WO2001013093A1 - Procede et appareil de surveillance de l'environnement - Google Patents

Procede et appareil de surveillance de l'environnement Download PDF

Info

Publication number
WO2001013093A1
WO2001013093A1 PCT/JP2000/005471 JP0005471W WO0113093A1 WO 2001013093 A1 WO2001013093 A1 WO 2001013093A1 JP 0005471 W JP0005471 W JP 0005471W WO 0113093 A1 WO0113093 A1 WO 0113093A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
transmitting substrate
environmental
infrared transmitting
substrate
Prior art date
Application number
PCT/JP2000/005471
Other languages
English (en)
French (fr)
Inventor
Michiaki Endo
Haruo Yoshida
Yasuhiro Maeda
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to DE10084702T priority Critical patent/DE10084702T1/de
Priority to AU65927/00A priority patent/AU6592700A/en
Publication of WO2001013093A1 publication Critical patent/WO2001013093A1/ja
Priority to US10/051,527 priority patent/US6657196B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the present invention relates to an environmental monitoring method and apparatus for identifying an environmental substance such as an organic pollutant present in the atmosphere or measuring the concentration thereof.
  • Environmental monitoring for the purpose of identifying or measuring the concentration of environmental substances present in the atmosphere is required in various aspects.
  • One example is an environmental monitor in a clean room where semiconductor devices are manufactured.
  • various processes are performed on the surface of the semiconductor wafer according to the purpose of the process.
  • the wafer surface is cleaned by a wet cleaning method using various chemicals or pure water, or a dry cleaning method using ultraviolet rays or plasma.
  • a reforming process is performed. Since the clean surface of the wafer exposed during such a cleaning process is generally highly reactive with other molecules, silicon atoms on the surface may be bonded to hydrogen or exchanged with oxygen during or after the treatment. It changes over time when exposed to an environmental atmosphere in contact with the semiconductor wafer, such as when an oxide film is formed by bonding.
  • semiconductor processes are generally performed in a clean room, and many processes are composed of many devices.However, when a process is moved from one process to the next, such as when a semiconductor device is taken out of the device, Exposure to outside air. At this time, the powder is not only oxidized by the oxygen in the air, but may also be contaminated with certain pollutants, for example, organic substances. They may also be contaminated with trace amounts of nitrogen oxides and sulfur oxides.
  • One of the sources of organic pollution generated in clean rooms is said to be organic substances contained in air in clean rooms. This organic material is used in building materials used in clean rooms, air filters, wiring, piping, etc. It is believed that the organic substances contained are volatilized.
  • monitoring the amount of environmental substances contained in the air in the clean room where the semiconductor device manufacturing process is performed to identify the source of environmental substances and control the amount of generated environmental substances will reduce the production yield of semiconductor devices. It is extremely important in improving the characteristics and properties.
  • the conventional method of measuring environmental substances in the atmosphere is to absorb the environmental substances on tenax, which is a porous substance, and then heat them to release the adsorbed substances, which are then analyzed by a mass spectrometer.
  • Identification 'Quantification method thermal desorption GC / MS: Gas Chromatography / Mass Spectroscopy
  • the conventional measurement method described above usually takes several tens of hours to perform a measurement, and it has been difficult to feed back the measurement result to environmental management.
  • the present inventors have developed an organic contamination detection method using 18-multiple internal reflection Fourier infrared spectroscopy (FTIR-ATR) to detect organic contaminants attached to the wafer surface with high sensitivity.
  • FTIR-ATR 18-multiple internal reflection Fourier infrared spectroscopy
  • the infrared light When infrared light is incident on one end of the A-Eight at a specific incident angle, the infrared light propagates inside the A-eha while repeating total reflection on both surfaces. At that time, the infrared light seeps out onto the substrate surface (evanescent light). However, part of the infrared spectrum is absorbed by organic contaminants attached to the surface.
  • Spectroscopic analysis of the propagating light emitted from the other end of the screen by FT-IR makes it possible to detect and identify organic contaminants attached to the surface.
  • This test method has the same sensitivity as GC / MS method, etc., has real-time measurement, and is simple and economical. Therefore, if multiple internal reflection Fourier infrared spectroscopy can be applied to environmental monitoring, it will be possible to perform high-sensitivity, real-time environmental monitoring. available.
  • An object of the present invention is to provide an environment monitoring method and apparatus capable of performing high-sensitivity real-time measurement by applying multiple internal reflection Fourier infrared spectroscopy to environmental monitoring.
  • the above object is to detect infrared rays emitted from the infrared transmitting substrate after the infrared rays are incident on the infrared transmitting substrate placed in the measurement environment and multiple reflected inside the infrared transmitting substrate.
  • Measuring the type and / or abundance of the environmental substance present in the vicinity of the infrared transmitting substrate by spectrally analyzing the detected infrared light, and determining the type and amount of the environmental substance existing in the vicinity of the infrared transmitting substrate. This is achieved by an environmental monitoring method characterized by measuring the type and / or concentration of an environmental substance in the measurement environment based on the amount present.
  • the object is to initialize a surface state of the infrared-transmitting substrate by removing a substance attached to the infrared-transmitting substrate placed in the measurement environment prior to the measurement or periodically at the time of the measurement.
  • Infrared rays enter the initialized infrared transmitting substrate, detect the infrared rays emitted from the infrared transmitting substrate after multiple reflection inside the infrared transmitting substrate, and spectrally analyze the detected infrared rays.
  • the present invention is also achieved by an environmental monitoring method characterized by measuring the type and / or concentration of an environmental substance in the measurement environment.
  • the substance adhering to the infrared transmitting substrate may be removed by irradiating the infrared transmitting substrate with ultraviolet light.
  • the infrared ray incident on the infrared transmitting substrate is propagated in one direction inside the infrared transmitting substrate, and the infrared ray emitted from an end face different from the end face on which the infrared ray is incident. May be detected.
  • the infrared ray incident on the infrared transmitting substrate is propagated in two directions in the infrared transmitting substrate, and is the same as the end face on which the infrared ray is incident.
  • the infrared rays emitted from the side end surface may be detected.
  • the infrared transmitting substrate has at least a first propagation path having a long infrared ray propagation distance and a second propagation path having a short infrared ray propagation distance.
  • measurement is performed using the first propagation path.
  • measurement is performed using the second propagation path. It may be performed.
  • the above object is to provide an infrared transmitting substrate for adhering an environmental substance in a measurement environment, an infrared light source for emitting infrared light to the infrared transmitting substrate, and the infrared light after multiple reflection inside the infrared transmitting substrate.
  • An infrared spectrometer for detecting and spectrally analyzing the infrared light emitted from the transmission substrate; and a type and / or type of environmental substance existing in the vicinity of the infrared transmission substrate based on a spectral result obtained by the infrared spectrometer.
  • an arithmetic device that calculates the amount of the environmental substance in the measurement environment based on the type and / or the amount of the environmental substance existing near the infrared transmitting substrate. This is also achieved by an environmental monitoring device characterized by having the following.
  • the above object is to provide an infrared transmitting substrate for adhering an environmental substance in a measurement environment, an infrared light source for emitting infrared light to the infrared transmitting substrate, and the infrared light after multiple reflection inside the infrared transmitting substrate.
  • An infrared spectrometer for detecting and spectrally analyzing the infrared light emitted from the transmission substrate; and a type and / or type of environmental substance existing in the vicinity of the infrared transmission substrate based on a spectral result obtained by the infrared spectrometer.
  • an arithmetic device that calculates the amount of the environmental substance in the measurement environment based on the type and / or the amount of the environmental substance existing near the infrared transmitting substrate.
  • an environmental monitoring device comprising: an environmental substance removing means for removing an environmental substance attached to the infrared transmitting substrate to initialize a surface state.
  • the environmental substance removing means is an ultraviolet light irradiating means for irradiating the infrared transmitting substrate with ultraviolet light to remove the environmental substance attached to the infrared transmitting substrate. You may do so.
  • the ultraviolet light irradiating means includes: an ultraviolet light source; and a reflecting mirror having a cross section of a surface almost perpendicular to a propagation direction of the infrared light having an elliptical shape, and the elliptical shape of the reflecting mirror.
  • the infrared light source is disposed near one focal point of the surface, and the other focal point
  • the infrared transmitting substrate may be arranged near 0/05471.
  • the infrared transmitting substrate may include at least a first propagation path having a long infrared ray propagation distance and a second propagation path having a short infrared ray propagation distance. Good.
  • an incident optical system that makes the infrared ray incident on the infrared ray transmitting substrate on one end surface side of the infrared ray transmitting substrate; and the infrared ray emitted from the infrared ray transmitting substrate.
  • an emission optical system that propagates the light to the infrared spectroscope.
  • the infrared transmitting substrate 5 0 0 cm- 1 than on 5 0 0 0 cm 1 be less Unishi I is made of a material having a transmission band wavenumber range Good.
  • concentration of the environmental substance in air can be detected with high sensitivity, and the component can also be specified.
  • the measurement method according to the present invention has real-time measurement, the measurement result can be fed back early. Therefore, it is possible to identify the source of organic pollution generated in the clean room and to control the amount of generated organic pollution.
  • FIG. 1 is a schematic diagram showing the structure of an environment monitoring method and apparatus according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the transmitted light intensity of infrared rays transmitted through silicon having a length of 4 cm and 10 cm and the wave number.
  • FIG. 3 is a plan view and a side view showing an example of the infrared transmitting substrate.
  • FIG. 4 is a graph showing the absorbance spectrum of ethanol obtained by multiple internal reflection in a 200 mm silicon wafer.
  • Figure 5 is a graph showing the relationship between the concentration of environmental substances in the atmosphere and the amount of environmental substances deposited on the silicon surface per unit area after standing for 24 hours.
