WO2001008203A1 - Verfahren zur beseitigung von redepositionen auf einem wafer und wafer, der frei von redepositionen ist - Google Patents

Verfahren zur beseitigung von redepositionen auf einem wafer und wafer, der frei von redepositionen ist Download PDF

Info

Publication number
WO2001008203A1
WO2001008203A1 PCT/DE2000/002394 DE0002394W WO0108203A1 WO 2001008203 A1 WO2001008203 A1 WO 2001008203A1 DE 0002394 W DE0002394 W DE 0002394W WO 0108203 A1 WO0108203 A1 WO 0108203A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
redepositions
protective layer
dielectric
etching
Prior art date
Application number
PCT/DE2000/002394
Other languages
English (en)
French (fr)
Inventor
Renate Bergmann
Christine Dehm
Barbara Hasler
Ulrich Scheler
Günther SCHINDLER
Volker Weinrich
Walter Hartner
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2001008203A1 publication Critical patent/WO2001008203A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only

Definitions

  • the invention relates to a process for the removal of Re ⁇ depositions on a wafer and a wafer which is free of speech positions.
  • Redepositions are usually formed during the plasma-chemical etching of a layer of a (ferroelectric) storage capacitor with a resist mask and reactive gases.
  • Side wall polymers are made up of constituents of the layers to be etched, the lacquer and the etching gases. These contaminants can reach the height of the paint mask. If they are left on the etched structure, the following problems can arise:
  • Redepositions that have formed after the plasma-chemical etching of the bottom electrode are removed by wet chemistry. This is possible because the layer structure of the carrier, barrier layer and bottom electrode is so stable that it can tolerate the wet chemical cleaning step.
  • EKC-265 ⁇ organic solvents (such as NMP (N-methyl pyrrolidone) and / or acids (such as HF, hydrofluoric acid, BHF, ⁇ mmoniu - fluorid, buffered HF or Caro 'see acid, H 2 SO_, and H 2 0) or developer (eg 5% tetramethylammonium hydroxide in H 2 0) can be removed or reduced, but this treatment is not recommended because it can detach the top electrode and / or the entire wafer structure.
  • organic solvents such as NMP (N-methyl pyrrolidone) and / or acids (such as HF, hydrofluoric acid, BHF, ⁇ mmoniu - fluorid, buffered HF or Caro 'see acid, H 2 SO_, and H 2 0) or developer (eg 5% tetramethylammonium hydroxide in H 2 0) can be removed or reduced, but this treatment is not recommended because it can detach the top
  • the invention relates to a method for eliminating redepositions on a wafer, in which a protective layer is applied at least over parts of the wafer before etching and a wet chemical cleaning step, which leads to the elimination of the redepositions.
  • the invention furthermore relates to a wafer which is essentially free of speech positions.
  • Essentially free here means that speech positions were not accepted during manufacture, but that when all work steps of the manufacturing process worked optimally, no speech positions remained on the wafer.
  • the protective layer is made of silicon nitride.
  • the low-hydrogen LPCVD nitride is preferably used.
  • other nitrides are also suitable, such as a plasma nitride which is deposited with a P5000.
  • the height of the applied layer can vary, but generally a height between 10 and 100 nm, preferably between 15 and 80 nm and particularly preferably between 30 and 50 nm is considered. The height should be such that the top electrode and the. Interfaces to the dielectric are optimally protected, but the overall thickness and stress of the wafer are not influenced too much if the protective layer is retained.
  • the layer should remain easily removable in the event that the protective layer after removal of the speech positions is also removed. Basically, the aim is always to have a protective layer that is as thin as possible.
  • the protective layer is applied before the etching, in which the speech positions are created.
  • the protective layer is also etched.
  • the removal of the speech positions is preferably carried out with EKC-265 or a similar stripper.
  • Treatment time may vary, but is usually less than an hour, especially less than 30 minutes.
  • the temperature can also vary, but it is usually less than 80 ° C and higher than room temperature.
