WO2001003168A1 - Installation de fabrication de semi-conducteurs - Google Patents

Installation de fabrication de semi-conducteurs Download PDF

Info

Publication number
WO2001003168A1
WO2001003168A1 PCT/JP2000/004312 JP0004312W WO0103168A1 WO 2001003168 A1 WO2001003168 A1 WO 2001003168A1 JP 0004312 W JP0004312 W JP 0004312W WO 0103168 A1 WO0103168 A1 WO 0103168A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
semiconductor manufacturing
temperature
heat
channel unit
Prior art date
Application number
PCT/JP2000/004312
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ohmi
Osamu Suenaga
Sadao Kobayashi
Original Assignee
Tokyo Electron Limited
Taisei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, Taisei Corporation filed Critical Tokyo Electron Limited
Priority to JP2001508484A priority Critical patent/JP4391713B2/ja
Priority to KR1020017016838A priority patent/KR100603096B1/ko
Priority to US09/670,343 priority patent/US6370897B1/en
Publication of WO2001003168A1 publication Critical patent/WO2001003168A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a semiconductor manufacturing facility, and more particularly to a semiconductor manufacturing facility having a heat recovery device that recovers heat generated from semiconductor manufacturing equipment.
  • Boilers and refrigerators are installed in semiconductor manufacturing plants and are used as a cooling source for cooling and heating. In order to save energy at semiconductor manufacturing plants, it is necessary to reduce the operating load on boilers and refrigerators. For example, the amount of air supplied to the clean room is reduced, or the amount of circulating air in the clean room is reduced, the amount of heat removed by the dry coil for cooling this air is reduced, and the refrigerant is supplied to this dry coil. There is a method to save power consumed by the refrigerator by reducing the load of the refrigerator. This method has a problem that the temperature of the clean room cannot be adjusted when the temperature in the clean room rises due to heat generated from semiconductor manufacturing equipment.
  • the number of air circulations in the clean room is several hundred times per hour.
  • the reason for the large number of circulations is not only to remove dust but also to maintain the temperature of the clean room at 23 ° C. That is, it is necessary for heat removal by heat exchange in the dry coil. If the number of ventilations is reduced, temperature fluctuations in the clean room cannot be controlled depending on the operating conditions of the semiconductor manufacturing equipment. As a result, there is a problem in that the processing dimensions of semiconductor manufacturing equipment, which requires temperature control due to the nature of the equipment, vary greatly in processing dimensions due to temperature changes, and the product yield is reduced.
  • FIG. 1A is a perspective view of a single-tube coil-shaped cooling tube 10 conventionally used to cool a heating furnace (specifically, a heat generating portion thereof) of semiconductor manufacturing equipment.
  • FIG. 1B is a front view of the cooling pipe 10.
  • the cooling pipe 10 is wound in a coil shape on the outer periphery of the half-manufacturing equipment, and cooling water is supplied from a lower cooling water inlet 11.
  • the cooling water flows through the coil-shaped part and flows out from the cooling water outlet 12 at the top. This cooling water recovers heat from semiconductor manufacturing equipment, thereby suppressing heat radiation to the outside (into a clean room).
  • the temperature of the cooling water supplied to the cooling water inlet 11 is maintained around 23 ° C, which is the set temperature of the clean room, so as not to cause condensation.
  • the temperature of the cooling water flowing out of the cooling water outlet 12 varies depending on the operating conditions, but is usually 25 ° (: about 28 ° C. That is, the temperature of the cooling water inlet 11 and the outlet 12) The difference is about 5 ° C.
  • the cold water cooled to about 6 ° C. in the refrigerator 101 is temporarily stored in the cold water tank 102 and then sent to the heat exchanger 103.
  • the chilled water supplied to the heat exchanger 103 cools the chilled water supplied to the coil-type cooling pipe 10 and then returns to the chilled water tank 102.