  • FIG. 6 is a graph showing the relationship between the absorbance and the amount of DOP attached (in terms of carbon amount).
  • FIG. 7 is a graph showing the relationship between the absorbance and the number of multiple internal reflections.
  • FIG. 8 is a graph showing the relationship between the absorbance, the standing time, and the amount of contamination.
  • FIG. 9 is a schematic diagram illustrating an environment monitoring method and apparatus according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the structure of an environment monitoring method and apparatus according to the present embodiment
  • FIG. 2 is a graph showing the relationship between the transmitted light intensity and the wave number of infrared light transmitted through silicon having a length of 4 cm and 10 cm
  • FIG. 3 is a plan view and a side view showing an example of an infrared transmitting substrate
  • FIG. 4 is a graph showing an absorbance spectrum of ethanol obtained by multiple internal reflections on 200 mm silicon-18
  • Figure 6 is a graph showing the relationship between absorbance and the amount of DOP deposited.
  • 7 is a graph showing the relationship between the absorbance and the number of multiple internal reflections
  • FIG. 8 is a graph showing the relationship between the absorbance and the standing time and the amount of contamination.
  • FIG. 1A is a sectional side view showing the configuration of the environmental monitoring device according to the present embodiment
  • FIG. 1B is a sectional view taken along a plane perpendicular to the propagation direction of infrared rays
  • FIG. It is a top view in a parallel surface.
  • FIG. 1A corresponds to a cross-sectional view taken along the line AA ′ in FIG. 1C
  • FIG. 1B corresponds to a cross-sectional view taken along the line BB ′ in FIG. 1C.
  • the environmental monitoring device includes an infrared transmitting substrate 10 for adsorbing environmental substances in the air to be measured and providing the same for measurement.
  • Infrared light source 20 for entering infrared rays and causing multiple internal reflections, and infrared light for removing the environmental substances attached to the surface of the infrared transmitting substrate 10 and initializing the surface state
  • a light source 30, a reflecting mirror 40 for efficiently irradiating the ultraviolet light emitted from the ultraviolet light source 30 to both surfaces of the infrared transmitting substrate 10, and emitted after multiple reflections inside the infrared transmitting substrate 10
  • a detection optical system 50 that detects transmitted infrared light
  • a spectrometer 60 that disperses the infrared light detected by the detection optical system 50, and identification and concentration of environmental substances in the measurement environment based on the analysis result by the spectrometer 60. It is configured by calculation to be calculated and display means 70.
  • the infrared transmitting substrate 10 is for adsorbing environmental substances in the air to be measured and providing it for measurement, and transmits light in a wavelength range corresponding to molecular vibration of the substance to be measured. It must be a material. Wavenumber range corresponding to the fundamental oscillation of the organic material which is a typical environmental substances is 500 cm- 1 (wavelength 20 ⁇ M) ⁇ 5000 cm one 1 (wavelength 2 m) of about infrared 'near-infrared region. Therefore, the material constituting the infrared transmitting substrate 10 is selected from a group of infrared transmitting substances capable of transmitting light in the wave number range (wavelength range).
  • Silicon (Si) has a transmission wavelength range of about 1.2 to 6 ⁇ m, and can be selected as one material constituting the infrared transmission substrate 10.
  • Si silicon
  • the infrared transmitting substrate 10 As an example, a preferred shape as the infrared transmitting substrate 10 used in the environment monitoring device according to the present embodiment will be described.
  • N is represented by: L is the total length of the infrared transmitting substrate 10, d is the thickness of the infrared transmitting substrate 10, and S int is the internal reflection angle.
  • N L / dt anoint
  • the length L of the infrared transmitting substrate depends on the material constituting the infrared transmitting substrate 10. 00/05471 Considering the absorption of infrared light and the fact that the environmental monitoring device is manufactured to a practical size, it is desirable to keep it at most within a few tens of cm. In order to increase the number of internal reflections, it is necessary to make the infrared transmitting substrate 10 thin as long as the strength is not impaired. In order to prevent light from being scattered during multiple internal reflection, it is necessary to use a substrate polished on both sides as the infrared transmitting substrate 10.
  • the 8-inch silicon wafer has a thickness of 0.5 mm and a diameter of 20 mm, so that the internal reflection angle is 45 mm. In the case of °, 400 internal reflections can be obtained. The number of internal reflections is almost the same as that using a 300 mm silicon wafer with a thickness of 0.775 mm (387 times). Multiple internal reflection Fourier infrared rays using a 300 mm wafer are used. Sensitivity equivalent to that of spectroscopy can be obtained.
  • the present inventors have confirmed through experiments that if infrared light is transmitted through a silicon substrate having a long infrared propagation length, the infrared spectrum on the long wavelength side cannot be observed due to absorption.
  • Figure 2 shows the measurement results when infrared light was transmitted through silicon substrates of 4 cm and 10 cm in length and multiple internal reflection spectra were measured.
  • a spectrum up to around 1000 cm- 1 is obtained, while on a 10 cm long substrate, the low wavenumber side (long wavelength side) starts from around 1,500 cm- 1 . It turns out that no spectrum has been obtained.
  • the length of the substrate must be reduced to about several cm.
  • an infrared transmitting substrate 10 having the shape shown can be applied.
  • the substrate is shaped in steps with 20 cm and 4 cm propagation paths.
  • the end face of the infrared transmitting substrate 10 is polished at an inclination of 45 °.
  • the infrared transmitting substrate 10 shown in FIG. 1 is formed based on the basic concept of the infrared transmitting substrate 10 shown in FIG. 3 from the viewpoint of simplification of the device configuration and the like.
  • the incident side end face has a triangular shape with an apex angle of 90 °, and the other is perpendicularly added.
  • the substrate When the substrate is formed in this way, the infrared light incident on the substrate is reflected on the end surface opposite to the incident end surface side and returns to the incident end surface side again, so the number of reflections per unit length is Double. For this reason, the length of the substrate can be reduced to about half of the case of the basic configuration of the infrared transmitting substrate shown in FIG. 3, and the same sensitivity can be obtained.
  • this substrate allows the infrared light to be incident and detected on the same side, and the two measurement modes of the long optical path length and the short optical path length should be slightly shifted in the infrared light incident position. It has the advantage that two measurement modes can be incident and detected with the same optical system. From the above, it is possible to reduce the size of the device and simplify the device without reducing the performance.
  • the infrared transmitting substrate 10 shown in FIGS. 1 and 3 has the infrared transmitting substrate 10 having two types of propagation distances of infrared rays, the infrared transmitting substrate 10 may be configured to have three or more types of propagation distances. .
  • silicon was used as an example of the material constituting the infrared transmitting substrate 10.
  • potassium bromide (KBr: transmission wavelength range 0.4 to 22 ⁇ m)
  • lithium chloride ( KC 1: transmission wavelength range 0. 3 ⁇ 1 5 / in)
  • zinc selenide (Z n S e: transmission wavelength range 0.. 6 to; L 3 ⁇ M)
  • barium fluoride (B a F 2: transmission wavelength Range 0.2 to 5 ⁇ m)
  • cesium bromide CsBr: transmission wavelength range 0.5 to 30 urn
  • germanium Ge: transmission wavelength range 2 to 18 ju
  • lithium fluoride (L i F: transmitted wave length range 0.
  • C aF 2 transmission wavelength range 0.5 2 ⁇ 8 ⁇ m
  • sapphire A 1 2 0 3: transmission wavelength range 0 . 3 to 5 / m
  • cesium iodide C s I: transmission wavelength range 0.5 5 to 2 8 m
  • magnesium fluoride MgF 2: Toru wavelength range 0. 2 to 6 ⁇ M
  • KRS-5 Transmission wavelength range 0.6 to 28 ⁇ m
  • Zinc sulfide Zinc sulfide
  • a material such as 0.7 to 1 l ⁇ m) can be used as the infrared transparent substrate 10.
  • the material that constitutes the infrared transmitting substrate 10 is sensitive to the molecular vibrations of environmental substances to be measured. It is desirable to select appropriately according to the corresponding wavelength. It is also desirable that the shape of the infrared transmitting substrate 10 is appropriately adjusted according to the characteristics of each material.
  • a light source that emits infrared light in a band of 2 to 25 / in corresponding to molecular vibration of organic molecules can be applied.
  • a heat source generated by applying a current to silicon hydride (SiC) as a filament or a nichrome wire can be used as a light source.
  • SiC silicon hydride
  • a reflecting plate having an appropriate shape may be provided to increase the efficiency of the light source and increase the intensity of infrared light.
  • various infrared light sources described in Japanese Patent Application No. 11-95853 by the same applicant can be applied.
  • the infrared rays are reflected multiple times inside the infrared transmitting substrate 10 and the light that oozes on the substrate surface during reflection reflects molecular vibrations of environmental substances such as organic pollutants and chemical pollutants. Detects and measures environmental substances present near the substrate or adhering to the surface. Therefore, it is necessary to arrange the infrared light source 20 so that the infrared light incident on the infrared transmitting substrate 10 is multiple-reflected inside the substrate.
  • the conditions under which infrared light is completely reflected inside the substrate can be determined from Snell's law and the calculation of energy reflectivity.
  • the infrared transmitting substrate 10 when the infrared transmitting substrate 10 is made of silicon, it is completely reflected when the angle between the substrate plane and the infrared is in the range of 0 to 72 °.
  • the trajectory of the infrared ray having a reflection angle in this range may be traced in reverse, and a point intersecting with the end face of the infrared transmitting substrate 10 may be set as the infrared ray incident point.
  • the infrared light emitted from the infrared transmitting substrate 10 is introduced into the spectroscopic analyzer 60 via the detection optical system 50.
  • the spectrometer 60 is, for example, a spectrometer of an FT_IR device that separates infrared rays by a Fourier transform spectroscopy mechanism based on a two-beam interferometer (Michelson light interferometer).
  • Michelson light interferometer Michelson light interferometer
  • the incident infrared rays multiple times inside the infrared transmitting substrate 10
  • information on the surface state of the substrate is reflected on the infrared rays.
  • the type and amount of the environmental substance can be specified.
  • FIG. 4 is a graph showing a spectrum obtained by performing Fourier transform spectroscopy on infrared rays detected after multiple internal reflections in an 8-inch silicon wafer to which ethanol has been dropped.
  • environmental substances can be specified by observing peaks in the wavenumber range corresponding to the molecular vibration of a specific organic pollutant, and the amount of adhesion can be calculated from the peak intensity. .
  • a spectrometer may be placed in front of an infrared detector that has sensitivity over a wide wavelength range to detect environmental substances from absorption in multiple wavelength ranges, or only to absorb specific wavelengths from specific environmental substances. Attention should be paid to this, and the specific environmental substance may be detected using an infrared detector having sensitivity only in that wavelength range.