  • the protective layer is oxidized and / or removed after the redepositions have been removed from the silicon oxide layer.
  • a plasma process is suitable for removal, an isotropic downstream reactor of the Strata type is preferably used, which is operated with an oxygen-tetrafluoromethane chemistry.
  • a plasma etching chamber e.g. A MxP etal etch chamber can be used on a P5000 mainframe. Exemplary plasma conditions are then 150mTorr, 60 Gauss, 350 W, 45 sccm tetrafluoromethane flow, 90 sccm oxygen flow; Etching time for 50 nm silicon nitride is about 50 sec.
  • the protective layer is left on the wafer. There it may then serve as a hydrogen barrier over the condenser in later processes.
  • the protective layer is etched together with the dielectric.
  • structures are first defined using a paint mask.
  • An MxP Metal Etching Chamber on a P5000 mamframe can be used for this joint etching.
  • Exemplary plasma treatment are conditions lO Torr, 80 Gauss, 750 W, 50 sccm bromine ⁇ material River, sec etch time for 50nm and 180nm SBT nitride approximately 150 bar.
  • the substrate is preferably a wafer with ferroelectric storage capacitors.
  • SBT (SrBi 2 Ta 2 0 9 ) is preferably the dielectric contained, which is to be protected by the protective layer from damage caused by wet chemical cleaning.
  • other oxide ceramics such as BST [(Ba, Sr) Ti0 3 ] or PZT [Pb (Zr, Ti) 0 3 ], which are similar to the SBT and are also endangered by the wet chemical cleaning step, can be provided with a protective layer of the invention are coated.
  • redepositions come from the dry etching of an oxide ceramic, they are similar in chemical composition. A cleaning medium that removes the redepositions can therefore also attack or at least damage the oxide ceramic.
  • the protective layer according to the invention therefore also protects the dielectric against attack from the top.
  • FIG. 1 shows a cross section through a wafer after the etching of the dielectric layer and after the ashing of the resist mask.
  • FIG. 2 shows a cross section through a wafer to which a protective layer was applied before the etching.
  • Figure 3 shows the same cross section as Figure 2, after the nudgechemi ⁇ 's cleaning and removing the protective layer.
  • the structure of a wafer can be seen in cross section in FIG.
  • the carrier 1 for example silicon oxide
  • a structured bottom electrode 2 for example 100-200 nm platinum
  • the already structured dielectric layer 3 adjoins the bottom electrode 2 , on which the top electrode 5 (for example 100-200 nm platinum) can be seen, which structures for example with a faceting and thus self-cleaning process has been.
  • 7 by the arrow is made to the interface between top electrode and the dielectric layer which is to be protected from the wet ⁇ chemical cleaning.
  • At the edge of the dielectric 3 one can see the redeposition 6, which interferes with the topology of the wafer and which is to be removed, but which would lead to detachments without a protective layer.
  • FIG. 2 shows the same cross section through the wafer as in FIG. 1.
  • a protective layer 4 was applied before the etching.
  • the protective layer and dielectric were etched and the paint mask removed.
  • the protective layer e.g. a silicon nitride layer of 30-50 nm
  • FIG. 2 shows the wafer in the state in which it survives a wet chemical cleaning step to remove the undesired redepositions of the dielectric etching without damage.
  • the wet chemical cleaning step includes, for example, treatment with EKC-265, NMP (N-methyl pyrrolidone) and / or hydrofluoric acid.
  • FIG. 3 shows the wafer after the redeposition 6 has been eliminated by the cleaning step.
  • Wet cleaning was carried out, for example, with EKC-265 at 65 C for 15 min.
  • the protective layer 4 was also subsequently removed. What is left is a wafer with an optimal topology and without impurities that can diffuse into and / or through the different layers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Beseitigung von Redepositionen auf einem Wafer sowie einen Wafer, der frei von Redepositionen ist. Die Entfernung der Redepositionen am Wafer findet nach Aufbringung einer Schutzschicht auf der Topelektrode und den Grenzflächen der Topelektrode mit dem Dielektrikum statt, so daß diese Bereich durch die naßchemischen Mittel, durch die die Redepositionen einzig wirkungsvoll beseitigt werden können, nicht beschädigt werden.

