WO2001006930A1 - Ct-gerät mit mehrzeiligem detektorsystem - Google Patents

Ct-gerät mit mehrzeiligem detektorsystem Download PDF

Info

Publication number
WO2001006930A1
WO2001006930A1 PCT/DE2000/002438 DE0002438W WO0106930A1 WO 2001006930 A1 WO2001006930 A1 WO 2001006930A1 DE 0002438 W DE0002438 W DE 0002438W WO 0106930 A1 WO0106930 A1 WO 0106930A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
elements
area
electronic elements
measured values
Prior art date
Application number
PCT/DE2000/002438
Other languages
English (en)
French (fr)
Inventor
Thomas Flohr
Bernd Ohnesorge
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2001511826A priority Critical patent/JP2003505135A/ja
Priority to US10/048,052 priority patent/US6792068B1/en
Publication of WO2001006930A1 publication Critical patent/WO2001006930A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4085Cone-beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Definitions

  • the invention relates to a CT (computed tomography) device with a radiation source which can be shifted around a system axis for scanning an examination object and emits a beam of rays which strikes a detector system consisting of an array of several rows and several columns of detector elements, whereby the measurement values obtained in this way are assigned to one of a plurality of projection angles and are fed to a computer which uses them to calculate images of the examination subject, signals generated by radiation m being fed to the detector elements for reading and amplifying electronic elements, the number of detector elements of the detector system being the number of electronic elements.
  • CT computed tomography
  • CT devices which have a radiation source, for example an X-ray tube, which direct a collimated, pyramid-shaped beam of rays through the examination object, for example a patient, to a detector system constructed from a plurality of detector elements.
  • the radiation source and, depending on the design of the CT device, also the detector system are mounted on a gantry which rotates around the examination object.
  • a storage device for the examination object can be moved or moved along the system axis relative to the gantry. The position from which the beam of rays penetrates the object under examination and the angle at which the beam of rays penetrates the object under examination are constantly changed as a result of the rotation of the gantry.
  • Each detector element of the detector system struck by the radiation produces a signal which represents a measure of the total transparency of the examination object for the radiation emanating from the radiation source on its way to the detector system.
  • the set of output signals of the detector elements of the detector system, which for a certain position of the radiation source is called projection.
  • a scan comprises a set of pro ections which have been obtained at different positions of the gantry and / or different positions of the bearing device.
  • the CT device records a large number of projections during a scan in order to be able to build up a two-dimensional sectional image of a layer of the examination object.
  • a CT device of the type mentioned with a multi-cell detector system in which, in order to save costs and limit the data rates, the read-out electronics downstream of the detector elements no longer provide an electronic element for each detector element. Rather, the number of detector lines exceeds the number of lines of electronic elements. Each line of electronic elements can thus be assigned to several detector lines via multiplexers and summers.
  • the present invention is therefore based on the object of improving a CT device of the type mentioned in such a way that, despite a reduced number of electronic elements compared to the number of detector elements, a high resolution can be achieved with the detector system and at the same time a high number of Single layers can be included.
  • a CT device has an 8-line detector system with four rows of electronic elements, each detector column of the detector system is connected to a maximum of four electronic elements.
  • a CT device also with an 8-line detector system allows certain detector columns to be connected, for example, to six electronic elements and other detector columns to only two electronic elements per detector column.
  • a suitable arrangement of multiplexers and summation elements between the detector elements and the electronic elements enables a largely random interconnection of detector elements and assignment of individual detector elements or interconnected detector elements to individual electronic elements.
  • a region of the detector system of the CT device according to the invention can e.g. be the generally particularly relevant central area of the detector system. Outside the central area, correspondingly fewer measured values are formed by combining or ignoring detector elements.
  • the same total z-length of the collimated layer over the entire detector one obtains many thin Emzel layers in one area and a few wide Emzel layers in another area.
  • the number of effective lines and thus the resolution in the z direction is increased without additional electrical elements being required for this.
  • the data rates and amounts of data that can be generated with the detector system also do not change compared to a known detector system with a reduced number of electronic elements.
  • the examination object can fill the entire measuring field as before.
  • the object under examination is scanned only in an area with a higher resolution than in another area. fills the examination object consists only of a partial area of the measuring field, for example when examining internal organs, the head or the extremities of a patient, the electromechanical elements of the detector system according to the invention can advantageously also be connected to the detector elements in such a way that all electromechanical elements are relevant Are assigned to the area of the detector system and to the edge areas of the detector system, which no measurement values can contribute to the objects to be displayed, no electrical elements are assigned. This also leads to an improved resolution through simultaneous absorption of many thin layers of Emzel, while saving time and costs.
  • One embodiment of the invention provides for interpolating missing measured values from an area with a low resolution from the measured values obtained in this area, or for extrapolating missing measured values from an area with a low resolution from measured values from an area with a high resolution.
  • the values formed in this way can then be fed together with the measured values to a conventional CT multi-line image reconstruction.
  • this can essentially be based on known
  • CT device can advantageously be used for both types of scanning.
  • sequence scanning the data are recorded during a rotary movement of the gantry, while the examination object is in a fixed position, and thus a certain number of flat layers are scanned.
  • FIG. 4 shows a view of the detector system of the CT device according to FIG. 1, from which the arrangement of the columns according to FIGS. 2 and 3 can be seen.
  • FIG. 1 shows a CT device which is provided for scanning an examination object 1 and which has a radiation source 2, for example an X-ray tube, with a focus 3, from which a pyramid-shaped beam 4 faded in by a radiation diaphragm, not shown, emanating from the examination object 1 , for example a patient, passes through and strikes a detector system 5.
  • a radiation source 2 for example an X-ray tube
  • a focus 3 from which a pyramid-shaped beam 4 faded in by a radiation diaphragm, not shown, emanating from the examination object 1 , for example a patient, passes through and strikes a detector system 5.
  • This has an array of several mutually parallel rows 6 and several mutually parallel columns 7 of detector elements 8.
  • the radiation source 2 and the detector system 5 form a measuring system which can be displaced in the ⁇ direction about a system axis 9 and can be displaced along the system axis relative to the examination object 1, so that the examination object 1 ect under different Schwarzionswmkeln and Various NEN ⁇ z-positions along the system axis 9 is irradiated.
  • a signal processing unit 10 From the output signals of the detector elements 8 of the detector system 5 that occur, a signal processing unit 10 forms measured values that are fed to a computer 11 that calculates an image of the examination subject 1 that is displayed on a monitor 12.
  • the detector system 5 is shown only roughly schematically in FIG. 1 with the number of rows and columns differing from FIGS. 2 to 4.
  • Figures 2 to 4 show that in the case of the exemplary embodiment described, the detector system has eight rows 6 and twenty-four columns 7, the length of the detector elements 8 m in the z direction, i.e. m direction of the system axis 9, is not the same for all lines.
  • This geometry is very flexible in the choice of the layer thicknesses of the examination object to be scanned due to the corresponding insertion and combination of detector lines 6.
  • each column 7 of the detector system 5 is assigned four electrical elements 13 for reading out and amplifying the charges generated by the absorption of X-rays by the detector elements 8.
  • An electrical element 13 is assigned to one or more detector elements 8 via summation elements 14 and multiplexers, not shown.
  • the signals detected by the electronic elements 13 are fed to a signal processing unit 10 for further processing.
  • the eight detector elements 8 of the illustrated detector column 7, which according to FIG. 4 lies in the central region of the detector system 5 according to FIG. 4, are connected to six electronic elements 13, two of each of the four central detector elements being connected via a summation element 14 is combined and connected to an electrical element 13. Signals from all detector elements of this detector column are thus detected and fed to the signal processing unit 10. c ⁇ c ⁇ > MP 1 P "
  • the detector elements of a detector column have different lengths in the z direction.
  • these are:
  • the invention is not limited to the exemplary embodiment shown, but can be used for multi-cell detector systems with any number of detector rows and detector columns.
  • the length of the detector elements in the m z direction can also deviate from the exemplary embodiment shown within the scope of the invention.
  • the invention also includes detector systems with the same length of the detector elements in the m z direction.
  • the exemplary embodiment described above is a third-generation CT device, ie the X-ray source and the detector rotate together around the system axis during image generation.
  • the invention can also be used in fourth-generation CT devices in which only the X-ray source rotates and interacts with a fixed detector ring.
  • the exemplary embodiment described above relates to the medical application of a CT device according to the invention.
  • the invention can also be used outside of medicine, for example in baggage checking or in material testing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Bei einem CT-Gerät mit mehrzeiligem Detektorsystem (5) sind unterschiedliche Spalten (7, 7') des Detektorsystems (5) mit unterschiedlich vielen Elektronikelementen (13) zum Auslesen der in den Detektorelementen (8) erzeugten Signale verbindbar. Somit sind mit den Detektorsystemen (5) Bereiche des Untersuchungsobjekts mit hoher Auflösung und andere Bereiche mit niedrigerer Auflösung abtastbar. Damit ist mit einem vereinfachten und kostenreduzierten Detektorsystem (5), welches eine vergleichsweise geringe Datenrate und Datenmenge erzeugt, eine bereichsweise hohe Auflösung erzielbar.

