WO2001012299A1 - Procede et appareil de traitement des gaz d'echappement - Google Patents

Procede et appareil de traitement des gaz d'echappement Download PDF

Info

Publication number
WO2001012299A1
WO2001012299A1 PCT/JP2000/005447 JP0005447W WO0112299A1 WO 2001012299 A1 WO2001012299 A1 WO 2001012299A1 JP 0005447 W JP0005447 W JP 0005447W WO 0112299 A1 WO0112299 A1 WO 0112299A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
ammonia
gas
water
absorbing
Prior art date
Application number
PCT/JP2000/005447
Other languages
English (en)
French (fr)
Inventor
Masahiro Izutsu
Ryoji Suzuki
Shinji Aoki
Daisuke Saku
Kazuaki Hayashi
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to BR0013318-3A priority Critical patent/BR0013318A/pt
Priority to AU64764/00A priority patent/AU6476400A/en
Priority to PL00353576A priority patent/PL353576A1/xx
Priority to EP00951991A priority patent/EP1206960A4/en
Priority to US10/048,489 priority patent/US6773555B1/en
Publication of WO2001012299A1 publication Critical patent/WO2001012299A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/505Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound in a spray drying process

Definitions

  • the present invention relates to the treatment of exhaust gas containing sulfur oxides, and more particularly to a method and an apparatus for treating exhaust gas that removes sulfur oxide by injecting ammonia into exhaust gas containing sulfur oxide.
  • ammonia injection method in which ammonia (NH 3 ) is injected into flue gas containing SO 2 such as boiler combustion gas
  • NH 3 and S Ox react with each other to form ammonium sulfate (generating a powder of ammonium ⁇ compounds containing ammonium sulfate).
  • sulfur dioxide (S 0 2 which is the main component in S Ox) is, NH 3
  • the exhaust gas The following equation (1) shows a chemical reaction formula in which oxygen (0 2 ) contained therein reacts with water (H 2 0) to produce ammonium sulfate [(NH 4) 2 S ⁇ 4] as a reaction by-product.
  • the reaction of SO x with NH 3 to produce an ammonia compound is an exothermic reaction, and the lower the temperature of the exhaust gas, the more easily the reaction proceeds. or the exhaust gas is cooled prior to injection of NH 3, or prior to injection of NH 3, injection and co, after injection, or NH 3 and mixed to be sprayed injecting water takes place.
  • the injected water is consumed in the desulfurization reaction represented by (1) above, and the reaction heat and the exhaust gas evaporate due to the sensible heat possessed before the injection of ammonia.
  • Proper adjustment of the pH does not prevent the recovery of the produced ammonia compound as a dry powder.
  • the collection of this powder is usually performed by an electric dust collector, and the recovered powder can be used as a fertilizer because it is an ammonium compound such as ammonium sulfate.
  • the inventors have previously sprayed and injected ammonia water after first cooling the exhaust gas to a temperature higher than the moisture saturation temperature and lower than 80 ° C., and the ammonia water had a Sauter average particle size of 0.5 m.
  • atomized into droplets of 30 / m or less A flue gas desulfurization method and a flue gas desulfurization system that achieves a high desulfurization rate while suppressing NH 3 leakage with a relatively small absorbed dose without electron beam irradiation by spraying .
  • an object of the present invention is to provide an exhaust gas desulfurization method and an apparatus for obtaining a high desulfurization rate while suppressing the leakage of NH 3 while keeping the energy cost low. I do.
  • the present invention provides an exhaust gas treatment method for removing sulfur oxides in exhaust gas using ammonia, the method comprising: injecting ammonia into an exhaust gas containing sulfur oxides to react the sulfur oxides with ammonia. Generating ammonia compounds containing ammonium sulfate, collecting the generated ammonia compounds, and contacting the collected exhaust gas with an absorbent to remove residual sulfur oxides and / or ammonia contained in the exhaust gas. It is a thing.
  • the absorbing solution dissolves sulfate ions (SO—) and / or sulfite (S ⁇ 3 ) and / or ammonium ions (NH 4 + ).
  • S Ox of NH 3 injected into reacts with SO x sac Chi injected NH 3 in S_ ⁇ x and / or exhaust gas is converted into powder Tsuta Naka residual ammonia compounds contained in the exhaust gas Residual NH 3 of which have not been converted into the powder ammonia compounds react with the exhaust gas wherein S 0 4 2 - and / or S 0 3 2 - and / or in contact with the intake Osamueki dissolving the NH 4 + By doing so, it is absorbed and removed by the absorbing solution.
  • the gas absorption device when the exhaust gas treatment performance (desulfurization rate and leaked ammonia concentration) of the upstream ammonia injection method portion except for the gas absorption device is the same as that of the ammonia injection method alone, the gas absorption device
  • the exhaust gas treatment performance of the entire exhaust gas treatment including the above can be further improved as compared with the case of using the ammonia injection method alone.
  • the desulfurization rate of the entire exhaust gas treatment device can be improved, and by absorbing and removing NH 3 by the gas absorption device, The leak ammonia concentration in the entire exhaust gas treatment device can be reduced.
  • the exhaust gas treatment performance of the entire gas treatment apparatus is the same as that of the ammonia injection method alone, the operation cost and equipment in the ammonia injection method can be significantly reduced.
  • the desulfurization rate to be achieved in the ammonia injection method can be kept low, and by absorbing and removing NH 3 with a gas absorption device, ammonia can be reduced.
  • the requirement for leak ammonia concentration in the injection method can be relaxed.
  • exhaust gas treatment performance which was achieved by irradiating a relatively large amount of electron beam in the conventional technology, can be achieved with a small amount of electron beam irradiation or without electron beam irradiation. Become.
  • the exhaust gas treatment performance that could not be achieved without atomizing and spraying aqueous ammonia into droplets having an extremely small Sauter average particle size was achieved by spraying aqueous ammonia with a relatively coarse particle size. Will also be achieved. In this way, the operating costs and equipment costs in the ammonia injection method can be significantly reduced.
  • the absorbing solution is circulated for use while oxidizing dissolved sulfite ions.
  • an aqueous solution NH and S 0 3 is dissolved, 1 ⁇ 4 + and 304 when 2 compares the aqueous solution which is dissolved, N H4 + of S 0 3 2 - and the molar ratio, S of NH 0
  • the aqueous solution in which NH and SO — are dissolved has a lower PH.
  • NH 4 +: S 03 2 twelve NH: SO - 2: 1, then the concentration of each aqueous solution, the total salt concentration (NH and S 0 3 2 - or S 0 - the total weight of the Table 1 below.
  • the main component of the S Ox remaining the reaction product exhaust gas after recovery is S 0 2, in the absorption of the S 0 2, unless dramatically decreasing pH in the absorbing solution,
  • the S 0 — concentration in the absorbing solution rather than the pH has a strong effect. That is, if p H is more than about 2, removing efficiently the S 0 2 by the absorbing liquid is not affected Ri linseed the p H, S 0 3 2 - decreases the concentration increases. Therefore, by oxidizing S 0 3 2 — in the absorbing solution to S 0 4 2 — Connexion, can be effectively removed also S 0 2 remaining the reaction product exhaust gas after recovery.
  • the oxidation of S_ ⁇ 4 S 0 3 in the absorbing liquid for example, carried out by aeration (aeration) air into the absorption liquid.
  • the amount of ammonia injected into the exhaust gas is adjusted so that the pH of the absorbing solution is 8 or less without adding an acidic substance.
  • S of NH 0 3 2 - - NH in the aqueous solution S 0 3 2 and / or S 0 - the molar ratio is 2: If 1 or less, N is the aqueous solution It can be present relatively stably as an ion. In particular, when S 0 3 2 — coexists with NH, if the molar ratio of NH to S 0 3 2 _ is greater than 2: 1, it is likely to be released as NH NHs gas in the aqueous solution.
  • the molar ratio NH 4 + of S 0 3 in the absorbing solution 2 larger than 1, the efficiency of removing by dissolving the NH 3 in the exhaust gas in the absorbing liquid is reduced. Then, according to Table 1, 1 ⁇ 11 4 + 30 3 molar ratio is 2: 1, because p H is about 8, to the residue the reaction product exhaust gas after recovering In order to effectively remove NH 3 , it is preferable to adjust the pH of the absorbing solution to 8 or less.
  • the pH of the absorbing solution can be adjusted to 8 or less by replenishing the absorbing solution with an acidic substance such as sulfuric acid.In this case, the SO x in the exhaust gas is removed. it becomes that you use the additional agent in addition to NH 3 used for, along with operating costs to rise with it, also required additional equipment such as storage equipment of the drug.
  • the amount of the absorbing solution extracted from the gas absorbing device is further increased, and industrial water to be replenished to the absorbing solution according to the extraction amount and the evaporation amount in the gas absorbing device.
  • Absorbing liquid by increasing the amount of It is also possible to lower the salt concentration.
  • Table 1 the effect of lowering the salt concentration on the suppression of pH is very limited.Therefore, if the pH is reduced by increasing the amount of water withdrawn from the absorbent, a huge amount of pH will be required. It is necessary to withdraw a large amount of the absorbing liquid, and the treatment of the extracted water requires a large facility and operating cost.
  • the absorbing solution when the exhaust gas coming into contact with the absorbing solution contains not only unreacted NH 3 but also S, the absorbing solution simultaneously absorbs S Ox with NH 3 , and the concentration of NH 4 in the absorbing solution As the concentration of S 0 3 2 — and / or S 0 1 also increases, the pH of the absorbing solution is adjusted by appropriately adjusting the ratio of the concentration of S Ox to the concentration of NH 3 in the exhaust gas entering the gas absorber. can do.
  • the concentration of S 0. and NH 3 remaining in the exhaust gas entering the gas absorber is the exhaust gas treatment performance achieved by the upstream ammonia injection method, excluding the gas absorber (desulfurization rate and leak ammonia concentration) Is determined by
  • the exhaust gas treatment performance achieved by the ammonia injection method depends on the amount of ammonia injected, the temperature of the exhaust gas at the outlet of the reactor, and the electron beam irradiation when NH 3 is injected and the electron beam is irradiated. Although defined by process variables such as dose, most appropriate process variables for adjusting the ratio of concentrations of S Ox and NH 3 remaining among the flue gas is the amount of injected NH 3. Therefore, the pH of the absorbing solution can also be adjusted by the amount of NH 3 injected into the exhaust gas.
  • the pH of the absorbing solution can be adjusted by adjusting the amount of NH 3 injected, and the pH of the absorbing solution can be adjusted by adjusting the amount of NH 3 injected into the exhaust gas. If the pH is adjusted to 8 or less, the pH of the absorbing solution can be adjusted to 8 or less without adding a chemical solution of an acidic substance and without extracting a large amount of the absorbing solution.
  • the injection amount of NH 3 injected into the exhaust gas in the ammonia injection method portion is limited. It is preferable that the pH of the absorbing solution is adjusted to be 8 or less without adding an acidic substance, and the replenishment amount of the alkaline substance is also adjusted so that the pH of the absorbing solution is 8 or less. . At that time, considering the fluctuation range of PH due to the injection of the alkaline substance, the injection amount of NH 3 into the exhaust gas should be 7 or less when the PH of the absorbing solution is not replenished with the alkaline substance. After the adjustment, it is particularly preferable that the replenishment amount of the alkaline substance of NH 3 is adjusted so that the pH of the absorbing solution is 8 or less.
  • the pH of the absorbing solution is adjusted by supplying ammonia to the absorbing solution.
  • p H of the absorbing liquid is below 2
  • S 0 3 2 absorption liquid as described above - the S 0 4 2 - even when oxidized, the reduced absorption efficiency of S_ ⁇ 2 of S Ox I will be. Therefore, it is possible to replenish the absorption liquid with alkaline substances.
  • part of NH 3 used to remove SO in the exhaust gas is used, it is convenient because there is no need to install additional equipment for storing the replenished alkaline substances.
  • the absorption liquid oxidizes S 0 3 2 — to S 0 4 2 — and then evaporates the water in the extraction liquid, it contains ammonium sulfate.
  • An ammonia compound can be obtained, which can be used as a fertilizer together with the powder obtained in the ammonia injection method.
  • the supply of ammonia to the absorbing solution is performed by diffusing ammonia gas into the absorbing solution.
  • NH 3 can be supplied to the absorbing solution by supplying NH 3 as ammonia water.However, in the ammonia injection method, NH 3 is usually supplied to the ammonia injection device as ammonia gas. If NH 3 is supplied to the absorbing solution by diffusing ammonia gas, the ammonia gas supply device can be shared, which is convenient.
  • a diffuser cylinder made of a porous material with many fine pores. As a result, the ammonia gas can be efficiently dissolved in the pH adjustment target liquid.
  • Such a porous tube can be made of ceramics, and in particular, can be made of alumina porcelain. At this time, it is preferable that the pores be set to 10 to 50 ⁇ m.
  • the exhaust gas before injecting ammonia into the exhaust gas, the exhaust gas is brought into contact with cooling water, a part of the cooling water after contacting with the exhaust gas is extracted, and as it is or dissolved sulfur dioxide After oxidizing the ions, it is supplied as makeup water for the absorbing solution. That is, prior to injecting NH 3 into the exhaust gas containing SO x, the exhaust gas is brought into contact with cooling water, while the ammonia compound generated by the reaction between SO x and NH 3 is recovered, and then the exhaust gas is discharged. By bringing a part of the cooling water into contact with an absorbing solution serving as makeup water, NH 3 contained in the exhaust gas is removed.
  • the cooling water after contact with the exhaust gas is used as makeup water to absorb the NH 3. It is possible to suppress a decrease in the absorption efficiency of NH 3 in the exhaust gas due to the liquid.
  • the exhaust gas before injecting ammonia into the exhaust gas, the exhaust gas is brought into contact with a heat exchange surface cooled to a temperature not higher than the moisture saturation temperature of the exhaust gas, and a part of the condensed water generated on the heat exchange surface Or pull out everything and leave it as it is Alternatively, after oxidizing dissolved sulfite ions, the solution is supplied as makeup water for the absorbing solution. That is, S_ ⁇ x prior to injecting NH 3 in exhaust gas containing, in contact with the heat exchange surface that is cooling the flue gas to below the water saturation temperature of the exhaust gas.
  • the exhaust gas is brought into contact with an absorbing solution that uses part or all of the condensed water as makeup water, thereby removing NH 3 contained in the exhaust gas.
  • the pH of the condensed water is lower than 7 because it dissolves as SO —. Therefore, if this condensed water is used as make-up water for the absorbing solution, it is possible to suppress an increase in the pH of the absorbing solution, and thus to reduce the absorption efficiency of NH 3 in the exhaust gas due to the absorbing solution. Can be suppressed.
  • the effect of lowering the pH is greater when dissolved as S 0 4 2 — than when dissolved as S 0 3 2 _ in the absorbing solution.
  • the effect of suppressing the decrease in the absorption efficiency of NH 3 is great (accordingly, by oxidizing S 0 3 2 — in the cooling water or condensed water to so 4 2 ⁇ by means such as aeration, The effect of suppressing the decrease in the NH 3 absorption efficiency of the absorbing solution by using the cooling water as the makeup water becomes remarkable.
  • the condensed water generated on the heat exchange surface is supplied to the gas absorption tower as makeup water as described above. If not supplied, it must be treated separately and released. At that time, the pH of extraction water and condensed water is usually very low, so adjusting the pH using alkaline substances is an essential step.
  • the extracted water or the condensed water is supplied to a gas absorbing device as makeup water, and NH 3 or an absorbing substance such as NH 3 is contained in the absorbed liquid in the exhaust gas in the gas absorbing device. Since the pH is adjusted by injecting pH, there is no need to provide a separate pH adjuster as described above. Therefore, this point is also effective in reducing equipment costs.
  • the absorption liquid is not replenished with alkaline substances other than NH 3 and the ammonium compound containing ammonium sulfate is obtained from the extraction liquid of the absorption liquid as described above, it is included in the extraction water or condensed water.
  • S 0 3 2 — and / or S 0 — are also included in a part of the ammonia compound, and thus can be used as a part of the fertilizer, which is preferable from the viewpoint of effective use of resources.
  • a part of the absorbing liquid is withdrawn, and the withdrawn liquid is discharged into the exhaust gas before, simultaneously with, after pouring ammonia, or after mixing with ammonia.
  • Spray injection into In this method all or part of the water in the sprayed liquid is consumed in the desulfurization reaction, and is evaporated by the heat of reaction and the sensible heat originally possessed by the exhaust gas. Therefore, all or a part of the dissolved components in the extracted liquid is evaporated to dryness (evaporated and dried and solidified), and the powder generated by the reaction between SO x in the exhaust gas and the injected NH s is solidified. At the same time, it is collected by a product collection device such as an electric dust collector.
  • a discharged liquid spray device is provided separately from the ammonia injection device that injects NH 3 into the exhaust gas, and the discharged liquid spray device is placed in front of or at the same position as the ammonia injection device. Or can be deployed later.
  • an electron beam is irradiated to the exhaust gas after the injection of the ammonia and before the recovery of the ammonia compound.
  • the exhaust gas treatment performance (desulfurization rate and leaked ammonia concentration) of the upstream electron beam method part, excluding the gas absorption device, is the same as that of the electron beam method alone.
  • Exhaust gas treatment performance including the absorber can be further improved as a whole.
  • the exhaust gas treatment performance of the entire gas treatment unit is the same as that of the electron beam process alone, the amount of electron beam irradiation necessary to achieve the desired desulfurization rate can be significantly reduced. . Therefore, operating and equipment costs for the electron beam method are significantly reduced.
  • the electron beam is transmitted through a metal foil and irradiated to an exhaust gas, the metal foil is cooled by air, and the cooled air is absorbed by the absorbing member. Inject into the exhaust gas before coming into contact with the liquid.
  • the electron beam generator accelerates electrons with a DC high-voltage power supply that generates a DC high voltage of several hundred kV to several MV, a supply path such as a high-voltage cable that supplies it, and the supplied DC high voltage.
  • a DC high-voltage power supply that generates a DC high voltage of several hundred kV to several MV, a supply path such as a high-voltage cable that supplies it, and the supplied DC high voltage.
  • It consists of an electron accelerator that emits light.
  • the inside of this electron accelerator is kept in a vacuum, and the vacuum and the outside air are separated by a thin metal foil (hereinafter, window foil).
  • the accelerating electrons are separated from the accelerator side window foil and, in some cases, Then, it passes through another window foil (hereinafter referred to as the reactor side window box) that blocks the exhaust gas from the outside air and enters the exhaust gas.
  • an ozone-containing gas is injected into the exhaust gas before coming into contact with the absorbing solution.
  • the exhaust gas is such as a boiler flue gas
  • NOx not only S Ox of (mostly NO) including, when irradiating an electron beam in addition to the injection of NH 3 on the upstream side of the gas absorption apparatus NOx, as well as S0.
  • NOx percentage is reduced to be removed, some remains N_ ⁇ , the remainder entering the gas absorber as N0 2 or N 2 0 5.
  • N 02 and N 2 originally contained in the boiler exhaust gas 2 ⁇ some of the 5 but is converted to a powder mainly composed of ammonium nitrate, almost all of the remaining N 0 and N 2 0 5, and were included in the exhaust gas NO without reaction Enter the gas absorber. Then, N0 2 or N 2 0 5 in the gas absorption device is absorbed into the absorbing solution in accordance with the p H of the absorbing liquid, nitrite (NO 2 -) becomes an ion or nitrate (N_ ⁇ 3) ions, NO is Almost no absorption.
  • the NO NO 2 or may be converted to N 2 0 5.
  • Ozone can be injected anywhere as long as it is upstream of the gas absorber, but ozone reacts with NH 3 to produce NOx, which itself is also decomposed, so upstream ammonia injection It is desirable to inject at the lowest NH 3 concentration in the method part, that is, between the product recovery unit and the gas absorption unit.
  • sulfur oxides in exhaust gas are removed using ammonia.
  • Ammonia injection device that injects ammonia into exhaust gas containing sulfur oxides
  • reactor that reacts the injected ammonia with sulfur oxides
  • recovery device that recovers ammonia compounds containing generated ammonium sulfate
  • a gas absorbing device for bringing the exhaust gas after recovery into contact with the absorbing solution.
  • the gas absorbing device is characterized in that it has a mechanism for circulating the absorbing solution and a mechanism for oxidizing sulfion ions in the absorbing solution.
  • the gas absorbing device includes a means for adjusting the pH of the absorbing solution by injecting ammonia into the absorbing solution.
  • the means for adjusting the pH includes a supply port for supplying the aqueous solution before the pH adjustment, an outlet for discharging the aqueous solution after the pH adjustment, and ammonia in the aqueous solution held inside.
  • a PH adjustment tank having an ammonia diffusion means for diffusing gas, a pH measurement device for measuring the pH of the aqueous solution held in the pH adjustment tank, and a signal from the pH measurement device.
  • an ammonia gas supply line having an adjustment valve for supplying ammonia gas to the ammonia gas diffusing means.
  • the ammonia injection means comprises an air diffuser cylinder made of a porous material for diffusing ammonia gas into the absorbent.
  • a gas cooling device for bringing exhaust gas containing sulfur oxides into contact with cooling water before injecting ammonia, a means for circulating and using the cooling water provided in the gas cooling device, and the cooling device
  • a line for extracting a part of the water and a line for extracting a part of the cooling water are connected to a line for introducing makeup water of the gas absorbing device.
  • sulfur oxides are added before injecting ammonia.
  • a heat exchanger in which the heat exchange surface of the exhaust gas containing heat is cooled below the water saturation temperature of the exhaust gas, and a line for extracting condensed water generated at the gas contact surface of the heat exchanger.
  • a line for extracting the condensed water Is connected to the line for introducing makeup water of the gas absorbing device.
  • the gas absorbing device has a line for extracting the absorbing solution, and the extracted solution spraying device for spraying and injecting the extracted absorbing solution is provided before, at the same position as, or after the ammonia injecting device. Deployed.
  • the reactor has a window for irradiating an internal exhaust gas with an electron beam.
  • FIG. 1 is a flowchart showing an example of the exhaust gas treatment apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a flow diagram showing another example of the exhaust gas treatment apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a flow diagram showing another example of the exhaust gas treatment apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a flow configuration diagram showing another example of the exhaust gas treatment apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a flow configuration diagram showing an example for carrying out the exhaust gas treatment method according to the second embodiment of the present invention.
  • FIG. 6 is a flow configuration diagram showing another example for performing the exhaust gas treatment method according to the second embodiment of the present invention.
  • FIG. 7 is a partial configuration diagram showing another example for carrying out the exhaust gas treatment method according to the second embodiment of the present invention.
  • Fig. 8 is a partial flow diagram showing another example for oxidizing the absorption liquid in the gas absorption tower. It is a block diagram.
  • FIG. 9 is a flowchart showing an example of the exhaust gas treatment apparatus according to the third embodiment of the present invention.
  • FIG. 10 is a flowchart showing another example of the exhaust gas treatment apparatus according to the third embodiment of the present invention.
  • FIG. 11 is a flowchart showing another example of the exhaust gas treatment apparatus according to the third embodiment of the present invention.
  • FIG. 12 is a flowchart showing an example of the exhaust gas treatment apparatus according to the fourth embodiment of the present invention.
  • FIG. 13 is a flow configuration diagram showing an example of an exhaust gas absorption device using the pH adjusting device according to the fifth embodiment of the present invention.
  • FIG. 14 is a front view showing another example of the exhaust gas absorbing apparatus using the pH adjusting apparatus according to the fifth embodiment of the present invention.
  • NH 3 or NH 3 and water are injected into an exhaust gas containing S Ox, and S Ox is reacted with NH 3 to produce a powder of an ammonium compound containing ammonium sulfate.
  • the exhaust gas SO - and Z or S 0 3 2 - and / or NH 4 + is contacted with the absorption liquid that dissolves, the free Murrell remaining in exhaust gas S Ox and / or NH 3
  • the residual S Ox which have not been converted into a powder with NH 3 injected into the flue gas by reaction of ammonia compounds, exhaust gas is the S 0 4 2 - and / Or, by contact with an absorbing solution that dissolves S 0 3 2 — and / or NH 4 + , it is absorbed and removed by the absorbing solution.