Description

Beschreibung
Verfahren zur Beseitigung von Redepositionen auf einem Wafer und Wafer, der frei von Redepositionen ist.
Die Erfindung betrifft ein Verfahren zur Beseitigung von Re¬ depositionen auf einem Wafer sowie einen Wafer, der frei von Redepositionen ist.
Bei der plasmachemischen Ätzung einer Schicht eines (ferro- elektrischen) Speicherkondensators mit einer Lackmaske und reaktiven Gasen bilden sich in der Regel Redepositionen. So werden Seitenwandpoly ere aus Bestandteilen der zu ätzenden Schichten, dem Lack und den Ätzgasen bezeichnet. Diese Verun- reinigungen können die Höhe der Lackmaske erreichen. Werden sie auf der geätzten Struktur belassen, so können folgende Probleme auftauchen:
Kontamination des Speicherdielektrikums durch Diffusion Kurzschluß bei leitfähigen Redepositionen - Veränderung der Topologie des Bauelements.
Redepositionen, die sich nach dem plasmachemischen Ätzen der Bottomelektrode gebildet haben, werden naßchemisch entfernt. Dies ist möglich, da der Schichtaufbau Träger, Barriere- schicht und Bottomelektrode so stabil ist, daß er den naßchemischen Reinigungsschritt verträgt.
Die Entfernung von Redepositionen, die sich nach dem Plasmaätzen des Dielektrikums gebildet haben, wäre naßchemisch, d.h. durch Einwirkung von hydroxylhaltigen Strippern (wie
EKC-265©) , organischen Lösungsmitteln (wie NMP (N-methyl pyr- rolidon) und/oder Säuren (wie HF, Flußsäure, BHF, Ämmoniu - fluorid, gepufferte HF oder Caro' sehe Säure, H2SO_, und H20 ) oder Entwickler (z.B. 5% Tetramethylammoniumhydroxid in H20) entfern- oder reduzierbar, jedoch ist diese Behandlung nicht empfehlenswert, weil es dabei zur Ablösung der Topelektrode und/oder des ganzen Waferaufbaus kommen kann. Aufgabe der vorliegenden Erfindung ist nun, ein Verfahren zur Beseitigung von Redepositionen, insbesondere auf einer dielektrischen Schicht, zu schaffen, bei dem der Schichtaufbau am Wafer unbeschädigt bleibt. Weiterhin ist es Aufgabe der
Erfindung, einen Wafer zur Verfügung zu stellen, der frei von Redepositionen ist.
Gegenstand der Erfindung ist ein Verfahren zur Beseitigung von Redepositionen auf einem Wafer, bei dem vor einer Ätzung und einem naßchemischen Reinigungsschritt, der zur Beseitigung der Redepositionen führt, eine Schutzschicht zumindest über Teile des Wafers aufgebracht wird.
Weiterhin ist Gegenstand der Erfindung ein Wafer, der im wesentlichen frei von Redepositionen ist.
„Im wesentlichen frei" bedeutet hier, daß bei der Herstellung Redepositionen nicht in Kauf genommen wurden, sondern daß dann, wenn alle Arbeitsschritte des Herstellungsverfahrens optimal funktioniert haben, keine Redepositionen auf dem Wafer übrig geblieben sind.
Bei einer bevorzugten Ausgestaltung des Verfahrens ist die Schutzschicht aus Siliziumnitrid. Bevorzugt wird das Wasserstoffarme LPCVD-Nitrid verwendet. Geeignet sind aber auch andere Nitride, wie z.B. ein Plasmanitrid, das mit einer P5000 abgeschieden wird. Die Höhe der aufgebrachten Schicht kann variieren, jedoch wird generell an eine Höhe zwischen 10 und lOOnm, bevorzugt zwischen 15 und 80 nm und insbesondere bevorzugt zwischen 30 und 50 nm gedacht. Die Höhe sollte so bemessen sein, daß die Topelektrode und die. Grenzflächen zum Dielektrikum zwar optimal geschützt sind, aber Gesamtstärke und Streß des Wafers im Falle der Beibehaltung der Schutz- schicht nicht zu stark beeinflußt werden. Andererseits soll die Schicht leicht wieder entfernbar bleiben für den Fall, daß die Schutzschicht nach der Entfernung der Redepositionen auch entfernt wird. Im Grunde wird also immer eine möglichst dünne Schutzschicht angestrebt.
Nach einer Ausgestaltung wird die Schutzschicht vor dem At- zen, bei dem die Redepositionen entstehen, aufgebracht. In diesem Fall wird die Schutzschicht auch mitgeatzt.
Bevorzugt wird die Entfernung der Redepositionen mit EKC-265 oder einem ähnlichem Stripper vollzogen. Die Behandlungszeit kann variieren, betragt jedoch in der Regel weniger als eine Stunde, insbesondere weniger als 30 Minuten. Die Temperatur kann ebenfalls variieren, jedoch betragt sie normalerweise weniger als 80°C und ist hoher als Raumtemperatur.
