WO2001012981A1 - Einspritzventil für eine verbrennungskraftmaschine - Google Patents

Einspritzventil für eine verbrennungskraftmaschine Download PDF

Info

Publication number
WO2001012981A1
WO2001012981A1 PCT/EP2000/004815 EP0004815W WO0112981A1 WO 2001012981 A1 WO2001012981 A1 WO 2001012981A1 EP 0004815 W EP0004815 W EP 0004815W WO 0112981 A1 WO0112981 A1 WO 0112981A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
valve
injection valve
valve according
sealing surface
Prior art date
Application number
PCT/EP2000/004815
Other languages
English (en)
French (fr)
Inventor
Wolfgang Scheibe
Horst Ressel
Original Assignee
L'orange Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'orange Gmbh filed Critical L'orange Gmbh
Priority to EP00936814A priority Critical patent/EP1208297B1/de
Priority to JP2001517048A priority patent/JP3754649B2/ja
Priority to AT00936814T priority patent/ATE292239T1/de
Priority to DE50009929T priority patent/DE50009929D1/de
Publication of WO2001012981A1 publication Critical patent/WO2001012981A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0033Lift valves, i.e. having a valve member that moves perpendicularly to the plane of the valve seat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member

Definitions

  • the invention relates to an injection valve for an internal combustion engine with an electromagnetically actuated control valve, which alternatively closes or releases a fluid passage opening assigned to a sealing surface by means of a valve actuator and thereby controls the pressure in a control pressure chamber connected to the passage opening.
  • valve actuator is firmly connected to the armature of the electromagnet and is pressed onto a sealing surface by spring force, so that the passage opening to the control pressure chamber is closed.
  • Such injection valves are usually used in accumulator injection systems, where very high control pressures of the order of several 100 bar occur.
  • the valve actuator connected to the magnet armature is raised against the spring force, so that the passage opening is opened and the high pressure can thus be reduced in the control pressure chamber.
  • the pressure drop in the control pressure chamber then triggers the injection in the injection valve.
  • valve actuator When the solenoid current is switched off, the magnet armature and with it the valve actuator, which is usually designed as a cylindrical bolt, strikes the sealing surface with its end face under the spring force and thereby closes the passage opening.
  • a good sealing effect of the valve actuator against the very high pressure in the control pressure chamber is achieved by the smallest possible cross-sectional area and thus small diameter of the valve actuator.
  • the smallest possible diameter of the valve actuator is therefore also desirable so that angular errors, i. H. Deviations in the alignment of the end face of the valve actuator from the associated sealing seat surface, which result from manufacturing inaccuracies, do not lead to leakage gaps.
  • a third reason for the smallest possible diameter of the valve actuator is a high sealing seat pressure to be aimed at and thus a more precise control.
  • a disadvantage of a small diameter of the valve actuator is, however, that a small diameter and thus a small end face may result in an inadmissibility high seat angle at the valve opening results.
  • Another disadvantage of a small diameter of the valve actuator is the fact that the closing movement of the magnet armature and the valve actuator, which together form a considerable inert mass, are decelerated to zero with little damping and rebound effects occur. For a damping braking of the valve actuator, the largest possible diameter and thus a correspondingly large end face would be desirable.
  • the object of the present invention is to design an injection valve of the aforementioned type in such a way that the conflict of objectives outlined above is resolved and thereby both great accuracy of the control valve is achieved even at extremely high pressures and at the same time inadmissibly high wear and tear is prevented by the impact movement of the valve actuator.
  • the object is achieved in that the valve actuator actuated by the electromagnet has, in addition to an actuator sealing surface which interacts with the sealing surface of the fluid passage opening, an actuator stop surface which is arranged at a distance from the actuator sealing surface.
  • the actuator stop surface is significantly larger than the actuator sealing surface.
  • the locally separate design of the actuator stop surface and the actuator sealing surface also has the advantage that high fluid pressures, such as occur in the area of the fluid passage opening and thus the actuator sealing surface, can be moved locally away from the electromagnet and the electromagnet is protected from high hydraulic pressure.
  • the electromagnet can also be better protected against impairment by the physical or chemical properties of the control fluid.
  • the actuator sealing surface is the end face of a valve rod formed by the valve actuator.
  • the valve actuator comprises a spherical valve body, which rests on the end face of the valve rod and interacts with conical sealing surfaces of the passage opening.
  • the length of the valve rod is essentially determined by the distance that the actuator sealing surface or the valve body stop of the valve rod is from the actuator stop surface. It is advantageous if the valve actuator is essentially mushroom-shaped, the mushroom stem forming the valve rod and the actuator stop surface being an annular collar concentrically surrounding the valve rod in the region of the mushroom cap. Such a valve actuator can be manufactured with little effort in terms of production technology.
  • the length of the valve rod is a minimal amount greater than the distance between the sealing surface of the fluid passage opening or the valve body stop of the valve rod from the reference stop for the actuator stop surface.
  • valve actuator is divided in a parting line into an actuator stop having the actuator stop surface and a valve rod which is operatively connected to the actuator sealing surface and the actuator stop.
  • Valve actuator consists in that the valve rod, which is significantly smaller in diameter, is easier to manufacture independently of the actuator stop. Another advantage is that different material can be used for the valve stem and actuator stop. With the split version of the valve actuator, it only has to be ensured that the opening movement of the valve rod, i. H. So the lifting from the sealing surface is guaranteed by the excess pressure from the fluid passage opening or by a supporting auxiliary spring. The slight excess length of the valve rod, based on the distance between the actuator sealing surface or valve body stop and the actuator stop surface (valve rod protrusion) can be absorbed during the closing movement by elastic deformation (shortening) of the valve rod.
  • the actuator stop is essentially mushroom-shaped, the actuator stop surface being in the region of the mushroom foot on the valve rod striking face.
  • this end face will be a circular area, the diameter of which is significantly larger than the diameter of the striking valve rod.
  • a guide bushing be arranged at a short distance from the actuator sealing surface of the valve rod. In this way, bending vibrations of the free end of the valve rod with the actuator sealing surface are prevented, so that the actuator sealing surface only has to have a slightly larger diameter than that of the through bore.
  • the length of the valve rod is preferably a multiple of its diameter.
  • the actuator sealing surface is assigned to a one-part or two-part disk-shaped insert, the control pressure chamber connecting on the side facing away from the sealing surface.
  • the corresponding insert part can be adapted to different stresses in terms of material with little effort, thereby improving the seal.
  • FIG. 2 shows the area of the electromagnetic control valve of the injection valve according to FIG. 1 enlarged
  • Fig. 3 is a again greatly enlarged compared to the representation in Fig. 2