  • the desulfurization rate in the portion of the ammonia injection method upstream of the contact with the absorbing liquid is large so as to generate a large amount of compressed air without using an electron beam.
  • the energy can be reduced to about 90% or less, which can be achieved by spraying ammonia water with droplets having a Sauter average particle size that can be achieved without requiring the same energy.
  • the NH 3 leak from the ammonia injection method upstream of the contact with the absorbing solution is about 10 ppm or more.
  • the Sauter average particle size of the sprayed ammonia water droplets can be further increased.
  • a method for removing SO x from the exhaust gas is S 0 4 2 exhaust gas containing SO x - and / or S 0 3 2 - in contact with the absorption liquid that dissolves and / or NH 4 +
  • exhaust gas There is a method of removing SO x contained in the water (hereinafter, wet-ammonia method).
  • wet-ammonia method in order to increase the desulfurization rate, a large amount of absorbent is circulated and sprayed to increase the contact efficiency between the exhaust gas and the absorbent, or the residence time of the exhaust gas in the contact area with the absorbent is increased. Measures such as increasing the pH of the absorbing solution by lengthening or increasing the NH 4 + concentration in the absorbing solution are taken.
  • the desulfurization rate by contact with the absorbent is 60% by the following formula (5). Therefore, the above problem does not occur.
  • the exhaust gas contains residual S Ox and NH 3 that were not converted to ammonia compound powder during the ammonia injection method, and residual powder that could not be recovered by the powder recovery device. Some of this is absorbed or captured in the absorbing solution.
  • the absorbing liquid comes into contact with the exhaust gas after leaving the ammonia injection part, the absorbing liquid partially scatters in the exhaust gas and a part of the water in the absorbing liquid evaporates.
  • S 0 in the absorbing liquid - and / or S 0 3 2 - and / or NH 4 + concentration is gradually increased. Therefore, in order to maintain the composition and concentration of the absorbing solution within a certain range, a part of the absorbing solution is withdrawn and water is replenished according to the amount withdrawn and the amount evaporated or scattered upon contact with the exhaust gas. It is desirable to do.
  • the desulfurization rate due to the contact with the absorbent may be relatively low as described above, and the PH of the absorbent may be kept lower than when the wet ammonia method is used alone. Therefore, the leakage of NH 3 after contact with the absorbing solution can be suppressed to a low level.
  • the PH of the absorbing solution in the present invention is the desulfurization rate to be achieved by contact with the absorbing solution. (60% in the above example), it is desirable to adjust the range from 2 to 8.
  • the pH of the absorbing solution changes depending on the amount of SO x , NH 3 and powder absorbed by the absorbing solution, the amount of water taken out and the amount of makeup water.
  • the pH of the absorbing solution can be adjusted by adjusting the injection amount of NH 3 in the upstream ammonia injection method.
  • the pH of the absorbing solution can be adjusted to a range of 2 or more and 8 or less by adjusting the amount of extracted water.
  • the pH of the absorbing solution can also be changed by injecting sulfuric acid and / or ammonia into the absorbing solution. Therefore, the pH of the absorbing solution can also be adjusted to a range of 2 to 8 by adjusting the injection amount of sulfuric acid and the injection amount of ammonia or ammonia. However, in order to use additional chemicals other than NH 3 used in the ammonia injection method, the amount of NH 3 injected into the exhaust gas must be 8 or less without the addition of acidic substances to the absorption liquid PH. After adjusting the pH to preferably 7 or less, it is desirable to adjust the pH of the absorbent to 2 to 8 by replenishing the absorbent with NH 3 .
  • extraction liquid into, SO - and / or S 0 3 2 - and because it contains Z or NH, further sulfuric acid and / or NH if necessary Inject 3 and, if necessary, oxidize S 0 3 2 — to S 0 and evaporate the water, containing ammonium sulfate, as well as the powder recovered in the upstream ammonia injection method A powder or solid of the ammonia compound is obtained, which can be used as fertilizer.
  • equipment for evaporating water and energy such as heat and power are required.
  • the ammonia gas injection method part of the upstream-side extraction liquid prior to injection of NH 3, or simultaneously with the injection of NH 3, or after injection of NH 3, or NH 3 Spray injection as is or after dilution with water or between NH 3 injection and powder recovery.
  • a discharged liquid spray device is provided separately from the ammonia injection device that injects NH 3 into the exhaust gas, and the discharged liquid spray device is placed in front of or at the same position as the ammonia injection device. Or can be deployed behind.
  • the desulfurization reaction represented by the above formula (1) Is significantly promoted at the gas-liquid interface between the droplets of the ammonia solution and the gas.
  • the exhaust gas is cooled to a temperature not lower than the water saturation temperature and not higher than 80 ° C, and the ammonia solution has a Sauter average particle size of not less than 0.5 ⁇ / m.
  • the desulfurization rate at the ammonia injection portion can be improved by atomizing and spraying droplets of 0 m or less.
  • the discharged liquid or the discharged liquid is mixed as a method of mixing NH 3 and the discharged liquid.
  • a method is possible in which a mixture of the discharged liquid and water is mixed with NH 3 in advance to generate an ammonia solution, and the ammonia solution is sprayed and injected. At this time, if the ammonia solution and the compressed air are mixed and sprayed using a two-fluid nozzle, the ammonia solution can be atomized and sprayed.
  • the extracted liquid or the mixed liquid of the extracted liquid and water is further mixed with NH 3 gas or a mixed gas of NH 3 gas and air using a two-fluid nozzle. It is also possible to use a gas-liquid mixed spray method.
  • FIG. 1 is a flow configuration diagram showing an example of the exhaust gas treatment apparatus according to the first embodiment of the present invention.
  • Fig. 1 is a flow configuration diagram showing an example of the exhaust gas treatment apparatus according to the first embodiment of the present invention.
  • 1, 1 is a boiler, 2 is a heat exchanger, 3 is a gas cooling tower, 4 is a reactor, 5 is a two-fluid nozzle, 6 is an electrostatic precipitator, 7 is a gas absorption tower, 8 is an absorbent storage tank, 9 is a cooling water circulation pump, 10 is an exhaust gas booster fan, 11 is an ammonia storage tank, 12 is a compressor, 13 is a spray water storage tank, 14 is a line mixer, 15 is a mixed gas heater, 16 and Reference numeral 19 denotes an ammonia gas diffuser, reference numeral 17 denotes a filtration device, reference numeral 18 denotes a spray pump, and reference numeral 20 denotes an absorbent circulation pump.
  • Exhaust gas containing S ⁇ ⁇ passes through the heat exchanger 2 from the boiler 1, and the circulating cooling water is circulated by the pump 9 and enters the gas cooling tower 3 where industrial water 21 is replenished as necessary, and the exhaust gas is cooled. And introduced into the reactor 4.
  • a mixed gas of NH 3 gas and compressed air and an ammonia solution are sprayed from the two-fluid nozzle 5, and the SO x and NH 3 in the exhaust gas react, and are sent to the next electrostatic precipitator 6.
  • the introduction of NH 3 gas from the ammonia gas diffuser 16 is for adjusting the pH of the spray water, and most NH 3 is compressed from the ammonia storage tank 11 via the line mixer 14. It is supplied to the two-fluid nozzle 5 together with air.
  • the electrostatic precipitator 6 the fine powder such as ammonium sulfate obtained by the reaction is removed, and the fine powder is introduced into the gas absorption tower 7 from the exhaust gas pressure booster fan 10, and the remaining SO x and the like are sprayed with the absorbing solution containing NH 3. Acidic substances are removed and released into the atmosphere.
  • the absorption liquid containing NH 3 is obtained by diffusing NH 3 gas into the industrial water 21 introduced into the absorption liquid storage tank 8 from the ammonia diffuser pipe 19, and using this absorption liquid as the absorption liquid circulation pump 20. Thus, spraying is performed while circulating through the gas absorption tower 7. As the absorption column has been described in the absorption liquid containing NH 3, and if the residual NH 3 from the reactor often can also be introduced acids such as sulfuric acid.
  • FIG. 2 is a front view showing another example of the exhaust gas treatment apparatus according to the first embodiment of the present invention.
  • FIG. 2 the same reference numerals as those in FIG. 1 have the same meaning, 23 is an ammonia vaporizer, and 24 is an aftercooler.
  • the exhaust gas containing SO x generated from the boiler 1 is cooled by the heat exchanger 2 and then led to the gas cooling tower 3 where it contacts the industrial water 21 sprayed at the top and is cooled. It is led to.
  • the liquefied ammonia supplied from the ammonia storage tank 11 becomes NH 3 gas by indirectly exchanging heat with steam in the ammonia vaporizer 23, and the NH 3 gas is supplied to the line mixer 14. .
  • the compressed air generated in the compressor 12 is cooled by indirectly exchanging heat with cooling water in an air cooler 124, and then supplied to a line mixer 14, where the NH 3 gas is supplied. Mixed with.
  • the ammonia mixed air is supplied to a two-fluid nozzle 5 provided at the inlet of the reactor 4, and the absorption liquid supplied from the absorption liquid storage tank 8 via the spray water storage tank 13 is supplied to the spray water storage tank 13.
  • the mixture is spray-injected into the exhaust gas.
  • SO x in exhaust gas Is converted to powder containing ammonium sulfate as a main component.
  • the powder is collected by an electrostatic precipitator 6, the exhaust gas is introduced into a gas absorption tower 7, and residual acidic substances such as SO x are removed by spraying an absorbing solution containing NH 3, and Released to
  • the absorbent containing NH 3 is obtained by diffusing NH 3 gas supplied from the ammonia diffuser pipe 19 through the ammonia vaporizer 23 into the industrial water 21 introduced in the absorbent storage tank 8, The absorption liquid is sprayed by the absorption circulation pump 20 while circulating through the gas absorption tower 7.
  • FIG. 3 is a flow configuration diagram showing another example of the exhaust gas of the first embodiment of the present invention.
  • the absorption liquid from the absorption liquid storage tank 8 is a spray water storage tank 13.
  • the mixed solution with the industrial water 21 is supplied to the two-fluid nozzle 5
  • the absorbent from the absorbent storage tank 8 is coagulated and sedimented, the sand filter tank 26, the cation It is supplied to the spray water storage tank 13 via the exchange resin tank 28, mixed with the industrial water 21 and then supplied to the two-fluid nozzle 5.
  • the extracted water extracted from the absorption liquid storage tank 8 is then led to the coagulation / sedimentation tank 26, where the polymer flocculant is injected, and the suspended solids of the extracted water coagulate and settle.
  • the suspended solids are discharged out of the system as a slurry.
  • the supernatant water of the extracted water is led to a sand filtration tank 27 to remove residual suspended solids, and then to a cation exchange resin tank 28.
  • the withdrawal water supplied to the two-fluid nozzle 5 The withdrawal water supplied to the two-fluid nozzle 5
  • the drainage water treatment device up to the exchange resin tank 28 is treated to a pH of 5 to 9 and a suspended solid concentration of 10 mg / L (liter) or less. Then, it is sprayed and injected together with the mixed gas of NH 3 gas and compressed air mixed by the line mixer 14.
  • FIG. 4 is a front view showing another example of the exhaust gas treatment apparatus according to the first embodiment of the present invention.
  • Exhaust gas containing S ⁇ generated from boiler 1 is cooled in heat exchanger 2, then it is brought into contact with industrial water 21 where the exhaust gas is sprayed at the top, and cooled in gas cooling tower 3, which cools it. Lead to.
  • NH 3 supplied from the ammonia storage tank 11 via the ammonia diffusion pipe 16 and the absorption liquid supplied from the absorption liquid storage tank 8 are mixed in the industrial water 21 and the spray water storage tank 13 to form NH 3.
  • Aqueous solution is prepared by dissolving the ammonia solution, and the ammonia-dissolved aqueous solution and the compressed air from the compressor 12 are gas-liquid mixed and sprayed by the two-fluid nozzle 5 installed at the reactor inlet, so that the atomized ammonia water is Drops are injected into the exhaust gas. All of the NH 3 sprayed into the reactor is once dissolved in the sprayed water storage tank 13, in the mixture of the absorption liquid supplied from the absorption liquid storage tank 8 and the industrial water 21. Further, the resulting powder by-product mainly composed of ammonium sulfate is collected by the dry electric precipitator 6.
  • the collected exhaust gas is introduced into the gas absorption tower 7 and treated in the same manner as in FIG.
  • the exhaust gas 1,500 Nm 3 / h containing 850 ppm of SOx generated from the boiler 1 is cooled to 150 ° C in the heat exchanger 2 and then guided to the gas cooling tower 3.
  • circulating cooling water is sprayed by the cooling water circulation pump 9, the exhaust gas temperature is cooled to 60 ° C, and 10 ppm of S 0 in the exhaust gas is absorbed in the cooling water.
  • the circulating cooling water in the gas cooling tower 3 was extracted into the spray water storage tank 13 at a rate of 3 L (liter) / h, and was evaporated or scattered when contacting the amount of the extracted water and the exhaust gas. Industrial water 21 is replenished according to the amount. As a result, the level of the circulating cooling water at the bottom of the gas cooling tower 3 is kept constant, and the pH of the circulating cooling water is kept at 2. The exhaust gas that has left the gas cooling tower 3 is led to the reactor 4.
  • 1.4 kgZh of NH 3 gas supplied from the ammonia storage tank 11 was supplied by the compressor 12 and cooled by the air cooler 8 Nm 3 / h and the line mixer 14 Mixed. After the temperature of the ammonia mixed air is adjusted by the mixed gas heater 15, the mixed air is supplied to the two-fluid nozzle 5, and the two-fluid mixed and sprayed together with the spray water 8 L / h supplied from the spray pump 18. As part of the NH3 in the mixed gas dissolves in the spray water, the spray water is sprayed into the gas as an ammonia solution.
  • the Sauter mean particle size of the spray droplets is 10 zm, the water in the spray water completely evaporates, and the dissolved components in the spray water evaporate to dryness to become a by-product powder mainly composed of ammonium sulfate. .
  • the electrostatic precipitator 6 99% of the by-product powder in the exhaust gas is collected, and 5.8 kg / h of by-product powder is discharged from the bottom of the electric precipitator 6.
  • the by-product dust concentration in the exhaust gas is 44 mg / Nm 3 , which is boosted by the exhaust gas pressure-raising fan 10 and then led to the gas absorption tower 7.
  • the absorption liquid is sprayed by the absorption liquid circulation pump 20, so that 75% of SO in the exhaust gas led to the gas absorption tower 7 is absorbed in the absorption liquid, and NH 3
  • the dust and by-product dust are also absorbed and collected in the absorbing solution.
  • the absorption liquid in the gas absorption tower 7 is primarily stored in the absorption liquid storage tank 8, and is withdrawn at a rate of 5 L / h into the spray water storage tank 13 where it is withdrawn and evaporated upon contact with the exhaust gas.
  • the industrial water 21 is supplied to the absorbing liquid storage tank 8 according to the amount of the scattered water.
  • the absorption liquid storage tank 8 is adjusted so that the pH of the absorption liquid becomes 3, and NH 3 is supplied from the ammonia diffusion tube 19. In this case, the amount of air diffused by ammonia is 0.1 kg / h.
  • the sprayed water storage tank 13 is supplied with 3 L / h of the effluent from the gas cooling tower 3 and 5 L / h of the effluent from the gas absorption tower 7, where the mist is supplied.
  • the pH of the water is adjusted to 4 and NH 3 gas is supplied from the ammonia diffuser 16. In that case, the amount of diffused NH 3 gas is 0.03 kg / h.
  • the spray water 8 L / h that came out of the spray water storage tank 13 was removed from the insoluble matter as sludge by the filtration device 17, and then the two-fluid nozzle was sprayed by the spray pump 18. 5 and mixed and sprayed with the ammonia mixed air as described above.
  • the first aspect of the present invention by disposing a gas absorption device at a later stage, it is possible to obtain a high desulfurization rate while suppressing the leakage of NH 3 while keeping the energy cost low. .
  • NH 3 or NH 3 and water are injected into an exhaust gas containing S Ox and NOx, and then irradiated with an electron beam to react S O. and NO-x with NH 3. because Shi not produce a powder of ammonium compounds containing ammonium sulfate and ammonium nitrate Te, after recovering the powder, the exhaust gas s 0 - and Bruno or s 0 3 2 - and z or N 0 and / or N 0 3 —And / or contact with an absorbing solution that dissolves NH and absorb and remove the remaining SOx and / or NOx and / or NHa contained in the exhaust gas to desulfurize and / or remove the exhaust gas.
  • This is a treatment method for denitration.
  • an electric precipitator utilizing corona discharge can be used as the powder recovery device.
  • FIG. 5 is a flow configuration diagram showing an example for implementing the exhaust gas treatment method according to the second embodiment of the present invention.
  • an exhaust gas 1,500 Nm 3 / h containing 20000 ppm of SO x and 300 ppm of N 0 generated from the boiler 1 was cooled to 150 ° C. in the heat exchanger 2. Is led to the gas cooling tower 3. In the gas cooling tower 3, the exhaust gas is cooled down to 60 ° C by spraying the circulating cooling water with the cooling water circulation pump 9, and 50 ppm of S Ox in the exhaust gas is contained in the cooling water. Absorbed.
  • the circulating cooling water in the gas cooling tower 3 is withdrawn at a rate of 13.5 L / h into the spray water storage tank 13 and depends on the amount extracted and the amount evaporated or scattered upon contact with the exhaust gas. Industrial water 21 is supplied. As a result, the level of the circulating cooling water at the bottom of the gas cooling tower 3 is kept constant, and the pH of the circulating cooling water is kept at about 1.
  • the mixed air is supplied to the two-fluid nozzle 5, and together with the spray water 26.5 L / h supplied from the spray pump 18, The fluid mixture is sprayed.
  • the spray water is sprayed into the gas as an ammonia solution.
  • the Sauter mean particle size of the spray droplets is 15 m, and the water in the spray water completely evaporates and dissolves in the spray water.
  • the components are evaporated to dryness to form a powder mainly composed of ammonium sulfate and ammonium nitrate.
  • the exhaust gas is irradiated with an electron beam of 2 kGy from the electron accelerator 30, and the SO: ⁇ 85% of NO and 15% of NO react with NH 3 to be converted into a product powder mainly composed of ammonium sulfate and ammonium nitrate.
  • the exhaust gas exiting reactor 4 was 10.9 g / Nm3, a product dust that combines the product produced by the reaction and the product produced by evaporation of the dissolved components in the spray water to dryness. 29 0 ppm of S Ox, NO and 1 5 5 p pm, NO is N0 2 to 1 00 p pm generated by oxidation, further NH 3 is 1 50 p pm including exhaust gas is led to the electrostatic precipitator 6 .
  • the overall process achieves a relatively high desulfurization rate of 90% with a small electron beam irradiation of 2 kGy and a very low leakage ammonia concentration of 5 ppm.
  • the denitration rate is only about 25% for the whole process.
  • the absorption liquid in the gas absorption tower 7 is primarily stored in the absorption liquid storage tank 8, from which 1 3.0 L / h was withdrawn into the spray water storage tank 13, and the industrial water 21 was absorbed into the absorption liquid storage tank according to the amount extracted and the amount evaporated or scattered upon contact with the exhaust gas described above. Resupplied to 8. At that time, the total weight concentration of the ions derived from S Ox, N Ox and NH 3 absorbed in the absorbing solution is about 6%. Most of the ions originating from S Ox absorbed in the absorption liquid are S 0.
  • the effluent storage tank 13 is supplied with the effluent 13 5 L / h from the gas cooling tower 3 and the effluent 13.0 L / h from the gas absorption tower 7 as described above.
  • the pH of the spray water is adjusted to be 3 or more and 5 or less, and NH 3 gas is supplied from the ammonia diffuser 16.
  • air is supplied to the aeration diffuser 39 by the aeration blower 42 in order to oxidize S 0 into S 0.
  • FIG. 6 is a flow configuration diagram showing another example for carrying out the exhaust gas treatment method according to the second embodiment of the present invention.
  • the process from the boiler to the reactor is the same as in Fig. 5.
  • the exhaust gas exiting the reactor 4 is guided to an electrostatic precipitator 6, where 99.8% of the product dust in the exhaust gas is collected.
  • product powder 34 of 16.O kg / h is discharged.
  • the product dust concentration in the exhaust gas is 22 mg / Nm 3, and after being boosted by the exhaust gas pressure fan 10, it is led to the gas absorption tower 7, where it is absorbed by the absorbent circulation pump 20.
  • Approximately 80% of S 0 and approximately 70% of NO in the exhaust gas guided to the gas absorption tower 7 are sprayed and absorbed by the absorbent, and NH 3 and product dust are also absorbed by the absorbent. 'Be captured.
  • the overall process achieves a very high desulfurization rate of 97% with a small amount of electron beam irradiation of 0.2 kGy and a very low leakage ammonia concentration of 5 ppm.
  • the denitration rate will increase to about 40%.
  • the absorption liquid in the gas absorption tower 7 is primarily stored in the absorption liquid storage tank 8, and is extracted therefrom at a rate of 13.0 L / h to the spray water storage tank 13, and the amount of the extracted liquid and the exhaust gas
  • industrial water 21 is supplied to the absorbent storage tank 8 according to the amount evaporated or scattered.
  • the air supplied to the aeration diffusing pipe 39 by the aeration Purowa 42 is S 0 3 in the absorbing solution is oxidized to S 0, also you replenish the NH 3 by the ammonia diffusion pipe 1 6 Thereby, pH is adjusted to 3 or more and 5 or less.
  • the total weight concentration of ions originating from S Ox, N ⁇ x and NH 3 absorbed in the absorbing solution is about 14%.
  • the sprayed water storage tank 13 is supplied with 13.5 L / h of effluent from the gas cooling tower 3 and 13.0 LZh of effluent from the gas absorption tower 7.
  • Ammonia diffused by adjusting the pH of water to be 3 or more and 5 or less NH 3 gas is supplied from a pipe 16.
  • the ammonium compound dissolved in the spray water evaporates to dryness to form a product powder, and is collected by the electrostatic precipitator 6 together with the product powder generated by the reaction.
  • FIG. 7 is a partial flow configuration diagram showing still another example for carrying out the exhaust gas treatment method according to the second embodiment of the present invention.
  • the cooling air 59 after cooling the accelerator-side window foil 46 and the reactor-side window foil 47 (hereinafter referred to as “window foil cooled air”) is supplied to the exhaust gas from the exhaust gas booster fan 10 inlet. It is the same as FIG. 6 except that it is mixed, and FIG. 7 omits parts common to FIG. Therefore, the process from the boiler to the reactor is the same as in Figs. 5 and 6, except for the properties of the spray water sprayed by the two-fluid nozzle 5 and the product powder contained in the exhaust gas leaving the reactor 4.
  • S LZh contains 2.9 kg / h of the ammonia compound dissolved in the exhaust gas guided to the electrostatic precipitator 6. is, S Ox29 0 ppm, N01 5 5 p pm, N 0 2 1 0 0 p pm, NH 3 1 50 p sub Namashina powder 1 2. lg / Nm 3 including with pm.
  • the cooling air before cooling the accelerator-side window foil 46 and the reactor-side window foil 47 is represented by reference numeral 58, and the window foil after cooling the accelerator-side window foil 46 and the reactor-side window foil 47.
  • the air after cooling is denoted by reference numeral 59.
  • the exhaust gas that has exited the reactor 4 is led to the electrostatic precipitator 6, where 99.8% of the product dust in the exhaust gas is collected by the electric precipitator 6, and the electric precipitator 6 From the bottom, 16.3 kg / h of reaction product powder 34 is discharged.
  • product Dust concentration in the exhaust gas became 2 2mg / Nm 3, 2 00 Nm 3 / h of including the window foil cooling after air 59 generated ozone by irradiating an electron beam from the electron accelerating tube 30 Mixed with.
  • part of the NO in the flue gas is oxidized into N0 2, NO and N0 2 concentrations, respectively 500 ppm, 205 ppm.
  • the exhaust gas mixed with the air 59 is boosted in pressure by the exhaust gas pressure fan 10 and then guided to the gas absorption tower 7.
  • the absorption liquid is sprayed by the absorption liquid circulation pump 2 0, about 80% of the S Ox in led into the absorption tower 7 exhaust gas, about the N 0 2 7 0% is absorbed by the absorbing solution, and NH 3 and product dust are also absorbed by the absorbing solution.
  • exhaust gas 33 60 ppm of S Ox, 1 ⁇ ⁇ ., 1 1 0 111 (Uchi ⁇ 0 5 0 p pm, N0 2 is 60 p pm), the NH 3 5 p pm Then, the product dust is contained at 2 Omg / Nm 3 , and the treated exhaust gas 33 is released into the atmosphere from the top of the gas absorption tower 7.
  • the absorption liquid in the gas absorption tower 7 is primarily stored in the absorption liquid storage tank 8 according to Fig. 6, and is withdrawn at a rate of 13.0 L / h to the spray water storage tank 13 and the withdrawal amount
  • the industrial water 21 is supplied to the absorbent storage tank 8 in accordance with the amount evaporated or scattered at the time of contact with the exhaust gas.
  • NH is oxidized to S 0 4
  • the ammonia diffusion pipe 1 6 - In the absorbent solution storage tank 8 the air supplied to the pipe 3 9 diffusing for aerated with aeration pro Wa 42, S 0 3 2 in the absorbing solution
  • the pH is adjusted to 3 or more and 5 or less.
  • the total weight concentration of ions caused by S Ox, NO x, and NH 3 absorbed in the absorbing solution is about 16%.
  • the sprayed water storage tank 13 is supplied with 13.5 L / h of effluent from the gas cooling tower 3 and 13.0 L / h of effluent from the gas absorption tower 7.
  • the ammonia water is adjusted so that the pH of the spray water is 3 or more and 5 or less.
  • NH 3 gas is supplied from 16.
  • the ammonium compound dissolved in the spray water is evaporated to dryness to form a product powder, which is collected by the electrostatic precipitator 6 together with the product powder generated by the reaction.