  • an infrared spectrometer using a diffraction grating may be used instead of the FT-IR device.
  • the spectrum measurement data obtained by the spectrometer 60 is sent to the arithmetic and display means 70, where the identification and quantity of environmental substances are performed.
  • the types of environmental substances and the calibration curve are separately stored as a database in the storage unit of the calculation and display means 70, and the measurement data is quantified with reference to those data.
  • the calculation means display means 70 stores a relationship between the amount of environmental substances adsorbed on or near the surface of the infrared transmitting substrate 10 and the amount of environmental substances in the air as a database. Thus, the concentration of the environmental substance in the atmosphere can be calculated from the detected amount of the environmental substance near the surface of the infrared transmitting substrate 10.
  • the environmental monitoring device measures substances in the environmental atmosphere by identifying and quantifying environmental substances adsorbed on the surface of the infrared transmitting substrate 10.
  • the amount of environmental substances adsorbed saturates over time. Therefore, when it is necessary to investigate changes in the concentration of environmental substances in the atmosphere over a long period of time, a cleaning step for periodically removing environmental substances attached to the surface of the infrared transmitting substrate 10 is required.
  • an ultraviolet light source is used as a means for cleaning environmental substances.
  • the ultraviolet light source 30 is for dissociating and evaporating environmental substances such as organic pollutants attached to the surface of the infrared transmitting substrate 10 and has an energy larger than the binding energy of the attached environmental substances.
  • a light source that generates light For example, ultraviolet light sources such as Xe (xenon) excimer light, low-pressure mercury lamps with emission wavelengths of 185 nm and 254 nm, and dielectric barrier discharge excimer lamp with emission wavelength of 172 nm are applied. can do. By irradiation with light having such energy, bonds of organic contaminants such as C—C, C—H, and C-10 can be dissociated and removed or evaporated from the surface of the infrared transmitting substrate 10.
  • the reflecting mirror 40 is for efficiently irradiating the ultraviolet light emitted from the ultraviolet light source 30 to both surfaces of the infrared transmitting substrate.
  • a reflecting mirror 4 having an elliptical cross section in a plane perpendicular to the direction in which the infrared transmitting substrate 10 and the ultraviolet light source 30 extend 0 is assumed.
  • the ultraviolet light source 3 By configuring the elliptical reflecting mirror 40 in this way, and disposing the ultraviolet light source 30 near one focal point of the ellipse and the infrared transmitting substrate 10 near the other focal point, the ultraviolet light source 3
  • the ultraviolet light emitted from 0 can be efficiently irradiated to the infrared transmitting substrate 10. Further, the device configuration can be simplified.
  • the amount of environmental substances adhering to or near a substrate that transmits infrared light is measured by multiple internal reflection infrared spectroscopy, Convert to substance concentration. In other words, it does not directly measure the concentration of environmental substances in the atmosphere. Therefore, in order to determine the concentration of environmental substances in the air from the amount of environmental substances present in the vicinity of the substrate, the relationship between the concentration of the environmental substances in the air and the magnitude of the absorbance at the absorption peak is determined in advance, and the calibration is performed. A line must be created. It is not necessary to calculate the absolute value of the amount of adhesion to the substrate.
  • the amount of transmitted light after contamination of the substrate I
  • IQ the number of internal reflections
  • the extinction coefficient per unit adhesion when one reflection occurs is as follows: Can be represented by the following equation.
  • equation (1) a conversion factor of absorbance and concentration When kappa 2, can be rewritten as follows.
  • Equations (1) and (5) show that a proportional relationship holds between the concentration of the environmental substance and the amount of adhesion to the substrate, and the concentration of the environmental substance and the absorbance. Therefore, exposure to air The amount of environmental substances adhering to the exposed substrate is obtained from the magnitude of the absorbance, and by multiplying this by a conversion coefficient, the concentration of environmental substances in the atmosphere can be calculated.
  • the conversion factor can be measured, for example, by the following procedure.
  • the substrate is exposed to the space where environmental substances are present at a certain concentration.
  • the exposure time of the substrate is constant. If the exposure time is different, the amount of adhesion may change even with the same concentration of environmental substance. In this case, it is necessary to convert the absorbance so that the exposure time becomes equal. For this purpose, it is necessary to measure the magnitude of the absorbance at appropriate intervals while exposing the substrate to the atmosphere, and to determine in advance the relationship between the exposure time and the magnitude of the absorbance.
  • the absolute amount of environmental substances attached to the substrate can be determined.
  • Fig. 5 is a graph showing the relationship between the concentration of chemical contaminants in the air and the silicon-e wafer surface contamination after standing for 24 hours.
  • DOP Dioctyl phthalate
  • the amount of adhesion to the surface of the Dye should be 10 12 CH 2 unit / cm 2 Is shown.
  • the adhesion amount on the wafer surface after standing for 24 hours is 10 12 CH 2 unit / cm 2, it can be understood that the DOP concentration in the air is 1 ng / m 3 .
  • the concentration of the environmental substance present in the atmosphere is calculated from the amount of the environmental substance attached to the infrared transmitting substrate 10. be able to.
  • a calibration curve indicating the relationship between the concentration of environmental substances in the atmosphere and the magnitude of the absorbance at the absorption peak is created in advance and stored in the calculation / display means 70, and stored in the atmosphere. The concentration of the environmental substance present in the environment may be calculated.
  • Fig. 6 shows the change in the magnitude of the absorbance of the C-H absorption with the change in the amount of DOP adhered measured using a 300 mm ⁇ wafer.
  • the measurement conditions were an internal reflection angle of 32 ° and the number of internal reflections of 620.
  • DOP is one of the plasticizers of plastics, one of the substances contained in the air in clean rooms, and also known as an environmental hormone substance.
  • the number of multiple internal reflections is almost the same for a silicon substrate having a length of 200 mm and a length of 180 mm for 300 mm, it is considered that the same relationship holds in the shape of the infrared transmitting substrate 10 according to the present embodiment.
  • the detection sensitivity of the measurement method according to the present embodiment can be obtained by comparing the sensitivity with the FT-IR device used for infrared light spectroscopy.
  • the detection limit of the absorbance of the FT-IR device used by the present inventors is about 0.0001, and when a silicon substrate of 200 mm is used, 101 Q carbon atoms / cm 2 It is possible to measure the degree of adhesion. When multiple internal reflections are performed at the same internal reflection angle and at a length of 4 cm, the number of internal reflections is 128, and it is possible to measure the adhesion amount of about 10 12 carbon atoms / cm 2 .
  • FIG. 8 shows the results of observing the change over time.
  • the amount of contaminated organic matter contaminants obtained from the calibration curve shown in FIG. 6 is shown on the upper axis of FIG.
  • the adhesion of organic matter due to air pollution has hardly changed since 48 hours. This is because the adhesion of the pollutant is saturated, and the adhesion of the pollutant and the re-emission of the adhering pollutant are in an equilibrium state (saturated adsorption).
  • the saturated deposition amount is estimated to be 10 15 carbon element / cm 2 , which is a sufficiently detectable amount even in a portion having a length of 4 cm. From this, it can be said that if the substrate of the present invention is allowed to stand until the saturated adsorption amount is reached, it is possible to identify environmental substances attached to the substrate.
  • the substrate shape included in the present invention has both the sensitivity and the measurement wavelength range sufficient for detecting environmental substances in the atmosphere.
  • the environment monitoring device is installed in the environment to be measured.
  • the infrared light emitted from the infrared light source 20 enters the infrared transmitting substrate 10.
  • the infrared light incident on the infrared transmitting substrate 10 is reflected on the front and back surfaces of the infrared transmitting substrate 10.
  • the infrared transmission substrate 10 should be placed at long distances in order to increase the number of multiple internal reflections in the infrared transmission substrate 10 and increase detection sensitivity.
  • the purpose is to detect environmental substances in a wide spectral wavelength range
  • the short distance between the infrared transmitting substrate 10 and the infrared is desirable to make the infrared ray incident on the portion
  • the infrared ray is spectrally analyzed by the spectral analyzer 60, and the calculation is performed. 70 is used to identify and quantify environmental substances.
  • the ultraviolet light emitted from the ultraviolet light source 30 is irradiated on the infrared transmitting substrate 10 via the reflecting plate 40 to be adsorbed on the surface of the infrared transmitting substrate 10. Removes environmental substances and initializes the substrate surface.
  • identification and measurement of the concentration of environmental substances in the atmosphere are performed by using Fourier infrared spectroscopy utilizing multiple internal reflection of infrared light in the infrared transmitting substrate 10. Therefore, measurement of environmental pollution can be performed with high sensitivity and in real time.
  • the apparatus may be configured by applying the infrared transmitting substrate 10 shown in FIG.
  • an infrared emission optical system may be provided on an end surface side different from the infrared incident end surface side, and the emitted infrared light may be analyzed.
  • the reflecting mirror 40 is not necessarily provided, and the ultraviolet light source 30 may be arranged on both upper and lower surfaces of the infrared transmitting substrate 10 as shown in FIG.
  • the present invention has been described by taking as an example a case where DOP is detected as an environmental substance.
  • the environmental monitoring method and apparatus according to the present invention can be applied to the measurement of other environmental substances as well.
  • the environmental monitoring method and apparatus according to the present invention include, but are not limited to, pollutants in a clean room. Fluorescent esters such as DP, DBP, and DECP, phosphoric esters such as TBP and TCEP, BHT, low molecular cyclic siloxanes, and IPA can be measured.
  • VOCs volatile organic compounds
  • the environmental monitoring method and apparatus can detect the concentration of environmental substances in the atmosphere with high sensitivity, can specify their components, have real-time measurement, and have an environment monitoring method and apparatus.
  • the present invention is useful for an environmental monitoring method and apparatus for identifying or measuring the concentration of environmental substances such as organic pollutants existing in water.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