Nach einer Ausgestaltung des Verfahrens wird die Schutzschicht nach der Entfernung der Redepositionen zur Silizium- oxidschicht aufoxidiert und/oder entfernt. Zur Entfernung eignet sich ein Plasmaprozeß, bevorzugt wird hierbei ein isotroper Downstream-Reaktor vom Typ Strata eingesetzt, der mit einer Sauerstoff-Tetrafluormethan-Chemie betrieben wird. Alternativ kann auch eine Plasmaatzkammer, z.B. e ne MxP e- tal etch kammer an einem P5000 Mainframe, verwendet werden. Beispielhafte Plasmaatzbedingungen sind dann 150mTorr, 60 Gauss, 350 W, 45 sccm Tetrafluormethan-Fluß, 90 sccm Sauer- stoff-Fluß; Atzzeit für 50 nm Siliziumnitriα betragt etwa 50 sec .
Nach einer anderen Ausgestaltung des Verfahrens wird die Schutzschicht auf dem Wafer belassen. Dort kann sie dann un- ter Umstanden als Wasserstoffbarriere über dem Kondensator m spateren Prozessen dienen.
Nach einer Ausgestaltung des Verfahrens wird die Schutzschicht zusammen mit dem Dielektrikum geatzt. Dazu werden zu- nächst mit einer Lackmaske Strukturen definiert. Bei dieser gemeinsamen Atzung kann eine MxP Metal Atzkammer an einem P5000 mamframe verwendet werden. Beispielhafte Plasmaatzbe- dingungen sind lO Torr, 80 Gauss, 750 W, 50 sccm Bromwasser¬ stoff-Fluß, Ätzzeit für 50nm Nitrid und 180nm SBT etwa 150 sec .
" Nach einer anderen Ausgestaltung des Verfahrens wird die
Schutzschicht getrennt von dem Ätzschritt des Dielektrikums geätzt, so daß zwischen den beiden Ätzschritten die Gase und/oder andere Plasmabedingungen geändert werden können.
Bevorzugt handelt es sich bei dem Substrat um einen Wafer mit ferroelektrischen Speicherkondensatoren. Dabei ist bevorzugt SBT (SrBi2Ta209) das enthaltene Dielektrikum, das durch die Schutzschicht vor Schäden durch die naßchemische Reinigung geschützt werden soll. Anstelle des SBT können auch andere Oxidkeramiken wie beispielsweise BST [ (Ba, Sr) Ti03] oder PZT [Pb (Zr, Ti) 03] , die dem SBT ähnlich sind und auch durch den naßchemischen Reinigungsschritt gefährdet sind, mit einer Schutzschicht gemäß der Erfindung überzogen werden.
Da die Redepositionen aus der Trockenätzung einer Oxidkeramik stammen, ähneln sie dieser in ihrer chemischen Zusammensetzung. Ein Reinigungsmedium, das die Redepositionen entfernt, kann deshalb die Oxidkeramik auch angreifen oder zumindest schädigen .
Die Schutzschicht gemäß der Erfindung schützt deshalb auch das Dielektrikum vor einem Angriff von der Oberseite.
Im folgenden wird eine Ausführungsform anhand von Figuren nä- her erläutert:
Figur 1 zeigt einen Querschnitt durch einen Wafer nach der Atzung der dielektrischen Schicht und nach dem Veraschen der Lackmaske . Figur 2 zeigt einen Querschnitt durch einen Wafer, auf den vor der Ätzung eine Schutzschicht aufgebracht wurde. Figur 3 zeigt denselben Querschnitt wie 2, nach der naßchemi¬ schen Reinigung und dem Entfernen der Schutzschicht.
In Figur 1 ist der Aufbau eines Wafers im Querschnitt zu se- hen. Zu erkennen ist der Träger 1 (z.B. Siliziumoxid), auf den eine strukturierte Bottomelektrode 2 (z.B. 100-200 nm Platin) aufgebracht ist. An die Bottomelektrode 2 schließt die bereits strukturierte dielektrische Schicht 3 (z.B. SBT SrBi2Ta209) an, auf der die Topelektrode 5 (z.B. 100-200 nm Platin) zu erkennen ist, die z.B. mit einem facettierenden und dadurch selbstreinigenden Prozeß strukturiert wurde. Mit dem Pfeil 7 wird auf die Grenzfläche zwischen Topelektrode und der dielektrischen Schicht hingewiesen, die vor der na߬ chemischen Reinigung geschützt werden soll. An der Kante des Dielektrikums 3 erkennt man die Redeposition 6, die die Topo- logie des Wafers stört und die entfernt werden soll, was aber ohne Schutzschicht zu Ablösern führen würde.
In Figur 2 ist derselbe Querschnitt durch den Wafer zu sehen wie in Figur 1. Vor der Ätzung wurde eine Schutzschicht 4 aufgebracht. Schutzschicht und Dielektrikum wurden geätzt und die Lackmaske entfernt. Wie zu sehen ist, bedeckt die Schutzschicht (z.B. eine Siliziumnitridschicht von 30 - 50 nm) die Topelektrode und die Grenzflächen zwischen der Tope- lektrode und dem Dielektrikum. Figur 2 zeigt den Wafer in dem Zustand, in dem er unbeschadet einem naßchemischen Reinigungsschritt zur Entfernung der unerwünschten Redepositionen der Dielektrikumsätzung übersteht. Der naßchemische Reinigungsschritt umfaßt beispielsweise eine Behandlung mit EKC- 265, NMP (N-methyl pyrrolidon) und/oder Flußsäure.
Figur 3 schließlich zeigt den Wafer nachdem durch den Reini- gungsschritt die Redeposition 6 beseitigt wurde. Die Naßreinigung wurde z.B. mit EKC-265 15 min bei 65CC durchgeführt. Ebenfalls entfernt wurde anschließend die Schutzschicht 4. Übriggeblieben ist ein Wafer mit einer optimalen Topologie und ohne Verunreinigungen, die in die verschiedenen Schichten ein- und/oder durch diffundieren können.