  • Figure 8 is a partial flow diagram showing another example for oxidizing S 0 3 2 _ absorption liquid is recycled in a gas absorption column to S 0 no.
  • FIG. 8 a part of the absorbing solution is withdrawn to the aeration tank 44 and the air supplied to the aeration diffuser 39 by the aeration blower 42 oxidizes S 0 to S 0 —
  • the operation is the same as in FIG. 6 except that the absorbent is returned to the absorbent storage tank 8 by the absorbent return pump 45.
  • the exhaust gas prior to injecting NH 3 into exhaust gas containing SO x, the exhaust gas is brought into contact with cooling water, while ammonia generated by a reaction between SO x and NH 3 is used. After recovering the compound, the exhaust gas is brought into contact with an absorbing solution to remove residual NH 3 contained in the exhaust gas, and a part of the cooling water as a makeup water for the absorbing solution. Extract and use (
  • the effect of lowering the pH is greater when dissolved as SO— than when dissolved as SO 3 in the absorbing solution. Therefore, the NH 3 absorption efficiency
  • the cooling water also has a great effect of suppressing the decrease in the water content. Therefore, by oxidizing S ⁇ in the cooling water to S 0 by means such as aeration, NH absorption efficiency of the absorbing solution by using the cooling water as makeup water. Is significantly suppressed.
  • the reaction between S ⁇ and the injected NH 3 is higher when the temperature of the exhaust gas is lower. Therefore, it is desirable to keep the temperature of the exhaust gas as low as possible in the contact between the exhaust gas and the cooling water.
  • it is desirable to increase the flow rate of the cooling water in contact with the exhaust gas which is realized by circulating the cooling water, in which case a part of the circulating cooling water is extracted and used as makeup water for the absorbent. be able to. In this way, by extracting a part of the circulating cooling water, it is possible to prevent the SS concentration in the cooling water from rising endlessly, thereby preventing the circulating cooling water from being used.
  • the concentration of SOx in the flue gas is usually about 100 ppm to several thousand ppm.
  • the amount of SO x is reduced to about several tens of ppm.
  • About m to several hundreds of ppm of NH 3 remain, which is reduced to about several ppm to several tens of ppm by contact with the absorbing solution.
  • S 0 — equivalent to SO x 1 pm can react with NH 3 equivalent to about 2 ppm, so under many gas conditions, S 0 — dissolved in cooling water and / Or SO — is not enough to react with NH 3 to be absorbed in the absorbent, even if S 0 — in the cooling water is S-oxidized.
  • sulfuric acid can be replenished in addition to make-up water from which a part of the cooling water has been extracted.
  • the amount of sulfuric acid used can be suppressed as compared with the conventional technology.
  • the leaked ammonia remaining in the exhaust gas after the reaction product is recovered is included in the makeup water from which a part of the cooling water is extracted. It can be suppressed to a concentration that can be removed by S 0 3 2 — and / or S 0 —.
  • the leakage ammonia concentration before contact with the absorbing solution is suppressed, and the remaining S Ox concentration is increased to increase the SO x is dissolved partially in the absorption liquid, resulting S 0 3 2 - and / or by S_ ⁇ one that is contributing to suppressing the rise of the p H, it is also possible to further suppression of the amount of sulfuric acid.
  • FIG. 9 is a flowchart showing an example of the exhaust gas treatment apparatus according to the third embodiment of the present invention.
  • the exhaust gas 1500 Nm 3 / h containing 1500 ppm of S Ox generated from the boiler 1 is cooled to 150 ° C in the heat exchanger 2, and To the cooling tower 3.
  • circulating cooling water is sprayed by the cooling water circulation pump 9, the exhaust gas temperature is cooled to 60 ° C, and 50 ppm of SO in the exhaust gas is absorbed in the cooling water.
  • the exhaust gas after leaving the gas cooling tower 3 is led to the reactor 4.
  • the circulating cooling water temporarily stays in the bottom storage part of the gas cooling tower 3, but the air supplied from the aeration blower 41 is supplied to the cooling water by the aeration diffuser 52, and the cooling water is S 0 3 2 — is oxidized to S 0 _.
  • the circulating cooling water of the gas cooling tower is withdrawn at a rate of 60 L / h into the absorbent storage tank 8, and depending on the amount withdrawn and the amount evaporated or scattered upon contact with the exhaust gas, industrial water is used. 2 1 is replenished. As a result, the level of the circulating cooling water in the bottom storage part of the gas cooling tower 3 is kept constant, and the pH of the circulating water is kept around one.
  • the SO x concentration in the exhaust gas is reduced to 160 ppm, and in the exhaust gas, by-products mainly composed of the produced ammonium sulfate Powder 10.3 kg / h and residual NH 3 210 ppm are included.
  • This exhaust gas is led to the electric precipitator 6, where 99.7% of the by-products 34 in the exhaust gas are collected and boosted by the exhaust gas booster fan 10, and then guided to the gas absorption tower 7. .
  • the absorption liquid stored in the absorption liquid storage tank 8 is sprayed from the top by the absorption liquid circulation pump 20.
  • Absorbent liquid storage tank 8 contains the gas Along with the supply of make-up water 48 from which part of the cooling water has been extracted from the cooling tower 3, sulfuric acid 54 is also supplied so that the pH of the absorbing solution becomes about 2, while the water level of the absorbing solution storage tank 8 is maintained. A part of the liquid is withdrawn as a withdrawal liquid 49 from the branch line of the absorbent circulating line so that the pressure is constant.
  • FIG. 10 is a flowchart showing another example of the exhaust gas treatment apparatus according to the third embodiment of the present invention.
  • an exhaust gas containing 1,500 ppm of S Ox generated from the boiler 1 and having an exhaust gas of 1,500 Nm 3 / h is cooled to 150 ° C. in the heat exchanger 2 and then guided to the gas cooling tower 3.
  • circulating cooling water is sprayed by a cooling water circulation pump 9, the exhaust gas temperature is cooled to 60 ° C, and 30 ppm of SO in the exhaust gas is absorbed in the cooling water.
  • the exhaust gas after leaving the gas cooling tower 3 is led to the reactor 4.
  • Circulating cooling water temporarily stays in the bottom storage part of the gas cooling tower 3, but the cooling water is extracted to the oxidation tank 53 at a rate of 36 L / h, and the amount of the extracted water and the contact with the exhaust gas Industrial water 21 is replenished in accordance with the amount evaporated or scattered at this time.
  • the level of the circulating cooling water in the bottom storage part of the gas cooling tower 3 is kept constant, and the pH of the circulating water is kept around 1.5.
  • the air supplied from the aeration blower 41 is supplied to the cooling water in the oxidation tank 53 by the aeration diffuser 52, and S 0 3 2 in the cooling water is converted to S 0 4 2 1 Is oxidized.
  • the cooling water is transferred to the absorption tower storage tank 8.
  • the absorption liquid stored in the absorption liquid storage tank 8 is sprayed from the top by the absorption liquid circulation pump 20.
  • the absorption liquid storage tank 8 is supplied with make-up water 48 from which a part of the cooling water from the cooling tower 3 has been extracted, while the extracted liquid 49 is discharged in a fixed amount (40 Lh).
  • make-up water 48 from which a part of the cooling water from the cooling tower 3 has been extracted
  • the extracted liquid 49 is discharged in a fixed amount (40 Lh).
  • SO x in the exhaust gas 33 is reduced to 225 ppm, while NH 3 is also reduced to 10 ppm, and some of the by-product powder contained in the exhaust gas is also reduced.
  • the dust concentration is 2 Omg / h after being captured in the absorbing solution.
  • the pH of the circulating water is about 2.5, and 20 L / h of an extraction liquid 49 containing about 2.0% of an ammonia compound composed mainly of ammonium sulfate is discharged outside the system.
  • FIG. 11 is a front view showing another example of the exhaust gas treatment apparatus according to the third embodiment of the present invention.
  • the exhaust gas 1500 Nm 3 / h containing S 0., generated from boiler 1 at 850 ppm was cooled to 150 ° C in heat exchanger 2, and Guided to cooling tower 3.
  • the gas cooling tower 3 circulating cooling water is sprayed by a cooling water circulation pump 9, the exhaust gas temperature is cooled to 60 ° C, and 15 ppm of SO in the exhaust gas is absorbed in the cooling water.
  • the exhaust gas after leaving the gas cooling tower 3 is led to the reactor 4.
  • Circulating cooling water temporarily stays in the bottom storage part of the gas cooling tower 3, but the cooling water is withdrawn at a rate of 18 L / h into the oxidation tank 53, and the amount withdrawn and the contact with the exhaust gas. At this time, industrial water 21 is replenished according to the amount evaporated or scattered. As a result, the level of the circulating cooling water in the bottom storage section of the gas cooling tower 3 is kept constant, and the pH of the circulating water is kept around 1.5.
  • the cooling water in the oxidation tank 53, the air supplied from the aeration blower 4 1 is supplied by the pipe 52 diffuser for aeration, S 0 3 in the cooling water is oxidized to S 0 4 2 scratch.
  • the cooling water is transferred to the absorption tower storage tank 8.
  • the exhaust gas is irradiated with an electron beam of 5 kGy from the electron accelerator 30.
  • the SO x concentration in the exhaust gas was reduced to 55 ppm, and in the exhaust gas,
  • Vice Namashina powder to the generated ammonium sulfate as a main component 6. include residual NH 3 6 O p pm and 2 kg / h.
  • This exhaust gas is led to the electric dust collector 6, and 99.7% of by-products in the exhaust gas are collected, and after being boosted by the exhaust gas booster fan 10, it is led to the gas absorption tower 7.
  • the absorption liquid stored in the absorption liquid storage tank 8 is sprayed from the top by the absorption liquid circulation pump 20.
  • Makeup water 48 from which a part of the cooling water from the gas cooling tower 3 has been aerated in the oxidation tank 53 is supplied to the absorption liquid storage tank 8 while the water level in the absorption liquid storage tank 8 is kept constant. Then, a part of the liquid is withdrawn as a withdrawal liquid 49 from the branch line of the absorbent circulation line.
  • S in the exhaust gas 33 is reduced to 40 ppm, while NH 3 is also reduced to 1 Oppm, and some of the by-product powder contained in the exhaust gas is also contained in the absorbent.
  • the dust concentration is 20 mg / h.
  • the pH of the circulating water is about 3, and an extraction liquid 49 containing about 3.5% of an ammonia compound mainly composed of ammonium sulfate is discharged out of the system in an amount of 5 LZh.
  • the amount of drainage drained out of the system can be suppressed to a low level, and a chemical agent such as sulfuric acid other than NH 3 is not required or only a small amount is required. It is possible to provide an exhaust gas treatment method and apparatus that can be used to reduce the final leakage ammonia concentration and remove S Ox by injecting NH 3 into exhaust gas containing S Ox.
  • the exhaust gas prior to injecting NH 3 into an exhaust gas containing S Ox, the exhaust gas is brought into contact with a heat exchange surface cooled to a temperature not higher than the moisture saturation temperature of the exhaust gas. After reacting with the ammonia compound by the reaction of NH 3 and NH 3 , the exhaust gas is brought into contact with the absorbing solution to remove the remaining NH 3 contained in the exhaust gas, and as a make-up water for the absorbing solution, Use the condensed water generated on the heat exchange surface.
  • FIG. 12 is a flowchart illustrating an example of an exhaust gas treatment apparatus according to a fourth embodiment of the present invention.
  • the exhaust gas containing SO x generated in the boiler 1 is led to the heat exchanger 2 whose gas contact surface is cooled to a temperature not higher than the water saturation temperature of the exhaust gas, where a part of the water in the exhaust gas is condensed.
  • the generated condensed water is stored in the temporary condensate storage tank 5 5, the said cooling water, air supplied from the aeration blower 4 1 is supplied by aeration diffuser tube 5 2, the condensed water S 0 3 Is oxidized to S 0 _.
  • NH 3 gas supplied from the ammonia gas storage tank 11 is mixed with the compressed air supplied from the compressor 12 by the line mixer 14, It is supplied to the two-fluid nozzle 5 and sprayed with the two-fluid mixture with the industrial water 21. At that time, part of NH 3 in the mixed gas is dissolved in the industrial water, so that the spray water is sprayed into the gas as droplets of the ammonia solution. Thereafter, the exhaust gas exiting the reactor 4 is guided to the electrostatic precipitator 6, where the ammonium compound powder mainly composed of ammonium sulfate generated by the reaction between S Ox and NH 3 in the exhaust gas is collected. Then, the pressure is increased by the exhaust gas pressure increasing fan 10 and then guided to the gas absorption tower 7.
  • the absorption liquid stored in the absorption liquid storage tank 8 is sprayed from the top by the absorption liquid circulation pump 20.
  • the condensed water is supplied from the condensed water storage tank 55 to the absorption liquid storage tank 8, while the extracted liquid 49 is discharged in a constant amount (40 L / h).
  • the level of the absorbent storage tank 8 is kept constant by replenishing the industrial water 21 with an amount corresponding to the amount obtained by subtracting the condensed water from the amount extracted and the amount evaporated in the absorption tower. Further, sulfuric acid 54 is replenished so that the pH of the absorbing solution becomes about 2.
  • a fifth aspect of the present invention has a supply port for supplying an aqueous solution before pH adjustment, and an outlet for discharging the aqueous solution after pH adjustment, and further includes NH 3 gas in the aqueous solution held therein.
  • a pH adjusting tank having an ammonia diffusing means for diffusing, a pH measuring device for measuring the pH of the aqueous solution held in the pH adjusting tank, and supplying NH 3 gas to the ammonia diffusing means.
  • the present invention is a pH adjuster using NH 3 gas, comprising an ammonia gas supply line having an adjustment valve whose opening is controlled based on a signal from the pH measuring device.
  • the method of injecting the alkaline substance is as follows. It was customary to dissolve in water to form an aqueous alkaline solution, and to inject the alkaline aqueous solution into an aqueous solution whose pH should be adjusted (hereinafter referred to as a pH adjustment target liquid).
  • a pH adjustment target liquid a pH adjustment target liquid
  • the alkaline substance is NH 3
  • aqueous ammonia water
  • S Ox-containing gas such as boiler combustion gas is absorbed by bringing it into contact with an absorbing solution containing NH and adjusted to an appropriate pH range. It is used to adjust the pH of the absorbent in the wet ammonia desulfurization unit to be removed.
  • NH 3 is pure liquefied ⁇ Nmonia (hereinafter, the liquid weak) is manufactured as, NH 3 gas vaporized. Solution weaker or it places the NH 3 is used It is usually carried as (compressed gas). Therefore, in the above-described pH adjustment using low-temperature water, in addition to the ammonia receiving and storing facility for receiving and storing NH 3 , a low-temperature manufacturing facility for dissolving NH 3 in water to produce low-temperature water is required separately. In particular, facilities with combustion equipment such as boilers, in which a wet ammonia desulfurization unit that uses pH adjustment with low-temperature water is installed, often cannot provide sufficient sites for the desulfurization unit.
  • the pH adjustment target liquid is often subjected to a treatment such as filtration after the pH adjustment.
  • a treatment such as filtration after the pH adjustment.
  • the amount of liquid increases during the pH adjustment process because water accompanies the alkaline substance NH 3 , and the flow capacity of the device that performs the processing after the pH adjustment is reduced. The problem was that it had to be bigger.
  • the ammonia gas storage tank and the ammonia diffuser are connected to the ammonia gas.
  • the pH of the liquid to be adjusted can be adjusted without complicated equipment such as the prior art water supply equipment o
  • an ammonia vaporizer that is significantly simpler than the ammonia water production facility should be provided.
  • the ammonia vaporizer or the downstream side of the ammonia vaporizer By connecting the provided ammonia gas accumulator and the ammonia gas diffusing means with the ammonia gas supply line, the pH of the pH adjustment target liquid can be easily adjusted.
  • the present invention only the NH 3 is injected into the pH adjustment target liquid, and water is not entrained. Therefore, the liquid volume does not increase in the pH adjustment process, and the pH after the pH adjustment process is not increased. In the treatment such as filtration, it is not necessary to increase the liquid passing capacity of the treatment device.
  • NH 3 gas can be efficiently adjusted by using an air diffuser made of a porous material having many fine pores as ammonia diffusing means. It can be dissolved in liquid.
  • a porous cylinder can be made of ceramics, and in particular, can be made of alumina porcelain. At this time, it is preferable that the pores be 10 / m or more and 500 zm or less.
  • an opening / closing valve that is opened by a signal emitted when the pH measuring device detects a set lower limit and closed by a signal emitted when the set upper limit is detected.
  • the pH of the pH adjustment target solution can be kept between the set upper limit or slightly higher than the set upper limit, and the set lower limit or slightly lower than the set lower limit. .
  • the ammonia gas supply line having the closing valve When connected to an ammonia gas storage tank or an ammonia gas accumulator, the pressure in the gas storage tank or the accumulator is usually about 0.5 to 1.0 MPa, so that when the open / close valve is opened, At once, NH 3 gas is injected into the liquid, and the pH of the pH adjustment target liquid may greatly exceed the set upper limit. This problem is serious when it is necessary to precisely adjust the pH of the pH adjustment target solution.
  • a pressure adjusting means for adjusting the pressure of the NH 3 gas can be provided.
  • a self-acting pressure reducing valve can be used.
  • a downstream side of the pressure reducing valve that is, the pressure reducing valve and the ammonia diffuser During this time, means for further reducing the pressure of NH 3 gas, such as a needle valve, can be provided.
  • a gas decompression tank having a mechanism for keeping the internal pressure constant can be used.
  • a gas decompression tank shall be composed of a tank having a pressure switch that emits a signal when a set upper limit value and a set lower limit value are detected, and an open / close valve that opens and closes according to a signal from the pressure switch. Can be.
  • the ammonia diffusing means is an alumina-based porous diffuser made of porcelain
  • the NH 3 gas pressure in the diffuser is ⁇ water pressure at the location where the diffuser is installed + 0.1 kPa or more. It is preferably adjusted within the range of 50 kPa or less.
  • the pH adjusting device of the present invention absorbs S Ox by bringing exhaust gas containing S Ox, such as boiler combustion exhaust gas, into contact with an absorbing solution containing NH 4 +.
  • the present invention can be applied to an exhaust gas absorbing device to be removed.
  • the absorbing solution is usually used in a circulating manner, so that the PH gradually rises as the SO x is absorbed.
  • the pH adjustment device of the present invention can be used to adjust the pH.
  • the pH adjustment of the absorbing solution is performed by separately providing a pH adjusting tank with the exhaust gas containing S ⁇ ⁇ ⁇ x and the gas absorber body in contact with the absorbing solution.
  • a pH adjusting tank for storing the absorption liquid
  • an absorption liquid storage section for storing the absorption liquid is provided at the bottom of the gas absorber, the pH of the absorption liquid stored in the absorption liquid storage section is measured with a pH meter, and NH 3 is directly added to the absorption liquid. Gas can be diffused. In that case, the absorption liquid storage section becomes the pH adjustment tank of the present invention.
  • FIGS. 13 and 14 are flow diagrams of an exhaust gas absorbing device, in which an example of the pH adjusting device using NH 3 gas of the present invention is used for adjusting the pH of the absorbent in the exhaust gas absorbing device. .
  • 101 is an exhaust gas absorption tower
  • 102 is an 11 adjustment tank
  • 103 is a spray nozzle
  • 104 is an ammonia diffuser
  • 105 is a stirrer
  • 106 is an absorbent circulation pump
  • 107 is Misto Separation overnight
  • 108 is circulating absorbent
  • 109 is inlet exhaust gas (before treatment)
  • 110 is outlet exhaust gas (after treatment)
  • 111 to 120 are ammonia 1 shows a gas supply system.
  • the exhaust gas 109 coming from the bottom inlet of the exhaust gas absorption tower 101 receives the circulation absorption spray sprayed from the spray nozzle 103 provided at the top of the exhaust gas absorption tower 101.
  • SOx contained in the exhaust gas was absorbed and removed in the absorbing solution 108, and the purified gas 110 was collected in the mist separator at the top of the exhaust gas absorption tower 101. Released to the atmosphere through 7 It is.
  • the circulating absorption liquid 108 is withdrawn from the bottom of the exhaust gas absorption tower 101, guided to the pH adjustment tank 102 (water depth less than 1 m), and is made of porcelain provided in the pH adjustment tank.
  • the NH 3 gas injected from the porous ammonia diffuser 104 is dissolved to adjust the pH.
  • NH 3 is stored as Ekiyasu ammonia storage tank 1 1 1, the liquid weak becomes NH a gas by indirect steam 1 2 3 exchange heat with ⁇ Nmonia vaporizer 1 1 2, the NH 3 gas Is stored in the ammonia gas accumulator 113 at a pressure of 0.3 MPa or more and 0.8 MPa or less.
  • the ammonia gas accumulator 113 is connected to the ammonia diffusion cylinder 104 by an ammonia gas supply line having a self-operating pressure reducing valve 114, a needle valve 115 and an electromagnetic on-off valve 116.
  • the electromagnetic on-off valve 1 16 is opened and closed by a signal from a pH measuring device 117 for measuring the pH of the circulating absorbent 108 in the pH adjusting tank 102.
  • the pH meter 1 17 issues an open signal when it detects that 11 of the circulating absorbent 1 08 has reached the set lower limit (normally, pH is set to about 2 to 5). A close signal is issued when it is detected that the pH of the circulating absorbent 1 08 has reached the set upper limit (normally, pH is set to about 5 to 8).
  • the solution in the PH adjustment tank 102 is sufficiently stirred using a stirrer 105.
  • the self-acting pressure reducing valve 1 14 sets the secondary pressure from about 10 kPa to about 100 kPa, and further reduces the pressure with the needle valve 1
  • the pressure of NH 3 gas of 04 is adjusted to 10 kPa or more and 10 kPa or more.
  • the absorption liquid 108 whose pH has been adjusted by the pH adjustment tank 102 is supplied to the exhaust gas absorption tower 101 by the absorption liquid circulation pump 106. 0 3 and part of it is discharged outside the system as liquid 1 2 2, to compensate for the water in the liquid 1 2 2 and the water lost by evaporation in the exhaust gas
  • the makeup water 12 1 is supplied by a water level adjustment mechanism (composed of a water level gauge and an adjustment valve), not shown, provided in the pH adjustment tank 102. With the extracted liquid 122 and the makeup water 122, the salt concentration and the SS concentration of the circulating absorbent 108 can be suppressed to appropriate levels or less.
  • the exhaust gas 109 entering from the bottom inlet of the exhaust gas absorption tower 101 receives the circulation absorption spray sprayed from the spray nozzle 103 provided at the top of the exhaust gas absorption tower 101.
  • SOx in the exhaust gas is brought into contact with the liquid 108, and the SOx in the exhaust gas is absorbed and removed in the absorbent, and the purified gas 110 passes through the mist separator 107 at the top of the exhaust gas absorption tower 101.
  • the circulating absorption liquid 108 released to the atmosphere is stored in the absorption liquid storage section 102 'at the bottom of the exhaust gas absorption tower 101 (less than 1 m depth) and stored in the absorption liquid storage section 102'.
  • the pH is adjusted by dissolving the NH 3 gas injected from the porous porcelain ammonia diffusion cylinder 104 provided.
  • N H 3 is stored as a gas in the ammonia gas tank 1 1 1 ′ at a pressure of 0.3 MPa or more and 0.8 MPa or less.
  • the ammonia gas tank 1 1 1 ′ is supplied to the ammonia gas supply line with the No. 1 electromagnetic on-off valve 1 18, the decompression gas tank 1 19, and the No. 2 electromagnetic on-off valve 1 16.
  • the No. 2 electromagnetic on-off valve 1 16 is opened and closed by a signal from a pH measuring instrument 117 which measures the pH of the circulating absorbent 108 in the absorbent reservoir 102 ′.
  • the pH meter 1 17 issues an open signal when it detects that the pH of the circulating absorbent 108 has reached the set lower limit (normally, pH is set to about 2 to 5). An open signal is issued when it is detected that the pH of the circulating absorbent 1 08 has reached the set upper limit (normally, pH is set to about 5 to 8). pH measurement For proper adjustment, the solution in the absorbent storage section 102 'is sufficiently stirred using a stirrer 105. In addition, the No. 1 solenoid on-off valve 1 18 is opened and closed by the pressure switch 120 provided in the decompression gas tank 1 19. As a result, the pressure inside the decompression gas tank 1 19 is 1 O kPa or more 5 O Adjusted below kPa. As a result, the pressure of NH 3 gas in the ammonia diffuser 104 is adjusted to be at least 1 OkPa and not more than 5 OkPa.
  • the absorbing solution 108 whose pH has been adjusted by the pH adjusting device is supplied to the spray nozzle 103 at the top of the exhaust gas absorption tower 101 by the absorbing solution circulating pump 106, and a part of it is supplied. Drained liquid 122 is discharged out of the system, to compensate for the water in the discharged liquid and the water lost by evaporation in the exhaust gas.
  • Water level (not shown) provided in the absorbent storage section 102 ' Adjustment mechanism (composed of water level gauge and adjustment valve) supplies makeup water 1 2 1.
  • the present invention is suitable for an exhaust gas treatment system capable of removing SOx contained in combustion exhaust gas of various fuels such as coal and petroleum with high efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Description