明 細 書 環境モニタ方法及び装置
[技術分野]
本発明は、 大気中に存在する有機汚染物質などの環境物質を同定し或いはその 濃度を測定する環境モニタ方法及び装置に関する。
[背景技術]
大気中に存在する環境物質を同定し或いはその濃度を測定することを目的とし て行われる環境モニタリングは、 様々な局面において要請されている。
その一例として、 半導体装置の製造が行われるクリーンルーム内の環境モニタ が挙げられる。
半導体装置の製造過程では、 半導体ゥエーハ表面にプロセスの目的に応じた種 々の処理が施される。 プロセス前工程においては種々の化学薬品や純水を用いた ゥエツ ト洗浄法や紫外線やプラズマなどを用いたドライ洗浄法等によりゥェ一ハ 表面の清浄処理が行われ、 その後、 酸化などの表面改質処理が行われる。 このよ うな洗浄過程において露出されるゥエーハの清浄な表面は一般に他の分子との反 応性が高いため、 処理が行われている過程或いはその後に、 表面のシリコン原子 が水素と結合したり酸素と結合して酸化膜が形成されるなど、 半導体ゥヱーハの 接する環境雰囲気に曝されて経時的に変化する。
また、 半導体プロセスは一般にクリーンルーム内において行われ多くの装置に よつて数々の工程が組まれているが、 あるプロセスから次のプロセスへ移行する ときなどゥェ一八が装置外に出されたときには外気に曝される。 このとき、 ゥェ 一八は空気中の酸素によって酸化されるばかりでなく、 ある種の汚染物質、 例え ば有機物質に汚染されることがある。 また極微量の窒素酸化物、 硫黄酸化物など に汚染されることもある。 クリーンルーム内で発生する有機汚染の汚染源の一つ は、 クリーンルーム内の空気中に含まれる有機物質によるといわれている。 この 有機物質はクリーンルームに使用される建材、 エアフィル夕、 配線、 配管などに 含まれている有機物質が揮発して生じるものと考えられている。
したがって、 半導体装置の製造プロセスが施されるクリーンルーム内の空気中 に含まれる環境物質の量をモニタリングして環境物質の発生源の特定や発生量の コントロールを行うことは、 半導体装置の製造歩留まりの向上や特性向上を図る うえで極めて重要である。
また、 半導体装置の製造プロセスにおけるクリーンルーム内部の環境モニタリ ングばかりではなく、 我々が生活する実環境においても空気中の環境物質のモニ 夕リングが必要とされている。 近年、 環境ホルモンと呼ばれる特定の物質群が人 や動植物の健康に影響を与えることが知られてきており、 このような物質の排出 を管理することも強く求められている。
大気中の環境物質を測定する従来の方法としては、 多孔質物質であるテナック スに環境物質を吸着させた後、 これを熱して吸着物質を放出し、 質量分析計によ つて当該環境物質の同定 '定量化を行う方法 (加熱脱離 G C /M S : Gas Chroma tography/Mass Spectroscopy (ガスクロマトグラフィー質量分析法) ) などが一 般に知られている。
しかしながら、 上記従来の測定方法は、 通常測定に数十時間もかかることから、 測定結果を環境管理にフィードバックすることが困難であった。
一方、 本願発明者らは、 ゥエーハ表面に付着した有機汚染物質を高感度で検出 するために、 ゥヱ一八多重内部反射フーリエ赤外分光 (F T I R— A T R ) 法を 用いた有機汚染検出法をすでに提案している (例えば、 特願平 1 1— 9 5 8 5 3 号明細書を参照) 。 ゥエー八の一端に赤外光を特定の入射角度で入射すると、 赤 外光はゥエーハ内部を両表面で全反射を繰り返しながら伝搬し、 その際基板表面 に赤外光が滲み出し (エバネッセント光) 、 表面に付着した有機汚染物質により 赤外光スぺクトルの一部が吸収される。 ゥェ一八の他端から放出されたこの伝搬 光を F T— I Rによって分光分析することによってゥヱ一八表面に付着した有機 汚染物質の検出、 同定が可能である。 この検査法は、 G C/M S法などに比べて 同等の感度をもっとともに、 測定にリアルタイム性があり、 且つ、 簡便で経済的 である。 したがって、 多重内部反射フーリエ赤外分光法を環境モニタに適用する ことができれば、 高感度且つリアルタイムな環境モニタリングも可能になると考 えられる。 [発明の開示]
本発明の目的は、 環境モニタリングに多重内部反射フ一リェ赤外分光法を応用 することで、 高感度且つリアルタイムな測定が可能な環境モニタ方法及び装置を 提供することにある。
上記目的は、 測定環境中に置かれた赤外透過基板内に赤外線を入射し、 前記赤 外透過基板の内部を多重反射した後に前記赤外透過基板より出射される前記赤外 線を検出し、 検出した前記赤外線を分光分析することにより前記赤外透過基板の 近傍に存在する環境物質の種類及び/又は存在量を測定し、 前記赤外透過基板の 近傍に存在する前記環境物質の種類及び/又は存在量に基づいて、 前記測定環境 中の環境物質の種類及び/又は濃度を測定することを特徴とする環境モニタ方法 によって達成される。
また、 上記目的は、 測定に先立ち或いは測定時に定期的に、 測定環境中に置か れた赤外透過基板に付着した物質を除去して前記赤外透過基板の表面状態を初期 化し、 表面状態を初期化した前記赤外透過基板内に赤外線を入射し、 前記赤外透 過基板の内部を多重反射した後に前記赤外透過基板より出射される前記赤外線を 検出し、 検出した前記赤外線を分光分析することにより前記赤外透過基板の近傍 に存在する環境物質の種類及び/又は存在量を測定し、 前記赤外透過基板の近傍 に存在する前記環境物質の種類及び/又は存在量に基づいて、 前記測定環境中の 環境物質の種類及び/又は濃度を測定することを特徴とする環境モニタ方法によ つても達成される。
また、 上記の環境モニタ方法において、 前記赤外透過基板に紫外光を照射する ことにより前記赤外透過基板に付着した前記物質を除去するようにしてもよい。 また、 上記の環境モニタ方法において、 前記赤外透過基板に入射した前記赤外 線を前記赤外透過基板内部で 1方向に伝搬させ、 前記赤外線を入射した端面とは 異なる端面から出射した前記赤外線を検出するようにしてもよい。
また、 上記の環境モニタ方法において、 前記赤外透過基板に入射した前記赤外 線を前記赤外透過基板内で 2方向に伝搬させ、 前記赤外線を入射した端面と同じ 側の端面から出射した前記赤外線を検出するようにしてもよい。
また、 上記の環境モニタ方法において、 前記赤外透過基板は、 赤外線の伝搬距 離が長い第 1の伝搬経路と、 赤外線の伝搬距離が短い第 2の伝搬経路とを少なく とも有し、 環境物質の高感度測定を目的とするときは前記第 1の伝搬経路を用い て測定を行い、 広い分光波長範囲での環境物質の検出を目的とするときは前記第 2の伝搬経路を用いて測定を行うようにしてもよい。
また、 上記目的は、 測定環境中の環境物質を付着させる赤外透過基板と、 前記 赤外透過基板に赤外線を入射する赤外光源と、 前記赤外透過基板内部を多重反射 した後に前記赤外透過基板より出射される前記赤外線を検出して分光分析する赤 外分光器と、 前記赤外分光器により得られた分光結果から前記赤外透過基板の近 傍に存在する環境物質の種類及び/又は存在量を算出し、 前記赤外透過基板の近 傍に存在する前記環境物質の種類及び/又は存在量に基づいて前記測定環境中の 環境物質の種類及び/又は濃度を算出する演算装置とを有することを特徴とする 環境モニタ装置によっても達成される。
また、 上記目的は、 測定環境中の環境物質を付着させる赤外透過基板と、 前記 赤外透過基板に赤外線を入射する赤外光源と、 前記赤外透過基板内部を多重反射 した後に前記赤外透過基板より出射される前記赤外線を検出して分光分析する赤 外分光器と、 前記赤外分光器により得られた分光結果から前記赤外透過基板の近 傍に存在する環境物質の種類及び/又は存在量を算出し、 前記赤外透過基板の近 傍に存在する前記環境物質の種類及び/又は存在量に基づいて前記測定環境中の 環境物質の種類及び/又は濃度を算出する演算装置と、 前記赤外透過基板に付着 した環境物質を除去して表面状態を初期化する環境物質除去手段とを有すること を特徴とする環境モニタ装置によっても達成される。
また、 上記の環境モニタ装置において、 前記環境物質除去手段は、 前記赤外透 過基板に紫外光を照射することにより前記赤外透過基板に付着した前記環境物質 を除去する紫外光照射手段であるようにしてもよい。
また、 上記の環境モニタ装置において、 前記紫外光照射手段は、 紫外光光源と、 前記赤外線の伝搬方向とほぼ垂直な面の断面が楕円形状である反射鏡とを有し、 前記反射鏡の楕円面の一方の焦点近傍に前記赤外光光源が配置され、 他方の焦点 0/05471 近傍に前記赤外透過基板が配置されているようにしてもよい。
また、 上記の環境モニタ装置において、 前記赤外透過基板は、 赤外線の伝搬距 離が長い第 1の伝搬経路と、 赤外線の伝搬距離が短い第 2の伝搬経路とを少なく とも有するようにしてもよい。
また、 上記の環境モニタ装置において、 前記赤外透過基板の一の端面側に、 前 記赤外透過基板に前記赤外線を入射する入射光学系と、 前記赤外透過基板から出 射された前記赤外線を前記赤外分光器に伝搬する出射光学系とが配置されている ようにしてもよい。
また、 上記の環境モニタ装置において、 前記赤外透過基板は、 5 0 0 c m— 1以 上 5 0 0 0 c m 1以下の波数域に透過帯域を有する材料により構成されているよ うにしてもよい。
本発明によれば、 大気中の環境物質の濃度を高感度で検出でき、 且つ、 その成 分をも特定することができる。 また、 本発明による測定方法は測定にリアルタイ ム性があるので、 測定結果を早期にフィードバックすることができる。 したがつ て、 クリーンルーム内で発生する有機汚染の発生源の特定、 発生量のコント口一 ルを行うことが可能となる。 また、 クリーンルーム内部の環境モニタリングばか りでなく、 我々が生活する実環境における空気中の汚染物質のモニタリングも可 能であり、 その排出の管理に役立てることができる。
[図面の簡単な説明]
図 1は、 本発明の一実施形態による環境モニタ方法及び装置の構造を示す概略 図である。
図 2は、 長さ 4 c m及び 1 0 c mのシリコン中を透過した赤外線の透過光強度 と波数との関係を示すグラフである。
図 3は、 赤外透過基板の一例を示す平面図及び側面図である。
図 4は、 2 0 0 mmシリコンゥェ一八における多重内部反射により得られたェ 夕ノールの吸光度スぺク トルを示すグラフである。
図 5は、 大気中の環境物質の濃度と 2 4時間放置によりシリコン表面に付着し た環境物質の単位面積当たりの付着量との関係を示すグラフである。 図 6は、 吸光度と D O P付着量 (炭素量換算) との関係を示すグラフである。 図 7は、 吸光度と多重内部反射回数との関係を示すグラフである。
図 8は、 吸光度と放置時間及び汚染量との関係を示すグラフである。
図 9は、 本発明の他の実施形態による環境モニタ方法及び装置を説明する概略 図である。
[発明を実施するための最良の形態]
本発明の一実施形態による環境モニタ方法及び装置について図 1乃至図 8を用 いて説明する。
図 1は本実施形態による環境モニタ方法及び装置の構造を示す概略図、 図 2は 長さ 4 c m及び 1 0 c mのシリコン中を透過した赤外線の透過光強度と波数との 関係を示すグラフ、 図 3は赤外透過基板の一例を示す平面図及び側面図、 図 4は 2 0 0 mmシリコンゥヱ一八における多重内部反射により得られたエタノールの 吸光度スぺク トルを示すグラフ、 図 5は大気中の環境物質の濃度と 2 4時間放置 によりシリコン表面に付着した環境物質の単位面積当たりの付着量との関係を示 すグラフ、 図 6は吸光度と D O P付着量との関係を示すグラフ、 図 7は吸光度と 多重内部反射回数との関係を示すグラフ、 図 8は吸光度と放置時間及び汚染量と の関係を示すグラフである。
〔 1〕 環境モニタ装置の全体構成
本実施形態による環境モニタ装置の構造について図 1を用いて説明する。 図 1 ( a ) は本実施形態による環境モニタ装置の構成を示す側断面図、 図 1 ( b ) は 赤外線の伝搬方向に垂直な面における断面図、 図 1 ( c ) は赤外線の伝搬方向に 平行な面における平面図である。 なお、 図 1 ( a ) は図 1 ( c ) における A— A ' 線断面図に相当し、 図 1 ( b ) は図 1 ( c ) における B— B ' 線断面図に相当 する。
本実施形態による環境モニタ装置は、 図 1に示すように、 測定対象である大気 中の環境物質を吸着して測定に供するための赤外透過基板 1 0と、 赤外透過基板 1 0内に赤外線を入射して多重内部反射させるための赤外光源 2 0と、 赤外透過 基板 1 0表面に付着した環境物質を除去して表面状態を初期化するための紫外光 光源 30と、 紫外光光源 30より発せられた紫外光を赤外透過基板 1 0の両面に 効率よく照射するための反射鏡 40と、 赤外透過基板 1 0内部を多重反射した後 に出射した透過赤外線を検出する検出光学系 50と、 検出光学系 50により検出 された赤外線を分光する分光分析器 60と、 分光分析器 60による分析結果に基 づき測定環境中の環境物質の同定や濃度を算出する演算 ·表示手段 70とにより 構成される。