  • the cooling water stored in the buffer tank 104 at a temperature higher than 23 ° C is sent to the heat exchanger 103 by the water supply pump 105, and the heat with the cold water at 6 ° C is Cooled to 23 ° C by replacement.
  • This cooling water passes through the cooling pipe 10 from the inlet 11 of the coiled cooling pipe 10, exits at the outlet 12, and is returned to the buffer tank 104.
  • 106 is a cooling tower
  • 107 is a temperature sensor
  • 108 to 110 are water pumps.
  • the heat absorption Q of the cooling water absorbed from the heat source is as follows: W is the cooling water amount, Cw is the weight-specific heat, T i is the inlet temperature, T 0 is the outlet temperature, If the temperature difference between the outlet and the outlet is ⁇ , it is expressed by equation (1).
  • An object of the present invention is to provide an improved and useful semiconductor manufacturing facility which has solved the above-mentioned problems.
  • a more specific object of the present invention is to reduce the energy consumption of a semiconductor manufacturing plant as a whole by effectively utilizing heat generated from semiconductor manufacturing equipment for cooling and heating of a semiconductor manufacturing plant and heating of raw materials used. That is.
  • Another object of the present invention is to reduce the amount of cooling water used for semiconductor manufacturing equipment and to save energy such as pump power.
  • Still another object of the present invention is to simplify a cooling facility for cooling water used for semiconductor manufacturing equipment.
  • a heat recovery unit that recovers heat from hot waste water, which is cooling water that has absorbed heat released from semiconductor manufacturing equipment through the cooling water channel unit;
  • a supply pipe for supplying hot waste water from which heat has been recovered by the heat recovery unit to the cooling water channel unit, and using the heat recovered by the heat recovery unit as a heat source used in a semiconductor manufacturing plant. Facilities are provided.
  • a temperature detecting unit for detecting a temperature at an outlet side of the cooling water channel unit, and a flow rate control for controlling a flow rate of the cooling water flowing through the cooling water channel unit so that a temperature detected by the temperature detecting unit becomes a set temperature. And a unit.
  • the cooling water passage unit is connected between the inlet side and the outlet side of the cooling water passage unit, and is provided in the bypass passage for bypassing the cooling water passage unit from the outlet side to the inlet side to flow the cooling water.
  • a flow rate control unit for controlling the flow rate of.
  • the cooling water passage unit is provided via means for detecting a temperature difference between the inlet side and the outlet side of the cooling water passage unit, and a flow control unit provided in the bypass passage in accordance with the temperature difference detected by the means.
  • a configuration for controlling the flow rate of the cooling water flowing through the air may be adopted.
  • the configuration in which the bypass passage is provided is particularly effective when the cooling water passage unit is a single tubular coil.
  • a heat exchanger is provided to cool the hot wastewater flowing through the supply pipes into cooling water. The cooling water discharged from the vessel may be supplied to the cooling water channel unit.
  • the cooling water channel unit is formed so as to surround a heat generating portion of the semiconductor manufacturing equipment and has an inner flow path provided with a cooling water outlet, and has a cooling water inlet and communicates with the inner flow path.
  • An outer passage formed so as to surround the passage and to allow heat exchange with the cooling water in the inner passage is preferably provided with a so-called double water passage having: In this way, the cooling water in the outer flow path is heated by the cooling water in the inner flow path, so that the temperature difference between the inlet and the outlet of the cooling water channel unit is increased while the temperature difference on the semiconductor manufacturing equipment side is kept small. And the amount of cooling water can be reduced.
  • the temperature of the cooling water supplied to the cooling water channel unit is, for example, 10 ° C or higher and lower than 45 ° C, and the temperature of the cooling water extracted from the cooling water channel unit is 98 ° C. And the temperature difference between the cooling water supplied to the cooling water channel unit and the cooling water discharged is 35 ° C or more. It is preferable that the cooling water supplied to the cooling water channel unit is deoxygenated and a reducing substance is dissolved therein. In this way, corrosion of metal parts such as piping can be suppressed.
  • hydrogen is used as a reducing substance.
  • the amount of hydrogen dissolved in the cooling water is preferably 0.4 ppm or more.
  • the surface of the cooling water channel unit and at least the outlet piping in a range from the outlet of the cooling water channel unit to be in contact with the air in the clean room is covered with a heat insulating material that does not generate gaseous pollutants.
  • FIG. 1A is a perspective view of a single-tube coil-shaped cooling water channel unit.
  • FIG. 1B is a front view of a single-tube coil-shaped cooling water unit.
  • FIG. 2 is a configuration diagram of a conventional cooling facility for cooling semiconductor manufacturing equipment.
  • FIG. 3 is a configuration diagram of the semiconductor manufacturing equipment according to the first embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing details of the semiconductor manufacturing equipment according to the first embodiment of the present invention.
  • 5A and 5B are explanatory diagrams showing an example of the cooling water channel unit shown in FIG.
  • FIG. 6 is an explanatory view showing another example of the cooling water channel unit shown in FIG.
  • FIG. 7 is a sectional view of the cooling water unit shown in FIG.
  • FIG. 8 is an explanatory view showing still another example of the cooling water channel unit.
  • FIG. 9 is a perspective view of a vertical heat treatment apparatus provided in a semiconductor manufacturing facility according to the first embodiment of the present invention.
  • FIG. 10 is a perspective view of still another example of the cooling water channel unit.
  • FIG. 11 is a diagram showing a partial configuration of a semiconductor manufacturing facility according to a second embodiment of the present invention.
  • FIG. 12 is a diagram showing a partial configuration of a semiconductor manufacturing facility according to a third embodiment of the present invention.
  • FIG. 13 is a diagram showing a partial configuration of a semiconductor manufacturing facility according to a fourth embodiment of the present invention.
  • FIG. 3 is a diagram showing the overall configuration of the semiconductor manufacturing equipment according to the first embodiment of the present invention.
  • cooling water is supplied to semiconductor manufacturing equipment 1 (1A, 1B) via supply pipes 3 (3A, 3B) by pumps Pl and P2, respectively. ing.
  • the cooling water (warm water) heated by the semiconductor manufacturing equipment 1 (1 A, IB) is supplied to the heat recovery section 2 (2A to 2C) via the outlet pipe 4, and heat is recovered from the warm water.
  • the semiconductor manufacturing equipment 1 in the present embodiment is equipment that generates heat when performing a process for forming a semiconductor circuit on a semiconductor substrate (for example, a silicon wafer).
  • a process apparatus such as a vertical heat treatment apparatus for heat treating semiconductor substrates in batches and a single wafer heat treatment apparatus for heat treating semiconductor substrates one by one.
  • vacuum pumps such as turbo molecular pumps and utility equipment that generates heat during operation are also included.
  • the heat recovery unit 2 is a means for recovering heat used as a heat source in a semiconductor manufacturing plant from hot wastewater.
  • the heat source recovered by the heat recovery unit 2 is, for example, a heat exchanger for exchanging heat with hot water flowing through the piping (boiler water) for heating the office; Pre-heating part of air conditioner to adjust temperature and humidity when air is taken into clean room from the room, Heating part of air conditioner (Part that heats air with humidity adjusted after cooling external air to remove moisture) ), A temperature control section for controlling the temperature of pure water, a heat source for air conditioning of circulating air in a clean room, and a heat retaining section for low-pressure steam gas.
  • a semiconductor manufacturing plant refers to a factory including clean rooms necessary for manufacturing semiconductor devices, and facilities, offices, and warehouses for supplying utilities.
  • the temperature of the hot waste water after the heat recovery in the heat recovery unit 2 is, for example, 30 ° C. to 40 ° C.
  • the hot waste water is once stored in the water tank 20 and then sent to the semiconductor manufacturing equipment 1.
  • the semiconductor manufacturing equipment 1A is a vertical heat treatment apparatus (more specifically, a heating furnace used in a vertical heat treatment apparatus), a certain target will be taken into account in consideration of the effect on the heating temperature of the process area in the heating furnace.
  • the cooling may be rough, and the cooling water in the water tank 21 is directly supplied to the semiconductor manufacturing equipment 1B without passing through the heat exchanger 22.
  • the semiconductor manufacturing equipment 1 is provided with, for example, a cooling water unit described below, and heat of the semiconductor manufacturing equipment 1 is generated by flowing the cooling water through the unit.
  • the temperature of the cooling water on the outlet side that is, the temperature of the hot waste water, is 85 ° C, for example.
  • FIG. 4 is a diagram showing the configuration of the semiconductor manufacturing equipment according to the present embodiment in detail.
  • Each of the three semiconductor manufacturing apparatuses 1 shown in FIG. 4 is a vertical heat treatment apparatus.
  • the semiconductor manufacturing equipment 1 is provided with a cooling water unit 5 for cooling the semiconductor manufacturing equipment 1 (specifically, the heat generating portion).
  • Preferred cooling water unit 5 below A configuration example will be described with reference to FIGS. 5A to 8.
  • the cooling water channel unit shown in FIG. 5A has an inner flow path 51 formed to surround the outer circumference of the heating furnace 100 of the vertical heat treatment apparatus as the semiconductor manufacturing equipment 1, and an outer circumference of the inner flow path 51. And an outer channel 52 formed so as to surround the portion.
  • Each of the inner flow path 51 and the outer flow path 52 is a ring-shaped flow path having a height corresponding to the heating furnace 100, and uses a copper hollow ring-shaped member. It is formed by forming a partition part 53 for partitioning between 1 and the outer flow path 52.
  • a cooling water inlet 6 1 is formed at the lower side of the outer flow path 5 2, and the outer flow path 5 2 and the inner flow path 5 are located farthest from the outer flow path 5 2 when viewed from the inlet 6 1.
  • a communication section 54 with 1 is provided. That is, in this example, assuming that the position where the inlet 61 is formed is the starting point, the outer flow path 52 is formed along the outer periphery of the heating furnace 100 and substantially clockwise in FIG. 5A. Immediately before returning to the starting point, it communicates with the inner flow path 51.
  • the inner flow path 51 is formed substantially one round in the counterclockwise direction in FIG. 5A starting from the communicating portion 54, and a cooling water outlet 62 is formed above the end point.
  • the inlet 61 and the outlet 62 are actually openings on the side surfaces of the outer flow path 52 and the inner flow path 51, respectively, but are shown as parts extending slightly outward for convenience of illustration. .
  • the cooling water channel unit 5 having the above-described configuration, the cooling water flows from the outer channel 52 to the inner channel 51, and the heat of the heating furnace 100 is transferred from the inner channel 51 to the partition 5 3. Move to the outer flow path 52 via. Therefore, the low-temperature cooling water flowing through the outer flow path 52 is warmed by the high-temperature cooling water flowing through the inner flow path 51, so that the cooling water entering the inner flow path 51 and the inner flow path 51 generate the same.
  • the temperature difference with the cooling water that comes out is small. That is, if the cooling water channel unit 5 is a single tube coil as shown in FIG. 2, the temperature difference between the inlet 61 and the outlet 62 is directly reflected on the temperature difference on the outer surface of the heating furnace 100.
  • the temperature difference reflected on the outer surface of the heating furnace 100 is reduced by the amount of cooling water in the outer channel 52.
  • the temperature of the cooling water on the inlet 6 1 side of the cooling water channel unit 5 is set to a temperature that does not cause condensation in the air in the semiconductor manufacturing environment. The reason for this is that you can If condensation forms on the cooling water unit 5, the moisture from the condensation may wet the surroundings or damage the heating furnace, which is to prevent this. Maintains a temperature that does not disturb the temperature conditions required for operation inside the semiconductor manufacturing equipment, and automatically adjusts the temperature of the cooling water that has exited the cooling water channel unit 5 to a set temperature that allows efficient heat recovery. A mechanism to do this is required.