明 細 書 排ガス処理方法及び装置 技術分野
本発明は、 硫黄酸化物を含む排ガスの処理に係り、 特に硫黄酸化物を 含む排ガスにアンモニアを注入して硫黄酸化物を除去する排ガスの処理 方法及び装置に関する。 背景技術
経済の発展につれてエネルギー需要が高まる中、 エネルギー源として 石炭、 石油等の化石燃料に依然として依存し続けている。 しかしながら、 化石燃料を燃焼する際に生じる有害物質や汚染物質は、 環境汚染の原因 となっている。 大気中に硫黄酸化物、 窒素酸化物等の汚染物質が拡散し て環境汚染が進行するのを防ぐため、 発電プラン 卜のような燃料燃焼プ ラン 卜のための排ガス処理システムの技術開発が進められている。 しか しながら、 従来の排ガス処理システムにおいては、 複雑な制御を要する 装置が必要であること、 大規模な汚水処理システムが不可欠であること など、 今なお改善されるべき問題がいくつか残っている。
上述の問題を解決するために、 ボイラ等の燃焼設備からの排ガスにァ ンモニァを注入して処理する排煙脱硫方法が開発されている。
ボイラ燃焼ガス等の硫黄酸化物 ( S O. を含む排ガスにアンモニア (NH3) を注入する排煙脱硫方法 (以下、 アンモニア注入法) において は、 NH3と S Oxが反応し、 硫酸アンモニゥム (硫安) を含むアンモニ ァ化合物の粉体を生成する。 アンモニア注入法における反応のうち、 特 に、 S Ox 中の主成分である二酸化硫黄 ( S 02) が、 NH3及び排ガス 中の酸素 (02) と水 (H20) と反応し、 反応副生成物として硫安 〔(N H 4)2S〇 4〕 が生成する化学反応式を、 下式 ( 1 ) に示す。
S O2+ 2 NH3 + H20+ l/202→(NH I k J /m o 1 ( 1 )
上式 ( 1 ) に代表的に示すように、 S O xが NH3と反応してアンモニ ァ化合物を生成する反応は発熱反応であり、 排ガス温度が低いほど進み やすいため、 アンモニア注入法においては、 NH3 の注入に先立って排 ガスを冷却したり、 あるいは、 NH3 の注入前、 注入と同時、 注入後、 又は NH3 と混合して水を噴霧注入することが行われる。 この場合、 注 入された水は、 上記 ( 1 ) で代表される脱硫反応で消費されるとともに、 反応熱、 及び排ガスがアンモニア注入前に所有していた顕熱によって蒸 発するため、 噴霧水量等を適切に調整すれば、 生成したアンモニア化合 物を乾燥した粉体として回収することは妨げられない。 この粉体の回収 は、 通常、 電気集麈装置で行われ、 回収された粉体は、 硫安等のアンモ ニァ化合物であるため肥料として利用できる。
ところが、 アンモニア注入法においては、 一般に、 S〇x の除去効率 (以下、 脱硫率) 、 特に S 02 の除去効率は高くない。 また、 注入され た NHs のうち S Ox と反応しなかった残余の NH3 は、 処理後の排ガ スとともに大気に放出される。 この NH3 のリークを低く抑えるために は、 アンモニア注入量を少なくする必要があるが、 そうすると脱硫率、 特に S 02除去効率はさらに低くなり、 また、 その分、 未反応の NH3が 出てく るため、 結果としてアンモニア注入量の減少分ほどには低くなら ないという問題がある。
一方、 NH3 とともに噴霧注入する水の量を増やして排ガス温度を低 く し、 脱硫反応を促進することも可能であるが、 その場合、 排ガスの温 度は反応器出口付近でも水分飽和温度程度となり、 生成した粉体を乾燥 した状態で回収することが困難になる。
このため、 高い脱硫率を達成するために、 通常、 NH3 を噴霧注入し た後、 電子ビームを数 k G y〜十数 k G y照射することが行われる (以 下、 N H3 を注入するとともに電子ビームを照射する排煙脱硫方法を電 子ビーム法と云う) 。 これは、 上記 ( 1 ) で除去されない残余の S 02 を、 電子ビーム照射によって排ガス中の酸素及び水蒸気等のガス分子か ら生成した 0、 0 H · H 02等のラジカルによつて三酸化硫黄 ( S 03) 又は硫酸 ( H 2 S O まで酸化し、 該 S 03又は H2 S 04を、 下式 ( 2 ) 及び ( 3 ) によって水 (もともと排ガス中に含まれる水蒸気及び N H 3 とともに噴霧注入された水) 及び N H3 と反応させることによって、 硫 安と して回収することを目的とする。
S 03+ 2 NH 3+H20→ (N H ) 2 S O , ( 2 )
H 2 S〇 + 2 N H 3→ ( N H 2 S 04 ( 3 )
しかしながら、 重量流量 Q ( k g/s ) の排ガスに電子ビームを D (k G y) の吸収線量だけ照射するためには、 下式 ( 4 ) で計算される 電力 P ( k W) が消費される。
P (kW)- Q(k g/s )x D (k G y )/( 77 (%)/ 1 0 0 ) ( 4 ) ここで、 7 は投入した電力と排ガスに吸収された電子のエネルギーの 比率であり、 通常 5 0〜 8 0 %である。
ところが、 一般に、 電子ビームを照射する方法においては、 NH3の リークを低く抑えた上で高い脱硫率が要求される場合には、 必要な吸収 線量が大き くなり、 したがって式 ( 4 ) によって電力消費量が大き くな る。
このため、 発明者らは、 以前に、 排ガスをまず水分飽和温度以上、 8 0°C以下に冷却した上でアンモニア水を噴霧注入し、 かつ該アンモニア 水をザウタ平均粒径が 0. 5 m以上、 3 0 /m以下の液滴に微粒化し て噴霧することにより、 電子ビーム照射なしか、 あるいは比較的少ない 吸収線量で、 NH3 のリークを低く抑えた上で高い脱硫率を得る排煙脱 硫方法及び排煙脱硫装置を提案している。
ところが、 そのような方法においても、 NH3 のリークを l O p pm 程度以下に抑えた上で 9 0 %以上の脱硫率を得るためには、 5 k G y程 度以上の多量の吸収線量を必要とするか、 あるいはアンモニア水をザゥ 夕平均粒径が 5〃m程度以下の液滴に微粒化する必要がある。 そして、 前者においてはもちろん、 後者においても微粒化するために多量の圧縮 空気を発生させることなどにかなりの多量のエネルギーを必要とする。 発明の開示
そこで、 本発明は、 上記した事実に鑑み、 エネルギーコス トを低く抑 えながら、 NH3 のリークを低く抑えた上で高い脱硫率を得る排ガス脱 硫方法及びその装置を提供することを課題とする。
上記課題を解決するために、 本発明では、 アンモニアを用いて排ガス 中の硫黄酸化物を除去する排ガス処理方法において、 硫黄酸化物を含む 排ガスにアンモニアを注入して硫黄酸化物をアンモニアと反応させ、 硫 酸アンモニゥムを含むアンモニア化合物を生成し、 生成したアンモニア 化合物を回収した後、 回収後の排ガスを吸収液と接触させ、 排ガス中に 含まれる残余の硫黄酸化物及び/又はアンモニアを除去することとした ものである。
この際、 前記吸収液は、 硫酸イオン ( S O —) 及び/又は亜硫酸ィォ ン (S〇3 ) 及び/又はアンモニゥムイオン (NH4 + ) を溶解している 本発明の排ガス処理方法においては、 排ガス中に含まれる S Ox のう ち注入された N H3 と反応してアンモニア化合物の粉体に変換されなか つた残余の S〇x 及び/又は排ガス中に注入された NH 3 のうち S Ox と反応してアンモニア化合物の粉体に変換されなかった残余の N H 3は、 排ガスが前記 S 0 4 2—及び/又は S 0 3 2—及び/又は N H 4 +を溶解する吸 収液に接触することによって、 該吸収液に吸収されて除去される。
本発明の排ガス処理方法では、 ガス吸収装置を除く、 上流側のアンモ ニァ注入法部分の排ガス処理性能 (脱硫率及びリークアンモニア濃度) がアンモニア注入法単独の場合と同じ場合には、 ガス吸収装置を含む排 ガス処理全体での排ガス処理性能をアンモニア注入法単独の場合よ りさ らに向上させることができる。 すなわち、 ガス吸収装置で S O x を吸収 • 除去することによって、 排ガス処理装置全体での脱硫率を向上させる ことができ、 また、 ガス吸収装置で N H 3 を吸収 · 除去することによつ て、 排ガス処理装置全体でのリークアンモニア濃度を低下させることが できる。
一方、 ガス処理装置全体での排ガス処理性能がアンモニア注入法単独 の場合と同じとする場合には、 アンモニア注入法部分での運転費及び設 備を著しく抑制することができる。 すなわち、 ガス吸収装置で S O x を 吸収 ' 除去することによって、 アンモニア注入法部分で達成すべき脱硫 率を低く抑えることができ、 また、 ガス吸収装置で N H 3 を吸収 ' 除去 することによって、 アンモニア注入法部分でのリークアンモニア濃度へ の要求を緩くすることができる。 その結果、 従来の技術では、 比較的多 量の電子ビームを照射することによって達成されていたような排ガス処 理性能が、 少量の電子ビーム照射量で、 あるいは電子ビーム照射なしで 達成できるようになる。 また、 従来の技術では、 アンモニア水をザウタ 平均粒径が著しく小さい液滴に微粒化して噴霧しなければ達成できなか つたような排ガス処理性能が、 アンモニア水を比較的粗い粒径で噴霧し ても達成されるようになる。 こう して、 アンモニア注入法部分での運転 費及び設備費を著しく抑制することができる。 本発明の一態様においては、 前記吸収液は、 溶解した亜硫酸イオンを 酸化しながら循環使用する。 即ち、 排ガスに NH3を注入して S〇xを N H3と反応させ、 該反応生成物の回収後の排ガスを、 溶解した S 03 2—を S 0 に酸化しながら循環使用される吸収液に接触させて、 NH3と S Oxを同時除去する。
一般に、 NH と S 03 が溶解している水溶液と、 1^ 4+と 3042 が溶解している水溶液を比較すると、 N H4 +の S 03 2— に対するモル比 と、 N H の S 0 —に対するモル比が同じ場合には、 NH と S O — が溶解している水溶液の方が P Hが低くなる。 例えば、 NH4 + : S 03 2 一 二 NH : S O — = 2 : 1の場合には、 それぞれの水溶液の濃度は、 合計塩濃度 (NH 及び S 03 2—又は S 0 —の合計の重量濃度) に応じ て下表 1のようになる。
表 1
Figure imgf000008_0001
排ガス中の NH 3 は、 吸収液中の N H 4 +濃度が同じ場合、 吸収液の p Hが低いほど吸収液に溶解しやすいため、 吸収液中の S〇 3 2— を S 04 2 - に酸化させることによって、 前記反応生成物を回収後の排ガス中に残 留する N H 3を効果的に除去できる。
一方、 前記反応生成物を回収後の排ガス中に残留する S Ox の主成分 は S 02であるが、 この S 02の吸収においては、 吸収液中の pHが著し く低下しない限り、 pHよりむしろ吸収液中の S 0 — 濃度が強く影響 する。 すなわち、 p Hが 2程度以上であれば、 吸収液による S 02 の除 去効率は p Hにはあま り影響されないが、 S 03 2—濃度が高くなると低下 する。 したがって、 吸収液中の S 03 2—を S 04 2—に酸化させることによ つて、 前記反応生成物を回収後の排ガス中に残留する S 02 についても 効果的に除去できる。 なお、 吸収液中の S 03 の S〇 4 への酸化は、 例えば、 吸収液中に空気を散気 (曝気) することによって行う。
本発明の一態様においては、 前記排ガスに注入されるアンモニアの注 入量は、 前記吸収液の P Hが酸性物質を加えることなしに 8以下となる ように調整する。
水溶液中に N H が S 03 2—及び/又は S 0 とともに溶解している 場合、 NH の S 03 2—及び/又は S 0 —に対するモル比が 2 : 1以下 であれば、 N は水溶液中にイオンとして比較的安定して存在するこ とができる。 特に、 NH と共存するのが S 03 2— である場合には、 N H の S 03 2_ に対するモル比が 2 : 1より大きくなると、 水溶液中の NH NHs ガスとして遊離しやすくなる。 したがって、 吸収液中の N H 4 +の S 03 に対するモル比が 2 : 1より大きくなると、 排ガス中 の NH3 を吸収液中に溶解せしめて除去する効率は低下する。 そして、 表 1によれば、 1^114 +の303 に対するモル比が 2 : 1の場合には、 p Hは 8程度であるから、 前記反応生成物を回収後の排ガス中に残留す る NH3 を効果的に除去するためには、 吸収液の p Hを 8以下に調整す ることが好ましい。
吸収液の P Hを 8以下に調整する方法としては、 吸収液に硫酸などの 酸性物質を補給することによつても可能であるが、 その場合には、 排ガ ス中の S Oxを除去するために使用する N H 3以外に追加の薬剤を使用す ることになり、 それに伴って運転費が高騰するとともに、 薬剤の貯留設 備などの追加の設備も必要になる。
吸収液の pHを 8以下に調整する方法としては、 さらに、 ガス吸収装 置から抜き出す吸収液の量を増やし、 抜出量及びガス吸収装置での蒸発 量に応じて吸収液に補給する工業用水の量を増やすことによって吸収液 の塩濃度を下げることも可能である。 しかし、 表 1に示すように、 塩濃 度を下げることによる p Hの抑制効果は非常に限られているため、 吸収 液の抜出水量を増やすことによって p Hを下げようとすると、 膨大な量 の吸収液を抜き出す必要があり、 その抜出水の処理に多大な設備費と運 転費がかかることになる。
一方、 ガス吸収装置において、 吸収液と接触する排ガスが未反応の N H3だけでなく S も含む場合、 吸収液は、 NH3と共に S Oxも同時に 吸収し、 吸収液中では、 N H4 の濃度と共に S 03 2—及び/又は S 0 一 の濃度も上昇するため、 ガス吸収装置に入る排ガス中の S Ox 濃度と N H 3 濃度の比率を適切に調整することによって、 吸収液の pHを調整す ることができる。
ガス吸収装置に入る排ガス中に残存する S 0.、と NH3の濃度は、 ガス 吸収装置を除く、 上流側のアンモニア注入法部分で達成される排ガス処 理性能 (脱硫率及びリークアンモニア濃度) で決まる。 また、 アンモニ ァ注入法部分で達成される排ガス処理性能は、 アンモニア注入量、 及び 反応器出口部での排ガス温度、 さらに、 NH3 を注入するとともに電子 ビームを照射する場合には、 電子ビームの照射量といったプロセス変数 によって規定されるが、 このうち排ガス中に残存する S Oxと NH3の濃 度の比率を調整するのに最も適切なプロセス変数は、 NH3 の注入量で ある。 したがって、 吸収液の p Hは排ガス中への N H 3 の注入量によつ ても調整することができる。
すなわち、 N H 3の注入量を多くすると、 注入された N H3との反応に よって S Ox が硫安を含むアンモニア化合物に転換する割合が増えて残 留する S Oxの濃度は減少し、 一方、 未反応の NH3の濃度は増加する。 この結果、 前記吸収液との接触によって吸収液中に溶解する S Ox は減 り、 NH3 は増える。 こう して、 吸収液の p Hは上昇するようになる。 逆に、 NH3 の注入量を少なくすると、 吸収液と接触する排ガス中に残 留する S C の濃度は減少し、 未反応の N H3の濃度は増加して、 その結 果、 吸収液の P Hは低下するようになる。 このように、 NH3 の注入量 を調整することにより吸収液の P Hを調整することが可能であり、 排ガ スに注入される N H 3 の注入量を調整することにより吸収液の p Hが 8 以下となるように調整すれば、 追加の酸性物質の薬液なしで、 また大量 の吸収液を抜き出すことなしに吸収液の p Hを 8以下に調整することが できる。
なお、 後述のように吸収液に NH3 等のアルカリ性物質を補給するこ とも可能であるが、 そのような場合でも、 アンモニア注入法部分で排ガ スへ注入される NH3 の注入量は、 吸収液の p Hが酸性物質を加えるこ となしに 8以下となるように調整の上、 アルカ リ性物質の補給量も該吸 収液の p Hが 8以下になるようにすることが好ましい。 その際、 アル力 リ性物質の注入による P Hの変動幅を考慮すると、 排ガスへの NH3 の 注入量は、 吸収液の P Hがアル力リ性物質の補給がない条件では 7以下 となるように調整の上、 NH3 のアルカリ性物質の補給量を該吸収液の p Hが 8以下になるようにすることが特に好ましい。
本発明の一態様においては、 前記吸収液にアンモニアを補給すること によって吸収液の pHを調整する。 吸収液の p Hが 2を下回ると、 上記 のように吸収液中の S 03 2—を S 04 2—に酸化させた場合でも、 S Ox の うちの S〇 2 の吸収効率が低下するようになる。 このため、 吸収液中に アルカ リ性物質を補給することが可能である。 その際、 排ガス中の S O を除去するために使用する N H 3の一部を利用すれば、 補給するアル力 リ性物質の貯留のためなどに追加の設備を設ける必要がなく好便である。 上記の排ガス処理方法では、 特に、 ガス吸収装置入口の S Ox 濃度が N H 3 濃度より大幅に高い場合、 吸収液の P Hが低くなるため、 ガス吸 収装置での脱硫率を高くすることはできない。 したがって、 ガス吸収装 置入口での S O x 濃度は、 ガス処理装置全体で達成すべき S O x 濃度よ り著しく高くすることはできない。 したがって、 前記のアンモニア注入 法部分における設備費、 運転費の低減効果も限定されたものになる。
しかしながら、 この問題は、 ガス吸収装置において、 循環使用される 吸収液に N H 3 を添加することによって解消される。 すなわち、 アンモ ニァ注入法部分での脱硫率を大幅に低く して、 ガス吸収装置入口での S O x濃度を N H 3濃度より大幅に高く した場合でも、 ガス吸収装置で循環 使用される吸収液に N H 3 を補給して p Hを 2以上に調整することによ つて、 ガス吸収装置での脱硫率を引き上げ、 その結果、 排ガス処理装置 全体としては、 所期の脱硫率を達成することができる。
さらに、 補給するアルカ リ性物質として N H 3 以外の物質を用いれば、 吸収液中には排ガス中から不可避的に溶解する N H 以外の陽イオンが 溶解することになり、 吸収液の抜出液の処理を複雑にする。 それに対し て、 本発明の排ガス処理方法では、 吸収液中には S 0 3 2—を S 0 4 2—に酸 化した上で、 抜出液中の水分を蒸発させれば、 硫安を含むアンモニア化 合物を得ることができ、 これは、 アンモニア注入法部分で得られる粉体 とともに肥料として使用可能である。
本発明の一態様においては、 前記吸収液へのアンモニアの補給は、 吸 収液にアンモニアガスを散気することによって行う。 吸収液への N H 3 の補給は、 N H 3 をアンモニア水として補給することによつても可能で あるが、 アンモニア注入法においては、 通常、 N H 3 はアンモニア注入 装置へアンモニアガスとして供給されるため、 吸収液への N H 3 の補給 もアンモニアガスを散気することによって行えば、 アンモニアガスの供 給装置を共用できて好便である。 吸収液中へのアンモニアガスの散気に は、 微細な気孔を多数有する多孔質の材料で構成される散気筒を使用す ることによって、 アンモニアガスを効率的に p H調整対象液に溶解せし めることができる。 このような多孔質筒は、 セラミ ックス製とすること ができ、 特に、 アルミナ質の磁器製とすることができる。 その際、 気孔 は 1 0〃m以上 5 0〃m以下とすることが好ましい。
本発明の一態様においては、 前記排ガスにアンモニアを注入する前に- 排ガスを冷却水と接触させ、 該排ガスと接触させた後の冷却水の一部を 抜き出して、 そのままで、 又は溶解した亜硫酸イオンを酸化した上で、 前記吸収液の補給水として供給する。 即ち、 S O xを含む排ガスに N H 3 を注入するに先立って、 該排ガスを冷却水と接触させ、 一方、 S O x と N H 3 の反応によって生成したアンモニア化合物を回収した後、 該排ガ スを、 前記冷却水の一部を補給水とする吸収液と接触させることによ り、 排ガス中に含まれる N H 3を除去せしめる。
S 0 を含む排ガスを冷却水に接触させると、 排ガス中の S O .、の一部 は、 冷却水中に S 0 3 2—又は S 0 4 2—として溶解するため、 冷却水の p H は 7 よ りも低くなる。 一方、 アンモニア注入法を出た後の排ガスを吸収 液に接触させ、 未反応の N H 3 を吸収せしめると、 吸収液中の N H 4 +濃 度が徐々に上昇し、 その結果、 吸収液の p Hが上昇する。 この吸収液に は、 抜き出し量及び蒸発量に見合う分だけの補給水が補給されるが、 前 記排ガスと接触後の冷却水を該補給水として使用すれば、 吸収液の p H の上昇を抑制することができる。 前述のように、 吸収液の p Hが上がる と吸収液による N H 3 の吸収効率が低下するため、 本発明のように排ガ スと接触後の冷却水を補給水として使用することにより、 吸収液による 排ガス中の N H 3 の吸収効率の低下を抑えることができる。
本発明の一態様においては、 前記排ガスにアンモニアを注入する前に、 排ガスを該排ガスの水分飽和温度以下に冷却された熱交換面と接触させ、 該熱交換面で発生した凝縮水の一部又は全部を抜き出して、 そのままで、 又は溶解した亜硫酸イオンを酸化した上で、 前記吸収液の補給水として 供給する。 即ち、 S〇xを含む排ガスに NH3を注入するに先立って、 該 排ガスを該排ガスの水分飽和温度以下に冷却された熱交換面と接触させ. 一方、 S Oxと NH 3の反応によって生成したアンモニア化合物を回収し た後、 該排ガスを、 前記凝縮水の一部又は全部を補給水とする吸収液と 接触させることにより、 排ガス中に含まれる NH3 を除去せしめる。
S 0 を含む排ガスを該排ガスの水分飽和温度以下に冷却された熱交 換面と接触させると、 排ガス中に含まれる水分の一部が凝縮し、 排ガス 中の S Ox の一部はそのようにして発生した凝縮水中に s o3 2— 又は
S O — として溶解するため、 凝縮水の p Hは 7よりも低くなる。 した がって、 この凝縮水を前記吸収液の補給水として使用すれば、 吸収液の p Hの上昇を抑制することができ、 したがって、 吸収液による排ガス中 の NH3 の吸収効率の低下を抑えることができる。
なお、 上記のように、 吸収液中に S 03 2_ として溶解している場合よ り、 S 04 2— として溶解している場合の方が p Hを低下させる効果が大 きく、 したがって、 NH3 の吸収効率の低下を抑制させる効果も大きい ( したがって、 前記冷却水又は凝縮水中の S 03 2— を、 曝気等の手段によ つて s o4 2- に酸化することによ り、 該冷却水を補給水とすることによ る吸収液の N H 3 吸収効率の低下抑制効果が顕著になる。
ところで、 アンモニア注入法部分において排ガスに N H 3 を注入する 前に、 排ガスを循環使用される冷却水と接触させて排ガスを冷却させる 場合には、 該循環冷却水の p Hが著しく低くなつたり、 該循環冷却水の S S濃度が著しく高くなつたり してガス冷却装置が安定的に運転できな くなることを防ぐためには、 該循環冷却水の一部は必ず抜き出す必要が あり、 これを前記のようにガス吸収塔に補給水として供給しない場合に は、 別途処理した上で放流する必要がある。 また、 排ガスに NH3 を注 入する前に、 排ガスを該排ガスの水分飽和温度以下に冷却された熱交換 面と接触させる場合においても、 該熱交換面で発生した凝縮水は、 前記 のようにガス吸収塔に補給水として供給しない場合には、 別途処理した 上で放流する必要がある。 その際、 抜出水及び凝縮水の P Hは通常非常 に低いため、 アルカリ性物質を用いて P Hを調整することは必須の工程 にある。
本発明においては、 前記抜出水又は凝縮水はガス吸収装置に補給水と して供給され、 ガス吸収装置において排ガスに吸収される N H 3 又は吸 収液中に N H 3 等のアル力リ性物質を注入することによって p Hが調整 されるため、 上記のように別途 p H調整装置を設ける必要がない。 した がって、 この点からも設備費の低減に効果的である。 特に、 吸収液に N H 3 以外のアルカ リ性物質を補給せず、 かつ、 前記のように吸収液の抜 出液から硫安を含むアンモニア化合物を得る場合には、 前記抜出水又は 凝縮水に含まれる s 0 3 2—及び/又は S 0 —も該アンモニア化合物の一 部に含まれることになり、 したがって、 肥料の一部として使用可能とな るため、 資源の有効利用の点からも好ましい。
本発明の一態様においては、 前記吸収液の一部を抜き出し、 該抜出液 を、 アンモニアの注入の前、 アンモニアの注入と同時、 アンモニアの注 入後、 またはアンモニアと混合の上、 排ガス中に噴霧注入する。 この方 法においては、 噴霧された抜出液中の水分の全部又は一部は、 脱硫反応 で消費されると共に、 反応熱及び排ガスがもともと所有していた顕熱に よって蒸発する。 したがって、 抜出液中の溶解成分の全部又は一部は蒸 発乾固 (蒸発して乾燥して固化) して、 排ガス中の S O x と注入された N H s の反応によって、 生成した粉体と共に電気集塵装置等の生成物回 収装置で回収される。
なお、 アンモニア注入前の排ガスの温度、 及び吸収液の抜き出し量及 び噴霧量を適切に調節すれば、 抜出液の全てを蒸発乾固することが可能 である。 一方、 抜出液の一部のみを噴霧した場合、 あるいは噴霧した抜 出液の一部が蒸発せずに排水となった場合には、 それら残余の抜出液に 蒸気等の熱源を外部から与えることによって水分を蒸発せしめることに より、 硫安を含むアンモニア化合物の粉体又は固体として回収すること ができる。 この場合、 抜出液の全量を処理した場合よ り設備費及び運転 費を低減できる。
抜出液の噴霧方法としては、 排ガスへ N H 3 を注入するアンモニア注 入装置とは別個に抜出液噴霧装置を設け、 該抜出液噴霧装置を、 アンモ ニァ注入装置の前か、 同位置か、 又は後に配備することが可能である。 ただし、 上流側のアンモニア注入法部分における脱硫率を向上させる ためには、 N H 3 を該抜出液と混合し、 アンモニア溶解液の液滴として 噴霧注入することが望ましい。 この方法によれば、 脱硫反応が、 アンモ ニァ溶解液の液滴とガスの気液界面で著しく促進される。