Description

Beschreibung
CT-Gerat mit mehrzelligem Detektorsystem
Die Erfindung betrifft ein CT (Computertomographie) -Gerat mit einer Strahlenquelle, welche zur Abtastung eines Unter- suchungsobjekts um eine Systemachse verlagerbar ist und ein Strahlenbundel aussendet, das auf ein aus einem Array von mehreren Zeilen und mehreren Spalten von Detektorelementen bestehendes Detektorsystem trifft, wobei die so gewonnenen Meßwerte einem von einer Vielzahl von Projektionswmkeln zugeordnet sind und einem Rechner zugeführt sind, welcher daraus Bilder des Untersuchungsobjekts berechnet, wobei durch Strahlung m den Detektorelementen erzeugte Signale zum Auslesen und Verstarken Elektronikelementen zugeführt sind, wobei die Anzahl der Detektorelemente des Detektorsystems die Anzahl der Elektronikelemente übersteigt.
Es sind CT-Gerate bekannt, die eine Strahlenquelle aufweisen, z.B. eine Röntgenröhre, die ein kollimiertes, pyramidenförmiges Strahlenbundel durch das Untersuchungsobi ekt, z.B. einen Patienten, auf ein aus mehreren Detektorelementen aufgebautes Detektorsystem richten. Die Strahlenquelle und e nach Bauart des CT-Gerates auch das Detektorsystem sind auf einer Gantry angebracht, die um das Untersuchungsobi ekt rotiert. Eine Lagerungseinrichtung für das Untersuchungsobi ekt kann entlang der Systemachse relativ zur Gantry verschoben bzw. bewegt werden. Die Position, ausgehend von welcher das Strahlenbundel das Untersuchungsobjekt durchdringt, und der Winkel, unter welchem das Strahlenbundel das Untersuchungsobjekt durchdringt, werden infolge der Rotation der Gantry standig verändert. Jedes von der Strahlung getroffene Detektorelement des Detektorsystems produziert ein Signal, das ein Maß der Gesamttransparenz des Untersuchungsobjekts für die von der Strahlenquelle ausgehenden Strahlung auf ihrem Weg zum Detektorsystem darstellt. Der Satz von Ausgangssignalen der Detektorelemente des Detektorsystems, der für eine bestimmte Position der Strahlenquelle gewonnen wird, wird als Projektion bezeichnet. Eine Abtastung (Scan) umfaßt einen Satz von Pro ektionen, die an verschiedenen Positionen der Gantry und/oder verschiedenen Positionen der Lagerungsein- richtung gewonnen wurden. Das CT-Gerät nimmt während eines Scans eine Vielzahl von Projektionen auf, um ein zweidimen- sionales Schnittbild einer Schicht des Untersuchungsobjekts aufbauen zu können. Mit einem aus einem Array von mehreren Zeilen und Spalten von Detektorelementen aufgebauten Detek- torsystem können mehrere Schichten gleichzeitig aufgenommen werden.
Aus der DE-195 02 574 AI ist ein CT-Gerät der eingangs genannten Art mit mehrzelligem Detektorsystem bekannt, bei dem zur Kostenersparnis und zur Begrenzung der Datenraten die den Detektorelementen nachgeschaltete Ausleseelektronik nicht mehr für jedes Detektorelement ein Elektronikelement vorsieht. Vielmehr übersteigt die Anzahl der Detektorzeilen die Anzahl der Zeilen von Elektronikelementen. Jede Zeile von Elektronikelementen kann damit über Multiplexer und Summierer mehreren Detektorzeilen zugeordnet sein.
Als nachteilig erweist sich bei dem bekannten CT-Gerät, daß entweder durch Zusammenschaltung benachbarter Detektorzeilen die Dicke der aufgenommenen Schichten steigt und damit die
Auflösung in z-Richtung sinkt, oder daß nicht jede Detektorzeile mit einer Zeile von Elektronikelementen verbunden ist und somit nicht mehr die gesamte Detektorbreite in z-Richtung zur Datenerfassung verwertbar ist.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein CT-Gerät der eingangs genannten Art dahingehend zu verbessern, daß trotz einer im Vergleich zu der Anzahl an Detektorelementen reduzierten Anzahl an Elektronikelementen mit dem Detektorsystem eine hohe Auflösung erzielbar ist und dennoch gleichzeitig eine hohe Zahl von Einzelschichten aufgenommen werden kann. cυ cυ M N> P1 P1
Oi o <_π O Cn o Cn φ rt ?Ö rt N P- rt S & 3 U3 φ rt o rt P N rt P s tr CΛ DO o ≤ tr 3 Φ l P σ r-i Φ H Φ PJ Φ Φ J φ P PJ P Φ Φ PJ o cn P o P Φ Φ rt P ^ Φ Φ φ P 3 PJ P
Hl P O Ps1 tT 3 ps4 tr H rt φ 3 P r-i P ω rt 3 ι-< tQ N P ω P P- r-i CΛ tr ti rt rt Φ
P p- l- rt rt P P P Hi H CΛ cn cn PJ φ PJ α 3 rt rt ι-i Φ cn
P Φ rt O O Φ m P o rt PJ P φ TJ Ό rt tr α V tr φ Φ φ Φ Φ CΛ H 3 Φ
P- P £ PJ o P 3 Φ Φ tr n 3 H PJ PJ J Φ PJ P P rt tr rt CΛ P
C • P cn t> 3 Φ n C N tr tr ^5 Hi PJ CΛ P φ C 0 φ Φ Φ 0 rt >
3 ιQ ^< p l-t C Φ Φ Φ Φ PJ P rt CΛ rt CΛ P 3 α CΛ P P 3 J O C
IQ ffi cn w φ Φ cn σ 3 N P ι-i H H tP ts Φ Φ Φ Φ
P a 2 Φ P 0 P- tr tr Φ Hl J rt PJ P 3 P P rt Φ rt P- |Ü Φ CΛ P Φ H & cn P φ Φ N PJ si P ιQ u3 Φ r-1 Φ φ Φ P Φ P P Φ C P Φ P N P α 3 CΛ Φ Φ 3 ti J
Φ ι-i 01 3 ^ P • P ιQ o t3 c P g 3 P 3 P M PJ Φ 3 α P 3 3 Φ r
3 N rt y rt α rt tr g H Q 3 P φ P1 tr H 3 c <1 σ tr cn ι-i Φ
PJ C J 3 P Φ Φ Φ J cn n cn Hi C α rt Φ cn P- rt P o Φ Φ c: 0
S £ cυ o y p ≤ N tr ^Q PJ 2 Φ ü rt Φ Φ P- ti rt 3 3 tr CΛ
Φ cn n O 3 UJ φ o s