  • FIG. 4 shows a variant of the injection valve with an insert in the area of
  • Fig. 6 shows a variant of an injection valve according to the invention in longitudinal section, the valve needle with its end facing away from the injection openings lying directly in the control pressure chamber.
  • the injection valve of a high-pressure accumulator injection system for an internal combustion engine shown in FIG. 1 has a housing 1.
  • a valve needle 20 is mounted, through the axial movement of which an injection hole 24 in relation to a high-pressure chamber 21 can be opened and thus an injection takes place.
  • the high-pressure chamber 21 is connected to a high-pressure connection 22 via channels in the housing 1.
  • the movement of the nozzle needle 20 is controlled via an electromagnet 10, the armature 11 of which is firmly connected to a valve actuator 12.
  • the valve actuator 12 is part of a control valve which is actuated by the electromagnet 10. The function of this electromagnetically operated control valve is explained on the basis of the enlargement according to FIG. 2.
  • valve actuator 12 is essentially mushroom-shaped, the mushroom stem as
  • Valve rod 16 is formed, which extends from the area of the mushroom cap to a sealing surface 17, into which a fluid passage opening 14a opens out from a control pressure chamber 14.
  • the diameter of the valve rod 16 is selected such that the end face just covers the fluid passage opening 14a and thus forms a sealing seat on the sealing face 17. It is easy to see that the length of the valve rod 16 is a multiple of its diameter.
  • the control pressure chamber 14 is connected to the high-pressure duct system of the injection valve via a throttle bore.
  • the valve actuator 12 is through the valve rod 16 in an upper guide sleeve 15o and a lower guide bush 15u axially displaceably mounted on the housing.
  • the lower guide bush 15u is arranged such that there is only a small distance between the lower end of the valve rod 16, which is designed as an actuator sealing surface 16a, and the lower edge of the lower guide bush 15u.
  • the resulting annular space 18 is connected to a low-pressure fluid connection 19 of the injection valve.
  • the valve rod 16 closes off the fluid passage bore 14a with its actuator sealing surface 16a.
  • An annular collar concentrically surrounding the valve rod 16 in the area of the mushroom cap of the actuator 12 is designed as an actuator stop surface 12a and rests on the upper flat surface of the sleeve 15o.
  • the valve actuator 12 In the shown closed position of the electromagnetic control valve, the valve actuator 12 together with the magnet armature 1 1 is loaded by a compression spring, not shown, which presses the actuator 12 onto the sealing surface 17 and at the same time onto the top of the upper guide bush 15o, which acts as a reference stop for the actuator stop surface 12a of the actuator 12 is used. If the electromagnet 10 is energized, the magnet armature 1 1 pulls the valve actuator 12 upward against the force of the compression spring, so that the fluid passage bore 14a is opened and thus a pressure drop in the control pressure chamber 14 occurs, which causes the valve needle 20 to be raised and thus causes an injection , When the current is switched off, the valve actuator 12 strikes down together with the magnet armature 1 1 under the force of the compression spring.
  • the actuator stop surface 12a of the actuator 12 which is much larger than the actuator sealing surface 16a of the valve rod 16, acts as a pure damping and impact surface for reducing the inertial forces of the armature and valve actuator.
  • the much smaller actuator sealing surface 16a at the lower end of the valve rod 16 takes over the function of the sealing seat, which is done with great accuracy and without the risk of leakage due to the small surfaces even at extremely high control pressures.
  • FIG. 3 This danger is shown on the basis of the greatly enlarged illustration according to FIG. 3 in a conventional injection valve.
  • a conventional injection valve Such a valve is constructed similarly to that shown in FIGS. 1 and 2, but with the difference that the fluid passage opening 14a, which is in communication with the control pressure chamber 14, up to a housing surface which functions as a stop and sealing surface 13 is performed.
  • the valve actuator 12 is again mushroom-shaped, but does not have the invention Valve rod 16.
  • the diameter e of the sealing seat and impact surface is chosen to be significantly larger than the diameter of the fluid passage bore 14a. The risk must be taken into account here that as a result of an angular error f, ie a deviation of the sealing and stop surface from the exactly right angle relative to the
  • a minimal gap s remains in the longitudinal axis of the valve actuator 12, even when the valve actuator 12 is struck, which causes a permanent pressure drop in the high-pressure region 14.
  • FIG. 4 shows a region of an injection valve corresponding to FIG. 2, which is modified in the region of the actuator sealing surface.
  • the valve rod 16 acts, as shown enlarged in FIG. 4, on a valve body 30 which is designed as a ball.
  • the valve body 30 bears against a conically shaped sealing surface 17 of the fluid passage opening 14a.
  • the fluid passage opening 14a contains a discharge throttle 33.
  • the use of a separate valve body 30, which can also have a shape other than spherical, has the advantage that the seal is improved.
  • a further improvement in the sealing results from the use of an insert part in the form of a disk-shaped part 37 which contains the discharge throttle 33. This part 37 can in terms of material and
  • Throttle bore can be optimally matched to different stress situations in a simple manner.
  • insert parts with throttle bores of different sizes, it is also possible to change the injection characteristics by simply replacing them.
  • second parts 34 with different inlet throttles 36 in order to adjust the injection characteristics by simply exchanging them.
  • This procedure of changing the injection quantity and the injection course by replacing first and second insert parts with different throttles is known per se from EP 0 844 385 A1.
  • the part 37 is connected by a centering and holding clip 39 to a sleeve 38 in which the valve rod 16 is received with its guide bushings 15o and 15u.
  • FIG. 5 shows an injection valve according to the invention, which likewise contains a disk-shaped insert 32.
  • the control pressure chamber 14 directly adjoins the side of the insert 32 facing away from the sealing surface 17.
  • the rear end of the nozzle needle 20 lies directly in the control pressure chamber 14.
  • the insert 32 is installed between the nozzle holder and the injection nozzle 40. Injection nozzle 40 and insert 32 are pressed against the nozzle holder by a nozzle nut, so that the high-pressure areas are connected to one another.
  • the insert 32 has a central bore as a fluid passage opening 14a to the control pressure chamber 14 and in the area opposite the valve rod 16 a calibrated discharge throttle 33.
  • the insert also contains a high-pressure duct 41, which forwards the fuel under injection pressure from a high-pressure connection 22 to a high-pressure duct in the injection nozzle ,
  • the high-pressure duct 41 in the insert part 32 has a line connection to the central bore in the insert part 32 and in this line connection there is a calibrated inlet throttle 36.
  • the insert part 32 preferably has a conical sealing surface 17 in which a spherical valve body 30 provides the seal.
  • a corresponding embodiment is known per se from US 5,832,899.
  • the injector corresponds to the injector described under FIG. 1 or FIG. 2. Due to the design with the two sides of the insert directly assigned
  • the seal is essentially reduced to this area that can be easily controlled.
  • suitable insert parts it is possible in a simple manner to react to different stress cases and requirements for the injection quantity and injection process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