以下、 本実施形態による環境モニタ装置の各構成部分について詳述する。
(a) 赤外透過基板 1 0
赤外透過基板 10は、 前述の通り、 測定対象である大気中の環境物質を吸着し て測定に供するためのものであり、 被測定対象物質の分子振動に対応する波長域 の光を透過する材料であることが必要である。 代表的な環境物質である有機物質 の基本振動に対応する波数域は、 500 cm—1 (波長 20〃m) 〜5000 cm 一1 (波長 2 m) 程度の赤外 '近赤外域である。 したがって、 赤外透過基板 10 を構成する材料はこれら波数域 (波長域) の光を透過しうる赤外透過物質群のな かから選択する。
シリコン (S i) は、 透過波長域が約 1. 2〜6〃m程度であり、 赤外透過基 板 10を構成する一材料として選択することができる。 以下、 赤外透過基板 10 としてシリコンを用いた場合を例に、 本実施形態による環境モニタ装置に用いる 赤外透過基板 1 0として好ましい形状について説明する。
大気中に存在する微量の環境物質をリアルタイム且つ高感度に測定するには、 短い時間内に赤外透過基板 10に吸着された環境物質を高感度に測定する必要が ある。 同一出願人による特願平 1 1— 95853号明細書に記載の 300 mmシ リコンゥエーハを用いた多重内部反射 FT— I R法との比較から、 大気中に存在 する微量の有機物を 10分〜 1時間程度の測定時間でモニタリングするためには、 数百回の内部反射回数が必要であると考えられる。
ここで、 内部反射回数 Nは、 赤外透過基板 10の全長を L、 赤外透過基板 10 の厚さを d、 内部反射角度を Sintをとして、
N = L/d · t anoint
と表される。 赤外透過基板の長さ Lは、 赤外透過基板 1 0を構成する物質による 00/05471 赤外光の吸収や環境モニタ装置を実用的な大きさに制作することを考慮し、 長く ても数十 cm以内に抑えることが望ましい。 また、 内部反射回数を多くするため には、 赤外透過基板 10は強度を損なわない範囲で薄くすることが必要である。 また、 多重内部反射の際に光が散乱されるのを防ぐため、 赤外透過基板 1 0には 両面研磨された基板を用いる必要がある。
基板材料として現在半導体プロセスで使用されている 8ィンチシリコンゥエー ハの適用を考慮すると、 8インチシリコンゥエーハは、 厚さが 0. 5mm、 直径 が 20 mmであるので、 内部反射角が 45° のとき 400回の内部反射回数を得 ることができる。 この内部反射回数は、 厚さが 0. 775 mmである 300 mm シリコンゥエーハを用いた場合とほぼ同じ回数 (387回) であり、 300 mm ゥェ一ハを用いた多重内部反射フーリェ赤外分光法と同等の感度を得ることがで ぎる。
一方、 赤外線伝搬長の長いシリコン基板に赤外光を透過させると、 長波長側の 赤外スぺク トルが吸収により観察できないことを本願発明者らは実験により確認 している。
図 2に長さ 4 cmと 1 0 cmのシリコン基板に赤外光を透過させ、 多重内部反 射スぺクトルを測定したときの測定結果を示す。 長さ 4 cmの基板では 1000 cm—1付近までのスぺク トルが得られているのに対し、 長さ 10 cmの基板では 1 500 cm— 1付近から低波数側 (長波長側) のスぺク トルが得られていないこ とが判る。 赤外吸収により物質を同定するためには 1000 cm— 1より高波数側 のスペクトルが必要と考えられる。 したがって、 この目的のためには基板の長さ を数 c m程度に抑えなければならない。
シリコンのように長波長側に赤外スぺク トルの吸収がみられる材料を赤外透過 基板 10の材料として採用した際に高い感度と広い測定波数域を両立させるには、 例えば図 3に示す形状の赤外透過基板 10を適用することができる。 この基板は、 長さが 20 cmと 4 cmの伝搬経路を有する階段状に成形されている。 このよう な基板を用いることで、 高感度の測定を行いたいときは長さ 20 cmの側で多重 内部反射を行い、 物質同定を行うときは長さ 4 cmの側で多重内部反射を行うこ とができる。 端面での再反射による多重内部反射スぺク トル上のフリンジの発生 T/JP00/05471 を抑えるため、 赤外透過基板 1 0の端面は傾き 4 5 ° に研磨するのが望ましい。 図 3に示す赤外透過基板 1 0の基本概念をもとに装置構成の簡略化等の観点か ら成形したものが図 1に示す赤外透過基板 1 0である。 図 1に示す赤外透過基板 1 0では、 入射側端面を頂角が 9 0° である三角形形状に、 もう一方を垂直に加 ェしている。 このように基板を成形すると、 基板内に入射された赤外光は入射端 面側とは反対側の端面で反射され、 再び入射端面側に戻ってくるので、 単位長さ あたりの反射回数が倍になる。 このため、 基板の長さは図 3に示す赤外透過基板 の基本構成の場合の半分程度にでき、 且つ、 同程度の感度を得ることができる。 また、 この基板では赤外光の入射と検出を同じ側で行うことができ、 且つ、 長い 光路長と短い光路長の二つの測定モ一ドを、 赤外光の入射位置をわずかにずらす ことにより測定できるため、 同一の光学系で二つの測定モードの入射 ·検出がで きるという利点をもつ。 以上のことから、 性能を落とすことなく装置の小型化、 装置の簡略化が可能となる。
なお、 図 1及び図 3に示す赤外透過基板 1 0では、 赤外線の伝搬距離を 2種類 有する赤外透過基板 1 0としたが、 3種類以上の伝搬距離を有するように構成し てもよい。
また、 上記説明では赤外透過基板 1 0を構成する材料としてシリコンを例した が、 シリコンのほか、 臭化カリウム (KB r :透過波長域 0. 4〜2 2〃m) 、 塩化力リウム (K C 1 :透過波長域 0. 3〜 1 5 /in) 、 セレン化亜鉛 (Z n S e :透過波長域 0. 6〜; L 3〃m) 、 フッ化バリウム (B a F2 :透過波長域 0. 2〜5〃m) 、 臭化セシウム (C s B r :透過波長域 0. 5~30 urn) 、 ゲル マニウム (G e :透過波長域 2〜 1 8 ju ) 、 フヅ化リチウム (L i F :透過波 長域 0. 2〜5 m) 、 フヅ化カルシウム (C aF2 :透過波長域 0. 2〜8〃 m) 、 サファイア (A 1203 :透過波長域 0. 3〜5 /m) 、 ヨウ化セシウム (C s I :透過波長域 0. 5〜2 8 m) 、 フッ化マグネシウム (MgF2 :透 波長域 0. 2〜 6〃m) 、 臭化夕リウム (KR S— 5 :透過波長域 0. 6〜2 8 〃m) 、 硫化亜鉛 (Z n S :透過波長域 0. 7〜 1 l〃m) などの材料を赤外透 過基板 1 0として適用することもできる。
赤外透過基板 1 0を構成する材料は、 測定しょうとする環境物質の分子振動に 対応する波長に応じて適宜選択することが望ましい。 また、 赤外透過基板 1 0の 形状も、 各材料の特性に応じて適宜調整することが望ましい。
( b ) 赤外光源 2 0
赤外光源 2 0としては、 有機分子の分子振動に対応する 2〜2 5 / in帯域の赤 外線を発する光源を適用することができる。 例えば、 フイラメントとしてのシリ コン力一バイ ド (S i C ) やニクロム線に電流を印加して発する熱線を光源とし て用いることができる。 S i Cグロ一バ灯などの S i Cを用いた光源は、 1 · 1 〜2 5 z m帯域の赤外線を発し、 且つ、 空気中でむき出しで使用しても焼損がな いという特徴がある。
また、 光源の効率を高め、 赤外光の強度を大きくするために適当な形状の反射 板を設けてもよい。 例えば、 同一出願人による特願平 1 1— 9 5 8 5 3号明細書 に記載の種々の赤外光源を適用することができる。
本実施形態による環境モニタ装置では、 赤外透過基板 1 0内部で赤外線を多重 反射させ、 反射の際に基板表面に滲み出る光によって有機汚染物質や化学汚染物 質などの環境物質の分子振動を検出し、 基板の近傍に存在し或いは表面に付着す る環境物質を測定するものである。 したがって、 赤外透過基板 1 0に入射する赤 外線が基板内部で多重反射するように、 赤外光源 2 0を配置する必要がある。 赤外線が基板内部で完全反射する条件はスネルの法則とエネルギー反射率の計 算から求まる。 例えば、 赤外透過基板 1 0がシリコンからなる場合、 基板平面と 赤外線とのなす角度が 0〜7 2 ° の範囲で完全反射する。 この範囲の反射角度を もつ赤外線の軌跡を逆にたどり、 赤外透過基板 1 0の端面と交わる点を赤外線の 入射点とすればよい。
なお、 赤外線の入射角度の設定に関しては、 同一出願人による特願平 1 1一 9 5 8 5 3号明細書を参照されたい。
( c ) 検出光学系 5 0、 分光分析器 6◦
赤外透過基板 1 0を出射した赤外線は、 検出光学系 5 0を介して分光分析器 6 0に導入される。 分光分析器 6 0は、 例えば、 二光束干渉計 (マイケルソン光干 渉計) を基にしたフーリエ変換分光のメカニズムにより赤外線を分光する F T _ I R装置の分光器である。 赤外透過基板 1 0内部に入射した赤外線が多重内部反射するとき、 基板表面で 光線が反射するときに滲み出る光 (ェヴァネッセント光) の周波数成分が基板表 面に付着し或いは近傍に存在する環境物質の分子振動周波数と一致していると共 鳴吸収される。 したがって、 入射赤外線を赤外透過基板 1 0の内部で多重反射さ せることで、 その赤外線には基板表面状態の情報が反映される。 赤外透過基板 1 0から出射した赤外線の赤外吸収スぺク トルを分析することにより、 環境物質の 種類と量を特定することができる。
図 4は、 エタノールを滴下した 8インチシリコンゥエーハにおいて多重内部反 射した後に検出された赤外線をフーリェ変換分光して得られたスぺク トルを示す グラフである。 図示するように、 特定の有機汚染物質の分子振動に対応する波数 域にピークが観察されることで環境物質を特定することができ、 また、 そのピー ク強度から付着量を算出することができる。
なお、 広い波長域にわたって感度をもつ赤外線検出器の前段に分光分析器を置 き、 複数の波長域の吸収から環境物質の検出を行ってもよいし、 特定環境物質に よる特定波長の吸収のみに注目し、 その波長域のみに感度をもつ赤外検出器を用 いて当該特定環境物質の検出をおこなってもよい。
また、 分光器としては、 F T— I R装置の代わりに回折格子 (グレーティン グ) による赤外分光計を用いてもよい。
( d ) 演算 ·表示手段 7 0
分光分析器 6 0により得られたスぺクトルの測定データは、 演算 '表示手段 7 0に送られ、 環境物質の特定や量の算出が行われる。
環境物質の種類と検量線は別途データベースとして演算 ·表示手段 7 0の記憶 部に蓄えられており、 測定データはそれらのデータを参照して定量化される。 ま た、 演算 '表示手段 7 0には、 赤外透過基板 1 0の表面に吸着し或いはその近傍 に存在する環境物質の量と大気中の環境物質の量との関係がデータベースとして 蓄えられており、 検出された赤外透過基板 1 0表面近傍の環境物質の量から大気 中の環境物質の濃度を算出することができる。
このようにして解析された結果は、 必要に応じて表示装置に表示することがで ぎる。 ( e ) 紫外光光源 3 0、 反射鏡 4 0
本発明による環境モニタ装置は赤外透過基板 1 0の表面に吸着された環境物質 の同定と定量化を行うことで環境雰囲気中の物質を測定するものであるが、 赤外 透過基板 1 0に吸着される環境物質の量は時間の経過によって飽和する。 このた め、 大気中の環境物質濃度の変化を長い時間にわたって調査する必要があるとき は、 赤外透過基板 1 0の表面に付着した環境物質を定期的に除去する洗浄工程が 必要となる。
本実施形態による環境モニタ装置では、 環境物質の洗浄手段として紫外光光源
3 0を設けている。 紫外光光源 3 0は、 赤外透過基板 1 0の表面に付着した有機 汚染物質などの環境物質を解離 ·蒸発させるためのものであり、 付着した環境物 質の結合エネルギーよりも大きなエネルギーを有する光を発生する光源とする。 例えば、 X e (キセノン) エキシマ光、 1 8 5 n mと 2 5 4 n mの発光波長を有 する低圧水銀灯、 1 7 2 n mの発光波長を有する誘電体バリア放電エキシマラン プなどの紫外線光源を適用することができる。 このようなエネルギーを有する光 の照射により、 C一 C、 C一 H、 C一 0などの有機汚染物質の結合を解離し、 赤 外透過基板 1 0の表面から除去或いは蒸発させることができる。