PJ Hi PJ Φ CΛ rt Φ φ rt α J 2 Φ α LJ rt P
3 P tr l-t P φ PJ tr ιQ
S P cn tr α 3 cn Φ P rt Φ h cn Φ Φ Ps- fü Φ Φ ι-i P
3 PS- P Φ cn rt PJ P PJ Φ ι-i Ö 3 Φ O P ü in P P rt P P 1 PJ o α H φ Φ Φ cn N 3 Φ Φ φ &a ts CΛ Φ Φ ? ti Φ Φ n 2 3 O rt tr
Φ 3 Φ P 2 t PJ O ts PJ Φ O rt P rt- P u 3 rt tr Φ φ ι-i PJ CΛ y rr c H Φ Hi Φ t 3 Φ υ3 tι iQ Φ tr φ O ^J Φ Φ C 3 ι-i cn 3 c φ PJ
Φ 3 -6 3 ü PJ P PJ 3 P C Φ n P P f ^Q r-i φ rt M P - P " φ cn c: ti n
Ps4 rt 1 M Φ Φ Φ 3 V M ^Q P φ rt ι-i cn PJ Φ rt υ3 t* < cn tr cn 3 Λ tr rt Φ ^ H 2 rt PJ tr PJ P φ Λ Φ 1 öd α O o Ό φ PS1 Φ o cn φ P rt ι-i Φ d
O H P H rt Φ CΛ Φ p rt Φ P cn Φ i > PJ 3 rt ? P O o φ Φ Φ P Φ φ
H α
H cn O Φ " - s: >Ω P K Φ ι-i P Φ Φ φ O rt Φ tr tr 3 α P P1 Φ ω n t 0 3 rt N J M Φ P ιQ rt tr H Φ O H rt P ι-i H L_l t> N Φ Φ 3 PJ H
> tr rt O Φ P PJ H o Φ H Φ PJ P tr Φ Φ Φ rt Φ O Φ Φ Φ J rt 3 rt φ Φ Λ P 0 N N P 0 Φ P.. P H o P rt o Φ 3 3 Φ P 3 PS- H tr H M r+ Φ 3 2 c CΛ rt Φ φ P tr H Φ P Φ P φ rt H" P Λ CΛ ι-i co
Φ ιQ ιQ yQ Ό Φ Φ rt 3 P H P tr • ^ 3 3 C 3 Ps- 3 cn N Hi T3 •< ≤ Hl
3 i— Φ J 3 P P φ Φ Ϊ Φ P rt & Hl σ φ Φ rt £ <! Hi J PJ cn Φ P ω P <! P o Ξ O ? PJ φ p φ α Φ N PJ Φ m Φ tr υ-} O rt P1 cn rt ti o Φ 3 ι-i rt Φ n P PJ rt P J cn ι-i rt φ 3 Φ Φ P rt Φ n P-
3 t r-S CL Φ P P P & P φ φ φ cn 1 α tr Λ cn Φ 3 ι-i Hi C- Φ PJ 3 tr P-
H Φ cn DO 3 ?v P N CΛ 3 & rt P φ rt Φ Φ Φ C- P 3 c J Φ y rt O Φ φ Φ Φ cn φ PJ P Φ N φ P Φ ti H O tr ι-i P. Hi n ^Q ö ^ H rt P Φ P^ J t φ P PJ a P^ cn PJ P Φ rt N tr P o < tr N
Φ P Φ l-J N p φ ι-S rt tr J Φ Φ 3 Φ ιQ cn Φ φ P rt l_l α o φ cn c ιQ
3 rt Φ P P Φ c J 3 cn tr Φ tr P CΛ ι-< rt 3 Φ φ P 3 P φ i- Φ rt Φ o CΛ CΛ rt φ PJ PJ 0 Φ o t? σ Q rt CΛ t φ ti
Φ Ps4 Φ tr rt Hi J Φ 3 tr t) P PJ P tr ω ÖO Φ N rr ^ P rt ö < s O rt ^ Φ Φ g P rt φ α 3 Φ φ φ Φ 0 rt c φ P P CΛ Φ PJ φ cn
CΛ O Φ CΛ p Φ P CΛ P PJ P ι-i P - H P Φ >Ώ Z α O O rt c- rt rt
O H r-i 3 rt Φ tr Λ P a O CΛ CΛ σ P φ rt φ α φ Λ O P Φ CΛ PJ T C PJ 3 Φ ü tr rt Φ o & P H P rt Hi P tr CΛ yQ Ps- PJ CΛ
P Ό > rt So <! <Q p P φ P ^ σ rt tr N n O n ≤ O yQ Φ s: ≤ Φ rt φ iQ rt c
Φ C rt O Φ J ) rt o Φ φ rt J tr P tr O t-i tr P Φ P £ O P Φ C P
P- -1 Hl CΛ H ω O n Φ tr CΛ rt tr Λ P tr cn ι-i ) P o 1-1 ti P y n rt H1 O cn yQ n u t rt o φ rt P < Φ ^ rt n Ϊ P φ Φ tr ^Q tr
P Φ O S P φ !-r tr rt φ 0 - o C φ o P cn Φ tr Φ P 3 PJ n 2 cn o o ^2 PJ J Ω- O 3 α rt P H PJ Φ P rt CΛ ι-i Φ P' φ Φ P Φ Φ t tr φ P Φ Φ o φ t3 11 Φ φ Φ P N n ι-i t3 3 3 > P P
V tr rt rt 3 CΛ h H PJ (X tr 3 σ P 3 2 tr φ Φ P P 3 3
<! Φ ιΩ a Φ Φ φ • 2 CΛ φ Φ σ P φ Φ t-f CΛ P- 3 α N 3 ti p ω Φ
P cn P J P rt CΛ CΛ * 3 3 Φ 3 P rt ** PJ C rt PJ rt cn n
Φ Φ P cn Φ ö rt rt α CΛ φ rt P- rt φ ∑: o- > ι-i yQ £ Φ ^< m
H s: φ J Φ PJ rt 3 Φ tr Φ PS1 Φ P ≤ ^ PJ Φ Φ 3 1
Φ 3 N ö Φ 1 P 3 &o Φ rt o - PJ P 1 1 φ o CΛ 1 &> < ti cn
3 1 1 φ & P α Φ 3 Φ H 1 H 1 1 CΛ 1 O Q* Φ
1 1 1 3 P 1 3 1
Elektronikelementen verbindbar. Weist beispielsweise ein CT- Gerat nach dem Stand der Technik ein 8-zeιlιges Detektorsystem mit vier Zeilen von Elektronikelementen auf, so ist jede Detektorspalte des Detektorsystems mit maximal vier Elektro- nikelementen verbunden. Im Unterschied hierzu erlaubt es ein CT-Gerat nach der Erfindung mit ebenfalls 8-zeιlιgem Detektorsystem, daß bestimmte Detektorspalten beispielsweise mit sechs Elektronikelementen und andere Detektorspalten nur mit zwei Elektronikelementen pro Detektorspalte verbunden sind. Eine geeignete Anordnung von Multiplexern und Summationsglie- dern zwischen den Detektorelementen und den Elektronikelementen ermöglicht eine weitgehend wahlfreie Zusammenschaltung von Detektorelementen und Zuordnung von einzelnen Detektorelementen oder zusammengeschalteten Detektorelementen zu em- zelnen Elektronikelementen.
Ein Bereich des Detektorsystems des erfmdungsgemaßen CT-Ge- rats, dessen Detektorspalten eine erhöhte Anzahl an Elektronikelementen zugeordnet ist, kann z.B. der im allgemeinen be- sonders relevante Zentralbereich des Detektorsystems sein. Außerhalb des Zentralbereichs werden durch zusammenfassen bzw. unberücksichtigt lassen von Detektorelementen entsprechend weniger Meßwerte gebildet. Bei über den gesamten Detektor gleicher z-Gesamtlange der kollimierten Schicht erhalt man so m einem Bereich viele dünne Emzelschichten, m einem anderen Bereich wenige breite Emzelschichten. Damit ist m dem einen Bereich die Zahl der effektiven Zeilen und damit die Auflosung m z-Richtung vergrößert, ohne daß hierfür zusätzliche Elektromkelemente erforderlich sind. Auch die mit dem Detektorsystem erzeugbaren Datenraten und Datenmengen andern sich nicht gegenüber einem bekannten Detektorsystem mit verminderter Anzahl an Elektronikelementen.
Im Falle des erfmdungsgemaßen CT-Gerats kann das Untersu- chungsobjekt wie bisher das gesamte Meßfeld ausfüllen. Das
