mixture was stirred at 45 to 47 ° C for 2 hours and separated.
  • the aqueous layer was prepared by dissolving 31 kg of sodium hydroxide in 71 kg of a 25% aqueous sodium hydroxide solution.
  • the solution was added, and the mixture was stirred and extracted with 461 kg of toluene at 23 to 24 ° C., and separated. Further, 461 kg of toluene was added to the aqueous layer, followed by stirring and extraction.
  • the mixture was stirred at 135 to 137 ° C for 5 hours. After confirming the end point of the reaction by HP LC, the mixture was cooled to 80 ° C. Under reduced pressure of 6.5 to 2.7 kPa, 250 kg of dimethylformamide was distilled off at an internal temperature of 30 to 79 ° C. 226.3 kg of water was introduced, and the pH was adjusted to 8.2 by adding 35 kg of a 25% aqueous sodium hydroxide solution at 4 C. 41. At 1 ° C, 61.3 kg of ethyl acetate was added, and the mixture was extracted with stirring. The organic layer was washed with 5% saline, allowed to stand at 47 ° C, and separated.
  • FIG. 1 shows a micrograph of the obtained 2- (4-methyl-2-phenylbiperazine-11-yl) —3-cyanoviridine oxalate.
  • the physical properties are as follows.
  • reaction solution was poured into 15 OmL of water, and extracted with 10 OmL of ethyl acetate.
  • the organic layer was washed with 3 OmL of water, dried over anhydrous magnesium sulfate, and concentrated. Shrunk. Attempted crystallization with a solvent such as hexane, but did not crystallize.
  • the 1-methyl-3-phenylbiperazine obtained by the production method of the present invention is a piperazine derivative useful as a production intermediate of mirtazapine and a substance which can be suitably used as a production intermediate thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