Claims

Patentansprüche
1. Verfahren zur Beseitigung von Redepositionen auf einem Wafer, bei dem vor einer Atzung und einem naßchemischen Reinigungsschritt, der zur Beseitigung der Redepositionen fuhrt, eine Schutzschicht zumindest über Teile des Wafers aufgebracht wird.
2. Verfahren nach Anspruch 1, bei dem die zu entfernenden Redepositionen aus der Trockenätzung eines oxidkeramischen Dielektrikums stammen.
3. Verfahren nach Anspruch 1 oder 2, bei dem die Schutzschicht Siliziumnitrid umfaßt.
4. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Schutzschicht in einer Dicke von 10 b s 100 nm aufgebracht wird.
5. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Schutzschicht vor dem Atzen des Dielektrikums aufge¬ bracht wird und sie dann zusammen mit dem Dielektrikum geatzt wird.
6. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Schutzschicht nach Entfernung der Redepositionen entfernt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem die Schutzschicht nach Entfernung der Redepositionen beibehalten wird.
8. Wafer, der einen Trager, eine Bottom- und eine Topelektrode mit dazwischen einem Dielektrikum umfaßt, wobei der Wafer im wesentlichen frei von Redepositionen ist.
9. Wafer nach Anspruch 8, der im Anschluß an die Topelektrode eine Schutzschicht umfaßt.
10.Wafer nach einem der Ansprüche 8 oder 9, der zumindest einen ferroelektrischen Speicherkondensator umfaßt.
PCT/DE2000/002394 1999-07-27 2000-07-21 Verfahren zur beseitigung von redepositionen auf einem wafer und wafer, der frei von redepositionen ist WO2001008203A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19935131.7 1999-07-27
DE19935131A DE19935131B4 (de) 1999-07-27 1999-07-27 Verfahren zur Beseitigung von Redepositionen von einem Wafer

Publications (1)

Publication Number Publication Date
WO2001008203A1 true WO2001008203A1 (de) 2001-02-01

Family

ID=7916151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002394 WO2001008203A1 (de) 1999-07-27 2000-07-21 Verfahren zur beseitigung von redepositionen auf einem wafer und wafer, der frei von redepositionen ist

Country Status (3)

Country Link
DE (1) DE19935131B4 (de)
TW (1) TW475219B (de)
WO (1) WO2001008203A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6457479B1 (en) * 2001-09-26 2002-10-01 Sharp Laboratories Of America, Inc. Method of metal oxide thin film cleaning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443688A (en) * 1993-12-02 1995-08-22 Raytheon Company Method of manufacturing a ferroelectric device using a plasma etching process
EP0786805A2 (de) * 1996-01-26 1997-07-30 Matsushita Electronics Corporation Verfahren zum Plasma-Ätzen einer Schicht aus ferroelektrischem Material oder ein Material mit hoher dielektrischer Kontante oder aus Platin
US5849639A (en) * 1997-11-26 1998-12-15 Lucent Technologies Inc. Method for removing etching residues and contaminants