Untersuchungsobjekt wird lediglich m einem Bereich mit höherer Auflosung abgetastet als m einem anderen Bereich. Füllt das Untersuchungsobjekt nur einen Teilbereich des Meßfeldes aus, beispielsweise bei Untersuchungen innerer Organe, des Kopfes oder der Extremitäten eines Patienten, so lassen sich m vorteilhafter Weise die Elektromkelemente des Detektor- Systems nach der Erfindung auch so mit den Detektorelementen verbinden, daß alle Elektromkelemente dem relevanten Bereich des Detektorsystems zugeordnet sind und den Randbereichen des Detektorsystems, die keine Meßwerte zu den darzustellenden Objekten beitragen können, keine Elektromkelemente zugeord- net sind. Auch dies fuhrt durch die gleichzeitige Aufnahme vieler dunner Emzelschichten zu einer verbesserten Auflosung bei gleichzeitiger Zeit- und Kostenersparnis.
Eine Ausfuhrungsform der Erfindung sieht vor, fehlende Meß- werte aus einem Bereich mit niedriger Auflosung aus den gewonnenen Meßwerten dieses Bereiches zu interpolieren, bzw. fehlende Meßwerte aus einem Bereich mit niedriger Auflosung aus Meßwerten aus einem Bereich mit hoher Auflosung zu extrapolieren. Die so gebildeten Werte sind dann zusammen mit den Meßwerten einer herkömmlichen CT-Mehrzeilenbildrekon- struktion zufuhrbar.
Damit kann bei dieser Variante im wesentlichen auf bekannte
Software bei der Bildrekonstruktion zurückgegriffen werden, was den Aufwand und die Kosten, die im Zusammenhang mit der
Erstellung der Software für ein CT-Gerat zu treiben sind, begrenzt .
Größere Volumina eines Untersuchungsobjekts werden ublicher- weise mittels Sequenzabtastung oder Spiralabtastung erfaßt. Das erf dungsgemaße CT-Gerat ist vorteilhafter Weise für beide Abtastarten einsetzbar.
Bei der Sequenzabtastung werden die Daten wahrend einer Drehbewegung der Gantry aufgenommen, wahrend sich das Untersuchungsob ekt m einer festen Position befindet, und damit eine bestimmte Anzahl ebener Schichten abgetastet. Zur Abtas- cυ cυ KJ KJ I—1
Cn o Cn o cn o Cn
P> N rt rt ι-i M tr rt ü DO > <! cn rt 3 P ö DO PJ CΛ i-Q Φ Hi CΛ öd rt σ o rt
Λ Φ φ Φ Φ H Φ 0 Φ Φ C O n Φ PJ P HS J P tr Ό C HS c rt φ Φ P tr C
0 P Ps- H P Hi ι-i 0 rt P cn P tr Hi rt n cn <Q P Φ rt HJ Hi P H φ C Hi
P rt n P Φ ιQ Φ P-1 J P tr φ Φ Hi h-1 h-1 yQ PJ cn cn Hl vQ α P O α tr P ! φ φ CΛ C O Φ P ü Φ rt PJ -- J CΛ tr & C φ yQ
Cn P vQ Hj φ cn c rr α rt P cn rt rt Hi Hi P Hi Φ Hi PJ Φ HS rt h-1 Φ O H cn
3 CΛ Φ cn rt Z 0 ω Φ O 0 Φ P P- cn Hl rt cn tr yQ P Φ HS HT O Φ
3 rt 0 Φ Φ 0 P H Φ ti PJ Hi ιQ ü J Φ Φ rt PJ tr CΛ H! C < tr H
PJ CΛ Ps- P ^Q £J n 1-1 tr uq P- Φ O ;v P Φ HT Φ Φ O i CΛ Hl o
1 ti σ rr rt cn Φ CΛ > C Φ P rt HT rt HJ rt Hi CΛ P tr C 11 u3 Hi φ α rt Φ Φ o Φ tr 0 • cn tr ti c cn HS Φ Φ φ O N > n D Φ P Ps- PJ
M Φ rt 3 i P J cn rt Φ CL Hi P α PS4 P H Φ P HT Φ C H-1 Hi Hl PJ rt H ti Φ φ P. Φ 0 rt Φ < vQ Hi M Φ rt cn cn tr Hi H Hl PJ Φ HJ PJ
Cn Ps4 3 0 rt 0 Φ 3 o < P- H ι-i O C ^< H5 rt P Φ Φ H cn ^Q Hi
3 O rt o φ Hj Φ rt 3 cn ι-i Φ P Φ HJ P ti cn Φ • CΛ P CΛ PJ rt Φ Hl
3 Φ O Q 3 o rt Φ PJ N H P ^T cn P- rt Hi tr d tr ιQ ω Hl rt h Φ tr 0 O P c CΛ Φ rt H: ^ Φ > P- rt CΛ P 3 rt Φ φ PJ o
1 Φ n P ti tr CΛ yQ rr HS ι-f Hi ω Ps4 3 CΛ C PJ rt φ J rt rt
P ^ o rt Φ P cn rr rt PJ Φ O P- rt O O cn cn CΛ Φ α cn Φ N P ιQ rr cn tr Φ ti φ O Φ Φ Hi M Hi Φ CΛ a tr O 3 o PJ rt υ3 rt < Φ
O rt rt cn ι-i α ti P s 3 rt Φ P CL <! PJ PJ CΛ C rt HJ
Cn ti Φ cn N cn rt . — . P φ ö φ Ps- Φ Φ cn n Φ O tr o HJ ti Φ cn s
3 Φ 3 P 0 Ό CL Φ N φ > Hi Φ φ Hi H Hl P Φ HT rt <Q P C Φ
3 ti cn P Φ P 1 0 rt rt rt J yQ Φ rt N CΛ Hi ti < O Hl
Φ 3 CL PJ Φ 0 to tr1 cn N Φ P Φ P C ι-f Φ cn α o φ * rt Hi O HT
1 3 P > rt O Φ P PJ Hl c Ps- O 3 Ό Hi ti Hi ti O Φ ιQ Φ O cn CΛ
Φ rr N tr ≤ 0 o 0 0 yQ rt HS φ tr CΛ P Hj φ < Ps4 Hj rt C cn PJ n
P1 ti W h-1 Φ Φ tr ιQ tr Φ O P HS φ ) rt ö Φ yQ Hi φ O cn P 3 O Hi Ht
3 rt Hi Φ P 0 P Φ rt Φ P Hi ι-i Ps- rt X r-i P α H Φ Hi ti £ Φ φ rt P
3 Φ O P n P. rt P 0 0 £ Φ φ Φ Φ Φ yQ Hi Z HJ J CΛ rt n ti Hi J Hj o cn ti cn tr φ Φ 0 t> P. ti t H! H Hi Φ ti φ o rt c n P HT rt Hl *< tr
1 • • V Φ P Φ Q Φ yQ P Φ Φ Hi • Hi yQ O Hl Φ Pi HT HJ e PJ ιQ rt
Φ P N Φ CΛ -— ' P Λ rt 3 3 C cn H^ Hi H o C Hl - tr Φ P Φ
P1 0 φ Dd 0 ti Hi • φ φ Hi N σ S P Φ cn tr P ιQ P ιQ HJ Hl
3 P- Φ cn σ 0 σ O Hi Hi α z r Φ Φ Φ Hl C J Φ φ CΛ φ Φ Hl
3 Φ cn rt PJ < φ ti Φ 1-1 rt rt P H P 3 rt Φ O cn HS Hj O rt O Φ Z ti Z g o rr rt rt 3 Φ Φ CΛ O CΛ J • Hi tr h-1 tr Q J Hi P P
1 - Φ P 3 P Φ Φ φ Hi Hi P n tr Φ o C α Z P J J cn rt HJ H
P Φ Φ rt tt ι-i ?v α Φ tr Φ CΛ ti HJ φ o φ HJ rt Φ
P1 P cn tr 0 Φ rt cn rt Φ Φ Φ α P HJ Ό yQ rt H tr Ps1 rt Φ
"• 3 Φ cn CΛ P O π O CΛ ι-i P Φ HS P Hl P Φ α rt Hj rt tr HS P-
Cn 3 o ι-i tr P N φ Hi Φ n Hi Hl Hi Φ p ^< P φ PJ
3 N Ps- o tr "> CΛ P Φ Φ Φ rt m PJ Φ CΛ Hi Φ P cn C cn
3 1 O P- PJ *< Φ ι-i c cn Φ
1 P a rt J rt 3 P rt ι-< M S 1 cn C- • H-1 Z 3 cn Φ tö ti P α CΛ Φ Hi y c •Ö HS z. Q α rr o PJ PJ P rt &
O J Φ PJ ιQ HT o rt HT rt • PJ <V Hl o φ 3 0 t Φ P Φ Hi Φ n Φ σ h Hl H rt Φ C P P Hi cn o rt t tr ti P 3 3 n 0 α HJ H n Φ α P. P> Φ h-1 Hl φ < φ P- cn Φ rt rt ιQ CΛ tr rt c HT rt Hl rt Hi Φ υ3 HJ Φ < P Hi cn 0 tr J • Φ ti tr1 c? Φ Φ d cn U3 CΛ CΛ N P- Hi O rt cn