反射鏡 4 0は、 紫外光光源 3 0から発せられた紫外光を効率よく赤外透過基板 の両面に照射するためのものである。 本実施形態による環境モニタ装置では、 図 1 ( b ) に示すように、 赤外透過基板 1 0及び紫外光光源 3 0が延在する方向に 垂直な面の断面形状が楕円である反射鏡 4 0としている。 このように楕円形状の 反射鏡 4 0を構成し、 楕円の一方の焦点近傍に紫外光光源 3 0を、 他方の焦点近 傍に赤外透過基板 1 0を配置することで、 紫外光光源 3 0より発せられた紫外光 を効率よく赤外透過基板 1 0に照射することができる。 また、 装置構成を簡略に することができる。
なお、 環境物質の除去には、 基板の薬液処理や加熱処理など、 他の化学的 '物 理的除去方法を用いてもよい。 本実施形態による環境モニタ装置では赤外透過基 板 1 0の上面と下面の両方で反射と吸収が起こるため、 基板の両面を洗浄する必 要がある。
〔2〕 大気中の環境物質濃度の定量化 CT/JP00/0547I 本発明による環境モニ夕方法では、 赤外光を透過する基板に付着し或いはその 近傍に存在する環境物質の量を多重内部反射赤外分光法によって測定し、 大気中 の環境物質濃度に換算する。 つまり、 大気中の環境物質濃度を直接測定している わけではない。 したがって、 基板の近傍に存在する環境物質の量から大気中の環 境物質の濃度を求めるためには、 大気中の環境物質濃度と吸収ピークの吸光度の 大きさとの関係を予め求めておき、 検量線を作成しておく必要がある。 基板への 付着量の絶対値は必ずしも算出する必要はない。
大気中の環境物質濃度と吸収ピークの吸光度の大きさとの関係を表す検量線を 求めるにあたり、 まず、 これらの関係について考察する。
大気中の環境物質濃度が高くなるほどに、 環境物質は基板に付着しやすくなる。 したがって、 大気中の環境物質濃度の増加により基板上に付着する環境物質の量 も増加する。 ここで、 大気中の環境物質濃度を c、 付着量と濃度の換算係数を K
1, 環境物質の基板への付着量を Wとすると、 これらの間には以下の関係式が成立 する。
C = Ki X W … ( 1 )
一方、 基板が汚染されたあとの透過光量 Iは、 汚染前の透過光量を I Q、 内部反 射回数を N、 1回の反射が起こるときの単位付着量あたりの吸光係数をひとする と、 以下の式により表すことができる。
I = I。 X e X p (-W X N X α) … (2)
また、 吸光度 Αは、
A = - 1 o g10 ( I / I 0) … (3)
として表される。 したがって、 (2) 式及び (3) 式を用いると、 吸光度 Aは、 次式のように書き直すことができる。
A ∞ W x N x ひ ··· ( 4 )
したがって、 (1) 式は、 吸光度と濃度の換算係数を κ2とすると、 次式のよう に書き直すことができる。
C = Κ2 X A … (5)
(1) 式及び (5) 式より、 環境物質の濃度と基板への付着量、 環境物質の濃 度と吸光度との間には比例関係が成立することが判る。 したがって、 大気中に曝 露した基板に付着した環境物質の量を吸光度の大きさから求め、 これに換算係数 を掛けることにより大気中の環境物質の濃度を算出することができる。
換算係数の測定は、 例えば以下の手順により行うことができる。
① まず、 環境物質が一定濃度で存在する空間に基板を曝露する。
② 次いで、 気体中の環境物質の濃度を別手段 (ガス検知管、 ガスクロマトグラ フ等) により測定する。
③ 次いで、 基板に付着した環境物質による吸収ピークの吸光度の大きさを多重 内部反射法により測定する。
④ 次いで、 複数の環境物質濃度の空間について上記①〜③を繰り返し、 ②、 ③ の結果の比から換算係数を求める。
なお、 基板の曝露時間は一定であることが望ましい。 曝露時間が異なると同一 の環境物質の濃度でも付着量が変わることがあり、 この場合には曝露時間が等し くなるように吸光度の大きさの換算を行う必要があるからである。 このためには、 基板を大気中に曝露しながら適当な間隔で吸光度の大きさの測定を行い、 曝露時 間と吸光度の大きさの関係を予め求めておくことが必要である。
また、 正確な測定のためには内部反射条件が等しいことが必要であり、 同一の 基板又は同一形状の基板に同一条件で赤外線を入射させる必要がある。 また、 吸 光係数は環境物質の種類によって異なるので、 正確な定量測定を行うためには測 定したいすベての物質について予め換算係数の測定を行う必要がある。
基板上の単位面積当たりの付着量を算出するときには、 次の手順により検量線 を予め作成しておく。
① まず、 環境物質を揮発性溶媒中に希釈した濃度の異なる複数の溶液を用意す
② 次いで、 基板上にこの溶液を一定量塗布する。
③ 次いで、 溶液を塗布した基板を適当な時間放置し、 溶媒を蒸発させる。
④ 次いで、 多重内部反射法により基板に付着した汚染による吸収ビークの吸光 度の大きさを測定する。
⑤ 次いで、 溶液の濃度、 塗布量、 基板面積から、 単位面積当たりの環境物質の 付着量を算出する。 ⑥ 次いで、 付着量と吸光度の関係から検量線を作成する。
こうして、 検量線と基板の大気中曝露で得られた吸光度との比較から、 基板に 付着した環境物質の絶対量を求めることができる。
図 5は、 24時間放置による化学汚染物質の空気中濃度とシリコンゥエーハ表 面汚染との関係を示すグラフである。 DOP (ジォクチルフタレート) の場合、 例えば 1 ngZm3の DOP濃度の大気中にゥエーハを 24時間放置すると、 ゥェ 一八表面への付着量は 1012CH2 un i t/cm2であることを示している。 逆 に言えば、 24時間放置後のゥエーハ表面の付着量が 1012CH2 uni t/cm 2であれば、 大気中の DOP濃度が 1 ng/m3であることが判る。 一方、 TBP (リン酸トリプチル :難燃剤) やシロキサン (シリコンコーキング剤からの揮発 物質) の場合に示されるように、 空気中濃度と付着量との関係は、 汚染物質、 放 置時間等の条件によって異なる。 したがって、 測定対象とする物質毎に空気中濃 度と付着量の関係を予め求めておくことが必要である。
図 5に示すような検量線を予め作成して演算 ·表示手段 70に蓄えておくこと で、 赤外透過基板 10上に付着した環境物質量から大気中に存在する環境物質の 濃度を算出することができる。 また、 図 5に示す検量線の代わりに、 大気中の環 境物質濃度と吸収ピークの吸光度の大きさとの関係を示す検量線を予め作成して 演算 ·表示手段 70に蓄えておき、 大気中に存在する環境物質の濃度を算出する ようにしてもよい。
〔3〕 検出感度
300 mmゥエーハを用いて測定した D OPの付着量の変化に伴う C— H吸収 の吸光度の大きさの変化を図 6に示す。 測定条件は、 内部反射角を 32° 、 内部 反射回数を 620回とした。 DOPはプラスチックの可塑剤の一つで、 クリーン ルーム内の大気に含まれる物質の一つであり、 環境ホルモン物質としても知られ ている。 前述のように、 多重内部反射回数は長さ 200mmのシリコン基板と 3 00mmのゥヱ一八でほぼ等しいので、 本実施形態による赤外透過基板 10の形 状においてもほぼ同じ関係が成り立つと考えられる。 ここで、 赤外光の吸収の大 きさが反射回数に単純に比例すると考えると、 反射回数 620回での吸光度の値 と原点との間に直線を引くことで内部反射回数と検出感度との関係を導くことが できる。 この関係を図 7に示す。 なお、 1 0 1 2炭素原子/ c m2以下の濃度は検量 線を外挿して求めている。
赤外光の分光に使用している F T— I R装置の感度との比較により、 本実施形 態による測定法の検出感度を求めることができる。 本発明者らが使用した F T— I R装置の吸光度の検出限界は約 0 . 0 0 0 1程度であり、 2 0 0 mmのシリコ ン基板を用いた場合では 1 0 1 Q炭素原子/ c m 2程度の付着量を測定することがで きる。 同じ内部反射角で長さ 4 c mの部分で多重内部反射を行った場合には内部 反射回数は 1 2 8回となり、 1 0 1 2炭素原子 / c m2程度の付着量を測定すること ができる。
3 0 0 mmシリコンゥエーハを塩化ビニールのカーテン内で覆われたクリーン ブース内に放置し、 塩化ビニールゃクリーンブースの塗料等から放出した有機物 をゥェ一ハ上に付着させたときの吸光度の経時変化を観察した結果を図 8に示す。 なお、 図 6に示す検量線から求めた付着有機物の汚染量を図 8の上側の軸に示し た。 図示するように、 大気からの汚染による有機物の付着は 4 8時間以降ほとん ど変化していないことが判る。 これは汚染物質の付着が飽和し、 汚染物質の付着 と付着した汚染物質の再放出が平衡状態 (飽和吸着) となっているためであり、 汚染物質がなくなつたわけではない。 このため、 大気中の汚染物質濃度の変化を 長い時間にわたって調査する際には、 前述のように紫外光照射などによる定期的 な洗浄が必要となる。 また、 このときの飽和付着量は 1 0 1 5炭素元素/ c m2と見 積もられ、 これは長さ 4 c mの部分でも十分に検出可能な量である。 このことか ら、 飽和吸着量になるまで本発明の基板を放置すれば、 基板上に付着した環境物 質の同定が可能であるともいえる。
以上のことから、 本発明に含まれる基板形状は大気中の環境物質の検出に十分 な感度と測定波長域を兼ね備えているといえる。
〔4〕 環境モニタ方法
本実施形態による環境モニタ方法について図 1を用いて説明する。
まず、 本実施形態による環境モニタ装置を、 測定すべき環境内に設置する。 次いで、 赤外光源 2 0から発せられた赤外線を、 赤外透過基板 1 0内に入射す る。 赤外透過基板 1 0内に入射された赤外線は、 赤外透過基板 1 0の表裏の表面 において多重内部反射されると同時に赤外透過基板 1 0の表面に吸着している環 境物質の情報を累積してプロ一ビングし、 赤外透過基板 1 0の外部に出射される ( なお、 環境物質の高感度測定を目的とするときは、 赤外透過基板 1 0内におけ る多重内部反射回数を多くして検出感度を高めるべく、 赤外透過基板 1 0の長距 離部分に赤外線を入射することが望ましい。 一方、 広い分光波長範囲で環境物質 の検出を目的とするときは、 赤外透過基板 1 0内における赤外線の減衰を抑える るべく、 赤外透過基板 1 0の短距離部分に赤外線を入射することが望ましい。 次いで、 赤外透過基板 1 0から出射された赤外線を、 検出光学系 5 0により検 出した後に、 分光分析器 6 0で分光分析し、 演算 '表示手段 7 0によって環境物 質の同定、 定量を行う。
次いで、 必要に応じて、 紫外光光源 3 0から発せられた紫外光を反射板 4 0を 介して赤外透過基板 1 0に照射することにより赤外透過基板 1 0の表面に吸着し ている環境物質を除去し、 基板表面の初期化を行う。
次いで、 必要に応じて上記測定を繰り返し行い、 環境雰囲気中の環境物質の経 時変化等を測定する。
このように、 本実施形態によれば、 赤外透過基板 1 0中における赤外線の多重 内部反射を利用したフーリエ赤外分光法を用いて、 大気中の環境物質の同定、 濃 度の測定を行うので、 環境汚染の測定を高感度且つリアルタイムに行うことがで きる。
なお、 上記実施形態では、 図 1に示す赤外透過基板 1 0を適用した例を説明し たが、 図 3に示す赤外透過基板 1 0を適用して装置を構成してもよい。 この場合、 図 9に示すように、 赤外線の入射端面側とは異なる端面側に赤外線出射光学系を 設け、 出射赤外線の分析を行えばよい。
また、 反射鏡 4 0は必ずしも設ける必要はなく、 図 9に示すように、 赤外透過 基板 1 0の上下両面側に紫外光光源 3 0を配置するようにしてもよい。
また、 上記実施形態では、 環境物質として D O Pを検出する場合を例に本発明 を説明したが、 本発明による環境モニタ方法及び装置は、 他の環境物質の測定に おいても同様に適用することができる。 すなわち、 本発明による環境モニタ方法 及び装置は、 以下に限定されるものではないが、 クリーンルーム内汚染物質であ る、 D〇P、 DBP、 D E C P等のフ夕ル酸エステル類、 TBP、 TCEP等の 燐酸エステル類、 BHT、 低分子環状シロキサン類、 I P Aなどを測定すること ができる。 また、 VOC (volatile organic compounds:揮発性有機化合物) であ る、 ベンゼン、 トルエン、 ェチルベンゼン、 キシレン、 トリメチルベンゼン、 ク ロロホルム、 2—ビネン、 アセトン、 エタノール、 ケトン類、 ホルムアルデヒド などを測定することができる。
[産業上の利用の可能性]
本発明による環境モニタ方法及び装置は、 大気中の環境物質の濃度を高感度で 検出でき、 その成分を特定することができ、 測定にリアルタイム性があり、 環境 モニタ方法及び装置、 特に、 大気中に存在する有機汚染物質などの環境物質を同 定し或いはその濃度を測定する環境モニタ方法及び装置に有用である。