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3676304D1 (de) * 1986-06-21 1991-01-31 Itt Ind Gmbh Deutsche Verfahren zum entfernen einer strukturierten maskierungsschicht.
DE4034868C2 (de) * 1990-11-02 1995-02-16 Itt Ind Gmbh Deutsche Verfahren zur selektiven Metallabscheidung bei der Herstellung von Halbleiterbauelementen
EP0865079A3 (de) * 1997-03-13 1999-10-20 Applied Materials, Inc. Verfahren zur Beseitigung von auf geätzten Platinflächen abgelagerten Verunreinigungen
DE19728474A1 (de) * 1997-07-03 1999-01-07 Siemens Ag Elektrodenanordnung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443688A (en) * 1993-12-02 1995-08-22 Raytheon Company Method of manufacturing a ferroelectric device using a plasma etching process
EP0786805A2 (de) * 1996-01-26 1997-07-30 Matsushita Electronics Corporation Verfahren zum Plasma-Ätzen einer Schicht aus ferroelektrischem Material oder ein Material mit hoher dielektrischer Kontante oder aus Platin
US5849639A (en) * 1997-11-26 1998-12-15 Lucent Technologies Inc. Method for removing etching residues and contaminants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COFER A, RAJORA P, DEORNELLAS S, KEIL D: "Plasma etch processing of advanced ferroelectric devices", INTEGRATED FERROELECTRICS, GORDON & BREACH, UK, vol. 16, no. 1-4, 1997, pages 53 - 61, XP000965450 *

Also Published As

Publication number Publication date
DE19935131A1 (de) 2001-02-08
TW475219B (en) 2002-02-01
DE19935131B4 (de) 2006-01-26

Similar Documents

Publication Publication Date Title
EP1733421B1 (de) Wässrige lösung und verwendung dieser lösung zur entfernung von post-etch residue von halbleitersubstraten
DE69935100T2 (de) Verfahren zur Ätzung einer Metallisierung mittels einer harten Maske
DE102006026954B4 (de) Verfahren zur Herstellung eines Kondensators in einem Halbleiterbauelement
DE69626562T2 (de) Verfahren zum isotropen Ätzen von Silizium, das hochselektiv gegenüber Wolfram ist
DE60124487T2 (de) Verfahren zur Reinigung nach einer Ätzung
DE69622261T2 (de) Verfahren zur herstellung einer struktur unter verwendung von wiederablagerung
DE10256964A1 (de) Plasmaätzen von Ir und PZT unter Verwendung einer Hartmaske und einer chemischen Zusammensetzung aus CL¶2¶/N¶2¶/O¶2¶ und CL¶2¶/CHF¶3¶/O¶2¶
DE4123711A1 (de) Verfahren zum trockenaetzen von halbleiter-substratscheiben
EP0901157B1 (de) Strukturierungsverfahren
DE112006000261B4 (de) Verfahren zur Herstellung eines kapazitiven Elements mittels Ätzverfahren
DE10301243A1 (de) Verfahren zum Herstellen einer integrierten Schaltungsanordnung, insbesondere mit Kondensatoranordnung, sowie integrierte Schaltungsanordnung
EP0907203A2 (de) Strukturierungsverfahren
DE19717363C2 (de) Herstellverfahren für eine Platinmetall-Struktur mittels eines Lift-off-Prozesses und Verwendung des Herstellverfahrens
DE69933025T2 (de) Reinigungsflüssigkeit und reinigungsverfahren für halbleiterbearbeitungsmaschinenkomponente
DE19935131B4 (de) Verfahren zur Beseitigung von Redepositionen von einem Wafer
DE10304851A1 (de) Ätzverfahren
DE19911150C1 (de) Verfahren zur Herstellung einer mikroelektronischen Struktur
DE112004000192T5 (de) Hartmaske mit hoher Selektivität für IR-Sperrschichten zur Herstellung eines ferroelektrischen Kondensators
DE3219284A1 (de) Verfahren zum herstellen einer halbleitervorrichtung
DE10058886C1 (de) Verfahren zur Herstellung eines integrierten Halbleiter-Produkts
DE112004001585T5 (de) Zaunfreies Ätzen einer Iridium-Barriere mit einem steilen Böschungswinkel
DE10133663A1 (de) Verfahren zum Entfernen eines Resistrests und Herstellungsverfahren für eine Halbleitervorrichtung unter Verwendung eines solchen Verfahrens
DE19901002B4 (de) Verfahren zum Strukturieren einer Schicht
DE10115492B4 (de) Verfahren zur Aufbereitung einer Reaktionskammer
KR100248154B1 (ko) 식각용액

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP