WO2001023304A1 - Nitrate de metal basique, procede de production de ce nitrate, et composition contenant un agent generateur de gaz - Google Patents

Nitrate de metal basique, procede de production de ce nitrate, et composition contenant un agent generateur de gaz Download PDF

Info

Publication number
WO2001023304A1
WO2001023304A1 PCT/JP2000/006664 JP0006664W WO0123304A1 WO 2001023304 A1 WO2001023304 A1 WO 2001023304A1 JP 0006664 W JP0006664 W JP 0006664W WO 0123304 A1 WO0123304 A1 WO 0123304A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrate
weight
basic
gas generating
gas
Prior art date
Application number
PCT/JP2000/006664
Other languages
English (en)
French (fr)
Inventor
Xingxi Zhou
Kazuyuki Matsuoka
Jianzhou Wu
Yo Yamato
Takeshi Takahori
Kaoru Yamazaki
Original Assignee
Daicel Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27566784&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001023304(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2000281421A external-priority patent/JP4800469B2/ja
Priority claimed from JP2000282972A external-priority patent/JP4794728B2/ja
Application filed by Daicel Chemical Industries, Ltd. filed Critical Daicel Chemical Industries, Ltd.
Priority to EP00962888A priority Critical patent/EP1241138B1/en
Priority to AU74463/00A priority patent/AU7446300A/en
Priority to HU0202721A priority patent/HUP0202721A3/hu
Priority to DE60041984T priority patent/DE60041984D1/de
Priority to KR1020027003905A priority patent/KR20020048419A/ko
Publication of WO2001023304A1 publication Critical patent/WO2001023304A1/ja
Priority to US11/216,149 priority patent/US20070119530A1/en
Priority to US12/205,393 priority patent/US20090101250A1/en
Priority to US12/877,632 priority patent/US8613821B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/48Methods for the preparation of nitrates in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/08Nitrates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/08Nitrates
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a basic metal nitrate, a method for producing the same, and a gas generating composition.
  • the present invention relates to a novel basic metal nitrate, a method for producing the same, a gas generating composition, a molded article thereof, and a gas generator for an air bag using the gas generating composition.
  • a gas generator for an air bag using the gas generating composition Suitable for airbag restraint systems such as automobiles.
  • U.S. Pat.No. 4,369,079 describes a metal salt of hydrogen-free bitetrazole with alkali metal nitrate, alkali metal nitrite, alkaline earth metal nitrate, alkaline earth metal nitrite and mixtures thereof.
  • a gas generant composition is disclosed.
  • U.S. Pat. No. 5,542,999 discloses a gas generator comprising a fuel such as GZT, TAGN, NG (nitroguanidine), NTO, basic copper nitrate, a catalyst for reducing toxic gases, and a coolant. I have.
  • Japanese Patent Application Laid-Open No. 10-72723 discloses a method comprising a bitetrazole metal salt, a bitetrazole ammonium salt, an aminotetrazole and ammonium nitrate.
  • a gas generant is disclosed.
  • the above-mentioned non-azide gas generating composition has problems in combustion temperature, burning rate, phase transfer, generation amount of carbon monoxide and nitrogen oxide, gas generation efficiency, and the like.
  • the gas generant composition of the aforementioned U.S. Pat. No. 4,369,079 has a high combustion temperature and requires a large amount of coolant when actually used.
  • the composition of U.S. Pat. No. 5,542,999 has a low burning rate and may not be completely burned in a short time.
  • the gas generating agent disclosed in Japanese Patent Application Laid-Open No. H10-72273 the molded product of the gas generating agent is damaged due to a change in shape due to the phase transition of ammonium nitrate in the operating temperature range, and cannot be stably burned.
  • Japanese Unexamined Patent Publication (Kokai) No. 9-1328389 discloses a nitrate of a polyamine represented by the general formulas (I) to (II) which comprises a fuel and an oxidizing agent, and the fuel contains 60 to 100% by weight.
  • a gas-generating composition comprising a balanced amount of an alkyldiamine having 2 to 3 carbon atoms and an oxidizing agent being a copper compound is disclosed. According to this conventional technique, effects such as a high gas yield can be obtained only by using a polyamine nitrate as a fuel. Further, Japanese Patent Application Laid-Open No.
  • Hei 11-34319-2 discloses that a fuel mixture comprising two or more components and an oxidizing agent mixture comprising three or more components, wherein a guanidine compound and a heterocyclic compound are used as a fuel mixture. It contains a formula organic acid as an essential component, and as a mixture of oxidizing agents, a transition metal oxide, basic copper nitrate and metal chlorate, metal perchlorate, ammonium perchlorate, alkali metal nitrate, alkaline earth metal nitrate or a mixture thereof
  • the composition for gas generation which contains as an essential component is disclosed. In this conventional technique, the effect of good flammability and burning rate can be obtained only by combining two or more fuels and three or more oxidizers.
  • U.S. Pat.No. 5,542,998 discloses a gas generating mixture comprising a fuel, an oxidizing agent and a catalyst, wherein the oxidizing agent is basic copper nitrate and the catalyst is a metal oxide. It states that a coolant can be used as an optional component, and that no slag forming agent is required. Further, U.S. Pat.No. 5,542,999 discloses a gas generating mixture comprising a fuel, an oxidizing agent and a catalyst, wherein the oxidizing agent is basic copper nitrate and the catalyst is a metal or metal alloy on a carrier. It states that a coolant can be used as an optional component, and that no slag forming agent is required.
  • French Patent No. 2,772,370 describes a crosslinked reducing binder selected from silicone resin, epoxy resin and polyacryl rubber, an additive comprising a combination of a copper compound and an organic nitrogen compound
  • a gas generating composition comprising a main oxidant containing a mixture of ammonium chlorate and a chlorine scavenger as an essential component.
  • This conventional technique can improve ignitability and the like only by using such a composition.
  • non-azide gas generating agents depending on the combination of fuel and oxidizer, physical and chemical interactions take place over a long period of time, resulting in the gradual decomposition of fuel components and the thermal decomposition temperature of the fuel.
  • the temperature decreases from the initial design temperature. If the thermal decomposition temperature of the fuel is reduced in this way, the gas generating agent may deteriorate over a long period of time.Therefore, a gas generating agent with low fuel decomposition and high storage stability is required. .
  • An object of the present invention is to provide a basic metal nitrate capable of obtaining a gas generating agent having high storage stability when combined with a fuel component, and a method for producing the same. Another object of the present invention is that the storage stability and safety during handling are high before operation, the combustion temperature is low during operation, the combustion rate is high, and the production of carbon monoxide and nitrogen oxides is low. It is to provide a gas generating composition having good combustion stability. Still another object of the present invention is to provide a gas generator for an airbag using the gas generating composition.
  • An object of the present invention is to provide a gas generating agent having a composition different from that of the above-described conventional technology, a low combustion temperature, a high combustion rate, a small amount of carbon monoxide and nitrogen oxides generated, and excellent combustion stability.
  • An object of the present invention is to provide a composition, a molded product thereof, and a gas generator for an air bag using the same.
  • the present invention provides a basic metal nitrate (BCN) specified below, a production method specified below, and a basic metal nitrate obtained by the production method. These basic metal nitrates are used in combination with the other gas generant components exemplified in the present invention to provide a gas generant composition.
  • BCN basic metal nitrate
  • the present invention provides a gas generant composition comprising a basic metal nitrate.
  • This composition preferably contains a basic metal nitrate (BCN) specified below and a basic metal nitrate obtained by the manufacturing method specified below.
  • BCN basic metal nitrate
  • the present invention provides a basic metal nitrate having at least one of the following requirements (a) to (d).
  • the content of impurities is 100 ppm or less in terms of Na atoms.
  • the basic metal nitrate of the present invention has excellent thermal stability.
  • the present invention also provides a method for producing a basic metal nitrate by reacting a metal nitrate with an alkali metal bicarbonate.
  • the present invention also includes a fuel and a basic metal nitrate, wherein the basic metal nitrate has at least one selected from the following requirements (a-1) to (a-3). Certain gas generant compositions are provided.
  • (a-1) a particle size of 0.5 to 40 ⁇ m
  • the present invention also includes a fuel and a basic metal nitrate, wherein the basic metal nitrate is a secondary particle formed by agglomeration of primary particles, and the secondary particle has the following requirements (a-1). 1) To provide a gas generating composition comprising at least one selected from (a-3).
  • the present invention provides an inflation for airbag using the above gas generating composition.
  • the basic metal nitrate in the present invention includes a series of compounds represented by the following formula. In some cases, compounds containing water of hydration may also be present.
  • M is a metal
  • x ' is the number of metal
  • y is the N_ ⁇ 3 number of ions
  • z ' is the ⁇ _H number of ions
  • n represents M (N_ ⁇ 3) M for y moiety (OH ) It shows the ratio of the z part.
  • M (N0 3) y ⁇ nM (OH) z or M x. (N_ ⁇ 3) y. (OH) z examples of the equivalent of the above formula include Cu, Co, Zn, manganese, iron, molybdenum, bismuth, and cerium as the metal M, Cu 2 (N 0 3 ) (OH) 3 , Cu 3 (N 0 3 ) ( OH) 5-2H 2 ⁇ , Co 2 (N0 3 ) (OH) 3 , Zn 2 (N0 3 ) (OH) 3 , Mn (N0 3 ) (OH) 2 , Fe 4 (N0 3 ) (OH) ⁇ ⁇ 2H 2 0, B i (N0 3) (OH) 2, C e (N0 3) 3 (OH) ⁇ 3H 2 ⁇ like.
  • Basic metal nitrates include basic copper nitrate (BCN), basic cobalt nitrate, basic zinc nitrate, basic manganese nitrate, basic iron nitrate, basic molybdenum nitrate, basic bismuth nitrate and basic nitric acid
  • BCN basic copper nitrate
  • basic cobalt nitrate basic zinc nitrate
  • basic manganese nitrate basic manganese nitrate
  • basic iron nitrate basic molybdenum nitrate
  • basic bismuth nitrate basic nitric acid
  • the present invention provides, as one solution, (a) one or more guanidine derivatives selected from tetrazole derivatives, guanidine, guanidine carbonate, nitroguanidine, dicyandiamide, nitroaminoguanidine, and nitroaminoguanidine nitrate; b) To provide a gas generant composition containing a basic metal nitrate.
  • the present invention provides, as another solution, (a) one or more guanidine derivatives selected from tetrazole derivatives, guanidine, guanidine carbonate, nitroguanidine, dicyandiamide, nitroaminoguanidine, and nitroaminoguanidine nitrate;
  • a gas generating composition containing (b) a basic metal nitrate and (c) a binder and Z or a slag forming agent.
  • the present invention provides, as another solution, a gas generating composition
  • a gas generating composition comprising (a) a tetrazole derivative, a guanidine derivative or a mixture thereof, (b) a basic metal nitrate, and (d) a combustion improver. I do.
  • the present invention provides, as another solution, (a) a tetrazole derivative, a guanidine derivative or a mixture thereof, (b) a basic metal nitrate, (c) a binder and / or a slag forming agent, and (d) a combustion improving agent.
  • a gas generant composition containing an agent is provided.
  • the present invention also includes, as another solution, (a) a tetrazole derivative, a guanidine derivative or a mixture thereof, and (b) a basic metal nitrate, and at least one selected from the following requirements (1) to (3):
  • the weight loss rate of the gas generating agent when the gas generating composition is kept in a sealed state at 90 at 1000 hours or at 110 at 400 hours is 2.0% or less.
  • the concentration of trace gases contained in the gas generated by the combustion of the gas generating agent, 280 0 L is as measured at the tank, CO is 400 ppm or less, NO is 4 O p pm hereinafter, N0 2 is 8 p pm or less and NH 3 is less than 100 ppm
  • the maximum internal pressure in the gas generator during combustion of the gas generating agent should be 7840 to 22500 kPa.
  • the present invention contains (a) a tetrazole derivative, a guanidine derivative or a mixture thereof, (b) a basic metal nitrate, and (c) a binder and a slag-forming agent.
  • a gas generating composition having at least one requirement selected from the group consisting of:
  • the weight loss rate of the gas generating agent when the gas generating composition is kept in a sealed state at 90 at 1000 hours or at 110 at 400 hours is 2.0% or less.
  • the concentration of trace gases contained in the gas generated by the combustion of the gas generating agent, in a measured value at 280 0 L tank, CO is 400 p pm or less, NO is 4 O p pm hereinafter, N0 2 8 p pm or less and NH 3 is 100 p pm or less
  • the maximum internal pressure in the gas generator during combustion of the gas generating agent should be 7840 to 22500 kPa.
  • the present invention also provides a single-hole, porous-column, or pellet-shaped molded article obtained from the above-mentioned gas generating composition.
  • the present invention provides an airbag ink using the above gas generating composition and a molded article. Providing Frey evening.
  • the term “inflation overnight” refers to a pie-hole type infra-free type in which gas is supplied only from a gas generating agent, and a hybrid type in which the gas supply is both a compressed gas such as argon and a gas generating agent. (However, the part having the function of generating gas by burning the gas generating agent is referred to as “gas generator”).
  • the basic metal nitrate of the present invention has high thermal stability, even if it is left in a high-temperature atmosphere for a long period of time (for example, 10 to 10 years), it does not cause deterioration such as decomposition. It is suitable as an oxidizing agent for a gas generating agent used for airbag inflation as a safety device.
  • the basic metal nitrate of the present invention when used in combination with a fuel component, particularly a guanidine derivative such as nitroguanidine, physical and chemical interactions are suppressed, so that the decomposition temperature of the fuel component is lowered and heat resistance is reduced. Can be prevented from decreasing.
  • a fuel component particularly a guanidine derivative such as nitroguanidine
  • a raw material which is inexpensive and easily available industrially is used, no special reaction equipment is particularly required, and basic conditions such as basic copper nitrate can be used under easily controllable reaction conditions. Metal nitrates can be produced industrially.
  • the gas generating composition of the present invention Since the gas generating composition of the present invention has excellent thermal stability, it can maintain high reliability for a long period of time when applied to various types of inflation.
  • the gas generant composition of the present invention and its molded body are easy to handle because of low toxicity and low danger, have a high combustion rate, a low combustion temperature, and furthermore, carbon monoxide and nitrogen oxide during combustion. Generation amount is small.
  • the basic metal nitrate having good heat stability of the present invention satisfies the following requirements (a) to (d).
  • At least one is provided, preferably at least one is provided as much as possible, and more preferably all requirements are provided. If you have more than one requirement, It is desirable to have at least requirement (a).
  • TG Start temperature of weight loss by DTA analysis is 220 or more, preferably 215 or more;
  • the content of impurities is not more than 1,000 ppm, preferably not more than 600 ppm in terms of Na atom.
  • the basic metal nitrate of this embodiment has excellent thermal stability.
  • the basic metal nitrate of the present invention can be produced, for example, by reacting a metal nitrate with an alkali metal hydrogencarbonate.
  • the above reaction process is represented by the following reaction formula (II) using basic copper nitrate as an example.
  • reaction formula (II) by selecting a metal salt of hydrogen hydrogen carbonate as a basic weak acid salt, the metal salt of hydrogen hydrogen carbonate reacts with the metal nitrate, and The metal ion combines with the nitrate to form a metal nitrate salt that dissolves well in water, and the hydrogen carbonate anion reacts with the hydrogen ion to be converted to carbon dioxide gas and water.
  • the produced nitric acid is neutralized with a basic weak acid salt. The escape does not hinder the formation of basic metal nitrates.
  • a method for producing the basic metal nitrate of the present invention a method in which the above-mentioned metal nitrate is reacted with an alkali metal hydrogen carbonate is desirable, but a strong basic substance such as an alkali metal hydroxide compound or an alkali metal carbonate is preferable. (For example, potassium hydroxide, sodium carbonate) can also be applied.
  • a strong basic substance such as an alkali metal hydroxide compound or an alkali metal carbonate
  • potassium hydroxide, sodium carbonate can also be applied.
  • by-products are generated by side reactions as shown in Reaction Formulas (111), (IV), and (V), and the presence of these by-products results in thermal stability. It is considered that the sex becomes worse.
  • the metal nitrate examples include cobalt nitrate, copper nitrate, zinc nitrate, manganese nitrate, iron nitrate, molybdenum nitrate, bismuth nitrate, and cerium nitrate. Of these, copper nitrate is preferable. As the copper nitrate, a compound represented by the following general formula (I) is preferable, and copper nitrate trihydrate and copper nitrate hexahydrate are more preferable. Such copper nitrate compounds are commercially available and can be obtained at low cost.
  • n 0 to 6.
  • an aqueous solution or a solution dissolved in a mixed solvent of water and an organic solvent (eg, ethanol) soluble in water can be used, but it is generally used in the form of an aqueous solution.
  • the concentration of metal nitrate such as copper nitrate in the solution is not particularly limited.
  • the amount of the solvent used for the metal nitrate is preferably about 200 to 500 ml. If the concentration is higher than this range, the obtained crystals of the basic metal nitrate such as the basic copper nitrate are obtained. The thermal stability tends to be poor. The use of a large excess of the solvent does not necessarily provide an effect commensurate with the amount used, and it is not preferable because post-treatment such as recovery of alkali metal nitrate as a by-product requires time and effort.
  • alkali metal bicarbonate that neutralizes metal nitrates such as copper nitrate
  • examples of alkali metal bicarbonate that neutralizes metal nitrates such as copper nitrate include sodium hydrogen carbonate, potassium bicarbonate, lithium bicarbonate, rubidium bicarbonate, and cesium bicarbonate. Preferred are sodium hydrogencarbonate and potassium hydrogencarbonate.
  • Such alkali metal hydrogencarbonate is an industrial chemical that is mass-produced, and is an inexpensive and industrially easily available industrial raw material.
  • the alkali metal bicarbonate can be used in solid or solution form. In the case of a solution, water or a mixed solvent of water and an organic solvent (eg, ethanol) soluble in water can be used. Generally, it is used in the form of an aqueous solution.
  • the amount of the solvent used is preferably about 1 to 10 liters per 1 mol of the alkali metal hydrogencarbonate. If the metal bicarbonate salt is solid or has a concentration higher than the above range, it is necessary to take measures such as lowering the nitric acid concentration in the metal nitrate solution such as copper nitrate. When added, the alkali concentration locally increases, copper hydroxide is formed as a side reaction, and it may not be possible to obtain basic metal nitrates such as basic copper nitrate with good reproducibility and good thermal stability. .
  • the mixing ratio between the metal nitrate such as copper nitrate and the metal bicarbonate is preferably 2 mol or less, preferably 1 mol or less per 1 mol of the metal nitrate such as copper nitrate.
  • the range of ⁇ 1.7 mol is more preferable. If the amount of the alkali metal bicarbonate is less than this range, the quality of the basic metal nitrate such as basic copper nitrate will not be improved, and the yield of the basic metal nitrate such as basic copper nitrate will only decrease, leading to industrial Meaning as a typical manufacturing method There is no. On the other hand, when the amount is larger than this range, a metal hydroxide such as copper hydroxide is mixed in a basic metal nitrate such as basic copper nitrate, which is not preferable.
  • the method of mixing the metal nitrate such as copper nitrate with the metal bicarbonate is not particularly limited, but generally, the metal bicarbonate solution is added to the solution of the metal nitrate such as copper nitrate. Is preferred.
  • a method in which a metal nitrate such as copper nitrate and an alkali metal bicarbonate are added almost simultaneously to a solution adjusted to a certain pH value in advance can be used.
  • it is preferable to take measures such as adding under stirring to avoid a local increase in alkali concentration, and further increasing the number of addition ports to one or more.
  • the addition acceleration is affected by the scale of the reaction, the degree of stirring, the concentration of the aqueous solution, the number of addition ports, the mixing temperature, etc., and must be determined in consideration of these factors. From the viewpoint of suppressing the re-concentration, it is preferable to add slowly.
  • the mixing temperature of the metal nitrate such as copper nitrate and the metal bicarbonate is not particularly limited. Generally, the mixing temperature is in the range of room temperature to 100, but it is preferable to perform the heating under heating.
  • the aging time after completion of the addition cannot be unconditionally determined because it is affected by the mixing temperature, the mixing time, and the like. However, when the mixing temperature is high, the aging time is preferably shortened.
  • the aging time is longer than necessary, a part of the generated basic metal nitrate such as basic copper nitrate is decomposed to have poor thermal stability. If the aging time is short, the crystallization of basic metal nitrates such as basic copper nitrate is not sufficient, and the thermal stability deteriorates. Therefore, it is desirable to determine the aging time in consideration of these effects.
  • the reaction can be performed under the following conditions.
  • the amount of the solvent to be used per 1 mol of the metal nitrate such as copper nitrate can be 20 to 400 ml, preferably 50 to 200 ml.
  • the amount of the solvent to be used per 1 mol of the alkali metal hydrogencarbonate can be 0.2 to 2.5 L, preferably 0.5 to 1.5 L.
  • the reaction can be carried out at a temperature of 0 to 35 ° C, preferably 5 to 20.
  • the gas generating composition of the present invention will be described.
  • the gas generating composition of the present invention contains a fuel, a basic metal nitrate, and, if necessary, an additive.
  • One embodiment of the basic metal nitrate used in the gas generating composition of the present invention has at least one selected from the following requirements (a-1) to (a-3). Has any two requirements, more preferably three.
  • Requirement (a-1) particle size of 0.5 to 40 m, preferably 0.5 to 20 mm, more preferably 1 to: L O m;
  • the specific surface area of the particles is 0.4 to 6.
  • OmVg preferably 0.5 to 4.
  • OmVg more preferably 0.5 to 2.5 mVg;
  • the bulk density of the particles is 0.4 gZml or more, preferably 0.4 to 1. OgZml, more preferably 0.7 to: I. OgZm.
  • a compound having poor stability when combined with a basic metal nitrate such as a guanidine derivative (for example, nitroguanidine)
  • a gas generating composition containing a basic metal nitrate eg, basic copper nitrate
  • the gas generating composition of the present invention is not limited to the above combination.
  • NQ nitroguanidine
  • BCN basic copper nitrate
  • the BCN particle size is too small, the interaction between them becomes larger, for example, more BCN adheres to the surface of the NQ, and this has the effect of lowering the decomposition temperature. Therefore, by setting the particle size within the range of the requirement (a-1), the interaction can be reduced, and the degradation of the decomposition temperature can be prevented.
  • the bulk density of BCN is small, the volume per unit weight is large and the specific surface area is large, so that the requirement (a-2) cannot be satisfied.
  • the interaction between the freshly crushed surface generated at that time and the NQ is large, so that the aggregates are firmly aggregated. That is, a material having a high bulk density can reduce the interaction, and as a result, it is possible to prevent the decomposition temperature from lowering.
  • Another embodiment of the basic metal nitrate used in the gas generating composition of the present invention is selected from the following requirements (b) to (d) in addition to the above requirements (a-1) to (a-3). At least one of the two requirements, preferably Preferably, it has three requirements.
  • the crystallinity has a half value width of the peak in the X-ray diffraction method of not more than 0.35 deg, preferably not more than 0.26 deg;
  • the onset temperature for weight loss by TG-DTA analysis is at least 220, preferably at least 215;
  • the content of impurities is 1000 ppm or less, preferably 600 ppm or less in terms of Na atoms.
  • the basic metal nitrate is a secondary particle formed by agglomeration of primary particles, and the secondary particle has the following requirement (a). — It has one or more selected from (1) to (a-3), and preferably has any two requirements, more preferably three requirements.
  • Requirement (a-1) particle size of 0.5 to 40 ⁇ , preferably 0.5 to 20 ⁇ , more preferably 1 to 10 ⁇ ;
  • the bulk density of the particles is 0.4 g / ml or more, preferably 0.4 to 1.
  • the basic metal nitrate used in the gas generating composition of the present invention is an aggregate, in addition to the above requirements (a-1) to (a-3), the following requirement (b) (D), preferably one or more of two requirements, more preferably three.
  • the onset temperature for weight loss by TG-DTA analysis is at least 220, preferably at least 215;
  • the basic metal nitrate composed of secondary particles in which the primary particles are aggregated is formed by agglomeration of a large number of primary particles having a needle-like plate shape and a Z or spherical or similar shape.
  • “Acicular or plate-like” refers to a mixture of needle-like particles only, plate-like particles only, and plate-like particles that gradually increase in width from needle-like particles to needle-like particles.
  • Spherical or similar shape means only true spherical particles and shapes similar to them, for example, only those with irregularities on the surface of a true sphere or only elliptical spherical particles, true spherical particles To particles of similar shape such as oval spheres.
  • the basic metal nitrate composed of secondary particles for example, a large number of needle-shaped or plate-shaped primary particles are laminated and agglomerated, and the lowermost layer is radially arranged and sequentially laminated radially in one direction.
  • those obtained by laminating needle-shaped or plate-shaped primary particles so as to form a “chrysanthemum flower shape” are exemplified.
  • the basic metal nitrate composed of the secondary particles in which the primary particles are aggregated can be obtained, for example, in the above-described method for producing a basic metal nitrate, by the concentration, the reaction temperature, and the aging time of the metal nitrate and the alkali metal bicarbonate. Can be obtained by changing
  • Metal nitrate such as copper nitrate (anhydride equivalent)
  • the amount of solvent used per mole is from 20 to
  • the use amount of the solvent to 1 mol of the alkali metal bicarbonate is preferably 0.2 to 2.5 liters, and 0.5 to 1 liter. 5 liters is more preferred.
  • the reaction temperature is preferably about 10 to 35, more preferably a temperature around room temperature.
  • the aging time is preferably set to be longer than when heating is performed.
  • Examples of the fuel contained in the gas generating composition of the present invention include those selected from guanidine derivatives, azole derivatives, triazine derivatives, and transition metal complexes.
  • Examples of the guanidine derivative include one or more selected from guanidine, mono-, di- or triaminoguanidine nitrate, guanidine nitrate, guanidine carbonate, nitroguanidine (NQ), dicyandiamide (DCDA), and ditroaminoguanidine nitrate. Of these, nitroguanidine and dicyandiamide are preferred.
  • azo derivative examples include tetrazole, 5-aminotetrazole, 5,5'-bi-1H-tetrazole, 5-nitroaminotetrazole, zinc salt of 5-aminotetrazole, and copper salt of 5-aminotetrazole.
  • Bitetrazole, bitetrazole potassium (BHTK), bitetrazole sodium, bitetrazole magnesium, bitetrazole calcium, bitetrazole diammonium (BHTNH 3 ), bitetrazole copper and bitetrazole One or more selected from melamine salts. Among them, the nitrogen atom content is 81.4% by weight, LD
  • bitetrazole diammonium salt is preferable.
  • the bitetrazole compound referred to here is 2 It contains the 5-5 'and 1-5' conjugates of one tetrazole ring, and the 5-5 'conjugate is preferred because of its price and availability.
  • Triazine derivatives include melamine, trimethylol melamine, alkylated methylol melamine, ammeline, ammeland, cyanuric acid, melam, melem, melamine nitrate, melamine perchlorate, trihydrazinotriazine, and melamine.
  • One or more compounds selected from the group consisting of a compound having a stoichiometric structure are exemplified.
  • melamine and trihydrazinotriazine (THT) which have an LD 50 (oral-rat) of 316 1 mg Z kg, have high fuel stability, are safe in handling, and are inexpensive, are preferred.
  • nitroguanidine is particularly preferred because physical and chemical interactions can be reduced when combined with the above basic metal nitrates.
  • the content of the fuel in the gas generating composition depends on the type of the oxidizing agent and the oxygen balance, but is preferably 10 to 60% by weight, more preferably 20 to 50% by weight.
  • the content of the basic metal nitrate in the gas generating composition is preferably 40 to 90% by weight, more preferably 50 to 80% by weight.