Einspritzventil für eine Verbrennungskraftmaschine mit einem elektromagnetisch betätigten Steuerventil, dessen Ventilstellglied lokal getrennt eine Stellgliedanschlagfläche (12a) und eine Stellglieddichtfläche (16a) ausbildet. Durch die lokale Trennung von Stellgliedanschlagfläche und Stellglieddichtfläche eignet sich das Steuerventil für extrem hohe Betriebsdrücke und gewährleistet sowohl exakte Steuerung als auch lange Standzeit.

Description

Einspritzventil für eine Verbrennungskraftmaschine
Die Erfindung bezieht sich auf ein Einspritzventil für eine Verbrennungskraftmaschine mit einem elektromagnetisch betätigten Steuerventil, welches mittels eines Ventilstellgliedes alternativ eine einer Dichtfläche zugeordnete Fluiddurchtrittsöffnung verschließt oder freigibt und dadurch den Druck in einem mit der Durchtrittsöffnung verbundenen Steuerdruckraum steuert.
Ein Einspritzventil mit den vorgenannten Merkmalen ist aus Fig. 2 der europäischen Patentschrift EP 0531 533 B1 bekannt. Bei dem bekannten Einspritzventil ist das Ventilstellglied mit dem Anker der Elektromagneten fest verbunden und wird durch Federkraft auf eine Dichtfläche gedrückt, so dass die Durchtrittsöffnung zum Steuerdruckraum verschlossen ist. Üblicherweise werden solche Einspritzventile bei Speichereinspritzsystemen verwendet, wo sehr hohe Steuerdrücke in der Größenordnung mehrerer 100 Bar auftreten. Durch Bestromung des Elektromagneten wird das mit dem Magnetanker verbundene Ventilstellglied gegen die Federkraft angehoben, so dass die Durchtrittsöffnung freigegeben wird und dadurch im Steuerdruckraum der Hochdruck abgebaut werden kann. Durch den Druckabfall im Steuerdruckraum wird dann die Einspritzung im Einspritzventil ausgelöst. Durch das Abschalten des Magnetspulenstroms schlägt der Magnetanker und mit diesem das üblicherweise als zylindrischer Bolzen ausgeführte Ventilstellglied mit seiner Stirnfläche unter der Federkraft auf die Dichtfläche und verschließt damit die Durchtrittsöffnung. Eine gute Dichtwirkung des Ventilstellgliedes gegen den sehr hohen Druck im Steuerdruckraum wird durch eine möglichst kleine Querschnittsfläche und damit kleinen Durchmesser des Ventilstellglieds erreicht. Ein möglichst kleiner Durchmesser des Ventilstellglieds ist auch deshalb anzustreben, damit Winkelfehler, d. h. Abweichungen in der Ausrichtung der Stirnfläche des Ventilstellglieds von der zugehörigen Dichtsitzfläche, die durch Fertigungsungenauigkeiten entstehen, nicht zu Leckagespalten führen. Schließlich ist ein dritter Grund für einen möglichst geringen Durchmesser des Ventilstellglieds eine hohe anzustrebende Dichtsitzpressung und damit eine exaktere Steuerung.
Ein Nachteil eines geringen Durchmessers des Ventilstellglieds liegt allerdings darin, dass mit kleinem Durchmesser und damit kleiner Stirnfläche sich ein möglicherweise unzulässig hoher Sitzeinschlag an der Ventilöffnung ergibt. Ein weiterer Nachteil eines geringen Durchmessers des Ventilstellglieds ist darin zu sehen, dass die Schließbewegung des Magnetankers und des Ventilstellglieds, die zusammen eine beträchtliche träge Masse bilden, wenig gedämpft auf Null verzögert werden und so Rückpralleffekte auftreten. Für ein dämpfendes Abbremsen des Ventilstellgliedes wäre ein möglichst großer Durchmesser und damit eine entsprechend große Stirnfläche wünschenswert.
Aufgabe der vorliegenden Erfindung ist es, ein Einspritzventil der vorgenannten Bauart so auszubilden, dass der vorstehend aufgezeigte Zielkonflikt gelöst wird und dadurch sowohl große Exaktheit des Steuerventils auch bei extrem hohen Drücken erreicht wird und gleichzeitig unzulässig hoher Verschleiß durch die Aufprallbewegung des Ventilstellgliedes verhindert wird.
Erfindungsgemäß wird die gestellte Aufgabe dadurch gelöst, dass das vom Elektromagneten betätigte Ventilstellglied zusätzlich zu einer Stellglieddichtfiäche, die mit der Dichtfläche der Fluiddurchtrittsöffnung zusammenwirkt, eine Stellgliedanschlagfläche aufweist, die mit Abstand von der Stellglieddichtfiäche angeordnet ist.
Durch die erfindungsgemäße räumliche Trennung der Stellglieddichtfiäche von der Stellgliedanschlagfläche lassen sich die gegensätzlichen Forderungen bezüglich der Dichtfunktion einerseits und der Aufpralldämpffunktion andererseits zugleich verwirklichen. Demnach wird in vorteilhafter Ausgestaltung der Erfindung vorgeschlagen, dass die Stellgliedanschlagfläche wesentlich größer ist als die Stellglieddichtfiäche. Die lokal getrennte Ausbildung von Stellgliedanschlagfläche und Stellglieddichtfiäche hat darüber hinaus noch den Vorteil, dass hohe Fluiddrücke, wie sie im Bereich der Fluiddurchtrittsöffnung und damit der Stellglieddichtfiäche auftreten, lokal vom Elektromagneten wegverlegt werden können und insoweit der Elektromagnet von hohem hydraulischen Druck geschützt ist. Schließlich liegt ein weiterer Vorteil darin, dass der Elektromagnet auch vor Beeinträchtigung durch die physikalischen oder chemischen Eigenschaften des Steuerfluids besser geschützt werden kann.