明 細 書 ピぺラジン誘導体の製造方法
技術分野
本発明は、 ピぺラジン誘導体の製造方法に関する。 さらに詳しくは、 抗鬱剤と して有用なミルタザピンの製造中間体として好適に使用しうるピぺラジン誘導体 の製造方法に関する。 従来技術
ミルタザピンは、 抗鬱剤として有用な化合物である。 従来、 ミルタザピンの製 造中間体として、 ピぺラジン誘導体が知られている。 ピぺラジン誘導体の製造方 法としては、 1一メチル一 3—フエ二ルビペラジンと、 2—クロロー 3—シァノ ピリジンとをフッ化カリゥムの存在下で反応させる方法が知られている (特公昭 5 9 - 4 2 6 7 8号公報) 。
しかしながら、 この方法には、 フッ化カリウムが使用されているため、 ガラス が使用された装置やガラスがライニングされた装置は、 腐食されるので使用する ことができないという欠点や、 反応溶液にはタールの生成量が多く、 目的化合物 であるピぺラジン誘導体を取り出すことが困難であるという工業的生産性の面で 欠点がある。
また、 前記ピぺラジン誘導体の重要な製造中間体である 1—メチル— 3—フエ 二ルビペラジンを製造する方法としては、 スチレンォキシドと N—メチルェタノ ールアミンとを水中で反応させる方法 (特公昭 5 3 - 1 5 5 2 0号公報) や、 2 一フエ二ルビペラジンをヨウ化メチルでメチル化させる方法が知られている (米 国特許第 4 , 7 7 2, 7 0 5号明細書) 。 しかしながら、 前者の方法には、 異性体が生成し、 カラム分離などの煩雑な処 理を必要とするので、 生産性の面で欠点がある。 また、 後者の方法には、 1ーメ チルー 3—フヱ二ルビペラジンを高収率で得ることができず、 また大量のァセト ンを必要とするので、 工業的生産性に劣るという欠点がある。
本発明の目的は、 前記従来技術に鑑みてなされたものであり、 煩雑な操作を必 要とせずに、 ミルタザピンの製造中間体として有用なピぺラジン誘導体およびそ の重要な製造中間体である 1ーメチルー 3—フヱニルビペラジンを工業的に容易 に製造しうる方法を提供することである。 発明の開示
本発明によれば、
(1) スチレンォキシドと N—メチルエタノールアミンとを非プロトン性極性有 機溶媒中で反応させることを含む、 式 (I) :
Figure imgf000004_0001
で表わされるジォール化合物の製造方法、
(2)非プロトン性極性有機溶媒がジメチルホルムアミ ドまたは 1, 3—ジメチ ルイミダゾリジン一 2—オンである前記 (1)記載のジオール化合物の製造方法
(3)前記 (1) で得られたジオール化合物を単離せずに、 クロ口化することを 含む、 式(II) : (Π)
で表わされるジクロロ H合物の製造方法、
(4)前記 (1) で得られたジオール化合物を酸で塩とした後、 クロ口化する とを含む、 式(III):
Figure imgf000005_0001
(式中、 HXは酸を示す)
で表わされるジクロロ化合物の塩の製造方法、
(5)前記 (3) で得られたジクロロ化合物または前記 (4) で得られたジクロ 口化合物の塩をアンモニアと反応させることを含む、 式(IV):
Figure imgf000005_0002
CH, で表わされる 1ーメチルー 3—フヱニルビペラジンの製造方法、
(6) 1—メチルー 3—フエ二ルビペラジンと、 2—クロロー 3—シァノピリジ ンとを塩基とアルカリ金属ハ口ゲン化物の存在下で非プロトン性極性有機溶媒中 で反応させることを含む、 式 (V) :
Figure imgf000006_0001
で表わされるピぺラジン誘導体の製造方法、 ならびに
( 7 ) 式 (VI) :
Figure imgf000006_0002
で表わされるピぺラジン誘導体蓚酸塩
が提供される。 図面の簡単な説明
図 1は、 実施例 1 1で得られた 2— (4 —メチル— 2 —フエ二ルビペラジン— 1 一ィル) 一 3 —シァノピリジン蓚酸塩の顕微鏡写真である。 発明を実施するための最良の形態
まず、 スチレンォキシドと N—メチルエタノールァミンとを非プロトン性極性 有機溶媒中で反応させることにより、 式 ( I ) :
Figure imgf000007_0001
で表わされるジオール化合物を選択性よく得ることができる。
N—メチルエタノールァミンの量は、 特に限定がないが、 経済性および反応後 の処理を考慮して、 通常、 スチレンォキシド 1モルに対して、 0 . 8〜1 . 2モ ル程度であることが好ましい。
非プロトン性極性有機溶媒としては、 例えば、 ジメチルホルムアミ ド、 ジメチ ル了セトアミ ド、 ジメチルスルホキシド、 1 , 3—ジメチルイミダゾリジン— 2 一オン、 N—メチル— 2—ピロリ ドンなどが挙げられ、 これらは、 単独でまたは 2種以上を混合して用いることができる。 これらの中では、 ジメチルホルムアミ ドおよび 1 , 3—ジメチルイミダゾリジン一 2—オンは、 本発明において好適に 使用しうるものである。
非プロトン性極性有機溶媒の量は、 特に限定がないが、 通常、 スチレンォキシ ド 1 0 0重量部に対して 1 0 0〜 6 0 0容量部、 好ましくは 1 5 0〜 4 0 0容量 部程度であることが望ましい。
反応は、 N -メチルェ夕ノールァミンをスチレンォキシドに滴下することによ つて行なうことが好ましい。
反応温度は、 反応を促進させる観点から、 5 0 °C以上、 好ましくは 7 0 °C以上 、 より好ましくは 8 0 °C以上であることが望ましく、 あまりにも温度が高い場合 には、 副生成物が生成するようになるので、 1 2 0 °C以下、 好ましくは 1 0 0 °C 以下であることが望ましい。
なお、 反応の際の雰囲気には特に限定がない。 該雰囲気は、 大気であってもよ く、 例えば、 窒素ガスなどの不活性ガスであってもよい。
反応時間は、 特に限定がないが、 通常、 2〜 5時間程度である。 反応の終点は 、 例えば、 ガスクロマトグラフィーなどで、 N—メチルエタノールァミンの面積 百分率が 0 . 5 %以下となった時点とすることができる。
かく して、 式 ( I ) で表わされるジオール化合物が得られる。
次に、 ジオール化合物は、 クロ口化させることにより、 ジクロロ化合物とする ことができる。
なお、 クロ口化の前には、 ジオール化合物を塩とすることが、 副生成物の量を 低減させ、 反応を容易に進行させる観点から好ましい。
ジオール化合物を塩とする方法としては、 例えば、 生成したジオール化合物を 含む反応溶液に酸 〔式(I U) における H X〕 を導入する方法などが挙げられる。 前記ジオール化合物を塩とするのに好適に使用しうる酸としては、 塩酸 (塩化水 素ガス) 、 臭化水素酸、 メシル酸、 べシル酸、 p —トルエンスルホン酸などが挙 げられる。 これらの中では、 塩酸 (塩化水素ガス) 、 メシル酸およびべシル酸が 好ましく、 塩酸 (塩化水素ガス) およびメシル酸がより好ましい。
酸の量は、 ジオール化合物を十分に塩にするために、 ジオール化合物 1当量に 対して 1当量以上、 好ましくはジオール化合物に対して 1 . 0〜1 . 2当量とす ることが望ましい。
次に、 ジオール化合物またはジオール化合物の塩 〔以下、 両者を総称してジォ ール化合物 (塩) という〕 をクロ口化する。
なお、 ジオール化合物を、 塩化チォニルなどのクロ口化剤を用いてクロ口化さ せた場合には、 式(I I I) :
Figure imgf000008_0001
(式中、 H Xは酸を示す)
で表わされるジクロロ化合物の塩を得ることができる。 また、 得られたジクロロ 化合物の塩に、 例えば、 アルカリの添加などの処理を施せば、 式(Π)
Figure imgf000009_0001
で表わされるジクロロ化合物を得ることができる。
なお、 ジオール化合物 (塩) をクロ口化させる際には、 前記で得られたジォー ル化合物 (塩) を含む反応溶液からジオール化合物 (塩) を単離させることなく 、 該反応溶液をそのまま使用することができる。