  • Binders include carboxymethylcellulose (CMC), carboxymethylcellulose sodium salt (CMCNa), carboxymethylcellulose potassium salt, carboxymethylcellulose ammonium salt, cellulose acetate, cellulose acetate butyrate (CAB), methylcellulose (MC), ethylcellulose (EC), hydroxyethylcellulose (HEC :), ethylhydroxyethylcellulose (EHEC), hydroxypropylcellulose (HPC), carboxymethylethylcellulose (CMEC), microcrystalline cellulose , Polyacryla Amide, aminated polyacrylamide, polyacrylhydrazide, acrylamide-metal acrylate copolymer, polyacrylamide-polyacrylate ester compound copolymer, polyvinyl alcohol, acrylic rubber, guar gum, starch, Silicone, molybdenum disulfide, acid clay, talc, bentonite, diatomaceous earth
  • Examples of the metal hydroxide include one or more selected from cobalt hydroxide and aluminum hydroxide.
  • Examples of the metal carbonate and the basic metal carbonate include calcium carbonate, cobalt carbonate, basic zinc carbonate, and basic carbonate.
  • One or more selected from copper, basic cobalt carbonate, basic iron carbonate, basic bismuth carbonate, and basic magnesium carbonate, and the molybdate is selected from cobalt molybdate and ammonium molybdate.
  • One or more types are mentioned.
  • the content of additives such as a binder in the gas generating composition is preferably 0.1 to 15% by weight, more preferably 0.5 to 12% by weight.
  • the gas generating composition of the present invention is placed in a sealed state of the gas generating composition (including 40 g of the gas generating agent), specifically, in a stainless steel container having an inner volume of 18.8 m1,
  • the gas generating agent has a weight loss rate of 2.0% or less, preferably 1.0% or less, more preferably 0.5% or less when kept at 110 ° C for 400 hours in a sealed state. It is desirable.
  • the gas generating composition of the present invention can be molded into a desired shape, and can be formed into a single-hole cylindrical, porous cylindrical or pellet-shaped molded body.
  • These moldings are Water or organic solvent is added to and mixed with the pelletizing composition, and the mixture is extruded (single-hole cylindrical or porous cylindrical molded body) or compression-molded using a tableting machine or the like (pellet-shaped molding). Body).
  • the gas generating composition of the present invention can be used, for example, for inflation for airbags in the driver's seat of various vehicles, inflation for airbags in the passenger seat, inflation for side airbags—evening, inflation for inflation overnight Applicable to overnight, 21-bolster inflation, inflation for bull seatbelt, inflation for tubular systems, and gas generator for pretensioner.
  • gas supply there are two types of gas supply: a pi-mouth type gas supply only from a gas generating agent, and a hybrid type in which both a compressed gas such as argon and a gas generating agent are used. Either may be used.
  • gas generating composition of the present invention can also be used as an ignition agent called an enhancer (or booster) for transmitting the energy of the detonator / squib to the gas generating agent.
  • an enhancer or booster
  • the gas generating composition of the present invention may be a composition containing the components (a) and (b) as essential components or a composition containing the components (a), (b) and (c) as essential components. it can.
  • the tetrazole derivative of the component (a) used in the present invention is preferred because it has a high content of nitrogen atoms in one molecule, has low toxicity, and when combined with the component (b), increases the burning rate.
  • tetrazole derivative examples include a tetrazole compound (however, excluding a bitetrazole compound) and a bitetrazole compound.
  • tetrazole compounds examples include tetrazole, 5-aminotetrazole, 5,5'-B1H-tetrazole, 5-nitroaminotetrazole, 5-a The zinc salt of minotetrazol and the copper salt of 5-aminotetrazole are mentioned.
  • bitetrazole As the bitol azole compound, bitetrazole, bitetrazole potassium salt (BHTK), bitetrazole sodium salt, bitetrazole magnesium salt, bitetrazole - Rukarushiumu salt, bitetrazole Jian monitor ⁇ unsalted ( ⁇ 3), 1 or more can be mentioned selected from Bitetora tetrazole copper salts and bitetrazole melamine salt.
  • a bitetrazole diammonium salt is preferable because the nitrogen atom content is 81.4% by weight, the LD 50 (oral-rat) is 200 OmgZkg, and the combustion efficiency is good.
  • the bitetrazole compound referred to here includes a 5-5'-bond and a 1-5'-linkage of two tetrazole rings, and a 5-5'-linkage is preferable from the viewpoint of cost and availability.
  • the guanidine derivative can be divided into two groups in view of the combination with other components and satisfying the predetermined requirements (1) to (3).
  • the first group is one or more guanidine derivatives selected from guanidine, guanidine carbonate, nitroguanidine, dicyandiamide, nitroaminoguanidine, and nitroaminoguanidine nitrate.
  • the second group is selected from guanidine, mono, di- or triaminoguanidine nitrate, guanidine nitrate, guanidine carbonate, nitroguanidine (NQ), dicyandiamide (DC DA), nitroaminoguanidine and nitroaminoguanidine nitrate.
  • guanidine derivatives One or more guanidine derivatives.
  • Component (a) in a composition in which the gas generating composition of the present invention contains components (a) and (b) as essential components or a composition containing components (a), (b) and (c) as essential components
  • the guanidine derivatives of the above are the first group of guanidine derivatives described above.
  • the basic metal nitrate of the component (b) used in the present invention is generally a series of compounds represented by the following formula. Further, there may be a compound containing water of hydration.
  • M is a metal
  • x ' is the number of metal
  • y is the N_ ⁇ 3 number of ions
  • z ' is an OH number of ions
  • n represents M (N0 3) M for y moiety (OH) z It shows the ratio of the parts.
  • Examples of those corresponding to the formula is copper as the metal M include cobalt, zinc, manganese, iron, molybdenum, bismuth, cerium, Cu 2 (N_ ⁇ 3) (OH) 3, Cu 3 (N0 3) (OH) 5 - 2H 2 0 , Co 2 (N0 3) (OH) 3, Z n 2 ( N_ ⁇ 3) (OH) 3, Mn (N0 3) (OH) 2, F e 4 (N0 3) (OH),, - 2H 2 0, B i (N0 3) (OH) 2, C e (N0 3) 3 ( ⁇ _H) ⁇ 3H 2 ⁇ like.
  • the basic metal nitrates of the component include basic copper nitrate (BCN), basic cobalt nitrate, basic zinc nitrate, basic manganese nitrate, basic iron nitrate, basic molybdenum nitrate, basic bismuth nitrate And one or more selected from basic cerium nitrate.
  • BCN basic copper nitrate
  • basic cobalt nitrate basic zinc nitrate
  • basic manganese nitrate basic manganese nitrate
  • basic iron nitrate basic iron nitrate
  • basic molybdenum nitrate basic bismuth nitrate
  • basic bismuth nitrate basic cerium nitrate.
  • basic copper nitrate is preferable.
  • basic copper nitrate Compared with ammonium nitrate as an oxidizing agent, basic copper nitrate has no phase transition in the operating temperature range and has a high melting point, so that it has excellent thermal stability. Further, since the basic copper nitrate acts to lower the combustion temperature of the gas generating agent, the amount of generated nitrogen oxides can be reduced.
  • the component (b) can be a mixture of the above-mentioned basic metal nitrate and one or more other oxidizing agents, and when the mixture is used, aluminum nitrate is used as the other oxidizing agent. It can be contained.
  • Alkali metal nitrate is a component that increases the burning rate of the gas generating composition, and includes potassium nitrate, sodium nitrate, potassium perchlorate, lithium nitrate and the like. Of these, potassium nitrate is preferred.
  • the content of the basic metal nitrate in the mixture is preferably It is preferably 55-99.9% by weight, more preferably 75-99.5% by weight, and even more preferably 90-99.2% by weight.
  • the content of the component (a) is preferably from 5 to 60% by weight, more preferably from 15 to 55% by weight.
  • the content of the component (b) is preferably from 40 to 95% by weight, more preferably from 45 to 85% by weight.
  • the composition contains the components (a) and (b), the composition contains (a) a bitetrazole diammonium salt and (b) a basic copper nitrate Things.
  • the content in this case is (a) 5 to 60% by weight of bitetrazole diammonium, preferably 15 to 55% by weight, more preferably 15 to 45% by weight or 15 to 35% by weight, and (b) a base. It is 40 to 95% by weight, preferably 45 to 85% by weight, more preferably 55 to 85% by weight or 65 to 85% by weight.
  • compositions contains the components (a) and (b) includes a composition containing (a) nitroguanidine and (b) basic copper nitrate.
  • the content in this case is (a) 30-70% by weight of nitroguanidine, preferably 40-60% by weight and (b) 30-70% by weight of basic copper nitrate, preferably 40-60% by weight.
  • compositions contains the components (a) and (b) includes a composition containing (a) dicyandiamide and (b) basic copper nitrate.
  • the content is preferably (a) 15 to 30% by weight of dicyandiamide and (b) 70 to 85% by weight of basic copper nitrate.
  • the binder and Z or slag forming agent of the component (c) used in the present invention are non-crosslinkable, and include carboxymethyl cellulose (CMC), carboxymethyl cellulose.
  • CMCNa carboxymethylcellulose
  • Sodium salt (CMCNa) potassium carboxymethylcellulose, carboxylmethylcellulose ammonium salt, cellulose acetate, cellulose acetate butyrate (CAB), methylcellulose (MC), ethylcellulose (EC), hydroxyshethylcellulose (HEC), ethyl hydroxyethyl cellulose (EHE C), hydroxypropyl cellulose (HPC.), Carboxymethyl ethyl cellulose (CMEC), microcrystalline cellulose, polyacrylamide, aminated polyacrylamide , Polyacrylhydrazide, acrylamide ⁇ metal acrylate copolymer, polyacrylamide ⁇ polyacrylate compound copolymer, polyvinyl alcohol, acrylic rubber, polysaccharides including guar gum and starch, silicone (silicone resin
  • Polysaccharides containing guar gum and starch which are components, are not particularly limited as long as they are sticky and can be applied to the wet molding method and the dry molding method.
  • Various gums such as gum, chitin, chitosan, hyaluronic acid, and the like.
  • the metal oxide of the component (c) includes one or more selected from copper oxide, iron oxide, zinc oxide, cobalt oxide, manganese oxide, molybdenum oxide, nickel oxide, and bismuth oxide. , Cobalt hydroxide, and aluminum hydroxide.
  • the metal carbonate and the basic metal carbonate include calcium carbonate, cobalt carbonate, basic zinc carbonate, basic copper carbonate, and basic carbonate. Chosen from a mixture of basic, basic iron carbonate, basic bismuth carbonate, and basic magnesium carbonate
  • the molybdate includes at least one selected from cobalt molybdate and ammonium molybdate.
  • carboxymethylcellulose sodium salt and potassium salt are preferred, and among these, sodium salt is more preferred.
  • the content of the component (a) is preferably 5 to 60% by weight, and 15 to 55% by weight. % By weight is preferred.
  • the content of the component (b) is preferably from 40 to 95% by weight, more preferably from 45 to 85% by weight.
  • the content of the component is preferably 0.1 to 25% by weight, and 0.1 to 1% by weight.
  • a bitetrazol ammonium salt (b) basic copper nitrate and (c) potassium lipoxy Those containing methylcellulose sodium salt are mentioned.
  • the contents in this case are (a) 15 to 40% by weight of bitetrazole diammonium salt, (b) 45 to 80% by weight of basic copper nitrate and (c) sodium carboxymethylcellulose 0.1 to: 15% by weight is preferred.
  • the contents in this case are (a) 15-35% by weight of bitetrazole diammonium salt, (b) 30-70% by weight of basic copper nitrate, (c-11) sodium salt of carboxymethyl cellulose 0.1- 15% by weight And (c-2) preferably 1 to 45% by weight.
  • compositions (a), (b) and (c) include (a) nitroguanidine, (b) basic copper nitrate and (c) carboxymethylcellulose. Those containing sodium salts are included. The content in this case is
  • compositions when the composition contains the components (a), (b) and (c) include (a) nitroguanidine, (b) basic copper nitrate and (c-11) carboxymethylcellulose.
  • examples thereof include those containing a sodium salt and (c-2) the above-mentioned component (c) other than the above (c_l).
  • the contents in this case are (a) 15 to 50% by weight of nitroguanidine, (b) 30 to 65% by weight of basic copper nitrate and (c-11) 0.1 to 15% by weight of carboxymethylcellulose sodium salt.
  • c-1 2) 1-40% by weight is preferred.
  • compositions contains the components (a), (b), and (c) includes (a) nitroguanidine, (b) basic copper nitrate, and (c) guar gum. Things.
  • content of (a) nitroguanidine is preferably 20 to 60% by weight, more preferably 30 to 50% by weight
  • (b) basic copper nitrate is preferably 35 to 75% by weight, more preferably 40-65% by weight
  • (c) guagam are preferably 0.1-10% by weight, more preferably 1-8% by weight.
  • compositions contains the components (a), (b) and (c) include (a) nitroguanidine, (b) basic copper nitrate and (c-11) guar gum.
  • nitroguanidine is preferably 20 to 60% by weight; More preferably, 30 to 50% by weight
  • basic copper nitrate is preferably 30 to 70% by weight, more preferably 40 to 60% by weight
  • guar gum is preferably 0. 10% by weight, more preferably 2 to 8% by weight and (c-1 2) are preferably 0.1 to 10 and more preferably 0.3 to 7% by weight.
  • compositions (a), (b) and (c) include (a) dicyandiamide, (b) basic copper nitrate and (c-1) carboxy.
  • examples include those containing a methylcellulose sodium salt and (c_2) the above-mentioned component (c) other than the above (c-11).
  • the contents are (a) 15 to 25% by weight of dicyandiamide, (b) 55 to 75% by weight of basic copper nitrate and (c-11) sodium salt of carboxymethylcellulose 0 to 10% by weight or 0.1 to 1%. 10% by weight and (c-12) 1 to 20% by weight are preferred.
  • guanidine nitrate examples include those containing a sodium salt of methylcellulose and (c-12) a component (c) other than the above (c-11).
  • the content in this case is: (a) guanidine nitrate 15
  • the combustion speed is further improved in addition to the effects ( ⁇ ) to ( ⁇ ) described above. The effect is obtained.
  • the gas generating composition of the present invention comprises (a), (b) and (d) a composition containing a combustion regulator (combustion improver) as an essential component or (a), (b), (c) and ( d) A composition containing a combustion modifier (combustion modifier) as an essential component can be obtained.
  • a combustion regulator combustion improver
  • a combustion modifier combustion modifier
  • the combustion improver of the component (d) is, for example, a component that acts to improve the combustion rate, the sustainability of combustion, the ignitability, and other combustibility of the gas generating composition as a whole.
  • the combustion improving agent nitride Kei arsenide, silica, alkali metal or alkaline earth metal nitrites, nitrates, chlorates or perchlorates (KN_ ⁇ 3, NaN_ ⁇ 3, KC 10 4, etc.), oxidizing water
  • iron oxide ( ⁇ ) [F eO ( ⁇ H)] copper oxide, iron oxide, zinc oxide, cobalt oxide, and manganese oxide.
  • iron (III) hydroxide Fe ⁇ (OH)
  • a binder having a large number of carbon atoms when blended, the effect of promoting the combustion of the binder is excellent, and the entire gas generating composition is used. Can contribute to the promotion of combustion.
  • the content of the component (d) is preferably 1 to 10 parts by weight, more preferably 1 to 5 parts by weight per 100 parts by weight of the components (a) and (b) or the total amount of the components (a), (b) and (c). Parts by weight are more preferred.
  • preferred embodiments include (a) nitroguanidine, (b) basic copper nitrate, (c) guar gum and d) those containing a combustion improver; (d) silica is preferred as the combustion improver ⁇
  • the content is (a) 20-60% by weight of nitroguanidine, (b) 35-75% by weight of basic copper nitrate, (c) 0.1-10% by weight of guar gum, (d) Combustion
  • the modifier is preferably 0.1 to 15% by weight.
  • the gas generating composition of the present invention contains the components (a) and (b), and satisfies one requirement, preferably two requirements, more preferably three requirements selected from the following requirements (1) to (3). You can have what you have.
  • the guanidine derivative of the component (a) is the guanidine derivative of the second group described above.
  • the weight loss rate of the gas generant is 2.0% or less, preferably 1.0%. Or less, more preferably 0.5% or less.
  • This requirement 1 is defined as follows: gas generation when the gas generating composition is placed in a stainless steel container with an internal volume of 18.8 ml and held in a sealed state at 1000 at 90 or 400 hours at 110 It is the weight loss rate of the agent.
  • the concentration of the trace gas contained in the gas generated by the combustion of the gas generating agent is the measured value in the 2800 L tank, C ⁇ is 400 ppm or less, NO is 40 ppm or less, 1 ⁇ ⁇ 2 Is 8 pm or less and NH 3 is 100 ppm or less.
  • the requirement (1) is that the concentration of the trace gas contained in the gas generated by the combustion of the gas generant is measured as a value measured in a 2800 L tank.
  • N_ ⁇ 2 is 8 p pm or less and NH 3 is l 0 0 p pm or less.
  • NO is 100 p pm or less
  • N ⁇ 2 is 20 p pm or less
  • NH 3 is 30
  • concentration of each of these gases can be measured, for example, using a standard single-type driver's pyro inflation system at 20 ° C and an output of 130 to 230 kPa under a 2800 L tank test. Is the value obtained when This gas generant composition can be used for other types of gas generators regardless of the measurement conditions.
  • the maximum internal pressure in the gas generator during combustion of the gas generating agent is 7840 to 22500 kPa, preferably 8820 to 17640 kPa.
  • the gas generating composition of the present invention contains the components (a), (b) and (c), and comprises one requirement selected from the following requirements (1) to (3), preferably two requirements, more preferably It can have three requirements.
  • requirements 1 to 3 are the same as above.
  • the guanidine derivative of the component (a) is the guanidine derivative of the second group described above.
  • the weight loss rate of the gas generating agent shall be 2.0% or less when the gas generating composition is kept in a sealed state at 90 at 1000 hours or at 110 at 400 hours.
  • the concentration of trace gases contained in the gas generated by the combustion of the gas generating agent, in a measured value at 280 0 L tank, CO is 400 p pm or less, NO is 4 O p pm hereinafter, 1_Rei 2 81) 111 or less and ⁇ 11 3 1 00 p pm it less.
  • the maximum internal pressure in the gas generator during combustion of the gas generating agent shall be 7840 to 22500 kPa.
  • the gas generating composition of the present invention is a composition comprising the components (a), (b) and (d) as essential components or the components (a), (b), (c) and (d) as essential components. Even when a composition is used, since the component (d) is not a component that inhibits the expression of the above requirements (1) to (3), it must meet the requirements (1) to (3) in the same manner as a composition not containing the component (d). is there.
  • the gas generating composition of the present invention can be molded into a desired shape, and can be formed into a single-hole cylindrical, porous cylindrical or pellet-shaped molded body.
  • These moldings are Water or organic solvent is added to and mixed with the pelletizing composition, and the mixture is extruded (single-hole cylindrical or porous cylindrical molded body) or compression-molded using a tableting machine or the like (pellet-shaped molding). Body).
  • the gas generant composition of the present invention or a molded article obtained therefrom can be used, for example, for an inflation event for an airbag in a driver's seat of a vehicle, an inflation event for an airbag in a passenger seat, an inflation event for a side airbag, an inflation event for an inflation.
  • the gas generator using the gas generating composition of the present invention or a molded article obtained from the gas generating composition may be a gas-supply type that is supplied only from the gas generating agent, or a compressed gas such as argon and a gas generating agent. Any of the hybrid types that are both.
  • gas generating composition of the present invention or a molded article obtained therefrom can be used as an igniting agent called an enhancer (or a booth) for transmitting the energy of the primer / squib to the gas generating agent.
  • an enhancer or a booth
  • FIG. 1 is a scanning electron micrograph (X 10, 00 0) of the basic copper nitrate obtained in Example 5.
  • FIG. 2 is a scanning electron micrograph (X 10, 00 0) of the basic copper nitrate obtained in Example 5.
  • FIG. 3 is a scanning electron micrograph (X500) of the basic copper nitrate obtained in Example 5.
  • FIG. 4 is a scanning electron micrograph (X200) of the basic copper nitrate obtained in Example 5.
  • FIG. 5 is a scanning electron micrograph (X500) of the basic copper nitrate obtained in Example 7.
  • FIG. 6 is a scanning electron micrograph (X2000) of the basic copper nitrate obtained in Example 7.
  • FIG. 7 is a scanning electron micrograph (X5000) of the basic copper nitrate obtained in Example 7.
  • the sample powder was fixed on a special sample stage, and the particle size of the sample powder was measured using a scanning electron microscope in the observation field images at 500, 2000, and 100,000 magnifications, and the particle morphology was determined at the same time.
  • the particle size of the primary particles was measured in the same manner after the secondary particles were broken into primary particles.
  • the length was defined as the particle size.
  • the maximum diagonal length was defined as the particle size.
  • the major axis was defined as the particle size.
  • the measurement was performed by the BET method using nitrogen gas.
  • the sample powder was placed in a 10-milliliter graduated cylinder, placed on a horizontal table, and patted 30 times lightly on the horizontal table.
  • the half width was determined from the main peak obtained by the powder X-ray diffraction method (Rietveld method). (5) TG-DTA (thermogravimetric-differential thermal analysis) measurement
  • the heating was performed at a heating rate of 20Z minutes.
  • the gas generant composition (containing 40 g of gas generant) was placed in an aluminum container, the total weight was measured, and (total weight-aluminum container weight) was taken as the sample weight before the test.
  • the aluminum container containing the sample was placed in an SUS thick-walled container (internal volume: 11.88 ml), covered, and then placed in a 11 Ot: thermostat. At this time, the container was sealed using a rubber packing and a clamp. After a lapse of a predetermined time, the thick US container was taken out of the thermostat, and after the container had returned to room temperature, the lid was opened and the aluminum container was taken out of the container.
  • the total weight of each aluminum container was measured, and (total weight-aluminum container weight) was taken as the sample weight after the test.
  • the heat resistance was evaluated by determining the weight loss rate by comparing the weight change before and after the test.
  • the weight reduction rate was calculated from [(the weight of the gas generating agent before the test-the weight of the gas generating agent after the test) / the weight of the gas generating agent before the test] .times.100.
  • the obtained basic copper nitrate was a pale blue solid, but gray was seen in a part of the solid, and the filterability was poor.
  • a part of the washed product was dried in the air at 110, the whole product was decomposed in the black band drying process and the thermal stability was very poor.
  • the remaining wash product was dried at 110 under reduced pressure of 1333.22 Pa (1 OmmHg) to give basic copper nitrate. Table 1 shows the measurement results.
  • a light blue basic copper carbonate was obtained in the same manner as in Example 1, except that the amount of sodium hydrogencarbonate was 21.4 g. Table 1 shows the measurement results.
  • a solution prepared by dissolving 90.5 g of copper nitrate in 50 g of water was added continuously to 200 g of water adjusted to pH 3.8 with nitric acid over 5 hours and 30 minutes while maintaining the temperature at 5. During this time, a solution prepared by dissolving 47.5 g of sodium hydrogen carbonate in 600 g of water was added so that the pH was maintained between 5.4 and 5.6. After the addition was completed, the mixture was filtered, washed and dried to obtain 39.7 g of basic copper nitrate.
  • the measurement results of the obtained basic copper nitrate are shown in Table 2, and scanning electron micrographs (X500, X2000, X5000) are shown in FIGS. 5, 6, and 7.
  • NQ is nitroguanidine
  • BHTN H 3 is bitetrazole ammonium salt
  • BHTK is bitetrazole potassium salt
  • DCDA is dicyandiamide
  • 5-AT is 5-aminotetrazole
  • Zn 5—AT
  • CMCN a denotes sodium carboxymethylcellulose.
  • the gas generant composition (containing 40 g of gas generant) was placed in an aluminum container, and the total weight was measured. (Total weight minus aluminum container weight) was used as the sample weight before the test.
  • the aluminum container containing the sample was placed in an SUS thick container (internal volume: 11.8 ml) and capped. At this time, the container was sealed using rubber packing and clamps. This was placed in a thermostat at 90 ° and 11 Ot. After 1,000 hours and 400 hours, the container was taken out of the thermostat, the container was opened after the container had returned to room temperature, and the aluminum container was taken out of the container. The total weight of each aluminum container was measured, and (total weight-aluminum container weight) was taken as the sample weight after the test.
  • the heat resistance was evaluated by comparing the weight change before and after the test to determine the weight loss rate.
  • the weight reduction rate was determined from [(weight of gas generating agent before test, weight of gas generating agent after test), weight of gas generating agent before test] XI00.
  • the sealed container was placed in a polyvinyl chloride bag containing about 2 liters of air, and then the bag was sealed. The clamp was removed inside the bag, the sealed container was opened, and the gas in the container was released into the bag. After the gas in the bag was diffused and made uniform, the detector tube was pierced into the bag and the gas concentration was measured immediately. (1 1) Measurement of internal pressure
  • a gas generating composition having the composition shown in Table 3 was produced.
  • Table 3 shows the combustion temperature based on the theoretical calculation of these compositions, the gas generation efficiency (unit “mo 100 g” represents the number of moles of gas generated per 100 g of the composition), and the CO and NO generation amounts. Shown in The combustion temperature of each of Examples 9 to 17 was sufficiently lower than that of Comparative Examples 3 and 4, and was 1900K or less, indicating that the combustion temperature was effective in reducing the amount of generated NO.
  • a gas generating composition having the composition shown in Table 4 was produced. These compositions were tested for friction sensitivity and hammering sensitivity based on the explosives performance test method of JIS K481 0-1 979. Table 4 shows the results.
  • a gas generating composition having the composition shown in Table 5 was produced.
  • the melting temperature, exothermic onset temperature, and TG weight loss onset temperature were measured using a TAS type differential thermal analyzer manufactured by Rigaku Corporation.
  • the temperature rise rate during the measurement was 20 ° C Z min, the measurement atmosphere was nitrogen gas, and the sample amount during the measurement was l to 2 mg.
  • Table 5 shows the results.
  • the composition of Example 26 was subjected to a heat resistance test by the following method. The heat resistance test was conducted by placing the composition in an aluminum container in a thermostat at 110 ° C.
  • a gas generating composition having the composition shown in Table 6 was produced. These compositions were molded into strands, and the burning rate was measured at a pressure of 4900, 6860, or 8820 kPa under a nitrogen atmosphere. Table 6 shows the burning rate of 6860 kPa and the pressure index between 4900 and 8820 kPa. As described above, the respective numerical values shown in Examples 18 to 40 indicate that the compositions of these Examples satisfy practical conditions as a gas generating composition for inflation. .
  • Examples 41 to 63 Gas generating compositions having the compositions shown in Table 7 were produced, and these compositions were molded into 2 g strands. This strand was attached to a sealed bomb with an internal volume of 1 liter.After the inside of the bomb was replaced with nitrogen, the pressure was further increased to 6860 kPa with nitrogen, and the strand was ignited by energizing a nichrome wire and completely burned. . The combustion gases to approximately 20 seconds after the energization was collected in a gas sampling bag, immediately, in the detection pipe NO 2, NO, C_ ⁇ were analyzed concentration of C_ ⁇ 2. Examples 64 to 83
  • Examples 84 to 102 A gas generating composition having the composition shown in Table 9 was produced. Table 9 shows the combustion temperature and generated gas efficiency based on theoretical calculations of these compositions (unit “mol Zl 00 g” represents the number of moles of generated gas per 100 g of the composition).
  • Example 103 A gas generating composition of NQ / BCN noguagum 44.2 / 52.8 / 3 (% by weight) was manufactured and tested for heat resistance by the following method. As a result, the weight loss rate under the condition of 110 and 214 hours was 0.27%, and the weight loss rate under the condition of 11 Ot: 408 hours was 0.45%.
  • a gas generant composition having the composition shown in Table 10 was produced, and the items shown in Table 10 were measured in the same manner as in Examples 9 to 103 described above.
  • Comparative Example 1 215 light blue-black
  • Example 1 220 light blue (no color change)
  • Example 2 light blue (no color change)
  • Example 3 223 light blue (no color change)
  • Example 4 light blue (no color change) Comparative Example 2 219 light blue ⁇ light gray
  • Example 5 The particles of Example 5 are primary particles of 3 to 6 jLim;
  • the particles (non-aggregate) of Example 6 are amorphous plate-like crystals and have a ft ⁇ diagonal length of 3 to 15 ⁇ m.
  • Example 18 BHTNH 3 / BCN 28.75 / 71.25 >36.0> 100
  • Example 19 BHTK / BCN 44.52 / 55.48> 36.0 70
  • Example 20 BHTNH 3 / BCN / CMCNa 25.89 / 71.11 / 3 ⁇ 36.0> 80
  • Example 21 NQ / BCN / CMCNa 32/60/8> 36.0 ⁇ 50
  • Example 22 NQ / BCN / Quaka 44.2 / 52.8 / 3 ⁇ 36.0 60-70
  • Example 23 NQ / BCN / Quark / KN0 3 45.0 / 47.0 / 3/5 ⁇ 36.0> 100
  • Example 24 BHTNH 3 / BCN 28.75 / 71.25 208 230 216
  • Example 25 BHTK / BCN 44.52 / 55.48 198 362 201
  • Example 26 NQ / BCN / CMCNa 32/60/8 216.6 209.5
  • Example 27 NQ / BCN / CMCNa 43.9 / 53.1 / 3 221.5 204.8
  • Example 28 Zn (5-AT) 2 / BCN 40/60 221.3 221.3
  • Example 57 NQ / BCN / CMCNa / CaC0 3 42.5 / 49.5 / 3/5 0 5 270 2200
  • Example 58 NQ BCNZCMCNaZAI 2 ⁇ 3 42.5 / 49.5 / 3/5 0 2 310 2900
  • Example 59 NQZBCN CMCNaZSi ⁇ 2 42.5 / 49.5 / 3/5 0 1 310 2100
  • Example 60 NQ BCN gain 44.2 / 52.8 / 3 0 8 410 2500
  • Example 61 NQ / BCN no gain KN0 3 44.4 / 51.6 / 3/1 0 5 320 2000
  • Example 62 NQ BCN gain 'KN ⁇ 3 44J / 49.3 / 3/3 0 1 350 1900
  • Example 63 NQ BCN gain' KN ⁇ 3 45.0 / 47.0 / 3/5 0 3 320 2000