Claims

請 求 の 範 囲
1 . 測定環境中に置かれた赤外透過基板内に赤外線を入射し、
前記赤外透過基板の内部を多重反射した後に前記赤外透過基板より出射される 前記赤外線を検出し、
検出した前記赤外線を分光分析することにより前記赤外透過基板の近傍に存在 する環境物質の種類及び/又は存在量を測定し、
前記赤外透過基板の近傍に存在する前記環境物質の種類及びノ又は存在量に基 づいて、 前記測定環境中の環境物質の種類及び/又は濃度を測定する
ことを特徴とする環境モニタ方法。
2 . 測定に先立ち或いは測定時に定期的に、 測定環境中に置かれた赤外透過基 板に付着した物質を除去して前記赤外透過基板の表面状態を初期化し、
表面状態を初期化した前記赤外透過基板内に赤外線を入射し、
前記赤外透過基板の内部を多重反射した後に前記赤外透過基板より出射される 前記赤外線を検出し、
検出した前記赤外線を分光分析することにより前記赤外透過基板の近傍に存在 する環境物質の種類及び/又は存在量を測定し、
前記赤外透過基板の近傍に存在する前記環境物質の種類及び/又は存在量に基 づいて、 前記測定環境中の環境物質の種類及び/又は濃度を測定する
ことを特徴とする環境モニタ方法。
3 . 請求の範囲第 2項に記載の環境モニタ方法において、
前記赤外透過基板に紫外光を照射することにより前記赤外透過基板に付着した 前記物質を除去する
ことを特徴とする環境モニタ方法。
4 . 請求の範囲第 1項乃至第 3項のいずれか 1項に記載の環境モニタ方法にお いて、
前記赤外透過基板に入射した前記赤外線を前記赤外透過基板内部で 1方向に伝 搬させ、 前記赤外線を入射した端面とは異なる端面から出射した前記赤外線を検 出する ことを特徴とする環境モニタ方法。
5 . 請求の範囲第 1項乃至第 3項のいずれか 1項に記載の環境モニタ方法にお いて、
前記赤外透過基板に入射した前記赤外線を前記赤外透過基板内で 2方向に伝搬 させ、 前記赤外線を入射した端面と同じ側の端面から出射した前記赤外線を検出 する
ことを特徴とする環境モニタ方法。
6 . 請求の範囲第 1項乃至第 5項のいずれか 1項に記載の環境モニタ方法にお いて、
前記赤外透過基板は、 赤外線の伝搬距離が長い第 1の伝搬経路と、 赤外線の伝 搬距離が短い第 2の伝搬経路とを少なくとも有し、
環境物質の高感度測定を目的とするときは前記第 1の伝搬経路を用いて測定を 行い、 広い分光波長範囲での環境物質の検出を目的とするときは前記第 2の伝搬 経路を用いて測定を行う
ことを特徴とする環境モニタ方法。
7 . 測定環境中の環境物質を付着させる赤外透過基板と、
前記赤外透過基板に赤外線を入射する赤外光源と、
前記赤外透過基板内部を多重反射した後に前記赤外透過基板より出射される前 記赤外線を検出して分光分析する赤外分光器と、
前記赤外分光器により得られた分光結果から前記赤外透過基板の近傍に存在す る環境物質の種類及び/又は存在量を算出し、 前記赤外透過基板の近傍に存在す る前記環境物質の種類及び/又は存在量に基づいて前記測定環境中の環境物質の 種類及び/又は濃度を算出する演算装置と
を有することを特徴とする環境モニタ装置。
8 . 測定環境中の環境物質を付着させる赤外透過基板と、
前記赤外透過基板に赤外線を入射する赤外光源と、
前記赤外透過基板内部を多重反射した後に前記赤外透過基板より出射される前 記赤外線を検出して分光分析する赤外分光器と、
前記赤外分光器により得られた分光結果から前記赤外透過基板の近傍に存在す る環境物質の種類及び/又は存在量を算出し、 前記赤外透過基板の近傍に存在す る前記環境物質の種類及び/又は存在量に基づいて前記測定環境中の環境物質の 種類及び/又は濃度を算出する演算装置と、
前記赤外透過基板に付着した環境物質を除去して表面状態を初期化する環境物 質除去手段と
を有することを特徴とする環境モニタ装置。
9 . 請求の範囲第 8項に記載の環境モニタ装置において、
前記環境物質除去手段は、 前記赤外透過基板に紫外光を照射することにより前 記赤外透過基板に付着した前記環境物質を除去する紫外光照射手段である ことを特徴とする環境モニタ装置。
1 0 . 請求の範囲第 9項に記載の環境モニタ装置において、
前記紫外光照射手段は、 紫外光光源と、 前記赤外線の伝搬方向とほぼ垂直な面 の断面が楕円形状である反射鏡とを有し、
前記反射鏡の楕円面の一方の焦点近傍に前記赤外光光源が配置され、 他方の焦 点近傍に前記赤外透過基板が配置されている
ことを特徴とする環境モニタ装置。
1 1 . 請求の範囲第 7項乃至第 1 0項のいずれか 1項に記載の環境モニタ装置 において、
前記赤外透過基板は、 赤外線の伝搬距離が長い第 1の伝搬経路と、 赤外線の伝 搬距離が短い第 2の伝搬経路とを少なくとも有する
ことを特徴とする環境モニタ装置。
1 2 . 請求の範囲第 7項乃至第 1 1項のいずれか 1項に記載の環境モニタ装置 において、
前記赤外透過基板の一の端面側に、 前記赤外透過基板に前記赤外線を入射する 入射光学系と、 前記赤外透過基板から出射された前記赤外線を前記赤外分光器に 伝搬する出射光学系とが配置されている
ことを特徴とする環境モニタ装置。
1 3 . 請求の範囲第 7項乃至第 1 2項のいずれか 1項に記載の環境モニタ装置 において、 前記赤外透過基板は、 500 cnT1以上 5000 cm 1以下の波数域に透過帯 域を有する材料により構成されている
ことを特徴とする環境モニタ装置。
PCT/JP2000/005471 1999-08-18 2000-08-16 Procede et appareil de surveillance de l'environnement WO2001013093A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10084702T DE10084702T1 (de) 1999-08-18 2000-08-16 Verfahren und Vorrichtung zur Umweltüberwachung
AU65927/00A AU6592700A (en) 1999-08-18 2000-08-16 Method and apparatus for environmental monitoring
US10/051,527 US6657196B2 (en) 1999-08-18 2001-10-20 Method and apparatus for environmental monitoring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/231495 1999-08-18
JP23149599 1999-08-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/051,527 Continuation US6657196B2 (en) 1999-08-18 2001-10-20 Method and apparatus for environmental monitoring