3 ti Φ α tr 3 0 yQ ) Hl Ps4 Hl P Z rt o rt H P 0
3 ιQ P P Φ P PJ ≥; P CΛ P- ω , rt iQ -> φ Φ tr Hj Φ α ΪO O 1 φ 0 rt O ti yQ d o Φ O ) Hi LJ PJ P φ o α Hl
1 ti φ cn PJ tr tr Φ 3 ι-i <J tr P < Φ tr HJ Hi HJ Φ
P P Φ n tr Φ tö 3 vQ • < Φ O φ rt O Ps- -> PJ rt H tr
Cn o ti 3 tr P- 0 P PJ Φ rt Φ Hl P 3 rt Φ HS t"1 yQ Φ
3 tr Φ tr 1 Φ o Hi P ι-i Φ ?v ω (H HJ P- PJ Φ α
3 z rr 3 σ J P α tr φ o 1 3 CΛ o P 3 Φ 1 Φ Q Hi HJ Φ
Φ P Φ 1 ti N Hi φ C 3 O J Φ P P Φ 1 1 vQ oo 1 1 3 3 tr Hi 1 rt 1 3 1 1
durch teilweises Einblenden von äußeren Detektorelemente und Zusammenfassen zusätzlich bereichsweise folgende Modi realisiert werden, bei denen sechs Schichten abgetastet werden:
Mode 1: 2,5mm - 2,5mm - 2,5mm - 2,5mm - 2,5mm - 2,5mm
Mode 2: 1mm - 1,5mm - 1mm - 1mm - 1,5mm - 1mm.
Die Erfindung ist nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispieles näher erläutert. Es zeigen:
Fig. 1 die wesentlichen Teile eines Röntgen-Computer- tomographen nach der Erfindung,
Fig. 2 und 3 je eine Spalte des Detektorsystems des CT-Ge- räts gemäß Fig. 1 mit den den Detektorelementen der Spalte zugeordneten Elektronikelementen, und
Fig. 4 eine Ansicht des Detektorsystems des CT-Geräts gemäß Fig. 1, aus der die Anordnung der Spalten gemäß Fig. 2 und 3 ersichtlich ist.
In Fig. 1 ist ein zur Abtastung eines Untersuchungsobjekts 1 vorgesehenes CT-Gerät gezeigt, das eine Strahlenquelle 2, z.B. eine Röntgenröhre, mit einem Fokus 3 aufweist, von dem ein durch eine nicht dargestellte Strahlenblende eingeblendetes pyramidenförmiges Strahlenbündel 4 ausgeht, welches das Untersuchungsobjekt 1, beispielsweise einen Patienten, durchsetzt und auf ein Detektorsystem 5 trifft. Dieses weist ein Array aus mehreren zueinander parallelen Zeilen 6 und mehreren zueinander parallelen Spalten 7 von Detektorelementen 8 auf. Die Strahlenquelle 2 und das Detektorsystem 5 bil- den ein Meßsystem, das in φ-Richtung um eine Systemachse 9 verlagerbar und entlang der Systemachse relativ zum Untersuchungsobjekt 1 verschiebbar ist, so daß das Untersuchungsob- ekt 1 unter verschiedenen Projektionswmkeln und verschiede¬ nen z-Positionen entlang der Systemachse 9 durchstrahlt wird. Aus den dabei auftretenden Ausgangssignalen der Detektorelemente 8 des Detektorsystems 5 bildet eine Signalverar- beitungsemheit 10 Meßwerte, die einem Rechner 11 zugeführt werden, der ein Bild des Untersuchungsobjekts 1 berechnet, das auf einem Monitor 12 wiedergegeben wird.
Das Detektorsystem 5 ist Fig. 1 nur grob schematisch mit von den Fig. 2 bis 4 abweichender Zeilen- und Spaltenzahl dargestellt. Die Figuren 2 bis 4 zeigen, daß im Falle des beschriebenen Ausfuhrungsbeispiels das Detektorsystem acht Zeilen 6 und vierundzwanzig Spalten 7 aufweist, wobei die Lange der Detektorelemente 8 m z-Richtung, d.h. m Richtung der Systemachse 9, nicht für alle Zeilen gleich ist. Diese Geometrie ist durch entsprechende Einblendung und Zusammenfassung von Detektorzeilen 6 sehr flexibel bei der Wahl der abzutastenden Schichtdicken des Untersuchungsobjekts. Im Mittel sind jeder Spalte 7 des Detektorsystems 5 vier Elektromkelemente 13 zum Auslesen und Verstarken der durch Absorption von Röntgenstrahlung den Detektorelementen 8 erzeugten Ladungen zugeordnet. Die Zuordnung eines Elektro- mkelements 13 zu einem oder mehreren Detektorelementen 8 erfolgt über Summationsglieder 14 und nicht dargestellte Mul- tiplexer. Die von den Elektronikelementen 13 erfaßten Signale sind zur Weiterverarbeitung einer Signalverarbeitungsemheit 10 zugeführt.
Wie aus Fig. 2 ersichtlich, sind die acht Detektorelemente 8 der dargestellten Detektorspalte 7, die gemäß Fig. 4 m dem φ-Richtung mittleren Bereich des Detektorsystems 5 liegt, mit sechs Elektronikelementen 13 verbunden, wobei von den mittleren vier Detektorelementen jeweils zwei, über ein Sum- mationsglied 14 zusammengefaßt, mit einem Elektromkelement 13 verbunden sind. Es werden somit Signale aller Detektorelemente dieser Detektorspalte erfaßt und der Signalverarbeitungsemheit 10 zugeführt. cυ cυ > M P1 P"
Cn o Cn O cn o C φ DO rt PH Z P> CΛ cn Hi N tr H_ τ0 cυ z α Z cn > Z rt ? rt 0 s: cn Hj ω P- φ ö
Φ Φ H( P TJ O Φ z Φ Φ O Φ φ PJ φ rt 0 Φ P- PJ Φ 0 Φ Φ φ Ό P P Φ 3 rt Hi 3 O 0 PJ 0 P- o cn P- CΛ Hj Hj cn P- Φ CΛ Hi Φ 0 HS vQ 0 0 ^Q 0 rt
P Φ 0 tr 0 < -—• n O P- P. 3 HJ 0 CΛ \ α Φ H φ Φ P-
0 P ?0 P N 0 Φ rt Φ tr Hi 0 tr rt M φ α CΛ cn ^ Φ rt 0 Φ 0 Öd rt P P 3
Ό o φ Ps1 s: 0 Hi Φ Hi P- Φ P x: 0 0 P 0 φ N α 0 Φ Φ O rt
O tr n Φ • yQ tr 0 cn M CΛ φ P O rt rr α cn uQ . 0 Φ Φ tr P tr 0 O £
Φ HT h-1 0 O HS Φ 0 Φ Φ • > Hi cn P 0 Φ Φ ~J 0 H P
P- 0 Φ <! 0 ^J Hi a 0 CΛ P P φ z P rt P- H-1 0 P P - N cn rt
Φ P- φ 3 O α Φ Φ n φ 3 P- CΛ φ 0 Ji» Q Ξ ?ö cn n s: Φ T3 rt
P 0 φ - 0 φ uQ -> cn rt Hi tr P φ 0 Ps1 O φ Φ Φ P- tr H-1 Φ Hj 0 Φ rt rt 0 0 Φ Φ φ Φ 0 rt n rt J P Hj P n 0 α Φ H P Φ h-1