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Catalysts (AREA)

Description

明細書
塩基性金属硝酸塩、 その製造法及びガス発生剤組成物 発明の属する技術分野
本発明は、 新規な塩基性金属硝酸塩、 その製造方法、 ガス発生剤組成物、 その 成型体及びガス発生剤組成物を用いたエアバッグ用ガス発生器に関する。 自動車 等のエアバック拘束システムに適する。
従来の技術
自動車における乗員保護装置としてのエアバッグ用ガス発生剤としては、 従来 からアジ化ナトリウムを用いた組成物が多用されてきた。 しかし、 アジ化ナトリ ゥムの人体に対する毒性 [LD 50 (oral -rat) = 27 m g Z k g]や取扱い時の 危険性が問題視され、 それに替わるより安全ないわゆる非アジド系ガス発生剤組 成物として、各種の含窒素有機化合物を含むガス発生剤組成物が開発されている。 例えば、 米国特許 4, 909, 549号には、 水素を含むテトラゾール、 トリ ァゾール化合物と酸素含有酸化剤との組成物が開示されている。 米国特許 4, 3 70, 18 1号には、 水素を含まないビテトラゾールの金属塩と酸素を含まない 酸化剤とからなるガス発生剤組成物が開示されている。 米国特許 4, 369, 0 79号には、 水素を含まないビテトラゾ一ルの金属塩とアルカリ金属硝酸塩、 ァ ルカリ金属亜硝酸塩、 アルカリ土類金属硝酸塩、 アルカリ土類金属亜硝酸塩及び これらの混合物からなるガス発生剤組成物が開示されている。 米国特許 5, 54 2, 999号には、 GZT, TAGN, NG (ニトログァニジン)、 NTO等の燃 料、 塩基性硝酸銅、 有毒ガスを低減する触媒とクーラント剤からなるガス発生剤 が開示されている。 特開平 1 0— 7227 3号には、 ビテトラゾール金属塩、 ビ テトラゾールァ'ンモニゥム塩、 アミノテ卜ラゾールと硝酸アンモニゥムからなる ガス発生剤が開示されている。
しかしながら、 上記の非アジド系ガス発生剤組成物は、 燃焼温度、 燃焼速度、 相移転、 一酸化炭素及び窒素酸化物の生成量、 ガス発生効率などに問題がある。 例えば、 前記の米国特許 4, 3 6 9 , 0 7 9号のガス発生剤組成物は、 燃焼温度 が高く、 実際に使われると、 大量のクーラントが必要となる。 米国特許 5 , 5 4 2 , 9 9 9号の組成物は、 燃焼速度が小さく、 短時間で完全燃焼できない恐れが ある。 特開平 1 0— 7 2 2 7 3号のガス発生剤は、 使用温度範囲において硝酸ァ ンモニゥムの相転移による形状変化によって、 ガス発生剤成型体が破損し、 安定 的に燃焼できなくなる。
また特開平 9一 3 2 8 3 8 9号公報には、 燃料及び酸化剤からなり、 燃料が 6 0 - 1 0 0重量%が一般式 (I)〜ひ II)で示されるポリアミンの硝酸塩とバランス量 の炭素数 2〜 3のアルキルジアミンであり、 酸化剤が銅化合物であるガス発生性 組成物が開示されている。 この従来技術は、 燃料としてポリアミンの硝酸塩を必 須とすることによってのみ、 ガス収率が高い等の効果が得られるものである。 更に特開平 1 1— 3 4 3 1 9 2号公報には、 2種以上の成分からなる燃料混合 物と 3種以上の成分からなる酸化剤混合物からなり、 燃料混合物としてグァニジ ン化合物と複素環式有機酸を必須成分として含み、 酸化剤混合物として遷移金属 酸化物、 塩基性硝酸銅及び塩素酸金属、 過塩素酸金属、 過塩素酸アンモニゥム、 硝酸アルカリ金属、 硝酸アルカリ土類金属又はそれらの混合物を必須成分として 含むガス生成用組成物が開示されている。 この従来技術は、 2種以上の燃料と 3 種以上の酸化剤の組合せによってのみ、 引火能と燃焼速度が良いという効果が得 られるものである。
また米国特許 5 , 5 4 2 , 9 9 8号には、 燃料、 酸化剤及び触媒からなり、 酸 化剤が塩基性硝酸銅で、 触媒が金属酸化物であるガス発生混合物が開示されてお り、 任意成分として冷却剤が使用できることが記載され、 スラグ形成剤は不要で あると記載されている。 更に米国特許 5 , 5 4 2 , 9 9 9号には、 燃料、 酸化剤 及び触媒からなり、 酸化剤が塩基性硝酸銅で、 触媒が担体状の金属又は金属合金 であるガス発生混合物が開示されており、 任意成分として冷却剤が使用できるこ とが記載され、 スラグ形成剤は不要であると記載されている。
これら 2件の従来技術はいずれも金属触媒を必須とするものであるため、 製造 コストも高くなり、 触媒を含まないガス発生剤と比べると、 同じガス発生効率を 確保しょうとすれば重量が増加し、 重量を低減しょうとすればガス発生効率が低 下するため、 特にガス発生器に対する軽量化の要請が非常に大きな現状では、 実 用的なものではない。
またフランス特許 2 , 7 7 2 , 3 7 0号には、 シリコーン樹脂、 エポキシ樹脂、 ポリアクリルゴムから選ばれる架橋された還元結合剤、 銅化合物と有機窒素化合 物の組合せからなる添加剤、 過塩素酸アンモニゥムと塩素捕獲剤との混合物を含 む主酸化剤を必須成分とするガス発生火ェ組成物が開示されている。 この従来技 術は、 かかる組成にすることよってのみ、 着火性等が改良できるものである。 更に、 非アジド系ガス発生剤においては、 燃料と酸化剤の組合せによっては長 期間にわたって物理的及び化学的な相互作用がなされる結果、 燃料成分が徐々に 分解されてしまい、 燃料の熱分解温度が当初の設計温度から低下していくという 問題が生じる。 このように燃料の熱分解温度が低下した場合、 長期間経過する過 程でガス発生剤が劣化する場合があるので、 燃料の分解が小さく保存安定性の高 いガス発生剤が求められている。
本発明の開示
本発明の課題は、 燃料成分と組み合わせた場合に保存安定性の高いガス発生剤 を得ることができる塩基性金属硝酸塩及びその製造方法を提供することである。 また本発明の他の課題は、 作動前には保存安定性及び取り扱い時の安全性が高 く、 作動時には燃焼温度が低く、 燃焼速度が大きく、 一酸化炭素及び窒素酸化物 の生成量が少なく、 燃焼安定性がよいガス発生剤組成物を提供することである。 更に本発明の他の課題は、 前記ガス発生剤組成物を用いたエアバッグ用ガス発 生器を提供することである。
本発明の課題は、 上記従来技術とは異なる組成からなり、 燃焼温度が低く、 燃 焼速度が大きく、 一酸化炭素及び窒素酸化物の生成量が少なく、 燃焼安定性の優 れたガス発生剤組成物、 その成型体及びそれらを用いたエアバック用ガス発生器 を提供することにある。
本発明は、 以下に特定した塩基性金属硝酸塩 (BCN)、 以下に特定した製造方 法、 その製造方法によって得た塩基性金属硝酸塩を提供する。 これらの塩基性 金属硝酸塩は本発明で例示した他のガス発生剤の成分とともに使用して、 ガス発 生剤組成物を提供する。
本発明は、 塩基性金属硝酸塩を含むガス発生剤組成物を提供する。 この組成 物は、 以下に特定した塩基性金属硝酸塩 (BCN)、 以下に特定した製造方法によ つて得た塩基性金属硝酸塩を好ましく含む。
本発明は、 下記 (a ) 〜 (d ) の要件の 1以上を具備する塩基性金属硝酸塩を 提供する。
( a ) 粒子の粒径が 0 . 5〜 4 0 m;
( b ) X線回折法におけるピークの半値幅が 0 . 3 5 deg以下となる結晶化度 を有すること ; '
( c ) T G— D T A分析による重量減少開始温度が 2 2 0 ^以上であること ;
( d ) 不純物の含有量が N a原子換算で 1 0 0 0 p p m以下であること。
この発明の塩基性金属硝酸塩は熱安定性に優れたものである。 また本発明は、 硝酸金属塩と炭酸水素アルカリ金属塩を反応させる塩基性金属 硝酸塩の製造方法を提供する。
また本発明は、 燃料及び塩基性金属硝酸塩を含有しており、 前記塩基性金属硝 酸塩が下記要件 (a— 1) 〜 (a— 3) から選ばれる 1以上を具備しているもの であるガス発生剤組成物を提供する。
(a - 1 ) 粒子の粒径が 0. 5〜 40 μ m;
(a— 2) 粒子の比表面積が 0. 4~6. OmVg ;
(a— 3) 粒子の嵩密度が 0. 4 gZm l以上;
また本発明は、 燃料及び塩基性金属硝酸塩を含有しており、 前記塩基性金属硝 酸塩が、 1次粒子が凝集してなる 2次粒子であり、 前記 2次粒子が下記要件 (a 一 1) 〜 (a— 3) から選ばれる 1以上を具備しているものであるガス発生剤組 成物を提供する。
( a— 1 ) 粒子の粒径が 0. 5〜 40 m;
(a— 2) 粒子の比表面積が 0. 4〜6. OmVg ;
( a— 3 ) 粒子の嵩密度が 0. 4 g Zm 1以上;
更に本発明は、 上記のガス発生剤組成物を用いたエアバッグ用インフレ一夕を 提供する。
なお、 上記の (a) 〜 (d)、 (a— 1) 〜 (a— 3) の各要件の測定条件は実 施例に示す。
本発明における塩基性金属硝酸塩は、 次のような式で示される一連の化合物が 挙げられる。 また、 更に水和水を含む化合物も存在する場合もある。 式中、 Mは 金属を、 x' は金属数を、 y、 y ' は N〇3イオン数を、 z ' は〇Hイオン数を、 nは M (N〇3) y部分に対する M (OH) z部分の比を示すものである。
M (N03) y · nM (OH) z又は Mx. (N〇3) y. (OH) z. 前記式に相当するものの例としては、 金属 Mとして銅、 コバルト、 亜鉛、 マン ガン、 鉄、 モリブデン、 ビスマス、 セリウムを含む、 Cu2 (N03) (OH) 3、 Cu3 (N03) (OH) 5 - 2H2〇、 Co2 (N03) (OH) 3、 Zn2 (N03) (OH) 3、 Mn (N03) (OH) 2、 F e 4 (N03) (OH) Ι · 2H20、 B i (N03) (OH) 2、 C e (N03) 3 (OH) · 3H2〇が挙げられる。
塩基性金属硝酸塩としては、 塩基性硝酸銅 (BCN)、 塩基性硝酸コバルト、 塩 基性硝酸亜鉛、 塩基性硝酸マンガン、 塩基性硝酸鉄、 塩基性硝酸モリブデン、 塩 基性硝酸ビスマス及び塩基性硝酸セリウムから選ばれる 1種以上が挙げられ、 こ れらの中でも塩基性硝酸銅が好ましい。
本発明は、 1つの解決手段として、 (a) テトラゾール誘導体、 グァニジン、 炭 酸グァニジン、 ニトログァニジン、 ジシアンジアミド、 二トロアミノグァニジン 及び二トロアミノグァニジン硝酸塩から選ばれる 1種以上のグァニジン誘導体並 びに (b) 塩基性金属硝酸塩を含有するガス発生剤組成物を提供する。
更に本発明は、 他の解決手段として、 (a) テトラゾ一ル誘導体、 グァニジン、 炭酸グァニジン、 ニトログァニジン、 ジシアンジアミド、 ニトロアミノグァニジ ン及び二トロアミノグァニジン硝酸塩から選ばれる 1種以上のグァニジン誘導体、 (b) 塩基性金属硝酸塩並びに (c) バインダ及び Z又はスラグ形成剤を含有す るガス発生剤組成物を提供する。
また本発明は、 他の解決手段として、 (a) テトラゾール誘導体、 グァニジン誘 導体又はそれらの混合物、 (b)塩基性金属硝酸塩及び(d)燃焼改良剤を含有す るガス発生剤組成物を提供する。
更に本発明は、 他の解決手段として、 (a) テトラゾール誘導体、 グァニジン誘 導体又はそれらの混合物、 (b) 塩基性金属硝酸塩、 (c) バインダ及び/又はス ラグ形成剤並びに (d) 燃焼改良剤を含有するガス発生剤組成物を提供する。 また本発明は、 他の解決手段として、 (a) テトラゾ一ル誘導体、 グァニジン誘 導体又はそれらの混合物及び (b) 塩基性金属硝酸塩を含有しており、 下記要件 ①〜③から選ばれる 1以上の要件を有しているガス発生剤組成物を提供する。
①ガス発生剤組成物を密閉した状態で 90 で 1000時間又は 1 10 で 4 00時間保持した場合のガス発生剤の重量減少率が 2. 0%以下であること
②ガス発生剤の燃焼により発生するガスに含まれる微量ガスの濃度が、 280 0 Lタンクでの測定値としてで、 COが 400 ppm以下、 NOが 4 O p pm以 下、 N02が 8 p pm以下及びNH3がl 00 p pm以下であること
③ガス発生剤燃焼時におけるガス発生器内の最大内圧が 7840〜 22500 k P aであること
更に本発明は、 (a)テ卜ラゾール誘導体、 グァニジン誘導体又はそれらの混合 物、 (b)塩基性金属硝酸塩並びに (c)バインダ及びノ又はスラグ形成剤を含有 しており、 下記要件①〜③から選ばれる 1以上の要件を有しているガス発生剤組 成物を提供する。
①ガス発生剤組成物を密閉した状態で 90 で 1000時間又は 1 10でで 4 00時間保持した場合のガス発生剤の重量減少率が 2. 0%以下であること
②ガス発生剤の燃焼により発生するガスに含まれる微量ガスの濃度が、 280 0 Lタンクでの測定値としてで、 COが 400 p pm以下、 NOが 4 O p pm以 下、 N02が 8 p pm以下及び NH3が 1 00 p pm以下であること
③ガス発生剤燃焼時におけるガス発生器内の最大内圧が 7840〜 22500 k P aであること
また本発明は、 上記のガス発生剤組成物から得られる単孔円柱状、 多孔円柱状 又はペレツト状の成型体を提供する。
更に本発明は、 上記のガス発生剤組成物及び成型体を用いたエアバック用ィン フレー夕を提供する。 なお、 本発明における 「インフレ一夕」 とは、 ガスの供給 がガス発生剤からだけのパイ口タイプのィンフレー夕と、 ガスの供給がアルゴン 等の圧縮ガスとガス発生剤の両方であるハイブリツドタイプのインフレ一夕 (但 し、 ガス発生剤を燃焼させてガスを発生する機能を有する部分が 「ガス発生器」 となる) を意味する。
本発明の塩基性金属硝酸塩は熱安定性が高いため、 長期間 (例えば 1 0 ~ 1 0 数年)、高温雰囲気に放置された場合でも、分解等の変質が生じることがないため、 特に自動車の安全装置としてのエアバッグインフレー夕に使用するガス発生剤の 酸化剤等として好適である。
また本発明の塩基性金属硝酸塩は、 燃料成分、 特にニトログアジニン等のグァ 二ジン誘導体と組み合わせた場合、物理的及び化学的相互作用が抑制されるので、 燃料成分の分解温度が低下して耐熱性が低下することを防止できる。
更に本発明の製造方法によれば、 安価で工業的に入手が容易な原料を用い、 特 殊な反応設備を特に必要とせず、 かつ容易に制御できる反応条件で塩基性硝酸銅 等の塩基性金属硝酸塩を工業的に製造することができる。
本発明のガス発生剤組成物は、 熱安定性が優れているので、 各種インフレ一夕 に適用した場合、 高い信頼性を長期間維持できる。
本発明のガス発生剤組成物及びその成型体は、 低毒性で危険性が小さいので取 り扱いが容易であり、 燃焼速度が大きく、 燃焼温度が低く、 更に燃焼時に一酸化 炭素や窒素酸化物の生成量が少ない。
発明の実施の形態 1
本発明の熱安定性の良い塩基性金属硝酸塩は、 下記の (a ) 〜 (d ) の要件を
1以上具備するものであり、 1以上でできるだけ多く具備することが好ましく、 全ての要件を具備することがより好ましい。 また、 2以上の要件を具備する場合、 少なくとも要件 (a) を具備することが望ましい。
要件 (a) :粒径が 0. 5〜40 m、 好ましくは 0. 5〜20 μιη、 より好ま しくは:!〜 1 0 mの範囲であること。 2〜40 zm、 2〜20 mでもよい; 要件 (b) : X線回折法におけるピークの半値幅が 0. 3 5deg以下、 好ましく は 0. 26 deg以下となる結晶化度を有すること ;
要件 (c): TG— DT A分析による重量減少開始温度が 220 以上、 好まし くは 2 1 5 以上であること ;
要件 (d):不純物の含有量が N a原子換算で 1 000 p pm以下、 好ましくは 60 0 p pm以下であること。
この実施形態の塩基性金属硝酸塩は熱安定性に優れたものである。
次に、 上記の塩基性金属硝酸塩の製造法について説明する。 本発明の塩基性金 属硝酸塩は、 例えば、 硝酸金属塩と炭酸水素アルカリ金属塩を反応させて製造す ることができる。前記反応過程は、塩基性硝酸銅を例にとると下記反応式 (II)で示 される。
4 C u (Ν03) 2· 3H20 + 6MHC03
C u (N03) 2· 3 C u (OH) 2 + 6 MN03 + 6 C02 + 12H20 (II) (式中、 Mはアルカリ金属である。)
この反応式 (II)から明らかなとおり、塩基性の弱酸塩として炭素水素アル力リ金 属塩を選定することにより、その炭酸水素アル力リ金属塩が硝酸金属塩と反応し、 アル力リ金属イオンが硝酸根と結合して、 水によく溶解する硝酸アル力リ金属塩 になり、 炭酸水素ァニオンが水素イオンと反応して、 炭酸ガスと水に転化する。 このような反応式 (II)で示される本発明の製造方法によれば、生成した硝酸は塩 基性の弱酸塩で中和され、 中和後の弱酸は不安定なためにガスとして溶液から逃 げて行くので、 塩基性金属硝酸塩の生成が妨害されない。 本発明の塩基性金属硝酸塩の製造方法としては、 上記した硝酸金属塩と炭酸水 素アルカリ金属塩を反応させる方法が望ましいが、 水酸化アルカリ金属化合物、 アルカリ金属炭酸塩のような強い塩基性物質 (例えば、 水酸化カリウム、 炭酸ナ トリウム) を用いる方法も適用することができる。 なお、 前記強い塩基性物質を 用いた場合は、 反応式 (111)、 (IV), (V)で示されるように副反応により副生物が生 成し、 これらの副生物の存在により熱安定性が悪くなるものと考えられる。
2KOH + Cu(NO 3)2 → Cu(OH)2 +2KN03
(III)
Cu(N03)2 - 3Cu(OH)2 + 2KOH -→ 4CuO + 4H20 + 2KNO3
(IV)
Cu(N03)2 - 3Cu(OH)2 + 2Na2C03 → 2Cu203(OH) 2 + 2NaOH + 2NaN03 (V)
硝酸金属塩としては、 硝酸コバルト、 硝酸銅、 硝酸亜鉛、 硝酸マンガン、 硝酸 鉄、 硝酸モリブデン、 硝酸ビスマス、 硝酸セリウム等を挙げることができ、 これ らの中でも硝酸銅が好ましい。 硝酸銅としては、 下記一般式 (I) で示される化合 物が好ましく、 硝酸銅三水塩と硝酸銅六水塩がより好ましい。 このような硝酸銅 化合物は市販されており、 かつ安価に入手できるものである。
C u (N 0 3) 2 ' n H 20 (I)
(式中、 nは 0〜6である。)
硝酸銅等の硝酸金属塩は水溶液又は水に可溶な有機溶媒 (例えばエタノール)と 水との混合溶媒に溶解したものを用いることができるが、 水溶液の形で一般的に は用いられる。
溶液中の硝酸銅等の硝酸金属塩濃度は特に規制されるものではなく、 1 %溶液
〜飽和溶液までの濃度から任意に選べばよいが、 一般的には 1モルの硝酸銅等の 硝酸金属塩に対する溶媒の使用量は 2 0 0〜 5 0 0 0 m l程度であるのが好まし レ この範囲より濃度が高い場合は、得られた塩基性硝酸銅等の塩基性金属硝酸塩 の結晶化が悪くなる傾向が見られ、 熱安定性が悪くなる。 なお、 大過剰に溶媒を 用いても使用量に見合った効果が得られるわけではなく、 副生成物となる硝酸ァ ルカリ金属塩の回収等後処理に手間がかかるため好ましくない。
硝酸銅等の硝酸金属塩を中和する炭酸水素アルカリ金属塩としては、 炭酸水素 ナトリウム、 炭酸水素カリウム、 炭酸水素リチウム、 炭酸水素ルビジウム、 炭酸 水素セシウムを挙げることができるが、 経済性面から、 好ましくは炭酸水素ナト リウム、 炭酸水素カリウムである。 このような炭酸水素アルカリ金属塩は、 大量 生産している工業薬品であり、 安価で工業的に入手が容易な工業原料である。 炭酸水素アルカリ金属塩は固体又は溶液の形で使用することができる。 溶液の 場合の溶媒としては、 水又は水に可溶な有機溶媒 (例えばエタノール)と水との混 合溶媒を用いることが出来る。 一般的には水溶液の状態で用いられる。
炭酸水素アルカリ金属塩 1モルに対する溶媒の使用量は 1〜1 0リツトル程度 であるのが好ましい。 炭酸水素アル力リ金属塩が固体又は前記範囲より濃い濃度 の場合は、 硝酸銅等の硝酸金属塩溶液中の硝酸濃度を低くする等の工夫をしない と、硝酸銅等の硝酸金属塩溶液に添加した時に局部的にアルカリ濃度が高くなり、 副反応の水酸化銅の形成が起き、 再現性よく熱安定性のよい塩基性硝酸銅等の塩 基性金属硝酸塩を得ることができない場合もある。
硝酸銅等の硝酸金属塩と炭酸水素アル力リ金属塩の混合比率は、 硝酸銅等の硝 酸金属塩 1モルに対して炭酸水素アルカリ金属塩 2モル以下が好ましく、 1 . ◦
~ 1 . 7モルの範囲がより好ましい。 この範囲より炭酸水素アルカリ金属塩が少 ない場合は、 塩基性硝酸銅等の塩基性金属硝酸塩の品質は向上せず、 塩基性硝酸 銅等の塩基性金属硝酸塩の収率が低くなるだけで工業的な製造方法としては意味 がない。 また、 この範囲より多い場合は、 塩基性硝酸銅等の塩基性金属硝酸塩の 中に水酸化銅等の金属水酸化物が混入するために好ましくない。