Bei einer bevorzugten Ausführungsform eines erfindungsgemäßen Einspritzventils ist die Stellglieddichtfiäche die Stirnseite einer vom Ventilstellglied ausgebildeten Ventilstange. In einer anderen bevorzugten Ausführungsform umfasst das Ventilstellglied einen kugelförmigen Ventilkörper, der auf der Stirnseite der Ventilstange anliegt und mit konischen Dichtflächen der Durchtrittsöffnung zusammenwirkt. Die Länge der Ventilstange ist dabei im wesentlichen von dem Abstand bestimmt, den die Stellglieddichtfiäche bzw. der Ventilkörperanschlag der Ventilstange von der Stellgliedanschlagfläche aufweist. Vorteilhaft ist es, wenn das Ventilstellglied im wesentlichen pilzförmig gestaltet ist, wobei der Pilzschaft die Ventilstange bildet und die Stellgliedanschlagfläche ein im Bereich des Pilzhutes die Ventilstange konzentrisch umgebender Ringbund ist. Ein solcherart ausgebildetes Ventilstellglied ist fertigungstechnisch mit wenig Aufwand herzustellen.
Die Länge der Ventilstange ist um einen minimalen Betrag größer als der Abstand der Dichtfläche der Fluiddurchtrittsöffnung bzw. des Ventilkörperanschlags der Ventilstange vom Referenzanschlag für die Stellgliedanschlagfläche.
Eine bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass das Ventilstellglied in einer Trennfuge in einen die Stellgliedanschlagfläche aufweisenden Stellgliedanschlag und eine mit der Stellglieddichtfiäche und dem Stellgliedanschlag in Wirkverbindung stehende Ventiistange geteilt ist.
Ein wesentlicher Vorteil dieser erfindungsgemäßen geteilten Gestaltung des
Ventilstellglieds besteht darin, dass die im Durchmesser deutlich geringere Ventilstange leichter unabhängig vom Stellgliedanschlag herstellbar ist. Ein weiterer Vorteil liegt darin, dass unterschiedliches Material für die Ventilstange und den Stellgliedanschlag verwendet werden kann. Bei der geteilten Ausführung des Ventilstellglieds muss lediglich sichergestellt sein, dass die Öffnungsbewegung der Ventilstange, d. h. also das Abheben von der Dichtfläche durch den Überdruck aus der Fluiddurchtrittsöffnung oder durch eine unterstützende Hilfsfeder gewährleistet ist. Die geringfügige Überlänge der Ventilstange, bezogen auf den Abstand zwischen der Stellglieddichtfiäche bzw. Ventilkörperanschlag und der Stellgliedanschlagfläche (Ventilstangenüberstand) kann bei der Schließbewegung durch elastische Verformung (Verkürzung) der Ventilstange aufgenommen werden.
Vorteilhaft ist es, wenn der Stellgliedanschlag im wesentlichen pilzförmig gestaltet ist, wobei die Stellgliedanschlagfläche eine im Bereich des Pilzfußes an der Ventilstange anschlagende Stirnfläche ist. Diese Stirnfläche wird im Regelfall ein Kreisfläche sein, deren Durchmesser deutlich größer ist als der Durchmesser der anschlagenden Ventilstange.
In weiterer Ausbildung der Erfindung wird vorgeschlagen, die Ventilstange in Führungsbüchsen axial beweglich zu führen. Dabei ist es im Hinblick auf eine möglichst minimale Stellglieddichtfiäche anzustreben, dass eine Führungsbüchse in geringem Abstand der Stellglieddichtfiäche der Ventilstange angeordnet ist. Auf diese Weise werden Biegeschwingungen des freien Endes der Ventilstange mit der Stellglieddichtfiäche verhindert, so dass die Stellglieddichtfiäche nur einen geringfügig größeren Durchmesser aufweisen muss als den der Durchtrittsbohrung.
Die Länge der Ventilstange beträgt vorzugsweise ein Vielfaches ihres Durchmessers.
In einer vorteilhaften Ausführung ist die Stellglieddichtfiäche einem ein- oder zweiteiligen scheibenförmigen Einlegteil zugeordnet, wobei auf der der Dichtfläche abgewandten Seite der Steuerdruckraum anschließt. Das entsprechende Einlegteil kann mit geringem Aufwand materialmäßig an unterschiedliche Beanspruchsfälle angepasst und dadurch die Dichtung verbessert werden. Natürlich ist es damit auch möglich durch baukastenartig kombinierbare Teile mit unterschiedlichem Drosselbohrungen, wobei Zufluss- und Abflussdrossel unterschiedlichen Teilen zugeordnet sein können, in einfacher Weise auf unterschiedliche Anforderungen in der Einspritzcharakteristik einzugehen.
Anhand der beigefügten Zeichnungen wird ein Ausführungsbeispiel der Erfindung erläutert. In den Zeichnungen zeigt
Fig. 1 ein erfindungsgemäßes Einspritzventil im Längsschnitt,
Fig. 2 den Bereich des elektromagnetischen Steuerventils des Einspritzventils nach Fig. 1 vergrößert,