• Φ P1 rt α £ • 3 σ 0 0 j: φ π O n cn P- rt HT Φ Hj Φ 0 rt
P Φ Φ φ PJ PJ Φ Φ Φ yQ rt rt 0 Hj HT rt rt Φ 0 £ 0 Φ yQ M Φ a ü Ό 0 CΛ ö> ix> 0 rt -J < cn Φ Z 0 Φ rt p" H Φ φ ü CΛ rt P-
P O PJ P- 3 rt Φ J P- 0 0 ι 3 Φ P t 3 Φ Φ P N Φ φ 0 P> ü PJ H I Φ ? < 0 ü Φ CΛ Φ CS3 P Φ 0 cn s; P- (T α P. ? 0 0
P- ω cυ Φ rt > P 0 rr O rr φ CΛ Φ N o 3 Φ φ 0 Φ rt Φ Φ 0 rt rsi
CΛ Φ rr Φ 0 yQ O ti • rt P 0 tr Φ P- CΛ P1 Hf PS4 rt tr P i-q Φ 0
O H P- < Φ 0 CΛ • £ Hj Φ α 0 Hi J 0 P-1 M P- P rt C rt Φ Φ O P P o rt Φ Φ Ps1 Q Φ ω ö M Ps- φ φ rt φ P- Φ Q Φ φ O Ps4 P- 0 yQ Hj Hj
- 0 Hi rt Z H^ r EP *< φ 3 rt rt CΛ Ps4 Φ 0 0 P 0 P- 0 P rt P- • Φ α φ tr O Φ Φ tr cn rt O Φ tT rt 0 rt J 0 ω o yQ ? P- 0 z tr 0 Hi 0 P 3 Φ rr Φ öd P P v tr σi Φ DO rt 0 O Ό P φ Φ cυ o 0 o N o 0 CΛ P o P Hi Φ Ps1 Φ cn CΛ PJ P- P1 00 P- H- < Φ 0 Φ 0 cn 3 h-1 tr
0 z Hi α > uq HT rr Φ 3 rt P- > 0 rt 0 H-1 h-1 φ cn rt 0 Φ P. Φ ^Q
0 • HT Φ CΛ φ P cn O cn cn O P- CL 0 Φ 0 0 P- P n Φ r cn H 3 0 φ J rt P cn LJ o Ό rt HT Φ 0 0 P 0 p 0 o tr PS4 Φ rt φ <
0 PJ 0 • Φ P Φ HT cn Φ P- Φ 0 0 0 P cn u3 φ P Φ rt Φ yQ o φ 0 P- 3 P 0 s: • H-1 φ 3 0 rt ιQ P- < Ps4 tr P O - 3 P- rt Φ CΛ o
0 CΛ φ < ! cn 0 a Φ N Φ CΛ yQ Φ PJ o P- P- O Φ φ 0 Hj cn yQ Φ cn P-
0 Φ rt P 0 α 3 CΛ 0 P 0 t φ Φ 0 H Hi n cn 0 • rt 0 α - φ HT Cn Φ P" 3 Φ cn O 0 CΛ rt Hj CΛ ω rt rt π O 0 C Φ α P-
0 Φ 0 Hi P CΛ Φ 0 PJ tr 0 CΛ h-1 0 rt 0 tr 0 O • 4^ cυ H-1 φ rt 0 Φ 3 Φ φ H α rt O N J cn Φ O P- 0 tr H 0 tr 0 HT H-1 α Hj
Φ £ 0 P CΛ cn HT P- Φ tr 0 φ O Hj HT o P. Φ 0 yQ N H rt P N rt Φ
0 £ φ rt CΛ CΛ φ o 0 P ^ Φ 0 HT N P ? s: rt Φ ^ 0 0 Φ M
Φ EP Φ J TJ o HT i-q rt p- P- • z ω rr PJ • Φ P yQ 0 z E £ 0 0 0 HT Φ > co P- w CΛ cn O rt PJ H- 0 -J vQ α Φ 0 Φ φ ≤ φ £ 0 rt cn 0 0 ιQ Hi rt Hj rt CΛ 0 P O Hh Φ - • Φ O α O ^
HS Φ P φ P Φ rt Hi P • Hi P1 Q Λ O N Φ 0 X o 3 Hj Φ πr rt
P rt tP 0 Φ M 3 PJ tr PJ s: h-1 P- tr rt φ ιQ l\) & rt rt Hj
Φ rt Φ z LJ 0 CΛ o Hl j CΛ P Φ 0 Φ ιQ HT N φ Hi rt Φ P- 0 Φ o
0 Φ 0 φ Φ PJ φ P cn PJ CΛ 3 P- φ P- PJ 0 P PJ Φ ≤ Hi Φ Ps- σ 0
0 z 0 ^J *- 0 0 CΛ cn 0 - CΛ tr CΛ Hl Hj φ Ό Ps4 O Φ rt rt Φ P- α rt φ HP rt 0 cn Φ 0 n φ Φ φ T3 rt 0 P O rt 0 tr -e • O rt
0 Φ Φ P Φ Hi Q φ P- LQ H 0 P- P P) φ n rr O 0 1 Hj Φ φ
0 0 Hj Hl 0 O 0 1 rr Φ 0 cn 0 ? ω P Hj Φ Φ tö ü ω Ps4
0 CΛ z CΛ Φ CΛ 0 P P- P- - < cn ω cn 0 Ό rt ιQ Φ CΛ 0 0 P- P TJ rt φ tr φ 0 P Φ 0 φ P o Φ Ό rt P Φ α Φ P Hj Ό Φ n φ 0 O 3 öd Φ ^ φ 0 Hj Hj K Φ φ 0 Φ ^ 3 rt 0 0 Φ HT P φ o φ rt a z DO Φ φ Ö α LSI cn PJ Φ O P H-1 rt P •Ö • H-1 rt ö rt Φ 0
3 1-1 Φ φ Φ 0 H- ' Φ P φ £ rt O Ό CΛ cn -J φ H rt £ £ 0 φ Φ rt
Φ Φ 0 P H Φ rt φ 0 α Φ tr 0 Z Ps4 H φ σ Φ φ Φ 0 rt Φ Φ tö P Hi Φ N 3 Φ CΛ rt Φ EP Φ Φ Φ o φ < rt Hi 3 0 0 E HP yQ Φ ^J 3 0
Φ o Hi < M P 0 Φ Ps1 Φ i- P Z P 0 cn HT P- O O φ φ 3 Z s: Ps4 - Φ o tr φ O o Hj rt 3 J Φ 0 p. rt cn 0 P 0 0 P 3 Φ Φ 0 rt 0 TJ
HT 0 0 Φ tr rt O H-1 P Φ O φ CΛ 1 rt P- Hj Hj 0 O H-1 rt HS
0 H α ;* Φ cn Φ P tr tr rr c_ι > rt rt rt HP Hj Φ Φ O
Φ Φ 1 Φ 0 1 Φ Φ Φ Φ Φ 1 1 Φ Φ Φ 1 1 0
P 0 1 1 1 0 P 1 0 1
11 nach den üblichen Bildrekonstruktionsverfahren verarbeitet .
Wie aus den Fig. 2 bis 4 ersichtlich ist, weisen bei diesem Ausfuhrungsbeispiel die Detektorelemente einer Detektorspalte unterschiedliche Langenausdehnungen in z-Richtung auf. Im Beispiel betragen diese:
5mm - 2,5mm - 1,5mm - 1mm - 1mm - 1,5mm - 2,5mm - 5mm.
Dann ist mit diesem Detektorsystem durch Zusammenfassung der 1, 5mm-Elemente mit den lmm-Elementen mittels der Summations- glieder 14 m der m Fig. 2 dargestellten Weise und Einblenden der äußeren 5-mm Elemente mittels der Strahlenblenden 15, beispielsweise für den aus Fig. 4 ersichtlichen, besonders relevanten Bereich I, auch folgender Modus mit 6 Zeilen möglich:
2 , 5mm - 2 , 5mm - 2 , 5mm - 2 , 5mm - 2 , 5mm - 2 , 5mm.
Die Erfindung ist nicht auf das dargestellte Ausfuhrungsbeispiel beschrankt, sondern für mehrzellige Detektorsysteme mit beliebiger Anzahl an Detektorzeilen und Detektorspalten verwendbar. Auch die Lange der Detektorelemente m z-Richtung kann im Rahmen der Erfindung von dem dargestellten Ausfuhrungsbeispiel abweichen. Insbesondere umfaßt die Erfindung auch Detektorsysteme mit gleicher Langenausdehnung der Detektorelemente m z-Richtung.
Im Falle des vorstehend beschriebenen Ausfu rungsbeispieles handelt es sich um ein CT-Gerate der dritten Generation, d.h. die Rontgenstrahlenquelle und der Detektor rotieren wahrend der Bilderzeugung gemeinsam um die Systemachse. Die Erfindung kann aber auch bei CT-Geraten der vierten Generation, bei denen nur die Rontgenstrahlenquelle rotiert und mit einem feststehenden Detektorring zusammenwirkt, Verwendung finden. Das vorstehend beschriebene Ausführungsbeispiel betrifft die medizinische Anwendung eines erfindungsgemäßen CT-Gerätes. Die Erfindung kann jedoch auch außerhalb der Medizin, bei- spielsweise bei der Gepäckprüfung oder bei der Materialuntersuchung, Anwendung finden.