硝酸銅等の硝酸金属塩と炭酸水素アル力リ金属塩との混合方法は特に規制され ないが、 一般的には硝酸銅等の硝酸金属塩の溶液に炭酸水素アル力リ金属塩溶液 を添加することが好ましい。 その他、 事前に一定の pH値に調整した溶液中に、 硝酸銅等の硝酸金属塩と炭酸水素アルカリ金属塩をほぼ同時に添加する方法を用 いることもできる。 添加する際、 局部的なアルカリ濃度の上昇を避ける為攪拌下 で添加し、 更に添加口を一個所以上にする等の工夫を凝らすことが好ましい。 添 加速度は、 反応のスケール、 攪拌の程度、 水溶液の濃度、 添加口の数、 混合温度 等により影響を受けるのでこれらを考慮して決める必要があるが、 一般的には局 所的なアル力リ濃度を抑える意味からゆつくり添加して行くことが好ましい。 硝酸銅等の硝酸金属塩と炭酸水素アル力リ金属塩の混合温度は特に規制されず、 一般的^は室温から 100での範囲で実施するが、加温下で行うことが好ましい。 添加終了後の熟成時間は、 混合温度、 混合時間等に影響されるので一概に決定 できないが、 混合温度が高い場合は熟成時間を短かくすることが好ましい。 熟成 時間が必要以上に長い場合、 生成した塩基性硝酸銅等の塩基性金属硝酸塩の一部 が分解して熱安定性の悪いものになる。 また、 熟成時間が短かい場合、 塩基性硝 酸銅等の塩基性金属硝酸塩の結晶化が充分ではなく、 熱安定性が悪くなるので、 これらの影響を考慮して決定することが望ましい。
上記で説明した反応条件以外に、 下記の条件でも反応を行うことができる。 硝 酸銅等の硝酸金属塩 1モルに対する溶媒の使用量は、 20〜 400mし 好まし くは 50〜 200m lとすることができる。 炭酸水素アルカリ金属塩 1モルに対 する溶媒の使用量は 0. 2〜2. 5 L、 好ましくは 0. 5〜1. 5 Lとすること ができる。 反応温度は 0~35°C、 好ましくは 5〜 20 で行うことができる。 次に、 本発明のガス発生剤組成物について説明する。 本発明のガス発生剤組成 物は、 燃料及び塩基性金属硝酸塩、 更に必要に応じて添加剤を含有しているもの である。
本発明のガス発生剤組成物で用いる塩基性金属硝酸塩の一実施形態は、 下記要 件 (a— 1) 〜 (a— 3) から選ばれる 1以上を具備しているものであり、 好ま しくはいずれか 2つの要件、 より好ましくは 3つの要件を具備しているものであ る。
要件 (a— 1 ):粒子の粒径が 0. 5~40 m、 好ましくは 0. 5〜20 ΠΙ、 より好ましくは 1〜: L O m ;
要件 (a— 2):粒子の比表面積が 0. 4~6. OmVg, 好ましくは 0. 5 〜4. OmVg, より好ましくは 0. 5〜2. 5mVg ;
要件 (a— 3):粒子の嵩密度が 0. 4 gZm l以上、 好ましくは 0. 4〜1. O gZm l , より好ましくは 0. 7〜: I. O gZmし
要件 (a— 1) 〜 (a— 3) を満たすことによって、 下記の理由等により、 塩 基性金属硝酸塩と組み合わせた場合に安定性が悪くなる化合物、 例えば、 グァニ ジン誘導体 (例えばニトログァニジン) と塩基性金属硝酸塩 (例えば塩基性硝酸 銅) を含むガス発生剤組成物を製造したとき、 下記のとおりの優れた効果が得ら れる。 なお、 以下においては、 特に効果の大きいニトログァニジンと塩基性硝酸 銅を用いた場合について説明するが、 本発明のガス発生剤組成物は前記組合せに 限定されるものではない。
ニトログァニジン (NQ) と塩基性硝酸銅 (BCN) を混合したときに、 NQ と B CNの間の物理的及び Z又は化学的な相互作用が大きいと、 NQと B CNの 分解温度が低下して、 ガス発生剤組成物の性能に悪影響を与える。 即ち、 NQの
— NH2基と B CNの—〇H基との間で相互作用 (例えば、 水素結合、 ファ ルヮールスカ) が生じ、 高温になった場合等において、 脱水等の化学反応で水等 を生成するなどしてガス発生剤組成物の性能に悪影響を与える。しかし、要件(a - 1) 〜 (a— 3) を満たすことによって、 下記の作用効果が得られるので、 ガ ス発生剤組成物の性能に悪影響を与えることが防止される。
〔要件 (a— 1) による作用効果〕
BCNの粒径が小さ過ぎると、 N Qの表面により多くの BCNが付着するなど して、 それらの間の相互作用がより大きくなり、 分解温度が低下するなどの影響 がある。 そこで、 粒径を要件 (a— 1) の範囲にすることによって、 相互作用を 小さくして、 分解温度の低下等が生じることを防止できる。
〔要件 (a— 2) による作用効果〕
B C Nの比表面積が大きいと、比表面積の小さい B C Nを用いた場合に比べて、 同重量の B CNを用いても B CNの総表面積が大きくなる結果、 NQと B CNと の相互作用が大きくなる。 そこで、 比表面積を要件 (a— 2) の範囲にすること によって、相互作用を小さくして、分解温度の低下等が生じることを防止できる。 〔要件 (a— 3) による作用効果〕
B C Nの嵩密度が小さいと単位重量当たりの体積が大きく、 比表面積が大きく なるので、 要件 (a— 2) を満たさなくなる。 また、 特に凝集体の場合、 ガス発 生剤組成物の製造工程において B CNが破壊されると、 その時に発生する新鮮な 破砕面と NQの相互作用が大きいことから、 固く凝集されていること、 即ち嵩密 度が高いものが相互作用を小さくできることになり、 その結果、 分解温度の低下 等が生じることを防止できる。
本発明のガス発生剤組成物で用いる塩基性金属硝酸塩の他の実施形態は、 上記 した要件 (a— 1) 〜 (a— 3) に加えて更に下記要件 (b) 〜 (d) から選ば れる 1以上を具備しているものであり、 好ましくはいずれか 2つの要件、 より好 ましくは 3つの要件を具備しているものである。
要件 (b): X線回折法におけるピークの半値幅が 0. 3 5deg以下、 好ましく は 0. 2 6deg以下となる結晶化度を有すること;
要件(c): TG— DTA分析による重量減少開始温度が 2 2 0で以上、 好まし くは 2 1 5 以上であること;
要件(d):不純物の含有量が N a原子換算で 1000 p pm以下、 好ましくは 6 0 0 p pm以下であること。
要件 (b) 及び (c) を具備することで、 塩基性硝酸銅自体の安定性を向上さ せることができ、 また要件 (d) を具備することで、 ニトログァニジンと塩基性 硝酸銅を組み合わせた場合の安定性を高くすることができ、また要件( b )〜( d ) を具備することで、 上記したニトログァニジンと塩基性硝酸銅との相互作用の抑 制効果を更に高めることができる。
本発明のガス発生剤組成物で用いる塩基性金属硝酸塩の他の実施形態は、 塩基 性金属硝酸塩が、 1次粒子が凝集してなる 2次粒子であり、 前記 2次粒子が下記 要件 (a— 1) 〜 (a— 3) から選ばれる 1以上を具備しているものであり、 好 ましくはいずれか 2つの要件、 より好ましくは 3つの要件を具備しているもので ある。
要件 (a— 1):粒子の粒径が 0. 5〜40 μΐΏ、 好ましくは 0. 5〜20 ΙΏ、 より好ましくは 1〜 1 0 μπι ;
要件 (a— 2):粒子の比表面積が 0. 4〜6. OmVg, 好ましくは 0. 5 〜4. 0m2/g、 より好ましくは 0. 5〜2. 5m2/g ;
要件 (a_ 3):粒子の嵩密度が 0. 4 g /m l以上、 好ましくは 0. 4〜 1.
0 g /m 1 , より好ましくは 0. 7〜: L . O gZm l ;
要件 (a— 1 ) 〜 (a— 3) を具備することにより、 上記した効果を得ること ができる。
本発明のガス発生剤組成物で用いる塩基性金属硝酸塩が凝集体である場合の他 の実施形態は、 上記した要件 (a— 1 ) 〜 (a— 3 ) に加えて更に下記要件 (b ) 〜 (d ) から選ばれる 1以上を具備しているものであり、 好ましくはいずれか 2 つの要件、 より好ましくは 3つの要件を具備しているものである。
要件 (b ): X線回折法におけるピークの半値幅が 0 . 3 5 deg以下、 好ましく は 0 . 2 6 deg以下となる結晶化度を有すること;
要件(c ): T G— D T A分析による重量減少開始温度が 2 2 0で以上、 好まし くは 2 1 5で以上であること;
要件(d ):不純物の含有量が N a原子換算で 1 0 0 0 p p m以下、好ましくは 6 0 0 p p m以下であること。
要件 (b ) 〜 (d ) を具備することにより、 上記した効果を得ることができる。 このような 1次粒子が凝集した 2次粒子からなる塩基性金属硝酸塩は、 針状乃 至板状及び Z又は球状乃至それに類似した形状の 1次粒子が多数凝集して形成さ れたものが望ましい。 「針状乃至板状」 とは、 針状の粒子のみ、 板状の粒子のみ、 針状の粒子から針状の粒子よりも段階的に幅が大きくなつた板状の粒子が混在し ていることを意味し、 「球状若しくはそれに類似した形状」 とは、真球状の粒子の み、 それに類似した形状、 例えば、 真球の表面に凹凸を有するものや楕円球状の 粒子のみ、 真球状の粒子から楕円球状等の類似形状の粒子までが混在しているこ とを意味する。
2次粒子からなる塩基性金属硝酸塩としては、 例えば、 針状乃至板状の 1次粒 子が多数積層して凝集したものであり、 最下層が放射状に配置され、 順次放射状 に一方向に積層されたもの、 例えば 「菊の花状」 をなすように針状乃至板状の 1 次粒子が積層したものが挙げられる。 このような 1次粒子が凝集した 2次粒子からなる塩基性金属硝酸塩は、 例えば 上記した塩基性金属硝酸塩の製造法において、 硝酸金属塩と炭酸水素アルカリ金 属塩の濃度、 反応温度、 熟成時間を変更することなどにより得られる。
硝酸銅等の硝酸金属塩 (無水物換算) 1モルに対する溶媒の使用量は、 2 0〜
4 0 0 m lが好ましく、 5 0〜2 0 O m 1がより好ましく、 炭酸水素アルカリ金 属塩 1モルに対する溶媒の使用量は、 0 . 2〜2 . 5リットルが好ましく、 0 . 5〜1 . 5リットルがより好ましい。
反応温度は、 1 0〜3 5で程度が好ましく、 室温付近の温度がより好ましい。 熟成時間は、 加温した場合よりも長く設定することが好ましい。
本発明のガス発生剤組成物に含まれる燃料としては、 グァニジン誘導体、 ァゾ ール誘導体、 トリアジン誘導体、 遷移金属錯体から選ばれるものが挙げられる。 グァニジン誘導体としては、 グァニジン、 モノ、 ジ又はトリアミノグァ二ジン 硝酸塩、 硝酸グァニジン、 炭酸グァニジン、 ニトログァニジン (N Q )、 ジシアン ジアミド (D C D A) 及び二トロアミノグァニジン硝酸塩から選ばれる 1種以上 が挙げられ、 これらの中でもニトログァニジン、 ジシアンジアミドが好ましい。 ァゾ一ル誘導体としては、 テトラゾール、 5—アミノテトラゾール、 5 , 5 ' —ビ一 1 H—テトラゾール、 5—二トロアミノテトラゾール、 5—アミノテトラ ゾールの亜鉛塩、 5—アミノテトラゾールの銅塩、 ビテトラゾール、 ビテトラゾ —ルカリウム塩(B H T K)、 ビテトラゾールナトリウム塩、 ビテトラゾールマグ ネシゥム塩、 ビテ卜ラゾールカルシウム塩、 ビテトラゾールジアンモニゥム塩(B H T N H 3 )、 ビテトラゾ一ル銅塩及びビテトラゾールメラミン塩から選ばれる 1 種以上が挙げられる。 これらの中でも、 窒素原子含有量が 8 1 . 4重量%、 L D
5 0 (oral -rat) が 2 0 0 0 m gノ k gであり、 燃焼効率が良いため、 ビテトラ ゾールジアンモニゥム塩が好ましい。 ここでいうビテトラゾール化合物には、 2 つのテトラゾール環の 5— 5' 結合体と 1— 5' 結合体が含まれ、 価格と入手の 容易さから 5_ 5 ' 体が好ましい。
トリアジン誘導体としては、 メラミン、 トリメチロールメラミン、 アルキル化 メチロールメラミン、 アンメリン、 アンメランド、 シァヌ一ル酸、 メラム、 メレ ム、 メラミンの硝酸塩、 メラミンの過塩素酸塩、 トリヒドラジノトリアジン、 メ ラミンの二ト口化化合物等から選ばれる 1種以上が挙げられる。これらの中でも、 LD 50 (oral -rat) が 316 1 m g Z k gで、 燃安定性が高く、 取り扱い時に も安全で価格が低いメラミン、 トリヒドラジノトリアジン (THT) が好ましい。 上記した燃料の中でも、 上記の塩基性金属硝酸塩と組み合わせた場合において 物理的及び化学的相互作用を小さくできるため、 ニトログァニジンが特に好まし い。
ガス発生剤組成物中における燃料の含有量は、 酸化剤の種類及び酸素バランス により異なるが、好ましくは 10〜60重量%、より好ましくは 20〜50重量% である。
また、 ガス発生剤組成物中における塩基性金属硝酸塩の含有量は、 好ましくは 40〜90重量%、 より好ましくは 50〜80重量%である。
ガス発生剤組成物には、 更にバインダ、 スラグ形成剤等の添加剤を配合するこ とができる。 バインダとしては、 カルボキシメチルセルロース (CMC)、 カルボ キシメチルセル口一スナ卜リゥム塩(CMCN a)、 カルボキシメチルセルロース カリウム塩、 カルボキシメチルセルロースアンモニゥム塩、 酢酸セルロース、 セ ルロースアセテートブチレ一卜 (CAB)、 メチルセルロース (MC)、 ェチルセ ルロース (EC)、 ヒドロキシェチルセルロース (HEC:)、 ェチルヒドロキシェ チルセルロース (EHEC)、 ヒドロキシプロピルセルロース (HPC)、 カルボ キシメチルェチルセルロース (CMEC)、 微結晶性セルロース、 ポリアクリルァ ミド、 ポリアクリルアミ ドのァミノ化物、 ポリアクリルヒドラジド、 アクリルァ ミド ·アクリル酸金属塩共重合体、 ポリアクリルアミド ·ポリアクリル酸エステ ル化合物の共重合体、 ポリビニルアルコール、 アクリルゴム、 グァガム、 デンプ ン、 シリコーン、 二硫化モリブデン、 酸性白土、 タルク、 ベントナイ ト、 ケイソ ゥ土、 カオリン、 ステアリン酸カルシウム、 シリカ、 アルミナ、 ケィ酸ナトリウ ム、 窒化ケィ素、 炭化ケィ素、 ヒドロタルサイト、 マイ力、 金属酸化物、 金属水 酸化物、 金属炭酸塩、 塩基性金属炭酸塩及びモリブデン酸塩から選ばれる 1種以 上が挙げられ、 これらの中でも上記の燃料及び塩基性金属硝酸塩との組合せを考 慮するとグァガムが好ましい。
金属水酸化物としては、 水酸化コバルト、 水酸化アルミニウムから選ばれる 1 種以上が挙げられ、 金属炭酸塩及び塩基性金属炭酸塩としては、炭酸カルシウム、 炭酸コバルト、 塩基性炭酸亜鉛、 塩基性炭酸銅、 塩基性炭酸コバルト、 塩基性炭 酸鉄、 塩基性炭酸ビスマス、 塩基性炭酸マグネシウムから選ばれる 1種以上が挙 げられ、 モリブデン酸塩としては、 モリブデン酸コバルト及びモリブデン酸アン モニゥムから選ばれる 1種以上が挙げられる。
ガス発生剤組成物中におけるバインダ等の添加剤の含有量は、 好ましくは 0 . 1 ~ 1 5重量%、 より好ましくは 0 . 5〜1 2重量%でぁる。
本発明のガス発生剤組成物は、 ガス発生剤組成物 (ガス発生剤 4 0 gを含む) を密閉した状態、 具体的には内容積 1 1 8 . 8 m 1のステンレス製容器に入れ、 密閉した状態で 1 1 0 °Cで 4 0 0時間保持した場合のガス発生剤の重量減少率が 2 . 0 %以下、 好ましくは 1 . 0 %以下、 より好ましくは 0 . 5 %以下であるも のが望ましい。
本発明のガス発生剤組成物は所望の形状に成型することができ、 単孔円柱状、 多孔円柱状又はペレット状の成型体にすることができる。 これらの成型体は、 ガ ス発生剤組成物に水又は有機溶媒を添加混合し、押出成型する方法(単孔円柱状、 多孔円柱状の成型体) 又は打錠機等を用いて圧縮成型する方法 (ペレット状の成 型体) により製造することができる。
本発明のガス発生剤組成物は、 例えば、 各種乗り物の運転席のエアバッグ用ィ ンフレー夕、 助手席のエアバッグ用インフレ一夕、 サイドエアバッグ用インフレ —夕、 インフレ一夕ブルカーテン用インフレ一夕、 二一ボルスター用インフレ一 夕、 インフレ一夕ブルシートベルト用インフレ一夕、 チューブラ一システム用ィ ンフレー夕、 プリテンショナ一用ガス発生器に適用できる。
また本発明のガス発生剤組成物を使用するインフレ一夕は、 ガスの供給が、 ガ ス発生剤からだけのパイ口タイプと、 アルゴン等の圧縮ガスとガス発生剤の両方 であるハイブリッドタイプのいずれでもよい。
更に本発明のガス発生剤組成物は、 雷管ゃスクイブのエネルギーをガス発生剤 に伝えるためのェンハンサ剤 (又はブ一スター) 等と呼ばれる着火剤として用い ることもできる。
発明の実施の形態 2
本発明のガス発生剤組成物は、 (a ) 及び(b ) 成分を必須成分とする組成物又 は (a )、 ( b ) 及び (c ) 成分を必須成分とする組成物にすることができる。 本発明で用いる (a ) 成分のテトラゾール誘導体は、 一分子中の窒素原子の含 有量が高く、 毒性も低く、 更に (b ) 成分と組み合わせた場合には燃焼速度が大 きくなるので好ましい。
テトラゾール誘導体としては、 テトラゾール化合物 (但し、 ビテトラゾール化 合物を除く) やビテトラゾール化合物が挙げられる。 テトラゾール化合物 (但し、 ビテ卜ラゾール化合物を除く) としては、 テ卜ラゾール、 5—アミノテトラゾー ル、 5, 5 '—ビー 1 H—テトラゾール、 5—ニトロアミノテ卜ラゾール、 5—ァ ミノテトラゾ一ルの亜鉛塩、 5—アミノテトラゾールの銅塩が挙げられ、 ビテ卜 ラゾール化合物としては、 ビテトラゾール、 ビテトラゾ一ルカリウム塩 (BHT K)、 ビテトラゾールナトリウム塩、 ビテ卜ラゾールマグネシウム塩、 ビテトラゾ —ルカルシゥム塩、 ビテトラゾールジアンモニゥム塩 (ΒΗΤΝΗ3)、 ビテトラ ゾール銅塩及びビテトラゾールメラミン塩から選ばれる 1種以上が挙げられる。 これらの中でも、 窒素原子含有量が 81. 4重量%、 LD 50 (oral -rat) が 200 OmgZk gであり、 燃焼効率が良いため、 ビテトラゾールジアンモニゥ ム塩が好ましい。 ここでいうビテトラゾール化合物には、 2つのテトラゾール環 の 5— 5 ' 結合体と 1— 5' 結合体が含まれ、 価格と入手の容易さから 5— 5 ' 体が好ましい。
本発明で用いる (a) 成分の内、 グァニジン誘導体は、 他の成分との組合せ及 び所定の要件①〜③を満たす上で、 2つの群に分けることができる。
第 1の群は、 グァニジン、 炭酸グァニジン、 ニトログァニジン、 ジシアンジァ ミド、 二トロアミノグァニジン及び二トロアミノグァニジン硝酸塩から選ばれる 1種以上のグァニジン誘導体である。
第 2の群は、 グァニジン、 モノ、 ジ又はトリアミノグァ二ジン硝酸塩、 硝酸グ 7二ジン、 炭酸グァニジン、 ニトログァニジン (NQ)、 ジシアンジアミド (DC D A)、二トロアミノグァニジン及びニトロアミノグァニジン硝酸塩から選ばれる 1種以上のグァニジン誘導体である。
本発明のガス発生剤組成物が、 (a)及び(b)成分を必須成分として含む組成 物又は (a)、 (b) 及び (c) 成分を必須成分として含む組成物における (a) 成分のグァニジン誘導体は、 上記し^第 1の群のグァニジン誘導体である。
本発明で用いる (b) 成分の塩基性金属硝酸塩は、 一般に次のような式で示さ れる一連の化合物である。 また、更に水和水を含む化合物も存在する場合がある。 式中、 Mは金属を、 x' は金属数を、 y、 y ' は N〇3イオン数を、 z ' は OH イオン数を、 nは M (N03) y部分に対する M (OH) z部分の比を示すもので ある。
M (N〇3) y - nM (OH) z又は Mx. (N03) y, (OH) z
前記式に相当するものの例としては、 金属 Mとして銅、 コバルト、 亜鉛、 マン ガン、 鉄、 モリブデン、 ビスマス、 セリウムを含む、 Cu2 (N〇3) (OH) 3、 Cu3 (N03) (OH) 5 - 2H20、 Co2 (N03) (OH) 3、 Z n2 (N〇3) (OH) 3、 Mn (N03) (OH) 2、 F e4 (N03) (OH) , , - 2H20, B i (N03) (OH) 2、 C e (N03) 3 (〇H) · 3H2〇が挙げられる。
(b) 成分の塩基性金属硝酸塩としては、 塩基性硝酸銅 (BCN)、 塩基性硝酸 コバルト、 塩基性硝酸亜鉛、 塩基性硝酸マンガン、 塩基性硝酸鉄、 塩基性硝酸モ リブデン、 塩基性硝酸ビスマス及び塩基性硝酸セリウムから選ばれる 1種以上が 挙げられ、 これらの中でも塩基性硝酸銅が好ましい。