本発明の一態様においては、 前記アンモニアを注入した後で、 かつ前 記アンモニア化合物を回収する前の排ガスに電子ビームを照射する。 本発明の排ガス処理方法では、 ガス吸収装置を除く、 上流側の電子ビ —ム法部分の排ガス処理性能 (脱硫率及びリークアンモニア濃度) が電 子ビーム法単独の場合と同じ場合には、 ガス吸収装置を含む排ガス処理 全体での排ガス処理性能をさらに向上させることができる。 また、 ガス 処理装置全体での排ガス処理性能が電子ビーム法単独の場合と同じとす る場合には、 所期の脱硫率を達成するために必要な電子ビーム照射量を 著しく抑制することができる。 したがって、 電子ビーム法部分での運転 費及び設備費は著しく抑制される。
本発明の一態様においては、 前記電子ビームは、 金属箔を透過して排 ガスに照射され、 該金属箔を空気で冷却し、 冷却後の空気を、 前記吸収 液と接触する前の排ガスに注入する。
電子ビーム発生装置は、 数 1 00 k V〜数 M Vの直流高電圧を発生す る直流高圧電源と、 それを供給する高圧ケーブル等の供給路、 及び供給 された直流高電圧によって電子を加速して射出する電子加速器から構成 される。 そして、 この電子加速器の内部は真空に保たれ、 その真空と外 気は金属製の薄箔 (以下、 窓箔) で隔てられており、 加速電子は、 その 加速器側窓箔と、 場合によっては、 排ガスを外気と遮断するもう一枚の 窓箔 (以下、 反応器側窓箱) を透過して排ガス中に入射する。 その際、 金属製薄膜で加速電子のエネルギーの一部が失われ、 熱へと転化するた め、 金属製窓箔の温度が許容範囲 (約 3 50 °C以下) 以上に上昇するの を防ぐため、 冷却用の空気が吹き付けられる。 その際、 空気も電子ビー ムの照射を受けるため、 該冷却空気中にもオゾンが発生する。 こう して 生成したオゾン含有空気を、 生成物回収装置とガス吸収装置の間で注入 することによって、 残存する NOを N02 又は N205に転換することが できる。 この結果、 後述するように、 ガス吸収装置では該転換された N 0 又は N 205は吸収液の pHに応じて吸収されるようになる。
本発明の一態様においては、 前記吸収液と接触する前の排ガスにォゾ ン含有ガスを注入する。
排ガスがボイラ燃焼排ガスのような場合、 S Oxだけでなく NOx (大 部分が NO) を含む場合には、 ガス吸収装置の上流側で NH3 の注入に 加えて電子ビームを照射する場合には、 S 0.、だけでなく NOxも硝安を 主成分とする粉体に転換され、 生成物回収装置で回収 ' 除去される。 し かしながら、 電子ビーム照射量が少ない場合には、 NOx が除去される 割合が少なくなり、 一部は N〇のまま、 残りは N02 又は N205として ガス吸収装置に入る。 また、 ガス吸収装置の上流側で電子ビームを照射 しない場合には、 もともとボイラ排ガス中に含まれていた N 02 及び N 25のうちの一部は硝安を主成分とする粉体に転換されるが、 残りの N 0 及び N205、 及び排ガスに含まれていた NOのほとんどすべては反 応することなくガス吸収装置に入る。 そして、 ガス吸収装置では N02 又は N205は吸収液の p Hに応じて吸収液に吸収され、 亜硝酸 (NO 2 ―) イオン又は硝酸 (N〇 3 ) イオンとなるが、 NOはほとんど吸収され ない。
このため、 電子ビーム照射量が低減された場合、 あるいは電子ビーム が全く照射されない場合にも、 排ガス処理装置全体で高い N Ox の除去 効率 (以下、 脱硝率) を実現するためには、 ガス吸収装置の入口ででき る限り、 NOを N02 又は N 205に転換する必要がある。 電子ビーム照 射以外で NOを N02 又は N25に転換する方法としては、 コロナ放電 があり、 したがって、 上流側の電子ビーム法部分における生成物捕集装 置としては、 コロナ放電を利用する電気集塵装置を採用することが望ま しい。
さらに、 排ガス中にオゾンを注入することによって、 NOを NO 2 又 は N205に転換することができる。 オゾンは、 ガス吸収装置の上流側で あれば、 どこで注入することも可能であるが、 オゾンは NH3 と反応し て NOx を生成し、 それ自身も分解されるため、 上流側のアンモニア注 入法部分において最も NH3 濃度が低い箇所、 すなわち生成物回収装置 とガス吸収装置の間で注入することが望ましい。 このようにして生成し た NO 2 又は N205は、 吸収装置の上流側で電子ビームを照射した場合 には、 電子ビーム照射によって生成した N02 又は N205と共に、 吸収 液に吸収され、 亜硝酸イオン (N02— ) 及び/又は硝酸イオン (N03 一) となる。 この際、 ガス吸収装置が S 03 2—を S 0 —に酸化する機構を 有している場合、 この N 0 も N 03—に酸化される。
また、 本発明では、 アンモニアを用いて排ガス中の硫黄酸化物を除去 する排ガス処理装置において、 硫黄酸化物を含む排ガスにアンモニアを 注入するアンモニア注入装置と、 注入したアンモニアと硫黄酸化物を反 応させる反応器と、 生成した硫酸アンモニゥムを含むアンモニァ化合物 を回収する回収装置と、 回収後の排ガスを吸収液と接触せしめるガス吸 収装置とを有することとしたものである。
本発明の一態様においては、 前記ガス吸収装置は、 吸収液を循環させ る機構と、 吸収液中の亜硫酸ィオンを酸化する機構とを有することを特 徴とする。
本発明の一態様においては、 前記ガス吸収装置は、 吸収液にアンモニ ァを注入して吸収液の P Hを調整する手段を有することを特徴とする。 本発明の一態様においては、 前記 p Hを調整する手段は、 p H調整前 の水溶液を供給する供給口と、 P H調整後の水溶液を排出する排出口と- 内部に保持した水溶液中にアンモニアガスを散気するアンモニア散気手 段とを有する P H調整槽と、 該 p H調整槽内に保持された水溶液の p H を測定する p H測定器と、 該 p H測定器からの信号に基づいて、 前記ァ ンモニァ散気手段にアンモニアガスを供給する調整バルブを有するアン モニァガス供給ライ ンとから構成される。
本発明の一態様においては、 前記アンモニア注入手段は、 吸収液にァ ンモニァガスを散気するための多孔質の材料で構成される散気筒からな o
本発明の一態様においては、 アンモニアを注入する前に硫黄酸化物を 含む排ガスを冷却水と接触させるガス冷却装置と、 前記ガス冷却装置に 配備される前記冷却水を循環使用する手段及び該冷却水の一部を抜き出 すラインと、 前記冷却水の一部を抜き出すライ ンを前記ガス吸収装置の 補給水を導入するライ ンに接続する。
本発明の一態様においては、 アンモニアを注入する前に硫黄酸化物を 含む排ガスを熱交換面が該排ガスの水分飽和温度以下に冷却された熱交 換器と、 該記熱交換器の接ガス面で発生する凝縮水を抜き出しライ ンと. 該凝縮水を抜き出すライ ンを前記ガス吸収装置の補給水を導入するラィ ンに接続する。
本発明の一態様においては、 前記ガス吸収装置は、 吸収液を抜き出す ライ ンを有し、 該抜き出した吸収液を噴霧注入する抜出液噴霧装置を、 アンモニア注入装置の前、 同位置又は後に配備した。
本発明の一態様においては、 前記反応器は、 内部の排ガスに電子ビ一 ムを照射する窓を有する。 図面の簡単な説明
図 1は本発明の第 1の態様の排ガス処理装置の一例を示すフロー構成 図である。
図 2は本発明の第 1の態様の排ガス処理装置のもう一つの例を示すフ ロー構成図である。
図 3は本発明の第 1の態様の排ガス処理装置の別の例を示すフロ一構 成図である。
図 4は本発明の第 1の態様の排ガス処理装置の他の例を示すフロー構 成図である。
図 5は本発明の第 2の態様の排ガス処理方法を実施するための一例を 示すフロー構成図である。
図 6は本発明の第 2の態様の排ガス処理方法を実施するための他の例 を示すフロー構成図である。
図 7は本発明の第 2の態様の排ガス処理方法を実施するための別の例 を示す部分フ口一構成図である。
図 8はガス吸収塔の吸収液を酸化するための他の例を示す部分フロー 構成図である。
図 9は本発明の第 3の態様の排ガス処理装置の一例を示すフロー構成 図である。
図 1 0は本発明の第 3の態様の排ガス処理装置の他の例を示すフロー 構成図である。
図 1 1は本発明の第 3の態様の排ガス処理装置の別の例を示すフロー 構成図である。
図 1 2は本発明の第 4の態様の排ガス処理装置の一例を示すフロー構 成図である。
図 1 3は本発明の第 5の態様の p H調整装置を用いた排ガス吸収装置 の一例を示すフロー構成図である。
図 14は本発明の第 5の態様の p H調整装置を用いた排ガス吸収装置 の他の例を示すフ口一構成図である。 発明を実施するための最良の形態
本発明の第 1の態様は、 S Ox を含む排ガス中に NH3又は NH3と水 を注入し、 S Oxを NH 3と反応させて硫安を含むアンモニア化合物の粉 体を生成せしめ、 該粉体を回収した後、 該排ガスを S O — 及び Z又は S 03 2—及び/又は N H 4 +を溶解する吸収液と接触させ、 該排ガス中に含 まれる残余の S Ox及び/又は N H 3を吸収液に吸収させて除去して排ガ スを脱硫する処理方法である。
本発明の排煙処理方法においては、 排ガス中に注入された NH3 と反 応してアンモニア化合物の粉体に変換されなかった残余の S Ox は、 排 ガスが前記 S 04 2—及び/又は S 03 2—及び/又は N H4 +を溶解する吸収 液と接触することによって、 該吸収液に吸収されて除去される。
したがって、 従来の技術では、 NH3 を注入するとともに比較的多量 の電子ビーム照射が必要となったり、 アンモニア水をザゥ夕平均粒径が 著しく小さい液滴に微粒化して噴霧する必要がある、 最終的な脱硫率と して 9 0 %程度以上が要求される場合でも、 本発明によれば、 前記吸収 液との接触よ り上流側のアンモニア注入法部分での脱硫率は、 電子ビ一 ムなしで、 かつ多量の圧縮空気を発生させることなどに多量のエネルギ 一を必要としないで実現できるザウタ平均粒径の液滴のアンモニア水噴 霧によって達成できる 9 0 %程度以下に抑えることができる。
さらに、 排ガスを S 0 —及び/又は S 0 3 2—及び/又は N H +を溶解 する吸収液と接触させる場合、 残余の S O x だけではなく、 排ガス中の S 0 , と反応してアンモニア化合物の粉体に変換されなかった残余の N H 3も該吸収液に吸収されて除去される。
したがって、 最終的な N H 3 のリークとして 1 0 p p m程度以下が要 求される場合でも、 前記吸収液との接触より上流側のアンモニア注入法 部分からの N H 3 のリークは、 1 0 p p m程度以上とすることができ、 噴霧されるアンモニア水の液滴のザウタ平均粒径をさらに大きくするこ とができる。
一方、 排ガス中から S O xを除去する方法としては S O xを含む排ガス を S 0 4 2—及び/又は S 0 3 2—及び/又は N H 4 +を溶解する吸収液と接触 させ、 該排ガス中に含まれる S O x を除去する方法 (以下、 湿式アンモ ニァ法) がある。 この湿式アンモニア法においては、 脱硫率を高くする ためには、 排ガスと吸収液の接触効率を上げるために大量の吸収液を循 環噴霧したり、 排ガスの吸収液との接触領域における滞留時間を長く し たり、 あるいは吸収液中の N H 4 +濃度を高くすることによって吸収液の p Hを高くする、 などの方策が採られる。
ところで、 これらの方策には、 第一の方策においては、 吸収液の循環 ポンプの所要動力が大きくなって運転費が高騰し、 第二の方策において は、 排ガスが吸収液と接触する容器の容積が著しく大き くなって建設費 が高騰し、 また、 第三の方策によれば、 吸収液から NH3 が放散して N H 3のリークが大きくなるという問題がある。
ところが、 本発明によれば、 排ガス中の大部分の S Ox は吸収液との 接触よ り上流側のアンモニア注入法部分で除去されるため、 吸収液との 接触による脱硫率は小さ くてよい。
例えば、 最終的な脱硫率が 94 %であって、 アンモニア注入法部分で 8 5 %の S O. が除去される場合、 吸収液との接触による脱硫率は下式 ( 5 ) によって 60 %でよいため、 上記のような問題は生じない。
( l -( 1 00 - 94 )/( 1 00 - 8 5 ))x l 00 - 6 0 ( ) ( 5 ) さて、 本発明の排ガス脱硫方法においては、 上流側のアンモニア注入 法部分を出た後の排ガス中には、 アンモニア注入法部分においてアンモ ニァ化合物の粉体に変換されなかった残余の S Oxと N H 3と、 粉体回収 装置で回収しきれなかった残余の粉体が含まれ、 それらのうちの一部が 吸収液中に吸収又は捕獲される。 一方、 該吸収液がアンモニア注入法部 分を出た後の排ガスと接触する際には、 該吸収液が一部排ガス中に飛散 するとともに吸収液中の水分の一部が蒸発する。 このため、 吸収液中の S 0 —及び/又は S 03 2—及び/又は N H 4 +の濃度は徐々に上昇する。 したがって、 吸収液の組成及び濃度をある一定の範囲に保っためには、 吸収液を一部抜き出し、 抜き出した量及び前記排ガスとの接触の際に蒸 発又は飛散した量に応じて水を補給することが望ましい。
本発明の排ガス処理方法においては、 前記のように吸収液との接触に よる脱硫率は比較的低くてよく、 吸収液の P Hは、 湿式アンモニア法を 単独で使用する場合よ り低く抑えることができるため、 吸収液と接触し た後の NH3のリークを低く抑えることができる。
本発明における吸収液の P Hは、 吸収液との接触で達成すべき脱硫率 (前記の例では 6 0 % ) に応じて、 2以上 8以下の範囲に調節すること が望ましい。
吸収液の p Hは、 吸収液への S O x、 N H 3及び粉体の吸収 ' 捕獲量と、 抜き出し水量 · 補給水量に応じて変化する。 特に、 上流側のアンモニア 注入法部分での N H 3 の注入量を変化させると、 アンモニア注入法部分 における脱硫率と N H 3のリ一クが変化するため、 吸収液への S 及び N H 3 の吸収量が変化する。 したがって、 上流側のアンモニア注入法部 分での N H 3 の注入量を調節することによって、 吸収液の p Hを調節す ることができる。 また、 抜き出し水量を変化させると吸収液中の各種ィ オンの濃度が変化するため、 この抜き出し水量の調節によっても、 吸収 液の p Hを 2以上 8以下の範囲に調整することができる。
また、 吸収液の p Hは、 吸収液に硫酸及び/又はアンモニアを注入す ることによつても変化させられる。 したがって、 硫酸の注入量及びノ又 はアンモニアの注入量を調節することによつても吸収液の p Hを 2以上 8以下の範囲に調節することができる。 ただし、 アンモニア注入法部分 で使用する N H 3 以外の追加の薬剤を使用するためには、 排ガスへの N H 3 の注入量を前記吸収液の P Hが吸収液に酸性物質を加えることなし に 8以下、 好ましくは 7以下となるように調整した上で、 該吸収液に N H 3 を補給することによって吸収液の p Hを 2以上 8以下の範囲に調節 することが望ましい。
さて、 抜き出された吸収液 (以下、 抜出液) 中には、 S O —及び/又 は S 0 3 2—及び Z又は N H を含んでいるため、 必要であればさらに硫酸 及び/又は N H 3 を注入し、 さらに必要であれば S 0 3 2—を S 0 に酸 化した上で水分を蒸発させると、 上流側のアンモニア注入法部分におい て回収される粉体と同じく、 硫安を含むアンモニア化合物の粉体又は固 体が得られ、 これは肥料として利用可能である。 ところが、 このように抜出液から硫安を含むアンモニア化合物の粉体 又は固体を得るためには、 水分を蒸発させるための設備及び熱 · 電力等 のエネルギーが必要になる。 そこで、 本発明の排ガス処理方法において は、 抜出液を上流側のアンモニア注入法部分において、 N H 3 の注入の 前に、 又は N H 3 の注入と同時に、 又は N H 3 の注入後、 又は N H 3 と 混合の上、 又は N H 3 の注入と粉体の回収の間に、 そのままで又は水と 希釈の上、 噴霧注入する。
この方法においては、 噴霧された抜出液中の水分の全部又は一部は、 上記 ( 1 ) で代表される脱硫反応で消費されるとともに、 反応熱及び排 ガスがもともと所有していた顕熱によって蒸発する。 したがって、 抜出 液中の溶解成分の全部又は一部は蒸発乾固して、 排ガス中の S O x と注 入された N H 3 の反応によつて生成した粉体とともに電気集塵装置等の 粉体回収装置で回収される。
なお、 N H 3 の注入前の排ガスの温度及び吸収液の抜き出し量及び噴 霧量を適切に調節すれば、 抜出液の全てを蒸発乾固することが可能であ る。 一方、 抜出液の一部のみを噴霧した場合、 あるいは噴霧した抜出液 の一部が蒸発せずに排水となった場合には、 それら残余の抜出液に上記 のような処理を施すことによ り、 硫安を含むアンモニア化合物の粉体又 は固体として回収することができる。 この場合でも、 抜出液の全量を処 理した場合よ り設備費及び運転費を低減できる。
抜出液の噴霧方法としては、 排ガスへ N H 3 を注入するアンモニア注 入装置とは別個に抜出液噴霧装置を設け、 該抜出液噴霧装置を、 アンモ ニァ注入装置の前か、 同位置か、 又は後ろに配備することが可能である。 ただし、 アンモニア注入法部分における脱硫率を向上させるためには、 N H 3 を該抜出液と混合し、 アンモニア溶解液の液滴として噴霧注入す ることが望ましい。 この方法によれば、 上記式 ( 1 ) のような脱硫反応 がアンモニア溶解液の液滴とガスの気液界面で著しく促進される。
また、 アンモニア溶解液の液滴の噴霧注入に先立って、 排ガスを水分 飽和温度以上、 8 0 °C以下に冷却し、 かつ該アンモニア溶解液をザウタ 平均粒径が 0 · 5 / m以上、 3 0 m以下の液滴に微粒化して噴霧する ことによってアンモニア注入部分での脱硫率を向上させることができる, なお、 N H 3 と抜出液を混合する方法としては、 該抜出液又は該抜出 液と水の混合液をあらかじめ N H 3 と混合してアンモニア溶解液を生成 せしめ、 該アンモニア溶解液を噴霧注入する方法が可能である。 その際、 二流体ノズルを用いて該アンモニア溶解液と圧縮空気を気液混合噴霧す れば、 アンモニア溶解液を微粒化噴霧することが可能である。
N H 3 と抜出液を混合する方法としては、 さらに、 二流体ノズルを用 いて、 該抜出液又は該抜出液と水の混合液を N H 3ガス又は N H 3ガスと 空気の混合ガスと気液混合噴霧する方法も可能である。
この方法によれば、 抜出液又は抜出液と水の混合液と N H 3 を混合す るための混合器を別途設ける必要がないため、 設備費を節約できる。 た だし、 N H 3 と空気を混合する場合、 特に、 混合時の圧力が高い場合、 N H 3 と空気中の炭酸ガスが反応して炭酸アンモニゥム等が生成し、 混 合ガスが流れる配管を閉塞させる場合がある。 これを防止するため、 混 合ガスの配管をスチーム ト レース等で加温したり、 N H 3 及び/又は空 気及び/又は混合ガスを加熱することが望ましい。 さらに、 二流体ノズ ルの気液混合室において、 抜出液又は抜出液と水の混合液と N H 3 ガス 又は N H 3 ガスと空気の混合ガスを気液混合する際、 液側にカルシウム イオン及び/又はマグネシウムイオンが溶解していると、 それらのィォ ンが気液混合室の接液面に析出してスケ—リ ングが発生することがある ため、 あらかじめ抜出液又は抜出液と水の混合液からカルシウムイオン 及び/又はマグネシウムイオンを除去しておく ことが望ましい。 次に、 図 1乃至図 4を用いて本発明の第 1の態様を詳細に説明する。 図 1は、 本発明の第 1の態様の排ガス処理装置の一例を示すフロー構 成図である。 図 1において、 1はボイラ、 2は熱交換器、 3はガス冷却 塔、 4は反応器、 5は二流体ノズル、 6は電気集塵装置、 7はガス吸収 塔、 8は吸収液貯槽、 9は冷却水循環ポンプ、 1 0は排ガス昇圧フ ァン, 1 1はアンモニア貯槽、 1 2はコンプレッサ、 1 3は噴霧水貯槽、 1 4 はライ ンミキサ、 1 5は混合ガス加熱器、 1 6, 1 9はアンモニア散気 管、 1 7はろ過装置、 1 8は噴霧ポンプ、 20は吸収液循環ポンプであ る。
S Ο を含む排ガスは、 ボイラ 1から熱交換器 2を通り、 循環冷却水 がポンプ 9により循環され、 必要に応じて工業用水 2 1が補給されるガ ス冷却塔 3に入り、 排ガスが冷却されて反応器 4に導入される。
反応器 4では、 二流体ノズル 5から NH3 ガスと圧縮空気の混合ガス と、 アンモニア溶解液とが噴霧され、 排ガス中の S Oxと N H 3が反応し、 次の電気集塵装置 6に送られる。
二流体ノズル 5に供給される混合ガスは、 コンプレッサ 1 2からの圧 縮空気とアンモニア貯槽 1 1からの NH3 ガスがライ ンミキサ 14で混 合され、 混合ガス加熱器 1 5で蒸気 29と間接的に熱交換することによ つて加熱されて供給される。 また、 二流体ノズル 5に供給されるアンモ ニァ溶解液は、 噴霧水貯槽 1 3に吸収液貯槽 8からの吸収液と、 ガス冷 却塔 3からの循環冷却水を受け入れ、 アンモニア散気管 1 6から N H 3 ガスを導入した後、 ろ過装置 1 7を通って噴霧ポンプ 1 8により供給さ れる。 このアンモニア散気管 1 6からの N H 3 ガスの導入は、 噴霧水の p Hを調整するためのものであり、 大部分の NH3 は、 アンモニア貯槽 1 1からラインミキサ 1 4を経由して圧縮空気と共に二流体ノズル 5に 供給される。 電気集塵装置 6では、 反応によって得られた硫安等の微粉体が除去さ れ、 排ガス昇圧ファン 1 0からガス吸収塔 7に導入され、 N H 3 を含む 吸収液の噴霧により残存する S O x 等の酸性物質が除去され、 大気中に 放出される。
N H 3 を含む吸収液は、 吸収液貯槽 8で導入される工業用水 2 1 にァ ンモニァ散気管 1 9から N H 3 ガスを散気して得られ、 この吸収液を吸 収液循環ポンプ 2 0によ り、 ガス吸収塔 7に循環させながら噴霧する。 なお、 吸収塔としては、 N H 3 を含む吸収液で説明したが、 反応器から の残存 N H 3 が多い場合は、 硫酸等の酸を導入することもできる。
図 2は、 本発明の第 1の態様の排ガス処理装置のもう一つの例を示す フ口一構成図である。
図 2において、 図 1 と同じ符号は同一の意味を有し、 2 3はアンモニ ァ気化器、 2 4はアフタークーラ一である。
ボイラ 1から発生した S O x を含む排ガスは、 熱交換器 2で冷却され た後、 ガス冷却塔 3に導かれ頂部で噴霧された工業用水 2 1 と接触して 冷却された後、 反応器 4に導かれる。
一方、 アンモニア貯槽 1 1から供給された液化アンモニアは、 アンモ ニァ気化器 2 3において、 蒸気と間接的に熱交換することによって N H 3ガスとなり、 該 N H 3ガスはラインミキサ 1 4に供給される。 また、 コ ンプレッサ 1 2で発生した圧縮空気は、 ァフ夕一クーラ一 2 4で冷却水 と間接的に熱交換することによって冷却された後、 ライ ンミキサ 1 4に 供給され、 前記 N H 3ガスと混合される。
前記アンモニア混合空気は、 反応器 4の入口部に設けられた二流体ノ ズル 5に供給され、 吸収液貯槽 8から噴霧水貯槽 1 3を経由して供給さ れる吸収液を噴霧水貯槽 1 3において工業用水 2 1 と混合して得られる 噴霧水と混合の上、 前記排ガス中に噴霧注入される。 排ガス中の S O x は、 硫安を主成分とする粉体に転換される。 該粉体は電気集塵装置 6に よって捕集され、 排ガスはガス吸収塔 7に導入され、 N H 3 を含む吸収 液の噴霧によ り残存する S O x 等の酸性物質が除去され、 大気中に放出 される。
N H 3 を含む吸収液は、 吸収液貯槽 8で導入される工業用水 2 1にァ ンモニァ散気管 1 9からアンモニア気化器 2 3を介して供給される N H 3 ガスを散気して得られ、 この吸収液を吸収循環ポンプ 2 0によ り、 ガ ス吸収塔 7 に循環させながら噴霧している。
図 3は、 本発明の第 1の態様の排ガスの別の例を示すフロー構成図で あり、 図 2 との相違は、 図 2では、 吸収液貯槽 8からの吸収液は噴霧水 貯槽 1 3において工業用水 2 1 と混合の上、 二流体ノズル 5に供給して いるのに対して、 図 3では、 吸収液貯槽 8からの吸収液を凝集沈殿槽 2 6、 砂ろ過槽 2 7、 カチオン交換樹脂槽 2 8を経て噴霧水貯槽 1 3に供 給し、 工業用水 2 1 と混合の上、 二流体ノズル 5に供給している点にあ 。
即ち、 図 3では、 吸収液貯槽 8から抜き出された抜出水は、 その後凝 集沈殿槽 2 6に導かれて高分子凝集剤が注入され、 該抜出水の懸濁固形 物が凝集沈殿し、 該懸濁固形物はスラ リーとして系外に排出される。 抜 出水のうちの上澄水は、 砂ろ過槽 2 7に導かれて残余の懸濁固形物が除 去された後、 カチオン交換樹脂槽 2 8に導かれる。
カチオン交換樹脂槽 2 8では、 ろ過後の抜出水中に溶解しているカル シゥムイオン及びマグネシウムィオンが樹脂上のナ ト リ ウムイオンと交 換されることにより、 該カルシウムイオン及びマグネシウムイオンが除 去される。 該軟水化された抜出水は、 反応器 4の入口部に設けられた二 流体ノズル 5に供給される。
該ニ流体ノズル 5に供給される抜出水は、 吸収液貯槽 8からカチオン 交換樹脂槽 2 8までの抜出水処理装置で、 pHが 5から 9、 懸濁固形物 濃度が 1 0 mg/L (リ ッ トル) 以下に処理されて、 反応器 4中に二流 体ノズル 5から、 ライ ンミキサ 1 4で混合された NH3 ガスと圧縮空気 の混合ガスとともに噴霧注入される。
図 4は、 本発明の第 1の態様の排ガス処理装置の他の一例を示すフ口 一構成図である。
図 4において、 図 1と同じ符号は同一の意味を有する。
ボイラ 1から発生した S Ο を含む排ガスを、 熱交換器 2で冷却した 後、 排ガスを頂部で噴霧する工業用水 2 1と接触させて冷却するガス冷 却塔 3で冷却した後、 反応器 4に導く。 一方、 アンモニア貯槽 1 1から アンモニア散気管 1 6を経由して供給された NH3 と吸収液貯槽 8から 供給される吸収液を工業用水 2 1 と噴霧水貯槽 1 3で混合して、 N H3 が溶解した水溶液を作り、 該アンモニア溶解水溶液とコンプレ ッサ 1 2 からの圧縮空気を、 反応器入口に設置した二流体ノズル 5で気液混合噴 霧することにより、 微粒化されたアンモニア水の液滴を排ガス中に注入 する。 反応器に噴霧注入する NH3 は、 すべて一旦、 噴霧水貯槽 1 3に おいて、 吸収液貯槽 8から供給される吸収液と工業用水 2 1の混合液中 に溶解される。 さらに、 その結果生成した硫安を主成分とする粉体の副 生品を乾式電気集塵装置 6で捕集する。