前記ジオール化合物 (塩) のクロ口化は、 例えば、 塩化チォニル、 ォキシ塩化 燐、 ォキザリルクロリ ド、 ホスゲンなどのクロ口化剤を用いて行なうことができ る。 クロ口化剤の量は、 特に限定がないが、 通常、 ジオール化合物 (塩) 1当量 に対して 2〜3 . 5当量程度、 好ましくは 2〜3当量程度であることが望ましい より具体的には、 クロ口化剤を用いたジオール化合物 (塩) のクロ口化は、 例 えば、 クロ口化剤を前記で得られた反応溶液と混合し、 適宜攪拌するか、 クロ口 化剤をトルエン、 ジメチルホルムアミ ド、 1, 3 —ジメチルイミダゾリジン一 2 —オンなどの有機溶媒に溶解しておき、 そのクロ口化剤の有機溶媒溶液と、 前記 で得られた反応溶液とを混合し、 適宜、 攪拌することによって容易に行なうこと ができる。 この場合、 有機溶媒の量は、 通常、 クロ口化剤 1 0 0重量部に対して 1 0 0〜5 0 0重量部程度であることが好ましい。
ジオール化合物 (塩) のクロ口化は、 0〜3 0 °Cでジオール化合物 (塩) をク ロロ化剤に滴下することによって容易に行なうことができる。
ジオール化合物 (塩) をクロ π化するのに要する時間は、 特に限定がないが、 通常、 1〜1 2時間程度である。 また、 クロ口化の終点は、 例えば、 ガスクロマ トグラフィ一などで容易に確認することができる。 かくして、 ジオール化合物 (塩) をクロ口化させることにより、 式(I I)で表わ されるジクロロ化合物または式(Π Ι) で表わされるジクロロ化合物の塩が得られ る。
なお、 得られたジクロロ化合物またはジクロロ化合物の塩を含む反応溶液には 、 例えば、 塩化チォニルなどのクロ口化剤ゃジメチルホルムアミ ドなどの水溶性 有機溶媒を除去するために、 まず、 水中に反応溶液を滴下する。 水の量は、 通常
、 ジメチルホルムアミ ドなどの水溶性有機溶媒 1 0 0重量部に対して 1 0 0〜3 0 0重量部であることが好ましい。 滴下温度は、 通常、 0〜3 0 °C、 好ましくは 、 0〜2 5 °Cであることが望ましい。
次に、 アルカリ水溶液をこの反応溶液に滴下し、 その p Hを 0 . 8〜1 . 0に 調整する。 アルカリ水溶液としては、 濃度が 1 0〜4 0重量%の水酸化カリウム 水溶液や水酸化ナトリウム水溶液を用いることができる。 滴下温度は、 0〜2 5 °C、 好ましくは 0〜2 0 eCであることが望ましい。 なお、 アルカリ水溶液は、 あ らかじめ 5〜1 0 °Cに冷却しておくことが好ましい。
次に、 前記反応溶液には、 該反応溶液の p Hが 4〜5となるように、 アルカリ 水溶液を加える。 アルカリ水溶液は、 0〜2 5 °Cの温度で流入することが好まし い。
次に、 ジイソプロピルエーテルなどのエーテル系溶媒、 酢酸ェチル、 酢酸プチ ルなどのエステル系溶媒、 トルエンなどの炭化水素系溶媒、 好ましくはトルエン で抽出することが望ましい。 また、 必要により、 洗浄し、 無水硫酸マグネシウム や無水硫酸ナトリウムなどで乾燥し、 活性白土などを加えた後に濾過し、 ジクロ 口化合物を単離することができる。
ジクロロ化合物を塩として単離する場合には、 濾過した濾液に、 使用した N— メチルエタノールアミン 1 0 0重量部に対してイソプロパノール 3 0〜1 0 0重 量部を加えてから、 塩化水素を加えてもよい。 塩化水素の量は、 使用した N—メ チルエタノールァミン 1モルあたり、 0 . 9〜1 . 2モル程度であることが好ま しい。 なお、 塩化水素を添加する際には、 発熱を伴うので、 あらかじめ反応溶液 を 2 0 eC以下の温度に冷却した後に添加することが好ましい。
この溶液を 1 0〜2 0 °Cの温度で 1〜2日間攪拌または静置することにより、 濾過性のよいジクロロ化合物の塩の結晶を得ることができる。
次に、 得られた式(I I)で表わされるジクロロ化合物または式(I I I) で表わされ るジクロ口化合物の塩をアンモニアと反応させることにより、 式(IV) :
Figure imgf000011_0001
で表わされる 1ーメチルー 3 —フエ二ルビペラジンを得ることができる。
ジクロロ化合物またはジクロロ化合物の塩 〔以下、 ジクロロ化合物 (塩) とい う〕 と、 アンモニアとの反応は、 例えば、 溶媒中で行なうことができる。
溶媒としては、 例えば、 ジメチルホルムアミ ドなどの非プロトン性極性有機溶 媒; トルエンなどの炭化水素系溶媒;酢酸ェチル、 酢酸ブチルなどのエステル系 溶媒;およびジイソプロピルエーテルなどのエーテル系溶媒などから選ばれた 1 種以上の溶媒を好適に使用することができる。 それらのなかでは、 ジメチルホル ムアミ ドとトルエンの混合溶媒が好ましい。 溶媒の量は、 通常、 ジクロロ化合物 (塩) 1 0 0重量部に対して、 1 0 0〜1 0 0 0容量部、 好ましくは 1 2 0〜8 0 0容量部であることが望ましい。
アンモニアは、 そのまま気体の状態で溶媒に吹き込んでもよく、 水に溶解させ 、 アンモニア水として使用してもよい。 アンモニアをアンモニア水として使用す る場合には、 アンモニア水におけるアンモニア濃度は、 通常、 1 5〜2 8 %程度 であることが好ましい。 アンモニアの量は、 ジクロロ化合物 (塩) 1モルに対し て、 1 0〜 5 0モル、 好ましくは 1 5〜 3 0モル、 より好ましくは 2 0〜3 0モ ルであることが、 反応性および経済性の観点から望ましい。 また、 ジクロロ化合物 (塩) とアンモニアとを反応させる際には、 相間移動に よって反応を促進させる観点から、 4級アンモニゥム塩を使用することが好まし レ、。 4級アンモニゥム塩としては、 例えば、 臭化テトラプチルアンモニゥム、 塩 化べンジルトリメチルアンモニゥム、 臭化べンジルトリメチルアンモニゥム、 塩 化べンジルトリェチルアンモニゥム、 臭化べンジルトリェチルアンモニゥム、 塩 化トリカプリルメチルアンモニゥム、 ヨウ化テトラプチルアンモニゥムなどが挙 げられ、 これらは、 単独でまたは 2種以上を混合して用いることができる。 4級 アンモニゥム塩の量は、 反応性および経済性の観点から、 ジクロロ化合物 (塩) 1モルに対して 2 0 0 111 £〜5 0 8、 好ましくは2 0 0 111 8〜3 0 、 より好ま しくは 1〜3 0 gであることが望ましい。
ジクロロ化合物 (塩) とアンモニアとを反応させる際の温度は、 特に限定がな いが、 通常、 1 0〜8 0 、 好ましくは 2 0〜5 0 °C、 より好ましくは 3 0〜5 0 °Cであることが望ましい。
反応時間は、 特に限定がないが、 通常、 1〜1 0時間程度である。 また、 反応 の終点は、 例えば、 高速液体クロマトグラフィー、 ガスクロマトグラフィーなど で容易に確認することができる。
かく して得られた式(IV)で表わされる 1ーメチル— 3 —フエ二ルビペラジンを 含む反応溶液に、 水酸化ナトリゥムなどのアル力リ水溶液を加えてアル力リ性と する。 アルカリ水溶液の濃度は、 2 0〜5 0重量%程度であることが好ましい。 また、 反応溶液はアルカリ性、 例えば、 その p Hが 1 1〜1 2程度であればよい 次に、 アルカリ性とした溶液を、 例えば、 トルエン、 酢酸ェチル、 エーテルな ど、 好ましくはトルエンで 1回以上抽出し、 無水硫酸マグネシウムなどで乾燥し た後、 蒸留などの方法により、 1—メチルー 3—フエ二ルビペラジンを単離する ことができる。
1ーメチルー 3—フエ二ルビペラジンから 2— ( 4—メチルー 2 —フエ二ルビ ペラジン一 1 -ィル) 一 3—シァノピリジンの製造は、 例えば、 1ーメチル一 3 —フエ二ルビペラジンと 2—クロ口一 3 -シァノピリジンとを塩基とアル力リ金 属ハロゲン化物の存在下で非プロトン性極性有機溶媒中で反応させることによつ て容易に行なうことができる。
1—メチルー 3—フエ二ルビペラジンの量は、 2—クロ口一 3—シァノピリジ ンとの反応を十分に進行させる観点から、 2 _クロ口— 3—シァノピリジン 1モ ルに対して、 0 . 7〜1 . 1モル、 好ましくは 0 . 8〜1 . 1モル、 より好まし くは 0 . 8〜し 0モルであることが望ましい。