塩基性硝酸銅は、 酸化剤としての硝酸アンモニゥムに比べると、 使用温度範囲 'において相転移がなく、 融点が高いので、 熱安定性が優れている。 更に、 塩基性 硝酸銅は、 ガス発生剤の燃焼温度を低くするように作用するので、 窒素酸化物の 生成量も少なくできる。
(b) 成分は、 上記した塩基性金属硝酸塩とその他の 1種以上の酸化剤との混 合物にすることができ、 混合物にした場合にはその他の酸化剤としてアル力リ金 属硝酸塩を含有させることができる。
アルカリ金属硝酸塩はガス発生剤組成物の燃焼速度を高める成分であり、 硝酸 カリウム、 硝酸ナトリウム、 過塩素酸カリウム、 硝酸リチウム等が挙げられる力 これらの中でも硝酸カリゥムが好ましい。
(b) 成分が混合物であるとき、 混合物中の塩基性金属硝酸塩の含有量は、 好 ましくは 55~99. 9重量%、 より好ましくは 75〜99. 5重量%、 更に好 ましくは 90〜99. 2重量%である。
本発明のガス発生剤組成物が (a) 及び(b) 成分を含有するものである場合、 (a) 成分の含有量は 5〜60重量%が好ましく、 1 5〜55重量%がより好ま しい。 (b)成分の含有量は 40〜95重量%が好ましく、 45〜85重量%がよ り好ましい。
組成物が (a)、 (b) 成分を含有するものである場合の好ましい一実施形態と しては、 (a) ビテトラゾールジアンモニゥム塩及び(b)塩基性硝酸銅を含有す るものが挙げられる。 この場合の含有量は (a) ビテトラゾールジアンモニゥム 5~60重量%、 好ましくは 15〜55重量%、 より好ましくは 1 5〜45重 量%又は 15〜35重量%及び (b) 塩基性硝酸銅 40〜95重量%、 好ましく は 45〜85重量%、 より好ましくは 55〜85重量%又は 65〜85重量%で ある。
組成物が (a)、 (b) 成分を含有するものである場合の好ましい他の実施形態 としては、 (a) ニトログァニジン及び(b)塩基性硝酸銅を含有するものが挙げ られる。 この場合の含有量は (a) ニトログァニジン 30~70重量%、 好まし くは 40〜60重量%及び (b) 塩基性硝酸銅 30〜70重量%、 好ましくは 4 0〜60重量%である。
組成物が (a)、 (b) 成分を含有するものである場合の好ましい他の実施形態 としては、 (a) ジシアンジアミド及び(b)塩基性硝酸銅を含有するものが挙げ られる。この場合の含有量は、 (a)ジシアンジアミド 1 5〜30重量%及び(b) 塩基性硝酸銅 70〜85重量%が好ましい。
本発明で用いる (c) 成分のバインダ及び Z又はスラグ形成剤は非架橋性のも のであり、 カルボキシメチルセルロース (CMC)、 カルボキシメチルセルロース ナトリウム塩 (CMCNa)、 カルボキシメチルセルロースカリウム塩、 カルボキ シメチルセルロースアンモニゥム塩、 酢酸セルロース、 セルロースァセテ一卜ブ チレート (CAB)、 メチルセルロース (MC)、 ェチルセルロース (EC)、 ヒド ロキシェチルセルロース (HEC)、 ェチルヒドロキシェチルセルロース (EHE C)、 ヒドロキシプロピルセルロース (HPC.)、 カルボキシメチルェチルセル口 ース (CMEC)、 微結晶性セルロース、 ポリアクリルアミド、 ポリアクリルアミ ドのァミノ化物、 ポリアクリルヒドラジド、 アクリルアミド ·アクリル酸金属塩 共重合体、 ポリアクリルアミド ·ポリアクリル酸エステル化合物の共重合体、 ポ リビニルアルコール、 アクリルゴム、 グァガムやデンプンを含む多糖類、 シリコ ーン (シリコーン樹脂は除く)、 二硫化モリブデン、 酸性白土、 タルク、 ベントナ イト、 ケイソゥ土、 カオリン、 ステアリン酸カルシウム、 シリカ、 アルミナ、 ケ ィ酸ナトリウム、 窒化ケィ素、 炭化ケィ素、 ヒドロタルサイ卜、 マイ力、 金属酸 化物、 金属水酸化物、 金属炭酸塩、 塩基性金属炭酸塩及びモリブデン酸塩から選 ばれる 1種以上が挙げられる。
. (c) 成分のグァガムやデンプンを含む多糖類は、 粘着性があり、 湿式成型法 及び乾式成型法に適用できるものであれば特に限定されるものではなく、 グァガ ム以外のァラビヤガム、 トラガン卜ガム等の各種ガム類、 キチン、 キトサン、 ヒ アルロン酸等が挙げられる。
(c) 成分の金属酸化物としては、 酸化銅、 酸化鉄、 酸化亜鉛、 酸化コバルト、 酸化マンガン、 酸化モリブデン、 酸化ニッケル及び酸化ビスマスから選ばれる 1 種以上が挙げられ、 金属水酸化物としては、 水酸化コバルト、 水酸化アルミニゥ ムから選ばれる 1種以上が挙げられ、金属炭酸塩及び塩基性金属炭酸塩としては、 炭酸カルシウム、 炭酸コバルト、 塩基性炭酸亜鉛、 塩基性炭酸銅、 塩基性炭酸コ ノ ル卜、 塩基性炭酸鉄、 塩基性炭酸ビスマス、 塩基性炭酸マグネシウムから選ば れる 1種以上が挙げられ、 モリブデン酸塩としては、 モリブデン酸コバルト及び モリブデン酸アンモニゥムから選ばれる 1種以上が挙げられる。 これらの (c) 成分の化合物は、 スラグ形成剤及びノ又はバインダ一としての働きをすることが できる。
ガス発生剤組成物の着火性を高める場合には、 カルボキシメチルセルロースナ トリゥム塩及び力リゥム塩が好ましく、 これらの中でもナ卜リゥム塩がより好ま しい。
本発明のガス発生剤組成物が (a)、 (b)、 (c) 成分を含有するものである場 合、 (a)成分の含有量は 5〜60重量%が好ましく、 1 5〜55重量%がょり好 ましい。 (b)成分の含有量は 40〜95重量%が好ましく、 45〜85重量%が より好ましい。 (c) 成分の含有量は 0. 1〜25重量%が好ましく、 0. 1〜1
5重量%がより好ましく、 0. 1〜 10重量%が更に好ましい。
(a)、 (b)、 (c) 成分を含有するものである場合の好ましい一実施形態とし ては、 (a) ビテトラゾ一ルジアンモニゥム塩、 (b) 塩基性硝酸銅及び (c) 力 ルポキシメチルセル口一スナ卜リゥム塩を含有するものが挙げられる。 この場合 の含有量は、 (a) ビテトラゾールジアンモニゥム塩 1 5〜40重量%、 (b) 塩 基性硝酸銅 45〜80重量%及び (c) カルボキシメチルセルロースナトリウム 塩 0. 1〜: 1 5重量%が好ましい。
(a)、 (b)、 (c) 成分を含有するものである場合の好ましい他の実施形態と しては、 (a) ビテ卜ラゾールジアンモニゥム塩、 (b) 塩基性硝酸銅及び (c一
1) カルボキシメチルセルロースナトリウム塩と (c— 2) 前記 (c一 1) 以外 の上記の (c) 成分を含有するものが挙げられる。 この場合の含有量は、 (a) ビ テトラゾールジアンモニゥム塩 1 5〜35重量%、 (b)塩基性硝酸銅 30〜70 重量%、 (c一 1)カルボキシメチルセルロースナトリウム塩 0. 1〜1 5重量% 及び (c— 2) 1 ~45重量%が好ましい。
(a)、 (b)、 (c) 成分を含有するものである場合の好ましい他の実施形態と しては、 (a) ニトログァニジン、 (b) 塩基性硝酸銅及び (c) カルボキシメチ ルセルロースナ卜リゥム塩を含有するものが挙げられる。 この場合の含有量は、
(a)ニトログァニジン 1 5~55重量%、 (b)塩基性硝酸銅 45-70重量% 及び (c) カルボキシメチルセルロースナトリウム塩 0. 1〜15重量%が好ま しい。
(a)、 (b)、 (c) 成分を含有するものである場合の好ましい他の実施形態と しては、 (a) ニトログァニジン、 (b) 塩基性硝酸銅及び (c一 1) カルボキシ メチルセルロースナトリウム塩と (c— 2) 前記 (c _ l) 以外の上記の (c) 成分を含有するものが挙げられる。 この場合の含有量は、 (a)ニトログァニジン 15〜50重量%、 (b)塩基性硝酸銅 30〜65重量%及び(c一 1 ) カルボキ シメチルセルロースナトリウム塩 0. 1〜1 5重量%と(c一 2) 1〜40重量% が好ましい。
(a)、 (b)、 (c) 成分を含有するものである場合の好ましい他の実施形態と しては、 (a) ニトログァニジン、 (b) 塩基性硝酸銅及び (c) グァガムを含有 するものが挙げられる。 この場合の含有量は、 (a)ニトログァニジンが好ましく は 20〜60重量%、 より好ましくは 30〜 50重量%、 (b)塩基性硝酸銅が好 ましくは 35〜 75重量%、 より好ましくは 40〜65重量%及び (c) グァガ ムが好ましくは 0. 1〜10重量%、 より好ましくは 1〜8重量%である。
(a)、 (b)、 (c) 成分を含有するものである場合の好ましい他の実施形態と しては、 (a) ニトログァニジン、 (b) 塩基性硝酸銅及び (c一 1) グァガムと
(c一 2) 前記 (c— 1 ) 以外の上記の (c) 成分を含有するものが挙げられる。 この場合の含有量は、 (a)二卜ログァニジンが好ましくは 20〜60重量%、 よ り好ましくは 30〜 50重量%、 (b) 塩基性硝酸銅が好ましくは 30〜70重 量%、 より好ましくは 40〜60重量%、 及び (c一 1) グァガムが好ましくは 0. :!〜 10重量%、 より好ましくは 2〜 8重量%と (c一 2) が好ましくは 0. 1~10、 より好ましくは 0. 3〜7重量%である。
このように(a)ニトログァニジン及び(b)塩基性硝酸銅を含む組成又は( a ) ニトログァニジン、 (b)塩基性硝酸銅及び(c) グァガムを含む組成にした場合、 下記のひ)〜 (III)の点で優れた効果を有する。
(I)ニトログァニジンの熱分解温度 (約 220で) と塩基性硝酸銅の熱分解温度 (約 200で)が近似しているため、二卜ログァニジンと塩基性硝酸銅の反応(燃 焼) がより完全燃焼に近くなり、 有毒ガス (CO、 NO、 NO 2、 NH3等) の発 生が少なくなる。 また、 塩基性硝酸銅を用いたことでガス発生剤の燃焼温度が低 下するので、 燃焼時において、 いわゆるサーマル N〇x (thermal NOx) の発生 量が減少する。
(II)燃焼時には塩基性硝酸銅に起因して溶融状態の銅のミス卜発生するが、銅の 融点 (1083 ) は高いので、 1000で程度にまで冷却すれば容易に固形ミ ストとして除去できるので、 他のミスト (例えば、 K20の融点は 400°Cであ るので、 400°C未満までの冷却が必要となる) に比べて除去が容易であり、 ィ ンフレー夕の外部にミス卜が出にくレ^
(III)グァガムを使用した場合、 CMC— N aを使用した場合に比べて耐熱性が 高い。 CMC— N aを使用した場合、 塩基性硝酸銅から生じた〇Hイオンと CM C一 N aの N aが反応して N a〇Hが生成し、 この N a OHがニトログァニジン を分解して耐熱性を低下させることがあるが、 グァガムの場合にはこのような問 題は生じない。
(a)、 (b)、 (c) 成分を含有するものである場合の好ましい他の実施形態と しては、 (a) ジシアンジアミ ド、 (b) 塩基性硝酸銅及び (c) カルボキシメチ ルセルロースナトリウム塩を含有するものが挙げられる。 この場合の含有量は、
(a)ジシアンジアミド 1 5〜25重量%、 (b)塩基性硝酸銅 60〜80重量% 及び (c) カルボキシメチルセルロースナトリウム塩 0. 1〜20重量%が好ま しい。
(a)、 (b)、 (c) 成分を含有するものである場合の好ましい他の実施形態と しては、 (a) ジシアンジアミ ド、 (b) 塩基性硝酸銅及び (c— 1) カルボキシ メチルセルロースナトリウム塩と (c _2) 前記 (c一 1) 以外の上記の (c) 成分を含有するものが挙げられる。 この場合の含有量は、 (a)ジシアンジアミド 15〜25重量%、 (b)塩基性硝酸銅 55〜75重量%及び(c一 1) カルボキ シメチルセルロースナトリウム塩 0〜10重量%又は 0. 1〜10重量%と (c 一 2) 1〜20重量%が好ましい。
(a)、 (b)、 (c) 成分を含有するものである場合の好ましい他の実施形態と しては、 (a) 硝酸グァニジン、 (b) 塩基性硝酸銅及び (c) カルボキシメチル セルロースナトリウム塩を含有するものが挙げられる。 この場合の含有量は、
(a)硝酸グァニジン 1 5〜60重量%、 (b)塩基性硝酸銅 40〜70重量%及 び (c) カルボキシメチルセルロースナトリウム塩 0. 1〜1 5重量%が好まし い。
(a)、 (b)、 (c) 成分を含有するものである場合の好ましい他の実施形態と しては、 (a) 硝酸グァニジン、 (b) 塩基性硝酸銅及び (c一 1) カルボキシメ チルセルロースナトリウム塩と (c一 2) 前記 (c一 1) 以外の上記の (c) 成 分を含有するものが挙げられる。 この場合の含有量は、 (a)硝酸グァニジン 1 5
〜55重量%、 (b)塩基性硝酸銅 25〜60重量%及び(c— 1) カルボキシメ チルセルロースナトリウム塩 0. 1〜 1 5重量%と (c一 2) 1〜40重量%が 01 好ましい。
本発明のガス発生剤組成物において、 (b)成分を塩基性硝酸銅と硝酸カリウム との混合物にした場合、 上記した (Ι)〜(ΠΙ)の効果に加えて、 更に燃焼速度が向上 するという効果が得られる。
本発明のガス発生剤組成物は、 (a)、 (b)及び(d)燃焼調節剤(燃焼改良剤) を必須成分とする組成物又は (a)、 (b)、 (c) 及び (d) 燃焼調節剤 (燃焼改 良剤) を必須成分とする組成物にすることができる。 (d)成分を必須成分として 含有する場合の (a) 成分のグァニジン誘導体は、 上記した第 2の群のグァニジ ン誘導体である。
(d)成分の燃焼改良剤は、 例えば、 ガス発生剤組成物全体としての燃焼速度、 燃焼の持続性、 着火性等の燃焼性を向上させるように作用する成分である。 燃焼 改良剤としては、 窒化ケィ素、 シリカ、 アルカリ金属又はアルカリ土類金属の亜 硝酸塩、 硝酸塩、 塩素酸塩又は過塩素酸塩 (KN〇3、 NaN〇3、 KC 104等)、 酸化水酸化鉄 (ΙΠ) 〔F eO (〇H)〕、 酸化銅、 酸化鉄、 酸化亜鉛、 酸化コバルト 及び酸化マンガンから選ばれる 1種以上が挙げられる。 これらの中で酸化水酸化 鉄 (III) 〔F e〇 (OH)] を使用した場合、 炭素数が多いバインダを配合したとき にバインダの燃焼促進効果が優れており、 ガス発生剤組成物全体の燃焼促進に寄 与できる。
(d) 成分の含有量は、 (a) 及び (b) 成分又は (a)、 (b) 及び (c) 成分 の合計量 100重量部に対して 1〜 10重量部が好ましく、 1〜 5重量部がより 好ましい。
(a)、 (b)、 (c:)、 (d) 成分を含有するものである場合の好ましい実施形態 としては、 (a) ニトログァニジン、 (b) 塩基性硝酸銅、 (c) グァガムと (d) 燃焼改良剤を含有するものが挙げられ、 (d)燃焼改良剤としてはシリカが好まし レ^ この場合の含有量は、 (a) ニトログァニジン 20〜60重量%、 (b) 塩基 性硝酸銅 35〜7 5重量%、 (c) グァガム 0. 1〜 1 0重量%、 (d) 燃焼改良 剤 0. 1〜 1 5重量%が好ましい。
また本発明のガス発生剤組成物は、 (a) 及び (b) 成分を含有しており、 下記 要件①〜③から選ばれる 1つの要件、 好ましくは 2つの要件、 より好ましくは 3 つの要件を有しているものにすることができる。 この場合における (a) 成分の グァニジン誘導体は、 上記した第 2の群のグァニジン誘導体である。
①ガス発生剤組成物を密閉した状態で 90でで 1 000時間又は 1 1 0でで 4 00時間保持した場合のガス発生剤の重量減少率が 2. 0 %以下、好ましくは 1. 0%以下、 より好ましくは 0. 5%以下である。
この要件①は、 ガス発生剤組成物を内容積 1 1 8. 8m lのステンレス製容器 に入れ、 密閉した状態で 90でで 1 000時間又は 1 1 0 で 400時間保持し た場合のガス発生剤の重量減少率である。
②ガス発生剤の燃焼により発生するガスに含まれる微量ガスの濃度が、 280 0 Lタンクでの測定値としてで、 C〇が 400 p pm以下、 NOが 40 p pm以 下、 1^〇2が8 pm以下及びNH3がl 00 p pm以下であること。
この要件②は、 ガス発生剤の燃焼により発生するガスに含まれる微量ガスの濃 度が、 2 800 Lタンクでの測定値としてで、 (:〇が400 111以下、 NOが
40 p pm以下、 N〇2が 8 p pm以下及びNH3がl 0 0 p pm以下であること である。 或いは N I OSHによって示された I DLHの値である、 (:〇が1 2 0
0 p pm以下、 NOが 1 00 p pm以下、 N〇2が 2 0 p pm以下、 NH3が 30
0 p pm以下という値の 30 %前後、 好ましくは 3 0 %以下、 より好ましくは 2
0 %以下、 更に好ましくは 1 0 % (CO= 1 20 p pm、 N〇二 1 0 p pm、 N
02= 2 p pm, NH3= 30 p pm) 以下であることである。 なお、 これらの各ガス濃度は、 例えば、 標準的なシングルタイプの運転席用パ イロインフレ一夕を用いて、 20°Cで出力 1 30〜230 k P aの条件で、 28 00 Lタンク試験を行った場合の値である。 このガス発生剤組成物は、 測定条件 とは関係なく、 他のタイプのガス発生器にも使用できる。
③ガス発生剤燃焼時におけるガス発生器内の最大内圧が 7840〜 22500 kP a、 好ましくは 8820〜17640 kP aであることである。
更に本発明のガス発生剤組成物は、 (a)、 (b)及び(c) 成分を含有しており、 下記要件①〜③から選ばれる 1つの要件、 好ましくは 2つの要件、 より好ましく は 3つの要件を有しているものにすることができる。 要件①〜③の詳細は、 上記 と同様である。 この場合における (a) 成分のグァニジン誘導体は、 上記した第 2の群のグァニジン誘導体である。
①ガス発生剤組成物を密閉した状態で 90 で 1000時間又は 1 1 0でで 4 00時間保持した場合のガス発生剤の重量減少率が 2. 0%以下であること。
②ガス発生剤の燃焼により発生するガスに含まれる微量ガスの濃度が、 280 0 Lタンクでの測定値としてで、 COが 400 p pm以下、 NOが 4 O p pm以 下、 1〇2が81) 111以下及び^^113が1 00 p pm以下であること。
③ガス発生剤燃焼時におけるガス発生器内の最大内圧が 7840〜 22500 k P aであること。
本発明のガス発生剤組成物を (a)、 (b) 及び (d) 成分を必須成分とする組 成物又は (a)、 (b)、 (c) 及び (d) 成分を必須成分とする組成物にした場合 でも、 (d)成分は上記した要件①〜③の発現を阻害する成分ではないので、 (d) 成分を含まない組成物と同様に要件①〜③を具備するものである。
本発明のガス発生剤組成物は所望の形状に成型することができ、 単孔円柱状、 多孔円柱状又はペレット状の成型体にすることができる。 これらの成型体は、 ガ ス発生剤組成物に水又は有機溶媒を添加混合し、押出成型する方法(単孔円柱状、 多孔円柱状の成型体) 又は打錠機等を用いて圧縮成型する方法 (ペレット状の成 型体) により製造することができる。
本発明のガス発生剤組成物又はそれから得られる成型体は、 例えば、 各種乗り 物の運転席のエアバック用ィンフレー夕、 助手席のエアバック用インフレ一夕、 サイドエアバック用インフレ一夕、 インフレ一夕ブルカーテン用インフレ一夕、 二一ボルス夕一用ィンフレ一夕、インフレ一夕ブルシートベルト用ィンフレー夕、 チューブラ一システム用ィンフレー夕、 プリテンショナ一用ガス発生器に適用で さる。
また本発明のガス発生剤組成物又はそれから得られる成型体を使用するガス発 生器は、 ガスの供給が、 ガス発生剤からだけのパイ口タイプと、 アルゴン等の圧 縮ガスとガス発生剤の両方であるハイブリッドタイプのいずれでもよい。
更に本発明のガス発生剤組成物又はそれから得られる成型体は、 雷管ゃスクイ ブのエネルギーをガス発生剤に伝えるためのェンハンサ剤 (又はブース夕一) 等 と呼ばれる着火剤として用いることもできる。
図面の簡単な説明
図 1は実施例 5で得られた塩基性硝酸銅の走査型電子顕微鏡写真 (X 1 0 , 0 0 0 ) である。
図 2は実施例 5で得られた塩基性硝酸銅の走査型電子顕微鏡写真 (X 1 0 , 0 0 0 ) である。
図 3は実施例 5で得られた塩基性硝酸銅の走査型電子顕微鏡写真 (X 5 0 0 ) である。
図 4は実施例 5で得られた塩基性硝酸銅の走査型電子顕微鏡写真(X 2 0 0 0 ) である。 図 5は実施例 7で得られた塩基性硝酸銅の走査型電子顕微鏡写真 (X 500) である。