捕集後の排ガスは、 ガス吸収塔 7に導入され、 図 1と同様に処理され る。
[実施例 1 ]
以下、 本発明を図 1に示す実施例により説明する。
実施例 1一 1
図 1を用いて、 本発明を具現化した排ガス処理方法について説明する。 なお、 以下のガス中の S Ox、 N Ox、 NH3 及びダス ト濃度はすべて 入口乾ガス量換算の濃度である。
ボイラ 1から発生した、 S Ox を 8 50 pp m含む排ガス 1, 5 00 Nm3/hは、 熱交換器 2で 1 50°Cまで冷却された後、 ガス冷却塔 3に 導かれる。 ガス冷却塔 3では冷却水循環ポンプ 9で循環冷却水が噴霧さ れ、 排ガス温度は 60 °Cまで冷却され、 排ガス中の S 0 のうち 1 0 p p mが冷却水中に吸収される。
ガス冷却塔 3の循環冷却水は 3 L (リ ッ トル) /hの割合で噴霧水貯 槽 1 3に抜き出され、 その抜出量及び前記排ガスとの接触の際に蒸発又 は飛散した量に応じて工業用水 2 1が補給される。 これによつて、 ガス 冷却塔 3底部における循環冷却水の水位は一定に保たれ、 また循環冷却 水の p Hは 2に保たれる。 ガス冷却塔 3を出た排ガスは反応器 4に導か れる。
一方、 アンモニア貯槽 1 1から供給された NH3 ガス 1. 4 k gZh は、 コンプレ ッサ 1 2から供給されァフ夕一クーラで冷却された圧縮空 気 8 Nm3/hとライ ンミキサ 14で混合される。 該アンモニア混合空気 は混合ガス加熱器 1 5で温度を調整された後、 二流体ノズル 5に供給さ れ、 噴霧ポンプ 1 8から供給される噴霧水 8 L/hとともに二流体混合 噴霧される。 混合ガス中の NH3 の一部が噴霧水中に溶解することによ つて、 噴霧水はアンモニア溶解液としてガス中に噴霧される。 噴霧液滴 のザウタ平均粒径は 1 0 zmであり、 噴霧水中の水分は完全に蒸発し、 噴霧水中の溶解成分は蒸発乾固して硫安を主成分とする副生品粉体とな る。
この噴霧水とアンモニア混合空気の二流体混合噴霧によって、 反応器 4に導かれた排ガス中の S Oxのうちの 6 0 %が N H 3と反応して硫安を 主成分とする副生品粉体に変換され、 反応によって生成したものと、 噴 霧水中の溶解成分が蒸発乾固して生成したものを合わせた 5. 9 k g/ hと、 残余の S 0 xを 340 p p m、 N H 3を 340 p p m含む排ガスが 電気集塵装置 6に導かれる。
電気集塵装置 6において、 排ガス中の副生品粉体が 9 9 %捕集され、 電気集塵装置 6の底部からは、 5. 8 k g/hの副生品粉体が排出され る。 排ガス中の副生品ダス ト濃度は 44 mg/Nm3 となり、 排ガス昇 圧フ ァン 1 0で昇圧された後、 ガス吸収塔 7に導かれる。 ガス吸収塔 7 では吸収液循環ポンプ 2 0で吸収液が噴霧されて、 ガス吸収塔 7に導か れた排ガス中の S O.、 の 7 5 %が吸収液中に吸収され、 また、 NH3 及 び副生品ダス トも吸収液中に吸収 ' 捕集される。 その結果、 S O x を 8 5 p pm、 N H 3 を 1 0 p pm、 副生品ダス トを 30 m g/Nm3 含む 排ガスが、 ガス吸収塔 7の頂部から大気中に放出される。 この結果、 プ ロセス全体としては 90 %という比較的高い脱硫率が、 電子ビーム照射 なしで、 しかも 1 O p pmという低いリークアンモニア濃度で達成され る。
ガス吸収塔 7の吸収液は吸収液貯槽 8に一次貯留され、 そこから 5 L /hの割合で噴霧水貯槽 1 3に抜き出され、 その抜出量及び前記排ガス との接触の際に蒸発又は飛散した量に応じて工業用水 2 1が吸収液貯槽 8に補給される。 吸収液貯槽 8には、 吸収液の p Hが 3になるように調 整されてアンモニア散気管 1 9から NH3 が供給される。 その場合のァ ンモニァ散気量は 0. l k g/hとなる。
噴霧水貯槽 1 3には、 前記のようにガス冷却塔 3からの抜出液 3 L/ hとガス吸収塔 7からの抜出液 5 L/hが供給されるが、 そこでは、 噴 霧水の pHが 4となるように調整されて、 アンモニア散気管 1 6から N H3ガスが供給される。 その場合の N H 3ガスの散気量は 0. 03 k g/ hとなる。 噴霧水貯槽 1 3を出た噴霧水 8 L/hは、 ろ過装置 1 7で不 溶解分を汚泥として除去した後、 噴霧ポンプ 1 8によって二流体ノズル 5に供給され、 前記のようにアンモニア混合空気とともに二流体混合噴 霧される。 なお、 噴霧水 8 L/h中には 1. 9 kg/hのアンモニゥム 化合物が溶解しており、 これは噴霧水の蒸発によつて蒸発乾固して副生 品粉体とな り、 反応によって生成した副生品粉体とともに電気集塵装置 6で捕集される。
本発明の第 1の態様によれば、 後段にガス吸収装置を配備したことに より、 エネルギーコス トを低く抑えながら、 NH3のリークを低く抑え た上で、 高い脱硫率を得ることができる。
本発明の第 2の態様は、 S Ox及び NOxを含む排ガス中に NH3 又は N H 3 と水を注入した上で電子ビームを照射し、 S O.、及び NO-xを NH 3 と反応させて硫安及び硝安を含むアンモニア化合物の粉体を生成せし め、 該粉体を回収した後、 該排ガスを s 0 —及びノ又は s 03 2—及び z 又は N 0 及び/又は N 03—及び/又は NH を溶解する吸収液と接触 させ、 該排ガス中に含まれる残余の S Ox及び/又は N Ox及び/又は N Ha を吸収液に吸収させて除去して排ガスを脱硫及び/又は脱硝する処 理方法である。
本発明の排ガス処理方法においては、 ガス吸収装置における N Ox の 吸収効率を向上させるために、 NH3 の注入と電子ビームの照射の後に 残存する NOを NO 2 又は N 205に酸化することが好ましく、 そのため には前記粉体の回収装置としてはコロナ放電を利用する電気集塵装置を 用いることができる。
さらに、 電子ビーム法部分を出た排ガス中に残存する NOを N02 又 は N 205に酸化するために、 電子ビームが透過する金属製薄膜を冷却し た後のオゾン含有空気を、 電子ビームを照射した後でかつガス吸収装置 に入る前の排ガスに注入することができる。 さらに、 別途設けたオゾン 発生装置で発生させたオゾンを注入することも可能である。 [実施例 2 ]
以下、 本発明の第 2の態様を図 5乃至図 8に示す実施例により具体的 に説明する。
実施例 2— 1
図 5は、 本発明の第 2の態様の排ガス処理方法を実施するための一例 を示すフロー構成図である。
図 5において、 ボイラ 1から発生した、 S O x を 20 00 p pm、 N 0を 300 p p m含む排ガス 1 , 500 N m3/ hは、 熱交換器 2で 1 5 0°Cまで冷却された後、 ガス冷却塔 3に導かれる。 ガス冷却塔 3では、 冷却水循環ポンプ 9で循環冷却水が噴霧されることによ り、 排ガスは 6 0°Cまで冷却され、 また、 排ガス中の S O.x のうち 50 p pmが冷却水 中に吸収される。
ガス冷却塔 3の循環冷却水は、 1 3. 5 L/hの割合で噴霧水貯槽 1 3に抜き出され、 その抜き出し量及び前記排ガスとの接触の際に蒸発又 は飛散した量に応じて工業用水 2 1が補給される。 これによつて、 ガス 冷却塔 3底部における循環冷却水の水位は一定に保たれ、 また循環冷却 水の p Hは 1程度に保たれる。
一方、 アンモニアガス貯槽 1 1から供給された NH3 ガス 3. 6 kg /hは、 コンプレッサ 1 2から供給され、 アフタークーラで冷却された 圧縮空気 1 6 Nm3/hとライ ンミキサ 1 4で混合される。
該アンモニア混合空気は、 図示されていない混合ガス加熱器で温度を 調整された後、 二流体ノズル 5に供給され、 噴霧ポンプ 1 8から供給さ れる噴霧水 2 6. 5 L/hと共に、 二流体混合噴霧される。 混合ガス中 の NH3 ガスの一部が、 噴霧水中に溶解することによって、 噴霧水はァ ンモニァ溶解液として、 ガス中に噴霧される。 噴霧液滴のザウタ平均粒 径は 1 5 mであり、 噴霧水中の水分は完全に蒸発し、 噴霧水中の溶解 成分は、 蒸発乾固して硫安及び硝安を主成分とする粉体となる。
この噴霧水とアンモニア混合空気の二流体混合噴霧の後、 排ガスには 2 k G yの電子ビームが電子加速器 3 0から照射され、 反応器 4に導か れた排ガス中の、 S O:< のうちの 8 5 %、 NOの 1 5 %が NH3 と反応 して、 硫安及び硝安を主成分とする生成物粉体に変換される。 反応器 4 を出た排ガスは、 反応によって生成したものと、 噴霧水中の溶解成分が 蒸発乾固して生成したものを合わせた生成物ダス トを 1 0. 9 g/Nm 3と、 残余の S O.xを 29 0 ppm、 NOを 1 5 5 p pm、 NOが酸化さ れて生成した N02 を 1 00 p pm、 さらに NH3 を 1 50 p pm含む 排ガスが電気集塵装置 6に導かれる。
電気集塵装置 6において、 排ガス中の生成物ダス トが 9 9. 8 %が捕 集され、 電気集塵装置 6の底部からは 14. 6 k g/hの反応生成物粉 体 34が排出される。 排ガス中の生成物ダス ト濃度は 2 2 mg/Nm3 となり、 排ガス昇圧ファン 1 0で昇圧された後、 ガス吸収塔 7に導かれ る。 ガス吸収塔 7では吸収液循環ポンプ 20で吸収液が噴霧されて、 吸 収塔 7に導かれた排ガス中の S Oxの約 3 0 %、 NO 2の約 25 %が吸収 液に吸収され、 また NH3 及び生成物ダス トも吸収液に吸収 '捕獲され る。 その結果、 排ガスは、 S Oxを 2 0 0 p pm、 N Oxを 2 3 0 p pm (うち N Oは 1 55 ppm、 N02は 7 5 p pm) 、 NH3を 5 ppm、 生成物ダス トを 20mg/Nm3 含むようになり、 処理後の排ガス 33 は、 ガス吸収塔 7の頂部から大気中に放出される。
この結果、 プロセス全体としては、 9 0 %という比較的高い脱硫率が、 2 k G yという少量の電子ビーム照射で、 しかも 5 p pmという非常に 低いリークアンモニア濃度で達成される。 ただし、 脱硝率はプロセス全 体で 2 5 %程度に留まる。
ガス吸収塔 7の吸収液は、 吸収液貯槽 8に一次貯留され、 そこから 1 3. 0 L/hの割合で噴霧水貯槽 1 3に抜き出され、 その抜出量及び前 記排ガスとの接触の際に蒸発又は飛散した量に応じて、 工業用水 2 1が 吸収液貯槽 8に補給される。 その際、 吸収液に吸収された S Ox、 N Ox 及び NH3 に起因するイオンの合計重量濃度は約 6 %となる。 また、 吸 収液に吸収された S Oxに起因するイオンの大半は S 0 である。
噴霧水貯槽 1 3には、 前記のように、 ガス冷却塔 3からの抜出液 1 3 5 L/hとガス吸収塔 7からの抜出液 1 3. 0 L/hが供給されるが、 そこでは、 噴霧水の p Hが 3以上 5以下となるように調整されて、 アン モニァ散気管 1 6から N H3 ガスが供給される。 また、 噴霧水貯槽 1 3 で、 S 0 を S 0 に酸化するために、 曝気ブロワ 4 2で曝気用散気 管 3 9に空気を供給する。 なお、 噴霧水 2 6. 5 L/h中には、 1 . 3 k g/hのアンモニゥム化合物が溶解しており、 これは噴霧水の蒸発に よって蒸発乾固して生成物粉体となり、 反応によって生成した生成物粉 体と共に、 電気集塵装置 6で捕集される。
実施例 2 - 2
図 6は、 本発明の第 2の態様の排ガス処理方法を実施するためのもう 一つの例を示すフロー構成図である。 この例においては、 ボイラから反 応器までは図 5の場合と同じである。
ただし、 二流体ノズルで噴霧される噴霧水の性状、 及び反応器を出た 排ガス中に含まれる生成物粉体の量は異なり、 二流体ノズルで噴霧され る噴霧水 26. 5 L/h中には、 2. 6 k g/hのアンモニゥム化合物 が溶解しており、 電気集塵装置に導かれる排ガス中には、 S Ox 2 9 0 p pm、 N0 1 5 5 ppm、 N 02 1 00 p pm、 N H 3 1 50 p p m とともに副生品粉体を 1 1. 8 g/Nm3含む。
図 6において、 反応器 4を出た排ガスは、 電気集塵装置 6に導かれ、 電気集塵装置 6において、 排ガス中の生成物ダス トの 9 9. 8 %が捕集 され、 電気集塵装置 6の底部からは、 1 6. O k g/hの生成物粉体 3 4が排出される。 排ガス中の生成物ダス ト濃度は、 22 mg/Nm3 と なり、 排ガス昇圧ファン 1 0で昇圧された後、 ガス吸収塔 7に導かれる , ガス吸収塔 7では、 吸収液循環ポンプ 20で吸収液が噴霧されて、 ガス 吸収塔 7に導かれた排ガス中の S 0 の約 80 %、 NO の約 70 %が吸 収液に吸収され、 また NH3 及び生成物ダス トも吸収液に吸収 ' 捕獲さ れる。 その結果、 排ガスは、 S Oxを 60 p pm、 N Oxを 1 8 5 p pm (うち NOは 1 5 5 p pm、 N02は 3 0 p pm) 、 NH3を 5 p pm、 生成物ダス トを 20mg/Nm3 含むようになり、 処理後の排ガス 33 は、 ガス吸収塔 7の頂部から大気中に放出される。
この結果、 プロセス全体としては、 9 7 %という非常に高い脱硫率が. 2 k G yという少量の電子ビーム照射で、 しかも 5 p pmという非常に 低いリークアンモニア濃度で達成される。 また、 脱硝率は 40 %程度に 向上する。
ガス吸収塔 7の吸収液は、 吸収液貯槽 8に一次貯留され、 そこから、 1 3. 0 L/hの割合で噴霧水貯槽 1 3に抜き出され、 その抜出量及び 前記排ガスとの接触の際に、 蒸発又は飛散した量に応じて、 工業用水 2 1が吸収液貯槽 8に補給される。 吸収液貯槽 8では、 曝気プロヮ 42で 曝気用散気管 39に供給された空気によって、 吸収液中の S 03 が S 0 に酸化され、 また、 アンモニア散気管 1 6によって NH3を補給す ることにより、 p Hは 3以上 5以下に調整される。 その際、 吸収液に吸 収された S Ox、 N〇x及び N H3 に起因するイオンの合計重量濃度は約 14 %となる。
噴霧水貯槽 1 3には、 ガス冷却塔 3からの抜出液 1 3. 5 L/hと、 ガス吸収塔 7からの抜出液 1 3. 0 LZhが供給されるが、 そこでは、 噴霧水の pHが 3以上 5以下となるように調整されて、 アンモニア散気 管 1 6から NH3 ガスが供給される。 なお、 噴霧水中に溶解しているァ ンモニゥム化合物は、 蒸発乾固して生成物粉体となり、 反応によって生 成した生成物粉体と共に、 電気集塵装置 6で捕集される。
実施例 2— 3
図 7は、 本発明の第 2の態様の排ガス処理方法を実施するためのさら にもう一つの例を示す部分フロー構成図である。
図 7の構成は、 加速器側窓箔 4 6と反応器側窓箔 4 7を冷却した後の 冷却空気 5 9 (以下、 窓箔冷却後空気) を排ガス昇圧ファン 1 0入口か ら、 排ガスに混入することを除いて、 図 6と同じであり、 図 7では図 6 と共通する部分は省略している。 したがって、 ボイラから反応器までは 図 5及び図 6の場合と同じであるが、 二流体ノズル 5で噴霧される噴霧 水の性状及び反応器 4を出た排ガス中に含まれる生成物粉体の量は異な り、 二流体ノズル 5で噴霧される噴霧水 2 6. S LZh中には、 2. 9 k g/hのアンモニゥム化合物が溶解しており、 電気集塵装置 6に導か れる排ガス中には、 S Ox29 0 ppm、 N01 5 5 p pm、 N 021 0 0 p pm、 NH31 50 p pmと共に副生品粉体を 1 2. l g/Nm3含 む。 図 7では、 加速器側窓箔 4 6及び反応器側窓箔 47を冷却する前の 冷却空気を符号 58で表し、 加速器側窓箔 46及び反応器側窓箔 4 7を 冷却した後の窓箔冷却後空気を符号 59で表している。
さて、 反応器 4を出た排ガスは電気集塵装置 6に導かれ、 電気集塵装 置 6において排ガス中の生成物ダス トが 9 9. 8 %が捕集され、 電気集 塵装置 6の底部からは 1 6. 3 k g/hの反応生成物粉体 34が排出さ れる。 排ガス中の生成物ダス ト濃度は 2 2mg/Nm3となった後、 電子 加速管 30から電子ビームを照射することによって生成したオゾンを含 む窓箔冷却後空気 59の 2 00 Nm3/hと混合される。 その結果、 排ガ ス中の NOの一部が N02に酸化され、 NO及び N02濃度は、 それぞれ 50 0 ppm、 205 p pmとなる。
窓箔冷却後空気 59と混合した排ガスは、 排ガス昇圧ファン 1 0で昇 圧された後、 ガス吸収塔 7に導かれる。 ガス吸収塔 7では、 図 6と同様 に、 吸収液循環ポンプ 2 0で吸収液が噴霧されて、 吸収塔 7に導かれた 排ガス中の S Oxの約 8 0 %、 N 02の約 7 0 %が吸収液に吸収され、 ま た N H3 及び生成物ダス トも吸収液に吸収 ' 捕獲される。 その結果、 排 ガス 33は、 S O-xを 60 ppm、 1^〇.、を 1 1 0 111 (ぅち^^0は5 0 p pm、 N02は 60 p pm) 、 NH3を 5 p pm、 生成物ダス トを 2 Omg/Nm3 含むようになり、 処理後の排ガス 33は、 ガス吸収塔 7 の頂部から大気中に放出される。
この結果、 プロセス全体としては、 9 7 %という非常に高い脱硫率が、 2 k G yという少量の電子ビーム照射で、 しかも 5 ppmという非常に 低いリークアンモニア濃度で達成される。 また、 脱硝率は 6 5 %程度に まで向上する。
ガス吸収塔 7の吸収液は、 図 6に従って、 吸収液貯槽 8に一次貯留さ れ、 そこから 1 3. 0 L/hの割合で噴霧水貯槽 1 3に抜き出され、 そ の抜出量及び前記排ガスとの接触の際に蒸発又は飛散した量に応じてェ 業用水 2 1が吸収液貯槽 8に補給される。 吸収液貯槽 8では、 曝気プロ ヮ 42で曝気用散気管 3 9に供給された空気によって、 吸収液中の S 0 3 2—が S 04 に酸化され、 また、 アンモニア散気管 1 6によって NH3 ガスを補給することによって、 pHは 3以上 5以下に調整される。 その 際、 吸収液に吸収された S Ox、 N Ox及びN H3 に起因するイオンの合 計重量濃度は約 1 6%となる。
噴霧水貯槽 1 3には、 ガス冷却塔 3からの抜出液 1 3. 5 L/hとガ ス吸収塔 7からの抜出液 1 3. 0 Lノ hが供給されるが、 そこでは、 噴 霧水の pHが 3以上 5以下となるように調整されて、 アンモニア散気管 1 6から N H 3 ガスが供給される。 なお、 噴霧水中に溶解しているアン モニゥム化合物は蒸発乾固して生成物粉体となり、 反応によって生成し た生成物粉体と共に電気集塵装置 6で捕集される。
図 8は、 ガス吸収塔で循環使用される吸収液中の S 0 3 2 _を S 0ノーに 酸化するもう一つの例を示す部分フロー構成図である。
図 8では、 吸収液は一部が、 曝気槽 4 4に抜き出され、 曝気ブロワ 4 2で曝気用散気管 3 9に供給された空気によって S 0 が S 0 —に酸 化した上で、 吸収液戻しポンプ 4 5によって吸収液貯槽 8に戻される点 を除いては、 図 6 と同様に操作される。
本発明の第 2の態様によれば、 アンモニア注入法部分において、 N H
3 の注入量などのプロセス変数を調整することにより、 電子ビーム法部 分を出た排ガス中に残存する S O xと N H 3の比率を適切に調整した上で- 電子ビーム法部分の下流側にガス吸収塔を設け、 そのガス吸収塔で N H 3とともに S 0 .、を吸収させるようにしたことにより、 吸収液中の塩濃度 を高めることができ、 系外に抜き出される排水量を低く抑え、 かつ N H 3 以外の硫酸等の薬剤を必要としないで、 リークアンモニア濃度を低減 した燃焼排ガスの処理が効率よくできる。
本発明の第 3の態様は、 S O xを含む排ガスに N H 3を注入するに先立 つて、 該排ガスを冷却水と接触させ、 一方、 S O xと N H 3の反応によつ て生成したアンモニア化合物を回収した後、 該排ガスを吸収液と接触さ せることによ り、 排ガス中に含まれる残余の N H 3 を除去せしめると共 に、 該吸収液の補給水として、 前記冷却水の一部を抜き出して使用する (
S O xを含む排ガスを冷却水に接触させると、 排ガス中の S O xの一部 は、 冷却水中に S 0 3 2—又は S 0 4 2—として溶解するため、 冷却水の p H は 7 よりも低くなる。 一方、 前述のように、 アンモニア注入法部分にお いて生成物を回収後の排ガスを吸収液に接触させ、 未反応の N H 3 を吸 収せしめると、 吸収液中の N H 4 +濃度が徐々に上昇し、 その結果、 吸収 液の p Hが上昇する。 この吸収液には、 抜き出し量及び蒸発量に見合う 分だけの補給水が補給されるが、 前記排ガスと接触後の冷却水を該補給 水として使用すれば、 吸収液の P Hの上昇を抑制することができ、 した がって、 吸収液による排ガス中の N H 3 の吸収効率の低下を抑えること ができる。
なお、 上記のように、 吸収液中に S O 3 として溶解している場合よ り、 S O — として溶解している場合の方が p Hを低下させる効果が大 きく、 したがって、 N H 3 の吸収効率の低下を抑制させる効果も大きい, このため、 前記冷却水中の S◦ を、 曝気等の手段によって S 0 ーに 酸化することにより、 該冷却水を補給水とすることによる吸収液の N H 吸収効率の低下抑制効果が顕著になる。
一方、 アンモニア注入法においては、 S〇 と注入された N H 3との反 応は、 排ガスの温度が低い方が反応性が高い。 したがって、 排ガスと冷 却水との接触においては、 できるだけ排ガスの温度を低くすることが望 ましい。 そのためには、 排ガスと接触する冷却水流量を大きくすること が望ましく、 それは冷却水を循環使用することによって実現され、 その 場合、 循環冷却水の一部を抜き出して前記吸収液の補給水とすることが できる。 このように、 循環冷却水を一部抜き出すことによって、 冷却水 中の S S濃度が、 際限なく上昇して冷却水の循環使用に支障をきたすこ とが防止される。
石炭 · 重油などを燃焼させるボイラ燃焼排ガスにおいては、 排ガス中 に含まれる S O x 濃度は、 通常、 1 0 0 p p m〜数千 p p m程度である ( そして、 前記循環使用される冷却水では、 数 p p m〜数十 p p m程度の S O x が除去される。 一方、 吸収液との接触部分を除く、 狭義のアンモ ニァ注入法部分では、 電子ビームの照射がなければ、 通常、 百数十 p p m〜数百 p P m程度の N H 3 が残存し、 それが吸収液との接触によって 数 p p m〜数十 p pm程度まで低減される。 理論的には、 S O x 1 p mに相当する S 0 —は、 2 p pm程度に相当する NH 3と反応可能であ るため、 多くのガス条件においては、 冷却水中に溶解した S 0 — 及び /又は S O — は、 たとえ冷却水中の S 0 —を S◦ Ίこ酸化させたと しても、 吸収液に吸収すべき N H3と反応するのに十分ではない。
これを補うためには、 冷却水の一部を抜き出した補給水に加えて、 硫 酸を補給することができる。 その場合、 本発明によれば、 従来の技術と 比較して硫酸の使用量を抑制することができる。 あるいは、 NH3 を注 入した後の排ガスに電子ビームを照射することによって、 反応生成物を 回収後の排ガス中に残存するリークアンモニアを、 冷却水の一部を抜き 出した補給水中に含まれる S 03 2—及び/又は S 0 —で除去可能な濃度 まで、 抑制することができる。 さらにまた、 狭義のアンモニア注入法部 分での NH3 の注入量を抑制することにより、 吸収液の接触前のリーク アンモニア濃度を抑制すると共に、 残存する S Ox 濃度を上げて、 該 S Oxの一部を吸収液中に溶解せしめ、 生成した S 03 2—及び/又は S〇 一 を p Hの上昇抑制に寄与させることにより、 硫酸の使用量をさらに抑 制させることも可能である。
[実施例 3]
以下、 本発明の第 3の態様を図 9乃至図 1 1に示す実施例により具体 的に説明する。
実施例 3 - 1
図 9は、 本発明の第 3の態様の排ガス処理装置の一例を示すフロー構 成図である。
図 9において、 ボイラ 1から発生した S Ox を 1 500 pp m含む排 ガス 1 500 Nm3/hは、 熱交換器 2で 1 50 °Cまで冷却された後、 ガ ス冷却塔 3に導かれる。 ガス冷却塔 3では、 冷却水循環ポンプ 9で循環 冷却水が噴霧され、 排ガス温度は 60 °Cまで冷却され、 排ガス中の S O のうち 5 0 p p mが冷却水中に吸収される。 ガス冷却塔 3を出た後の 排ガスは、 反応器 4に導かれる。
ガス冷却塔 3の底部貯留部には、 循環冷却水が暫時留まるが、 該冷却 水には、 曝気ブロワ 4 1から供給された空気が曝気用散気管 5 2によつ て供給され、 冷却水中の S 03 2—は S 0 _に酸化される。 ガス冷却塔の 循環冷却水は、 60 L/hの割合で吸収液貯槽 8に抜き出され、 その抜 き出し量及び前記排ガスとの接触の際に蒸発又は飛散した量に応じて、 工業用水 2 1が補給される。 これによつて、 ガス冷却塔 3の底部貯留部 における循環冷却水の水位は一定に保たれ、 また、 循環水の pHは 1前 後に保たれる。
一方、 アンモニアガス貯槽 1 1から供給された NH3 ガス 2. 9 k g /hは、 コンプレッサ 1 2から供給された圧縮空気 1 l Nm3/hとライ ンミキサ 1 4で混合された上で、 二流体ノズル 5に供給され、 工業用水 2 1の 1 9 L/hと共に、 二流体混合噴霧される。 その際、 混合ガス中 の NH3 の一部が工業用水中に溶解することによって、 噴霧水はアンモ ニァ溶解液の液滴としてガス中に噴霧される。