なお、 両者の反応の際には、 非プロトン性極性有機溶媒が使用される。 非プロ トン性極性有機溶媒としては、 ジメチルホルムアミ ド、 ジメチルァセトアミ ド、 ジメチルスルホキシド、 1 , 3—ジメチルイミダゾリジン一 2—オンなどが挙げ られる。 これらの中では、 ジメチルホルムアミ ドは、 好適に使用しうるものであ る。 溶媒の量は、 特に限定がないが、 通常、 1一メチル— 3 -フエ二ルビペラジ ン 1 0 0重量部に対して、 1 0 0〜8 0 0容量部、 好ましくは 1 5 0〜 5 0 0容 量部であることが望ましい。
また、 反応の際には、 反応を促進させ、 副生成物の生成を抑制するために、 塩 基が使用される。 塩基としては、 トリェチルァミン、 ジイソプロピルェチルアミ ンなどのアルキルァミン ; N—メチルモルホリンなどの環状ァミン ; ピリジン、 ピコリンなどのァリルアミンなどの有機塩基や、 炭酸カリウム、 炭酸ナトリウム などの無機塩基が挙げられる。 塩基の量は、 1一メチル— 3—フヱニルビペラジ ンと 2—クロロー 3—シァノピリジンとの反応を迅速に進行させる観点から、 2 —クロロー 3—シァノピリジン 1モルに対して 0 . 5〜2 0モル、 好ましくは 0 . 7〜 2モルであることが望ましい。
また、 本発明においては、 反応を促進させるために、 アルカリ金属ハロゲン化 物が使用される。 アルカリ金属ハロゲン化物としては、 ヨウ化カリウム、 ヨウ化 ナトリウムなどが挙げられる。 アルカリ金属ハロゲン化物の量は、 その溶解性お よび経済性の観点から、 2 —クロ口— 3 —シァノピリジン 1モルに対して 0 . 0 5〜1 . 5モル、 好ましくは 0 . 0 7〜し 2モルであることが望ましい。
なお、 本発明においては、 触媒として、 例えば、 ヨウ化テトラプチルアンモニ ゥム、 臭化テトラブチルアンモニゥム、 塩化べンジルトリメチルアンモニゥムな どの 4級ァンモニゥム塩などを適量で使用してもよい。
1ーメチルー 3—フエ二ルビペラジンと 2 —クロ口一 3 —シァノピリジンとの 反応は、 例えば、 窒素ガス、 アルゴンガスなどの不活性ガス中で行なうことが好 ましい。
また、 反応温度は、 通常、 反応速度を向上させる観点および副生成物の生成を 抑制する観点から、 9 0〜1 6 0 °C、 好ましくは 1 1 0〜1 5 0 °Cであることが 望ましい。 反応時間は、 反応温度によって異なるので一概には決定することがで きないが、 通常、 1 2〜2 4時間程度である。
また、 反応は、 反応温度 1 1 0〜1 2 5 'Cで 8〜1 2時間還流し、 1 2 5〜1 3 5 °Cで低揮発留分を留去した後、 1 3 5〜1 4 0 °Cで 5〜1 0時間加熱する反 応条件で行なってもよい。
1—メチル一 3—フエ二ルビペラジンと 2 —クロロー 3 —シァノピリジンとの 反応終了後には、 得られた反応溶液に含まれている溶媒を濃縮したり、 あるいは 水を添加し、 酢酸ェチルなどの溶媒で抽出し、 濃縮して粗生成物を得たり、 適当 な溶媒から再結晶させることにより、 式 (V) :
Figure imgf000014_0001
で表わされるピぺラジン誘導体である 2— ( 4—メチルー 2 —フヱニルビペラジ ン一 1 —ィル) 一 3 —シァノピリジンを容易に単離することができる。 例えば、 反応溶液を内温 7 0 ~ 9 5で、 減圧度 7〜 2 . 7 k P aで、 使用した ジメチルホルムアミ ドの 7 5〜9 5 %を留去し、 7 0〜8 0。Cで 1—メチルー 3 一フヱニルビペラジン 1 0 0重量部に対して水 1 0 0〜2 5 0重量部を加える。 次に、 アルカリで p Hを 8〜9とする。 アルカリとしては、 水酸化ナトリウム 、 炭酸ナトリウムなどが挙げられる。 アルカリとして水酸化ナトリウムを用いる 場合には、 通常、 1 0〜4 0重量%の水酸化ナトリウム水溶液として使用するこ とができる。
次に、 この反応溶液を酢酸ェチルで抽出する。 酢酸ェチルの量は、 1—メチル - 3—フヱニルビペラジン 1 0 0重量部に対して、 3 0 0〜1 5 0 0重量部であ ることが好ましい。 また、 抽出温度は、 4 0〜5 0 °Cであることが好ましい。 また、 本発明においては、 生成した 2— (4—メチル— 2—フエ二ルビペラジ ンー 1—ィル) 一 3—シァノピリジンを酢酸ェチル、 メタノールやエタノールな どの有機溶媒に溶解させ、 これに酸を添加し、 濾過し、 乾燥させ、 生成した 2— ( 4—メチル一 2—フエ二ルビペラジン一 1 一ィル) 一 3—シァノピリジンの塩 をピペラジン誘導体として使用することができる。 この場合、 酸として、 例えば 、 蓚酸、 コハク酸、 マレイン酸、 メタンスルホン酸、 トルエンスルホン酸などの 有機酸、 硫酸、 塩酸、 リン酸などの無機酸を用いることができる。 それらのなか では、 蓚酸は、 結晶性、 純度および収率の観点から好ましい。
例えば、 反応溶液から抽出した 2— (4ーメチルー 2—フヱニルビペラジン— 1 一ィル) — 3—シァノピリジンを含む溶液に、 1 —メチルー 3—フエ二ルピぺ ラジン 1 0 0重量部に対して、 メタノール 1 0 0〜 1 5 0重量部を加え、 4 0〜 5 0でで蓚酸二水和物を添加するか、 あるいは蓚酸 1 0 0重量部に対してメタノ ール 2 5 0〜4 0 0重量部の割合で蓚酸をメタノールに溶解させた溶液を滴下し てもよい。 蓚酸の量は、 1 —メチル— 3—フエ二ルビペラジン 1モルあたり、 0 . 9〜1 . 5モルであることが好ましい。 次に、 この溶液を 1 5〜2 5 °Cに冷却し、 1〜1 0時間熟成した後、 濾過し、 メタノールと酢酸ェチルとの混合溶媒 (例えば、 メタノール 1容量部に対して酢 酸ェチル 3〜4容量部) で洗浄することができる。 その後、 5 0〜6 0 °Cの乾燥 温度で乾燥することにより、 式 (VI) :
Figure imgf000016_0001
で表わされるピぺラジン誘導体蓚酸塩を得ることができる。
かく して得られるピぺラジン誘導体およびピぺラジン誘導体蓚酸塩は、 ミル夕 ザピンの製造中間体として有用な化合物である。 実施例
次に、 本発明を実施例に基づいてさらに詳細に説明するが、 本発明はかかる実 施例のみに限定されるものではない。 実施例 1 〔ジオール化合物の製造〕
ジメチルホルムァミ ド 3 8 k gにスチレンォキシド 2 0 k g ( 1 6 6モル) を 添加し、 約 8 0 °Cで N—メチルエタノールァミン 1 1 . 4 k g ( 1 5 1モル) を 滴下した。 その後、 8 0 °Cで 3時間攪拌し、 ガスクロマトグラフィーにて反応の 終点を確認し、 室温まで冷却し、 ジオール化合物のジメチルホルムアミ ド溶液を 得た。
得られたジオール化合物が N— ( 2—ヒドロキシェチル) 一 N—メチルーひ一 ヒドロキシ— ーフエニルェチルァミンであることは、 得られたジオール化合物 が以下の物性を有することで確認することができた。 !H-NMR (4 00 MHz, CDC 13 ) 5p pm: 7. 26 - 7. 3 7 (m , 5 H) , 4. 73— 4. 77 (m, 1 H) , 3. 6 6 - 3. 6 7 (m, 2 H) 、 3. 0— 4. 0 (m, 4 H) . 2. 5— 2. 7 (m, 4 H) 、 2. 37 (s, 3H) 実施例 2 〔ジオール化合物のメシル酸塩の製造〕
スチレンォキシド 25 g (0. 2モル) をジメチルホルムアミ ド 50m 1に添 加し、 これに 8 0°Cで N—メチルエタノールァミン 1 4. 3 g ( 0. 1 9モル) を滴下した。 8 0でで 3時間攪拌し、 ガスクロマトグラフィーで反応の終点を確 認し、 冷却した。
次に、 得られた反応溶液に、 トルエン 85 gを添加し、 1 0°Cに冷却し、 メシ ル酸 1 8. 2 gを滴下した。
得られた溶液の一部を減圧濃縮し、 分析したところ、 N— (2—ヒドロキシェ チル) 一N—メチル—ひーヒドロキシ—;8—フエニルェチルアミンメシル酸塩で あることが以下の結果から確認された。