図 6は実施例 7で得られた塩基性硝酸銅の走査型電子顕微鏡写真(X 20 00) である。
図 7は実施例 7で得られた塩基性硝酸銅の走査型電子顕微鏡写真(X 5000) である。
実施例
以下、 実施例により本発明を更に詳しく説明するが、 本発明はこれらにより限 定されるものではない。
(1) 粒径及び粒子形態 (凝集体であるかどうか) の確認
試料粉末を専用試料台に固定し、 走査型電子顕微鏡により、 500倍、 2, 0 00倍、 1 0, 000倍の観察視野像中における試料粉末粒径を計測し、 同時に 粒子形態を判定した。 粒子が 2次粒子 (凝集体) の場合の 1次粒子の粒径は、 2 次粒子を破壊して 1次粒子にした後、 同様にして測定した。 なお、 粒子が針状粒 子の場合は長さを粒径とし、 板状粒子の場合は最大対角長さを粒径とし、 更に真 球に類似した粒子は長径を粒径とした。
(2) 比表面積
窒素ガスを使用し、 BET法により測定した。
(3) 嵩密度
試料粉末を 1 0m 1のメスシリンダ一に入れたものを水平台上に置き、 3 0回 水平台に軽く叩いた後に求めた。
(4) 結晶化度 (半値幅) の測定
粉末 X線回折法 (リートベルト法) により得られたメインピークから半値巾を 求めた■> (5) TG-DTA (熱重量一示差熱分析) 測定
昇温速度 20Z分で行った。
(6) 不純物の含有量 (N a原子換算量)
原子吸光分析法により求めた。
(7) 熱安定性
塩基性硝酸銅等の塩基性金属硝酸塩 5 gを水中に入れ、 80でで 1 0分間加熱 処理した場合の外観の変化により観察した。 熱安定性の悪いものはこの加熱処理 により黒く変色する。
(8) 耐熱性試験 (重量減少率)
ガス発生剤組成物 (ガス発生剤 40 gを含む) をアルミニウム製容器に入れ、 総重量を測定し、 (総重量一アルミニウム製容器重量)を試験前のサンプル重量と した。 サンプルの入ったアルミニウム製容器を、 S US製厚肉容器 (内容積 1 1 8. 8m l ) に入れて蓋をした後、 1 1 Ot:の恒温槽に入れた。 この時、 ゴムパ ッキンとクランプを使用して容器が密閉状態になるようにした。 所定時間経過後 に S US製厚肉容器を恒温槽から取り出し、容器が室温にもどってから蓋を開け、 中からアルミニウム製容器を取り出した。 アルミニウム製容器ごとの総重量を測 定し、 (総重量一アルミニウム製容器重量) を試験後のサンプル重量とした。そし て、 試験前後の重量変化を比較して重量減少率を求めることにより耐熱性を評価 した。 重量減少率は、 〔(試験前のガス発生剤重量一試験後のガス発生剤重量) / 試験前のガス発生剤重量〕 X 1 00から求めた。
比較例 1
攪拌機付きビーカに硝酸銅三水塩 241. 6g (1. 00モル) を秤取り、 次 いで蒸留水 500 mlを仕込み、攪拌しながら溶解させて得た溶液を 6 Ot:で加熱 した。 水酸化カリウム 84. 1 5g ( 1. 50モル) を蒸留水 500mlで溶解し た水溶液を、 攪拌下 1時間かけて滴下した。水酸化力リゥム水溶液の添加終了後、 混合物を 601:で 30分攪拌した。 室温で生成したゲル状沈殿物を濾過し、 蒸留 水で洗浄した。 得られた塩基性硝酸銅は淡青色の固形物であつたが、 固形物の一 部に灰色のものが見られ、 濾過性が悪かった。 洗浄生成物の一部を 1 10でで空 気中で乾燥したところ、 全体に黒色を帯乾燥工程で分解が見られ熱安定性が非常 に悪かった。 残りの洗浄生成物を 1 10で、 1333. 22 P a (1 OmmHg) の減圧下で乾燥して塩基性硝酸銅を得た。 各測定結果を表 1に示す。
実施例 1
攪拌機付きビーカに硝酸銅三水塩 36. 3 gを抨取り、 次いで蒸留水 10 Oml を仕込み、 攪拌しながら溶解させて得た溶液を 60でに加熱した。 炭酸水素ナ卜 リウム 18. 9 gを水 24 Om 1に溶解した炭酸水素ナトリウム水溶液を、 1時 間かけて添加した。添加終了後、混合物を 60でで 60分間攪拌下で熟成をした。 室温で生成した沈殿物を濾過し、 蒸留水で洗浄した。 濾過性が非常に良好な淡青 色の固形物を得た。 洗浄生成物の一部を 1 10 で空気中で乾燥したところ、 淡 青色を維持しており熱安定性が非常に良好なものであった。 残りの洗浄生成物を 1 1 0で、 1 333. 22 P aの減圧下で乾燥して、 収量は 1 7. 4 g (収率 9 6. 5%)で塩基性硝酸銅を得た。 各測定結果を表 1に示す。
実施例 2
攪拌機付きビーカに硝酸銅三水塩 36. 3 gを秤取り、 次いで蒸留水 1 0 Oml を仕込み、 攪拌しながら溶解させて得た溶液を 80°Cに加熱した。 炭酸水素ナト リウム 18. 9 gを水 24 Om 1に溶解した炭酸水素ナトリウム水溶液を、 1時 間かけて添加した。 添加終了後、 直ちに沈殿物を濾過し、 蒸留水で洗浄して、 濾 過性が非常に良好な淡青色の固形物を得た。 洗浄生成物の一部を 1 1 0°Cで空気 中で乾燥したところ、 淡青色を維持しており熱安定性が良好なものであった。 残 りの洗浄生成物を 1 1 0T:、 1 33 3. 22 P aの減圧したで乾燥して、 塩基性 硝酸銅を得た。 各測定結果を表 1に示す。
実施例 3
攪拌機付きビーカに硝酸銅三水塩 2 14. 6g (1. 00モル) を抨取り、 次 いで蒸留水 500mlを仕込み、攪拌しながら溶解させて得た溶液を 40^に加熱 した。 炭酸水素ナトリウム 1 26g (1. 50モル) を蒸留水 1 000 mlに溶解 した水溶液を、 1時間かけて添加した。 炭酸水素ナトリウムの添加終了後、 混合 物を 80 に昇温し、 30分間攪拌下で熟成した。 沈殿物を濾過、 洗浄、 乾燥し て淡青色め塩基性炭酸銅を得た。 各測定結果を表 1に示す。
実施例 4
炭酸水素ナトリウム量を 2 1. 4 g以外は、 実施例 1と同様な方法で淡青色の 塩基性炭酸銅を得た。 各測定結果を表 1に示す。
比較例 2
攪拌機付きビーカに硝酸銅三水塩 241. 6g (1. 00モル) を秤取り、 次 いで蒸留水 1 000mlを仕込み、攪拌しながら溶解させて得た溶液を 9 5T:で加 熱した。 次いで無水酢酸ナトリウム 1 2 3. 0g (1. 50モル) を少しずつ加 えた。 酢酸ナトリウムの添加終了後、 混合物を更に 30分攪拌した。 室温で生成 した沈殿物を濾過、洗浄、乾燥して淡青色固形物が 84. 7 g (収率約 70. 5%) を得たが、 収率は実施例 1と比較して悪かった。 各測定結果を表 1に示す。
実施例 5
攪拌機付きビーカに硝酸銅三水塩 36. 3 gを秤取り、 次いで蒸留水 2 0 mlを 仕込み、 室温 (20°C) で攪拌しながら溶解させて溶液を得た。 炭酸水素ナ卜リ ゥム 1 8. 9 g を水 240m 1 に溶解した炭酸水素ナトリウム水溶液を、 室温で
1. 5時間かけて滴下した。 滴下終了後、 室温下で攪拌しながら 2時間熟成した。 得られた沈殿物を濾過し、 蒸留水で濾液が中性なるまで洗浄し、 1 10で、 1 3 33. 22 P aの減圧下で一定重量となるまで乾燥して、 「菊の花状」に凝集した 形態の塩基性硝酸銅 16. 0 gを得た。 各測定結果を表 2に示す。 なお、 実施例 5で得られた塩基性硝酸銅の走査型電子顕微鏡写真を図 1 (X 10, 000)、 図 2 (X 10 , 000)、 図 3 (X 500)、 図 4 (X 2000) に示す。
実施例 6
24. 2 gの硝酸銅 3水和物を水 1 05m 1に溶解し、 攪拌下、 重炭酸ナ卜リ ゥム 1 2.6 gを水 240m 1に溶解した液を 60でにて 1時間かけて滴下した。 滴下終了後、 攪拌を継続しながら 60でにて 1時間熟成させ、 沈殿物を生成させ た。 得られた沈殿物を純水にて濾液が中性になるまで洗浄し、 1 10でで一定重 量を示すまで熱風乾燥した。 得られた塩基性硝酸銅の各測定結果を表 2に示す。 実施例 7
硝酸により pH3. 8に調整した水 200 g中に、 硝酸銅 90. 5 gを水 50 gに溶解した溶液を温度を 5 に維持しながら 5時間 30分かけて連続的に添加 した。 この間、 pHが 5. 4〜5. 6の間に保持されるように、 炭酸水素ナトリ ゥム 47. 5 gを水 600 gに溶解した溶液を添加した。 添加終了後、 濾過、 洗 浄、 乾燥して塩基性硝酸銅 39. 7 gを得た。 得られた塩基性硝酸銅の各測定結 果を表 2に示し、 走査型電子顕微鏡写真 (X 500、 X 2000、 X 5000) を図 5、 図 6、 図 7に示す。
実施例 8
ニトログァニジン 実施例 5の塩基性硝酸銅 Zグァガム =44. 2/52. 8
/3. 0 (重量%) を混合し、 ガス発生剤組成物を得た。 この組成物の重量減少 率を測定したところ、 94時間経過時点で 0. 1 2%、 234時間経過時点で 0.
25%、 405時間経過時点で 0. 36%であった。 以下、 実施例により本発明の組成物を更に詳しく説明するが、 本発明はこれら により限定されるものではない。 なお表中、 NQはニトログァニジン、 BHTN H 3はビテトラゾールアンモニゥム塩、 BHTKはビテトラゾールカリゥム塩、 D CD Aはジシアンジアミド、 5—ATは 5—アミノテトラゾール、 Z n (5— AT) は 5—アミノテトラゾ一ルの亜鉛塩、 BCNは塩基性硝酸銅 [C u2 (NO 3) (OH) 3]、 CMCN aはカルボキシメチルセルロースナトリウムを示す。 な お、 以下における測定方法の詳細は下記のとおりである。
(9) 耐熱性試験 (重量減少率)
ガス発生剤組成物 (ガス発生剤 40 gを含む) をアルミニウム製容器に入れ、 総重量を測定した。 (総重量一アルミニウム製容器重量)を試験前のサンプル重量 とした。 サンプルの入ったアルミニウム製容器を、 S US製厚肉容器 (内容積 1 1 8. 8m l ) に入れ、 ふたをした。 この時、 ゴムパッキンとクランプを使用し て容器が密閉状態になるようにした。 これを 90で及び 1 1 Otの恒温槽に入れ た。 1 000時間及び 400時間経過後に容器を恒温槽から取り出し、 容器が室 温にもどってから容器を開け、 中からアルミニウム製容器を取り出した。 アルミ 二ゥム製容器ごとの総重量を測定し、 (総重量 -アルミニウム製容器重量)を試験 後のサンプル重量とした。 そして、 試験前後の重量変化を比較して重量減少率を 求めることにより耐熱性を評価した。 重量減少率は、 〔(試験前のガス発生剤重量 一試験後のガス発生剤重量) ノ試験前のガス発生剤重量〕 X I 00から求めた。
(1 0) ガス濃度の測定
上記の耐熱性試験終了後の密閉容器を約 2リットルの空気が入ったポリ塩化ビ ニル製の袋にいれた後に袋を密閉した。 袋内でクランプを外し、 密閉容器を開け て、 容器中にあったガスを袋中に放出させた。 袋中のガスを拡散させ、 均一にし た後に、 検知管を袋に突き刺し、 すみやかにガス濃度の測定を行った。 (1 1) 内圧の測定
上記の耐熱性試験後のガス発生剤組成物の入った容器内の内圧を測定した。 実施例 9〜 1 7、 比較例 3〜 4
表 3に示す組成を有するガス発生剤組成物を製造した。 これらの組成物の理論 計算に基づく燃焼温度、 発生ガス効率 (単位 「mo 1ノ 1 00 g」 は組成物 10 0 g当たりの発生ガスのモル数を表す)、 CO及び NO発生量を表 3に示す。 実施例 9〜 1 7のいずれの燃焼温度も比較例 3〜4と比べて十分低く、 1 90 0K以下であり、 更に NO発生量の低減に効果のあることを示している。 また、 C〇及び N〇発生量については、 CO発生量 2 X 10 -3mo 1 100 g以下及 び NO発生量 2 X 1 0— 4mo l /1 00 g以下が同時に達成されなければ実用 上許容されないが、 これらの実施例はこの条件を満足していることが分かる。 実施例 18〜 23
表 4に示す組成を有するガス発生剤組成物を製造した。 これらの組成物の J I S K481 0— 1 979の火薬類性能試験法に基づく摩擦感度と落槌感度を試 験した。 結果を表 4に示す。
実施例 24〜 28
表 5に示す組成を有するガス発生剤組成物を製造した。 これらの組成物につい て、 理学 (株) 製の T AS型示差熱分析装置による融解温度、 発熱開始温度、 T G重量減少開始温度を測定した。 測定時の昇温速度は 20°CZm i n、 測定雰囲 気は窒素ガス、 測定時のサンプル量は l〜2mgであった。 結果を表 5に示す。 また、 実施例 26の組成物について、 次の方法により耐熱性試験を行った。 耐 熱性試験は、 組成物をアルミニウム製容器に入れたものを 1 1 0での恒温槽内で
400時間放置して行い、 試験前後における組成物の重量変化から重量減少率を 求め、 耐熱性を評価した。 その結果、 重量減少率は一 0. 3 1 %とわずかであり、 外観上も変化は見られなかった。 実施例 29 ~ 40
表 6に示す組成を有するガス発生剤組成物を製造した。 これらの組成物をス卜 ランドに成型して、 4900、 6860、 8820 kP aの圧力で、 窒素雰囲気 下で燃焼速度を測定した。 6860 kP aの燃焼速度と、 4900〜 8820 k P aの間の圧力指数を表 6に示す。 以上のように実施例 1 8〜40に示されたそれぞれの数値は、 これらの実施例 の組成物がインフレ一夕用ガス発生剤組成物としての実用上の条件を満足してい ることを示す。
実施例 41〜 63 表 7に示す組成を有するガス発生剤組成物を製造し、 これらの組成物を 2 gの ストランドに成型した。 このストランドを内容積 1リットルの密閉ボンブに取り 付け、 ボンブ内を窒素で置換した後、 更に窒素で 6860 k P aまで加圧して、 ストランドをニクロム線の通電により着火させ、 完全に燃焼させた。 通電から約 20秒後に燃焼ガスをガスサンプリングバッグに採取し、 直ちに、 検知管で NO 2、 NO、 C〇、 C〇2の濃度を分析した。 実施例 64〜 83
表 8に示す組成を有するガス発生剤組成物を製造し、 実施例 41〜63と同様 にして N〇2、 N〇、 CO、 C〇2の濃度を分析した。 実施例 84〜; 102 表 9に示す組成を有するガス発生剤組成物を製造した。 これらの組成物の理論 計算に基づく燃焼温度及び発生ガス効率 (単位 「mo l Zl 00 g」 は組成物 1 00 g当たりの発生ガスのモル数を表す) を表 9に示す。 実施例 103 NQ/BCNノグァガム =44. 2/52. 8/3 (重量%) のガス発生組成 物を製造し、 下記の方法で耐熱性を試験した。 その結果、 1 1 0で、 2 14時間 の条件における重量減少率は 0. 27%、 1 1 Ot:, 408時間の条件における 重量減少率は 0. 45%であった。
実施例 104〜 1 1 1
表 10に示す組成を有するガス発生剤組成物を製造し、 上記の実施例 9〜10 3と同様の方法で表 10に示した各項目の測定を行った。
表 1
重量減少開始温度 熱安定性
(°c)
比較例 1 215 淡青色—黒色 実施例 1 220 淡青色(色変化なし) 実施例 2 淡青色(色変化なし) 実施例 3 223 淡青色(色変化なし) 実施例 4 淡青色(色変化なし) 比較例 2 219 淡青色淡灰色
表 2
Figure imgf000045_0001
* 1:実施例 5の粒子は、 3〜6jLimの 1次粒子が;跳した 2次粒子である。
* 2:実施例 6の粒子 (非凝集体)は、不定形板状結晶であり、 ft^対角長さが 3~15〃mのものである。
Figure imgf000046_0002
Figure imgf000046_0001
表 4
ガス発生剤組成物 組成比 摩擦感度 落槌感度
(wt%) (ke ) ( cm ) 実施例 18 BHTNH3/BCN 28.75/71.25 >36.0 >100 実施例 19 BHTK/BCN 44.52/55.48 >36.0 70 80 実施例 20 BHTNH3/BCN/CMCNa 25.89/71.11/3 〉36.0 >80 実施例 21 NQ/BCN/CMCNa 32/60/8 >36.0 〉50 実施例 22 NQ/BCN/ク'ァカ'ム 44.2/52.8/3 〉36. 0 60-70 実施例 23 NQ/BCN/ク'ァカ'厶 /KN03 45.0/47.0/3/5 〉36. 0 >100
表 5
発熱分解 TG重量減少 ガス発生剤組成物 組成比(wt%) 融解温度 開始温度 開始温度
(°C)
(°C) (。c) 実施例 24 BHTNH3/BCN 28.75/71.25 208 230 216 実施例 25 BHTK/BCN 44.52/55.48 198 362 201 実施例 26 NQ/BCN/CMCNa 32/60/8 216.6 209.5 実施例 27 NQ/BCN/CMCNa 43.9/53.1/3 221.5 204.8 実施例 28 Zn(5-AT)2/BCN 40/60 221.3 221.3
表 6
ガス発生剤組成物 組成比 燃焼速度 圧力指数
(wt%) Imm/sec 実施例 29 BHTNH3/BCN 28.75/71.25 14.48 0.16 室施例 30 ΒΗΤΚ/ΒΠΝ 07 qo n on 夫 ΛfcΒ ·<Βl\Ι 1 R WTM W /RPM /Γ* Μ« QO " 71 1 1 / 14.y a U.1 夹施例 32 Q/BCN/CMCNa 28/64/8 7.9 0.33 実施例 33 NQ/BCN/CMCNa 30/62/8 8.9 0.29 実施例 34 NQ/BCN/CMCNa 32/60/8 9.7 0.44 実施例 35 NQ/BCN/ク'ァカ'厶 44.2/52.8/3 10.8 0.58 実施例 36 NQ/BCN/ク'ァカ 'ム /KN03 44.3/52.2/3/0.5 11.0 0.53 実施例 37 NQ/BCN/ク 'ァ力'ム /KN03 44.4/51.6/3/1 12.0 0.64 実施例 38 NQ/BCN/ク'ァカ'厶 /KN03 44.6/50.4/3/2 11.8 0.71 実施例 39 NQ/BGN/ク'ァカ 'ム /KN03 44.7/49.3/3/3 15.7 0.48 実施例 40 NQ/BCN/ク'ァカ'ム /KN04 45.0/47.0/3/5 17.8 0.41
8
Figure imgf000050_0001
3d ΐΌεεζ/το OAV 表 7続さ
実施例 57 NQ/BCN/CMCNa/CaC03 42.5/49.5/3/5 0 5 270 2200 実施例 58 NQ BCNZCMCNaZAI23 42.5/49.5/3/5 0 2 310 2900 実施例 59 NQZBCN CMCNaZSi〇2 42.5/49.5/3/5 0 1 310 2100 実施例 60 NQ BCN ゲァ力'ム 44.2/52.8/3 0 8 410 2500 実施例 61 NQ/BCNノゲァ力'厶 KN03 44.4/51.6/3/1 0 5 320 2000 実施例 62 NQ BCN ゲァ力'ム KN〇3 44J/49.3/3/3 0 1 350 1900 実施例 63 NQ BCN ゲァ力'厶 KN〇3 45.0/47.0/3/5 0 3 320 2000
一 OAV
Figure imgf000052_0001
表 9
Figure imgf000053_0001
表 1 0 組 成 と 組 成 比 (wt%) 圧力指数燃 st 発^ ίス co発 ¾S NO発 4£
(mm/sec) (k) m (cal/g) (mol/100g) (mol/IOOg) 実施例 104 NQ/BCN/グァガム/ Si02=43J/52.3/3/1 12.30 0.35 2156 2.73 698 0.0495 2.05E-4 実施例 105 NQ/BCN/グァガム/ Si02=43.2/51.8/3/2 12.88 0.31 2145 2.70 693 0.0492 1.81E-4 麵列 106 NQ/BCN/グァガム/ Si02=42.7/51.3/3/3 13.11 0.32 2136 2.66 687 0.0417 1.92E-4 実施例 107 NQ/BCN/グァガム/ SiO2=42.2/50.8/3/4 13.83 0.29 2122 2.65 681 0.0486 1.40E-4 麵列 8 NQ/BCN/グァガム/ Si02=41 J/50.3/3/5 13.61 0.31 2110 2.62 676 0.0483 1.23E-4 実施例 109 NQ/BCN/グァガム/ SiO2=40.7/49.3/3/7 13.68 0.22 2087 2.56 ' 664 0.0477 7.23E-5 難例 "0 NQ/BCN/グァガム/ Si02=39.8/48.2/3/9 14.45 0.23 2062 2.51 653 0.0495 6J8E-4 難例" 1 NQ/BCN/グァガム/ Si02=38.8/47.2/3/1 1 13.71 0.22 2038 2.45 641 0.0489 5.12E-5