Fig. 3 einen gegenüber der Darstellung in Fig. 2 noch einmal stark vergrößerten
Ausschnitt eines elektromagnetischen Steuerventils nach dem Stand der Technik, Fig. 4 eine Variante des Einspritzventils mit einem Einlegteil im Bereich der
Stellglieddichtfiäche,
Fig. 5 eine vergrößerte Ansicht des unmittelbaren Stellglieddichtflächenbereichs mit am Ende der Ventilstange angeordnetem kugelförmigem Ventilkörper, und
Fig. 6 eine Variante eines erfindungsgemäßen Einspritzventils im Längsschnitt, wobei die Ventilnadel mit ihrem den Einspritzöffnungen abgewandten Ende unmittelbar im Steuerdruckraum liegt.
Das in Fig. 1 gezeigte Einspritzventil eines Hochdruckspeichereinspritzsystems für eine Verbrennungskraftmaschine weist ein Gehäuse 1 auf. Im unteren Bereich des Einspritzventils ist eine Ventilnadel 20 gelagert, durch deren Axialbewegung ein Einspritzloch 24 gegenüber einem Hochdruckraum 21 freigegeben werden kann und somit eine Einspritzung erfolgt. Der Hochdruckraum 21 steht über Kanäle in dem Gehäuse 1 mit einem Hochdruckanschluss 22 in Verbindung. Die Steuerung der Bewegung der Düsennadel 20 erfolgt über einen Elektromagneten 10, dessen Magnetanker 1 1 mit einem Ventilstellglied 12 fest verbunden ist. Das Ventilstellglied 12 ist Teil eines Steuerventils, welches durch den Elektromagneten 10 betätigt wird. Die Funktion dieses elektromagnetisch betätigten Steuerventils wird anhand der Vergrößerung nach Fig. 2 erklärt.
In Fig. 2 sind gleiche Bauteile mit gleichen Bezugszeichen wie in Fig. 1 versehen. Das Ventilstellglied 12 ist im wesentlichen pilzförmig gestaltet, wobei der Pilzschaft als
Ventilstange 16 ausgebildet ist, die vom Bereich des Pilzhutes bis zu einer Dichtfläche 17 reicht, in die eine Fluiddurchtrittsöffnung 14a aus einem Steuerdruckraum 14 mündet. Der Durchmesser der Ventilstange 16 ist so gewählt, dass die Stirnfläche die Fluiddurchtrittsöffnung 14a gerade überdeckt und somit auf der Dichtfläche 17 einen Dichtsitz ausbildet. Es ist leicht erkennbar, dass die Länge der Ventilstange 16 ein Vielfaches ihres Durchmessers beträgt. Der Steuerdruckraum 14 steht über eine Drosselbohrung mit dem Hochdruckkanalsystem des Einspritzventils in Verbindung. Das Ventilstellglied 12 ist durch die Ventilstange 16 in einer oberen Führungsbüchse 15o und einer unteren Führungsbüchse 15u gehäuseseitig axial verschieblich gelagert. Dabei ist die untere Führungsbüchse 15u so angeordnet, dass nur ein geringer Abstand zwischen dem unteren Ende der Ventilstange 16, welches als Stellglieddichtfiäche 16a ausgebildet ist, und der Unterkante der unteren Führungsbüchse 15u verbleibt. Der dort entstehende Ringraum 18 steht mit einem Niederdruckfluidanschluss 19 des Einspritzventils in Verbindung. In der in Fig. 2 gezeigten Schließstellung des elektromagnetischen Steuerventils schließt die Ventilstange 16 mit ihrer Stellglieddichtfiäche 16a die Fluiddurchtrittsbohrung 14a ab. Ein im Bereich des Pilzhutes des Stellglieds 12 die Ventilstange 16 konzentrisch umgebender Ringbund ist als Stellgliedanschlagfläche 12a ausgebildet und ruht auf der oberen Planfläche der Büchse 15o. In der gezeigten Schließstellung des elektromagnetischen Steuerventils wird das Ventilstellglied 12 zusammen mit dem Magnetanker 1 1 von einer nicht näher dargestellten Druckfeder belastet, die das Stellglied 12 auf die Dichtfiäche 17 und gleichzeitig auf die Oberseite der oberen Führungsbüchse 15o presst, welche als Referenzanschlag für die Stellgliedanschlagfläche 12a des Stellgliedes 12 dient. Wird der Elektromagnet 10 bestromt, dann zieht der Magnetanker 1 1 gegen die Kraft der Druckfeder das Ventilstellglied 12 nach oben, so dass die Fluiddurchtrittsbohrung 14a freigegeben wird und damit ein Druckabfall im Steuerdruckraum 14 entsteht, der ein Anheben der Ventilnadel 20 und damit eine Einspritzung bewirkt. Bei Abschalten des Stroms schlägt unter der Kraft der Druckfeder das Ventilstellglied 12 zusammen mit dem Magnetanker 1 1 nach unten. Dabei wirkt die im Vergleich zur Stellglieddichtfiäche 16a der Ventilstange 16 sehr viel größere Stellgliedanschlagfiäche 12a des Stellgliedes 12 als reine Dämpf- und Aufprallfläche zum Abbau der Massenkräfte von Magnetanker und Ventilstellglied. Die sehr viel kleinere Stellglieddichtfiäche 16a am unteren Ende der Ventilstange 16 übernimmt die Funktion des Dichtsitzes, was aufgrund der geringen Flächen selbst bei extrem hohen Steuerdrücken mit großer Exaktheit und ohne die Gefahr von Leckagen erfolgt.