この工業用水とアンモニア混合空気の二流体混合噴霧によって、 排ガ ス中の S O x 濃度は 1 6 0 p pmまで低減され、 また、 排ガス中には、 生成した硫安を主成分とする副生品粉体 1 0. 3 k g/hと残留 NH3 2 1 0 p pmが含まれる。 この排ガスは、 電気集塵装置 6に導かれ、 排 ガス中の副生品 34は 9 9. 7 %が捕集され、 排ガス昇圧ファン 1 0で 昇圧された後、 ガス吸収塔 7に導かれる。
ガス吸収塔 7では、 吸収液貯槽 8に貯留された吸収液が、 吸収液循環 ポンプ 20によって頂部から噴霧される。 吸収液貯槽 8には、 前記ガス 冷却塔 3からの冷却水の一部を抜き出した補給水 48が供給されると共 に、 吸収液の pHが 2程度となるように硫酸 54が供給され、 一方、 吸 収液貯槽 8の水位が一定になるように、 その一部が抜出液 49として、 吸収液循環ラィ ンの分岐ライ ンから抜き出される。
ガス吸収塔 7で排ガス 33中の S 0 は 1 5 0 p p mまで低減され、 一方、 NH3 も 1 0 p p mまで低減されると共に、 排ガス中に含まれる 副生品粉体の一部も、 吸収液中に捕獲されて、 ダス ト濃度は 2 0 mg/ hとなる。 この運転において、 硫酸 54の供給量は平均 0. 5 k g/h、 また、 系外には、 主として硫安からなるアンモニア化合物を約 1 %含む 抜出液 49が、 40 L/h排出される。
実施例 3— 2
図 1 0は、 本発明の第 3の態様の排ガス処理装置のもう一つの例を示 すフロー構成図である。
図 1 0において、 ボイラ 1から発生した S Ox を 1 500 p p m含む 排ガス 1 500 Nm3/hは、 熱交換器 2で 1 50°Cまで冷却された後、 ガス冷却塔 3に導かれる。 ガス冷却塔 3では冷却水循環ポンプ 9で循環 冷却水が噴霧され、 排ガス温度は 6 0 °Cまで冷却され、 排ガス中の S O のうち 30 p p mが冷却水中に吸収される。 ガス冷却塔 3を出た後の 排ガスは、 反応器 4に導かれる。
ガス冷却塔 3の底部貯留部には、 循環冷却水が暫時留まるが、 該冷却 水は、 36 L/hの割合で酸化槽 5 3に抜き出され、 その抜き出し量及 び前記排ガスとの接触の際に蒸発又は飛散した量に応じて、 工業用水 2 1が補給される。 これによつて、 ガス冷却塔 3の底部貯留部における循 環冷却水の水位は一定に保たれ、 また、 循環水の pHは 1. 5前後に保 たれる。 酸化槽 53中の冷却水には、 曝気ブロワ 4 1から供給された空 気が曝気用散気管 52によって供給され、 冷却水中の S 03 2—は S 04 2一 に酸化される。 該冷却水は、 吸収塔貯槽 8に移送される。
一方、 アンモニアガス貯槽 1 1から供給された NH 3 ガス 2. 6 k /hは、 コンプレッサ 1 2から供給された圧縮空気 1 1 Nm3/hとライ ンミキサ 1 4で混合された上で二流体ノズル 5に供給され、 工業用水 2 1の 1 8 L/hと共に二流体混合噴霧される。 その際、 混合ガス中の N H3 の一部が、 工業用水中に溶解することによって、 噴霧水はアンモニ ァ溶解液の液滴としてガス中に噴霧される。
この工業用水とアンモニア混合空気の二流体混合噴霧によって、 排ガ ス中の S Ox 濃度は 2 5 0 p p mまで低減され、 また、 排ガス中には、 生成した硫安を主成分とする副生品粉体 9. 8 k g/hと残留 NH3 1 20 p pmが含まれる。 この排ガスは、 電気集塵装置 6に導かれ、 排ガ ス中の副生品は 9 9. 7 %が捕集され、 排ガス昇圧フアン 1 0で昇圧さ れた後、 ガス吸収塔 7に導かれる。
ガス吸収塔 7では、 吸収液貯槽 8に貯留された吸収液が、 吸収液循環 ポンプ 20によって頂部から噴霧される。 吸収液貯槽 8には、 冷却塔 3 からの冷却水の一部を抜き出した補給水 48が供給される一方で、 抜出 液 49がー定量 (40 L h) 排出される。 その抜き出し量及び吸収塔 での蒸発量から補給水 48を差し引いた量に見合う分だけの工業用水 2 1が補給されることによって、 吸収液貯槽 8の液位が一定に保たれる。 さらに、 吸収液の; Hが 2程度となるように硫酸 54が補給される。 ガス吸収塔 7で排ガス 33中の S Ox は 22 5 p pmまで低減され、 一方、 NH3 も l O p pmまで低減されると共に、 排ガス中に含まれる 副生品粉体の一部も、 吸収液中に捕獲されてダス ト濃度は 2 Omg/h となる。 この運転において、 循環水の pHは 2. 5程度であり、 系外に は主として、 硫安からなるアンモニア化合物を約 2. 0 %含む抜出液 4 9が 20 L/h排出される。 実施例 3— 3
図 1 1は、 本発明の第 3の態様の排ガス処理装置のもう一つの例を示 すフ口一構成図である。
図 1 1において、 ボイラ 1から発生した S 0.、 を 8 5 0 pp m含む排 ガス 1 5 0 0 Nm3/hは、 熱交換器 2で 1 50 °Cまで冷却された後、 ガ ス冷却塔 3に導かれる。 ガス冷却塔 3では、 冷却水循環ポンプ 9で循環 冷却水が噴霧され、 排ガス温度は 6 0 °Cまで冷却され、 排ガス中の S O のうち 1 5 p p mが冷却水中に吸収される。 ガス冷却塔 3を出た後の 排ガスは、 反応器 4に導かれる。
ガス冷却塔 3の底部貯留部には、 循環冷却水が暫時留まるが、 該冷却 水は 1 8 L/hの割合で酸化槽 5 3に抜き出され、 その抜き出し量及び 前記排ガスとの接触の際に、 蒸発又は飛散した量に応じて、 工業用水 2 1が補給される。 これによつて、 ガス冷却塔 3の底部貯留部における循 璟冷却水の水位は、 一定に保たれ、 また、 循環水の pHは 1. 5前後に 保たれる。 酸化槽 53中の冷却水には、 曝気ブロワ 4 1から供給された 空気が曝気用散気管 52によって供給され、 冷却水中の S 03 は S 04 2一に酸化される。 該冷却水は、 吸収塔貯槽 8に移送される。
一方、 アンモニアガス貯槽 1 1から供給された NH 3 ガス 1 · 7 kg /hは、 コンプレッサ 1 2から供給された圧縮空気 9 Nm3/hと、 ライ ンミキサ 14で混合された上で二流体ノズル 5に供給され、 工業用水 2 1の 1 6 L/hと共に二流体混合噴霧される。 その際、 混合ガス中の N H3 の一部が、 工業用水中に溶解することによって、 噴霧水はアンモニ ァ溶解液の液滴としてガス中に噴霧される。
この工業用水とアンモニア混合空気の二流体混合噴霧の後、 排ガスに は電子加速器 30から 5 k G yの電子ビームが照射される。 この結果、 排ガス中の S O x 濃度は 5 5 p p mまで低減され、 また、 排ガス中には、 生成した硫安を主成分とする副生品粉体 6. 2 k g/hと残留 NH3 6 O p pmが含まれる。 この排ガスは、 電気集塵装置 6に導かれ、 排ガス 中の副生品は 99. 7 %が捕集され、 排ガス昇圧ファン 1 0で昇圧され た後、 ガス吸収塔 7に導かれる。
ガス吸収塔 7では吸収液貯槽 8に貯留された吸収液が、 吸収液循環ポ ンプ 20によって頂部から噴霧される。 吸収液貯槽 8には前記ガス冷却 塔 3からの冷却水の一部を抜き出した補給水 48が酸化槽 53で曝気処 理されて供給され、 一方、 吸収液貯槽 8の水位が一定になるように、 そ の一部が抜出液 49として吸収液循環ラインの分岐ライ ンから抜き出さ れる。
ガス吸収塔 7で排ガス 33中の S は 40 p p mまで低減され、 一 方、 NH3 も 1 O p pmまで低減されると共に、 排ガス中に含まれる副 生品粉体の一部も吸収液中に捕獲されてダス ト濃度は 2 0 m g/hとな る。 この運転において、 循環水の p Hは 3程度であり、 系外には主とし て硫安からなるアンモニア化合物を約 3. 5 %含む抜出液 49が 5 LZ h排出される。
本発明の第 3の態様によれば、 系外に抜き出される排水の量を低く抑 えることができ、 また NH3 以外の硫酸等の薬剤を必要としないか、 あ るいはわずかな量だけ使用して、 最終的なリ一クアンモニア濃度を低減 することができる、 S Oxを含む排ガスに NH3を注入して S Ox を除去 できる排ガス処理方法及び装置を提供できる。
本発明の第 4の態様は、 S Oxを含む排ガスに NH 3を注入するに先立 つて、 該排ガスを該排ガスの水分飽和温度以下に冷却された熱交換面と 接触させ、 一方、 S Oxと NH3の反応によってアンモニア化合物を化一 周した後、 該排ガスを吸収液と接触させることにより、 排ガス中に含ま れる残余の NH3 を除去せしめると共に、 該吸収液の補給水として、 前 記熱交換面で発生した凝縮水を使用する。
S O x を含む排ガスを該排ガスの水分飽和温度以下に冷却された熱交 換面と接触させると、 排ガス中に含まれる水分の一部が凝縮し、 排ガス 中の S O の一部はそのようにして発生した凝縮水中に S 0 3 2—又は S 0 — と溶解するため、 凝縮水の p Hは通常は 1〜 2程度になる。 した がって、 この凝縮水を前記吸収液の補給水として使用すれば、 吸収液の P Hの上昇を抑制することができ、 したがって、 吸収液による排ガス中 の N H 3 の吸収効率の低下を抑えることができる。
なお、 上記のように、 吸収液中に S 0 3 として溶解している場合よ り、 S O "" として溶解している場合の方が p Hを低下させる効果が大 き く、 したがって、 N H 3 の吸収効率の低下を抑制させる効果も大きい, したがって、 前記凝縮水中の S 0 3 を、 曝気等の手段によって S〇 ー に酸化することにより、 該凝縮水を補給水とすることによる吸収液の N H 3 吸収効率の低下抑制効果が顕著になる。
[実施例 4 ]
以下、 本発明の第 4の態様を図 1 2に示す実施例によ り具体的に説明 する。
図 1 2は、 本発明の第 4の態様の排ガス処理装置の一例を示すフロー 構成図である。
ボイラ 1で発生した S O x を含む排ガスは、 接ガス面が該排ガスの水 分飽和温度以下に冷却された熱交換器 2に導かれ、 そこで排ガス中の水 分の一部が凝縮する。 発生した凝縮水は一時的に凝縮水貯槽 5 5に貯留 され、 該冷却水には、 曝気ブロワ 4 1から供給された空気が曝気用散気 管 5 2によって供給され、 凝縮水中の S 0 3 は S 0 _に酸化される。 一方、 アンモニアガス貯槽 1 1から供給された N H 3 ガスは、 コンプレ ッサ 1 2から供給された圧縮空気とラインミキサ 1 4で混合された上で、 二流体ノズル 5に供給され、 工業用水 2 1と共に、 二流体混合噴霧され る。 その際、 混合ガス中の NH3 の一部が工業用水中に溶解することに よって、 噴霧水はアンモニア溶解液の液滴としてガス中に噴霧される。 この後、 反応器 4を出た排ガスは、 電気集塵装置 6に導かれ、 排ガス 中の S Ox と NH3 の反応によって生成した硫安を主成分とするアンモ ニァ化合物の粉体が捕集された後、 排ガス昇圧ファン 1 0で昇圧された 上で、 ガス吸収塔 7に導かれる。
ガス吸収塔では、 吸収液貯槽 8に貯留された吸収液が、 吸収液循環ポ ンプ 20によって頂部から噴霧される。 吸収液貯槽 8には、 凝縮水貯槽 5 5から凝縮水が供給される一方で、 抜出液 4 9がー定量 ( 40 L/ h) 排出される。 その抜き出し量及び吸収塔での蒸発量から凝縮水を差 し引いた量に見合う分だけの工業用水 2 1が補給されることによって、 吸収液貯槽 8の液位が一定に保たれる。 さらに、 吸収液の pHが 2程度 となるように硫酸 54が補給される。
本発明の第 5の態様は、 pH調整前の水溶液を供給する供給口と、 p H調整後の水溶液を排出する排出口を有し、 またその内部に保持した水 溶液中に NH3 ガスを散気するアンモニア散気手段を有する p H調整槽 と、 該 p H調整槽内に保持された水溶液の p Hを測定する p H測定器と、 該アンモニア散気手段に NH3 ガスを供給し、 また該 p H測定器からの 信号に基づいて開度が制御される調整バルブを有するアンモニアガス供 給ラインから構成される NH3 ガスによる pH調整装置である。
従来、 水溶液にアルカ リ性物質を添加することによって、 その p Hを 調整することは広く行われているが、 その際、 アルカ リ性物質の注入方 法としては、 該ァルカ リ性物質を一旦水に溶かしてアル力リ性水溶液と し、 該アルカリ性水溶液を、 pHを調整すべき水溶液 (以下、 pH調整 対象液) に注入するのが通例であった。 特に、 アルカ リ性物質が NH3 である場合、 従来の技術においては、 N H 3 を一旦水に溶解せしめてアンモニア水 (以下、 安水) とした上で. p H調整対象液に注入される。 このような安水による P H調整は、 ボイ ラ燃焼ガスなどの S Ox を含むガスを、 NH を含み、 pHが適切な範 囲に調整された吸収液と接触させることによって、 該 S Ox を吸収除去 する湿式アンモニア脱硫装置における、 吸収液の P H調整に用いられて いる。
ところが、 工業的な NH3 の製造においては、 NH3 は純粋な液化ァ ンモニァ (以下、 液安) として製造され、 NH3 が使用される箇所には. 液安又はそれを気化した N H 3 ガス (圧縮ガス) として搬入されること が通例である。 したがって、 前記の安水による P H調整においては、 N H 3 を受け入れ貯留するアンモニア受入 ' 貯留設備以外に、 NH3 を水 に溶解せしめて安水を製造する安水製造設備が別途必要になる。 特に、 安水による p H調整を使用する湿式アンモニア脱硫装置が設置される、 ボイラ等の燃焼設備を有する施設では、 脱硫装置用に十分な敷地を用意 できないことも多く、 そのような場合には、 施設外に安水製造設備を設 け、 施設外から安水 (通常、 2 0wt %程度) を搬入することになるが、 そのような場合、 輸送重量が純粋な NH3 (液安) を輸送する場合の約 5倍となり、 輸送コス トがかさむという問題があった。
また、 pH調整対象液は、 pH調整を行った後、 さらにろ過などの処 理を行うことが多い。 ところが、 安水による p H調整では、 アルカ リ性 物質である NH3 と共に水が同伴するため、 p H調整過程で液量が増加 し、 p H調整以降の処理を行う装置の通液能力を大きく しなければなら ないという問題があつた。
本発明においては、 N H3が N H 3ガスとして搬入 ·貯留される場合に は、 該アンモニアガス貯槽と前記アンモニア散気手段とを前記アンモニ ァガス供給ライ ンで接続することによって、 従来技術の安水製造設備の ような複雑な設備なしで、 P H調整対象液の p Hを調整することができ o
また、 N H 3 が液体アンモニアとして搬入 · 貯留される場合にも、 ァ ンモニァ水製造設備よ り著しく簡易であるアンモニア気化器を設ければ. 該アンモニア気化器と、 あるいはアンモニア気化器の下流側に設けたァ ンモニァガスアキュムレータと、 前記アンモニア散気手段とを、 前記ァ ンモニァガス供給ライ ンで接続することによって、 容易に p H調整対象 液の p Hを調整することができる。
また、 本発明においては、 p H調整対象液には、 N H 3 だけしか注入 されず、 水が同伴しないため、 p H調整過程で液量が増加することがな く、 p H調整過程以降のろ過などの処理においても、 処理装置の通液能 力を大きくする必要はない。
本発明の p H調整装置において、 アンモニア散気手段としては、 微細 な気孔を多数有する多孔質の材料で構成される散気筒を使用することに よって、 N H 3 ガスを効率的に p H調整対象液に溶解せしめることがで きる。 このような多孔質筒は、 セラ ミ ックス製とすることができ、 特に、 アルミナ質の磁器製とすることができる。 その際、 気孔は 1 0 / m以上 5 0 0 z m以下とすることが好ましい。
本発明の p H調整装置において、 前記調整バルブとしては、 前記 p H 測定器が、 設定下限値を検知した際に発する信号によって開き、 設定上 限値を検知した際に発する信号によって閉じる開閉バルブを使用するこ とによって、 p H調整対象液の p Hを、 設定上限値又は設定上限値より 若干高い値と、 設定下限値又は設定下限値よ り若干低い値の間に保つこ とができる。
ところで、 該閧閉バルブを有するアンモニアガス供給ラインが、 前記 のように、 アンモニアガス貯槽又はアンモニアガスアキュムレータに接 続されている場合、 通常、 該ガス貯槽又はアキュムレータ内の圧力は 0 5〜 1. 0 MP a程度であるため、 開閉バルブが開いた場合に、 一挙に NH3 ガスが液中に注入され、 p H調整対象液の p Hが設定上限値を大 幅に超えることがある。 この問題は、 p H調整対象液の p Hを精密に調 整する必要がある場合に深刻である。
この問題を回避するために、 前記開閉バルブの上流側、 すなわち、 前 記アンモニアガス供給ライ ンがアンモニアガス貯槽又はアンモニアガス アキュムレータに接続されている場合には、 開閉バルブとガス貯槽又は アキュムレータの間に、 NH3 ガスの圧力を調整する圧力調整手段を設 けることができる。 該圧力調整手段としては、 自力式の減圧バルブを使 用することができ、 特に、 より精密な P H調整が要求される場合には、 該減圧バルブの下流側、 すなわち減圧バルブとアンモニア散気手段の間 に、 ニー ドルバルブ等の NH 3 ガスの圧力をさらに減ずる手段を設ける ことができる。
また、 前記圧力調整手段としては、 その内部の圧力が一定に保たれる ような機構を有する、 ガス減圧タンクを使用することもできる。 このよ うなガス減圧タンクは、 設定上限値と設定下限値を検知した際に信号を 発する圧力スィ ッチを有するタンクと、 該圧力スィ ツチからの信号によ つて開閉する開閉バルブによって構成することができる。
なお、 前記アンモニア散気手段が、 アルミナ質の磁器製多孔質散気筒 である場合、 散気筒での NH3 ガス圧力が、 「散気筒が設置される箇所 での水圧 + 0. l kP a以上 50 kP a以下」 の範囲で調整されること が好ましい。
本発明の pH調整装置は、 ボイラ燃焼排ガス等、 S Ox を含む排ガス を、 NH4 +を含む吸収液と接触せしめることによって、 該 S Ox を吸収 除去する排ガス吸収装置に適用することができる。 すなわち、 該排ガス 吸収装置においては、 該吸収液は、 通常、 循環使用されるため、 S O x を吸収するに伴い徐々に P Hが上昇するが、 S O x の吸収効率を低下さ せないためには、 その p Hを適切な範囲に保つ必要があり、 その p Hの 調整に本発明の P H調整装置を使用することができる。
この排ガス吸収装置において、 前記吸収液の p H調整は、 前記 S〇x を含む排ガスと吸収液が接触するガス吸収器本体とは、 別個に p H調整 槽を設けて、 該 p H調整槽で行うことができる。 あるいは、 該ガス吸収 器の底部に吸収液を貯留させる吸収液貯留部を設け、 該吸収液貯留部に 貯留された吸収液の P Hを p H測定器で測定し、 該吸収液に直接 N H 3 ガスを散気することもできる。 その場合、 該吸収液貯留部が、 本発明の p H調整槽となる。
次に、 本発明の第 5の態様を図 1 3及び図 1 4を用いて説明する。 図 1 3及び図 1 4は、 排ガス吸収装置のフロ一構成図であり、 本発明 の N H 3 ガスによる p H調整装置の一例を、 排ガス吸収装置の吸収液の p H調整に使用している。
図において、 1 0 1は排ガス吸収塔、 1 0 2は 11調整槽、 1 0 3は スプレーノズル、 1 0 4はアンモニア散気筒、 1 0 5は撹拌機、 1 0 6 は吸収液循環ポンプ、 1 0 7はミス トセパレ一夕、 1 0 8は循環吸収液、 1 0 9は入口排ガス (処理前) 、 1 1 0は出口排ガス (処理後) であり、 1 1 1〜 1 2 0はアンモニアガス供給系を示す。
図 1 3について説明すると、 排ガス吸収塔 1 0 1の底部入口から入つ た排ガス 1 0 9は、 該排ガス吸収塔 1 0 1頂部に設けられたスプレーノ ズル 1 0 3から噴霧された循環吸収液 1 0 8 と接触し、 該排ガス中の S O x は吸収液 1 0 8中に吸収除去され、 清浄化されたガス 1 1 0は、 排 ガス吸収塔 1 0 1頂部のミス トセパレー夕 1 0 7を通って大気に放出さ れる。
循環吸収液 1 0 8は、 排ガス吸収塔 1 0 1底部から抜き出されて p H 調整槽 1 0 2 (水深 1 m未満) に導かれ、 p H調整槽内に設けられた磁 器製で多孔質のアンモニア散気筒 1 04から注入された N H3 ガスを溶 解せしめて p Hが調整される。
N H3 は、 アンモニア貯槽 1 1 1に液安として貯留され、 該液安はァ ンモニァ気化器 1 1 2で蒸気 1 2 3 と間接的に熱交換することによって N H a ガスとなり、 該 N H3 ガスは、 アンモニアガスアキュムレータ 1 1 3に 0. 3 MP a以上 0. 8 M P a以下の圧力で貯留される。 アンモ ニァガスアキュムレータ 1 1 3は、 自力式減圧バルブ 1 1 4、 ニー ドル バルブ 1 1 5及び電磁式開閉バルブ 1 1 6を有するアンモニアガス供給 ライ ンによって、 アンモニア散気筒 1 04と接続される。 該電磁式開閉 バルブ 1 1 6は、 p H調整槽 1 0 2内の循環吸収液 1 0 8の p Hを測定 する p H測定器 1 1 7からの信号によって開閉する。
p H測定器 1 1 7は、 循環吸収液 1 0 8の 11が設定下限値 (通常は p H = 2〜 5程度に設定する) に達したことを検知した際に開信号を発 し、 循環吸収液 1 0 8の p Hが設定上限値 (通常は p H = 5〜 8程度に 設定する) に達したことを検知した際に閉信号を発する。 P Hの測定や 調整を適切に行うために、 P H調整槽 1 0 2内の溶液は、 撹拌機 1 0 5 を用いて充分に撹拌する。
また、 自力式減圧バルブ 1 1 4は、 二次側圧力を 1 0 k P aから 1 0 0 k P a程度に設定し、 ニー ドルバルブ 1 1 5でさらに減圧することに よって、 アンモニア散気筒 1 0 4の NH3 ガスの圧力を、 l O k P a以 上 5 0 k P a以下に調整する。
p H調整槽 1 0 2によって p Hが調整された吸収液 1 0 8は、 吸収液 循環ポンプ 1 0 6によって排ガス吸収塔 1 0 1頂部のスプレーノズル 1 0 3に供給されると共に、 一部が抜出液 1 2 2として系外に排出される, この抜出液 1 2 2中の水分、 及び排ガス中に蒸発して失われる水分を補 うため、 p H調整槽 1 0 2に設けられた図示されない水位調整機構 (水 位計と調整バルブで構成される) によって補給水 1 2 1が補給される。 この抜出液 1 2 2と補給水 1 2 1によって、 循環吸収液 1 0 8の塩濃度 及び S S濃度が適正なレベル以下に抑えることができる。
次に、 図 1 4について説明すると、 排ガス吸収塔 1 0 1の底部入口か ら入った排ガス 1 0 9は、 該排ガス吸収塔頂部に設けられたスプレーノ ズル 1 0 3から噴霧された循環吸収液 1 0 8と接触し、 該排ガス中の S O x は、 吸収液中に吸収除去され、 清浄化されたガス 1 1 0は、 排ガス 吸収塔 1 0 1頂部のミス トセパレー夕 1 0 7を通って大気に放出される, 循環吸収液 1 0 8は、 排ガス吸収塔 1 0 1底部の吸収液貯留部 1 0 2 ' に貯留され (水深 1 m未満) 、 吸収液貯留部 1 0 2 ' に設けらた磁器 製で多孔質のアンモニア散気筒 1 0 4から注入された N H3 ガスを、 溶 解せしめて p Hが調整される。
N H 3 は、 ガスとしてアンモニアガスタンク 1 1 1 ' に 0. 3 MP a 以上 0. 8 MP a以下の圧力で貯留される。 アンモニアガスタンク 1 1 1 ' は、 N o . 1電磁式開閉バルブ 1 1 8、 減圧ガスタンク 1 1 9、 及 び N o . 2電磁式開閉バルブ 1 1 6を有するアンモニアガス供給ライ ン によって、 アンモニア散気筒 1 0 4と接続される。 N o . 2電磁式開閉 バルブ 1 1 6は、 吸収液貯留部 1 0 2 ' 内の循環吸収液 1 0 8の p Hを 測定する p H測定器 1 1 7からの信号によって開閉する。
p H測定器 1 1 7は、 循環吸収液 1 0 8の p Hが設定下限値 (通常は p H = 2〜 5程度に設定する) に達したことを検知した際に開信号を発 し、 循環吸収液 1 0 8の p Hが設定上限値 (通常は p H = 5〜 8程度に 設定する) に達したことを検知した際に開信号を発する。 p Hの測定や 調整を適切に行うために、 吸収液貯留部 1 02 ' 内の溶液は撹拌機 1 0 5を用いて充分に撹拌する。 また、 No . 1電磁式開閉バルブ 1 1 8は 減圧ガスタンク 1 1 9に設けられた圧力スィ ッチ 1 20によって開閉し. それによつて減圧ガスタンク 1 1 9内は、 1 O kP a以上 5 O kP a以 下に調整される。 これによつて、 アンモニア散気筒 1 04での NH3 ガ スの圧力は、 1 O kP a以上 5 O kP a以下に調整する。
p H調整装置によって、 p Hが調整された吸収液 1 0 8は、 吸収液循 環ポンプ 1 0 6によって、 排ガス吸収塔 1 0 1頂部のスプレーノズル 1 03に供給されると共に、 一部が抜出液 1 22として系外に排出される, この抜出液中の水分、 及び排ガス中に蒸発して失われる水分を補うため. 吸収液貯留部 1 0 2 ' に設けられた図示されない水位調整機構 (水位計 と調整バルブで構成される) によって、 補給水 1 2 1が補給される。 こ の抜出液 1 2 2と補給水 1 2 1によって、 循環吸収液 1 08の塩濃度及 び S S濃度を適正なレベル以下に抑えることができる。
本発明の第 5の態様によれば、 上記のような構成としたことにより、 NH 3を一旦水に溶解して安水とする過程を経ずに、 直接 NH3を p H調 整槽中に導入して p H調整することができ、 設備面で経済的な装置とな る。 産業上の利用の可能性
本発明は、 石炭や石油等の種々の燃料における燃焼排ガスに含まれる S O x を高効率で除去することができる排ガス処理システムに好適であ