Claims

請求の範囲
1. 下記 (a) 〜 (d) の要件の 1以上を具備する塩基性金属硝酸塩。
( a ) 粒子の粒径が 0. 5〜 40 tm;
(b) X線回折法におけるピークの半値幅が 0. 35deg以下となる結晶化度 を有すること ;
(c) TG— DTA分析による重量減少開始温度が 220で以上であること ;
(d) 不純物の含有量が N a原子換算で 1000 p pm以下であること。
2. 塩基性硝酸銅である請求項 1記載の塩基性金属硝酸塩。
3. 請求項 1又は 2記載の塩基性金属硝酸塩を含むガス発生剤組成物。
4. 硝酸金属塩と炭酸水素アルカリ金属塩を反応させる塩基性金属硝酸塩の製 造方法。
5. 硝酸金属塩が、 コバルト、 銅、 亜鉛、 マンガン、 鉄、 モリブデン、 ビスマ ス及びセリゥムから選ばれる 1種以上の金属塩である請求項 4記載の製造方法。
6. 硝酸金属塩が硝酸銅である請求項 4又は 5記載の製造方法。
7. 硝酸銅が、 下記一般式 (I)で示されるものである請求項 6記載の製造方法。
C u(N03)2 - nH20 (I)
(式中、 nは 0〜6である。)
8. 炭酸水素アルカリ金属塩のアルカリ金属が、 ナトリウム、 カリウム、 リチ ゥム、 ルビジウム、 セシウムから選ばれる 1種以上である請求項 4〜 7のいずれ か 1記載の製造方法。
9. 炭酸水素アルカリ金属塩が、 炭酸水素ナトリウム又は炭酸水素カリウムで ある請求項 4 ~ 8のいずれか 1記載の製造方法。
10. 燃料及び塩基性金属硝酸塩を含有しており、 前記塩基性金属硝酸塩が下 記要件 (a— 1) 〜 (a— 3) から選ばれる 1以上を具備しているものであるガ ス発生剤組成物。
(a - 1 ) 粒子の粒径が 0. 5〜 40 zm;
(a- 2) 粒子の比表面積が 0. 4〜6. OmVg ;
(a— 3) 粒子の嵩密度が 0. 4 g/m l以上;
1 1. 燃料及び塩基性金属硝酸塩を含有しており、 前記塩基性金属硝酸塩が要 件 (a— 1) 〜 (a— 3) に加えて更に下記要件 (b) 〜 (d) から選ばれる 1 以上を具備しているものである請求項 10記載のガス発生剤組成物。
(b) X線回折法におけるピークの半値幅が 0. 35deg以下となる結晶化度 を有すること ;
(c) TG_DT A分析による重量減少開始温度が 220で以上であること ;
(d) 不純物の含有量が N a原子換算で 1000 p pm以下であること。
12. 燃料及び塩基性金属硝酸塩を含有しており、 前記塩基性金属硝酸塩が 1 次粒子が凝集してなる 2次粒子であり、前記 2次粒子が下記要件(a—;!)〜(a - 3) から選ばれる 1以上を具備しているものであるガス発生剤組成物。
( - 1 ) 粒子の粒径が 0. 5〜 40 X m;
(a- 2) 粒子の比表面積が 0. 4〜6. 0m2/g ;
(a— 3) 粒子の嵩密度が 0. 4 gZm l以上;
1 3. 燃料及び塩基性金属硝酸塩を含有しており、 前記塩基性金属硝酸塩が要 件 (a— 1) 〜 (a— 3) に加えて更に下記要件 (b) 〜 (d) から選ばれる 1 以上を具備しているものである請求項 12記載のガス発生剤組成物。
(b) X線回折法におけるピークの半値幅が 0. 35deg以下となる結晶化度 を有すること ;
(c) TG— DTA分析による重量減少開始温度が 220で以上であること ;
(d) 不純物の含有量が N a原子換算で 1000 p pm以下であること。
14. 2次粒子からなる塩基性金属硝酸塩が針状乃至板状及び 又は球状乃至 それに類似した形状の 1次粒子が多数凝集して形成されたものである請求項 1 2 又は 1 3記載のガス発生剤組成物。
1 5. 燃料が含窒素化合物である請求項 1 0〜14のいずれか 1記載のガス発 生剤組成物。
1 6. 燃料が、 グァニジン誘導体、 ァゾール誘導体、 卜リアジン誘導体、 遷移 金属錯体から選ばれるものである請求項 1 0〜1 5のいずれか 1記載のガス発生 剤組成物。
1 7. 燃料がニトログァニジンである請求項 1 0〜1 6のいずれか 1記載のガ ス発生剤組成物。
1 8. 塩基性金属硝酸塩が塩基性硝酸銅である請求項 1 0〜 1 7のいずれか 1 記載のガス発生剤組成物。
1 9. 更に添加剤を含有する請求項 1 0〜 1 8のいずれか 1記載のガス発生剤 組成物。
20. 添加剤がグァガムである請求項 1 9記載のガス発生剤組成物。
2 1. 1 1 0°Cの温度雰囲気中で 400時間保持した場合の重量減少率が 2.
0重量%以下である請求項 1 0〜20のいずれか 1記載のガス発生剤組成物。
22. 燃料及び請求項 1に記載した塩基性金属硝酸塩または請求項 4に記載し た方法で得た塩基性金属硝酸塩とを含むガス発生剤組成物。
23. (a) テトラゾール誘導体、 グァニジン、 炭酸グァニジン、 ニトログァ 二ジン、 ジシアンジアミド、 二トロアミノグァニジン及びニトロアミノグァニジ ン硝酸塩から選ばれる 1種以上のグァニジン誘導体並びに (b) 塩基性金属硝酸 塩を含有するガス発生剤組成物。
24. (a) テトラゾ一ル誘導体、 グァニジン、 炭酸グァニジン、 ニトログァ 二ジン、 ジシアンジアミド、 二卜ロアミノグァニジン及びニトロアミノグァニジ ン硝酸塩から選ばれる 1種以上のグァニジン誘導体、 (b)塩基性金属硝酸塩並び に (c) バインダ及び 又はスラグ形成剤を含有するガス発生剤組成物。
25. (a)テ卜ラゾール誘導体、 グァニジン誘導体又はそれらの混合物、 (b) 塩基性金属硝酸塩及び (d) 燃焼改良剤を含有するガス発生剤組成物。
26. (a)テ卜ラゾール誘導体、 グァニジン誘導体又はそれらの混合物、 (b) 塩基性金属硝酸塩、 (c)バインダ及び Z又はスラグ形成剤並びに (d)燃焼改良 剤を含有するガス発生剤組成物。
27. (d) 燃焼改良剤が、 ガス発生剤組成物全体としての燃焼速度、 燃焼の 持続性及び着火性を含む燃焼性を向上させるように作用する成分である請求項 2 5又は 26記載のガス発生剤組成物。
28. (d) 燃焼改良剤が、 窒化ケィ素、 シリカ、 アルカリ金属又はアルカリ 土類金属の亜硝酸塩、 硝酸塩、 塩素酸塩又は過塩素酸塩 (KN〇3、 NaN03、 KC 104)、 酸化水酸化鉄 (ΠΙ) 〔F eO (OH)〕、 酸化銅、 酸化鉄、 酸化亜鉛、 酸化コバルト及び酸化マンガンから選ばれる 1種以上である請求項 25、 26又 は 27記載のガス発生剤組成物。
29. (a) テ卜ラゾール誘導体、 グァニジン誘導体又はそれらの混合物及び (b) 塩基性金属硝酸塩を含有しており、 下記要件①〜③から選ばれる 1以上の 要件を有しているガス発生剤組成物。
①ガス発生剤組成物を密閉した状態で 90°Cで 1000時間又は 1 10でで 4 00時間保持した場合のガス発生剤の重量減少率が 2. 0%以下であること
②ガス発生剤の燃焼により発生するガスに含まれる微量ガスの濃度が、 280
0 Lタンクでの測定値としてで、 < 〇が400 111以下、 NOが 4 O p pm以 下、 N〇2が 8 p pm以下及び NH3が 1 00 p pm以下であること ③ガス発生剤燃焼時におけるガス発生器内の最大内圧が 7840〜 22500 k P aであること
30. (a)テトラゾール誘導体、 グァニジン誘導体又はそれらの混合物、 (b) 塩基性金属硝酸塩並びに(c)バインダ及び Z又はスラグ形成剤を含有しており、 下記要件①〜③から選ばれる 1以上の要件を有しているガス発生剤組成物。
①ガス発生剤組成物を密閉した状態で 90 で 1 000時間又は 1 10でで 4 00時間保持した場合のガス発生剤の重量減少率が 2. 0%以下であること
②ガス発生剤の燃焼により発生するガスに含まれる微量ガスの濃度が、 280 0 Lタンクでの測定値としてで、 〇が4001) 111以下、 1^0が40 111以 下、 N〇2が 8 p pm以下及びNH3がl 00 p pm以下であること
③ガス発生剤燃焼時におけるガス発生器内の最大内圧が 7840〜 22500 kP aであること
31. 更に、 請求項 5又は 6記載の (d) 燃焼改良剤を含有する請求項 29又 は 30記載のガス発生剤組成物。
32. (a) 成分のテトラゾ一ル誘導体が、 テトラゾール、 5—アミノテトラ ゾール、 5, 5'—ビー 1 H—テトラゾ一ル、 5—ニトロアミノテ卜ラゾール、 5 一アミノテトラゾ一ルの亜鉛塩、 5—アミノテトラゾールの銅塩、 ビテトラゾー ル、 ビテトラゾ一ルカリウム塩、 ビテトラゾールナトリウム塩、 ビテトラゾール マグネシウム塩、 ビテ卜ラゾ一ルカルシウム塩、 ビテトラゾールジアンモニゥム 塩、 ビテトラゾール銅塩及びビテトラゾールメラミン塩から選ばれる 1種以上で ある請求項 23〜 31のいずれか 1記載のガス発生剤組成物。
33. (a) 成分のグァニジン誘導体が、 グァニジン、 モノ、 ジ又はトリアミ ノグァ二ジン硝酸塩、 硝酸グァニジン、 炭酸グァニジン、 ニトログァニジン、 ジ シアンジアミド及び二トロアミノグァニジン硝酸塩から選ばれる 1種以上である 請求項 25〜 3 1のいずれか 1記載のガス発生剤組成物。
34. (b) 成分の塩基性金属硝酸塩が、 塩基性硝酸銅、 塩基性硝酸コバルト、 塩基性硝酸亜鉛、 塩基性硝酸マンガン、 塩基性硝酸鉄、 塩基性硝酸モリブデン、 塩基性硝酸ビスマス及び塩基性硝酸セリウムから選ばれる 1種以上である請求項
23〜 33のいずれか 1記載のガス発生剤組成物。
35. (b) 成分が塩基性金属硝酸塩とその他の 1種以上の酸化剤との混合物 である請求項 23 ~ 34のいずれか 1記載のガス発生剤組成物。
36. (b) 成分が塩基性金属硝酸塩とその他の 1種以上の酸化剤との混合物 であり、 その他の 1種以上の酸化剤がアル力リ金属硝酸塩を含んでいる請求項 2 3〜 35のいずれか 1記載のガス発生剤組成物。
37. (b) 成分が混合物であるとき、 その他の 1種以上の酸化剤として含ま れるアルカリ金属硝酸塩が硝酸カリウムである請求項 23〜36のいずれか 1記 載のガス発生剤組成物。
38. (b) 成分が混合物であるとき、 混合物中の塩基性金属硝酸塩の含有量 が 55〜99. 9重量%である請求項 23〜37のいずれか 1記載のガス発生剤 組成物。
39. (c ) 成分のバインダが非架橋性のものである請求項 24、 26、 27、 28、 30〜38のいずれか 1記載のガス発生剤組成物。
40. (c) 成分のバインダ及び Z又はスラグ形成剤が、 非架橋性のものであ り、 カルボキシメチルセルロース、 カルボキシメチルセルロースナトリウム塩、 カルボキシメチルセルロース力リゥム塩、 カルボキシメチルセルロースアンモニ ゥム塩、 酢酸セルロース、 セルロースアセテートブチレート、 メチルセルロース、 ェチルセルロース、 ヒドロキシェチルセル Π—ス、 ェチルヒドロキシェチルセル ロース、 ヒドロキシプロピルセルロース、 カルボキシメチルェチルセルロース、 微結晶性セルロース、 ポリアクリルアミド、 ポリアクリルアミドのァミノ化物、 ポリアクリルヒドラジド、 アクリルアミド ·アクリル酸金属塩共重合体、 ポリア クリルアミド ·ポリァクリル酸エステル化合物の共重合体、 ポリビニルアルコ一 ル、 アクリルゴム、 グァガム、 デンプンを含む多糖類、 シリコーン、 二硫化モリ ブデン、 酸性白土、 タルク、 ベントナイ ト、 ケイソゥ土、 カオリン、 ステアリン 酸カルシウム、 シリカ、 アルミナ、 ケィ酸ナトリウム、 窒化ケィ素、 炭化ケィ素、 ヒドロタルサイト、 マイ力、 金属酸化物、 金属水酸化物、 金属炭酸塩、 塩基性金 属炭酸塩及びモリブデン酸塩から選ばれる 1種以上である請求項 24、 26、 2 7、 28、 30〜38のいずれか 1記載のガス発生剤組成物。
41. (c) 成分の金属酸化物が、 酸化銅、 酸化鉄、 酸化亜鉛、 酸化コバルト、 酸化マンガン、 酸化モリブデン、 酸化ニッケル及び酸化ビスマスから選ばれる 1 種以上であり、 金属水酸化物が、 水酸化コバルト、 水酸化アルミニウムから選ば れる 1種以上であり、 金属炭酸塩及び塩基性金属炭酸塩が、 炭酸カルシウム、 炭 酸コバルト、 塩基性炭酸亜鉛及び塩基性炭酸銅から選ばれる 1種以上であり、 モ リブデン酸塩が、 モリブデン酸コバルト及びモリブデン酸アンモニゥムから選ば れる 1種以上である請求項 40記載のガス発生剤組成物。
42. (a) ビテトラゾールジアンモニゥム塩及び (b) 塩基性硝酸銅を含有 する請求項 23記載のガス発生剤組成物。
43. (a) ビテ卜ラゾールジアンモニゥム塩 1 5〜45重量%及び (b) 塩 基性硝酸銅 55〜85重量%を含有する請求項 42記載のガス発生剤組成物。
44. (a) ビテ卜ラゾールジアンモニゥム塩、 (b) 塩基性硝酸銅及び (c) カルボキシメチルセルロースナトリゥム塩を含有する請求項 24記載のガス発生 剤組成物。
45. (a) ビテトラゾールジアンモニゥム塩 1 5〜40重量%、 ( b ) 塩基性 硝酸銅 45〜80重量%及び(c)カルボキシメチルセルロースナトリウム塩 0. 1〜 1 5重量%を含有する請求項 44記載のガス発生剤組成物。
46. (a) ビテトラゾールジアンモニゥム塩、 (b) 塩基性硝酸銅及び (c一 1) カルポキシメチルセルロースナトリウム塩と (c一 2) 前記 (c一 1) 以外 の請求項 3 9、 40又は 4 1記載の (c) 成分を含有する請求項 24記載のガス 発生剤組成物。
47. (a) ビテトラゾールジアンモニゥム塩 1 5〜35重量%、 (b) 塩基性 硝酸銅 30〜7 0重量%、 (c― 1 )カルボキシメチルセルロースナトリウム塩 0.
1〜 1 5重量%及び (c一 2) 1〜45重量%を含有する請求項 46記載のガス 発生剤組成物。
48. (a) ニトログァニジン及び (b) 塩基性硝酸銅を含有する請求項 2 3 記載のガス発生剤組成物。
49. (a) ニトログァニジン 3 0〜70重量%及び (b) 塩基性硝酸銅 30 〜70重量%を含有する請求項 48記載のガス発生剤組成物。
50. (a) ニトログァニジン、 (b) 塩基性硝酸銅及び (c) カルボキシメチ ルセルロースナ卜リゥム塩を含有する請求項 24記載のガス発生剤組成物。
5 1. (a) ニトログァニジン 1 5〜55重量%、 ( b ) 塩基性硝酸銅 45〜 7 0重量%及び(c)カルボキシメチルセルロースナトリウム塩 0. 1〜1 5重量% を含有する請求項 50記載のガス発生剤組成物。
5 2. (a) ニトログァニジン、 (b) 塩基性硝酸銅及び (c— 1 ) カルボキシ メチルセルロースナトリウム塩と (c一 2) 前記 (c一 1) 以外の請求項 3 9、
40又は 4 1記載の (c) 成分を含有する請求項 24記載のガス発生剤組成物。
53. (a) ニトログァニジン 1 5〜50重量%、 ( b ) 塩基性硝酸銅 30〜 6
5重量%及び (c一 1) カルボキシメチルセルロースナトリウム塩 0. 1〜 1 5 重量%と (c一 2) 1〜40重量%を含有する請求項 52記載のガス発生剤組成 物。
54. (a) ニトログァニジン、 (b) 塩基性硝酸銅及び (c) グァガムを含有 する請求項 24記載のガス発生剤組成物。
55. (a) ニトログァニジン 20〜60重量%、 ( b ) 塩基性硝酸銅 35〜 7 5重量%及び (c) グァガム 0. 1〜 10重量%を含有する請求項 54記載のガ ス発生剤組成物。
56. (a) ニトログァニジン、 (b) 塩基性硝酸銅及び (c一 1) グァガムと (c一 2) 前記 (c一 1) 以外の請求項 39、 40又は 41記載の (c) 成分を 含有する請求項 24記載のガス発生剤組成物。
57. (a) ニトログァニジン 20〜60重量%、 ( b ) 塩基性硝酸銅 30〜 7 0重量%及び (c一 1) グァガム 0. 1〜; 10重量%と (c— 2) 0. :!〜 10 重量%を含有する請求項 56記載のガス発生剤組成物。
58. (a) ニトログァニジン、 (b) 塩基性硝酸銅、 (c) グァガムと (d) 燃焼改良剤を含有する請求項 27記載のガス発生剤組成物。
59. (a) ニトログァニジン 20〜60重量%、 ( b ) 塩基性硝酸銅 35〜 7 5重量%、 (c) グァガム 0. 1〜: L 0重量%、 (d) 燃焼改良剤 0. 1〜15重 量%を含有する請求項 58記載のガス発生剤組成物。
60. (d) 燃焼改良剤がシリカである請求項 58又は 59記載のガス発生剤 組成物。
6 1. (a) ジシアンジアミ ド及び (b) 塩基性硝酸銅を含有する請求項 23 記載のガス発生剤組成物。
62. (a) ジシアンジアミ ド 1 5〜30重量%及び (b) 塩基性硝酸銅 70
〜85重量%を含有する請求項 6 1記載のガス発生剤組成物。
63. (a) ジシアンジアミド、 (b) 塩基性硝酸銅及び (c) カルボキシメチ ルセルロースナトリゥム塩を含有する請求項 24記載のガス発生剤組成物。
64. (a) ジシアンジアミド 1 5〜25重量%、 ( b )塩基性硝酸銅 60〜 8 0重量%及び(c)カルボキシメチルセルロースナトリウム塩 0. 1〜20重量% を含有する請求項 63記載のガス発生剤組成物。
65. (a) ジシアンジアミド、 (b) 塩基性硝酸銅及び (c— 1) カルボキシ メチルセルロースナトリウム塩と (c— 2) 前記 (c— 1) 以外の請求項 39、 40又は 41記載の (c) 成分を含有する請求項 24記載のガス発生剤組成物。
66. (a) ジシアンジアミド 1 5〜25重量%、 ( b )塩基性硝酸銅 55〜 7 5重量%及び(c - 1)カルボキシメチルセルロースナトリウム塩 0〜10重量% と (c一 2) 1〜20重量%を含有する請求項 65記載のガス発生剤組成物。
67. (a) 硝酸グァニジン、 (b) 塩基性硝酸銅及び (c) カルポキシメチル セルロースナトリゥム塩を含有するガス発生剤組成物。
68. (a) 硝酸グァニジン 15〜60重量%、 ( b )塩基性硝酸銅 40〜 70 重量%及び (c) カルボキシメチルセルロースナトリウム塩 0. 1〜1 5重量% を含有する請求項 67記載のガス発生剤組成物。
69. (a) 硝酸グァニジン、 (b) 塩基性硝酸銅及び (c一 1) カルボキシメ チルセルロースナトリウム塩と (c一 2) 前記 (c一 1) 以外の請求項 39、 4 0又は 41記載の (c) 成分を含有するガス発生剤組成物。
70. ) 硝酸グァニジン 1 5〜55重量%、 ( b ) 塩基性硝酸銅 25〜 60 重量%及び (c— 1 ) カルボキシメチルセルロースナトリゥム塩 0. 1〜 1 5重 量%と (c一 2) 1〜40重量%を含有する請求項 69記載のガス発生剤組成物。
7 1. (b) 成分として塩基性硝酸銅及び硝酸カリウムの混合物を含有する請 求項 35〜 70のいずれか 1記載のガス発生剤組成物。
72. 請求項 3, 10〜7 1のいずれか 1に記載のガス発生剤組成物を用いた エアバック用ィンフレー夕。
73. 請求項 3, 10〜71のいずれか 1に記載のガス発生剤組成物から得ら れる単孔円柱状、 多孔円柱状又はペレット状の成型体。
74. 請求項 73に記載の成型体を用いるエアバック用ィンフレー夕。
PCT/JP2000/006664 1999-09-27 2000-09-27 Nitrate de metal basique, procede de production de ce nitrate, et composition contenant un agent generateur de gaz WO2001023304A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP00962888A EP1241138B1 (en) 1999-09-27 2000-09-27 Basic metal nitrate, method for producing the same and gas-generating agent composition
AU74463/00A AU7446300A (en) 1999-09-27 2000-09-27 Basic metal nitrate, method for producing the same and gas-generating agent composition
HU0202721A HUP0202721A3 (en) 1999-09-27 2000-09-27 Basic metal nitrate, method for producing the same and gas-generating agent composition
DE60041984T DE60041984D1 (de) 1999-09-27 2000-09-27 Basisches metallnitrat, verfahren zur herstellung
KR1020027003905A KR20020048419A (ko) 1999-09-27 2000-09-27 염기성 금속 질산염, 그 제조법 및 가스 발생제 조성물
US11/216,149 US20070119530A1 (en) 1999-09-27 2005-09-01 Basic metal nitrate, process for producing the same and gas generating agent composition
US12/205,393 US20090101250A1 (en) 1999-09-27 2008-09-05 Basic metal nitrate, process for producing the same and gas generating agent composition
US12/877,632 US8613821B2 (en) 1999-09-27 2010-09-08 Basic metal nitrate, process for producing the same and gas generating agent composition