!H-NMR (4 00 MHz, DMSO— d6 ) dppm: 9. 20 ( 1 H, 0 H) 、 7. 3— 7. 7 (m, 6 H) 、 5. 0 8 (m, 1 H, CHO) . 3. 2 - 3. 4 (m, 4H, 2XCH2 N) 、 2. 92 (d d— l i k e, 3H, NCH 3 ) 、 2. 37 (d— 1 i k e, 3H, CH3 SO) 実施例 3 〔ジクロ口化合物の塩酸塩の製造〕
実施例 2で得られた反応溶液に、 塩化チォニル 5 6. 2 g (0. 1 9モル) を 0〜30 Cで滴下し、 20〜30°Cで 6時間攪拌した。 冷却後、 反応溶液を水 1 20m 1中に 1 8〜24 °Cの温度で滴下した。 T/JP00/0 50 次に、 得られた溶液に、 30%水酸化カリウム水溶液 225 gを 20〜25 °C の温度で滴下し、 pHを 4. 4に調整し、 静置し、 分液した。
有機層に無水硫酸マグネシウム 6 gを添加し、 1 0分間攪拌し、 活性白土 6 g を添加し、 1 5分間攪拌した後、 濾過し、 トルエン 2 1. 7 gで洗浄した。 トル ェン溶液に、 28〜 38 °Cで 1 1. 6 %塩化水素酢酸ェチル溶液 6 0 g ( 0. 1 9モル) を滴下し、 20〜30°Cで 1時間攪拌した後、 濾過し、 トルエン 87 g で洗浄し、 45〜6 0°Cで乾燥して N— (2—クロロェチル) —N—メチルーひ 一クロロー ーフヱニルェチルアミン塩酸塩 (ジクロ口化合物の塩酸塩) 37. 7 gを得た (収率 73. 9%) 。 実施例 4 〔ジクロ口化合物の製造〕
実施例 1と同様の方法で製造した反応溶液の温度を 0〜25 °Cに調節しながら 、 該反応溶液を、 塩化チォニル 45 kgをトルエン 6 7. 4 kgに溶解させた溶 液に滴下した後、 45〜5 5でで 2時間攪拌した。
得られた反応溶液を 25 °C以下に冷却した後、 該反応溶液に水 9 5 kgを滴下 し、 次いで 30重量%の水酸化力リゥム水溶液 5 0. 8 kgを 20〜 25°Cで滴 下し、 静置して分液した。
得られた水層にトルエン 5 5 kgを添加し、 攪拌して分液し、 抽出した有機層 を先の有機層と合わせて無水硫酸マグネシウム 4. 8 kgで脱水した。 その後、 活性白土 4. 8 kgを添加し、 濾過し、 次いでトルエン 1 9. 9 kgで洗浄し、 ジクロロ化合物のトルエン溶液を得た。 実施例 5 〔ジクロ口化合物の塩の製造〕
実施例 4で得られたトルエン溶液に、 1 0〜 35 °Cで塩化水素ガス 5. 5 kg を導入し、 20〜25°Cで 2時間攪拌して濾過し、 トルエン 6 9 kgで洗浄して 生成物 30 kgを得た。 得られた生成物がジクロロ化合物 〔N— (2—クロロェチル) 一 N—メチル— α_クロ口— —フヱニルェチルァミン〕 塩酸塩であることは、 得られた生成物 が以下の物性を有することで確認することができた。
!H-NMR (4 0 0 MHz, DMSO-d6 ) 5p pm: 7. 397— 7. 7 6 6 (m, 5H)、 5. 82 (b d, 1 H) 、 3. 4 1 - 4. 1 (m, 6 H) 、 2. 9 0 8 (s, 3 H)
融点: 1 23. 8— 1 26. 7 °C 実施例 6 〔 1ーメチルー 3—フヱニルビペラジンの製造〕
室温で 28 %アンモニア水 1 32 g ( 2. 1 75モル) に、 酢酸ェチル 1 0 0 m l、 臭化テトラプチルアンモニゥム 4 6 Omgおよび実施例 3で得られたジク ロロ化合物の塩酸塩 20. 1 g ( 0. 0 75モル) を添加し、 4 0〜4 5°Cで 3 時間攪拌した。
得られた反応溶液を分液し、 水層を 4 0〜4 5 °Cで酢酸ェチル 30m lで 2回 抽出し、 有機層を合わせた。 その後、 有機層を減圧下で蒸留して生成物 7. 1 g を得た (ジクロ口化合物の塩酸塩からの収率 5 3. 8%) 。
得られた化合物が 1ーメチル— 3—フヱニルビペラジンであることは、 得られ た生成物が以下の物性を有することで確認することができた。
!H-NMR (40 0 MHz, CDC 13 ) 5p pm: 1. 8 - 1. 9 (b r, 1 H)、 1. 95 - 2. 1 9 (m, 2 H)、 2. 3 1 (s, 3 H) , 2. 78 - 3. 1 5 (m, 4 H)、 3. 84 - 3. 8 9 (m, 1 H)、 7. 22— 7. 4 1 (m, 5H)
沸点 ( 4 00 P a ) : 1 0 7- 1 1 2 °C 実施例 7 〔ピペラジン誘導体の製造〕
実施例 6で得られた 1ーメチルー 3—フエ二ルビペラジン 5. 5 1 g (3 1. 3ミ リモル) 、 2—クロロー 3—シァノ ピリジン 4. 47 g (3 1. 3ミ リモル ) . トリェチルァミン 4. 1 g (3 1. 3ミリモル) およびヨウ化カリウム 5.
20 g (3 1. 3ミリモル) を、 ジメチルホルムアミ ド 1 1m lに添加し、 窒素 ガス雰囲気中で 1 25〜1 3 (TCで 24時間反応させた。
次に、 減圧下でトリェチルァミンとジメチルホルムアミ ドを反応溶液から留去 した後、 水 20 m 1 と酢酸ェチル 25m lを添加し、 1 0 %水酸化ナトリゥム水 溶液で pHを 8〜9に調整した。 分液後、 水層を酢酸ェチル 30 m 1で 2回抽出 し、 有機層を合わせ、 5%重曹水で洗浄した。
有機層を無水硫酸マグネシウムで乾燥し、 濃縮した。 残渣を石油エーテルから 結晶化し、 淡黄色の 2— (4—メチルー 2—フエ二ルビペラジン— 1—ィル) ―
3—シァノピリジン 3. 1 4 を得た ( 1 _メチル一 3—フエ二ルビペラジンか らの収率 36 %、 融点 65. 7 - 6 6. 8 °C) 。 その H P L C純度は、 9 7. 1 %であった。 実施例 8 〔ピペラジン誘導体の製造〕
実施例 6で得られた 1一メチル— 3—フエ二ルビペラジン 5. 5 1 g (3 1. 3ミ リモル) 、 2—クロロー 3—シァノ ピリジン 4. 4 7 g (3 1. 3ミ リモル ) , トリェチルァミン 4. 1 g (3 1. 3ミリモル) およびヨウ化カリウム 5. 20 g (3 1. 3ミリモル) を、 ジメチルホルムアミ ド 1 1 m lに添加し、 窒素 ガス雰囲気中で 1 25〜1 30°Cで 24時間反応させた。
次に、 減圧下でトリェチルァミンとジメチルホルムアミ ドを反応溶液から留去 した後、 水 2 Om lと酢酸ェチル 25m lを添加し、 1 0%水酸化ナトリウム水 溶液で pHを 8〜9に調整した。 分液後、 水層を酢酸ェチル 3 Om 1で 2回抽出 し、 有機層を合わせ、 5%重曹水で洗浄した。 有機層を無水硫酸マグネシウムで乾燥した後、 この有機層に、 蓚酸 3. 9 gを メタノール 1 5m 1に溶解させた溶液を添加した。
次に、 この溶液を濾過し、 乾燥し、 白色の生成物 6. 8 gを得た ( 1一メチル - 3—フエ二ルビペラジンからの収率 5 9 %) 。 その H PLC純度は 9 9. 2 % であった。 得られた生成物が 2— (4—メチル— 2—フエ二ルビペラジン一 1一 ィル) — 3—シァノピリジン蓚酸塩であることは、 得られた生成物が以下の物性 を有することで確認することができた。
!H-NMR (CDC 13 , 40 ΟΜΗζ) 5 ρ pm: 8. 29、 7. 77、 6 . 76 (d d, e a c h 1 H) ; 7. 1— 7. 44 (m, 5H) 、 5. 4 6 ( t, 1 H, CHPh) ; 3. 83、 3. 5 9 (m, e a c h H) ; 2. 95 ( d d, 1 H) ; 2. 65 - 2. 80 (m, 4 H) ; 2. 55 (m, 1 H) ; 2. 33 (s, 3H, NCH3 ) 実施例 9 〔ジオール化合物〜ジクロロ化合物の製造〕
スチレンォキシド 29 6. 3 kg ( 24 6 6モル) とジメチルホルムァミ ド 5 5 9 kgを反応釜に仕込み、 75〜84 °Cで N—メチルエタノールアミン 1 6 9 . 3 kg ( 2254モル) を滴下し、 2時間同温度で攪拌した。 ガスクロマトグ ラフィ一にて分析したところ、 N-メチルエタノールァミンは検出されなかった