Claims

Patentansprüche
1. CT-Gerät mit einer Strahlenquelle (2), welche zur Abtastung eines Untersuchungsobjekts (1) um eine Systemachse (9) verlagerbar ist und ein Strahlenbündel (4) aussendet, das auf ein aus einem Array von mehreren Zeilen (6) und mehreren Spalten (7, 7') von Detektorelementen (8) bestehendes Detektorsystem (5) trifft, wobei die so gewonnenen Meßwerte einem von einer Vielzahl von Projektionswinkeln zugeordnet sind und einem Rechner (11) zugeführt sind, welcher daraus Bilder des Untersuchungsobjekts (1) berechnet, wobei durch Strahlung in den Detektorelementen (8) erzeugte Signale zum Auslesen und Verstärken Elektronikelementen (13) zugeführt sind, wobei die Anzahl der Detektorelemente (8) des Detektorsystems (5) die Anzahl der Elektronikelemente (13) übersteigt, und wobei ein wenigstens eine Detektorspalte (7) umfassender Bereich von Detektorspalten (7) mit einer größeren Anzahl an Elektronikelementen (13) zum Auslesen der Detektorelemente (8) dieses Bereichs verbindbar ist, als ein un- terschiedlicher, die gleiche Anzahl an Detektorspalten (7) umfassender Bereich.
2. CT-Gerät mit einem Detektorsystem (5) nach Anspruch 1, bei dem Detektorelemente (8) eines wenigstens eine Detektorspalte (7) umfassenden Bereichs nicht mit Elektronikelementen (13) verbunden sind.
3. CT-Gerät mit einem Detektorsystem (5) nach Anspruch 1 oder 2, bei dem fehlende Meßwerte aus dem Bereich (II, II') mit verminderter Anzahl zugeordneter Elektronikelemente (13) durch Interpolation der aus diesem Bereich (II, II') gewonnenen Meßwerte und/oder Extrapolation der Meßwerte aus dem Bereich (I) mit erhöhter Anzahl zugeordneter Elektronikelemente (13) bestimmbar sind.
4. CT-Gerät mit einem Detektorsystem (5) nach einem oder mehreren der Ansprüche 1 bis 3, bei dem eine Lagerungseinrich- tung für das Untersuchungsobjekt (1) und die Strahlenquelle (2) m Richtung der Systemachse (9) relativ zueinander verstellbar sind und die gewonnenen Meßwerte einer z-Position auf der Systemachse (9) zugeordnet sind.
5. CT-Gerat mit einem Detektorsystem (5) nach einem oder mehreren der Ansprüche 1 bis 4, bei dem durch Absorption von Strahlung m den Detektorelementen (8) erzeugte Ladungen zum Auslesen und Verstarken Elektronikelementen (13) zugeführt sind.
6. CT-Gerat mit einem Detektorsystem (5) nach einem oder mehreren der Ansprüche 1 bis 5, bei dem wenigstens bei zwei Detektorzeilen (6) die Lange der Detektorelemente (8) in Rich- tung der Systemachse (9) unterschiedlich ist.
PCT/DE2000/002438 1999-07-27 2000-07-25 Ct-gerät mit mehrzeiligem detektorsystem WO2001006930A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001511826A JP2003505135A (ja) 1999-07-27 2000-07-25 多数列検出器システムを備えたコンピュータ断層撮影装置
US10/048,052 US6792068B1 (en) 1999-07-27 2000-07-25 Computed tomography device with a multi-line detector system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19935093.0 1999-07-27
DE19935093A DE19935093A1 (de) 1999-07-27 1999-07-27 CT-Gerät mit mehrzeiligem Detektorsystem

Publications (1)

Publication Number Publication Date
WO2001006930A1 true WO2001006930A1 (de) 2001-02-01

Family

ID=7916130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002438 WO2001006930A1 (de) 1999-07-27 2000-07-25 Ct-gerät mit mehrzeiligem detektorsystem

Country Status (4)