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP11/271976 1999-09-27
JP27197699 1999-09-27
JP11/287507 1999-10-08
JP28750799 1999-10-08
JP2000071680 2000-03-15
JP2000/71753 2000-03-15
JP2000071753 2000-03-15
JP2000/71680 2000-03-15
JP2000128077 2000-04-27
JP2000/128077 2000-04-27
JP2000281421A JP4800469B2 (ja) 1999-10-08 2000-09-18 ガス発生剤組成物
JP2000/281421 2000-09-18
JP2000/282972 2000-09-19
JP2000282972A JP4794728B2 (ja) 1999-09-27 2000-09-19 塩基性金属硝酸塩及びその製造法

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09914548 A-371-Of-International 2000-09-27
US11/216,149 Division US20070119530A1 (en) 1999-09-27 2005-09-01 Basic metal nitrate, process for producing the same and gas generating agent composition
US12/205,393 Continuation US20090101250A1 (en) 1999-09-27 2008-09-05 Basic metal nitrate, process for producing the same and gas generating agent composition

Publications (1)

Publication Number Publication Date
WO2001023304A1 true WO2001023304A1 (fr) 2001-04-05

Family

ID=27566784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006664 WO2001023304A1 (fr) 1999-09-27 2000-09-27 Nitrate de metal basique, procede de production de ce nitrate, et composition contenant un agent generateur de gaz

Country Status (8)

Country Link
US (3) US20070119530A1 (ja)
EP (1) EP1241138B1 (ja)
KR (1) KR20020048419A (ja)
CN (1) CN100465097C (ja)
AU (1) AU7446300A (ja)
CZ (1) CZ20021056A3 (ja)
DE (1) DE60041984D1 (ja)
WO (1) WO2001023304A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024652A1 (ja) * 2002-09-12 2004-03-25 Daicel Chemical Industries, Ltd. ガス発生剤組成物
US6712918B2 (en) 2001-11-30 2004-03-30 Autoliv Asp, Inc. Burn rate enhancement via a transition metal complex of diammonium bitetrazole
US6964716B2 (en) 2002-09-12 2005-11-15 Daicel Chemical Industries, Ltd. Gas generating composition
WO2007061104A1 (ja) * 2005-11-25 2007-05-31 Daicel Chemical Industries, Ltd. インフレータ用のエンハンサ剤の成形体
CN100376515C (zh) * 2005-03-28 2008-03-26 东方久乐汽车安全气囊有限公司 一种产气组合物及其制备方法
EP1323696A3 (en) * 2001-12-27 2012-05-16 Trw Inc. Cool burning gas generating material for a vehicle occupant protection apparatus
RU2476380C1 (ru) * 2011-08-04 2013-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения основного хлорида или нитрата меди (ii)
JP2016514084A (ja) * 2013-03-13 2016-05-19 オートリブ エーエスピー,インコーポレイティド 銅含有ガス発生剤のための改善されたスラグ生成

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI241277B (en) 2001-03-29 2005-10-11 Daicel Chem Method for the production of the basic metal nitrate
US6958101B2 (en) * 2003-04-11 2005-10-25 Autoliv Asp, Inc. Substituted basic metal nitrates in gas generation
JP4767487B2 (ja) * 2003-10-20 2011-09-07 ダイセル化学工業株式会社 ガス発生剤組成物
US7665764B2 (en) 2004-01-15 2010-02-23 Daicel Chemical Industries, Ltd. Gas generator for air bag
CN1914356B (zh) * 2004-02-05 2010-05-05 日矿金属株式会社 金属的表面处理剂
FR2866022B1 (fr) * 2004-02-10 2006-07-28 Snpe Materiaux Energetiques Composition pyrotechnique generatrice de gaz destinee a la securite automobile
US8034133B2 (en) * 2004-05-31 2011-10-11 Daicel Chemical Industries, Ltd. Gas generating composition
CN101205158B (zh) * 2006-12-19 2012-06-20 比亚迪股份有限公司 一种安全带预紧器产气药及其制备方法和使用方法
JP5085926B2 (ja) * 2006-12-21 2012-11-28 株式会社ダイセル ガス発生剤組成物
JP5719763B2 (ja) * 2009-03-13 2015-05-20 日本化薬株式会社 ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器
JP5441497B2 (ja) * 2009-05-21 2014-03-12 株式会社ダイセル ガス発生剤組成物
US8231747B2 (en) * 2009-07-29 2012-07-31 Autoliv Asp, Inc. Inflator assembly
FR2949778B1 (fr) * 2009-09-10 2013-05-10 Snpe Materiaux Energetiques Composes pyrotechniques generateurs de gaz
CN101745195B (zh) * 2010-01-19 2012-09-05 陕西坚瑞消防股份有限公司 一种耐老化气溶胶发生剂及其制备工艺
DE102010050358A1 (de) * 2010-11-05 2012-05-10 Durferrit Gmbh Explosions- oder detonationsfähige Mischung
KR101212790B1 (ko) * 2011-05-12 2012-12-14 주식회사 한화 가스발생제용 조성물, 이를 이용한 가스발생제 및 이를 포함하는 인플레이터
CN104114494B (zh) * 2012-02-08 2016-09-28 巴斯夫欧洲公司 制备可包含氢氧化物的混合碳酸盐的方法
DE102012005759A1 (de) 2012-03-23 2013-09-26 Trw Airbag Systems Gmbh Gaserzeugende zusammensetzung
CN103482677B (zh) * 2012-06-13 2015-09-30 湖北汉伟新材料有限公司 一种气体发生器用超细碱式硝酸铜的制备方法
CN104418676A (zh) * 2013-08-27 2015-03-18 湖北航天化学技术研究所 一种气体发生器用气体发生剂及制造方法
CN104418677A (zh) * 2013-08-27 2015-03-18 湖北航天化学技术研究所 一种气体发生剂及制备方法
CN104860788A (zh) * 2014-08-07 2015-08-26 青岛蓝农谷农产品研究开发有限公司 一种高效无毒气体发生剂
JP6970190B2 (ja) 2016-05-23 2021-11-24 ジョイソン セーフティー システムズ アクウィジション エルエルシー ガス発生組成物ならびにそれらの製造方法及び使用方法
CN106517301B (zh) * 2016-10-21 2017-10-31 广州科城环保科技有限公司 一种从硫酸体系含铜废液中回收碱式氯化铜的方法
US10668311B2 (en) 2018-03-23 2020-06-02 Goodrich Corporation Fire suppressant inert gas generator
CN109160868A (zh) * 2018-10-31 2019-01-08 湖北航天化学技术研究所 一种气囊用气体发生剂
EP3883887A1 (en) * 2018-11-20 2021-09-29 The Shepherd Chemical Company Surface modifiers for preparing age-resistant inorganic salts
CN109809954B (zh) * 2018-12-29 2021-02-09 湖北航鹏化学动力科技有限责任公司 一种多孔产气剂模压制品及其制备工艺
CN111943789A (zh) * 2020-09-01 2020-11-17 湖北航天化学技术研究所 一种气体发生剂及其制备方法
CN116249682A (zh) * 2020-10-01 2023-06-09 株式会社大赛璐 气体发生剂组合物
KR102642172B1 (ko) * 2023-08-01 2024-02-29 주식회사 송학환경개발 산불 진화용 소화 성형체 제조방법 및 이를 이용하여 제조된 소화 성형체

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145422A (ja) * 1988-11-24 1990-06-04 Dowa Mining Co Ltd 微細酸化銅粉末の製造方法
US5608183A (en) * 1996-03-15 1997-03-04 Morton International, Inc. Gas generant compositions containing amine nitrates plus basic copper (II) nitrate and/or cobalt(III) triammine trinitrate
US5725699A (en) * 1994-01-19 1998-03-10 Thiokol Corporation Metal complexes for use as gas generants
JPH1087390A (ja) * 1995-10-06 1998-04-07 Daicel Chem Ind Ltd エアバッグ用ガス発生剤
JPH11502864A (ja) * 1995-10-28 1999-03-09 デイナミート ノーベル ゲゼルシャフト ミット ベシュレンクテル ハフツング エクスプロジーフシュトッフ−ウント ジステームテヒニク 鉛およびバリウム不含の点火用組成物
JPH11343192A (ja) * 1998-04-08 1999-12-14 Trw Airbag Syst Gmbh & Co Kg アジド化合物を含まないガス生成用組成物

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902934A (en) * 1972-06-08 1975-09-02 Specialty Products Dev Corp Gas generating compositions
US4369079A (en) * 1980-12-31 1983-01-18 Thiokol Corporation Solid non-azide nitrogen gas generant compositions
US4909549A (en) * 1988-12-02 1990-03-20 Automotive Systems Laboratory, Inc. Composition and process for inflating a safety crash bag
US4994212A (en) * 1990-05-24 1991-02-19 Trw Vehicle Safety Systems Inc. Process for manufacturing a gas generating material
US5084218A (en) * 1990-05-24 1992-01-28 Trw Vehicle Safety Systems Inc. Spheronizing process
JP3199458B2 (ja) 1992-05-29 2001-08-20 電気化学工業株式会社 セメント混和材及びセメント組成物
US5682014A (en) * 1993-08-02 1997-10-28 Thiokol Corporation Bitetrazoleamine gas generant compositions
US5429691A (en) 1993-08-10 1995-07-04 Thiokol Corporation Thermite compositions for use as gas generants comprising basic metal carbonates and/or basic metal nitrates
DE4401214C1 (de) * 1994-01-18 1995-03-02 Fraunhofer Ges Forschung Gaserzeugende Mischung
DE4401213C1 (de) * 1994-01-18 1995-03-02 Fraunhofer Ges Forschung Gaserzeugende Mischung
DE4410477C1 (de) * 1994-03-25 1995-09-14 Flaekt Ab Vorrichtung zur Oberflächenbehandlung von Fahrzeugkarosserien
JPH08231291A (ja) * 1994-12-27 1996-09-10 Daicel Chem Ind Ltd ガス発生剤組成物
DE19507208A1 (de) * 1995-03-02 1996-09-05 Dynamit Nobel Ag Gasgenerator, insbesondere für einen Airbag, mit einem Ladebehälter und einem Flammleitrohr
US6234521B1 (en) * 1996-04-08 2001-05-22 Daicel Chemical Industries, Ltd. Airbag inflator and an airbag apparatus
US6039820A (en) * 1997-07-24 2000-03-21 Cordant Technologies Inc. Metal complexes for use as gas generants
JPH1072273A (ja) 1996-08-28 1998-03-17 Nippon Kayaku Co Ltd エアバッグ用ガス発生剤
US5834679A (en) * 1996-10-30 1998-11-10 Breed Automotive Technology, Inc. Methods of providing autoignition for an airbag inflator
JP3608902B2 (ja) * 1997-03-24 2005-01-12 ダイセル化学工業株式会社 ガス発生剤組成物及びその成型体
US6562161B1 (en) * 1997-03-24 2003-05-13 Daicel Chemical Industries, Ltd. Gas generating compositions for air bag
US5841065A (en) * 1997-04-15 1998-11-24 Autoliv Asp, Inc. Gas generants containing zeolites
JPH11125012A (ja) 1997-10-22 1999-05-11 Shimizu Corp コンクリート充填用打設装置
FR2772370B1 (fr) 1997-12-12 2000-01-07 Poudres & Explosifs Ste Nale Compositions pyrotechniques generatrices de gaz non toxiques a base de perchlorate d'ammonium
JPH11292678A (ja) * 1998-04-15 1999-10-26 Daicel Chem Ind Ltd エアバッグ用ガス発生剤組成物
US6096147A (en) * 1998-07-30 2000-08-01 Autoliv Asp, Inc. Ignition enhanced gas generant and method
US6412815B1 (en) * 1998-09-28 2002-07-02 Daicel Chemical Industries, Ltd. Gas generator for air bag and air bag device
US6077372A (en) * 1999-02-02 2000-06-20 Autoliv Development Ab Ignition enhanced gas generant and method
US6143102A (en) * 1999-05-06 2000-11-07 Autoliv Asp, Inc. Burn rate-enhanced basic copper nitrate-containing gas generant compositions and methods
JP2001002488A (ja) * 1999-06-17 2001-01-09 Daicel Chem Ind Ltd プリテンショナー用ガス発生剤組成物
CZ20014668A3 (cs) 1999-06-25 2002-09-11 Nippon Kayaku Kabushiki-Kaisha Plynotvorná kompozice
US6488310B1 (en) * 2000-03-28 2002-12-03 Daicel Chemical Industries, Ltd. Hybrid inflator
TWI241277B (en) * 2001-03-29 2005-10-11 Daicel Chem Method for the production of the basic metal nitrate
DE10230402B4 (de) * 2002-07-05 2007-01-11 Trw Airbag Systems Gmbh & Co. Kg Verfahren zur Herstellung einer gaserzeugenden Zusammensetzung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145422A (ja) * 1988-11-24 1990-06-04 Dowa Mining Co Ltd 微細酸化銅粉末の製造方法
US5725699A (en) * 1994-01-19 1998-03-10 Thiokol Corporation Metal complexes for use as gas generants
JPH1087390A (ja) * 1995-10-06 1998-04-07 Daicel Chem Ind Ltd エアバッグ用ガス発生剤
JPH11502864A (ja) * 1995-10-28 1999-03-09 デイナミート ノーベル ゲゼルシャフト ミット ベシュレンクテル ハフツング エクスプロジーフシュトッフ−ウント ジステームテヒニク 鉛およびバリウム不含の点火用組成物
US5608183A (en) * 1996-03-15 1997-03-04 Morton International, Inc. Gas generant compositions containing amine nitrates plus basic copper (II) nitrate and/or cobalt(III) triammine trinitrate
JPH11343192A (ja) * 1998-04-08 1999-12-14 Trw Airbag Syst Gmbh & Co Kg アジド化合物を含まないガス生成用組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1241138A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712918B2 (en) 2001-11-30 2004-03-30 Autoliv Asp, Inc. Burn rate enhancement via a transition metal complex of diammonium bitetrazole
EP1323696A3 (en) * 2001-12-27 2012-05-16 Trw Inc. Cool burning gas generating material for a vehicle occupant protection apparatus
WO2004024652A1 (ja) * 2002-09-12 2004-03-25 Daicel Chemical Industries, Ltd. ガス発生剤組成物
US6964716B2 (en) 2002-09-12 2005-11-15 Daicel Chemical Industries, Ltd. Gas generating composition
EP1538137A4 (en) * 2002-09-12 2011-12-21 Daicel Chem GAS GENERATION COMPOSITION
CN100376515C (zh) * 2005-03-28 2008-03-26 东方久乐汽车安全气囊有限公司 一种产气组合物及其制备方法
WO2007061104A1 (ja) * 2005-11-25 2007-05-31 Daicel Chemical Industries, Ltd. インフレータ用のエンハンサ剤の成形体
RU2476380C1 (ru) * 2011-08-04 2013-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения основного хлорида или нитрата меди (ii)
JP2016514084A (ja) * 2013-03-13 2016-05-19 オートリブ エーエスピー,インコーポレイティド 銅含有ガス発生剤のための改善されたスラグ生成

Also Published As

Publication number Publication date
KR20020048419A (ko) 2002-06-22
US8613821B2 (en) 2013-12-24
EP1241138B1 (en) 2009-04-08
EP1241138A1 (en) 2002-09-18
US20090101250A1 (en) 2009-04-23
CN100465097C (zh) 2009-03-04
CN1376135A (zh) 2002-10-23
EP1241138A4 (en) 2005-02-23
CZ20021056A3 (cs) 2002-10-16
AU7446300A (en) 2001-04-30
US20070119530A1 (en) 2007-05-31
US20100326574A1 (en) 2010-12-30
DE60041984D1 (de) 2009-05-20

Similar Documents

Publication Publication Date Title
WO2001023304A1 (fr) Nitrate de metal basique, procede de production de ce nitrate, et composition contenant un agent generateur de gaz
JP4500399B2 (ja) トリアジン誘導体を含むガス発生剤組成物
JP4302442B2 (ja) ガス発生剤組成物
US6964716B2 (en) Gas generating composition
JP4641130B2 (ja) ガス発生剤組成物およびそれを使用したガス発生器
WO2010134466A1 (ja) ガス発生剤組成物
JP4800469B2 (ja) ガス発生剤組成物
WO2012128302A1 (ja) ガス発生剤組成物
JP3907548B2 (ja) メラミンシアヌレートを含むインフレータ用ガス発生剤組成物
JP4767487B2 (ja) ガス発生剤組成物
JP4672974B2 (ja) ガス発生剤組成物
JP5422096B2 (ja) ガス発生剤組成物
JP2000086375A (ja) ガス発生剤組成物
JP4294331B2 (ja) ガス発生剤の製造法
JP4794728B2 (ja) 塩基性金属硝酸塩及びその製造法
JP4799136B2 (ja) ガス発生剤組成物
JP3953187B2 (ja) ガス発生剤組成物
JP2002519278A (ja) 高酸素バランス燃料を含んでなる着火式気体発生組成物
JP5274078B2 (ja) ガス発生剤組成物
JP4500576B2 (ja) ガス発生剤組成物
JP2004059331A (ja) ガス発生剤組成物
JP5325099B2 (ja) ガス発生剤組成物及びガス発生剤組成物成形体、並びにそれに用いる化合物の製造方法、並びにガス発生器
JP2002173326A (ja) 塩基性金属硝酸塩
WO2000029355A1 (fr) Composition generatrice de gaz
JP2001213687A (ja) ガス発生剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09914548

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/00226/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2000962888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008132895

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: PV2002-1056

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1020027003905

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2002 2002111339

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020027003905

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000962888

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2002-1056

Country of ref document: CZ

WWR Wipo information: refused in national office

Ref document number: PV2002-1056

Country of ref document: CZ