0
次に、 その溶液の液温を 1 0°Cに冷却し、 その溶液を、 トルエン 9 3 0. 3 k gと塩化チォニル 6 67 kg ( 5 6 0 6モル) の混合液に 0〜23 °Cで滴下した o
トルエン 70. 8 kgで、 混合液が入っていた容器を洗浄し、 反応溶液に加え 、 45〜52でで 2時間攪拌した。 ガスクロマトグラフィーにて分析したところ 、 N- (2—ヒドロキシェチル) 一N—メチルー 一ヒドロキシ一 一フエニル ェチルァミンが消失したことを確認し、 反応溶液を約 1 0°Cに冷却し、 水 9 9 8 k gへ 2〜 29でで滴下して過剰の塩化チォニルを加水分解した。
トルエン 1 05. 3 kgで反応釜を洗浄し、 洗液を加水分解液に加えた。 3〜 1 9でで、 pHが 1となるまで 25%水酸化ナトリウム水溶液を滴下し、 さらに 6〜25°Cで、 pHが 4. 2となるまで、 25 %水酸化ナトリウム水溶液 ( 1 0 73 kg) を加えた。 有機層を分液し、 水層をトルエン 7 1 1 kgで抽出し、 有 機層を合一した。 無水硫酸マグネシウム 70. 7 kgで脱水し、 活性白土 V2 ( 水澤化学 (株) 製、 商品名) 7 1. 4 kgを加えて脱色した後、 濾過した。
濾過物をトルエン 254. 9 kgで洗浄し、 濾液にイソプロパノール 94. 3 kgを加えた。 20 °Cで塩化水素ガス 8 1. 2 kgを吹き込み、 1日間熟成し、 濾過し、 トルエン 6 92 kgで結晶を洗浄した。 湿結晶の量は 524. 3 kgで あり、 分析の結果、 N— (2—クロロェチル) —N—メチルー 一クロ口— 8— フエニルェチルァミン塩酸塩 (ジクロ口化合物の塩酸塩) 40 9. 9 kgが含ま れていた (N—メチルエタノールアミンに対する収率 6 7. 7%) 。 実施例 1 0 〔 1—メチルー 3—フヱニルビペラジンの製造〕
トルエン 5 1 5 k , ジメチルホル厶ァミ ド 1 320 k g、 臭化テトラブチル アンモニゥム 4 1 k gおよび 28 %アンモニア水 1 3 92 k gを反応釜に仕込み 、 実施例 9で得られた N— (2—クロロェチル) 一 N—メチル— —クロ口— ーフヱニルェチルァミン塩酸塩の湿結晶 524. 3 kg (純分 4 0 9. 9 kg) とトルエン 5 1 9. 2 kgのスラリー溶液を流入した。 トルエン 1 78 kgでス ラリー溶液が入っていた容器を洗浄し、 反応釜に流入した。 4 0〜44°Cで 2時 間攪拌し、 ガスクロマトグラフィーで反応の終点を確認した。 25%水酸化ナト リウム水溶液 24 6. 3 kgに水酸化ナトリウム 1 0 9 kgを溶解した液を加え 、 pHを 1 1. 7とした。 4 5〜4 7°Cで 2時間攪拌し、 分液した。 水層に、 2 5%水酸化ナトリウム水溶液 7 1 kgに水酸化ナトリウム 3 1 kgを溶解した溶 液を加え、 23〜24°Cでトルエン 46 1 kgを用いて攪拌抽出し、 分液した。 さらに、 水層にトルエン 4 6 1 kgを加えて攪拌抽出した。 有機層を合一し、 無 水硫酸マグネシウム 76 kgで乾燥した。 濾過し、 濾過物をトルエン 1 4 3 kg で洗浄した。 濾液を減圧下で濃縮し、 トルエンを留去した。 さらに、 減圧下 (4 50〜720 P a) でジメチルホルムァミ ドを留去した後、 主成分として 1ーメ チルー 3—フエ二ルビペラジン 1 57. 8 k gを得た (収率: 5 8. 7 。 そ の沸点は 9 8〜 1 22 °C ( 0. 2〜 2 k P a ) であった。
なお、 留出した 1一メチル _ 3—フエ二ルビペラジンは、 室温で固化するため 、 次工程で使用するジメチルホルムアミ ドに溶解させておくことが好ましい。 実施例 1 1 〔ピペラジン誘導体の製造〕
反応釜にジメチルホルムアミ ド 284. 6 kg. 実施例 1 0で得られた 1ーメ チル— 3—フエ二ルビペラジン 1 50. 9 k g、 ヨウ化カリウム 1 4. 2 kg、 2 -クロ口一 3—シァノピリジン 1 42. 3 k gおよびトリェチルァミン 9 1 k gを加えて加熱した。 1 1 5〜1 20eCで 1 0時間攪拌し、 次いで内温が 1 35 °Cとなるまで加熱してトリエチルァミンを留去した。
さらに、 1 35〜1 37°Cで 5時間攪拌した。 HP LCで反応の終点を確認し た後、 80°Cまで冷却した。 6. 5〜2. 7 kP aの減圧下、 内温 30〜 79 °C でジメチルホルムアミ ド 25 0 kgを留去した。 水 226. 3 kgを流入し、 4 Cで 25%水酸化ナトリウム水溶液 35 kgを加えて pHを 8. 2に調整した 。 4 1°Cで酢酸ェチル 6 1 2. 3 kgを加えて攪拌抽出し、 静置して分液した。 有機層を 5%食塩水で洗浄し、 4 7°Cで静置し、 分液した。 有機層に、 メタノー ル 1 79 kgを流入し、 4 1〜4 9°Cで蓚酸二水和物 1 07. 9 kgを分割添加 した。 4 3〜4 9°Cで 1時間攪拌し、 1 8〜20°Cに冷却し、 8 0分間熟成した 後、 濾過した。 濾過速度は 2 6 8 5 LZh rであった。
酢酸ェチル 1 64. 3 kgとメタノール 47. 8 5 kgの混合溶媒で結晶を洗 浄し、 5 0〜60°Cで減圧乾燥して、 2— (4—メチル— 2—フヱニルビペラジ ンー 1一ィル) 一 3—シァノピリジン蓚酸塩 1 95. 3 k gを得た (収率: 6 1 . 9%) 。 その HPLC純度は 9 9. 4 %、 その融点は 20 0〜2 1 0°Cであり 、 またその嵩密度は 0. gZmLであった。
得られた 2— (4—メチルー 2—フエ二ルビペラジン一 1 -ィル) — 3—シァ ノビリジン蓚酸塩の顕微鏡写真を図 1に示す。 また、 その物性は、 以下のとおり である。
I R (KB r) = 303 9、 2223、 1 73 3、 1 6 3 6、 1 5 78、 1 5 6 7、 1 4 36、 758、 70 1 cm"1
'H-NMR (CDC " , 4 0 0 MHz) 5 p pm: 8. 29、 7. 77、 6 . 76 (d d, e a c h 1 H) ; 7. 1 - 7. 44 (m, 5H) 、 5. 4 6 ( t, 1 H, CHPh) ; 3. 8 3、 3. 5 9 (m, e a c h H) ; 2. 95 ( d d, 1 H) ; 2. 65 - 2. 8 0 (m, 4 H) ; 2. 5 5 (m, 1 H) ; 2. 33 (s, 3H, NCH3 ) 比較例 1
ジメチルホルムァミ ド 28mLに、 1—メチル一 3—フエ二ルビペラジン 2. 0 gおよび 2—クロ口— 3—シァノピリジン 62 gを溶解し、 窒素雰囲気下 、 乾燥フッ化カリウム 1. 92 gを加えて 1 35〜1 4 0°Cで攪拌した。
4時間後に、 HPLCにより、 反応をチェックしたところ、 目的の 2— (4— メチルー 2—フエ二ルビペラジン— 1—ィル) 一 3—シァノピリジンの生成率は 6 6. 5%であった。 さらに、 2時間反応を続けたところ、 生成率が 5 0. 1% となり、 不純物が増えていたため、 反応を停止した。
得られた反応溶液を水 1 5 OmLの中に注ぎ込み、 酢酸ェチル 1 0 OmLで抽 出した。 有機層を水 3 OmLで洗浄し、 無水硫酸マグネシウムで乾燥した後、 濃 縮した。 へキサンなどの溶媒で結晶化を試みたが、 結晶化しなかった。
そこで、 シリカゲルカラムクロマトグラフィーにより精製し、 2— ( 4—メチ ルー 2—フエニルピペラジン一 1一ィル) 一 3—シァノピリジン 1 . 5 8 gを得 た (収率: 5 0 . Z %) 。 その融点は、 6 6 . 2 °Cであった。 産業上の利用可能性
本発明の製造方法によって得られた 1ーメチル— 3—フヱニルビペラジンは、 ミルタザピンの製造中間体として有用なピぺラジン誘導体およびその製造中間体 として好適に使用しうるものである。

Claims

請求の範囲
1. スチレンォキシドと N—メチルエタノールアミンとを非プロトン性極性有 機溶媒中で反応させることを含む、 式 (I) :
Figure imgf000026_0001
で表わされるジォール化合物の製造方法。
2. 非プロトン性極性有機溶媒がジメチルホルムアミ ドまたは 1, 3—ジメチ ルイミダゾリジン一 2—オンである請求項 1記載のジオール化合物の製造方法。
3. 請求項 1で得られたジオール化合物を単離せずに、 クロ口化することを含 む、 式(II) :
Figure imgf000026_0002
で表わされるジクロロ化合物の製造方法。
4. 請求項 1で得られたジオール化合物を酸で塩とした後、 クロ口化すること を含む、 式(III):
Figure imgf000027_0001
(式中、 H Xは酸を示す)
で表わされるジクロロ化合物の塩の製造方法。
5 . 請求項 3で得られたジクロ口化合物または請求項 4で得られたジクロ口化 合物の塩をアンモニアと反応させることを含む、 式(IV) :
Figure imgf000027_0002
で表わされる 1ーメチルー 3—フエ二ルビペラジンの製造方法。
6 . 1—メチルー 3 —フエ二ルビペラジンと、 2 —クロロー 3 —シァノピリジ ンとを塩基およびァルカリ金属ハロゲン化物の存在下で非プロトン性極性有機溶 媒中で反応させることを含む、 式 (V) :
Figure imgf000027_0003
で表わされるピぺラジン誘導体の製造方法 c
7 . 式 (VI)
Figure imgf000028_0001
で表わされるピペラジン誘導体蓚酸塩 c
PCT/JP2000/006650 1999-09-30 2000-09-27 Procede de preparation de derive piperazine WO2001023345A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002351528A CA2351528C (en) 1999-09-30 2000-09-27 Process for the preparation of a piperazine derivative
JP2001526500A JP4330836B2 (ja) 1999-09-30 2000-09-27 ピペラジン誘導体の製造方法
DE60036076T DE60036076D1 (de) 1999-09-30 2000-09-27 Verfahren zur herstellung eines piperazinderivates
AU74455/00A AU751629B2 (en) 1999-09-30 2000-09-27 Process for the preparation of a piperazine derivative
EP00962874A EP1136470B1 (en) 1999-09-30 2000-09-27 Process for the preparation of a piperazine derivative

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP28037899 1999-09-30
JP11/280378 1999-09-30
JPPCT/JP00/05432 2000-08-14
PCT/JP2000/005432 WO2001025185A1 (fr) 1999-09-30 2000-08-14 Procede de production de derive de piperazine

Publications (1)

Publication Number Publication Date
WO2001023345A1 true WO2001023345A1 (fr) 2001-04-05

Family

ID=17624194

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2000/005432 WO2001025185A1 (fr) 1999-09-30 2000-08-14 Procede de production de derive de piperazine
PCT/JP2000/006650 WO2001023345A1 (fr) 1999-09-30 2000-09-27 Procede de preparation de derive piperazine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005432 WO2001025185A1 (fr) 1999-09-30 2000-08-14 Procede de production de derive de piperazine

Country Status (8)

Country Link
US (1) US6495685B1 (ja)
EP (1) EP1136470B1 (ja)
JP (3) JP4330836B2 (ja)
AT (1) ATE370736T1 (ja)
AU (2) AU6476300A (ja)
CA (1) CA2351528C (ja)
DE (1) DE60036076D1 (ja)
WO (2) WO2001025185A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022182A1 (ja) * 2004-08-24 2006-03-02 Sumitomo Chemical Company, Limited 2-(4-メチル-2-フェニルピペラジン-1-イル)-3-シアノピリジンの製造方法
LT5382B (lt) 2003-07-10 2006-11-27 Akzo Nobel N. V. ENANTIOMERISKAI GRYNO MIRTAZAPINO GAVIMO BuDAS
JP2008502707A (ja) * 2005-04-14 2008-01-31 テバ ファーマシューティカル インダストリーズ リミティド クエチアピンフマレートの調製方法
WO2008125578A2 (en) 2007-04-11 2008-10-23 N.V. Organon A method for the preparation of mirtazapine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838029B1 (en) 2003-07-31 2010-11-23 Watson Laboratories, Inc. Mirtazapine solid dosage forms
JP5080050B2 (ja) * 2005-09-26 2012-11-21 住友化学株式会社 光学活性なピペラジン化合物の製造方法
US20090275749A1 (en) * 2005-09-26 2009-11-05 Hiroshi Maeda Production method of optically active piperazine compound
CN101304988A (zh) * 2005-11-14 2008-11-12 住友化学株式会社 制备2-(4-甲基-2-苯基哌嗪-1-基)吡啶-3-甲醇的方法
CN101440067B (zh) * 2007-11-21 2010-08-25 上海津力化工有限公司 一种药物中间体1-甲基-3-苯基哌嗪的制备方法
EP3026049B1 (en) 2013-07-25 2021-09-22 Dong-A ST Co., Ltd. Method for preparing benzamide derivative, novel intermediate used in preparation of benzamide, and method for preparing novel intermediate
CN103509000A (zh) * 2013-10-21 2014-01-15 山东鲁药制药有限公司 一种药物中间体1-(3-氰甲基吡啶基-2)-4-甲基-2-苯基哌嗪的合成方法
CN109988148A (zh) * 2018-01-02 2019-07-09 北京哈三联科技有限责任公司 1-(3-氰基吡啶-2)-2-苯基-4-甲基哌嗪草酸盐的制备方法
CN114878727B (zh) * 2022-05-06 2023-07-25 合肥高尔生命健康科学研究院有限公司 一种测定烟草中噁霉灵残留物的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4417388B1 (ja) * 1967-06-29 1969-07-31
US4062848A (en) * 1975-04-05 1977-12-13 Akzona Incorporated Tetracyclic compounds
US4217452A (en) * 1974-02-09 1980-08-12 Akzona Incorporated Synthesis for the preparation of tetracyclic compounds

