WO2001004341A1 - Procede de production d'oligosaccharides - Google Patents

Procede de production d'oligosaccharides Download PDF

Info

Publication number
WO2001004341A1
WO2001004341A1 PCT/FR2000/001972 FR0001972W WO0104341A1 WO 2001004341 A1 WO2001004341 A1 WO 2001004341A1 FR 0001972 W FR0001972 W FR 0001972W WO 0104341 A1 WO0104341 A1 WO 0104341A1
Authority
WO
WIPO (PCT)
Prior art keywords
transferase
cell
precursor
oligosaccharide
lacto
Prior art date
Application number
PCT/FR2000/001972
Other languages
English (en)
Inventor
Eric Samain
Bernard Priem
Original Assignee
Centre National De La Recherche Scientifique (Cnrs)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9547804&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001004341(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Centre National De La Recherche Scientifique (Cnrs) filed Critical Centre National De La Recherche Scientifique (Cnrs)
Priority to CA2378562A priority Critical patent/CA2378562C/fr
Priority to NZ516808A priority patent/NZ516808A/en
Priority to US10/019,954 priority patent/US7521212B1/en
Priority to MXPA02000240A priority patent/MXPA02000240A/es
Priority to EP00949678A priority patent/EP1194584B1/fr
Priority to DE60026142T priority patent/DE60026142T2/de
Priority to AU62961/00A priority patent/AU780290B2/en
Priority to JP2001509544A priority patent/JP5058420B2/ja
Publication of WO2001004341A1 publication Critical patent/WO2001004341A1/fr
Priority to US11/930,663 priority patent/US8586332B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates

Definitions

  • oligosaccharides play an important biological role, in particular at the level of protein activity and function; they thus serve to modulate the duration of the half-life of proteins, sometimes they intervene in the structure of the protein. Oligosaccharides play a critical role in antigenic variability (blood group for example), and in certain bacterial infections such as those caused by Neisseria menincfitidis.
  • oligosaccharides are usually obtained in low yield by purification from natural sources, the synthesis of oligosaccharides has become a major challenge in the chemistry of carbohydrates, in order to provide sufficient quantities of well characterized oligosaccharides, necessary for research fundamental or for all other potential applications (Boons et al, 1996).
  • the synthesis of complex oligosaccharides of biological interest can be carried out chemically, enzymatically or microbiologically.
  • the enzyme substrates for these reactions are readily available, but these enzyme reactions are not very versatile.
  • Another enzymatic method developed uses the glycosyl-transferases of the Leloir biochemical pathway which exhibit a high regiospecificity for the precursor as well as for the donor substrate; these glycosyl transferases are not as readily available as glycosyl hydrolases.
  • the recombinant DNA technique has recently made it possible to clone and produce a certain number of them.
  • the main limitation of this enzymatic method lies in the very high cost of sugar nucleotides which are the donors of sugar used by these enzymes.
  • microbiological pathway for the production of recombinant oligosaccharides in vivo is the most attractive of the synthetic pathways since the bacterium is responsible for the biosynthesis of enzymes, the regeneration of nucleotide-sugars and ultimately the production of the oligosaccharide.
  • the first descriptions of the synthesis of oligosaccharides by the microbiological route using recombinant bacteria can be considered to a certain extent as the work which led to the elucidation of the biosynthetic pathways of nodulation factors; these factors are signal molecules secreted by the rhizobia to allow recognition by legumes in the nodulation process.
  • the nodulation factors consist of a chitooligosaccharide skeleton carrying different substitutions.
  • the present invention therefore relates to a process for the production of an oligosaccharide of interest by a genetically modified cell from at least one exogenous precursor internalized by said cell, said precursor intervening in the biosynthetic pathway of said oligosaccharide, said process comprising the steps (i) of obtaining a cell which comprises at least one recombinant gene coding for an enzyme capable of effecting a modification of said exogenous precursor or of one of the intermediates of the biosynthesis pathway of said oligosaccharide from said exogenous precursor necessary for the synthesis of said oligosaccharide from said precursor, as well as the elements allowing the expression of said gene in said cell, said cell being devoid of enzymatic activity capable of degrading said oligosaccharide, said precursor and said intermediates; (ii) culturing said cell in the presence of at least one said exogenous precursor, under conditions allowing internalization according to a passive and / or active transport mechanism said exogenous precursor by said cell and
  • the present invention relates to a method as described above, characterized in that said cell further comprises at least one gene coding for an enzyme capable of effecting a modification of an endogenous precursor involved in the biosynthetic pathway of said oligosaccharide, said enzyme being identical to or different from the enzyme used in the process described above, as well as the elements allowing the expression of said gene in said cell and characterized in that said cell is devoid of activity enzymatic likely to degrade said precursor.
  • oligosaccharides is intended to denote linear or branched polymers with a variable number of residues, bonds and subunits; the number of residues being greater than 1.
  • Oligosaccharides are carbohydrates which transform on hydrolysis into several molecules of monosaccharides; monosaccharides being sugars which cannot be transformed by hydrolysis into a simpler substance. The monosaccharides are subdivided into trioses, tetroses, pentoses, hexoses, heptoses according to the number of carbon atoms in their hydrocarbon chain and also into aldoses and ketoses according to the presence of an aldehyde function or of a ketone function in their molecule.
  • exogenous precursor is intended to denote a compound intervening in the biosynthetic pathway of the oligosaccharide according to the invention which is internalized by said cell.
  • endogenous precursor is intended to denote a compound intervening in the biosynthetic pathway of the oligosaccharide according to the invention which is naturally present in said cell.
  • genetically modified cell is intended to denote a microorganism into which at least one alteration of the DNA sequence has been introduced into its genome in order to confer a particular phenotype on said cell. Such alterations can thus confer, for example, the ability of the cell not to degrade or not to modify a compound according to the invention or not to decrease the frequency of DNA rearrangement.
  • the method according to the invention is characterized in that said cell is a cell chosen from bacteria and yeasts.
  • the bacterium is chosen from the group composed of Escherichia coli, Bacillus subtilis, Campylobacter pylori, Helicobacter pylori, Agrobacterium tuméfaciens, Staphylococcus aureus, Thermophilus aquaticus, Azorhizobiutn caulinodans, Rhizobium leguminosarum, Neisseria geaisseria Neisseria meningitis.
  • the bacterium is Escherichia coli.
  • the cell is a yeast which is preferably Saccharomyces cerevisiae, Saccharomyces pombe, Candida albicans.
  • the cell according to the invention is devoid of enzymatic activity capable of degrading said oligosaccharide, said precursor or said metabolic intermediates.
  • the nucleic acid sequence coding for the enzyme according to the invention is either naturally present in said cell or is introduced into said cell by recombinant DNA techniques known to those skilled in the art.
  • the term “nucleic acid” is intended to denote a DNA fragment, both double-stranded and single-stranded, as transcripts of said DNAs, and / or an RNA fragment.
  • the nucleic acid sequence introduced into said cell by recombinant DNA techniques and which codes for an enzyme intervening in the biosynthesis pathway of the oligosaccharide of interest is heterologous.
  • heterologous nucleic acid sequence is intended to denote a nucleic acid sequence which is not naturally present in the cell according to the invention.
  • the heterologous nucleic acid sequence according to the invention can come from any animal or plant, eukaryotic or prokaryotic cell type and can come from virus.
  • bacteria in particular Escherichia coli, Bacillus subtilis, Campylobacter pylori, Helicobacter pylori, Agrobacterium tuméfaciens, Staphylococcus aureus, Thermophilus aquaticus, Azorhizobium caulinodans, Rhizobium legumin , Rhizobium meliloti, Neisseria gonorrhoeae, Neisseria meningitis.
  • bacteria in particular Escherichia coli, Bacillus subtilis, Campylobacter pylori, Helicobacter pylori, Agrobacterium tuméfaciens, Staphylococcus aureus, Thermophilus aquaticus, Azorhizobium caulinodans, Rhizobium legumin , Rhizobium meliloti, Neisseria gonorrhoeae, Neisseria meningitis.
  • heterologous nucleic acid sequence originates from plant or animal eukaryotic cells.
  • the heterologous nucleic acid sequence originates from mammalian cells and preferably from human cells.
  • the cell according to the invention is the bacterium Escherichia coli and the nucleic acid sequence introduced into the bacterium and coding for the enzyme according to the invention preferably comes from the bacterium chosen from the group cited above.
  • the nucleic acid sequence coding for the enzyme according to the invention is introduced into said cell in the form of an expression vector.
  • the vector must include a promoter, translation initiation and termination signals, as well as appropriate regions for transcription regulation.
  • the vector must be able to be maintained stably in the cell during successive generations and may possibly have specific signals specifying the secretion of the translated enzyme. These different control signals are chosen according to the cellular host used.
  • the nucleic acid sequences can be inserted into vectors with autonomous replication within the chosen host or into integrative vectors which integrates into the genome of the chosen host.
  • Such vectors are prepared according to the methods commonly used by those skilled in the art, and the resulting clones can be introduced into an appropriate cell host by standard methods, such as for example thermal shock or electroporation.
  • the invention further relates to the above cells, characterized in that they are transformed by at least one isolated recombinant nucleic acid encoding the enzyme according to the invention or by at least one recombinant vector as defined above.
  • the method according to the invention is characterized in that said modification carried out by said enzyme is chosen from glycosylation, sulfation, acetylation, phosphorylation, succinylation, methylation and the addition of an enolpyruvate group, sialylation , fucosylation.
  • the method according to the invention is characterized in that said enzyme is an enzyme capable of carrying out a glycosylation chosen from glycosyl-transferases, glycosyl-hydrolases, glycosyl-phosphorylases.
  • the enzyme capable of carrying out glycosylation is a glycosyl-transferase.
  • the glycosyl-transferase according to the invention is chosen from ⁇ -1,3-N-acetyl-glucosarninyl-transferase, ⁇ -1,3 galactosyl-transferase, ⁇ -1,3 N-acetyl-galactosaminyl-transferase, ⁇ -1,3 glucuronosyl-transferase, ⁇ -1,3 N-acetyl-galactosaminyl-transferase, ⁇ -1,4 N-acetyl-galactosaminyl-transferase, ⁇ -1 , 4-galactosyl-transferase, a- 1-3- galactosyl-transferase, a- 1,4-galactosyl-transferase, a-2,3-sialyl-transferase, ⁇ -2,6 sialyl-
  • the glycosyl transferases used in the present invention are capable of stereospecific unit conjugation of specific activated saccharides on a specific acceptor molecule.
  • Activated saccharides generally consist of saccharide derivatives uridine-, guanosine- and cytidine- diphosphate.
  • the activated saccharides can be a UDP-saccharide, a GDP-saccharide, a CMP-saccharide.
  • the enzyme capable of performing acetylation is encoded by the NodL gene of the bacterium Azorhizobium caulinodans.
  • the enzyme capable of carrying out sulfation is coded by the NodH gene of the bacterium Rhizobium meliloti.
  • the method according to the invention is characterized in that said cell culture is carried out preferably on a carbon substrate; according to a particular embodiment of the invention, said carbon substrate is chosen from glycerol and glucose. Other carbon substrates can also be used; mention should be made of maltose, starch, cellulose, pectin, chitin. According to another embodiment, the cell culture is carried out on a substrate composed of amino acids and / or protein and / or lipids.
  • the method according to the invention is characterized in that the said culturing step is carried out under conditions allowing a high cell density culture to be obtained; this cultivation step comprises a first phase of exponential cell growth ensured by said carbon substrate, a second phase of cell growth limited by said carbon substrate which is added continuously and finally a third phase of slowed cell growth obtained by adding continuously in the culture an amount of said substrate decreased relative to the amount of substrate added in step b) so as to increase the content of oligosaccharides produced in the high cell density culture.
  • the method according to the invention is characterized in that the amount of substrate added continuously in the cell culture during said phase c) is reduced by at least 30%, preferably 50%, preferably 60% by relative to the amount of substrate added continuously during said phase b).
  • the method according to the invention is also characterized in that said exogenous precursor is added during phase b).
  • the method is characterized in that said exogenous precursor is of a carbohydrate nature, preferably of an oligosaccharide nature.
  • said exogenous precursor is of a carbohydrate nature, preferably of an oligosaccharide nature.
  • the originality and the feasibility of the process according to the invention rests on the use of two modes of internalization of the exogenous precursor which neither destroy the integrity of the cell nor reach its vital functions. This notably excludes conventional techniques of permeabilization of the membrane by organic solvents which will block growth and energy metabolism.
  • the two possible modes of internalization of the exogenous precursor use a passive or active transport mechanism.
  • the invention firstly relates to a method characterized in that said exogenous precursor is internalized according to a passive transport mechanism.
  • the term “internalization by passive transport” is intended to denote the passive diffusion of one of the exogenous precursor through the plasma membrane, the molecular flux being directed from the most concentrated zones towards the least concentrated zones in order to finally tend towards a state of equilibrium.
  • Internalization by passive transport consists in using an exogenous precursor which is small enough and hydrophobic to passively diffuse through the membrane.
  • a precursor, a monosaccharide having the anomeric position blocked by an alkyl substituent constitutes an example of a precursor capable of being internalized in this way.
  • the present invention therefore relates to a process characterized in that said exogenous precursor is a monosaccharide whose anomeric carbon is linked to an alkyl group; preferably said alkyl group is an allyl group.
  • oligosaccharides which have a functionalizable group such as the allyl group and which can therefore be used as a precursor for the chemical synthesis of glycoconjugates (neoglycoprotein or neoglycolipids) or glycopolymers.
  • the double bond of the allyl group is capable of being opened by ozonolysis to form an aldehyde and allow the conjugation of the oligosaccharide on a protein by reductive amination (Roy et al., 1997).
  • the method according to the invention relates to the production of [ ⁇ -D-Gal- [1-4] - ⁇ -D-GlcNac-1-O-allyl); the method is characterized in that said cell is a bacterium of the LacZ- genotype, said enzyme is ⁇ -1,4-galactosyl transferase, said substrate is glycerol and said precursor is allyl-N-acetyl- ⁇ - D-glucosaminide ( ⁇ -D-GlcNac-1-> O-allyl).
  • the method according to the invention is characterized in that the double bond of the allyl group of said ( ⁇ -D-Gal- [l-> 4] - ⁇ -D-GlcNac-l- 0-allyl) is chemically modified by addition, oxidation or ozonolysis reactions.
  • the present invention also relates to a method characterized in that said precursor is internalized according to an active transport mechanism.
  • active transport is intended to denote the ability of cells and preferably bacteria to admit and selectively concentrate certain exogenous substances or precursors in their cytoplasm. This transport is carried out by transporters of protein nature called permeases which act like enzymes; permeases are inducible catalysts, that is to say synthesized in the presence of substrate or of the precursor.
  • permeases which act like enzymes
  • permeases are inducible catalysts, that is to say synthesized in the presence of substrate or of the precursor.
  • lactose and ⁇ -galactosides constitute precursors which are actively transported in the cytoplasm of the bacterium Escherichia coli by lactose permease also called galactoside permease.
  • the invention therefore relates to a method according to the invention characterized in that said active transport of said precursor is carried out by lactose permease.
  • Lactose permease has a fairly broad specificity which allows it to transport, in addition to lactose, other molecules. It is in fact capable of transporting various natural or synthetic ⁇ -galactosides, ⁇ -galactosides and sucrose. It is therefore one of the objects of the invention to provide, according to a preferred embodiment, a process characterized in that said precursor is lactose which constitutes the basic motif of very many biologically active oligosaccharides.
  • said precursor is chosen from the group consisting of: (i) natural or synthetic ⁇ -galactosides, preferably in 4-O- ⁇ -D-galactopyranosyl-D-fructofuranose (lactulose), 3-O- ⁇ -D- galactopyranosyl-D-arabinose and allyl- ⁇ -D-galactopyranoside, (ii) ⁇ -galactosides, preferably the melibiose and raffinose, sucrose allyl- ⁇ - D-galactopyranoside (iii).
  • lactose permease can even be modified by mutation and allow the transport of other compounds such as maltose and cellobiose. All these compounds can therefore be used as a precursor for the synthesis of oligosaccharides. It is also within the scope of this invention to use as precursors lactose analogs having a chemically reactive group for a subsequent functionalization of the product preferably one of these analogs is allyl ⁇ -D-galactopyranoside. It is also within the scope of this invention to use other permeases modified or not by recombinant DNA techniques to allow the internalization of different types of precursors.
  • ⁇ -galactosides are normally hydrolyzed in the cytoplasm of the bacterium by ⁇ -galactosidase encoded by the LacZ gene.
  • a lacZ- bacterial mutant lacking ⁇ -galactosidase activity is used when the precursor used is lactose and / or a ⁇ -galactoside. It is therefore also one of the objects of the invention to provide the method according to the invention characterized in that said cell is devoid of enzymatic activity capable of degrading said precursor as well as said metabolic intermediates.
  • the invention relates to a process described above characterized in that said precursor is sialic acid.
  • said active transport of said precursor is carried out by the NanT permease.
  • the invention relates to a process described above characterized in that said precursor is sialic acid and lactose. In this case, said active transport of said precursor is carried out by lactose permease and NanT permease.
  • said cell can be devoid of enzymatic activity capable of degrading said precursor or said precursors.
  • the method is characterized in that said cell has a genotype chosen from LacZ- and / or NanA-.
  • the method is characterized in that it further comprises the addition of an inducer in said culture medium to induce the expression in said cell of said enzyme and / or of a protein involved in said active transport; according to a preferred embodiment, the method according to the invention is characterized in that said inducer is isopropyl ⁇ -D-thiogalactoside (IPTG) and said protein is lactose permease.
  • IPTG is isopropyl ⁇ -D-thiogalactoside
  • the invention makes it possible for the first time to produce complex oligosaccharides with yields of the order of grams per liter. Depending on its size, the oligosaccharide either accumulates in the bacterial cytoplasm, either is secreted in the culture medium.
  • the method according to the invention is used for the production of the trisaccharide 4- O- [3-O- (2-acetamido-2deoxy- ⁇ -D-glucopyranosyl) - ⁇ -D- galactopyranosyl ] -D-glucopyranose, ( ⁇ -D-GlcNac- [l-> 3] - ⁇ -D-Gal- [l-> 4] -D-Glc); it is characterized in that said cell is a bacterium of genotype LacZ-, LacY + , said enzyme is ⁇ - 1,3-N-acetyl-glucosaminyl-transferase, said substrate is glycerol, said inducer is isopropyl ⁇ -D-thiogalactoside (IPTG) and said precursor is lactose.
  • IPTG isopropyl ⁇ -D-thiogalactoside
  • the process according to the invention is used for the production of lacto-N-neo-tetraose and of polylactosamine; it is characterized in that said cell is a bacterium of genotype Lac Z; Lac Y + , said enzymes are ⁇ - 1,3-N-acetyl-glucosaminyl-transferase and ⁇ -1,4-galactosyl-transferase, said substrate is glucose, said inducer is isopropyl- ⁇ -D- thiogalactoside (IPTG), said precursor is lactose.
  • said cell is a bacterium of genotype Lac Z; Lac Y + , said enzymes are ⁇ - 1,3-N-acetyl-glucosaminyl-transferase and ⁇ -1,4-galactosyl-transferase, said substrate is glucose, said inducer is is isopropyl- ⁇ -D- thiogalactoside (IPTG), said precursor is lac
  • the method according to the invention is used for the production of allyl 3-O- (2-acetamido-2deoxy- ⁇ -D-glucopyranosyl) - ⁇ -D-galactopyranoside, ( ⁇ - D-GlcNac- [1 ⁇ 3] - ⁇ -D-Gal-1- »O-allyl); it is characterized in that said cell is a bacterium of the LacZ genotype; LacY + , said enzyme is ⁇ - 1,3-N-acetyl-glucosaminyl-transferase, said substrate is glycerol, said inducer is isopropyl ⁇ -D- thiogalactoside (IPTG), said precursor is allyl- ⁇ -D- galactopyranoside.
  • the method according to the invention is used for the production of lacto analogs N-neo-tetraose and polylactosamines in which the glucose residue is replaced by an allyl group; it is characterized in that said cell is a bacterium of genotype LacZ-, LacY +, said enzymes are ⁇ - 1,3-N-acetyl-glucosaminyl-transferase and ⁇ -1,4-galactosyl-transferase, said substrate is glucose, said inducer is is isopropyl ⁇ -D-thiogalactoside (IPTG) and said precursor is rallyl- ⁇ -D-galactopyranoside.
  • said cell is a bacterium of genotype LacZ-, LacY +
  • said enzymes are ⁇ - 1,3-N-acetyl-glucosaminyl-transferase and ⁇ -1,4-galactosyl-transferase
  • said substrate is glucose
  • said inducer
  • the method according to the invention is used for the production of allyl- ⁇ -D- lactosamine ( ⁇ -D-Gal- [l-> 4] - ⁇ -D-GlcNac- l- >O-allyl); it is characterized in that said cell is a bacterium of genotype LacZ-, LacY +, said enzyme is ⁇ - 1,4-galactosyl-transferase, said substrate is glycerol, said precursor is aHyl-N-acetyl ⁇ - D- glucosaminide ( ⁇ -D-GlcNac- [l-> O-allyl)).
  • the invention also relates to a method which makes it possible to envisage the production of a large number of different oligosaccharides obtained by glycosylation of lactose.
  • IgtA and IgtB genes which code respectively for ⁇ - 1,3-N-acetyl-glucosaminyl-transferase and ⁇ -1,4-galactosyl-transferase
  • several bacterial glycosyl-transferase genes using lactose as precursor have been recently cloned.
  • the method according to the invention also makes it possible to obtain a large number of different oligosaccharides obtained by glycosylation of exogenous precursors other than lactose and transported by lactose permease or by other permeases.
  • the process according to the invention makes it possible to obtain a large number of different oligosaccharides obtained by modification (sulfation, acetylation, phosphorylation, succinylation, methylation, addition of an enolpyruvate group) in vivo of precursors.
  • modification sulfation, acetylation, phosphorylation, succinylation, methylation, addition of an enolpyruvate group
  • the synthesis of certain oligosaccharides may require, in addition to the modification of exogenous precursors, the modification of endogenous precursors.
  • UDP-GalNAc can be produced from UDP-GlcNAc if the epimerase gene is introduced into a cell according to the invention.
  • Another subject of the invention relates to a process described above for the production of 3'-sialyllactose ( ⁇ -NeuAc- [2- »3] - ⁇ -D- Gal- [l ⁇ 4] - ⁇ -D- Glc) or 6'-sialyllactose ( ⁇ -NeuAc- [2 ⁇ 6] - ⁇ -D-Gal- [l- 4] - ⁇ -D-Glc) characterized in that: • said cell is a bacterium of genotype LacZ-, LacY +,
  • said substrate is glycerol; • said inducer is isopropyl- ⁇ -D-thiogalactoside (IPTG);
  • said precursors are lactose and sialic acid.
  • the method according to the invention is used for the production of a sialylated derivative of lacto-N-neotetraose and of polylactosamine (lacto-N-neo-hexaose , lacto-N-neo-octaose, lacto-N-neo-decaose) characterized in that it also comprises a said enzyme chosen from ⁇ -2,3 sialyl-transferase, ⁇ -2,6 sialyl - transferase, and that said cell also has a NanA-, NanT + genotype and expresses the CMP-NeuAc synthase gene, said acceptors are lactose and sialic acid.
  • Another subject of the invention relates to a process described above for the production of lacto-N-neotetraose, ⁇ -D- Gal [l ⁇ 4] - ⁇ -D-GlcNac [l- 3] - ⁇ -D -Gal [l ⁇ 4] - ( ⁇ -L-Fuc- [l ⁇ 3]) ⁇ -D-Glc, ⁇ -D-Gal- [l ⁇ 4] - ( ⁇ -L-Fuc- [l ⁇ 3]) - ⁇ -D-GlcNac- [l ⁇ 3] - ⁇ -D-Gal- [l ⁇ 4] - ( ⁇ -L-Fuc- [l ⁇ 3]) - ⁇ -D-Glc, ⁇ -D-Gal- [l ⁇ 4] - ( ⁇ -L-Fuc- [l ⁇ 3]) - ⁇ -D-Glc, ⁇ -D-Gal- [l
  • said enzymes are ⁇ -1,3-N-acetyl-glucosaminyl transferase, ⁇ -1,4-galactosyl transferase, ⁇ -1,3 fucosyl transferase;
  • said inducer is isopropyl- ⁇ -D-thiogalactoside (IPTG);
  • the method according to the invention is used for the production of 3'fucosyllactose ( ⁇ -D-Gal- [l ⁇ 4] - ( ⁇ -L-Fuc- [l-> 3] - D-Glc) or 2'fucosyllactose ( ⁇ -D- Gal- [l- 2] - ( ⁇ -L-Fuc- [l ⁇ 3] -D-Glc) characterized in that it comprises a said enzyme chosen among a-1,3 fucosyltransferase or a-1,2 fucosyltransferase, and that the cell has a wcaj lacZ genotype and overexpresses the rcsA gene and that said precursor is lactose.
  • the method according to the invention is used for the production of a fucosylated derivative of lacto-N-neotetraose and of polylactosamine (lacto-N-neo-hexaose, lacto-N-neo-octaose, lacto-N-neo-decaose) characterized in that it further comprises a said enzyme chosen from ⁇ -1,2 fucosyltransferase, ⁇ -1,3 fucosyl-transferase, and that said cell also has a Wca J- genotype and overexpress the Rcs A gene, said acceptor being lactose.
  • the method according to the invention is used for the production of a sialylated and fucosylated derivative of lacto-N-neotetraose, lacto-N-neo-decaose) characterized in that it further comprises a said enzyme chosen from ⁇ -2,3 sialyl-transferase, ⁇ -2,6 sialyl-transferase, and further said enzyme chosen from ⁇ -1,2 fucosyl-transferase, has - 1.3 fucosyl- transferase, and that said cell also has a NanA-, NanT +, Wca J- genotype and overexpresses the Rcs A gene and the CMP- NeuAc synthase gene, said acceptors are lactose and sialic acid.
  • Another object of the invention is to provide a process for producing oligosaccharides labeled or enriched with radioisotopes; such oligosaccharides are extremely valuable for basic studies of biology or conformational analysis.
  • the invention therefore relates to a method for producing an oligosaccharide labeled with at least one radioisotope, characterized in that said cell is cultured on said carbon substrate marked with said radioisotope and / or in the presence of a said precursor labeled with said radioisotope.
  • the radioisotopes are preferably chosen from the group composed of: 14 C, 13 C, 3 H, 35 S, 3 P, 33 P.
  • the invention also relates to an oligosaccharide capable of being obtained by a process according to the invention.
  • the invention relates to an activated oligosaccharide usable for the chemical synthesis of glycoconjugates or glycopolymers capable of being obtained by a process as described above, said oligosaccharide being characterized in that the double bond of the allyl group is chemically modified by addition, oxidation, or ozonolysis reactions.
  • the oligosaccharide according to the invention is useful in a wide range of therapeutic and diagnostic applications; it can for example be used as a blocking agent for cell surface receptors in the treatment of multiple diseases involving cell adhesion or be used as nutritional supplements, antibacterials, anti-metastatic agents, anti-inflammatory agents.
  • the invention therefore relates to an oligosaccharide according to the invention as a medicament and in particular as a medicament intended to selectively prevent the adhesion of biological molecules.
  • the oligosaccharide according to the invention is also used as a medicament intended for the treatment of cancer, inflammation, heart diseases, diabetes, bacterial infections, viral infections, neurological diseases and as medicament intended for transplants.
  • the invention also relates to a pharmaceutical composition characterized in that it comprises an oligosaccharide according to the invention and a pharmaceutically acceptable vehicle.
  • the invention also relates to the use of an oligosaccharide according to the invention in agriculture and agronomy, in particular for the growth and defense of plants.
  • oligosaccharides play a predominant role in the Rhizobium / legume symbiosis.
  • certain oligosaccharides originating from the hydrolysis of walls or plant or fungal glycoproteins can act as phytohormones or as elicitors of defense reactions in plants.
  • the industrial interest of the process according to the invention is obvious because it allows for the first time to achieve a production of the order of the kilogram of complex oligosaccharides of biological interest. All the oligosaccharides of biological interest which we consider synthesis on an industrial scale are currently only available on a mg scale and at extremely high costs (up to 1 million francs per gram); the cost price of these compounds produced by the present microbiological route are infinitely lower.
  • Figure 1 Principle of the process for producing the trisaccharide 4-O- [3-O- (2-acetamido-2deoxy- ⁇ -D- glucopyranosyl) - ⁇ -D-galacto-pyranosyl] -D-glucopyranose, ( ⁇ -D - GlcNac- [1 ⁇ 3] - ⁇ -D-Gal- [l- 4] -D-Glc)
  • Lactose ( ⁇ -D-Gal- [1-4] - ⁇ -D-Glc) is transported into the cell by lactose permease (Lac permease). Lactose cannot be hydrolyzed in the cell because the strain is a LacZ- mutant.
  • Expression of the IgtA gene allows the production of the enzyme LgtA which transfers a GlcNAc from UDP-GlcNAc to a lactose molecule.
  • the trisacharide formed ( ⁇ -D-GlcNAc- [l-3] - ⁇ -D-Gal- [l-4] - ⁇ -D- Glc) is excreted in the medium.
  • FIG. 1 High cell density culture of the control strain JM109 and of the strain JM109 (pCWlgtA) having the glycosyl transferase gene LgtA.
  • lactose is added continuously and the residual lactose is determined enzymatically.
  • concentration of hydrolyzable GlcNAc in the culture medium is measured colorimetrically after acid hydrolysis. Lactose added represents the total cumulative amount of lactose that has been continuously added.
  • Figure 4 Spectrum of the trisaccharide 4-O- [3-O- (2-acetamido-2deoxy- ⁇ -D-glucopyranosyl) - ⁇ -D-galactopyranosyl] -D- glucopyranose, ( ⁇ -D-GlcNac- [l- »3] - ⁇ -D-Gal- [l-» 4] -D-Glc) in proton NMR at 323 ° K.
  • the signal at 1.4 ppm is due to the protons of the isopropyl group of the glycosylated derivative of IPTG.
  • Figure 5 13 C NMR spectrum of trisaccharide 4-O- [3-O- (2-acetamido-2deoxy- ⁇ -D-glucopyranosyl) - ⁇ -D-galactopyranosyl] -D- glucopyranose, ( ⁇ -D-GlcNac- [1 ⁇ 3] - ⁇ -D-Gal- [l- »4] -D-Glc).
  • Figure 6 Principle of the production process for lacto-N- neo-tetraose ( ⁇ -D-Gal- [l-4] - ⁇ -D-GlcNAc- [l-3] - ⁇ -D-Gal- [l- 4] - ⁇ -D- Glc). Lactose ( ⁇ -D-Gal- [1-4] - ⁇ -D-Glc) is transported into the cell by Lac permease. Lactose cannot be hydrolyzed in the cell because the strain is a LacZ- mutant. Expression of the IgtA gene allows the production of the enzyme LgtA which transfers a GlcNAc from lTJDP-GlcNAc to a lactose molecule.
  • JM109 (pCWlgtA, pBBlgtB).
  • Figure 8 Separation on Biogel P4 of the oligosaccharides produced by the JM109 strain (pCWlgtA, pBBlgtB) in the presence of lactose at an initial concentration of 5 gl 1 (A) or 1 gl-MB).
  • Peaks 1, 2, 3, 4 correspond respectively to lacto-N-neo-tetraose, lacto-N-neo-hexaose, lacto-N-neo-octaose and lacto-N-neo-decaose.
  • Lactose and sialic acid are internalized in the cell by lactose permease (lacY) and sialic acid permease (nanT). These two compounds are not degraded in the cell because the strain is a lacZ- and nanA- mutant.
  • lacY lactose permease
  • nanT sialic acid permease
  • the expression of CMP-NeuA synthase and of ⁇ -2,3 sialyltransferase allows the activation of sialic acid internalized in CMP-NeuAc and its transfer to intracellular lactose.
  • the JM107 and JM109 strains of Escherichia coli K12 were used as host cells for all the examples of production of oligosaccharides described.
  • the strains were obtained from DSM (Deutsche Sammlung von Mikroorganismen)
  • the genotype of strain JM109 is as follows: F- traD36 lacP ⁇ acZ) M15 proA + B + / el4- (McrA-) ⁇ ac-proAB) supE44 recAl endAl gyrA96 (Nal r ) thi hsdR17 relAl.
  • the genotype of the JM107 strain is identical to that of the JM 109 strain except that the recAl gene is not inactivated.
  • the Neisseria meningitis MC58 IgtA and IgtB genes were supplied by Dr W. Wakarchuk (Institute for Biological Sciences, National Research council of Canada, 100shire Drive, Ottawa, Ontario, K1A OR6, Canada) as two plasmids pCW, one containing the IgtA gene (here called pCWlgtA) and the other containing the IgtB gene (here called pCWlgtB).
  • the sequences of these two genes are available in the GenBank database under the number U25839.
  • the plasmid pLitmus28 was purchased from the company New Englands Biolabs.
  • the plasmid pBBRIMCS was supplied by Dr M. Kovach (Department of Microbiology and Immunology, Louisiana State University, Shreveport, LA 71130-3932, USA.)
  • Plasmid NSY-01 is a derivative of plasmid pT7-7 which contains the gene (GenBank U60146) of CMP-sialic acid synthase (Gilbert et al 1997).
  • the plasmid NST-01 is a derivative of the plasmid pBluescript Sk- which contains the gene (GenBank n ° U60660) of the ⁇ -2,3 sialyltransferase (Gilbert et al. 1996)
  • the fucT gene for Helicobacter pylori ⁇ -1,3 fucosyltransferase was supplied by Dr S. Martin (Glaxo Wellcome Research and Development, Gunnels Wood Road, Stevenage, Hertfordshire, SGI 2NY, UK) a plasmid pHP0651 derived from pET-21a. The sequence is available at Genbank (AE000578, gene HP0651).
  • Plasmid pBBlgtB The DNA fragment of 0.835 kb containing the IgtB gene was obtained by digestion of the plasmid pCWlgtB with BamHI and HindIII. This fragment was subcloned into the vector pLitmus28 previously digested with BamH I and HindIII to form the plasmid pLitlgtB.
  • the 0.9 kb fragment containing the IgtB gene was excised from the plasmid pLitlgtB by a digestion with Xhol and HindIII and subcloned in the plasmid pBBRIMCS previously digested with Xhol and HindIII to form the plasmid pBBlgtB.
  • Construction of the plasmid pBBns The fragment containing the gene for CMP-sialic acid synthase was excised from the plasmid NSY-01 by digestion with Xbal and subcloned in the plasmid pBBRIMCS previously digested with Xbal to form the plasmid pBBnsy.
  • the IgtA gene present in the construction pCWlgtA was amplified by PCR at the same time as the UV5 tactac promoter of the plasmid using the primers CTTTAAGCTTCCGGCTCGTATAA (sense, upstream promoter) and GACAGCTTATCATCGATAAGCTT ( antisense, late IgtA) both containing a HindIII site.
  • the amplified fragment of 1.3 kb was then subcloned into the HindIII site of the vector pBBlgtB.
  • the rcsA gene (Stout et al., 1991) was first amplified by PCR from genomic DNA of JM109 with the primers AGGGTACCCATGTTGTTCCGTTTAG (Kpnl site, left rcsA) and AATCTAGAGTAATCTTATTCAGCCTG (right site Xbal rcsA), then cloned into the Kpnl-Xbal sites of the vector pBBRl-MCS.
  • the vector pBBRl-MCS-rcsA was then opened upstream of the gene by digestion with Kpnl, blunted (Amersham kit), released by Xbal, and inserted into the Smal-Xbal sites of the construction pBBLnt, allowing cloning downstream of the lgtB-OV5 tactac-IgtA, placing rcsA under the control of the promoter UV5 tactac. 1.3. Culture conditions
  • the MgSO 4 is autoclaved separately and the thiamine is sterilized by filtration.
  • the trace element solution contains: nitrilotriacetate (70 mM, pH 6.5), ferric citrate (7.5 gF), MnCl 2 . 4H 2 O (1.3 gF), C0CI2 6H 2 O (0.21 gF),
  • High cell density cultures are inoculated at 2%. During the whole culture, the dissolved oxygen level is maintained at 20% saturation by manually regulating the air flow and automatically adjusting the stirring speed. The pH is automatically regulated to 6.8 by the addition of aqueous ammonia (15% w / v). The temperature is maintained at 34 ° C for the strain JM109 (pCWlgtA) and at 28 ° C for the strain JM109 (pCWlgtA, pBBlgtB).
  • the high density culture strategy generally includes 3 phases: a first phase of exponential growth which is provided by the carbon substrate (glycerol or glucose) initially present in the medium; a second phase which begins when growth becomes limited by the carbon source which is then added continuously at a rate of 4.5 gh- 1 . H of glycerol or 3.6 gh 1. ! - 1 of glucose. In a third phase, this rate is reduced by 60% to slow growth so as to increase the content of oligosaccharides.
  • a first phase of exponential growth which is provided by the carbon substrate (glycerol or glucose) initially present in the medium
  • a second phase which begins when growth becomes limited by the carbon source which is then added continuously at a rate of 4.5 gh- 1 .
  • H of glycerol or 3.6 gh 1. ! - 1 of glucose In a third phase, this rate is reduced by 60% to slow growth so as to increase the content of oligosaccharides.
  • the samples (1 ml) are taken during the culture and immediately centrifuged in microtubes. The supernatant is kept for the determination of extracellular oligosaccharides.
  • the bacterial pellet is resuspended in 1 ml of water and then is incubated in a water bath at 100 ° C for 30 min to burst the cells. After a second centrifugation, the supernatant is kept for the determination of intracellular oligosaccharides.
  • the lactose concentration is measured using an enzymatic determination kit (Roche diagnostic).
  • the N-acetyl-glucosamine residues present in the oligosaccharides are released by acid hydrolysis as previously described (Samain et al, 1997) and then quantified colorimetrically by the method of Reissig et al, (1955); in the description, the term hydrolyzable GlcNAc is understood to mean the amount of GlcNAc dosed in this way.
  • lactose with and without treatment with a neuraminidase makes it possible to estimate the concentration of sialyl-lactose.
  • Total fucose is measured colorimetrically by the cysteine hydrochloride method of Dische and Shettles (1948).
  • the bacterial cells are harvested by centrifugation. The supernatant is kept for purification extracellular oligosaccharides.
  • the bacterial cells are resuspended in 1 liter of water, then are permeabilized by heat treatment (30 min at 100 ° C) to release the intracellular oligosaccharides. After a second centrifugation these oligosaccharides are recovered in the supernatant.
  • the first and second supernatants containing the extra- and intracellular oligosaccharides respectively are adsorbed on activated carbon (100 g per liter of supernatant). After rinsing with distilled water, the oligosaccharides are eluted with 50% ethanol (v / v), concentrated by evaporation and lyophilized.
  • oligosaccharides are separated by steric exclusion chromatography on a column (4.5 cm x 95 cm) of Biogel P4 allowing the injection of approximately 300 mg of mixture of oligosaccharides. Elution is carried out with distilled water with a flow rate of 40 ml. h- 1 .
  • the non-fucosylated oligosaccharides are separated by steric exclusion chromatography on a column (4.5 cm x 95 cm) of Biogel P4 allowing the injection of approximately 300 mg of mixture of oligosaccharides. Elution is carried out with distilled water with a flow rate of 40 ml.tr 1
  • the fucosylated oligosaccharides are separated by size exclusion chromatography on a column (1.5 cm x
  • Biogel P2 thermostatically controlled at 60 ° C allowing the injection of about 30 mg of oligosaccharide mixture. Elution is carried out with distilled water with a flow rate of 30 ml.h 1
  • Sialyllactose is separated from neutral oligosacchariodes by fixation on a Dowex 1X4-400 resin (in HCO3 form). and eluted with a NaHC ⁇ 3 gradient (0 to 100 mM). Bicarbonnate is then eliminated by treating the eluate with a Dowex 50X4-400 resin in H + form.
  • the mass spectra were carried out with a mass spectrometer (Nermag R-1010C). For each experiment the initial volume of matrix is 4 ⁇ l. The products were analyzed in FAB + mode. NMR spectra were obtained with a spectrometer
  • a JM 107 strain incapable of metabolizing sialic acid was prepared by insertional inactivation of the nanA gene (Nan operon) coding for NeuAc aldolase (Plumbridge et al., 1999). Two PCR amplification reactions were carried out on either side of the nanA gene center so as to insert a BamHI restriction site there. A first 1.6 kb BamHI-Xbal fragment comprising the right part of nanA was amplified from genomic DNA of JM109 using the primers
  • GCTCTAGAATGGTAATGATGAGGCAC and clone between sites BamHI and Xbal of the vector pUC19, forming the vector pUC-nanl, 6.
  • a second 2.1 kb Kpnl-BamHI fragment comprising the left side of nanA was amplified using the primers AAAGGATCCGCGTAGGTGCGCTGAAAC and AAAGGTACCTCAGGCCACCGTTAGCAG and clone between the Kpnl and BamHI sites of the vector pUC-nanl, 6 forming the vector pUC-nan- 7.
  • the kanamycin resistance gene (pUC-4K, Pharmacia cassette) was then cloned into the BamHI site of pUC-nan-3,7.
  • the 4.9 kb Sacl-Xb ⁇ l fragment containing nanA :: kan was inserted into the same sites of the suicide vector pCVD442 (Donnenberg and Kaper 1991). This plasmid was used to obtain, by homologous recombination, JM107 nanAv.kan mutants, selected for their resistance to kanamycin and their inability to metabolize sialic acid (strain JM107-nanA).
  • the vector thus obtained was subjected to a treatment with an EcoRI methylase, allowing the subsequent addition of the kanamycin resistance gene in the Apol site present at the center of wcaJ.
  • the wcaJr.kan recombinant DNA has finally been transferred to the suicide vector pCVD442 allowing, by homologous recombination, the obtaining of genomic mutants JM 107 containing the inactivated gene, selected by PCR using the primers having served for cloning (strain JM107-col).
  • the strain JM107-col- was made lysogenic for the phage ⁇ DE3 using the lysogenization kit from Novagen.
  • Example 2 Production of the trisaccharide 4-O- [3-O- (2-acetamido-2deoxy- ⁇ -D-glucopyranosyl) - ⁇ -D-galactopyranosyl] -D- glucopyranose, ( ⁇ -D-GlcNac- [l- "3] - ⁇ -D-Gal- [l-» 4] -D-Glc).
  • the principle is illustrated in FIG. 1.
  • the JM 109 strain of Escherichia coli K12 into which we have introduced the plasmid pCWlgtA gene IgtA.
  • the JM 109 strain is lacZ-, ie it is incapable of hydrolyzing lactose. On the other hand, it is lacY +, which means that it can synthesize lactose permease.
  • the IgtA gene codes for a ⁇ -1,3-N-acetyl-glucosaminyl transferase (LgtA) transferring a ⁇ -acetyl-glucosamine unit on the lactose galactose.
  • the JM 109 strain pCWlgtA as well as the control strain
  • JM109 were grown at high cell density (Samain et al, 1997) on glycerol as a source of carbon and energy. After a first phase of exponential growth ensured by the glycerol initially present in the medium (17.5 g / 1), the growth becomes limited by the glycerol which is then added continuously at a rate of 4.5 gh- 1 .! 1 . During this second phase of the culture, 90 mg.hM- 1 of lactose is continuously introduced.
  • ÎTPTG isopropyl- ⁇ -D-thiogalactoside (0.5 mM) is also injected at the start of this phase to induce the expression of the lactose permease and the ⁇ -l, 3-N-acetyl-glucosaminyl-transferase.
  • the added lactose practically does not accumulate in the medium, indicating that the lactose is well internalized by the bacterial cells.
  • the strain JM 109 pCWlgtA
  • a significant accumulation in the culture medium of a compound containing ⁇ -acetylglucosamine hydrolyzable GlcNAc
  • the cells are eliminated by centrifugation and the oligosaccharides present in the supernatant are purified by adsorption on activated carbon and elution with ethanol.
  • the oligosaccharides present are then separated according to their molecular weight on a column of Biogel P4. Only one majority compound is found.
  • the mass spectrometry and RM ⁇ data indicate that this compound is indeed the trisaccharide ( ⁇ -D- Glc ⁇ Ac- [l-> 3] - ⁇ -D-Gal- [l-> 4] - ⁇ -D-Glc) formed by the addition of a GlcNAc residue on a lactose molecule.
  • the mass spectrum in FAB + mode indeed shows the presence of a quasi-molecular ion [M + H] + at m / z 546 ( Figure 3).
  • the * H NMR spectrum confirms the trisaccharide structure, the presence of an acetyl group and the ⁇ configuration of the two O-glycosidic bonds (FIG. 4).
  • the 13 C NMR spectrum also specifies that the bond between GlcNAc and galactose is indeed of the 1.3 type (FIG. 5).
  • EXAMPLE 3 Production of Lacto-N-Neo-Tetraose and Polylactosamine The principle is described in FIG. 6.
  • the strain of E. coli JM 109 was cotransformed with the two plasmids pCWlgtA and pBBlgtB carrying the genes IgtA (used previously) and IgtB respectively (coding for a ⁇ -1,4-Galactosyl - transferase called LgtB).
  • the JM109 strain (pCWlgtA, pBBlgtb) was grown at high cell density using glucose as the growth substrate.
  • lacto- ⁇ -neo-tetraose polylactosamines The formation of higher homologous lactyl-N-neo-tetraose polylactosamines is explained by the fact that LgtA is capable of using lacto-N-neo-tetraose to form an intermediate pentasaccharide which is glycosylated by LgtB to give lacto- ⁇ - neo-hexaose. The latter is itself a precursor for a new glycosylation cycle leading to the formation of lacto- ⁇ -neo-octaose and so on until lacto- ⁇ -neo-decaose.
  • the JM 109 strain (pCWlgtA) was cultured at high cell density on glycerol. At the start of the second culture phase, 0.75 g ⁇ l of allyl- ⁇ -D-galactopyranoside and 0.1 mM of IPTG are added. A total internalization of the allyl- ⁇ -D-galactopyranoside is observed after 9 h with a stoichiometric appearance of hydrolyzable GlcNAc in the medium. extracellular. The oligosaccharides present in the extracellular medium are purified as in Example 2.
  • the strain JM109 (pBBlgtB) was cultured at high cell density on glycerol.
  • 0.5 g -1 of allyl-N-acetyl- ⁇ -D-glucosaminide ( ⁇ -D-Glc ⁇ Ac- l-> Oallyl) is added. It is observed for the first 5 hours an approximately 30% decrease in the amount of extracellular hydrolyzable GlcNAc, which demonstrates a partial internalization of allyl-N-acetyl- ⁇ -D-glucosaminide.
  • E. coli K12 is capable of degrading sialic acid (Plumbridge et. Vimr 1999) and has a permease (NanT) which allows exogenous sialic acid to enter the cell. This sialic acid is then normally catabolized by an aldolase (NanA).
  • the strain JM107-nanA- (Nst-01, pBBnsy) and the control strain JM107 (Nst-01, pBBnsy) having the NanA activity were cultured at high cell density on glycerol. Lactose (1.5 gl- 1 ) of IPTG (0.1 mM) and sialic acid (0.6 gl- 1 ) are added at the start of the second culture phase of duration 5 h. Throughout the duration (17 h) of the third phase of the culture, 100 mg.h ⁇ .L- 1 of sialic acid and 200 mg.lF.L- l of lactose are introduced continuously.
  • the intracellular and extracellular oligosaccharides are purified by adsorption on activated carbon and elution with ethanol. After purification on anion exchange resin, only one product is detected by HPLC.
  • the mass spectrum in FAB + mode shows the presence of two quasi-molecular ions [M + H] + at m / z 656 and [M + Na] at m / z + 678 corresponding to the sodium salt of sialyllactose.
  • the GDP-fucose biosynthesis genes are part of the operon responsible for the biosynthesis of an extracellular polysaccharide, colanic acid (Stevenson et al 1996).
  • the expression of this operon is controlled by a complex regulatory network in which the RcsA protein is involved (Stout et al 1991).
  • the overexpression of the rcsA gene thus results in an overproduction of colanic acid (Russo and Singh 1993) and consequently of the genes for biosynthesis of GDP fucose.
  • Plasmid pHP0651 contains the fucT gene for Helicobacter pylori a-1,3 fucosyltransferase. This fucosyltransferase uses N-acetyllactosamine and lacto-N-neotetraose as acceptor but not lactose (Martin et al 1997).
  • the plasmid pBBLnt contains the IgtA and IgtB genes.
  • the plasmid pBBLntRcsA contains the IgtA, IgtB and rcsA genes.
  • the two strains JM107-col DE3 pHP0651, pBBLnt) and
  • JM107-col DE3 (pHP0651, pBBLntRcsA) were cultured as in Example 3 in the presence of 5 gH of lactose.
  • the quantity of hydrolyzable GlcNAc produced by the two strains (1.7 gl 1 ) was comparable to that obtained by the strain JM109 (pCWlgtA, pBBlgtb) in Example 3.
  • the colorimetric determination of fucose at the end of culture shows a significant difference between the two strains with a fucose production of lg.l 1 for the strain JM107-col DE3 (pHP0651, pBBLntRcsA) and only 0.25 gl 1 for the strain JM107-col- DE3 (pHP0651, pBBLnt). More than 70% of the fucosylated oligosaccharides are found in the intracellular fraction.
  • the mass spectrum of compound 2 shows the presence of a quasi-molecular ion [M + H] + at m / z at 854 corresponding to the molar mass of lacto-N-fucopentaose.
  • the presence of a secondary ion at 327 indicates that the molecule is fucosylated on the glucose residue and has the following structure ⁇ -D-Gal- [l ⁇ 4] ⁇ -D-Glc ⁇ Ac- [l- »3] - ⁇ - D-Gal- [l- 4] - ( ⁇ -L-Fuc- [l ⁇ 3]) - ⁇ - D-Glc
  • the mass spectrum of the majority compound 3 shows the presence of 3 quasi-molecular ions at m / z 1000, 1022 and 1038 corresponding to the three forms [M + H] + , [M + Na] + and [M + K] + of the lacto-N-difucohexaose molecule having the following structure ⁇
  • the mass spectrum of compound 4 makes it possible to identify two quasi-molecular ions at m / z 1365 and 1388 corresponding to the forms [M + H] + and [M + Na] + of a lacto-N-difucooctaose molecule.
  • the presence of a secondary ion at m / z 512 indicates that the GlcNAc residue of the non-reducing end carries a fucose.
  • the RM ⁇ data show that the proton J H of a fucose residue is sensitive to anomerism and that this fucose residue is therefore fixed on the glucose.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Endocrinology (AREA)
  • Cardiology (AREA)
  • Neurosurgery (AREA)
  • Transplantation (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)

Abstract

La présente invention concerne la production par voie microbiologique d'oligosaccharides d'intérêt biologique. Plus particulièrement, l'invention concerne un procédé de synthèse <i>in vivo</i> d'oligosaccharides par internalisation de précurseur exogène dans des cellules bactériennes en croissance exprimant les gènes de modification et de glycosylation adéquats.

Description

« PROCEDE DE PRODUCTION D'OLIGOSACCHARIDES ».
La présente invention a pour objet la production par voire microbiologique d'oligosaccharides d'intérêt biologique. II est maintenant bien établi que les oligosaccharides jouent un rôle biologique important notamment au niveau de l'activité et de la fonction des protéines ; ils servent ainsi à moduler la durée de la demi-vie des protéines, parfois ils interviennent dans la structure de la protéine. Les oligosaccharides jouent un rôle critique dans la variabilité antigénique (groupe sanguin par exemple), et dans certaines infections bactériennes telles celles provoquées par Neisseria menincfitidis.
Comme les oligosaccharides sont habituellement obtenus avec un faible rendement par purification à partir de sources naturelles, la synthèse d'oligosaccharides est devenue un challenge majeur de la chimie des carbohydrates, afin de fournir des quantités suffisantes d'oligosaccharides bien caractérisés, nécessaires à la recherche fondamentale ou pour toutes autres applications potentielles (Boons et al, 1996). La synthèse d'oligosaccharides complexes d'intérêt biologique peut être réalisée par voie chimique, enzymatique ou microbiologique .
Malgré le développement de nouvelles méthodes chimiques de synthèse d'oligosaccharides au cours de ces 20 dernières années, la synthèse chimique d'oligosaccharides reste très difficile en raison des nombreuses étapes de protections et de déprotections sélectives, de la labilité des liaisons glycosidiques, des difficultés à obtenir des couplages régiospécifiques et des faibles rendements de production. Comme le nombre des étapes augmente avec la taille de l'oligosaccharide, la préparation de larges quantités d'oligosaccharides plus longs que les trisaccharides n'est pas aisée. Contrairement à l'expérience de la synthèse peptidique ou de la synthèse nucléique, la chimie organique synthétique traditionnelle ne peut donc fournir aujourd'hui une synthèse de qualité et en quantité d'oligosaccharides même de formule simple.
Conséquemment, les méthodes enzymatiques sont devenues plus populaires car elles permettent une synthèse régiosélective dans des conditions douces et sans étape de protection des groupes hydroxyles. Le développement de l'approche enzymatique a été rendu possible par le clonage et l'identification fonctionnelle de nombreux gènes codant pour les enzymes intervenant dans la voie de synthèse des oligosaccharides. Ainsi, différents types d'enzymes peuvent être utilisés pour la synthèse in vitro d'oligosaccharides. La fonction physiologique des glycosyl-hydrosylases et des glycosyl- phosphorylases est de dépolymériser les oligosaccharides mais elles peuvent également être utilisées in vitro dans la synthèse des oligosaccharides en contrôlant l'équilibre et la cinétique de la réaction. Les substrats des enzymes de ces réactions sont aisément disponibles mais ces réactions enzymatiques ne sont pas très versatiles. Une autre méthode enzymatique développée utilise les glycosyl-transférases de la voie biochimique Leloir qui présentent une forte régiospécificité pour le précurseur ainsi que pour le substrat donneur ; ces glycosyl-transférases ne sont pas aussi aisément disponibles que les glycosyl-hydrolases. La technique de l'ADN recombinant, à récemment permis de cloner et de produire un certain nombre d'entre elles. Cependant, la principale limitation de cette méthode enzymatique réside dans le coût très élevé des nucléotides-sucres qui sont les donneurs de sucre utilisé par ces enzymes.
La voie microbiologique de production d'oligosaccharides recombinants in vivo est la plus séduisante des voies de synthèse puisque la bactérie se charge à la fois de la biosynthèse des enzymes, de la régénération des nucléotides-sucres et finalement de la production de l'oligosaccharide.
Les premières descriptions de la synthèse d'oligosaccharides par la voie microbiologique utilisant des bactéries recombinantes peuvent être considérées dans une certaine mesure comme les travaux qui ont conduit à l'élucidation des voies de biosynthèse des facteurs de nodulation ; ces facteurs sont des molécules signal sécrétées par les rhizobia pour permettre la reconnaissance par les légumineuses dans le processus de nodulation. Les facteurs de nodulation sont constitués d'un squelette chitooligosaccharidique portant différentes substitutions. L'identification fonctionnelle des gènes nod impliqués dans la biosynthèse des facteurs de nodulation a été en partie réalisée en identifiant les oligosaccharides formés in vivo dans des souches d'Escherichia coli exprimant ces différents gènes nod (Gérémia et al, 1994 ; Kamst et al, 1995 ; Spaink et al, 1994 ; Mergaert et al, 1995). Cependant, la production d'oligosaccharides en elle-même n'était pas le but de ces études ; ces produits n'ont été synthétisés qu'à l'état de trace et ne furent identifiés que grâce à l'utilisation de précurseurs radioactifs. En revanche, il a été récemment démontré dans notre laboratoire (Samain et al, 1997) que la culture à haute densité cellulaire de souches d'Escherichia coli possédant le gène nodC (chitooligosaccharide synthase) permettait de produire des quantités importantes supérieures à 2 g/ 1 de chitooligosaccharides dits recombinants.
Cette technique de synthèse microbiologique d'oligosaccharides reste cependant limitée à la production des seuls chitooligosaccharides, du fait de la propriété unique de nodC (chitooligosaccharide synthase) de fonctionner sans précurseur, les autres enzymes glycosylent en effet un précurseur spécifique et leur activité est donc dépendante de la présence de ce précurseur dans la cellule. Le problème du précurseur est donc le principal verrou qui bloque le développement de la méthode et de son extension à la production d'autres types d'oligosaccharides.
La présente invention a donc pour objet un procédé de production d'un oligosaccharide d'intérêt par une cellule génétiquement modifiée à partir d'au moins un précurseur exogène internalisé par ladite cellule, ledit précurseur intervenant dans la voie de biosynthèse dudit oligosaccharide, ledit procédé comprenant les étapes (i) d'obtention d'une cellule qui comprend au moins un gène recombinant codant pour un enzyme capable d'effectuer une modification dudit précurseur exogène ou de l'un des intermédiaires de la voie de biosynthèse dudit oligosaccharide à partir dudit précurseur exogène nécessaire à la synthèse dudit oligosaccharide à partir dudit précurseur, ainsi que les éléments permettant l'expression dudit gène dans ladite cellule, ladite cellule étant dépourvue d'activité enzymatique susceptible de dégrader ledit oligosaccharide, ledit précurseur et lesdits intermédiaires ; (ii) de mise en culture de ladite cellule en présence d'au moins undit précurseur exogène, dans des conditions permettant l'internalisation selon un mécanisme de transport passif et/ ou actif dudit précurseur exogène par ladite cellule et la production dudit oligosaccharide par ladite cellule.
Selon un mode particulier de réalisation, la présente invention concerne un procédé tel que décrit ci-dessus caractérisé en ce que ladite cellule comprend en outre au moins un gène codant pour un enzyme capable d'effectuer une modification d'un précurseur endogène intervenant dans la voie de biosynthèse dudit oligosaccharide, ledit enzyme étant identique ou différent de l'enzyme utilisé dans le procédé décrit ci-dessus, ainsi que les éléments permettant l'expression dudit gène dans ladite cellule et caractérisé en ce que ladite cellule est dépourvue d'activité enzymatique susceptible de dégrader ledit précurseur.
On entend désigner par oligosaccharides, des polymères linéaires ou ramifiés au nombre variable de résidus, de liaisons et de sous-unités ; le nombre de résidus étant supérieur à 1. Les oligosaccharides sont des glucides qui se transforment à l'hydrolyse en plusieurs molécules de monosaccharides ; les monosaccharides étant les sucres qu'on ne peut transformer par hydrolyse en substance plus simple. On subdivise les monosaccharides en trioses, tétroses, pentoses, hexoses, heptoses selon le nombre d'atomes de carbone de leur chaîne hydrocarbqnée et aussi en aldoses et cétoses selon la présence d'une fonction aldéhydique ou d'une fonction cétone dans leur molécule. Parmi les monosaccharides les plus fréquents, on peut citer le mannose, le glucose, le galactose, le N-acétyl-glucosamine, le N-acétyl- galactosamine. Le nombre de chaînes d'oligosaccharides stéréoisomères est extrêmement large, du au nombre important de carbones asymétriques dans la chaîne hydro-carbonée. Par précurseur exogène, on entend désigner un composé intervenant dans la voie de biosynthèse de l'oligosaccharide selon l'invention qui est internalisé par ladite cellule. Par précurseur endogène, on entend désigner un composé intervenant dans la voie de biosynthèse de l'oligosaccharide selon l'invention qui est naturellement présent dans ladite cellule.
Par cellule génétiquement modifiée, on entend désigner un microorganisme dans lequel au moins une altération de la séquence d'ADN a été introduite dans son génome afin de conférer un phénotype particulier à ladite cellule. De telles altérations peuvent ainsi conférer par exemple l'aptitude de la cellule à ne pas dégrader ou à ne pas modifier un composé selon l'invention ou à ne pas diminuer la fréquence de réarrangement de l'ADN.
Le procédé selon l'invention est caractérisé en ce que ladite cellule est une cellule choisie parmi les bactéries et les levures. Selon un mode de réalisation préférée de l'invention, la bactérie est choisie parmi le groupe composé de Escherichia coli, Bacillus subtilis, Campylobacter pylori, Helicobacter pylori, Agrobacterium tuméfaciens, Staphylococcus aureus, Thermophilus aquaticus, Azorhizobiutn caulinodans, Rhizobium leguminosarum, Neisseria gonorrhoeae, Neisseria meningitis. Selon un mode préféré de réalisation de l'invention, la bactérie est Escherichia coli. Selon un autre mode de réalisation de l'invention, la cellule est une levure qui est de préférence Saccharomyces cerevisiae, Saccharomyces pombe, Candida albicans. La cellule selon l'invention est dépourvue d'activité enzymatique susceptible de dégrader ledit oligosaccharide, ledit précurseur ou lesdits intermédiaires métaboliques. La séquence d'acide nucléique codant pour l'enzyme selon l'invention est soit naturellement présente dans ladite cellule soit est introduite dans ladite cellule par les techniques de l'ADN recombinant connues de l'homme du métier. Dans la présente description, on entendra désigner par acide nucléique, un fragment d'ADN, aussi bien double brin que simple brin, que des produits de transcription desdits ADNs, et/ou un fragment d'ARN. Selon un mode préféré de réalisation, la séquence d'acide nucléique introduite dans ladite cellule par les techniques de l'ADN recombinant et qui code pour un enzyme intervenant dans la voie de biosynthèse de l'oligosaccharide d'intérêt est hétérologue. On entend désigner par séquence d'acide nucléique hétérologue, une séquence d'acide nucléique qui n'est pas présente naturellement dans la cellule selon l'invention. La séquence d'acide nucléique hétérologue selon l'invention peut provenir de tout type cellulaire animal ou végétal, eucaryote ou procaryote et peut provenir de virus.
Parmi les cellules procaryotes à partir desquelles provient la séquence d'acide nucléique hétérologue, il convient de citer les bactéries et notamment Escherichia coli, Bacillus subtilis, Campylobacter pylori, Helicobacter pylori, Agrobacterium tuméfaciens, Staphylococcus aureus, Thermophilus aquaticus, Azorhizobium caulinodans, Rhizobium leguminosarum, Rhizobium meliloti, Neisseria gonorrhoeae, Neisseria meningitis. Parmi les cellules eucaryotes unicellulaires à partir desquelles provient la séquence d'acide nucléique hétérologue il convient de citer les levures et notamment Saccharomyces cerevisae, Saccharomyces pombe, Candida albicans. Selon un mode préféré de réalisation, la séquence d'acide nucléique hétérologue provient de cellules eucaryotes végétales ou animales. Selon un mode encore préféré, la séquence d'acide nucléique hétérologue provient de cellules de mammifères et de préférence de cellules humaines.
Selon un mode préféré de réalisation de l'invention, la cellule selon l'invention est la bactérie Escherichia coli et la séquence d'acide nucléique introduite dans la bactérie et codant pour l'enzyme selon l'invention provient de préférence de bactérie choisie dans le groupe cité ci-dessus.
Selon un mode préféré de réalisation de l'invention, la séquence d'acide nucléique codant pour l'enzyme selon l'invention est introduite dans ladite cellule sous la forme d'un vecteur d'expression. Le vecteur doit comporter un promoteur, des signaux d'initiation et de terminaison de la traduction, ainsi que des régions appropriées de régulation de la transcription. Le vecteur doit pouvoir être maintenu de façon stable dans la cellule au cours des générations successives et peut éventuellement posséder des signaux particuliers spécifiant la sécrétion de l'enzyme traduite. Ces différents signaux de contrôle sont choisis en fonction de l'hôte cellulaire utilisé. A cet effet, les séquences d'acides nucléiques peuvent être insérées dans des vecteurs à réplication autonome au sein de l'hôte choisi ou dans des vecteurs intégratifs qui s'intègre dans le génome de l'hôte choisi. De tels vecteurs sont préparés selon les méthodes couramment utilisées par l'homme du métier, et les clones en résultant peuvent être introduits dans un hôte cellulaire approprié par des méthodes standard, telles par exemples le choc thermique ou l'électroporation. L'invention vise en outre les cellules ci-dessus caractérisées en ce qu'elles sont transformées par au moins un acide nucléique isolé recombinant codant pour l'enzyme selon l'invention ou par au moins un vecteur recombinant tel que défini ci-dessus. Le procédé selon l'invention se caractérise en ce que ladite modification effectuée par ladite enzyme est choisie parmi la glycosylation, la sulfatation, l'acétylation, la phosphorylation, la succinylation, la méthylation et l'addition d'un groupe énolpyruvate, la sialylation, la fucosylation. Plus particulièrement, le procédé selon l'invention se caractérise en ce que ledit enzyme est un enzyme capable d'effectuer une glycosylation choisi parmi les glycosyl-transférases, les glycosyl-hydrolases, les glycosyl- phosphorylases. Selon un mode préféré de réalisation, l'enzyme capable d'effectuer la glycosylation est une glycosyl-transférase. Selon un mode de réalisation préféré, la glycosyl-transférase selon l'invention est choisie parmi la β- l,3-N-acétyl-glucosarninyl- transférase, la β- 1,3 galactosyl-transférase, l'a- 1,3 N-acétyl- galactosaminyl-transférase, la β- 1,3 glucuronosyl-transférase, la β- 1,3 N-acétyl-galactosaminyl-transférase, la β- 1,4 N-acétyl- galactosaminyl-transférase, la β- l,4-galactosyl-transférase, l'a- 1-3- galactosyl-transférase, l'a- 1,4-galactosyl-transférase, l'a-2,3-sialyl- transférase, l'α-2,6 sialyl-transférase, l'α-2-8 sialyl-transférase, l'α- 1,3-fucosyl-transférase, l'a- 1,4 fucosyl-transférase, l'a- 1,2 fucosyl- transférase. Les glycosyl-transférases utilisées dans la présente invention sont capables de la conjugaison stéréospécifique d'unité de saccharides spécifiques activés sur une molécule acceptrice spécifique. Les saccharides activés consistent en général en des dérivés de saccharides uridine-, guanosine- et cytidine- diphosphate. Ainsi, les saccharides activés peuvent être un UDP- saccharide, un GDP-saccharide, un CMP-saccharide.
Certains gènes codant pour des glycosyl- transférases utilisées dans le procédé selon l'invention ont été décrits au préalable ; ainsi la demande internationale de brevet WO 96 10086 décrit la synthèse classique d'oligosaccharide : au cours d'une première étape, les différentes glysosyl-transférases sont produites dans des bactéries recombinantes possédant les gènes IgtA, IgtB et IgtC de Neisseria gonorrhoeae , puis après purification des enzymes recombinantes ainsi produites, les oligosaccharides sont synthétisés in vitro en présence des précurseurs et des nucléotides-sucres nécessaires.
Selon certains modes de réalisation de l'invention, l'enzyme capable d'effectuer une acétylation est codé par le gène NodL de la bactérie Azorhizobium caulinodans. Selon un autre mode de réalisation, l'enzyme capable d'effectuer une sulfatation est codé par le gène NodH de la bactérie Rhizobium meliloti.
Le procédé selon l'invention est caractérisé en ce que ladite mise en culture cellulaire est effectuée de préférence sur un substrat carboné ; selon un mode particulier de réalisation de l'invention, ledit substrat carboné est choisi parmi le glycérol et le glucose. D'autres substrats carbonés peuvent également être employés ; il convient de citer le maltose, l'amidon, la cellulose, la pectine, la chitine. Selon un autre mode de réalisation, la culture cellulaire est réalisée sur un substrat composé d'acides aminés et/ ou de protéine et/ ou de lipides.
Le procédé selon l'invention se caractérise en ce que ladite étape de mise en culture est effectuée dans des conditions permettant l'obtention d'une culture à haute densité cellulaire ; cette étape de mise en culture comprend une première phase de croissance cellulaire exponentielle assurée par ledit substrat carboné, une seconde phase de croissance cellulaire limitée par ledit substrat carboné qui est ajouté de manière continue et enfin une troisième phase de croissance cellulaire ralentie obtenue en ajoutant de manière continue dans la culture une quantité dudit substrat diminuée par rapport à la quantité de substrat ajoutée à l'étape b) de façon à augmenter la teneur en oligosaccharides produits dans la culture à haute densité cellulaire. Le procédé selon l'invention se caractérise en ce que la quantité de substrat ajouté de manière continue dans la culture cellulaire au cours de ladite phase c) est diminuée d'au moins 30%, de préférence 50%, de manière préférée 60% par rapport à la quantité de substrat ajouté de manière continue lors de ladite phase b). Le procédé selon l'invention se caractérise également en ce que ledit précurseur exogène est ajouté lors de la phase b).
Selon un mode de réalisation de l'invention, le procédé se caractérise en ce que ledit précurseur exogène est de nature glucidique, de préférence de nature oligosaccharidique. L'originalité et la faisabilité du procédé selon l'invention repose sur l'utilisation de deux modes d'internalisation du précurseur exogène qui ne détruisent l'intégrité de la cellule ni n'atteignent ses fonctions vitales. Ceci exclut notamment les techniques classiques de perméabilisation de la membrane par des solvants organiques qui vont bloquer la croissance et le métabolisme énergétique. Les deux modes possibles d'internalisation du précurseur exogène utilisent un mécanisme de transport passif ou actif. L'invention concerne tout d'abord un procédé caractérisé en ce que ledit du précurseur exogène est internalisé selon un mécanisme de transport passif. On entend désigner par internalisation par transport passif, la diffusion passive d'un du précurseur exogène à travers la membrane plasmique, le flux moléculaire s'orientant des zones les plus concentrées vers les zones les moins concentrées pour tendre finalement vers un état d'équilibre. L'internalisation par transport passif consiste à utiliser un précurseur exogène qui est suffisamment petit et hydrophobe pour diffuser passivement au travers de la membrane. Un précurseur, monosaccharidique ayant la position anomérique bloquée par un substituant alkyl constitue un exemple de précurseur susceptible d'être internalisé de cette manière. La présente invention concerne donc un procédé caractérisé en ce que ledit précurseur exogène est un monosaccharide dont le carbone anomère est lié à un groupement alkyl ; de préférence ledit groupement alkyl est un groupement allyl. C'est donc un des objets de l'invention de fournir un procédé de production d'oligosaccharides qui possèdent un groupement fonctionalisable comme le groupement allyl et qui sont utilisables de ce fait comme précurseur pour la synthèse chimique de glycoconjugués (néoglycoprotéine ou néoglycolipides) ou de glycopolymères. En effet, la double liaison du groupement allyl est susceptible d'être ouverte par ozonolyse pour former un aldéhyde et permettre la conjugaison de l'oligosaccharide sur une protéine par amination réductive (Roy et al., 1997). Une autre voie est l'addition de cystéamine (Lee et Lee, 1974, Roy et al., 1997) sur la double liaison de l' allyl pour former un groupement aminé terminal qui peut par exemple réagir avec les groupements carboxyliques des protéines. Selon un mode particulier de réalisation, le procédé selon l'invention concerne la production du [β-D-Gal-[l- 4]-β-D-GlcNac- l- O-allyl) ; le procédé se caractérise en ce que ladite cellule est une bactérie de génotype LacZ- , ledit enzyme est la β-1,4- galactosyl-transférase, ledit substrat est le glycérol et ledit précurseur est l'allyl-N-acétyl-β-D-glucosaminide (β-D-GlcNac-1- >O-allyl). Enfin, selon un autre mode particulier de réalisation, le procédé selon l'invention se caractérise en ce que la double liaison du groupement allyl dudit (β-D-Gal-[l->4]-β-D-GlcNac-l-»0-allyl) est modifiée chimiquement par des réactions d'addition, d'oxydation ou d'ozonolyse.
La présente invention concerne également un procédé caractérisé en ce que ledit précurseur est internalisé selon un mécanisme de transport actif. On entend désigner par internalisation par transport actif, l'aptitude des cellules et de manière préférée les bactéries à admettre et concentrer sélectivement certaines substances ou précurseurs exogènes dans leur cytoplasme. Ce transport est réalisé par des transporteurs de nature protéique appelés perméases qui agissent comme des enzymes ; les perméases sont des catalyseurs inductibles, c'est-à- dire synthétisés en présence de substrat ou du précurseur. Selon un mode particulier de réalisation de l'invention, le lactose et les β- galactosides constituent des précurseurs qui sont transportés activement dans le cytoplasme de la bactérie Escherichia coli par la lactose perméase encore appelée galactoside perméase. L'invention concerne donc un procédé selon l'invention caractérisé en ce que ledit transport actif dudit précurseur est réalisé par la lactose perméase. Le lactose perméase possède une spécificité assez large qui lui permet de transporter, outre le lactose, d'autres molécules. Elle est en effet capable de transporter divers β-galactosides naturels ou synthétiques, des α-galactosides et le saccharose. C'est donc l'un des objets de l'invention de fournir, selon un mode préféré de réalisation, un procédé caractérisé en ce que ledit précurseur est le lactose qui constitue le motif de base de très nombreux oligosaccharides biologiquement actifs. Il est également dans l'étendue de l'invention de fournir un procédé caractérisa en ce que en ce que ledit précurseur est choisi dans le groupe composé de : (i) β-galactosides naturels ou synthétiques, de préférence dans le 4-O- β-D-galactopyranosyl-D-fructofuranose (lactulose), le 3-O-β-D- galactopyranosyl-D-arabinose et l'allyl-β-D-galactopyranoside , (ii) d'α-galactosides, de préférence le mélibiose et le raffinose, l'allyl-α- D-galactopyranoside (iii) de saccharose.
La spécificité de la lactose perméase peut même être modifiée par mutation et permettre le transport d'autres composés tels le maltose et le cellobiose. Tous ces composés peuvent donc être utilisés comme précurseur pour la synthèse d'oligosaccharides. Il est également dans l'étendue de cette invention d'utiliser comme précurseurs des analogues du lactose possédant un groupement chimiquement réactif pour une fonctionalisation ultérieure du produit de préférence un de ces analogues est l'allyl β-D- galactopyranoside. Il est également dans l'étendue de cette invention d'utiliser d'autres perméases modifiées ou non par les techniques de l'ADN recombinant pour permettre l'internalisation de différents types de précurseurs.
Les β-galactosides sont normalement hydrolyses dans le cytoplasme de la bactérie par la β-galactosidase codée par le gène LacZ. Afin de s'affranchir de ce problème, un mutant bactérien lacZ- dépourvu d'activité β-galactosidase est utilisé lorsque le précurseur employé est le lactose et/ ou un β-galactoside. C'est donc également un des objets de l'invention de fournir le procédé selon l'invention caractérisé en ce que ladite cellule est dépourvue d'activité enzymatique susceptible de dégrader ledit précurseur ainsi que lesdits intermédiaires métaboliques.
Selon un mode particulier, l'invention se rapporte à un procédé décrit ci-dessus caractérisé en ce que ledit précurseur est l'acide sialique. Dans ce cas, ledit transport actif dudit précurseur est réalisé par la perméase NanT. Selon un autre mode particulier, l'invention porte sur un procédé décrit ci-dessus caractérisé en ce que ledit précurseur est l'acide sialique et le lactose. Dans ce cas, ledit transport actif dudit précurseur est réalisé par la lactose perméase et la perméase NanT.
Dans le procédé selon l'invention, ladite cellule peut être dépourvue d'activité enzymatique susceptible de dégrader ledit précurseur ou lesdits précurseurs.
Selon un mode préféré de réalisation, le procédé se caractérise en ce que ladite cellule a un génotype choisi parmi LacZ- et/ ou NanA-. Selon un autre aspect de l'invention, le procédé se caractérise en ce qu'il comprend en outre l'addition d'un inducteur dans ledit milieu de culture pour induire l'expression dans ladite cellule dudit enzyme et/ ou d'une protéine impliquée dans ledit transport actif; selon un mode préféré de réalisation, le procédé selon l'invention est caractérisé en ce que ledit inducteur est l'isopropyl β-D- thiogalactoside (IPTG) et ladite protéine est la lactose perméase.
L'invention permet pour la première fois de produire des oligosaccharides complexes avec des rendements de l'ordre du gramme par litre. Selon sa taille, l'oligosaccharide soit s'accumule dans le cytoplasme bactérien, soit est sécrété dans le milieu de culture. Ainsi, selon un mode préféré de réalisation, le procédé selon l'invention est utilisé pour la production du trisaccharide 4- O-[3-O-(2-acétamido-2déoxy-β-D-glucopyranosyl)-β-D- galactopyranosyl]-D-glucopyranose, (β-D-GlcNac-[l->3]-β-D-Gal- [l->4]-D-Glc); il se caractérise en ce que ladite cellule est une bactérie de génotype LacZ-, LacY+ , ledit enzyme est la β- l,3-N- acétyl-glucosaminyl-transférase, ledit substrat est le glycérol, ledit inducteur est l'isopropyl β-D-thiogalactoside (IPTG) et ledit précurseur est le lactose.
Selon un deuxième mode préféré de réalisation, le procédé selon l'invention est utilisé pour la production du lacto-N-néo- tétraose et de polylactosamine ; il se caractérise en ce que ladite cellule est une bactérie de génotype Lac Z; Lac Y+ , lesdits enzymes sont la β- l,3-N-acétyl-glucosaminyl-transférase et la β-1,4- galactosyl-transférase, ledit substrat est le glucose, ledit inducteur est l'isopropyl-β-D-thiogalactoside (IPTG), ledit précurseur est le lactose.
Selon un troisième mode préféré de réalisation, le procédé selon l'invention est utilisé pour la production de l'allyl 3-O-(2- acétamido-2déoxy-β-D-glucopyranosyl)-β-D-galactopyranoside, (β- D-GlcNac-[ 1^3]-β-D-Gal- l-»O-allyl); il se caractérise en ce que ladite cellule est une bactérie de génotype LacZ; LacY+ , ledit enzyme est la β- l,3-N-acétyl-glucosaminyl-transférase, ledit substrat est le glycérol, ledit inducteur est l'isopropyl β-D- thiogalactoside (IPTG), ledit précurseur est l'allyl-β-D- galactopyranoside.
Selon un quatrième mode préféré de réalisation, le procédé selon l'invention est utilisé pour la production d'analogues du lacto- N-néo-tétraose et de polylactosamines dans lesquels le résidu glucose est remplacé par un groupement allyl ; il se caractérise en ce que ladite cellule est une bactérie de génotype LacZ-, LacY+ , lesdits enzymes sont la β- l,3-N-acétyl-glucosaminyl-transférase et la β-l,4-galactosyl-transférase, ledit substrat est le glucose, ledit inducteur est l'isopropyl β-D-thiogalactoside (IPTG) et ledit précurseur est rallyl-β-D-galactopyranoside.
Selon un cinquième mode préféré de réalisation, le procédé selon l'invention est utilisé pour production de l'allyl-β-D- lactosamine (β-D-Gal-[l->4]-β-D-GlcNac- l->O-allyl); il se caractérise en ce que ladite cellule est une bactérie de génotype LacZ-, LacY+ , ledit enzyme est la β- 1 ,4-galactosyl-transférase, ledit substrat est le glycérol, ledit précurseur est l'aHyl-N-acétyl β-D- glucosaminide (β-D-GlcNac-[ l->O-allyl)). L'invention concerne également un procédé qui permet d'envisager la production d'un grand nombre d'oligosaccharides différents obtenus par glycosylation du lactose. En effet, outre les gènes IgtA et IgtB qui code respectivement pour la β- l,3-N-acétyl- glucosaminyl-transférase et la β- l,4-galactosyl-transférase, plusieurs gènes de glycosyl-transférases bactériennes utilisant le lactose comme précurseur ont été récemment clones. Il s'agit de IgtC (β- 1 ,4-galactosyl-transférase) et de Lst (α-2,3 sialyl- transférase) (Gilbert et al, 1997). L'utilisation de ces gènes dans un procédé selon l'invention permet de produire des molécules comme le globotriose (Pk blood antigen) et le sialyl-lactose. Par ailleurs, la coexpression des gènes LgtA et LgtB avec le gène de la α- 1,3 fucosyl-transférase de Helicobacter pylori (Martin et al, 1997) selon un procédé selon l'invention permet l'obtention du Lewisx pentasacharide. L'addition du gène Lst (α-2,3 sialyl-transférase) donne accès au sialyl Lewisx hexasaccharide.
Le procédé selon l'invention permet également d'obtenir un grand nombre d'oligosaccharides différents obtenus par glycosylation de précurseurs exogènes autre que le lactose et transportés par la lactose perméase ou par d'autres perméases.
Le procédé selon l'invention permet d'obtenir un grand nombre d'oligosaccharides différents obtenus par modification (sulfatation, acétylation, phosphorylation, succinylation, méthylation, addition d'un groupement énolpyruvate) in vivo de précurseurs. La synthèse de certains oligosaccharides peut nécessiter outre la modification de précurseurs exogènes, la modification de précurseurs endogènes. Ainsi, il est envisageable d'introduire dans une bactérie Escherichia coli K12 le gène d'enzyme impliqué dans le métabolisme de précurseur endogène pour permettre la production de certains nucléotides-sucres tels que par exemple le CMP-acide sialique, l'UDP-GalNAc ou le GDP- fucose qui ne sont pas normalement produit par cette souche bactérienne, afin de réaliser la synthèse d'un oligosaccharide d'intérêt. Par exemple, l'UDP-GalNAc peut être produit à partir de l'UDP-GlcNAc si le gène de l'épimérase est introduit dans une cellule selon l'invention.
Contrairement à la méthode enzymatique de synthèse in vitro d'oligosaccharides qui nécessite l'utilisation de molécules très onéreuses comme l'ATP, l'acétyl-CoA, le PAPS (adénosine 3' phosphate- 5'phosphosulfate), ou le phospho-énolpyruvate l'un des intérêts de la présente invention réside dans le fait que ces molécules sont naturellement recyclées dans la cellule permettant ainsi d'abaisser les coûts de production des oligosaccharides. Un autre objet de l'invention concerne un procédé décrit ci- dessus pour la production du 3'-sialyllactose(α-NeuAc-[2-»3]-β-D- Gal-[l→4]-β-D-Glc) ou du 6'-sialyllactose (α-NeuAc-[2→6]-β-D-Gal- [l- 4]-β-D-Glc) caractérisé en ce que : • ladite cellule est une bactérie de génotype LacZ-, LacY+ ,
NanA-, NanT+ ;
• lesdits enzymes so^.t la CMP-NeuAc-synthase et l'α-2,3 sialyl- transférase ou l'α-2,6 sialyl-transférase;
• ledit substrat est le glycérol ; • ledit inducteur est l'isopropyl-β-D-thiogalactoside (IPTG) ;
• lesdits précurseurs sont le lactose et l'acide sialique.
Selon un sixième mode préféré de réalisation qui complète le deuxième mode décrit ci-dessus, le procédé selon l'invention est utilisé pour la production d'un dérivé sialylé du lacto-N-néotétraose et de polylactosamine (lacto-N-néo-hexaose, lacto-N-néo-octaose, lacto-N-néo-décaose) caractérisé en ce qu'il comprend en outre un dit enzyme choisi parmi l'α-2,3 sialyl-transférase, l'α-2,6 sialyl- transférase, et que ladite cellule a en outre un génotype NanA-, NanT+ et exprime le gène de la CMP-NeuAc-synthase, lesdits accepteurs sont le lactose et l'acide sialique.
Un autre objet de l'invention concerne un procédé décrit ci- dessus pour la production du lacto-N-néotétraose, du β-D- Gal[l→4]-β-D-GlcNac[ l- 3]-β-D-Gal[l→4]-(α-L-Fuc-[l→3])β-D-Glc, du β-D-Gal-[l→4]-(α-L-Fuc-[ l→3])-β-D-GlcNac-[l→3]-β-D-Gal- [l→4]-(α-L-Fuc-[ l→3])-β-D-Glc, du β-D-Gal-[ l→4]-(α-L-Fuc-[ l→3])- β-D-GlcNac-[ l→3]-β-D-Gal-[ l→4]-β,D-GlcNAc-[ l→3]-β-D-Gal[ 1→4]- (α-L-Fuc-[ l→3]-β-D-Glc, caractérisé en ce que • ladite cellule est une bactérie de génotype Lac Z; Lac Y+, Wca J-, et surexprime RcsA ;
• lesdits enzymes sont la β-l,3-N-acétyl-glucosaminyl- transférase, la β- 1 ,4-galactosyl-transférase, la α-1,3 fucosyl- transférase ;
• ledit substrat est le glucose ;
• ledit inducteur est l'isopropyl-β-D-thiogalactoside (IPTG) ;
• ledit précurseur est le lactose.
Selon un septième mode préféré de réalisation, le procédé selon l'invention est utilisé pour la production de 3'fucosyllactose (β-D-Gal-[l→4]-( α-L-Fuc-[l->3]-D-Glc) ou de 2'fucosyllactose (β-D- Gal-[l- 2]-( α-L-Fuc-[l→3]-D-Glc) caractérisé en ce qu'il comprend un dit enzyme choisit parmi l'a- 1,3 fucosyltransférase ou l'a- 1,2 fucosyltransférase, et que la cellule a un génotype wcaj lacZ et surexprime le gène rcsA et que ledit précurseur est le lactose.
Selon un huitième mode préféré de réalisation, le procédé selon l'invention est utilisé pour la production d'un dérivé fucosylé du lacto-N-néotétraose et de polylactosamine (lacto-N-néo-hexaose, lacto-N-néo-octaose, lacto-N-néo-décaose) caractérisé en ce qu'il comprend en outre un dit enzyme choisi parmi l'a- 1,2 fucosyltransférase, l'a- 1,3 fucosyl-transférase, et que ladite cellule a en outre un génotype Wca J- et surexprime le gène Rcs A, ledit accepteur étant le lactose.
Selon un neuvième mode préféré de réalisation, le procédé selon l'invention est utilisé pour la production d'un dérivé sialylé et fucosylé du lacto-N-néotétraose, lacto-N-néo-décaose) caractérisé en ce qu'il comprend en outre un dit enzyme choisi parmi le l'α-2,3 sialyl-transférase, l'α-2,6 sialyl-transférase, et en outre un dit enzyme choisi parmi l'a- 1,2 fucosyl-transférase, l'a- 1,3 fucosyl- transférase, et que ladite cellule a en outre un génotype NanA-, NanT+, Wca J- et surexprime le gène Rcs A et le gène de la CMP- NeuAc-synthase, lesdits accepteurs sont le lactose et l'acide sialique. Les procédés des modes 1 à 9 évoqués précédemment peuvent être mis en oeuvre pour la production d'analogue d'oligosaccharides dans lesquels le résidu glucose est remplacé par un groupement allyl, ledit précurseur étant l'allyl-β-D galactoside et non plus le lactose. Un autre objet de l'invention est de fournir un procédé pour produire des oligosaccharides marqués ou enrichis avec des radioisotopes; de tels oligosaccharides sont extrêmement précieux pour les études fondamentales de biologie ou d'analyse conformationnelle. L'invention concerne donc un procédé de production d'oligosaccharide marqué par au moins un radioisotope caractérisé en ce que ladite cellule est cultivée sur ledit substrat carboné marqué par ledit radioisotope et/ ou en présence d'undit précurseur marqué par ledit radioisotope. Les radioisotopes sont choisis de préférence dans le groupe composé de : 14C, 13C, 3H, 35S, 3 P, 33P.
L'invention concerne aussi un oligosaccharide susceptible d'être obtenu par un procédé selon l'invention.
Selon un mode particulier de réalisation, l'invention concerne un oligosaccharide activé utilisable pour la synthèse chimique de glycoconjugués ou de glycopolymères susceptible d'être obtenu par un procédé tel que décrit précédemment, ledit oligosaccharide étant caractérisé en ce que la double liaison du groupement allyl est modifiée chimiquement par des réactions d'addition, d'oxydation, ou d'ozonolyse. L'oligosaccharide selon l'invention est utile dans une large gamme d'applications thérapeutiques et diagnostiques ; il peut par exemple être utilisé comme agent bloquant de récepteurs de surface cellulaire dans le traitement de multiples maladies faisant intervenir l'adhésion cellulaire ou être utilisé comme suppléments nutritionnels, antibactériens, agents anti-métastatiques, agents anti-inflammatoires. L'invention concerne donc un oligosaccharide selon l'invention à titre de médicament et notamment à titre de médicament destiné à empêcher sélectivement l'adhésion de molécules biologiques. L'oligosaccharide selon l'invention est également utilisé à titre de médicament destiné au traitement du cancer, de l'inflammation, des maladies cardiaques, du diabète, des infections bactériennes, des infections virales, des maladies neurologiques et à titre de médicament destinés aux greffes. L'invention porte également sur une composition pharmaceutique caractérisée en ce qu'elle comprend un oligosaccharide selon l'invention et un véhicule pharmaceutiquement acceptable.
Enfin, l'invention concerne aussi l'utilisation d'un oligosaccharide selon l'invention dans l'agriculture et l'agronomie notamment pour la croissance et la défense des végétaux. En effet, les oligosaccharides jouent un rôle prédominant dans la symbiose Rhizobium/légumineuse. En effet, certains oligosaccharides provenant de l'hydrolyse de parois ou de glycoprotéines végétales ou fongiques peuvent agir comme phytohormones ou comme éliciteurs de réactions de défenses chez les plantes.
L'intérêt industriel du procédé selon l'invention est évident car il permet pour la première fois d'atteindre une production de l'ordre du kilogramme d'oligosaccharides complexes d'intérêt biologique. Tous les oligosaccharides d'intérêt biologique dont nous envisageons la synthèse à l'échelle industrielle ne sont actuellement disponibles qu'à l'échelle du mg et à des coût extrêmement élevés (jusqu'à 1 million de franc le gramme) ; le prix de revient de ces composés produits par la présente voie microbiologique sont infiniment moindre.
Des caractéristiques et avantages de la présente invention seront mieux mis en évidence à la lecture des exemples et des figures suivantes dont les légendes sont représentées ci-après.
FIGURES
Figure 1 : Principe du procédé de production du trisaccharide 4-O-[3-O-(2-acétamido-2déoxy-β-D- glucopyranosyl)-β-D-galacto-pyranosyl]-D-glucopyranose, (β-D- GlcNac-[1^3]-β-D-Gal-[l- 4]-D-Glc)
Le lactose( β-D-Gal-[ l-4]-β-D-Glc) est transporté dans la cellule par la lactose perméase (Lac perméase). Le lactose ne peut pas être hydrolyse dans la cellule car la souche est un mutant LacZ-. L'expression du gène IgtA permet la production de l'enzyme LgtA qui transfère un GlcNAc de l'UDP-GlcNAc sur une molécule de lactose. Le trisacharide formé (β-D-GlcNAc-[l-3]-β-D-Gal-[l-4]-β-D- Glc) est excrété dans le milieu.
Figure 2 : Culture à haute densité cellulaire de la souche JM109 témoin et de la souche JM109 (pCWlgtA) possédant le gène de la glycosyle transférase LgtA.
Le lactose est ajouté en continu et le lactose résiduel est déterminé enzymatiquement. La concentration de GlcNAc hydrolysable dans le milieu de culture est mesurée colorimétriquement après hydrolyse acide. Le lactose ajouté représente la quantité totale cumulée de lactose qui a été ajouté en continu.
Figure 3 : Spectre de niasse en mode FAB+ du trisaccharide 4-O-[3-O-(2-acétamido-2déoxy-β-D- glucopyranosyl)-β-D-galactopyranosyl]-D-glucopyranose, (β-D-
GlcNac-[l- 3]-β-D-Gal-[l->4]-D-Glc) purifiée du surnageant de culture de l» souche JM109(lgtA).
On observe les deux ions quasi-moléculaires [M+H]+ et
[M+Na]+ à m/z 546 et 568. On observe également un ion [M+H]+ à m/z 442 qui est du à la présence de β-D-GlcNAc-[l-3]-IPTG. Ceci indique que l'IPTG (isopropyl β-D-thiogalactose) utilisé pour induire la Lac perméase et LgtA est également glycosylé.
Figure 4 : Spectre du trisaccharide 4-O-[3-O-(2-acétamido- 2déoxy-β-D-glucopyranosyl)-β-D-galactopyranosyl]-D- glucopyranose, (β-D-GlcNac-[l-»3]-β-D-Gal-[l-»4]-D-Glc) en RMN du proton à 323°K.
Le signal à 1,4 ppm est du aux protons du groupement isopropyl du dérivé glycosylé de l'IPTG.
Figure 5 : Spectre RMN 13C du trisaccharide 4-O-[3-O-(2- acétamido-2déoxy-β-D-glucopyranosyl)-β-D-galactopyranosyl]-D- glucopyranose, (β-D-GlcNac-[1^3]-β-D-Gal-[l-»4]-D-Glc).
Figure 6: Principe du procédé de production du lacto-N- néo-tétraose (β-D-Gal-[l-4]-β-D-GlcNAc-[l-3]-β-D-Gal-[l-4]-β-D- Glc). Le lactose (β-D-Gal-[l-4]-β-D-Glc) est transporté dans la cellule par la Lac perméase. Le lactose ne peut pas être hydrolyse dans la cellule car la souche est un mutant LacZ-. L'expression du gène IgtA permet la production de l'enzyme LgtA qui transfère un GlcNAc de lTJDP-GlcNAc sur une molécule de lactose. Le trisaccharide formé est ensuite utilisé comme précurseur par LgtB qui transfère une molécule de galactose de l'UDP-Gal pour former le lacto-N-néo-tétraose (β-D-Gal-[l-4]-β-D-GlcNAc-[ l-3]-β-D-Gal-[l-4]- β-D-Glc). Figure 7 : Culture à haute densité cellulaire de la souche
JM109 (pCWlgtA, pBBlgtB).
Culture en présence de lactose à forte (5 g.H) et à faible concentration (1 g.l"1).
Figure 8 : Séparation sur Biogel P4 des oligosaccharides produits par la souche JM109 (pCWlgtA, pBBlgtB) en présence de lactose à une concentration initiale de 5 g.l 1 (A) ou de 1 g.l- MB).
Les pics 1, 2, 3, 4 correspondent respectivement aux lacto-N- néo-tétraose, lacto-N-néo-hexaose, lacto-N-néo-octaose et lacto-N- néo-décaose.
Figure 9 : Principe du procédé de production du sialyllactose
Le lactose et l'acide sialique (NeuAc) sont internalisés dans la cellule par la lactose perméase (lacY) et la perméase de l'acide sialique (nanT). Ces deux composés ne sont pas dégradés dans la cellule car la souche est un mutant lacZ- et nanA- . L'expression de la CMP-NeuA synthase et de l'α-2,3 sialyltransferase permet l'activation de l'acide sialique internalisé en CMP-NeuAc et son transfert sur du lactose intracellulaire.
EXEMPLES
Exemple 1 : Matériels et méthodes
1.1. Origine des plasmides et souches bactériennes
Les souches JM107 et JM109 d'Escherichia coli K12 (Yannisch-Perron et al 1984) ont été utilisées comme cellules hôte pour tous les exemples de production d'oligosaccharides décrits. Les souches ont été obtenues de la DSM (Deutsche Sammlung von Mikroorganismen) Le génotype de la souche JM109 est le suivant : F- traD36 lacP ΔβacZ)M15 proA+B+/el4-(McrA-) Δβac-proAB) supE44 recAl endAl gyrA96 (Nalr) thi hsdR17 relAl. Le génotype de la souche JM107 est identique à celui de la souche JM 109 excepté le fait que le gène recAl n'est pas inactivé. Les gènes IgtA et IgtB de Neisseria meningitis MC58 ont été fournis par Dr W. Wakarchuk (Institute for Biological Sciences, National Research council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A OR6, Canada) sous la forme de deux plasmides pCW, l'un contenant le gène IgtA (nommé ici pCWlgtA) et l'autre contenant le gène IgtB (nommé ici pCWlgtB). Les séquences de ces deux gènes sont disponibles dans la banque de données GenBank sous le n° U25839. Le plasmide pLitmus28 a été acheté à la société New Englands Biolabs. Le plasmide pBBRIMCS a été fourni par le Dr M. Kovach (Department of Microbiology and Immunology, Louisiana State University, Shreveport, LA 71130-3932, USA.)
Les gènes de la CMP-sialic acid synthase et de l'α-2,3 sialyltransferase de Neisseria meningitis MC58 ont été fournis par le Dr M Gilbert (Institute for Biological Sciences, National Research council of Canada, 100 Sn sex Drive, Ottawa, Ontario, K1A OR6, Canada) sous la forme de deux plasmides NSY-01 et NST-01. Le plasmide NSY-01 est un dérivé du plasmide pT7-7 qui contient le gène (GenBank U60146) de la CMP-sialic acid synthase (Gilbert et al 1997). Le plasmide NST-01 est un dérivé du plasmide pBluescript Sk- qui contient le gène (GenBank n° U60660) de l'α- 2,3 sialyltransferase (Gilbert et al. 1996)
Le gène fucT de l'a- 1,3 fucosyltransférase d' Helicobacter pylori a été fourni par le Dr S. Martin (Glaxo Wellcome Research and Development, Gunnels Wood Road, Stevenage, Hertfordshire, SGI 2NY,UK) sous la forme d'un plasmide pHP0651 dérivé du pET-21a . La séquence est disponible à la Genbank (AE000578, gène HP0651).
1.2. Sous-clonages.
Nous avons utilisé les techniques standards de biologie moléculaire décrites par Sambrook et al. (1989). construction du plasmide pBBlgtB : Le fragment d'ADN de 0,835 kb contenant le gène IgtB a été obtenu par digestion du plasmide pCWlgtB par BamHI et HindIII. Ce fragment a été sous- cloné dans le vecteur pLitmus28 préalablement digéré par BamH I et HindIII pour former le plasmide pLitlgtB. Le fragment de 0,9 kb contenant le gène IgtB a été excisé du plasmide pLitlgtB par une digestion avec Xhol et HindIII et sous clone dans le plasmide pBBRIMCS préalablement digéré par Xhol et HindIII pour former le plasmide pBBlgtB. construction du plasmide pBBns : Le fragment contenant le gène de la CMP-sialic acid synthase a été excisé du plasmide NSY-01 par une digestion avec Xbal et sous clone dans le plasmide pBBRIMCS préalablement digéré par Xbal pour former le plasmide pBBnsy. construction du plasmide pBBLnt : le gène IgtA présent dans la construction pCWlgtA (Gilbert et al.) a été amplifié par PCR en même temps que le promoteur UV5 tactac du plasmide à l'aide des amorces CTTTAAGCTTCCGGCTCGTATAA (sens, amont promoteur) et GACAGCTTATCATCGATAAGCTT (antisens, fin IgtA) contenant toutes deux un site HindIII. Le fragment amplifié de l,3kb a ensuite été sous-cloné dans le site HindIII du vecteur pBBlgtB. construction du plasmide pBBLntRcsA : Le gène rcsA (Stout et al., 1991) a d'abord été amplifié par PCR à partir d'ADN génomique de JM109 avec les amorces AGGGTACCCATGTTGTTCCGTTTAG (site Kpnl, gauche rcsA) et AATCTAGAGTAATCTTATTCAGCCTG (site Xbal, droite rcsA), puis clone dans les sites Kpnl-Xbal du vecteur pBBRl-MCS. Le vecteur pBBRl-MCS-rcsA a alors été ouvert en amont du gène par digestion avec Kpnl, blunté (kit Amersham), libéré par Xbal, et inséré dans les sites Smal-Xbal de la construction pBBLnt, permettant un clonage en aval de l'ensemble lgtB-OV5 tactac- IgtA, plaçant rcsA sous le contrôle du promoteur UV5 tactac. 1.3. Conditions de culture
Les cultures de routine et la préparation des inocula furent réalisées sur le milieu LB (Sambrook et al. 1989). Les cultures à haute densité cellulaire ont été réalisées dans un fermenteur de 2 litres contenant un volume initial de 1 litre de milieu ayant la composition suivante : glycérol (17.5 g.l 1) ou glucose (15 g.l -1), NH4H2PO4 (7 g.1-1), KH2PO4 (7 g.l-1), MgSO4.7H2O (1 g.l-1), thiamine. HC1 (4.5 mg.l 1), solution d 'oligo-éléments (7.5 mil 1), acide citrique (0.5 g.l 1), KOH (2 g.l 1). Le MgSO4 est autoclave séparément et la thiamine est stérilisée par filtration. La solution d'oligo-éléments contient : nitrilotriacétate (70 mM, pH 6.5), citrate ferrique (7.5 g.F), MnCl2. 4H2O (1.3 g.F), C0CI2 6H2O (0.21 g.F),
CuCl2.2H2O (0.13 g.l-i), H3BO3 (0.25 g.H), ZnSO4.7H2O (1.2 g.r x), Na2Moθ4.2H2O (0.15 g.F). Les antibiotiques, ampicilline (50 mg.l 1) et chloramphénicol (25 mg.l 1) sont ajoutés pour s'assurer de la présence des différents plasmides. La solution d'alimentation contient du glycérol (500 g.l 1) ou du glucose (400 g.l 1), du MgSθ4.7H2O (12 g.F) et de la solution d'oligo-éléments (25 ml.l 1).
Les cultures à haute densité cellulaire sont inoculées à 2%. Durant tout la culture, le taux d'oxygène dissous est maintenu à 20% de saturation en réglant manuellement le débit d'air et en ajustant automatiquement la vitesse d'agitation. Le pH est régulé automatiquement à 6,8 par l'addition d'ammoniaque aqueux (15% p/v). La température est maintenue à 34°C pour la souche JM109(pCWlgtA) et à 28°C pour la souche JM109(pCWlgtA, pBBlgtB). La stratégie de culture à haute densité comprend généralement 3 phases : une première phase de croissance exponentielle qui est assurée par le substrat carboné (glycérol ou glucose) initialement présent dans le milieu ; une deuxième phase qui débute lorsque la croissance devient limitée par la source de carbone qui est alors ajoutée en continu à un taux de 4,5 g.h-1. H de glycérol ou 3,6 g.h 1.!-1 de glucose. Dans une troisième phase, ce taux est réduit de 60 % pour ralentir la croissance de manière a augmenter la teneur en oligosaccharides.
1.4. Dosage des oligosaccharides
Les échantillons (1 ml) sont prélevés durant la culture et immédiatement centrifugés dans des microtubes. Le surnageant est conservé pour le dosage des oligosaccharides extracellulaires. Le culot bactérien est resuspendu dans 1 ml d'eau puis est incubé dans un bain-marie à 100°C pendant 30 min pour faire éclater les cellules. Après une seconde centrifugation le surnageant est conservé pour le dosage des oligosaccharides intracellulaires. La concentration de lactose est mesurée en utilisant un kit de détermination enzymatique (Roche diagnostic). Les résidus N- acétyl-glucosamine présents dans les oligosaccharides sont libérés par hydrolyse acide comme précédemment décrit (Samain et al, 1997) et ensuite quantifiés colorimétriquement par la méthode de Reissig et al, (1955); dans la description, on entend par GlcNAc hydrolysable, la quantité de GlcNAc dosée de cette manière.
Le dosage du lactose avec et sans traitement par une neuraminidase permet d'estimer la concentration en sialyl-lactose. Le fucose total est mesuré colorimétriquement par la méthode au chlorhydrate de cystéine de Dische et Shettles ( 1948).
1.5. Purification des oligosaccharides
A la fin de la culture, les cellules bactériennes sont récoltées par centrifugation. Le surnageant est conservé pour la purification des oligosaccharides extracellulaires. Les cellules bactériennes sont resuspendues dans 1 litre d'eau, puis sont perméabilisées par un traitement thermique (30 min à 100°C) pour libérer les oligosaccharides intracellulaires. Après une deuxième centrifugation ces oligosaccharides sont récupérés dans le surnageant.
Le premier et le deuxième surnageant contenant respectivement les oligosaccharides extra- et intracellulaires sont adsorbés sur charbon actif (100 g par litre de surnageant). Après rinçage à l'eau distillée, les oligosaccharides sont élues avec de l'éthanol à 50% (v/v), concentrés par évaporation et lyophilisés.
Les oligosaccharides sont séparés par chromatographie d'exclusion stérique sur une colonne (4.5 cm x 95 cm) de Biogel P4 permettant l'injection d'environ 300 mg de mélange d'oligosaccharides. L'élution est réalisée avec de l'eau distillée avec un débit de 40 ml. h-1.
Les oligosaccharides non fucosylés sont séparés par chromatographie d'exclusion stérique sur une colonne (4.5 cm x 95 cm) de Biogel P4 permettant l'injection d'environ 300 mg de mélange d'oligosaccharides. L'élution est réalisée avec de l'eau distillée avec un débit de 40 ml.tr1
Les oligosaccharides fucosylés sont séparés par chromatographie d'exclusion stérique sur une colonne (1,5 cm x
200 cm) de Biogel P2 thermostatée à 60 °C permettant l'injection d'environ 30 mg de mélange d'oligosaccharides. L'élution est réalisée avec de l'eau distillée avec un débit de 30 ml.h 1
Le sialyllactose est séparé des oligosacchariodes neutres par fixation sur une résine Dowex 1X4-400 (sous forme HCO3 ). et élue avec un gradient de NaHCθ3 (0 à lOOmM). Le bicarbonnate est ensuite éliminé en traitant l'éluat par une résine Dowex 50X4-400 sous forme H+.
1.6. Préparation des allyl β-D-glucosides L'allyl β-D-galactopyranoside et l'allyl-N-acétyl-β-D- glucosaminide ont été synthétisés suivant le protocole décrit par Lee et Lee (1974)
1.7. Identification et caractérisation structurale des oligosaccharides
Les spectres de masse ont été réalisés avec un spectromètre de masse (Nermag R- 1010C). Pour chaque expérience le volume initial de matrice est de 4 μl. Les produits ont été analysés en mode FAB+. Les spectres de RMN ont été obtenus avec un spectromètre
Brucker AC300.
1.8 Construction de la souche JM 107-nanA-
Une souche JM 107 incapable de métaboliser l'acide sialique a été préparée par inactivation insertionnelle du gène nanA (opéron Nan) codant pour la NeuAc aldolase (Plumbridge et al., 1999). Deux réactions d'amplification par PCR furent réalisées de part et d'autre du centre du gène nanA de façon à y insérer un site de restriction BamHI. Un premier fragment BamHl-Xbal de 1,6 kb comprenant la partie droite de nanA a été amplifié à partir d'ADN génomique de JM109 en utilisant les amorces
AAAGGATCCAAGATCAGGATGTTCACG et
GCTCTAGAATGGTAATGATGAGGCAC et clone entre les sites BamHI et Xbal du vecteur pUC19, formant le vecteur pUC-nanl,6. Un deuxième fragment Kpnl-BamHl de 2, 1 kb comprenant la partie gauche de nanA a été amplifié en utilisant les amorces AAAGGATCCGCGTAGGTGCGCTGAAAC et AAAGGTACCTCAGGCCACCGTTAGCAG et clone entre les sites Kpnl et BamHI du vecteur pUC-nanl,6 formant le vecteur pUC- nan-3,7. Le gène de résistance à la kanamycine (pUC-4K, cassette Pharmacia) a ensuite été clone dans le site BamHI de pUC-nan- 3,7. Le fragment de 4,9 kb Sacl-Xbάl contenant nanA::kan a été inséré dans les mêmes sites du vecteur suicide pCVD442 (Donnenberg et Kaper 1991). Ce plasmide a été utilisé pour obtenir par recombinaison homologue des mutants JM107 nanAv.kan, sélectionnés pour leur résistance à la kanamycine et leur incapacité à métaboliser l'acide sialique (souche JM107-nanA ).
1.9 Construction de la souche JM 107corDE3 La suppression de la capacité à synthétiser l'acide colanique a été réalisée par inactivation insertionnelle du gène wcaJ codant pour une glucosyltransférase (Stevenson et al 1996). Un fragment d'ADN de 1 ,8 kb contenant le gène wcaJ et de l'ADN adjacent ont été amplifiés par PCR à partir d'ADN génomique de JM 109 et insérés dans un vecteur pTOPO2.1 (kit de clonage PCR Invitrogen), à l'aide des amorces CCACGATCCACGTCTCTCC (droite wcaJ) et AAGCTCATATCAATATGCCGCT (gauche wcaJ). Il a ensuite été transféré dans un vecteur pUC1 au niveau du site EcoRI. Le vecteur ainsi obtenu a été soumis à un traitement par une EcoRI méthylase, permettant l'addition subséquente du gène de résistance à la kanamycine dans le site Apol présent au centre de wcaJ. L'ADN recombinant wcaJr.kan a enfin été transféré dans le vecteur suicide pCVD442 permettant par recombinaison homologue l'obtention de mutants génomiques JM 107 contenant le gène inactivé, sélectionnés par PCR à l'aide des amorces ayant servi au clonage (souche JM107-col ). La souche JM107-col- a été rendue lysogène pour le phage λDE3 en utilisant le kit de lysogénisation de Novagen.
Exemple 2 : Production du trisaccharide 4-O-[3-O-(2- acétamido-2déoxy-β-D-glucopyranosyl)-β-D-galactopyranosyl]-D- glucopyranose, (β-D-GlcNac-[l-»3]-β-D-Gal-[l-»4]-D-Glc).
Le principe est illustré par la figure 1. Nous avons utilisé la souche JM 109 d'Escherichia coli K12 dans laquelle nous avons introduit le plasmide pCWlgtA gène IgtA. La souche JM 109 est lacZ- , c'est à dire qu'elle est incapable dÎLydrolyser le lactose. Par contre elle est lacY+ , ce qui signifie qu'elle peut synthétiser la lactose perméase. Le gène IgtA code pour une β-l,3-N-acétyl-glucosaminyl- transférase (LgtA) transférant une unité Ν-acétyl-glucosamine sur le galactose du lactose. La souche JM 109 (pCWlgtA) ainsi que la souche témoin
JM109 ont été cultivées à haute densité cellulaire (Samain et al, 1997) sur glycérol comme source de carbone et d'énergie. Après une première phase de croissance exponentielle assurée par le glycérol initialement présent dans le milieu (17,5 g/1), la croissance devient limitée par le glycérol qui est alors ajouté en continu à un taux de 4,5 g.h-1.! 1. Durant cette deuxième phase de la culture, on introduit en continu 90 mg.hM-1 de lactose. On injecte également au début de cette phase de ÎTPTG (isopropyl-β-D-thiogalactoside) (0.5 mM) pour induire l'expression de la lactose perméase et de la β-l,3-N-acétyl-glucosaminyl-transférase. Comme décrit dans la figure 2, le lactose ajouté ne s'accumule pratiquement pas dans le milieu, indiquant que le lactose est bien internalisé par les cellules bactériennes. On observe avec la souche JM 109 (pCWlgtA) une accumulation importante dans le milieu de culture d'un composé contenant de la Ν-acétylglucosamine (GlcNAc hydrolysable). La quantité de GlcNAc hydrolysable (3,8 mmole/1) produite correspond presque stoechiométriquement à la quantité de lactose consommé (3,5 mmole/1), suggérant que la totalité du lactose internalisé a été glycosylée par LgtA.
A la fin de la culture, les cellules sont éliminées par centrifugation et les oligosaccharides présents dans le surnageant sont purifiés par adsorption sur charbon actif et élution à l'éthanol. Les oligosaccharides présents sont ensuite séparés suivant leur poids moléculaire sur une colonne de Biogel P4. Un seul composé majoritaire est retrouvé. Les données de spectrométrie de masse et de RMΝ indique que ce composé est bien le trisaccharide (β-D- GlcΝAc-[l->3]-β-D-Gal-[l->4]-β-D-Glc) formé par l'addition d'un résidu GlcNAc sur une molécule de lactose. Le spectre de masse en mode FAB+ montre en effet la présence d'un ion quasi-moléculaire [M+H]+ à m/z 546 (figure 3). Le spectre RMN du *H confirme la structure trisaccharidique, la présence d'un groupement acétyl et la configuration β des deux liaisons O-glycosidiques (figure 4). Le spectre RMN du 13C précise également que la liaison entre la GlcNAc et le galactose est bien de type 1,3 (figure 5).
Exemple 3 : Production de lacto-N-néo-tétraose et de polylactosamine Le principe est décrit sur la figure 6. La souche d' E. coli JM 109 a été cotransformée avec les deux plasmides pCWlgtA et pBBlgtB portant respectivement les gènes IgtA (utilisé précédemment) et IgtB (codant pour une β-l,4-Galactosyl- transférase appelé LgtB). La souche JM109 (pCWlgtA,pBBlgtb) a été cultivée à haute densité cellulaire en utilisant le glucose comme substrat de croissance. Au début de la deuxième phase on ajoute du lactose à forte (5 g.l 1) ou à faible concentration (1 g.l 1) et de l'IPTG à 0.1 mM. Contrairement à ce qui avait été observé avec la souche JM 109 (pCWlgtA), on ne détecte, lors de la culture de cette souche, qu'une faible libération de GlcNAc hydrolysable dans le milieu. En revanche, on retrouve de la GlcNAc hydrolysable en quantité importante dans la bactérie (figure 7). Lorsque l'apport de lactose est de 1 g.l 1, on observe une internalisation complète du lactose (2,9 mmole.l 1) et une production totale de GlcNAc lié de 1,45 g.l 1 (6,5 mmole.l-1) soit l'incorporation de plus de deux molécules de GlcNAc par molécule de lactose acceptrice. Quand le lactose est ajouté à forte concentration, l'internalisation est incomplète (3 g.l 1 soit 8.7 mmole.l-1) avec une production de GlcNAc également d'environ 6,5 mmole 1 . Dans ce cas le rapport molaire GlcNAc / lactose est proche de 1, ce qui est cohérent avec la synthèse de lacto-N-néo-tétraose.
La purification de la fraction oligosaccharidique intracellulaire a permis d'obtenir plusieurs composés principaux qui sont bien séparés par chromatograhie sur Biogel P4. Les données de spectrométrie de masse et de RMN indiquent que ces composés correspondent aux structures suivantes : lacto-N-néotétraose [M+H]+ = 708 ; lacto-N-néo-hexaose [M+H]+ = 708 ; lacto-N- néo-octaose, [M+Νa]+ = 1460 et probablement lacto-N-néo-décaose. Les proportions respectives de ces différents composés dépendent de la quantité de lactose ajoutée . Ainsi avec 5 g.l 1 de lactose le produit majoritaire est le lacto-N-néo-tetraose (figure 8A ). Par contre un apport de lactose plus faible (1 g.l 1) favorise la formation de composés de plus haut degré de polymérisation, le lacto-Ν-néo- octaose devenant majoritaire (figure 8B).
La formation de polylactosamines homologues supérieurs du lacto-N-néo-tétraose s'explique par le fait que LgtA est capable d'utiliser le lacto-N-néo-tétraose pour former un pentasaccharide intermédiaire qui est glycosylé par LgtB pour donner du lacto-Ν- néo-hexaose. Ce dernier est lui même précurseur pour un nouveau cycle de glycosylation aboutissant à la formation de lacto-Ν-néo- octaose et ainsi de suite jusqu'au lacto-Ν-néo-décaose.
On n'observe pas la formation significative d'oligosaccharides à nombre de résidus impair et portant un galactose en position terminale non réductrice. Ceci indique que l'élongation des molécules est limitée par l'incorporation du GlcNAc par LgtA et non pas par la galactosylation catalysée par LgtB.
Exemple 4 : Production de l'allyl 3-O-(2-acétamido-
2déoxy-β-D-glucopyranosyl)-β-D-galactopyranoside, (β-D-
GlcΝAc-[1^3]- β-D-Gal-l^O-allyl)
La souche JM 109(pCWlgtA) a été cultivée à haute densité cellulaire sur glycérol. Au début de la deuxième phase de culture, on ajoute 0,75 g.l'1 d'allyl-β-D-galactopyranoside et 0, 1 mM d'IPTG. On observe une internalisation totale de l'allyl-β-D- galactopyranoside au bout de 9 h avec une apparition stoechiométrique de GlcNAc hydrolysable dans le milieu extracellulaire. Les oligosaccharides présents dans le milieu extracellulaire sont purifiés comme dans l'exemple 2. Le spectre de masse en mode FAB+ du produit majoritaire obtenu montre la présence d'un ion quasi-moléculaire [M+H]+ à m/z 424 correspondant à la structure β-D-GlcNAc-[l->3]- β-D-Gal-A->O- allyl.
Exemple 5 : Production du β-D-Gal-[l->4]-β-D-GlcNAc-l- >O-allyl
La souche JM109 (pBBlgtB) a été cultivée à haute densité cellulaire sur glycérol. Au début de la deuxième phase de culture, on ajoute 0,5 g.l"1 d'allyl-N-acêtyl-β-D-glucosaminide (β-D-GlcΝAc- l->Oallyl). On observe pendant les 5 premières heures une diminution d'environ 30% de la quantité de GlcNAc hydrolysable extracellulaire, ce qui démontre une internalisation partielle d'allyl- N-acétyl-β-D-glucosaminide. Parallèlement on observe une production intracellulaire presque stœchiométrique de GlcNAc hydrolysable et de résidus galactose liés en β (hydrolysables par la β-galactosidase). Ces résultats démontrent que 30% de l'allyl-N- acétyl-β-D-glucosaminide initialement ajouté a été galactosylé par l'activité encodée par le gène IgtB. Après purification, la structure du composé attendu (β-D-Gal-[ l->4]-β-D-GlcΝAc- l->O-allyl) a été confirmée par spectrométrie de masse et RMN.
Exemple 6 : Production d'analogues du lacto-N-néo-tétraose et de polylactosamines dans lesquels le résidu glucose est remplacé par un groupement allyl La souche JM 109 (pCWlgtA et pBBlgtB) a été cultivée comme dans l'exemple 3 sauf que l'apport de lactose a été remplacé par l'addition de 0,65 g.l 1 d'allyl-β-D-galactopyranoside. Après purification selon le protocole de l'exemple 3, on obtient 3 composés principaux. Les données de spectrométrie de masse indiquent que ces trois composés correspondent aux tri-, penta- et hepta- saccharides suivants : β-D-Gal-[l->4]-β-D-GlcNAc-[l->3]-β-D-Gal- l->O-allyl, [M+H] = 586; β-D-Gal-[l->4]-β-D-GlcNAc-[l->3]-β-D-Gal-[l->4]-β-D-GlcNAc-[l- >3]-β-D-Gal-l->0-allyl, [M+H] = 951; β-D-Gal-[ l->4]-β-D-GlcNAc-[l->3]-β-D-Gal-[l->4]-β-D- GlcNAc-[l->3]-β-D-Gal-[l->4]-β-D-GlcNAc-[l->3]-β-D-Gal- l->O- allyl, [M+H] = 1316.
Exemple 7 : Production du 3'-sialyllactose (α-NeuAc-[2->3]-β-D- Gal-[l>-4]-β-D-Glc)
Le principe est illustré par la figure 9. Les gènes de biosynthèse de l'acide sialique et du CMP-NeuAc ne sont pas présents chez E. coli K12. Par contre E. coli K12 est capable de dégrader l'acide sialique ( Plumbridge et. Vimr 1999) et possède une perméase (NanT) qui permet de faire pénétrer de l'acide sialique exogène dans la cellule . Cet acide sialique est ensuite normalement catabolisé par une aldolase (NanA).
Nous avons utilisé la souche d'Escherichia coli K12 JM 107- nanA- (exemple 1) et une souche témoin JM 107 dans lesquelles nous avons introduit les deux plasmides compatibles NST-01 et pBBnsy contenant respectivement les gènes de l'α-2,3 sialyltransferase et de la CMP-NeuAc synthase. Cette souche est dépourvue d'activité NanA et est donc incapable de dégrader de l'acide sialique intracellulaire. Par contre elle possède les gènes de la lactose perméase (lacY) et de la sialyl perméase (nanT) et est donc capable d'internaliser du lactose et de l'acide sialique exogène. L'acide sialique internalisé peut ainsi être activé en CMP-NeuAc sous l'action de la CMP-NeuAc synthase et transféré sur du lactose intracellulaire sous l'action de l'α-2,3 sialyltransferase.
La souche JM107-nanA-(Nst-01, pBBnsy) et la souche témoin JM107 (Nst-01, pBBnsy) possédant l'activité NanA ont été cultivées à haute densité cellulaire sur glycérol. Du lactose (1,5 g.l- l) de l'IPTG (0, 1 mM) et de l'acide sialique (0,6 g.l-1) sont ajoutés au début de la deuxième phase de culture d'une durée de 5 h. Durant toute la durée (17 h) de la troisième phase de la culture, on introduit en continu 100 mg.h^.L-1 d'acide sialique et 200 mg.lF.L- lde lactose.
A la fin de la culture de la souche JM107-nanA (Nst-01, pBBnsy), le dosage enzymatique du lactose avec et sans traitement par une neuraminidase permet d'estimer la production totale de siallyllactose à 2,6 g.l'1. Cette production est retrouvée en partie dans les cellules bactériennes (1,5 g.l 1 ) et dans le milieu extracellulaire de culture (1, 1 g.l 1). Dans le cas de la souche témoin JM107 (Nst-01, pBBnsy), la production de sialyllactose est beaucoup plus faible (150 mg.l"1 ) indiquant que la quasi totalité de l'acide sialique a été dégradée par la bactérie.
Les oligosaccharides intracellulaires et extracellulaires sont purifiés par adsorption sur charbon actif et élution à l'éthanol. Après purification sur résine échangeuse d'anions un seul produit est détecté en HPLC. Le spectre de masse en mode FAB+ montre la présence de deux ions quasi-moléculaires [M+H]+à m/z 656 et [M+Na] à m/z + 678 correspondant au sel de sodium du sialyllactose.
Exemple 8: Production de dérivés fucosylés du lacto-JV-néo- tétraose
Chez E. coli K12, les gènes de biosynthèse du GDP-fucose font partie de l'opéron responsable de la biosynthèse d'un polysaccharide extracellulaire, l'acide colanique (Stevenson et al 1996). L'expression de cet opéron est contrôlé par un réseau complexe de régulation dans lequel est impliqué la protéine RcsA (Stout et al 1991). La surexpression du gène rcsA se traduit ainsi par une surproduction d'acide colanique (Russo et Singh 1993) et par conséquent des gènes de biosynthèse du GDP fucose.
Pour augmenter la disponibilité en GDP-fucose, notre stratégie a consisté à utiliser une souche d'E. coli dans laquelle le gène rcsA était surexprimé (de manière à surproduire les gène de biosynthèse du GDP-fucose) et dans laquelle un des gènes essentiel à la biosynthèse de l'acide colanique a été inactivé (de manière à supprimer totalement la production d'acide colanique et éviter une compétition pour l'utilisation du GDP-fucose)
Nous avons utilisé la souche JM107-col DE3 dans laquelle le gène wcaJ , qui est responsable du transfert du premier résidu glucose de l'unité de répétition , a été inactivé selon l'exemple 1 et dans laquelle nous avons introduit soit les deux plasmides pHP0651 et pBBLnt, soit les deux plasmides pHP0651 et pBBLntRcsA. Le plasmide pHP0651 contient le gène fucT de l'a - 1,3 fucosyltransférase d' Helicobacter pylori. Cette fucosyltransférase utilise comme accepteur la N-acetyllactosamine et le lacto-N-néo- tetraose mais pas le lactose (Martin et al 1997). Le plasmide pBBLnt contient les gènes IgtA et IgtB. Le plasmide pBBLntRcsA contient les gènes IgtA, IgtB et rcsA. Les deux souches JM107-col DE3 (pHP0651, pBBLnt) et
JM107-col DE3 (pHP0651, pBBLntRcsA) ont été cultivées comme dans l'exemple 3 en présence de 5 g.H de lactose. A la fin de troisième phase de culture la quantité de GlcNAc hydrolysable produite par les deux souches (1,7 g.l 1 ) était comparable à celle obtenu par la souche JM109 (pCWlgtA,pBBlgtb) dans l'exemple 3. Le dosage colorimétrique du fucose en fin de culture montre une différence importante entre les deux souches avec une production de fucose de lg.l 1 pour la souche JM107-col DE3 (pHP0651, pBBLntRcsA) et de seulement 0,25 g.l 1 pour la souche JM107-col- DE3 (pHP0651, pBBLnt). Les oligosaccharides fucosylés sont retrouvés à plus de 70% dans la fraction intracellulaire.
La purification de la fraction intracellulaire par adsorption sur charbon actif et chromatographie d'exclusion stérique sur Biogel P2 permet de séparer quatre composés principaux. Le composé 1 correspond de par son volume d'élution sur
Biogel P2 et sa migration sur couche mince au lacto-N-néo-tétraose.
Le spectre de masse du composé 2 montre la présence d'un ion quasi-moléculaire [M+H]+ à m/z à 854 correspondant a la masse molaire du lacto-N-fucopentaose. La présence d'un ion secondaire à 327 indique que la molécule est fucosylée sur le résidu glucose et possède la structure suivante β-D-Gal-[l→4]β-D-GlcΝAc-[l-»3]-β-D-Gal-[l- 4]-(α-L-Fuc-[l→3])-β- D-Glc Le spectre de masse du composé 3 majoritaire montre la présence de 3 ions quasi moléculaires à m/z 1000, 1022 et 1038 correspondant aux trois formes [M+H]+, [M+Na]+ et [M+K]+ de la molécule de lacto-N-difucohexaose ayant la structure suivante β-D-Gal-[l→4] ]-(β-L-Fuc-[l→3])β-D-GlcΝAc-[l→3]-β-D-Gal-[l→4]- (α-L-Fuc-[ l→3])-β-D-Glc.
Le spectre de masse du composé 4 permet d'identifier deux ions quasi moléculaires à m/z 1365 et 1388 correspondant aux formes [M+H]+et [M+Na]+ d'une molécule de lacto-N-difucooctaoses. La présence d'un ion secondaire à m/z 512 indique que le résidu GlcNAc de l'extrémité non réductrice porte un fucose. Les données de RMΝ montrent que le proton JH d'un résidu fucose est sensible à Panomérie et que ce résidu fucose est donc fixé sur le glucose. Ces résultats permettent de proposer pour le composé 4 la structure suivante : β-D-Gal-[ 1→4] ]-(α-L-Fuc-[ l→3])β-D-GlcΝAc-[ l→3]β-D-Gal-[ l→4]β- D-GlcNAc-[l→3]-β-D-Gal-[l→4]-(α-L-Fuc-[l→3])-β-D-Glc.
REFERENCES
1. Boons (1996) Tetrahedron 52, 1095- 1 121.
2. Dische Z. Shettles L.B. (1948) J. Biol Chem., 175, 160- 167.
3. Donnenberg M. S., Kaper J.B.(1991) Infect. Immun., 59 :4310- 4317.
4. Geremia R.A., Mergaert P., Geelen D., Van Montagu M., Holsters M. (1994) Proc. Natl. Acad. Sci. USA 91, 2669-2673.
5. Gilbert M., Watson D.C., Cunningham A. M., Jennings M. P., Young N.M., Martin A. , Wakarchuk W.W.(1996) J. Biol Chem., 271 :28271-28276.
6. Gilbert M, Watson D.C., Warachuk W.W (1997) - Biotechnology Letters, 19:417-420. J.
7. Gilbert M., Cunningham A.M., Watson D.C., Martin, A., Richards, J.C., Wakarchuk, W.W. (1997) Eur. J. Biochem. 249, 187- 194.
8. Kamst E., van der Drift K.M.G., Thomas-Oates J.E., Lugtenberg B.J.J., Spaink H. P. (1995) Escherichia coli. J. Bacteriol. 177,
6282-6285.
9. Kovach, M.E., Elzre, P.H., Hill, D.S., Robertson, G.T., Rarris,
M.A., Roop II, R.M., Peterson, K.M., (1995). Gène 166, 175- 176. 10. Lee R.T., Lee Y.C. (1974). Carbohyd. Res. 37, 193-203.
11. Martin, S.L., Edbrooke, M.R., Hodgman, T.C., van den Eijnden, D.H, Bird, M.I., (1997) J. Biol. Chem., 34, 21349-21356.
12. Mergaert P., D'Haeze W., Geelen D., Promé D. Van Montagu M., Geremia R., Promé J.C., Holsters M. (1995) J. Biol Chem. 270, 29217-29223.
13. Plumbridge J.,Vimr E.( 1999) J. Bacteriol, 181:47-54.
14. Reissig, J.L., Strominger, J. L., Leloir, L.F., (1955). J. Biol. Chem. 217, 959-966.
15. Roy R (1997) Récent developements in the rational design of multivalent glycoconjugates, in Topics curr chem., (eds J.Thiem and H. Driguez), Springer, Heidelberg, pp 241-274.
16. Russo T.A., Singh G. (1993) J. Bacteriol. 175, 7617-7623.
17. Samain, E., Drouillard, S., Heyraud, A., Driguez, H., Geremia, R.A. (1997). Carbohydr. Res. 30, 235-242.
18. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular cloning: a laboratory manual, 2nd éd. Cold Spring Harbor laboratory Press. N.Y. 19. Spaink H. P., Wijfjes A.H.M., van der Drift K.M.G., Haverkamp J., Thomas-Oates J.E., Lugtenberg B.J.J. (1994) Mol Microbiol. 13, 821-831.
20. Stevenson G., Andrianopoulos K., Hobbs M. , P.R. Reeves P.R. (1996) J. Bacteriol, 178 :4885-4893.
21. Stout V., Torres-Cabassa A., Maurizi M.R., Gutnick D., Gottesman S. ( 1991) J. Bacteriol, 173 : 1738-1747.
22. Yannisch-Perron C, Viera J., Messing J. ( 1985). Gène, 33, 103- 119.

Claims

REVENDICATIONS
1. Procédé de production d'un oligosaccharide d'intérêt par une cellule génétiquement modifiée à partir d'au moins un précurseur exogène internalisé, ledit précurseur intervenant dans la voie de biosynthèse dudit oligosaccharide, ledit procédé comprenant les étapes de : i) Obtention d'une cellule qui :
• comprend au moins un gène recombinant codant pour un enzyme capable d'effectuer une modification dudit précurseur exogène ou de l'un des intermédiaires de la voie de biosynthèse dudit oligosaccharide à partir dudit précurseur exogène, nécessaire à la synthèse dudit oligosaccharide à partir dudit précurseur, ainsi que les éléments permettant l'expression dudit gène dans ladite cellule,
• est dépourvue d'activité enzymatique susceptible de dégrader ledit oligosaccharide, ledit précurseur et lesdits intermédiaires ; ii) Mise en culture de ladite cellule en présence d'au moins undit précurseur exogène, dans des conditions permettant l'internalisation selon un mécanisme de transport passif et/ ou selon un mécanisme de transport actif dudit précurseur exogène par ladite cellule et la production dudit oligosaccharide par ladite cellule.
2. Procédé selon la revendication 1 caractérisé en ce que ladite cellule comprend en outre au moins un gène codant pour un enzyme capable d'effectuer une modification d'un précurseur endogène intervenant dans la voie de biosynthèse dudit oligosaccharide, ledit enzyme étant identique ou différent de l'enzyme selon la revendication 1 , ainsi que les éléments permettant l'expression dudit gène dans ladite cellule et caractérisé en ce que ladite cellule est dépourvue d'activité enzymatique susceptible de dégrader ledit précurseur.
3. Procédé selon les revendications 1 et 2 caractérisé en ce que ladite cellule est une cellule choisie parmi les bactéries et les levures.
4. Procédé selon la revendication 3 caractérisé en ce que la cellule est une bactérie, de préférence de type Escherichia coli.
5. Procédé selon l'une des revendications 1 à 4 caractérisé en ce que ladite modification est choisie parmi la glycosylation, la sulfatation, l'acétylation, la phosphorylation, la succinylation, la méthylation, l'addition d'un groupement énolpyruvate.
6. Procédé selon l'une des revendications 1 à 5 caractérisé en ce que ledit enzyme est un enzyme capable d'effectuer une glycosylation choisi parmi les glycosyl-transférases.
7. Procédé selon la revendication 6 caractérisé en ce que ledit enzyme est une glycosyl-transférase choisie parmi la β-l,3-N- acétyl-glucosaminyl- transférase, la β-1,3 galactosyl- transférase, l'α- 1,3 N-acétyl-galactosaminyl-transférase, la β-1,3 glucuronosyl- transférase, la β-1,3 N-acétyl-galactosaminyl-transférase, la β-1,4 N-acétyl-galactosaminyl-transférase, la β-l,4-galactosyl- transférase, l'α-l,3-galactosyl transférase, l'α-l,4-galactosyl- transférase, α-2,3-sialyl-transférase, l'α-2,6-sialyl-transférase, l'α- 2,8-sialyl-transférase, l'a- 1 ,2-fucosyl-transférase, l'a- 1 ,3-fucosyl- transférase, l'a- 1 ,4-fucosyl-transférase.
8. Procédé selon l'une des revendications 1 à 7 caractérisé en ce que ladite mise en culture cellulaire est effectuée sur un substrat carboné.
9. Procédé selon la revendication 8 caractérisé en ce que ledit substrat carboné est choisi parmi le glycérol et le glucose.
10. Procédé selon l'une des revendications 8 et 9 caractérisé en ce que ladite mise en culture est effectuée dans des conditions permettant l'obtention d'une culture à haute densité cellulaire.
11. Procédé selon la revendication 10 caractérisé en ce que ladite étape de mise en culture comprend : a)- une première phase de croissance cellulaire exponentielle assurée par ledit substrat carboné; b)- une seconde phase de croissance cellulaire limitée par ledit substrat carboné qui est ajouté de manière continue ; c)- une troisième phase de croissance cellulaire ralentie obtenue en ajoutant de manière continue dans la culture une quantité dudit substrat diminuée par rapport à la quantité de substrat ajoutée à l'étape b) de façon à augmenter la teneur en oligosaccharides produits dans la culture à haute densité cellulaire.
12. Procédé selon la revendication 11 caractérisé en ce que la quantité de substrat ajouté de manière continue dans la culture cellulaire au cours de ladite phase c) est diminuée d'au moins 30%, de préférence 50%, de manière préférée 60% par rapport à la quantité de substrat ajouté de manière continue lors de ladite phase b).
13. Procédé selon l'une des revendications 11 ou 12 caractérisé en ce que ledit précurseur est ajouté lors de la phase b) .
14. Procédé selon l'une des revendications 1 à 13 caractérisé en ce que ledit précurseur est de nature glucidique, de préférence de nature oligosaccharidique.
15. Procédé selon la revendication 1 caractérisé en ce que ledit précurseur est un monosaccharide dont le carbone anomère est lié à un groupement alkyl de manière à permettre son internalisation par un mécanisme de transport passif.
16. Procédé selon la revendication 15 caractérisé en ce que ledit groupement alkyl est un allyl.
17. Procédé selon l'une quelconque des revendications 15 et 16 pour la production du [β-D-Gal-[l-»4]-β-D-GlcNac-l-»0-allyl) caractérisé en ce que : • ladite cellule est une bactérie de génotype LacZ- ;
• ledit enzyme est la β-l,4-galactosyl-transférase ;
• ledit substrat est le glycérol ;
• ledit précurseur est l'allyl-N-acétyl β-D-glucosaminide (β-D- GlcNac-l->O-allyl).
18. Procédé selon la revendication 1 caractérisé en ce que ledit précurseur est le lactose.
19. Procédé selon la revendication 1 caractérisé en ce que ledit précurseur est choisi dans le groupe composé :
• de β-galactosides naturels ou synthétiques, de préférence dans le 4-O-β-D-galactopyranosyl-D-fructofuranose
(lactulose), le 3-O-β-D-galacto-pyranosyl-D-arabinose, l'allyl- β-D-galactopyranoside ;
• d'α-galactosides, de préférence le mélibiose, le raffinose, rallyl-α-D-galactopyranoside ; • de saccharose.
20. Procédé selon les revendications 18 et 19 caractérisé en ce que ledit transport actif dudit précurseur est réalisé par la lactose perméase.
21. Procédé selon la revendication 1 caractérisé en ce que ledit précurseur est l'acide sialique.
22. Procédé selon la revendication 21 caractérisé en ce que ledit transport actif dudit précurseur est réalisé par la perméase Nan T.
23. Procédé selon la revendication 1 caractérisé en ce que ledit précurseur est l'acide sialique et le lactose.
24. Procédé selon la revendication 23 caractérisé en ce que ledit transport actif dudit précurseur est réalisé par la lactose perméase et la perméase Nan T.
25. Procédé selon l'une quelconque des revendications 1 à 24 caractérisé en ce que ladite cellule est dépourvue d'activité enzymatique susceptible de dégrader ledit précurseur ou lesdits précurseurs.
26. Procédé selon la revendication 25 caractérisé en ce que ladite cellule a un génotype choisi parmi LacZ- et/ ou NanA:
27. Procédé selon l'une quelconque des revendications 1 à 26 caractérisé en ce qu'il comprend en outre l'addition d'un inducteur dans ledit milieu de culture pour induire l'expression dans ladite cellule dudit enzyme et/ ou d'une protéine impliquée dans ledit transport actif.
28. Procédé selon la revendication 27 caractérisé en ce que ledit inducteur est l'isopropyl β-D-thiogalactoside (IPTG) et ladite protéine est la lactose perméase.
29. Procédé selon l'une quelconque des revendications 1 à 28 pour la production du trisaccharide 4-O-[3-O-(2-acétamido-2déoxy- β-D-glucopyranosyl)-β-D-galactopyranosyl]-D-glucopyranose, (β-D- GlcNac-[1^3]-β-D-Gal-[l-»4]-D-Glc) caractérisé en ce que : • ladite cellule est une bactérie de génotype LacZ-, LacY+ ; • ledit enzyme est la β- l,3-N-acétyl-glucosaminyl-transférase ;
• ledit substrat est le glycérol ;
• ledit inducteur est l'isopropyl β-D-thiogalactoside (IPTG) ;
• ledit précurseur est le lactose.
30. Procédé selon l'une quelconque des revendications 1 à 28 pour la production du lacto-N-néo-tétraose et de polylactosamine (lacto-N-néo-hexaose, lacto-N-néo-qctaose, lacto-N-néo-décaose) caractérisé en ce que :
• ladite cellule est une bactérie de génotype LacZ-, LacY+ ; • lesdits enzymes sont la β- l,3-N-acétyl-glucosaminyl- transférase et la β- l,4-galactosyl- transférase ;
• ledit substrat est le glucose ;
• ledit inducteur est l'isopropyl β-D-thiogalactoside (IPTG) ;
• ledit précurseur est le lactose.
31 . Procédé selon la revendication 30 pour la production d'un dérivé sialylé du lacto-N-néotétraose et de polylactosamine (lacto-N-néo-hexaose, lacto-N-néo-octaose, lacto-N-néo-décaose) caractérisé en ce qu'il comprend en outre un dit enzyme choisi parmi l'α-2,3 sialyl-transférase, l'α-2,6 sialyl-transférase, et que ladite cellule a en outre un génotype NanA-, NanT+ et exprime le gène de la CMP-NeuAc-synthase.
32. Procédé selon la revendication 30 pour la production d'un dérivé fucosylé du lacto-N-néotétraose et de polylactosamine (lacto- N-néo-hexaose, lacto-N-néo-octaose, lacto-N-néo-décaose) caractérisé en ce qu'il comprend en outre un dit enzyme choisi parmi l'a- 1,2 fucosyl-transférase, l'a- 1,3 fucosyl-transférase, et que ladite cellule a en outre un génotype Wca J- et surexprime le gène Rcs A.
33. Procédé selon la revendication 30 pour la production d'un dérivé sialylé et fucosylé du lacto-N-néotétraose, lacto-N-néo- décaose caractérisé en ce qu'il comprend en outre un dit enzyme choisi parmi le l'α-2,3 sialyl-transférase, l'α-2,6 sialyl-transférase, et en outre un dit enzyme choisi parmi l'a- 1,2 fucosyl-transférase, l'a- 1,3 fucosyl-transférase, et que ladite cellule a en outre un génotype NanA-, Non T+, Wca J- et surexprime le gène Res A et le gène de la CMP-NeuAc-synthase.
34. Procédé selon l'une quelconque des revendications 1 à 28 pour la production du 3 '-sialyllactose (α-NeuAc-[2→3]-β-D-Gal-
[l→4]-β-D-Glc) ou du 6 '-sialyllactose (α-NeuAc-[2→6]-β-D-Gal- [l→4]-β-D-Glc) caractérisé en ce que :
• ladite cellule est une bactérie de génotype LacZ-, LacY+ , Nan A; Nan T+ ; • lesdits enzymes sont la CMP-NeuAc-synthase et l'α-2,3 sialyl- transférase ou l'α-2,6 sialyl-transférase;
• ledit substrat est le glycérol ;
• ledit inducteur est l'isopropyl-β-D-thiogalactoside (IPTG) ;
• lesdits précurseurs sont le lactose et l'acide sialique.
35. Procédé selon l'une quelconque des revendications 1 à 28 pour la production de 3'fucosyllactose β-D-Gal-[l→4]-(α-L-Fuc- [1→3])-D-Glc ou de 2'fucosyllactose α-L-Fuc-[l→2]-β-D-Gal-[l-»4]- D-Glc caractérisé en ce qu'il comprend un dit enzyme choisit parmi l'a- 1,3 fucosyltransférase ou l'a- 1,2 fucosyltransférase, et que la cellule a un génotype wcaj lacZ- et surexprime le gène rcsA et que ledit précurseur est le lactose.
36. Procédé selon l'une quelconque des revendications 1 à 28 pour la production de l'ally! 3-O-(2-acétamido-2déoxy-β-D- glucopyranosyl)-β-D-galactopyranoside, (β-D-GlcNac-[l->3]-β-D- Gal-l- O-allyl) caractérisé en ce que :
• ladite cellule est une bactérie de génotype LacZ-, LacY+ ;
• ledit enzyme est la β-l,3-N-acétyl-glucosaminyl-transférase ; • ledit substrat est le glycérol ;
• ledit inducteur est l'isopropyl β-D-thiogalactoside (IPTG) ;
• ledit précurseur est allyl-β-D-galactopyranoside.
37. Procédé selon l'une quelconque des revendications 1 à 28 pour la production d'analogues du lacto-N-néo-tétraose et de polylactosamines dans lesquels le résidu glucose est remplacé par un groupement allyl caractérisé en ce que :
• ladite cellule est une bactérie de génotype LacZ-, LacY+ ;
• lesdits enzymes sont la β-l,3-N-acétyl-glucosaminyl- transférase et la β- l,4-galactosyl-transférase ; • ledit substrat est le glucose ;
• ledit inducteur est l'isopropyl β-D-thiogalactoside (IPTG) ;
• ledit précurseur est l'allyl-β-D-galactopyranoside.
38. Procédé selon l'une des revendications 31 à 35 pour la production d'analogue d'oligosaccharides dans lesquels le résidu glucose est remplacé par un groupement allyl caractérisé en ce que ledit précurseur est l'allyl-β-D galactoside.
39. Procédé selon les revendications 1 à 38 de production d'oligosaccharide marqué par au moins un isotope caractérisé en ce que ladite cellule est cultivée sur ledit substrat carboné marqué par ledit isotope et/ ou en présence d'un dit précurseur marqué par ledit isotope.
40. Oligosaccharide susceptible d'être obtenu par un procédé selon l'une quelconque des revendications 1 à 39.
41. Oligosaccharide susceptible d'être obtenu par un procédé selon l'une quelconque des revendications 17, 19, 36 et 37, caractérisé en ce que la double liaison du groupement allyl dudit oligosaccharide est modifiée chimiquement par les réactions d'addition, d'oxydation ou d'ozonolyse pour former des oligosaccharides activés utilisables pour la synthèse chimique de glycoconjugués ou de glycopolymères.
42. Oligosaccharide selon la revendication 40 ou 41 à titre de médicament.
43. Oligosaccharide selon la revendication 42 à titre de médicament destiné à empêcher sélectivement l'adhésion de molécules biologiques.
44. Oligosaccharide selon la revendication 42 à titre de médicament destiné au traitement du cancer, de l'inflammation, des maladies cardiaques, du diabète, des infections bactériennes, des infections virales, des maladies neurologiques, des greffes.
45. Composition pharmaceutique caractérisée en ce qu'elle comprend un oligosaccharide selon l'une quelconque des revendications 42 à 44 et un véhicule pharmaceutiquement acceptable.
46. Utilisation d'un oligosaccharide selon la revendication 40 ou 41 dans l'agriculture et l'agronomie notamment pour la croissance et la défense des végétaux.
PCT/FR2000/001972 1999-07-07 2000-07-07 Procede de production d'oligosaccharides WO2001004341A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2378562A CA2378562C (fr) 1999-07-07 2000-07-07 Procede de production d'oligosaccharides
NZ516808A NZ516808A (en) 1999-07-07 2000-07-07 Method for producing oligopolysaccharides
US10/019,954 US7521212B1 (en) 1999-07-07 2000-07-07 Method for producing oligopolysaccharides
MXPA02000240A MXPA02000240A (es) 1999-07-07 2000-07-07 Metodo para producir oligosacaridos.
EP00949678A EP1194584B1 (fr) 1999-07-07 2000-07-07 Procede de production d'oligosaccharides
DE60026142T DE60026142T2 (de) 1999-07-07 2000-07-07 Verfahren zur herstellung von oligosaccharide
AU62961/00A AU780290B2 (en) 1999-07-07 2000-07-07 Method for producing oligopolysaccharides
JP2001509544A JP5058420B2 (ja) 1999-07-07 2000-07-07 オリゴポリサッカライドの製造法
US11/930,663 US8586332B2 (en) 1999-07-07 2007-10-31 Method for producing oligopolysaccharides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/08772 1999-07-07
FR9908772A FR2796082B1 (fr) 1999-07-07 1999-07-07 Procede de production d'oligosaccharides

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/019,954 A-371-Of-International US7521212B1 (en) 1999-07-07 2000-07-07 Method for producing oligopolysaccharides
US11/930,663 Continuation US8586332B2 (en) 1999-07-07 2007-10-31 Method for producing oligopolysaccharides

Publications (1)

Publication Number Publication Date
WO2001004341A1 true WO2001004341A1 (fr) 2001-01-18

Family

ID=9547804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/001972 WO2001004341A1 (fr) 1999-07-07 2000-07-07 Procede de production d'oligosaccharides

Country Status (11)

Country Link
US (2) US7521212B1 (fr)
EP (2) EP1637611B1 (fr)
JP (1) JP5058420B2 (fr)
AT (2) ATE318324T1 (fr)
AU (1) AU780290B2 (fr)
CA (1) CA2378562C (fr)
DE (2) DE60044310D1 (fr)
FR (1) FR2796082B1 (fr)
MX (1) MXPA02000240A (fr)
NZ (1) NZ516808A (fr)
WO (1) WO2001004341A1 (fr)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511497A (ja) * 2002-11-06 2006-04-06 グリュコス フィンランド オイ ヘリコバクターピロリに対する高親和性レセプターおよびその用途
EP1911850A1 (fr) * 2006-10-09 2008-04-16 Centre National De La Recherche Scientifique (Cnrs) Procédé de production de glycoprotéines et glycoconjugates 6-thio-sialylées
RU2460800C2 (ru) * 2010-08-04 2012-09-10 Государственное научное учреждение Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии Российской академии сельскохозяйственных наук (ГНУ ВНИИСХМ Россельхозакадемии) Способ ферментативного получения пента-n-ацетилхитопентаозы
US8507227B2 (en) 2006-03-09 2013-08-13 Centre National De La Recherche Scientifique (Cnrs) Method of producing sialylated oligosaccharides
WO2013182206A1 (fr) 2012-06-08 2013-12-12 Glycom A/S Procédé de production d'oligosaccharides et d'oligosaccharide glycosides par fermentation
WO2014048439A1 (fr) * 2012-09-25 2014-04-03 Glycom A/S Synthèse de glyco-conjugué
WO2014086373A1 (fr) 2012-12-07 2014-06-12 Glycom A/S Cristallisation d'oligosaccharides de lait humain
WO2014187464A1 (fr) 2013-05-22 2014-11-27 Glycom As Mélange synthétique d'oligosaccharides pour le traitement d'un microbiote de mammifère
US8975054B2 (en) 2005-06-16 2015-03-10 Centre National De La Recherche Scientifique (Cnrs) Microorganisims used to synthesize oligosaccharides
WO2015032412A1 (fr) 2013-09-06 2015-03-12 Glycom A/S Production d'oligosaccharides par fermentation
WO2015188834A1 (fr) 2014-06-11 2015-12-17 Glycom A/S Séparation du 2'-o-fucosyllactose contenu dans un bouillon de fermentation
WO2015197082A1 (fr) 2014-06-27 2015-12-30 Glycom A/S Production d'oligosaccharides
WO2016008602A1 (fr) 2014-07-14 2016-01-21 Basf Se Production biotechnologique de lnt, lnnt et leurs dérivés fucosylés
WO2016063262A1 (fr) 2014-10-24 2016-04-28 Glycom A/S Mélanges d'oligosaccharides de lait humain (hmo)
WO2016066174A1 (fr) 2014-10-29 2016-05-06 Glycom A/S Composition synthétique et procédé pour favoriser la cicatrisation des muqueuses
WO2016091265A1 (fr) 2014-12-08 2016-06-16 Glycom A/S Composition synthétique pour le traitement de troubles métaboliques
WO2016095924A1 (fr) 2014-12-16 2016-06-23 Glycom A/S Séparation de 2'-fl d'un bouillon de fermentation
WO2016157108A1 (fr) 2015-03-31 2016-10-06 Glycom A/S Mélange d'oligosaccharides de lait humain comprenant du 3'-o-sialyllactose
WO2016177966A1 (fr) 2015-05-06 2016-11-10 Elicityl Procede pour la purification du sang total ou d'un produit issu du sang
WO2016177967A1 (fr) 2015-05-06 2016-11-10 Elicityl Support pour la purification de liquides biologiques
WO2017071716A1 (fr) 2015-10-28 2017-05-04 Glycom A/S Composition synthétique et procédé de modulation des troubles émotionnels et de l'humeur
WO2017071715A1 (fr) 2015-10-28 2017-05-04 Glycom A/S Composition synthétique et procédé de modulation de la fonction cérébrale et du comportement
WO2017084673A1 (fr) 2015-11-17 2017-05-26 Glycom A/S Composition synthétique permettant le traitement de complications associées aux antibiotiques
EP3175857A1 (fr) 2009-03-25 2017-06-07 Seneb Biosciences Inc. Glycolipides en tant que traitement de maladies
WO2017101958A1 (fr) 2015-12-18 2017-06-22 Glycom A/S Production d'oligosaccharides par fermentation
WO2017152918A1 (fr) 2016-03-07 2017-09-14 Glycom A/S Séparation d'oligosaccharides dans un bouillon de fermentation
WO2017190754A1 (fr) 2016-05-05 2017-11-09 Glycom A/S Composition comprenant du hmos pour le traitement de la diarrhée non infectieuse
WO2017190755A1 (fr) 2016-05-05 2017-11-09 Glycom A/S Composition comprenant du hmos destinée à être utilisée dans le traitement de l'hypersensibilité et/ou de la douleur viscérale médiée par les mastocytes
WO2017198276A1 (fr) 2016-05-19 2017-11-23 Glycom A/S Composition synthétique
WO2017221208A1 (fr) 2016-06-24 2017-12-28 Glycom A/S Composés comprenant des hmos pour la prévention et/ou le traitement d'infections virales et/ou bactériennes.
EP3456836A1 (fr) 2017-09-13 2019-03-20 Glycom A/S Séparation d'oligosaccharides sialylés d'un bouillon de fermentation
WO2019071021A2 (fr) 2017-10-04 2019-04-11 The Regents Of The University Of California Oligosaccharides immunomodulateurs
WO2019081688A1 (fr) 2017-10-25 2019-05-02 Nonwovens Innovation And Research Institute Matière de séparation fibreuse poreuse
WO2019106618A1 (fr) 2017-11-30 2019-06-06 Glycom A/S Mélange de hmos pour le traitement de la sensibilité au blé
WO2019111115A2 (fr) 2017-12-05 2019-06-13 Glycom A/S Oligosaccharides du lait humain pour le traitement de la migraine
US10364449B2 (en) 2013-09-06 2019-07-30 Glycom A/S Fermentative production of oligosaccharides
WO2019215073A1 (fr) 2018-05-07 2019-11-14 Jennewein Biotechnologie Gmbh Procédé simple de purification de lacto-n-néotétraose (lnnt) à partir de glucides obtenus par fermentation microbienne
US10500221B2 (en) 2014-12-05 2019-12-10 Glycom A/S Crystalline difucosyllactose
DE202017007248U1 (de) 2016-04-19 2020-04-23 Glycom A/S Abtrennung von Oligosacchariden aus der Fermentationsbrühe
WO2020128947A1 (fr) 2018-12-19 2020-06-25 Glycom A/S Composition et procédé de traitement d'humains à régime faible en fodmap
US10751354B2 (en) 2015-09-14 2020-08-25 Glycom A/S Synthetic composition for microbiota modulation
US10835544B2 (en) 2014-12-08 2020-11-17 Glycom A/S Synthetic composition for regulating satiety
US10857168B2 (en) 2016-02-24 2020-12-08 Glycom A/S Synthetic composition for microbiota modulation
US10881674B2 (en) 2014-12-08 2021-01-05 Glycom A/S Synthetic composition for treating metabolic disorders
US10987368B2 (en) 2014-12-08 2021-04-27 Glycom A/S Synthetic composition for preventing or treating CVD
WO2021094133A2 (fr) 2019-11-13 2021-05-20 Basf Se Hydrolyse enzymatique de 2',3-difucosyllactose
US11026959B2 (en) 2014-10-29 2021-06-08 Glycom A/S Synthetic composition and method for treating irritable bowel syndrome
US11040050B2 (en) 2014-10-29 2021-06-22 Glycom A/S Composition comprising HMSs/HMOs and use thereof
US11040049B2 (en) 2014-10-29 2021-06-22 Glycom A/S Composition comprising HMSs/HMOs and use thereof
WO2021122687A1 (fr) 2019-12-19 2021-06-24 Basf Se Augmentation du rendement spatio-temporel, de l'efficacité de conversion du carbone et de la flexibilité des substrat carbonés dans la production de produits chimiques fins
WO2021123113A1 (fr) 2019-12-18 2021-06-24 Inbiose N.V. Production d'oligosaccharide sialylé dans des cellules hôtes
US11142541B2 (en) 2017-06-30 2021-10-12 Glycom A/S Purification of oligosaccharides
WO2021229185A1 (fr) 2020-05-12 2021-11-18 Institut National Des Sciences Appliquees De Toulouse Souches bactériennes et procédé de production d'oligosaccharides
WO2022013143A1 (fr) 2020-07-13 2022-01-20 Glycom A/S Production d'oligosaccharide
US11278558B2 (en) 2017-03-01 2022-03-22 Glycom A/S Synthetic composition for microbiota modulation
US11291677B2 (en) 2017-05-09 2022-04-05 Glycom A/S Synthetic composition for microbiota modulation
US11304966B2 (en) 2017-12-22 2022-04-19 Glycom A/S Composition comprising HMOs for preventing or reducing nociception
US11432578B2 (en) 2015-12-15 2022-09-06 Glycom A/S Mixture of HMOs
WO2022189361A1 (fr) 2021-03-08 2022-09-15 Universiteit Gent Conjugués comprenant de multiples chaînes saccharidiques sur une protéine linéaire et leurs utilisations dans l'alimentation de mammifères
WO2022223430A1 (fr) 2021-04-19 2022-10-27 Dsm Ip Assets B.V. Composition d'enzymes et d'oligosaccharides de lait humain
US11505567B2 (en) 2017-07-12 2022-11-22 Glycom A/S Amorphous mixture comprising a neutral mono- or oligosaccharide and an acidic non-carbohydrate component
WO2022243311A1 (fr) 2021-05-17 2022-11-24 Dsm Ip Assets B.V. Souche microbienne exprimant une invertase/saccharose hydrolase
US11524019B2 (en) 2017-08-21 2022-12-13 Glycom A/S Synthetic composition for reducing allergy symptoms
BE1029435A1 (nl) 2021-06-15 2022-12-21 Dsm Ip Assets Bv Scheiding van moedermelkoligosachariden uit een fermentatiebouillon
BE1029436A1 (nl) 2021-06-15 2022-12-21 Dsm Ip Assets Bv Scheiding van moedermelkoligosachariden uit een fermentatiebouillon
BE1029434A1 (nl) 2021-06-15 2022-12-21 Dsm Ip Assets Bv Scheiding van moedermelkoligosachariden uit een fermentatiebouillon
BE1029437A1 (nl) 2021-06-15 2022-12-21 Dsm Ip Assets Bv Scheiding van moedermelkoligosachariden uit een fermentatiebouillon
US11541068B2 (en) 2017-05-24 2023-01-03 Glycom A/S HMO compositions and methods for reducing autism spectrum disorder symptoms
US11541069B2 (en) 2017-11-02 2023-01-03 Glycom A/S One or more HMOs for reducing or preventing fatigue and/or improving focus or concentration
US11541067B2 (en) 2017-05-24 2023-01-03 Glycom A/S HMO compositions and methods for reducing detrimental proteolytic metabolites
US11554131B2 (en) 2018-05-31 2023-01-17 Glycom A/S Mixture of HMOs for treating autoimmune diseases
RU2796746C2 (ru) * 2018-05-07 2023-05-30 Хр. Ханзен ХМО ГмбХ ПРОСТОЙ СПОСОБ ОЧИСТКИ ЛАКТО-N-НЕОТЕТРАОЗЫ (LNnT) ОТ УГЛЕВОДОВ, ПОЛУЧЕННЫХ ПОСРЕДСТВОМ МИКРОБНОЙ ФЕРМЕНТАЦИИ
DE202023103382U1 (de) 2022-06-20 2023-11-29 Dsm Ip Assets B.V. Gemisch fucosylierter HMOs
WO2023242184A1 (fr) 2022-06-14 2023-12-21 Dsm Ip Assets B.V. Séparation d'oligosaccharides de lait humain d'un bouillon de fermentation

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE456664T1 (de) * 2001-04-02 2010-02-15 Glycomedics Inc Verfahren zur herstellung von oligosaccharidketten
WO2008002230A1 (fr) * 2006-03-04 2008-01-03 Nilsson Kurt G I Production d'oligosaccharides de glucoside
AU2011217614A1 (en) 2010-02-19 2012-08-02 Glycom A/S Production of 6'-O-sialyllactose and intermediates
US9701992B2 (en) 2010-07-12 2017-07-11 Universiteit Gent Metabolically engineered organisms for the production of added value bio-products
WO2012112777A2 (fr) 2011-02-16 2012-08-23 Glycosyn LLC Biosynthèse d'oligosaccharides de lait humain dans des bactéries manipulées
WO2012158517A1 (fr) 2011-05-13 2012-11-22 Glycosyn LLC Utilisation de 2'-fucosyllactose, 3-fucosyllactose et lactodifucotétraose purifiés en tant que prébiotiques
DK2722394T3 (en) 2011-06-07 2018-06-18 Hero Ag OBJECTIVES OF OLIGOSACCHARIDES BY A BIOTECHNOLOGICAL PROCEDURE
NL2007268C2 (en) 2011-08-16 2013-02-19 Friesland Brands Bv Nutritional compositions comprising human milk oligosaccharides and uses thereof.
CA2847569C (fr) 2011-09-08 2020-05-19 Novozymes Bioag A/S Methodes et compositions de traitement de semencess
CA2848856C (fr) 2011-09-14 2020-04-28 Novozymes Bioag A/S Utilisation de lipochito-oligosaccharides et/ou de chito-oligosaccharides en association avec des micro-organismes solubilisant les phosphates pour ameliorer la croissance des plantes
IN2014CN02815A (fr) 2011-09-23 2015-07-03 Novozymes Bioag As
WO2013044211A1 (fr) 2011-09-23 2013-03-28 Novozymes Biologicals Holdings A/S Chito-oligosaccharides et leurs méthodes d'utilisation pour améliorer la croissance du maïs
EP2747568B1 (fr) 2011-09-23 2019-05-22 Novozymes Bioag A/S Combinaisons de lipo-chito-oligosaccharides et leurs méthodes d'utilisation pour améliorer la croissance de plantes
RU2016119957A (ru) 2011-09-23 2018-11-08 Новозимс Биоаг А/С Хитоолигосахариды и способы их применения для усиления роста сои
US20150225758A1 (en) * 2011-11-08 2015-08-13 University Of Georgia Research Foundation, Inc. Genetically modified cells and methods for making activated sugar-nucleotides
CN103155816A (zh) * 2011-12-09 2013-06-19 青岛天力建筑加固工程有限公司 一种使单体树木便于靠接成整棵大树的模具
RU2517620C2 (ru) * 2012-02-17 2014-05-27 Государственное научное учреждение Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии Российской академии сельскохозяйственных наук (ГНУ ВНИИСХМ Россельхозакадемии) Способ ферментативного получения пента-n-ацетилхитопентаозы и гекса-n-ацетилхитогексаозы
DK2728009T3 (da) 2012-10-31 2017-11-06 Jennewein Biotechnologie Gmbh Fremgangsmåde til fremstilling af monosaccharider
DE14769797T1 (de) 2013-03-14 2016-06-23 Glycosyn LLC Mikroorganismen und Verfahren zur Herstellung sialylierter und N-acetylglucosamin-haltiger Oligosaccharide
EP2896628B1 (fr) 2014-01-20 2018-09-19 Jennewein Biotechnologie GmbH Procédé permettant de purifier efficacement des oligosaccharides du lait humain neutre (HMO) à partir de la fermentation microbienne
EP2927316B1 (fr) * 2014-03-31 2018-11-07 Jennewein Biotechnologie GmbH Fermentation totale d'oligosaccharides
ES2962258T3 (es) * 2014-05-15 2024-03-18 Glycosyn LLC Singenes de alfa(1,2) fucosiltransferasa para su utilización en la producción de oligosacáridos fucosilados
US11926858B2 (en) 2014-06-27 2024-03-12 Glycom A/S Oligosaccharide production
US9616114B1 (en) 2014-09-18 2017-04-11 David Gordon Bermudes Modified bacteria having improved pharmacokinetics and tumor colonization enhancing antitumor activity
PL3307752T3 (pl) 2015-06-09 2021-11-02 Glycom A/S Mieszaniny trójskładnikowe 6’-sl, lnnt i lst c
EP3141610A1 (fr) * 2015-09-12 2017-03-15 Jennewein Biotechnologie GmbH Production d'oligosaccharides du lait humain dans des hôtes microbiens comprenant une systeme d'importation/exportation modifieé
ES2856749T3 (es) * 2016-10-29 2021-09-28 Chr Hansen Hmo Gmbh Proceso para la producción de oligosacáridos fucosilados
US10407516B2 (en) 2016-10-31 2019-09-10 Glycom A/S Crystalline HMO
US11180535B1 (en) 2016-12-07 2021-11-23 David Gordon Bermudes Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
EP3438122A1 (fr) 2017-08-01 2019-02-06 OligoScience Biotechnology GmbH Micro-organisme pour produire des oligosaccharides du lait humain
EP3450443A1 (fr) 2017-08-29 2019-03-06 Jennewein Biotechnologie GmbH Procédé de purification d'oligosaccharides sialylés
CN108504678A (zh) * 2018-04-12 2018-09-07 江南大学 一种提高重组枯草芽孢杆菌几丁寡糖产量的方法
PL3620510T3 (pl) * 2018-09-06 2024-02-19 Chr. Hansen HMO GmbH Fermentacyjne wytwarzanie oligosacharydów przez całkowitą fermentację z wykorzystaniem mieszanego surowca
BR112021010116A2 (pt) * 2018-12-04 2021-08-31 Glycom A/S Síntese do oligossacarídeo fucosilado lnfp-v
EP3702468A1 (fr) 2019-03-01 2020-09-02 Jennewein Biotechnologie GmbH Production par fermentation de glucides par des cellules microbiennes utilisant une alimentation melangee
EP3741770A1 (fr) 2019-05-21 2020-11-25 Jennewein Biotechnologie GmbH Purification d'oligosaccharides d'un broth de fermentation au moyen de la filtration
US20230030220A1 (en) * 2019-12-19 2023-02-02 Glycom A/S Separation of sialylated oligosaccharides from fermentation broth
DK3954778T5 (da) 2020-08-10 2024-08-05 Inbiose Nv Produktion af en blanding af neutrale ikke-fucosylerede oligosaccharider af en celle
EP4192965A1 (fr) * 2020-08-10 2023-06-14 Inbiose N.V. Procédé de production d'un mélange purifié d'oligosaccharides différents produits par culture cellulaire ou fermentation microbienne
EP4192972A1 (fr) * 2020-08-10 2023-06-14 Inbiose N.V. Production de bioproduits contenant de la glcnac dans une cellule
CN115873051B (zh) * 2022-05-17 2024-06-25 山东恒鲁生物科技有限公司 三糖的新晶型

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315496A1 (fr) * 1987-10-29 1989-05-10 SOCIETE GENERALE POUR LES TECHNIQUES NOUVELLES S.G.N. Société anonyme dite: Procédé de préparation conjointe d'oligosides riches en fructose et d'acide gluconique par voie fermentaire
EP0392556A1 (fr) * 1989-04-13 1990-10-17 Meito Sangyo Kabushiki Kaisha Procédé pour la production de l'isomaltulose
WO1995002683A1 (fr) * 1993-07-15 1995-01-26 Neose Pharmaceuticals Procede de synthese de compositions de saccharide
WO1998044145A1 (fr) * 1997-03-31 1998-10-08 Abbott Laboratories Technique de synthese d'oligosaccharides
DE19735994A1 (de) * 1997-08-19 1999-02-25 Piepersberg Wolfgang Prof Dr Verfahren zur enzymatischen Synthese von Guanosindiphosphat-6-desoxyhexosen und deren Verwendung zur Herstellung von Oligosacchariden

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079353A (en) * 1987-12-02 1992-01-07 Chembiomed, Ltd. Sialic acid glycosides, antigens, immunoadsorbents, and methods for their preparation
WO1995032279A1 (fr) * 1994-05-19 1995-11-30 Bio-Polymer Research Co., Ltd. Bacterie produisant de la cellulose, obtenue par une transformation par un gene codant pour un enzyme implique dans le metabolisme du saccharose
US5545553A (en) * 1994-09-26 1996-08-13 The Rockefeller University Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them
CN100436593C (zh) 1996-09-17 2008-11-26 协和发酵工业株式会社 复合糖类的制备方法
EP1131415A4 (fr) * 1998-11-18 2002-09-11 Neose Technologies Inc Production d'oligosaccharides bon marche
EP1194567A1 (fr) * 1999-05-18 2002-04-10 University Of Iowa Research Foundation Production de glucides complexes
JP2001546898A (en) 1999-12-21 2003-06-10 Kyowa Hakko Kogyo Kk MODIFIED alpha -1,2-FUCOSYLTRANSFERASE GENE AND PROCESS FOR PRODUCING alpha -1,2-FUCOSYLTRANSFERASE AND FUCOSE-CONTAINING SUGAR CHAIN
WO2001077313A1 (fr) 2000-04-11 2001-10-18 Kyowa Hakko Kogyo Co., Ltd. α1,2-FUCOSYLTRANSFERASE ET PROCEDE SERVANT A PREPARER UN GLUCIDE COMPLEXE CONTENANT FUCOSE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315496A1 (fr) * 1987-10-29 1989-05-10 SOCIETE GENERALE POUR LES TECHNIQUES NOUVELLES S.G.N. Société anonyme dite: Procédé de préparation conjointe d'oligosides riches en fructose et d'acide gluconique par voie fermentaire
EP0392556A1 (fr) * 1989-04-13 1990-10-17 Meito Sangyo Kabushiki Kaisha Procédé pour la production de l'isomaltulose
WO1995002683A1 (fr) * 1993-07-15 1995-01-26 Neose Pharmaceuticals Procede de synthese de compositions de saccharide
WO1998044145A1 (fr) * 1997-03-31 1998-10-08 Abbott Laboratories Technique de synthese d'oligosaccharides
DE19735994A1 (de) * 1997-08-19 1999-02-25 Piepersberg Wolfgang Prof Dr Verfahren zur enzymatischen Synthese von Guanosindiphosphat-6-desoxyhexosen und deren Verwendung zur Herstellung von Oligosacchariden

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BETTLER E ET AL: "The living factory: in vivo production of N-acetyllactosamine containing carbohydrates in E. coli", GLYCOCONJUGATE JOURNAL., vol. 16, March 1999 (1999-03-01), CHAPMAN & HALL., GB, pages 205 - 212, XP002134857, ISSN: 0282-0080 *
PLUMBRIDGE JACQUELINE ET AL: "Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli.", JOURNAL OF BACTERIOLOGY, vol. 181, no. 1, January 1999 (1999-01-01), pages 47 - 54, XP000917021, ISSN: 0021-9193 *
SAMAIN E ET AL: "Production of O-acetylated and sulfated chitooligosaccharides by recombinant Escherichia coli strains harboring different combinations of nod genes", JOURNAL OF BIOTECHNOLOGY,NL,ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, vol. 72, no. 1-2, 11 June 1999 (1999-06-11), pages 33 - 47, XP004172885, ISSN: 0168-1656 *

Cited By (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511497A (ja) * 2002-11-06 2006-04-06 グリュコス フィンランド オイ ヘリコバクターピロリに対する高親和性レセプターおよびその用途
US8975054B2 (en) 2005-06-16 2015-03-10 Centre National De La Recherche Scientifique (Cnrs) Microorganisims used to synthesize oligosaccharides
US9688954B2 (en) 2005-06-16 2017-06-27 Centre National De La Recherche Scientifique (Cnrs) Metabolically engineered microorganisms
US10577581B2 (en) 2005-06-16 2020-03-03 Centre National De La Recherche Scientifique (Cnrs) Efficient production of oligosaccharides using metabolically engineered microorganisms
US8507227B2 (en) 2006-03-09 2013-08-13 Centre National De La Recherche Scientifique (Cnrs) Method of producing sialylated oligosaccharides
EP1911850A1 (fr) * 2006-10-09 2008-04-16 Centre National De La Recherche Scientifique (Cnrs) Procédé de production de glycoprotéines et glycoconjugates 6-thio-sialylées
US10555959B2 (en) 2009-03-25 2020-02-11 La Jolla Pharmaceutical Company Glycolipids as treatment for disease
EP3175857A1 (fr) 2009-03-25 2017-06-07 Seneb Biosciences Inc. Glycolipides en tant que traitement de maladies
RU2460800C2 (ru) * 2010-08-04 2012-09-10 Государственное научное учреждение Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии Российской академии сельскохозяйственных наук (ГНУ ВНИИСХМ Россельхозакадемии) Способ ферментативного получения пента-n-ацетилхитопентаозы
WO2013182206A1 (fr) 2012-06-08 2013-12-12 Glycom A/S Procédé de production d'oligosaccharides et d'oligosaccharide glycosides par fermentation
WO2014048439A1 (fr) * 2012-09-25 2014-04-03 Glycom A/S Synthèse de glyco-conjugué
US9816122B2 (en) 2012-09-25 2017-11-14 Glycom A/S Glycoconjugate synthesis
WO2014086373A1 (fr) 2012-12-07 2014-06-12 Glycom A/S Cristallisation d'oligosaccharides de lait humain
WO2014187464A1 (fr) 2013-05-22 2014-11-27 Glycom As Mélange synthétique d'oligosaccharides pour le traitement d'un microbiote de mammifère
WO2015032412A1 (fr) 2013-09-06 2015-03-12 Glycom A/S Production d'oligosaccharides par fermentation
US10364449B2 (en) 2013-09-06 2019-07-30 Glycom A/S Fermentative production of oligosaccharides
US9902984B2 (en) 2013-09-06 2018-02-27 Glycom A/S Fermentative production of oligosaccharides
WO2015188834A1 (fr) 2014-06-11 2015-12-17 Glycom A/S Séparation du 2'-o-fucosyllactose contenu dans un bouillon de fermentation
WO2015197082A1 (fr) 2014-06-27 2015-12-30 Glycom A/S Production d'oligosaccharides
WO2016008602A1 (fr) 2014-07-14 2016-01-21 Basf Se Production biotechnologique de lnt, lnnt et leurs dérivés fucosylés
EP3169775A1 (fr) * 2014-07-14 2017-05-24 Basf Se Production biotechnologique de lnt, lnnt et leurs dérivés fucosylés
WO2016063262A1 (fr) 2014-10-24 2016-04-28 Glycom A/S Mélanges d'oligosaccharides de lait humain (hmo)
US10946032B2 (en) 2014-10-24 2021-03-16 Glycom A/S Mixtures of HMOs
US10314852B2 (en) 2014-10-24 2019-06-11 Glycom A/S Mixtures of HMOs
US11040049B2 (en) 2014-10-29 2021-06-22 Glycom A/S Composition comprising HMSs/HMOs and use thereof
US11040050B2 (en) 2014-10-29 2021-06-22 Glycom A/S Composition comprising HMSs/HMOs and use thereof
US11833165B2 (en) 2014-10-29 2023-12-05 Glycom A/S Synthetic composition and method for treating irritable bowel syndrome
US11896604B2 (en) 2014-10-29 2024-02-13 Glycom A/S Composition comprising HMSs/HMOs and use thereof
US11896605B2 (en) 2014-10-29 2024-02-13 Glycom A/S Composition comprising HMSs/HMOs and use thereof
WO2016066174A1 (fr) 2014-10-29 2016-05-06 Glycom A/S Composition synthétique et procédé pour favoriser la cicatrisation des muqueuses
US11026959B2 (en) 2014-10-29 2021-06-08 Glycom A/S Synthetic composition and method for treating irritable bowel syndrome
US10500221B2 (en) 2014-12-05 2019-12-10 Glycom A/S Crystalline difucosyllactose
US10881674B2 (en) 2014-12-08 2021-01-05 Glycom A/S Synthetic composition for treating metabolic disorders
WO2016091265A1 (fr) 2014-12-08 2016-06-16 Glycom A/S Composition synthétique pour le traitement de troubles métaboliques
US10828313B2 (en) 2014-12-08 2020-11-10 Glycom A/S Synthetic composition for treating metabolic disorders
US11890293B2 (en) 2014-12-08 2024-02-06 Glycom A/S Synthetic composition for treating metabolic disorders
US10835544B2 (en) 2014-12-08 2020-11-17 Glycom A/S Synthetic composition for regulating satiety
US10987368B2 (en) 2014-12-08 2021-04-27 Glycom A/S Synthetic composition for preventing or treating CVD
EP4151645A2 (fr) 2014-12-16 2023-03-22 Glycom A/S Séparation de 2'-fl d'un bouillon de fermentation
WO2016095924A1 (fr) 2014-12-16 2016-06-23 Glycom A/S Séparation de 2'-fl d'un bouillon de fermentation
WO2016157108A1 (fr) 2015-03-31 2016-10-06 Glycom A/S Mélange d'oligosaccharides de lait humain comprenant du 3'-o-sialyllactose
US10588917B2 (en) 2015-03-31 2020-03-17 Glycom A/S Mixtures of human milk oligosaccharides comprising 3 ′-O-sialyllactose
US11173171B2 (en) 2015-03-31 2021-11-16 Glycom A/S Mixtures of human milk oligosaccharides comprising 3′-O-sialyllactose
US10751698B2 (en) 2015-05-06 2020-08-25 Elicityl Method for the purification of whole blood or a blood-derived product
WO2016177967A1 (fr) 2015-05-06 2016-11-10 Elicityl Support pour la purification de liquides biologiques
US10758890B2 (en) 2015-05-06 2020-09-01 Elicityl Substrate for the purification of biological liquids
WO2016177966A1 (fr) 2015-05-06 2016-11-10 Elicityl Procede pour la purification du sang total ou d'un produit issu du sang
US11696921B2 (en) 2015-09-14 2023-07-11 Glycom A/S Synthetic composition for microbiota modulation
US10751354B2 (en) 2015-09-14 2020-08-25 Glycom A/S Synthetic composition for microbiota modulation
US11491171B2 (en) 2015-10-28 2022-11-08 Glycom A/S Synthetic composition and method for modulating emotion and mood disorders
WO2017071716A1 (fr) 2015-10-28 2017-05-04 Glycom A/S Composition synthétique et procédé de modulation des troubles émotionnels et de l'humeur
US10780103B2 (en) 2015-10-28 2020-09-22 Glycom A/S Synthetic composition and method for modulating emotion and mood disorders
US11684630B2 (en) 2015-10-28 2023-06-27 Glycom A/S Synthetic composition and method for modulating brain function and behaviour
US10835545B2 (en) 2015-10-28 2020-11-17 Glycom A/S Synthetic composition and method for modulating brain function and behaviour
WO2017071715A1 (fr) 2015-10-28 2017-05-04 Glycom A/S Composition synthétique et procédé de modulation de la fonction cérébrale et du comportement
WO2017084673A1 (fr) 2015-11-17 2017-05-26 Glycom A/S Composition synthétique permettant le traitement de complications associées aux antibiotiques
US11432578B2 (en) 2015-12-15 2022-09-06 Glycom A/S Mixture of HMOs
US12063949B2 (en) 2015-12-15 2024-08-20 Glycom A/S Mixture of HMOs
US10829508B2 (en) 2015-12-18 2020-11-10 Glycom A/S Fermentative production of oligosaccharides
WO2017101958A1 (fr) 2015-12-18 2017-06-22 Glycom A/S Production d'oligosaccharides par fermentation
US10857168B2 (en) 2016-02-24 2020-12-08 Glycom A/S Synthetic composition for microbiota modulation
US11529365B2 (en) 2016-02-24 2022-12-20 Glycom A/S Synthetic composition for microbiota modulation
WO2017152918A1 (fr) 2016-03-07 2017-09-14 Glycom A/S Séparation d'oligosaccharides dans un bouillon de fermentation
US10899782B2 (en) 2016-03-07 2021-01-26 Glycom A/S Separation of oligosaccharides from fermentation broth
US10800802B2 (en) 2016-03-07 2020-10-13 Glycom A/S Separation of oligosaccharides from fermentation broth
DE202017007249U1 (de) 2016-03-07 2020-04-23 Glycom A/S Abtrennung von Oligosacchariden aus der Fermentationsbrühe
DE202017007248U1 (de) 2016-04-19 2020-04-23 Glycom A/S Abtrennung von Oligosacchariden aus der Fermentationsbrühe
US11312741B2 (en) 2016-04-19 2022-04-26 Glycom A/S Separation of oligosaccharides from fermentation broth
WO2017190754A1 (fr) 2016-05-05 2017-11-09 Glycom A/S Composition comprenant du hmos pour le traitement de la diarrhée non infectieuse
WO2017190755A1 (fr) 2016-05-05 2017-11-09 Glycom A/S Composition comprenant du hmos destinée à être utilisée dans le traitement de l'hypersensibilité et/ou de la douleur viscérale médiée par les mastocytes
WO2017198276A1 (fr) 2016-05-19 2017-11-23 Glycom A/S Composition synthétique
US11224605B2 (en) 2016-05-19 2022-01-18 Glycom A/S Synthetic composition
US11419884B2 (en) 2016-06-24 2022-08-23 Glycom A/S Compositions comprising HMOS, their production and use for the prevention and/or treatment of viral and/or bacterial infections
WO2017221208A1 (fr) 2016-06-24 2017-12-28 Glycom A/S Composés comprenant des hmos pour la prévention et/ou le traitement d'infections virales et/ou bactériennes.
US11278558B2 (en) 2017-03-01 2022-03-22 Glycom A/S Synthetic composition for microbiota modulation
US11291677B2 (en) 2017-05-09 2022-04-05 Glycom A/S Synthetic composition for microbiota modulation
US11541067B2 (en) 2017-05-24 2023-01-03 Glycom A/S HMO compositions and methods for reducing detrimental proteolytic metabolites
US11541068B2 (en) 2017-05-24 2023-01-03 Glycom A/S HMO compositions and methods for reducing autism spectrum disorder symptoms
US11214588B2 (en) 2017-06-30 2022-01-04 Glycom A/S Synthesis of oligosaccharides
US11919919B2 (en) 2017-06-30 2024-03-05 Glycom A/S Synthesis of oligosaccharides
US11142541B2 (en) 2017-06-30 2021-10-12 Glycom A/S Purification of oligosaccharides
US12065462B2 (en) 2017-06-30 2024-08-20 Glycom A/S Purification of oligosaccharides
US11505567B2 (en) 2017-07-12 2022-11-22 Glycom A/S Amorphous mixture comprising a neutral mono- or oligosaccharide and an acidic non-carbohydrate component
US11939351B2 (en) 2017-07-12 2024-03-26 Glycom A/S Amorphous mixture comprising a neutral mono- or oligosaccharide and an acidic non-carbohydrate component
US12054513B2 (en) 2017-07-12 2024-08-06 Glycom A/S Amorphous mixture comprising a neutral mono- or oligosaccharide and an acidic non-carbohydrate component
US11524019B2 (en) 2017-08-21 2022-12-13 Glycom A/S Synthetic composition for reducing allergy symptoms
EP3456836A1 (fr) 2017-09-13 2019-03-20 Glycom A/S Séparation d'oligosaccharides sialylés d'un bouillon de fermentation
WO2019071021A2 (fr) 2017-10-04 2019-04-11 The Regents Of The University Of California Oligosaccharides immunomodulateurs
WO2019081688A1 (fr) 2017-10-25 2019-05-02 Nonwovens Innovation And Research Institute Matière de séparation fibreuse poreuse
US11541069B2 (en) 2017-11-02 2023-01-03 Glycom A/S One or more HMOs for reducing or preventing fatigue and/or improving focus or concentration
US11452736B2 (en) 2017-11-30 2022-09-27 Glycom A/S Mixture of HMOs for treating wheat sensitivity
WO2019106618A1 (fr) 2017-11-30 2019-06-06 Glycom A/S Mélange de hmos pour le traitement de la sensibilité au blé
US11986487B2 (en) 2017-11-30 2024-05-21 Glycom A/S Mixture of HMOS for treating wheat sensitivity
WO2019111115A2 (fr) 2017-12-05 2019-06-13 Glycom A/S Oligosaccharides du lait humain pour le traitement de la migraine
US11304966B2 (en) 2017-12-22 2022-04-19 Glycom A/S Composition comprising HMOs for preventing or reducing nociception
US11685758B2 (en) 2018-05-07 2023-06-27 Chr. Hansen HMO GmbH Simple method for the purification of lacto-N-neotetraose (LNnT) from carbohydrates obtained by microbial fermentation
WO2019215073A1 (fr) 2018-05-07 2019-11-14 Jennewein Biotechnologie Gmbh Procédé simple de purification de lacto-n-néotétraose (lnnt) à partir de glucides obtenus par fermentation microbienne
RU2796746C2 (ru) * 2018-05-07 2023-05-30 Хр. Ханзен ХМО ГмбХ ПРОСТОЙ СПОСОБ ОЧИСТКИ ЛАКТО-N-НЕОТЕТРАОЗЫ (LNnT) ОТ УГЛЕВОДОВ, ПОЛУЧЕННЫХ ПОСРЕДСТВОМ МИКРОБНОЙ ФЕРМЕНТАЦИИ
US11554131B2 (en) 2018-05-31 2023-01-17 Glycom A/S Mixture of HMOs for treating autoimmune diseases
WO2020128947A1 (fr) 2018-12-19 2020-06-25 Glycom A/S Composition et procédé de traitement d'humains à régime faible en fodmap
WO2021094133A2 (fr) 2019-11-13 2021-05-20 Basf Se Hydrolyse enzymatique de 2',3-difucosyllactose
WO2021123113A1 (fr) 2019-12-18 2021-06-24 Inbiose N.V. Production d'oligosaccharide sialylé dans des cellules hôtes
WO2021122687A1 (fr) 2019-12-19 2021-06-24 Basf Se Augmentation du rendement spatio-temporel, de l'efficacité de conversion du carbone et de la flexibilité des substrat carbonés dans la production de produits chimiques fins
FR3110176A1 (fr) 2020-05-12 2021-11-19 Institut National des Sciences Appliquées de Toulouse Souche et procédé de production d’oligosaccharides
WO2021229185A1 (fr) 2020-05-12 2021-11-18 Institut National Des Sciences Appliquees De Toulouse Souches bactériennes et procédé de production d'oligosaccharides
WO2022013143A1 (fr) 2020-07-13 2022-01-20 Glycom A/S Production d'oligosaccharide
WO2022189361A1 (fr) 2021-03-08 2022-09-15 Universiteit Gent Conjugués comprenant de multiples chaînes saccharidiques sur une protéine linéaire et leurs utilisations dans l'alimentation de mammifères
WO2022223430A1 (fr) 2021-04-19 2022-10-27 Dsm Ip Assets B.V. Composition d'enzymes et d'oligosaccharides de lait humain
WO2022243310A1 (fr) 2021-05-17 2022-11-24 Dsm Ip Assets B.V. Nouvelle technologie pour permettre l'utilisation de saccharose dans des souches pour la production biosyntétique
WO2022243311A1 (fr) 2021-05-17 2022-11-24 Dsm Ip Assets B.V. Souche microbienne exprimant une invertase/saccharose hydrolase
WO2022263426A1 (fr) 2021-06-15 2022-12-22 Dsm Ip Assets B.V. Séparation d'oligosaccharides de lait humain à partir d'un bouillon de fermentation
WO2022263424A1 (fr) 2021-06-15 2022-12-22 Dsm Ip Assets B.V. Séparation d'oligosaccharides de lait humain à partir d'un bouillon de fermentation
BE1029435A1 (nl) 2021-06-15 2022-12-21 Dsm Ip Assets Bv Scheiding van moedermelkoligosachariden uit een fermentatiebouillon
BE1029436A1 (nl) 2021-06-15 2022-12-21 Dsm Ip Assets Bv Scheiding van moedermelkoligosachariden uit een fermentatiebouillon
BE1029434A1 (nl) 2021-06-15 2022-12-21 Dsm Ip Assets Bv Scheiding van moedermelkoligosachariden uit een fermentatiebouillon
BE1029437A1 (nl) 2021-06-15 2022-12-21 Dsm Ip Assets Bv Scheiding van moedermelkoligosachariden uit een fermentatiebouillon
WO2022263406A1 (fr) 2021-06-15 2022-12-22 Dsm Ip Assets B.V. Séparation d'oligosaccharides de lait humain à partir d'un bouillon de fermentation
WO2022263425A1 (fr) 2021-06-15 2022-12-22 Dsm Ip Assets B.V. Séparation d'oligosaccharides de lait humain d'un bouillon de fermentation
WO2023242194A1 (fr) 2022-06-14 2023-12-21 Dsm Ip Assets B.V. Séparation d'oligosaccharides de lait humain à partir d'un bouillon de fermentation
WO2023242184A1 (fr) 2022-06-14 2023-12-21 Dsm Ip Assets B.V. Séparation d'oligosaccharides de lait humain d'un bouillon de fermentation
WO2023247483A1 (fr) 2022-06-20 2023-12-28 Dsm Ip Assets B.V. Mélange de hmo fucosylés
DE202023103382U1 (de) 2022-06-20 2023-11-29 Dsm Ip Assets B.V. Gemisch fucosylierter HMOs
WO2023247577A1 (fr) 2022-06-20 2023-12-28 Dsm Ip Assets B.V. Utilisation d'oligosaccharides de lait humain pour améliorer la viabilité de lactobacilles
WO2023247578A1 (fr) 2022-06-20 2023-12-28 Dsm Ip Assets B.V. Utilisation d'oligosaccharides de lait humain pour améliorer la viabilité de bifidobactéries
WO2023247579A1 (fr) 2022-06-20 2023-12-28 Dsm Ip Assets B.V. Utilisation d'oligosaccharides de lait humain pour améliorer la viabilité de lactobacillus rhamnosus

Also Published As

Publication number Publication date
EP1637611B1 (fr) 2010-04-28
MXPA02000240A (es) 2002-06-21
EP1194584B1 (fr) 2006-02-22
DE60026142T2 (de) 2006-11-23
AU6296100A (en) 2001-01-30
US8586332B2 (en) 2013-11-19
ATE466094T1 (de) 2010-05-15
JP5058420B2 (ja) 2012-10-24
US7521212B1 (en) 2009-04-21
NZ516808A (en) 2004-07-30
ATE318324T1 (de) 2006-03-15
EP1194584A1 (fr) 2002-04-10
FR2796082B1 (fr) 2003-06-27
DE60044310D1 (de) 2010-06-10
AU780290B2 (en) 2005-03-17
US20090082307A1 (en) 2009-03-26
EP1637611A1 (fr) 2006-03-22
FR2796082A1 (fr) 2001-01-12
CA2378562C (fr) 2013-11-26
CA2378562A1 (fr) 2001-01-18
DE60026142D1 (de) 2006-04-27
JP2003504072A (ja) 2003-02-04

Similar Documents

Publication Publication Date Title
EP1637611B1 (fr) Procédé de production d&#39;oligosaccharides
US10364449B2 (en) Fermentative production of oligosaccharides
US10731193B2 (en) Oligosaccharide production
RU2517602C2 (ru) Синтез нмо
CN105683387B (zh) 寡糖的发酵生产
EP2379708B1 (fr) Synthèse de composés fucosylés
US9816122B2 (en) Glycoconjugate synthesis
EP2859112A1 (fr) Procédé de production d&#39;oligosaccharides et d&#39;oligosaccharide glycosides par fermentation
KR101812018B1 (ko) 단당류 생산 방법
KR20230027243A (ko) 박테리아 세포로부터 올리고당의 개선된 외수송
US20150133647A1 (en) Method for Producing Oligosaccharides and Oligosaccharide Glycosides by Fermentation
EP3097199B1 (fr) Procede de production in vivo de glycosaminoglycane
FR3110176A1 (fr) Souche et procédé de production d’oligosaccharides
US20220235388A1 (en) Oligosaccharide production
Ruffing Metabolic engineering and omics analysis of Agrobacterium sp. ATCC 31749 for oligosaccharide synthesis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/000240

Country of ref document: MX

Ref document number: 2000949678

Country of ref document: EP

Ref document number: 2378562

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 516808

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 62961/00

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2000949678

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10019954

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 516808

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 516808

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 62961/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2000949678

Country of ref document: EP