Publications (1)

Publication Number Publication Date
WO2001013093A1 true WO2001013093A1 (fr) 2001-02-22

Family

ID=16924396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005471 WO2001013093A1 (fr) 1999-08-18 2000-08-16 Procede et appareil de surveillance de l'environnement

Country Status (4)

Country Link
US (1) US6657196B2 (ja)
AU (1) AU6592700A (ja)
DE (1) DE10084702T1 (ja)
WO (1) WO2001013093A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083887A (ja) * 2001-06-28 2003-03-19 Advantest Corp 化学物質検出方法及び装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168776A (ja) * 2000-12-01 2002-06-14 Advantest Corp 環境モニタ方法及び装置並びに半導体製造装置
JP2002286636A (ja) * 2001-01-19 2002-10-03 Advantest Corp 化学物質検出方法及び装置
WO2004065001A1 (en) * 2003-01-22 2004-08-05 Camfil Ab Filter structure, filter panel comprising the filter structure and method for manufactuirng the filter structure.
US7504154B2 (en) * 2005-03-23 2009-03-17 Lockheed Martin Corporation Moisture barrier coatings for infrared salt optics
US8092030B2 (en) 2006-04-12 2012-01-10 Plx, Inc. Mount for an optical structure and method of mounting an optical structure using such mount
DE102006056929B4 (de) * 2006-12-04 2010-09-02 Bruker Daltonik Gmbh Massenspektrometrie mit Laser-Ablation
US8194246B2 (en) * 2008-08-11 2012-06-05 UT-Battellle, LLC Photoacoustic microcantilevers
US7924423B2 (en) * 2008-08-11 2011-04-12 Ut-Battelle, Llc Reverse photoacoustic standoff spectroscopy
US7961313B2 (en) * 2008-08-11 2011-06-14 Ut-Battelle, Llc Photoacoustic point spectroscopy
US8448261B2 (en) * 2010-03-17 2013-05-21 University Of Tennessee Research Foundation Mode synthesizing atomic force microscopy and mode-synthesizing sensing
US20110231966A1 (en) * 2010-03-17 2011-09-22 Ali Passian Scanning probe microscopy with spectroscopic molecular recognition
US8080796B1 (en) 2010-06-30 2011-12-20 Ut-Battelle, Llc Standoff spectroscopy using a conditioned target
US9798051B2 (en) 2011-02-28 2017-10-24 Plx, Inc. Mount for an optical structure having a grooved protruding member and method of mounting an optical structure using such mount
US20130138226A1 (en) 2011-11-23 2013-05-30 Ftrx Llc Quasi-translator, fourier modulator, fourier spectrometer, motion control system and methods for controlling same, and signal processor circuit
US9013814B2 (en) 2012-07-27 2015-04-21 Plx, Inc. Interferometer and optical assembly having beamsplitter securing apparatus and method of mounting same
US20150007429A1 (en) 2013-02-21 2015-01-08 Plx, Inc. Mounts for an optical structure having a grooved protruding member with a damping ring disposed in or on the groove and methods of mounting an optical structure using such mounts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502012A (ja) * 1989-12-29 1994-03-03 バッテル・メモリアル・インスティチュート 薄膜分光センサー
JPH08313430A (ja) * 1995-05-18 1996-11-29 Nippon Telegr & Teleph Corp <Ntt> ガスセンサ
JPH11160317A (ja) * 1997-11-27 1999-06-18 Suzuki Motor Corp 免疫反応測定装置
JPH11176898A (ja) * 1997-12-09 1999-07-02 Advantest Corp 有機汚染検出・除去装置及びその有機汚染検出・除去方法並びに化学汚染検出・除去装置及びその化学汚染検出・除去方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105424B2 (ja) * 1991-07-23 1995-11-13 信越半導体株式会社 シリコンウェーハの表面の結合状態及び不純物の評価方法
US5436454A (en) * 1993-10-15 1995-07-25 Nicolet Instrument Corporation Optical probe for remote attenuated total reflectance measurements
US5386121A (en) * 1993-12-23 1995-01-31 International Business Machines Corporation In situ, non-destructive CVD surface monitor
US6166834A (en) * 1996-03-15 2000-12-26 Matsushita Electric Industrial Co., Ltd. Display apparatus and method for forming hologram suitable for the display apparatus
US6217695B1 (en) * 1996-05-06 2001-04-17 Wmw Systems, Llc Method and apparatus for radiation heating substrates and applying extruded material
CA2268469C (en) * 1998-04-10 2004-03-23 University Of Central Florida Apparatus and method for photocatalytic and thermocatalytic pollution control
JP3261362B2 (ja) * 1998-05-28 2002-02-25 株式会社アドバンテスト 表面状態測定方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502012A (ja) * 1989-12-29 1994-03-03 バッテル・メモリアル・インスティチュート 薄膜分光センサー
JPH08313430A (ja) * 1995-05-18 1996-11-29 Nippon Telegr & Teleph Corp <Ntt> ガスセンサ
JPH11160317A (ja) * 1997-11-27 1999-06-18 Suzuki Motor Corp 免疫反応測定装置
JPH11176898A (ja) * 1997-12-09 1999-07-02 Advantest Corp 有機汚染検出・除去装置及びその有機汚染検出・除去方法並びに化学汚染検出・除去装置及びその化学汚染検出・除去方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083887A (ja) * 2001-06-28 2003-03-19 Advantest Corp 化学物質検出方法及び装置

Also Published As

Publication number Publication date
AU6592700A (en) 2001-03-13
DE10084702T1 (de) 2003-07-03
US20020125433A1 (en) 2002-09-12
US6657196B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
WO2001013093A1 (fr) Procede et appareil de surveillance de l&#39;environnement
CN106442404B (zh) 一种多组分气体稳定同位素实时在线监测光学系统
Fuchs et al. Intercomparison of measurements of NO 2 concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign
Zhao et al. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445–480 nm
EP0768525A2 (en) System for monitoring chamber exit gases by means of absorption spectroscopy, and semiconductor processing system incorporating the same
JP2002168776A (ja) 環境モニタ方法及び装置並びに半導体製造装置
Dorn et al. Intercomparison of NO 3 radical detection instruments in the atmosphere simulation chamber SAPHIR
Wang et al. Detection of nitrous acid by cavity ring-down spectroscopy
JP2002286636A (ja) 化学物質検出方法及び装置
Wang et al. Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers
JP2009539064A5 (ja)
Hoch et al. An instrument for measurements of BrO with LED-based cavity-enhanced differential optical absorption spectroscopy
JP3834224B2 (ja) 化学物質検出方法及び装置
Bottorff et al. Development of a laser-photofragmentation laser-induced fluorescence instrument for the detection of nitrous acid and hydroxyl radicals in the atmosphere
JP4792267B2 (ja) 表面状態測定方法及び装置
Carter et al. Development of a Next-Generation Environmental Chamber Facility for Chemical Mechanism and VOC Reactivity Research
JP2001194297A (ja) 環境測定方法及び装置
Aziz et al. Development and application of an optical sensor for ethene in ambient air using near infra-red cavity ring down spectroscopy and sample preconcentration
EP2034296A1 (en) Quantification of hydrophobic and hydrophilic properties of materials
Mariotti et al. An efficient photo-atom source
JP2007192761A (ja) 吸光式ガス分析装置
Castellanos et al. Modification of a commercial cavity ring-down spectroscopy NO2 detector for enhanced sensitivity
JP2002350344A (ja) 環境測定方法及び装置
JP2003114190A (ja) 環境モニタリング方法及び装置
WO2001050110A1 (fr) Procede et appareil de mesure d&#39;une substance chimique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2001 517144

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 10051527

Country of ref document: US

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

RET De translation (de og part 6b)

Ref document number: 10084702

Country of ref document: DE

Date of ref document: 20030703

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10084702

Country of ref document: DE