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1181322A (en) 1967-06-29 1970-02-11 Chugai Pharmaceutical Co Ltd Piperazine Derivatives and processes for preparing the same
NL179906C (nl) 1974-02-09 1986-12-01 Akzo Nv Werkwijze voor het bereiden van 1,2,3,4,10,14b-hexahydrodibenzo(c,f)pyrazino (1,2-a)azepine derivaten.
JPS5315520A (en) 1976-07-28 1978-02-13 Chino Kiki Seisakushiyo Kk Transformer protector
JPS5942678A (ja) 1982-09-03 1984-03-09 Akai Electric Co Ltd 磁気記録再生装置における編集方法
FR2573075B1 (fr) * 1984-09-14 1987-03-20 Innothera Lab Sa Nouvelles (pyridyl-2)-1 piperazines, leur procede de preparation et leur application en therapeutique
US4772705A (en) 1985-07-25 1988-09-20 Pennwalt Corporation Processes for the preparation of trans 1,3,4,6,7,11b-hexahydro-7-aryl-2H-pyrazinol[2,1-a]isoquinolines
RU2001128228A (ru) 1999-04-19 2003-07-20 Тева Фармасьютикал Индастриз Лтд. (Il) Новый синтез пиперазинового кольца

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4417388B1 (ja) * 1967-06-29 1969-07-31
US4217452A (en) * 1974-02-09 1980-08-12 Akzona Incorporated Synthesis for the preparation of tetracyclic compounds
US4062848A (en) * 1975-04-05 1977-12-13 Akzona Incorporated Tetracyclic compounds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT5382B (lt) 2003-07-10 2006-11-27 Akzo Nobel N. V. ENANTIOMERISKAI GRYNO MIRTAZAPINO GAVIMO BuDAS
US8058436B2 (en) 2003-07-10 2011-11-15 N.V. Organon Method for the preparation of enantiomerically pure mirtazapine
WO2006022182A1 (ja) * 2004-08-24 2006-03-02 Sumitomo Chemical Company, Limited 2-(4-メチル-2-フェニルピペラジン-1-イル)-3-シアノピリジンの製造方法
JP2008502707A (ja) * 2005-04-14 2008-01-31 テバ ファーマシューティカル インダストリーズ リミティド クエチアピンフマレートの調製方法
WO2008125578A2 (en) 2007-04-11 2008-10-23 N.V. Organon A method for the preparation of mirtazapine

Also Published As

Publication number Publication date
JP2009167166A (ja) 2009-07-30
WO2001025185A1 (fr) 2001-04-12
US6495685B1 (en) 2002-12-17
JP5656952B2 (ja) 2015-01-21
JP5161023B2 (ja) 2013-03-13
CA2351528C (en) 2005-11-29
ATE370736T1 (de) 2007-09-15
JP4330836B2 (ja) 2009-09-16
DE60036076D1 (de) 2007-10-04
EP1136470A4 (en) 2004-09-22
EP1136470A1 (en) 2001-09-26
AU751629B2 (en) 2002-08-22
EP1136470B1 (en) 2007-08-22
AU6476300A (en) 2001-05-10
JP2013040196A (ja) 2013-02-28
AU7445500A (en) 2001-04-30
CA2351528A1 (en) 2001-04-05

Similar Documents

Publication Publication Date Title
JP5656952B2 (ja) ピペラジン誘導体蓚酸塩結晶
DK1797037T3 (en) PROCESS FOR THE PREPARATION OF 4- {4 - [({[4-chloro-3- (trifluoromethyl) phenyl] AMINO} CARBONYL) AMINO] PHENYOXY} N-methylpyridine-2-carboxamide
CA2988594C (en) Methods of making protein deacetylase inhibitors
JP2014516072A (ja) アピキサバン製造方法
EP2736905A1 (en) Intermediate compounds and process for the preparation of lurasidone and salts thereof
WO2015124764A1 (en) Synthesis process of dabigatran etexilate mesylate, intermediates of the process and novel polymorph of dabigatran etexilate
EP1741700B1 (en) Process for the preparation of carvedilol
WO2006006184A2 (en) A process for the manufacturing of loratadine and its intermediates
WO2006022182A1 (ja) 2-(4-メチル-2-フェニルピペラジン-1-イル)-3-シアノピリジンの製造方法
JP3907787B2 (ja) 安息香酸誘導体の製造方法
JP4848704B2 (ja) 2−(4−メチル−2−フェニルピペラジン−1−イル)−3−シアノピリジンの製造方法
US8815870B2 (en) 4-(2-(6-substituted-hexylidene) hydrazinyl)benzonitrile and preparation thereof
CA2778807A1 (en) Methods of preparing 1-(4-((1r,2s,3r)-1,2,3,4-tetrahydroxybutyl)-1h-imidazol-2-yl)ethanone
MXPA02007060A (es) Procedimiento para la obtencion de compuestos heterociclicos.
US7214796B2 (en) Process for production of 1-[2-(benzimidazol-2-yl-thio)ethyl]piperazine or salts thereof
JP2002338558A (ja) (4−アルキル−1−ピペラジニルメチル)安息香酸誘導体の製造方法
KR100566562B1 (ko) 수마트립탄의 제조방법
MXPA03009946A (es) Nuevos procedimientos para la preparacion de compuestos de adenosina e intermedios para los mismos.
KR101298046B1 (ko) 솔리페나신과 이의 염의 효율적 제조방법
JP2010526126A (ja) バルサルタンの製造方法
KR20180018697A (ko) 테리플루노미드의 신규한 제조 공정
JP2004075616A (ja) 4−ハロゲノ−2−(4−フルオロフェニルアミノ)−5,6−ジメチルピリミジンの製造方法
WO2001004088A1 (fr) Procede de preparation de derives d'amiline

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 526500

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 74455/00

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2351528

Country of ref document: CA

Ref country code: CA

Ref document number: 2351528

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000962874

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000962874

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 74455/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2000962874

Country of ref document: EP