Diese Gefahr wird anhand der stark vergrößerten Darstellung nach Fig. 3 bei einem herkömmlichen Einspritzventil aufgezeigt. Ein solches Ventil ist ähnlich aufgebaut wie das in Fig. 1 und Fig. 2 gezeigte, jedoch mit dem Unterschied, dass die Fluiddurchtrittsöffnung 14a, die mit dem Steuerdruckraum 14 in Verbindung steht, bis zu einer, die Funktion einer Anschlag- und Dichtfläche aufweisenden Gehäusefläche 13 geführt ist. Das Ventilstellglied 12 ist wiederum pilzförmig ausgebildet, hat jedoch nicht die erfindungsgemäße Ventilstange 16. Um die Dämpf- und Aufprallwirkung des Ventilstellglieds 12 nicht zu gering werden zu lassen, ist der Durchmesser e der Dichtsitz- und Aufprallfläche deutlich größer gewählt als der Durchmesser der Fluiddurchtrittsbohrung 14a. Dabei muss die Gefahr in Kauf genommen werden, dass infolge eines Winkelfehlers f, d. h. einem Abweichen der Dicht- und Anschlagfläche vom exakt rechten Winkel gegenüber der
Längsachse des Ventilstellglieds 12 auch im angeschlagenen Zustand des Ventilstellglieds 12 ein minimaler Spalt s verbleibt, der einen dauerhaften Druckabfall im Hochdruckbereich 14 zur Folge hat.
In Figur 4 ist ein Figur 2 entsprechender Bereich eines Einspritzventils dargestellt, das im Bereich der Stellglieddichtfiäche modifiziert ist. Die Ventilstange 16 wirkt, wie in Figur 4 vergrößert dargestellt, auf einen Ventilkörper 30, der als Kugel ausgebildet ist. Der Ventilkörper 30 liegt an einer konisch ausgeformten Dichtfläche 17 der Fluiddurchtrittsöffnung 14a an. Die Fluiddurchtrittsöffnung 14a beinhaltet eine Abflussdrossel 33. Die Verwendung eines separaten Ventilkörpers 30, der auch eine andere als eine kugelförmige Gestalt besitzen kann, hat den Vorteil, dass die Abdichtung verbessert wird. Insbesondere ist es auch möglich, für Ventilstange 16 und Ventilkörper 30 unterschiedliche Materialien zu verwenden. Eine weitere Verbesserung der Abdichtung ergibt sich durch Verwendung eines Einlegteils in Form eines scheibenförmigen Teils 37, das die Abflussdrossel 33 enthält. Dieses Teil 37 kann hinsichtlich Material und
Drosselbohrung in einfacher Weise auf unterschiedliche Beanspruchungsfälle optimal abgestimmt werden. Durch Bereitstellung von Einlegteilen mit unterschiedlich großen Drosselbohrungen ist es im weiteren durch einfachen Austausch möglich, die Einspritzcharakteristik zu verändern. Ebenso ist es möglich zweite Teile 34 mit unterschiedlichen Zulaufdrosseln 36 bereitzustellen, um durch einfachen Austausch die Einspritzcharakteristik abzustimmen. Diese Vorgehensweise, die Einspritzmenge und den Einspritzverlauf durch Ersatz von ersten und zweiten Einlegteilen mit unterschiedlichen Drosseln zu ändern ist an sich aus der EP 0 844 385 A1 bekannt. Das Teil 37 ist durch eine Zentrier- und Halteklammer 39 mit einer Hülse 38 verbunden, in der die Ventilstange 16 mit ihren Führungsbüchsen 15o und 15u aufgenommen ist. Diese Teile bilden eine Baueinheit, die in Bezug auf den Ventilstangenüberstand für sich voreinstellbar ist. Die Figur 5 zeigt ein erfindungsgemäßes Einspritzventil, das ebenfalls ein scheibenförmiges Einlegteil 32 beinhaltet. Auf der der Dichtfläche 17 abgewandten Seite des Einlegteils 32 schließt unmittelbar der Steuerdruckraum 14 an. Die Düsennadel 20 liegt mit ihrem rückwärtigen Ende unmittelbar im Steuerdruckraum 14. Das Einlegteil 32 ist zwischen Düsenhalter und der Einspritzdüse 40 eingebaut. Einspritzdüse 40 und Einlegteil 32 werden durch eine Düsenmutter an den Düsenhalter gepresst, so dass die hochdruckführenden Bereiche miteinander verbunden sind. Das Einlegteil 32 besitzt eine Mittelbohrung als Fluiddurchtrittsöffnung 14a zum Steuerdruckraum 14 und in dem der Ventilstange 16 gegenüberliegenden Bereich eine kalibrierte Abflussdrossel 33. Das Einlegteil beinhaltet außerdem einen Hochdruckkanal 41, welcher den unter Einspritzdruck stehende Kraftstoff von einem Hochdruckanschluss 22 zu einem Hochdruckkanal in der Einspritzdüse weiterleitet. Der Hochdruckkanal 41 im Einlegteil 32 besitzt eine Leitungsverbindung zur Mittelbohrung im Einlegteil 32 und in dieser Leitungsverbindung befindet sich eine kalibrierte Zulaufdrossel 36. Vorzugsweise besitzt das Einlegteil 32 wie in Figur 4 dargestellt eine konische Dichtfläche 17, in der ein kugelförmiger Ventilkörper 30 die Abdichtung besorgt. Eine entsprechende Ausführung ist an sich aus der US 5,832,899 bekannt.
In der Funktion entspricht der Injektor dem unter Fig. 1 bzw. Fig. 2 beschriebenen Injektor. Aufgrund der Bauart mit den beiden Seiten des Einlegteils unmittelbar zugeordneten
Steuerräumen ist die Abdichtung im wesentlichen reduziert auf diesen Bereich, der einfach beherrscht werden kann. Insbesondere ist es durch Bereitstellung geeigneter Einlegteil in einfacher Weise möglich auf unterschiedliche Beanspruchungsfälle und Anforderungen an Einspritzmenge und Einspritzverlauf zu reagieren.

Claims

Patentansprüche
1. Einspritzventil für eine Verbrennungskraftmaschine mit einem insbesondere elektromagnetisch betätigten Steuerventil, welches mittels eines Ventilstellgliedes (12) alternativ eine einer Dichtfläche (13, 17) zugeordnete Fluiddurchtrittsöffnung
(14a) verschließt oder freigibt und dadurch den Druck in einem mit der Durchtrittsöffnung verbundenen Steuerdruckraum (14) steuert, dadurch gekennzeichnet, dass das Ventilstellglied (12) zusätzlich zu einer Stellglieddichtfiäche (16a), die mit der Dichtfläche (17) der Fluiddurchtrittsöffnung (14a) zusammenwirkt, eine Stellgliedanschlagfläche ( 12a) aufweist, die mit
Abstand von der Stellglieddichtfiäche ( 16a) angeordnet ist.
2. Einspritzventil nach Anspruch 1 , dadurch gekennzeichnet, dass die Steilgliedanschlagfläche (12a) wesentlich größer ist als die Stellglieddichtfiäche (16a).
3. Einspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Ventilstellglied (12) mit einer ein- oder mehrteiligen Ventilstange (16) ausgebildet ist.
4. Einspritzventil nach Anspruch 3, dadurch gekennzeichnet, dass das Ventilstellglied (12) einen Ventilkörper (30) beinhaltet, der die Ventilstange (16) stirnseitig berührt und die Stellglieddichtfiäche ( 16a) beinhaltet.
5. Einspritzventil nach Anspruch 4, dadurch gekennzeichnet, dass der Ventilkörper (30) als Kugel ausgebildet ist, die dichtend mit der Fluiddurchtrittsöffnung ( 14a) zusammenwirkt.
6. Einspritzventil nach Anspruch 3, dadurch gekennzeichnet, dass die Stellglieddichtfiäche ( 16a) die Stirnseite der vom Ventilstellglied ( 12) ausgebildeten
Ventilstange (16) ist.
7. Einspritzventil nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass das Ventilstellglied (12) im wesentlichen pilzförmig gestaltet ist, wobei der Pilzschaft die Ventilstange (16) bildet und die Stellgliedanschlagfläche (12a) ein im Bereich des Pilzhutes die Ventilstange (16) konzentrisch umgebender Ringbund ist.
8. Einspritzventil nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass das Ventilstellglied (12) in einer Teilfuge 120 in einen die Stellgliedanschlagfläche (12a) aufweisenden Stellgliedanschlag und eine mit der Stellglieddichtfiäche (16a) und mit dem Stellgliedanschlag in Wirkverbindung stehende Ventilstange (16) geteilt ist.
9. Einspritzventil nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass der Stellgliedanschlag im wesentlichen pilzförmig gestaltet ist, wobei die Stellgliedanschlagfläche (12a) eine im Bereich des Pilzfußes an der Ventilstange (16) anschlagende Stirnfläche ist.
10. Einspritzventil nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass die Ventilstange ( 16) in wenigstens einer Führungsbüchsen ( 15o, 15u) axialbeweglich geführt ist.
1 1. Einspritzventil nach Anspruch 10, dadurch gekennzeichnet, dass eine Führungsbüchse (15u) in geringem Abstand zur Stellglieddichtfiäche ( 16a) angeordnet ist.
12. Einspritzventil nach einem der Ansprüche 3 bis 1 1 , dadurch gekennzeichnet, dass die Länge der Ventilstange (16) ein Vielfaches ihres Durchmessers ist.
13. Einspritzventil nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, dass die Dichtfläche (17) in der Stirnfläche eines scheibenförmigen Einlegteils (32) ausgebildet ist, und dass auf der der Dichtfläche ( 17) abgewandten Seite der
Steuerdruckraum (14) anschließt.
14. Einspritzventil nach Anspruch 13, dadurch gekennzeichnet, dass das Einiegteil (32) zweiteilig mit einem die Fluiddurchtrittsöffnung (14a) und eine Abflussdrossel (33) beinhaltenden ersten Teil (37) und einem steuerdruckraumseitig liegenden zweiten Teil (34) mit einer den Steuerdruckraum (14) mit der Fluiddurchtrittsöffnung (14a) verbindenden Bohrung (35) ausgeführt ist.
15. Einspritzventil nach Anspruch 14, dadurch gekennzeichnet, dass das zweite Teil (34) eine mit der Bohrung (35) in Verbindung stehende Zuflussdrossel (36) beinhaltet.
16. Einspritzventil nach Anspruch 13, dadurch gekennzeichnet, dass das Einlegteil (32) außer der Abflussdrossel (33) auch die Zuflussdrossel (36) enthält.
17. Einspritzventil nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass der Steuerdruckraum (14) mit einer Zuflussdrossel (36) in Verbindung steht.
18. Einspritzventil nach einem der Ansprüche 13 bis 1 , dadurch gekennzeichnet, dass die Ventilnadel (20) mit ihrem von der Düsennadelsitzfläche abgewandten rückwärtigen Ende im Steuerdruckraum ( 14) liegt.
19. Einspritzventil nach Anspruch 18, dadurch gekennzeichnet, dass das Einlegteil (32) einen Anschlag für die Ventilnadel (20) bildet.
20. Einspritzventil nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, dass das Einlegteil (32), eine Zentrier- und Halteklammer (39) und eine Hülse (38), in der zumindest Ventilstange ( 16) und wenigstens eine Führungsbüchse ( 15o, 15u) mit der Stellgliedanschlagfläche ( 12a) aufgenommen ist, eine für sich in Bezug auf den Ventilstangenüberstand voreinstellbare Baueinheit bilden.
PCT/EP2000/004815 1999-08-17 2000-05-26 Einspritzventil für eine verbrennungskraftmaschine WO2001012981A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00936814A EP1208297B1 (de) 1999-08-17 2000-05-26 Einspritzventil für eine verbrennungskraftmaschine
JP2001517048A JP3754649B2 (ja) 1999-08-17 2000-05-26 内燃機関の噴射弁
AT00936814T ATE292239T1 (de) 1999-08-17 2000-05-26 Einspritzventil für eine verbrennungskraftmaschine
DE50009929T DE50009929D1 (de) 1999-08-17 2000-05-26 Einspritzventil für eine verbrennungskraftmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19938921.7 1999-08-17
DE19938921A DE19938921B4 (de) 1999-08-17 1999-08-17 Einspritzventil für eine Verbrennungskraftmaschine

Publications (1)

Publication Number Publication Date
WO2001012981A1 true WO2001012981A1 (de) 2001-02-22

Family

ID=7918638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004815 WO2001012981A1 (de) 1999-08-17 2000-05-26 Einspritzventil für eine verbrennungskraftmaschine

Country Status (5)

Country Link
EP (1) EP1208297B1 (de)
JP (1) JP3754649B2 (de)
AT (1) ATE292239T1 (de)
DE (2) DE19938921B4 (de)
WO (1) WO2001012981A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10147830A1 (de) * 2001-09-27 2003-04-30 Orange Gmbh Kraftstoffinjektor
DE10212002C1 (de) * 2002-03-18 2003-08-21 Orange Gmbh Einspritzinjektor für Brennkraftmaschinen
EP1347168A2 (de) 2002-03-18 2003-09-24 L'orange Gmbh Einspritzinjektor für Brennkraftmaschinen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025050B3 (de) * 2007-05-29 2008-10-16 L'orange Gmbh Hochdruck-Einspritzinjektor für Brennkraftmaschinen mit einer knicklaststeigernden Steuerstangenabstützung über unter Hochdruck stehendem Kraftstoff

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531533A1 (de) 1991-01-14 1993-03-17 Nippondenso Co., Ltd. Druckakkumulier-kraftstoffeinspritzvorrichtung
EP0544385A2 (de) 1991-11-27 1993-06-02 Toa Medical Electronics Company, Limited Verfahren zum Zählen von Teilchen
EP0645535A1 (de) * 1993-09-28 1995-03-29 Zexel Corporation Kraftstoffpumpedüseneinheit für Brennkraftmaschine
US5542610A (en) * 1993-10-22 1996-08-06 Mercedes-Benz Ag Fuel injection nozzle with integral solenoid valve
EP0753658A1 (de) * 1995-07-14 1997-01-15 ELASIS SISTEMA RICERCA FIAT NEL MEZZOGIORNO Società Consortile per Azioni Verbessertes electromagnetisches Dosierventil für ein Kraftstoffeinspritzventil
EP0844385A1 (de) * 1996-11-21 1998-05-27 Denso Corporation Speicherkraftstoffeinspritzvorrichtung für Verbrennungsmotor
DE19708104A1 (de) * 1997-02-28 1998-09-03 Bosch Gmbh Robert Magnetventil
US5832899A (en) 1995-10-04 1998-11-10 Lucas Industries Plc Injector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193531A (ja) * 1992-10-28 1994-07-12 Zexel Corp 燃料噴射装置
EP0745764B1 (de) * 1995-06-02 2001-03-21 Ganser-Hydromag Ag Brennstoffeinspritzventil für Verbrennungskraftmaschinen
JP3719461B2 (ja) * 1996-11-25 2005-11-24 株式会社デンソー 蓄圧式燃料噴射装置
JP3755143B2 (ja) * 1996-11-21 2006-03-15 株式会社デンソー 蓄圧式燃料噴射装置
DE19650865A1 (de) * 1996-12-07 1998-06-10 Bosch Gmbh Robert Magnetventil
IT1296144B1 (it) * 1997-11-18 1999-06-09 Elasis Sistema Ricerca Fiat Valvola di dosaggio registrabile per un iniettore di combustibile per motori a combustione interna.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531533A1 (de) 1991-01-14 1993-03-17 Nippondenso Co., Ltd. Druckakkumulier-kraftstoffeinspritzvorrichtung
EP0544385A2 (de) 1991-11-27 1993-06-02 Toa Medical Electronics Company, Limited Verfahren zum Zählen von Teilchen
EP0645535A1 (de) * 1993-09-28 1995-03-29 Zexel Corporation Kraftstoffpumpedüseneinheit für Brennkraftmaschine
US5542610A (en) * 1993-10-22 1996-08-06 Mercedes-Benz Ag Fuel injection nozzle with integral solenoid valve
EP0753658A1 (de) * 1995-07-14 1997-01-15 ELASIS SISTEMA RICERCA FIAT NEL MEZZOGIORNO Società Consortile per Azioni Verbessertes electromagnetisches Dosierventil für ein Kraftstoffeinspritzventil
US5832899A (en) 1995-10-04 1998-11-10 Lucas Industries Plc Injector
EP0844385A1 (de) * 1996-11-21 1998-05-27 Denso Corporation Speicherkraftstoffeinspritzvorrichtung für Verbrennungsmotor
DE19708104A1 (de) * 1997-02-28 1998-09-03 Bosch Gmbh Robert Magnetventil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10147830A1 (de) * 2001-09-27 2003-04-30 Orange Gmbh Kraftstoffinjektor
DE10147830B4 (de) * 2001-09-27 2008-05-08 L'orange Gmbh Kraftstoffinjektor
DE10212002C1 (de) * 2002-03-18 2003-08-21 Orange Gmbh Einspritzinjektor für Brennkraftmaschinen
EP1347168A2 (de) 2002-03-18 2003-09-24 L'orange Gmbh Einspritzinjektor für Brennkraftmaschinen
EP1347168A3 (de) * 2002-03-18 2005-01-05 L'orange Gmbh Einspritzinjektor für Brennkraftmaschinen

Also Published As

Publication number Publication date
JP3754649B2 (ja) 2006-03-15
ATE292239T1 (de) 2005-04-15
DE19938921A1 (de) 2001-03-01
EP1208297B1 (de) 2005-03-30
DE19938921B4 (de) 2004-02-19
DE50009929D1 (de) 2005-05-04
JP2003507622A (ja) 2003-02-25
EP1208297A1 (de) 2002-05-29

Similar Documents

Publication Publication Date Title
DE602005000662T2 (de) Einspritzventil einer Brennkraftmaschine
EP0828935B1 (de) Einspritzventil
EP1431567B1 (de) Brennstoffeinspritzventil für Verbrennungskraftmaschinen
EP0970305B1 (de) Einspritzventil mit steuerventil
EP3478957B1 (de) Ventil zum eindüsen von gasförmigem kraftstoff
EP0900332A1 (de) Ventil zum steuern von flüssigkeiten
WO2002042632A2 (de) Magnetventil zur steuerung eines einspritzventils einer brennkraftmaschine
EP0908617A1 (de) Kraftstoffeinspritzvorrichtung
WO2000028205A1 (de) Brennstoffeinspritzventil für verbrennungskraftmaschinen
EP2016277B1 (de) Magnetventil mit stoffschlüssiger ankerverbindung
WO2021190890A1 (de) Ventilvorrichtung für ein brennstoffzellensystem und tankvorrichtung zur speicherung eines gasförmigen mediums
AT519932A2 (de) Ablassventil für hohe Drücke
EP1373704A1 (de) Magnetventil
WO2009037095A1 (de) Steuerventil für einen kraftstoffinjektor
DE10111929A1 (de) Sitz/Schieber-Ventil mit Druckausgleichsstift
EP2278152B1 (de) Kraftstoffeinspritzventil
EP1208297B1 (de) Einspritzventil für eine verbrennungskraftmaschine
DE10141221B4 (de) Druck-Hub-gesteuerter Injektor für Kraftstoffeinspritzsysteme
EP1601869B1 (de) Ventil mit federelement für einen kraftstoffinjektor
EP1256709A2 (de) Magnetventil zur Steuerung eines Einspritzventils einer Brennkraftmaschine
EP2156044B1 (de) Injektor mit druckausgeglichenem steuerventil
DE10039039A1 (de) Magnetventil zur Steuerung eines Einspritzventils für Brennkraftmaschinen und Elektromagnet dafür
EP1325228B1 (de) Einspritzventil mit einem pumpkolben
EP3184803B1 (de) Kraftstoffinjektor
EP2084390A1 (de) Injektor mit axial-druckausgeglichenem steuerventil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 517048

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000936814

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10049834

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000936814

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000936814

Country of ref document: EP