Claims

請求の範囲
1 . アンモニアを用いて排ガス中の硫黄酸化物を除去する排ガス処理方 法において、 硫黄酸化物を含む排ガスにアンモニアを注入して硫黄酸化 物をアンモニアと反応させ、 硫酸アンモニゥムを含むアンモニア化合物 を生成し、 生成したアンモニア化合物を回収した後、 回収後の排ガスを 吸収液と接触させ、 排ガス中に含まれる残余の硫黄酸化物及び/又はァ ンモニァを除去することを特徴とする排ガス処理方法。
2 . 前記吸収液は、 溶解した亜硫酸イオンを酸化しながら循環使用する ことを特徴とする請求項 1 に記載の排ガス処理方法。
3 . 前記アンモニアの注入量は、 前記吸収液の p Hが吸収液に酸性物質 を加えることなしに 8以下となるように調整することを特徴とする請求 項 1又は 2に記載の排ガス処理方法。
4 . 前記吸収液にアンモニアを補給することによって吸収液の p Hを調 整することを特徴とする請求項 1乃至 3のいずれか 1項に記載の排ガス 処理方法。
5 . 前記吸収液へのアンモニアの補給は、 該吸収液にアンモニアガスを 散気することによって行うことを特徴とする請求項 4に記載の排ガス処 理方法。
6 . 前記アンモニアを注入する前に、 排ガスを冷却水と接触させ、 該排 ガスと接触させた後の冷却水の一部を抜き出して、 そのままで、 又は溶 解した亜硫酸イオンを酸化した上で、 前記吸収液の補給水として供給す ることを特徴とする請求項 1乃至 5のいずれか 1項に記載の排ガス処理 方法。
7 . 前記アンモニアを注入する前に、 排ガスを該排ガスの水分飽和温度 以下に冷却された熱交換面と接触させ、 該熱交換面で発生した凝縮水の 一部又は全部を抜き出して、 そのままで、 又は溶解した亜硫酸イオンを 酸化した上で、 前記吸収液の補給水として供給することを特徴とする請 求項 1乃至 5のいずれか 1項に記載の排ガス処理方法。
8 . 前記吸収液の一部を抜き出し、 該抜出液を、 アンモニアの注入の前、 アンモニアの注入と同時、 アンモニアの注入後、 またはアンモニアと混 合の上、 排ガス中に噴霧注入することを特徴とする請求項 1乃至 7のい ずれか 1項に記載の排ガス処理方法。
9 . 前記アンモニアを注入した後で、 かつ前記アンモニア化合物を回収 する前の排ガスに電子ビームを照射することを特徴とする請求項 1乃至 8のいずれか 1項に記載の排ガス処理方法。
1 0 . 前記電子ビームは、 金属箔を透過して排ガスに照射され、 該金属 箔を空気で冷却し、 冷却後の空気を、 前記吸収液と接触する前の排ガス に注入することを特徴とする請求項 9に記載の排ガス処理方法。
1 1 . 前記吸収液と接触する前の排ガスにオゾン含有ガスを注入するこ とを特徴とする請求項 1乃至 1 0のいずれか 1項に記載の排ガス処理方 法。
1 2 . アンモニアを用いて排ガス中の硫黄酸化物を除去する排ガス処理 装置において、 硫黄酸化物を含む排ガスにアンモニアを注入するアンモ ニァ注入装置と、 注入したアンモニアと硫黄酸化物とを反応させる反応 器と、 生成した硫酸アンモニゥムを含むアンモニア化合物を回収する回 収装置と、 回収後の排ガスを吸収液と接触せしめるガス吸収装置とを有 することを特徴とする排ガス処理装置。
1 3 . 前記ガス吸収装置は、 吸収液を循環させる機構と、 吸収液中の亜 硫酸イオンを酸化する機構とを有することを特徴とする請求項 1 2に記 載の排ガス処理装置。
1 4 . 前記ガス吸収装置は、 吸収液にアンモニアを注入して吸収液の p Hを調整する手段を有することを特徴とする請求項 1 2又は 1 3に記載 の排ガス処理装置。
1 5 . 前記 p Hを調整する手段は、 p H調整前の水溶液を供給する供給 口と、 p H調整後の水溶液を排出する排出口と、 内部に保持した水溶液 中にアンモニアガスを散気するアンモニア散気手段とを有する p H調整 槽と、 該 p H調整槽内に保持された水溶液の p Hを測定する p H測定器 と、 該 p H測定器からの信号に基づいて、 前記アンモニア散気手段にァ ンモニァガスを供給する調整バルブを有するアンモニアガス供給ライン とから構成されることを特徴とする請求項 1 4に記載の排ガス処理装置。
1 6 . 前記アンモニア注入手段は、 吸収液にアンモニアガスを散気する ための多孔質の材料で構成される散気筒からなることを特徴とする請求 項 1 4又は 1 5に記載の排ガス処理装置。
1 7 . アンモニアを注入する前に硫黄酸化物を含む排ガスを冷却水と接 触させるガス冷却装置と、 前記ガス冷却装置に配備される前記冷却水を 循環使用する手段及び該冷却水の一部を抜き出すライ ンと、 前記冷却水 の一部を抜き出すライ ンを前記ガス吸収装置の補給水を導入するライ ン に接続することを特徴とする請求項 1 2乃至 1 6のいずれか 1項に記載 の排ガス処理装置。
1 8 . アンモニアを注入する前に硫黄酸化物を含む排ガスを熱交換面 が該排ガスの水分飽和温度以下に冷却された熱交換器と、 該記熱交換器 の接ガス面で発生する凝縮水を抜き出しライ ンと、 該凝縮水を抜き出す ライ ンを前記ガス吸収装置の補給水を導入するライ ンに接続することを 特徴とする請求項 1 2乃至 1 6のいずれか 1項に記載の排ガス処理装置 c
1 9 . 前記ガス吸収装置は、 吸収液を抜き出すライ ンを有し、 該抜き出 した吸収液を噴霧注入する抜出液噴霧装置を、 アンモニア注入装置の前、 同位置又は後に配備したことを特徴とする請求項 1 2乃至 1 8のいずれ か 1項に記載の排ガス処理装置。
2 0 . 前記反応器は、 内部の排ガスに電子ビームを照射する窓を有する ことを特徴とする請求項 1 2乃至 1 9のいずれか 1項に記載の排ガス処 理装置。
PCT/JP2000/005447 1999-08-12 2000-08-14 Procede et appareil de traitement des gaz d'echappement WO2001012299A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR0013318-3A BR0013318A (pt) 1999-08-12 2000-08-14 Método e aparelho para tratamento de gás efluente
AU64764/00A AU6476400A (en) 1999-08-12 2000-08-14 Method and apparatus for treating exhaust gas
PL00353576A PL353576A1 (en) 1999-08-12 2000-08-14 Method and apparatus for treating exhaust gas
EP00951991A EP1206960A4 (en) 1999-08-12 2000-08-14 METHOD AND DEVICE FOR TREATING EXHAUST GASES
US10/048,489 US6773555B1 (en) 1999-08-12 2000-08-14 Method for treating exhaust gas

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP11/228776 1999-08-12
JP22877699 1999-08-12
JP30637099 1999-10-28
JP11/306370 1999-10-28
JP2000045292 2000-02-23
JP2000/45292 2000-02-23
JP2000096607 2000-03-31
JP2000/96607 2000-03-31

Publications (1)

Publication Number Publication Date
WO2001012299A1 true WO2001012299A1 (fr) 2001-02-22

Family

ID=27477339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005447 WO2001012299A1 (fr) 1999-08-12 2000-08-14 Procede et appareil de traitement des gaz d'echappement

Country Status (8)

Country Link
US (1) US6773555B1 (ja)
EP (1) EP1206960A4 (ja)
CN (1) CN1222348C (ja)
AU (1) AU6476400A (ja)
BG (1) BG64377B1 (ja)
BR (1) BR0013318A (ja)
PL (1) PL353576A1 (ja)
WO (1) WO2001012299A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218293A (ja) * 2010-04-09 2011-11-04 Jfe Engineering Corp 排ガスの処理装置
CN102989303A (zh) * 2012-09-12 2013-03-27 河南绿典环保节能科技有限公司 一种烟气湿式氧化一体化脱硫脱硝及能源化利用方法
CN103007725A (zh) * 2012-09-12 2013-04-03 河南绿典环保节能科技有限公司 一种烟气湿式氧化脱硝及能源化利用方法
JP2013529545A (ja) * 2010-06-23 2013-07-22 チャン,バオカン 燃焼排ガスの浄化及び再生利用システム及びその方法
CN105597249A (zh) * 2016-03-15 2016-05-25 江苏同庆安全科技有限公司 一种具有安全放散功能的废气处理装置及其工艺
US9664383B2 (en) 2013-05-31 2017-05-30 Babock-Hitachi Kabushiki Kaisha Denitrification apparatus
JP2020081908A (ja) * 2018-11-15 2020-06-04 三菱日立パワーシステムズ株式会社 排ガス処理システム及びボイラシステム並びに排ガス処理方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE527907T1 (de) * 2004-04-23 2011-10-15 Panasonic Elec Works Co Ltd Gebläseheizung mit elektrostatischem zerstäuber
US7498009B2 (en) * 2004-08-16 2009-03-03 Dana Uv, Inc. Controlled spectrum ultraviolet radiation pollution control process
US7304187B2 (en) 2005-10-07 2007-12-04 Groupe Conseil Procd Inc. Process for reducing the formaldehyde content of a gas
CN100486676C (zh) * 2005-11-23 2009-05-13 中国石油天然气股份有限公司 一种烟气氨法脱硫并副产亚硫酸铵的方法
CN1327936C (zh) * 2005-12-06 2007-07-25 浙江禾欣实业集团股份有限公司 干法合成革二甲基甲酰胺废气回收处理方法
CN100510195C (zh) * 2006-03-17 2009-07-08 金川集团有限公司 一种控制镍粉电解液pH值的方法
JP2008200561A (ja) * 2007-02-16 2008-09-04 Hitachi Plant Technologies Ltd 硫黄酸化物を含む排ガスの処理方法
US7771685B2 (en) * 2007-04-26 2010-08-10 Marsulex Environmental Technologies, Corp Process and system for removing hydrogen sulfide and mercaptans in ammonia-based desulfurization systems
EP2965001B1 (en) * 2007-09-28 2019-12-18 Steamex Group Sverige AB Method and device for producing a gaseous medium comprising steam
CN101433798B (zh) * 2007-11-12 2011-06-29 河南省旭辉环保工程有限公司 塔外氧化提浓的高效湿式氨回收法脱硫方法及其装置
US8580979B1 (en) 2009-09-28 2013-11-12 Organocat, LLC Method of preparing a humic acid extraction
KR100977081B1 (ko) * 2010-03-31 2010-08-19 한국전력공사 가스 연료화 장치 및 방법
CN101954239B (zh) * 2010-09-26 2013-01-23 攀钢集团钢铁钒钛股份有限公司 一种烟气脱硫脱氨气的方法
CN102166467A (zh) * 2011-03-08 2011-08-31 张光太 电子束同步脱出燃煤锅炉烟气中co2、so2、nox的方法
CN102658016B (zh) * 2012-05-02 2014-10-22 山东天泰钢塑有限公司 一种烟气氨法脱硫并副产高纯度亚硫酸氢铵的方法
CN102658015B (zh) * 2012-05-02 2014-10-15 山东天泰钢塑有限公司 一种烟气氨法脱硫并副产高纯度固体亚硫酸铵的方法
CN102941009B (zh) * 2012-11-28 2015-09-09 佛山市合璟节能环保科技有限公司 一种烟气连续处理方法及装置
DE102013003829B4 (de) * 2013-01-25 2021-11-11 Mehldau & Steinfath Umwelttechnik Gmbh Verfahren und Vorrichtung zur Behandlung von Stickoxide enthaltenden Abgasen aus technischen Prozessen und Verwendungen der Vorrichtung
CN103495293B (zh) * 2013-10-22 2015-09-16 武汉钢铁(集团)公司 氨法脱硫浆液中灰渣去除工艺及其设备
CN104258702B (zh) * 2014-10-16 2016-02-17 厦门大学 一种电子束烟气脱硫脱硝的方法及装置
CN104474858B (zh) * 2014-12-08 2016-05-11 厦门大学 一种烟气脱硫脱硝的方法、装置及其用途
CN110194553A (zh) * 2019-06-04 2019-09-03 广东佳德环保科技有限公司 一种烟气氨法脱硫废水处理系统
KR102469668B1 (ko) * 2020-06-11 2022-11-23 한국생산기술연구원 배가스 응축과 sncr을 적용한 배가스 처리 시스템
CN115259933A (zh) * 2022-08-09 2022-11-01 贵州中伟兴阳储能科技有限公司 磷酸铁母液及洗水的处理方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135880A (en) * 1977-04-30 1978-11-27 Chiyoda Chem Eng & Constr Co Ltd Desulfurizing method for exhaust gas
JPS5425262A (en) * 1977-07-28 1979-02-26 Chiyoda Chem Eng & Constr Co Ltd Wet system simultaneous desulfurization/denitration process
JPS63252527A (ja) * 1987-04-07 1988-10-19 Ebara Corp 放射線照射による排ガスの処理方法
JPH06126127A (ja) * 1992-10-15 1994-05-10 Babcock Hitachi Kk 脱塵脱硫同時処理方法および装置
JPH1066826A (ja) * 1996-08-29 1998-03-10 Chiyoda Corp 排煙脱硫方法および排煙脱硫装置
JPH11207142A (ja) * 1998-01-21 1999-08-03 Babcock Hitachi Kk 湿式排煙脱硫方法と装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3220403C1 (de) * 1982-05-29 1983-11-17 Buckau-Walther AG, 4048 Grevenbroich Verfahren zum Entfernen von sauren Komponenten und Stickoxyden aus Abgasen
US4853193A (en) * 1986-01-10 1989-08-01 Exxon Research And Engineering Company Process for removing NOx and SOx from a gaseous mixture
PL288355A1 (en) 1989-12-22 1991-09-23 Ebara Corp Method of desulfurizing and denitrogenizing outlet gases by multi-step exposure to an electron beam and apparatus therefor
US5362458A (en) * 1993-03-22 1994-11-08 General Electric Environmental Services, Incorporated Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate
JP3361200B2 (ja) 1994-12-12 2003-01-07 日本原子力研究所 電子ビーム照射排ガス処理法及び装置
ATE204504T1 (de) * 1995-12-06 2001-09-15 Lurgi Lentjes Bischoff Gmbh Anlage zur reinigung von rauchgasen mit unterschiedlichen gehalten an sauren komponenten und verfahren zum betrieb der anlage
PL185093B1 (pl) * 1996-03-01 2003-02-28 Ebara Corp Sposób odsiarczania gazów i urządzenie odsiarczające
EP0925105B1 (en) 1996-07-25 2002-10-23 Ebara Corporation Method and apparatus for treating gas by irradiation of electron beam
BR9713397A (pt) * 1996-11-25 2000-01-25 Ebara Corp Método e aparelho para produzir um fertilizante a partir de um gás que contém óxidos de enxofre.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135880A (en) * 1977-04-30 1978-11-27 Chiyoda Chem Eng & Constr Co Ltd Desulfurizing method for exhaust gas
JPS5425262A (en) * 1977-07-28 1979-02-26 Chiyoda Chem Eng & Constr Co Ltd Wet system simultaneous desulfurization/denitration process
JPS63252527A (ja) * 1987-04-07 1988-10-19 Ebara Corp 放射線照射による排ガスの処理方法
JPH06126127A (ja) * 1992-10-15 1994-05-10 Babcock Hitachi Kk 脱塵脱硫同時処理方法および装置
JPH1066826A (ja) * 1996-08-29 1998-03-10 Chiyoda Corp 排煙脱硫方法および排煙脱硫装置
JPH11207142A (ja) * 1998-01-21 1999-08-03 Babcock Hitachi Kk 湿式排煙脱硫方法と装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1206960A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218293A (ja) * 2010-04-09 2011-11-04 Jfe Engineering Corp 排ガスの処理装置
JP2013529545A (ja) * 2010-06-23 2013-07-22 チャン,バオカン 燃焼排ガスの浄化及び再生利用システム及びその方法
CN102989303A (zh) * 2012-09-12 2013-03-27 河南绿典环保节能科技有限公司 一种烟气湿式氧化一体化脱硫脱硝及能源化利用方法
CN103007725A (zh) * 2012-09-12 2013-04-03 河南绿典环保节能科技有限公司 一种烟气湿式氧化脱硝及能源化利用方法
CN102989303B (zh) * 2012-09-12 2014-10-08 河南绿典环保节能科技有限公司 一种烟气湿式氧化一体化脱硫脱硝及能源化利用方法
CN103007725B (zh) * 2012-09-12 2015-03-18 河南绿典环保节能科技有限公司 一种烟气湿式氧化脱硝及能源化利用方法
US9664383B2 (en) 2013-05-31 2017-05-30 Babock-Hitachi Kabushiki Kaisha Denitrification apparatus
CN105597249A (zh) * 2016-03-15 2016-05-25 江苏同庆安全科技有限公司 一种具有安全放散功能的废气处理装置及其工艺
JP2020081908A (ja) * 2018-11-15 2020-06-04 三菱日立パワーシステムズ株式会社 排ガス処理システム及びボイラシステム並びに排ガス処理方法
JP7195885B2 (ja) 2018-11-15 2022-12-26 三菱重工業株式会社 排ガス処理システム及びボイラシステム並びに排ガス処理方法

Also Published As

Publication number Publication date
BR0013318A (pt) 2002-07-16
PL353576A1 (en) 2003-12-01
US6773555B1 (en) 2004-08-10
EP1206960A4 (en) 2006-06-07
EP1206960A1 (en) 2002-05-22
CN1368898A (zh) 2002-09-11
BG106489A (en) 2002-12-29
BG64377B1 (bg) 2004-12-30
CN1222348C (zh) 2005-10-12
AU6476400A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
WO2001012299A1 (fr) Procede et appareil de traitement des gaz d&#39;echappement
US9486736B2 (en) Method and a device for cleaning a carbon dioxide rich flue gas
US9155993B2 (en) Exhaust-gas treatment apparatus and exhaust-gas treatment method
EP0716873B1 (en) Method and apparatus for treating waste gases by exposure to electron beams
JPS604725B2 (ja) 排ガスから酸性成分を除去する方法
KR20170099844A (ko) 침지식 연도 가스 입구를 갖는 물 증발용 폐수 처리 시스템
JP3937356B1 (ja) 排ガス処理方法および設備
EP0883433B1 (en) Desulfurizing method and apparatus by irradiation of electron beam
JP2009154099A (ja) 水銀除去装置、及び水銀除去方法
CZ291726B6 (cs) Způsob zpracovávání spalin
US6569395B1 (en) Method and apparatus for flue gas desulfurization
US4152218A (en) Method for the distillation of sea water
CN115996785A (zh) 同时去除废气中含有的硫氧化物和氮氧化物的改进的方法及装置
KR100266098B1 (ko) 배연처리방법및설비
JP3813835B2 (ja) 燃焼排ガスからの水回収システム
US7785552B2 (en) Method and system of controlling sulfur oxides in flue gas from coal or oil-fired boilers
WO2001072401A1 (fr) Procede de traitement de gaz d&#39;echappement par injection d&#39;ammoniaque
JPH11128659A (ja) 石炭ガス化プラントの起動排ガス処理装置
WO2000041797A1 (fr) Procede et appareil de desulfuration de gaz d&#39;echappement
JP2000237535A (ja) 燃焼排ガス中の無水硫酸の低減方法及び装置
WO2023232293A1 (en) Ammonia-utilizing carbon dioxide capture with flue gas desulfurization system, and method
JP3322817B2 (ja) 無排水型脱硫方法及び装置
MXPA98001386A (en) Procedure and system to treat hum gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 008115540

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2000951991

Country of ref document: EP

Ref document number: 10048489

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2000 106489

Country of ref document: BG

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2000951991

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000951991

Country of ref document: EP