Country Link
US (1) US6792068B1 (de)
JP (1) JP2003505135A (de)
DE (1) DE19935093A1 (de)
WO (1) WO2001006930A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10052827A1 (de) * 2000-10-24 2002-05-08 Siemens Ag Detektor für Röntgen-Computertomograph
DE10024489B4 (de) * 2000-05-18 2007-01-04 Siemens Ag Detektor für ein Röntgen-Computertomographiegerät
DE10051162A1 (de) 2000-10-16 2002-05-02 Siemens Ag Strahlendetektor
DE10150428A1 (de) 2001-10-11 2003-04-30 Siemens Ag Verfahren zur Erzeugung dreidimensionaler, mehrfachaufgelöster Volumenbilder eines Untersuchungsobjekts
DE10307752B4 (de) * 2003-02-14 2007-10-11 Siemens Ag Röntgendetektor
JP2004347384A (ja) * 2003-05-21 2004-12-09 Hitachi Ltd X線ct装置及びx線ct装置による画像作成方法
EP1887937B1 (de) * 2005-05-31 2016-10-05 Arineta Ltd. Ct-gerät mit gesichtsfeld mit abgestufter auflösung
US9808262B2 (en) 2006-02-15 2017-11-07 Howmedica Osteonics Corporation Arthroplasty devices and related methods
JP5383005B2 (ja) * 2007-05-08 2014-01-08 キヤノン株式会社 X線ct撮影装置
US20090122962A1 (en) * 2007-11-14 2009-05-14 David Gould Slotted x-ray filter
US8617171B2 (en) 2007-12-18 2013-12-31 Otismed Corporation Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide
JP2010011979A (ja) * 2008-07-02 2010-01-21 Toshiba Corp データ伝送方式及びその装置
US8324586B2 (en) * 2009-05-18 2012-12-04 General Electric Company Configurable multi resolution flat panel detector
JP6342175B2 (ja) * 2014-02-10 2018-06-13 キヤノンメディカルシステムズ株式会社 X線ct装置
DE102014217391A1 (de) * 2014-09-01 2016-03-03 Smiths Heimann Gmbh Detektorzeile mit Bereichen unterschiedlicher Auflösung
DE102014224743A1 (de) 2014-12-03 2016-06-09 Siemens Healthcare Gmbh Beschleunigte Datenerfassung bei einem Röntgensystem
US10126254B2 (en) * 2014-12-18 2018-11-13 Toshiba Medical Systems Corporation Non-uniform photon-counting detector array on a fourth-generation ring to achieve uniform noise and spectral performance in Z-direction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2074415A (en) * 1980-04-02 1981-10-28 Gen Electric Computed tomography with selectable image resolution
GB2088670A (en) * 1980-11-26 1982-06-09 Philips Nv Radiation absorption distribution measurement in a part section of a body
DE19502574A1 (de) 1995-01-27 1996-08-08 Siemens Ag Röntgen-Computertomograph
DE19835873A1 (de) * 1997-11-07 1999-05-12 Gen Electric Verfahren und Vorrichtung zur Zellenkopplung bei einem Mehrschnittcomputer-Tomographie-System

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7711120A (nl) * 1977-10-11 1979-04-17 Philips Nv Inrichting voor het bepalen van lokale absorp- tiewaarden in een vlak van een lichaam en een rij van detektoren voor een dergelijke in- richting.
US4965726A (en) * 1988-10-20 1990-10-23 Picker International, Inc. CT scanner with segmented detector array
US5355309A (en) * 1992-12-30 1994-10-11 General Electric Company Cone beam spotlight imaging using multi-resolution area detector
US5430784A (en) * 1994-02-28 1995-07-04 General Electric Company Computerized tomography imaging using multi-slice detector with selectable slice thickness
JP3763611B2 (ja) * 1996-07-12 2006-04-05 株式会社東芝 X線ctスキャナ
IL119033A0 (en) * 1996-08-07 1996-11-14 Elscint Ltd Multi-slice detector array
EP0958697B1 (de) * 1997-12-10 2006-01-04 Koninklijke Philips Electronics N.V. Bildung eines zusammengesetzten bildes aus aufeinanderfolgenden röntgenbildern
EP0971630A1 (de) * 1997-12-16 2000-01-19 Koninklijke Philips Electronics N.V. Rechnergestützte tomographie-anlage
US6188745B1 (en) * 1998-09-23 2001-02-13 Analogic Corporation CT scanner comprising a spatially encoded detector array arrangement and method
DE10015191A1 (de) * 2000-03-27 2001-10-25 Siemens Ag Detektor für Röntgen-Computertomograph
US6535571B2 (en) * 2000-03-27 2003-03-18 Siemens Aktiengesellschaft Detector for an X-ray computed tomography apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2074415A (en) * 1980-04-02 1981-10-28 Gen Electric Computed tomography with selectable image resolution
GB2088670A (en) * 1980-11-26 1982-06-09 Philips Nv Radiation absorption distribution measurement in a part section of a body
DE19502574A1 (de) 1995-01-27 1996-08-08 Siemens Ag Röntgen-Computertomograph
DE19835873A1 (de) * 1997-11-07 1999-05-12 Gen Electric Verfahren und Vorrichtung zur Zellenkopplung bei einem Mehrschnittcomputer-Tomographie-System

Also Published As

Publication number Publication date
JP2003505135A (ja) 2003-02-12
DE19935093A1 (de) 2001-02-15
US6792068B1 (en) 2004-09-14

Similar Documents

Publication Publication Date Title
WO2001006930A1 (de) Ct-gerät mit mehrzeiligem detektorsystem
DE102006015358B4 (de) Fokus/Detektor-System einer Röntgenapparatur zur Erzeugung von Phasenkontrastaufnahmen, zugehöriges Röntgen-System sowie Speichermedium und Verfahren zur Erzeugung tomographischer Aufnahmen
DE69902326T2 (de) Bildkorrektur für ein geneigtes Gehäuse in einem Mehrschicht-Computertomograph
DE102005027436B4 (de) Verfahren zur Berechnung von absorberspezifischen Gewichtungskoeffizienten und Verfahren zur Verbesserung eines von einem Absorber abhängigen Kontrast-zu-Rausch-Verhältnisses in einem von einer Röntgeneinrichtung erzeugten Röntgenbild eines zu untersuchenden Objektes
DE10036142A1 (de) Röntgen-Computertomographieeinrichtung
DE102011053762A1 (de) System und Verfahren zum Bandpassfiltern für Dualenergie-CT
DE2753004A1 (de) Beseitigung spektraler kuenstlicher effekte und benutzung spektraler effekte bei der computerisierten tomographie
DE2916486A1 (de) Korrektur polychromatischer roentgenbildfehler in computertomographiebildern
DE102005008767A1 (de) Verfahren für eine Röntgeneinrichtung und Computertomograph zur Verminderung von Strahlaufhärtungsartefakten aus einem erzeugten Bild eines Objektes
DE3406905A1 (de) Roentgengeraet
DE19813466A1 (de) Verfahren und Vorrichtung zur Abtastung eines Gegenstands in einem Computer-Tomographie-System
DE10051462A1 (de) Verfahren zur Strahlaufhärtungskorrektur für ein mittels eines CT-Geräts aufgenommenes Ausgangsbild
DE10357187A1 (de) Verfahren zum Betrieb eines zählenden Strahlungsdetektors mit verbesserter Linearität
EP0871044B1 (de) Verfahren zur Verbesserung der Bildschärfe in der Röntgen-Computertomographie
DE19513052A1 (de) Kalibrierung der Verstärkung eines Detektorkanals mittels Wobbelns des Brennpunktes
DE102011053890A1 (de) Verwendung mehrerer Materialien für die Verbesserung der spektralen Notch-Filterung in der spektralen Bildgebung
DE102007021023A1 (de) Verfahren zur Bilderstellung für die Spiral-CT mit veränderlichem Pitch und CT-Gerät zur Durchführung des Verfahrens
DE4238268A1 (de) Verfahren und Vorrichtung zur Abnahme- und Konstanzprüfung filmloser Dental-Röntgengeräte
DE10139832A1 (de) Hohe-Ganghöhenrekonstruktion von Mehrfachschnitt-CT-Abtastungen
DE19854445A1 (de) Wendelrekonstruktionsalgorithmus
DE10352013A1 (de) Verfahren und Vorrichtung zur ortsaufgelösten Bestimmung der Elementkonzentrationen in Untersuchungsobjekten
DE102004033989B4 (de) Verfahren zur Messung der dreidimensionalen Dichteverteilung in Knochen
DE19851556C2 (de) CT-Gerät
DE102004039681B4 (de) Tomographiegerät und Verfahren für ein Tomographiegerät
DE3710936A1 (de) Roentgengeraet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10048052

Country of ref document: US

122 Ep: pct application non-entry in european phase