  • a temperature that does not disturb the temperature conditions required for the operation inside the semiconductor manufacturing equipment means that the desired processing process work can be smoothly performed without cooling the inside of the semiconductor manufacturing equipment more than necessary by flowing cooling water Such a temperature. It is better that such a temperature has a small difference with respect to the temperature inside the semiconductor manufacturing equipment. Moreover, by making the temperature higher, it becomes easier to recover the heat of the heated cooling water.
  • the outside of the cooling water unit 5 needs to be in a state of being cooled so that the purpose of cooling can be achieved, and it is necessary to set a temperature satisfying both.
  • the temperature of the cooling water supplied to the cooling water unit 5 is preferably at least 10 ° C and less than 45 ° C.
  • cooling water of less than 1 o ° c flows through pipes and cooling pipes, condensation occurs in the cooling pipes in the clean room because the air in a normal clean room is kept at a room temperature of 23 ° C and a relative humidity of 40%. I do.
  • the temperature of the cooling water is set to 45 ° C or more, there is a risk of burns when workers touch pipes and cooling pipes. Also, the protection of peripheral equipment from heat is insufficient. Therefore, the temperature of the cooling water is preferably set to 10 ° C. or more and less than 45 ° C.
  • the cooling water it is not necessary to control the temperature to about 23 ° C. using a refrigerator as in conventional cooling water.
  • the cooling water pure water purified by a pure water production device may be used, but industrial water may also be used.
  • the cooling water of the present invention can be used as it is when the temperature of the wastewater is reduced to less than 45 ° C. by recovering heat from the wastewater.
  • the cooling tower can be used at even lower temperatures.
  • the cooling water outlet temperature is set to 45 ° C or more to facilitate heat recovery. Is preferred.
  • the cooling water outlet temperature is lower than 45 ° C, the heat recovery efficiency due to heat exchange will deteriorate.
  • the temperature is more than 98 ° C, the inside of the cooling pipe becomes unstable and micro vibration occurs.
  • cavitation may occur in the flow control pump or control valve located after the cooling pipe outlet, causing bubbles to occur, which may make flow control difficult.
  • the temperature difference between the inlet side and the outlet side of the cooling water channel unit 5 is preferably 35 ° C. or more from the viewpoint of reducing the amount of cooling water.
  • the cooling water temperature when the operating temperature of the semiconductor manufacturing equipment is several hundred degrees Celsius, it is preferable to set the cooling water temperature to about 50 to 80 degrees Celsius. When the operating temperature of the semiconductor manufacturing equipment is close to 100 ° C., it is preferable to set the cooling water temperature from 70 ° C. to 95 ° C.
  • FIGS. 6 and 7 show other examples of the cooling water unit 5 described above.
  • the inner flow path 51 and the outer flow path 52 are hollow ring-shaped members, as in the examples shown in FIGS. 5A and 5B, except that the inlet 61 is the outer flow path 52.
  • An outlet 62 is formed on the upper surface of the inner flow passage 51 at the lower part of the side surface.
  • the cooling water channel unit 5 has a double cylindrical shape, but is schematically illustrated in FIG.
  • the communication part 54 is a communication pipe for sending cooling water from the upper surface of the outer flow path 52 to the vicinity of the bottom of the inner flow path 51 at a position 180 degrees circumferentially shifted from the inlet 61. It is configured.
  • the outlet 62 is positioned 180 degrees in the circumferential direction with respect to the communication portion 54. Therefore, the cooling water flowing from the inlet 61 flows almost uniformly over the entire outer flow path 52, and flows into the communication portion 54.
  • the cooling water that has passed through the communication section 54 flows almost uniformly throughout the inner flow path 51.
  • the communication section 54 is preferably provided locally as shown in FIGS. 5A to 8. The reason is that the cooling water that has flowed into the outer flow path 52 once spreads over the entire area, and thereafter a flow is concentrated at the entrance of the narrow communication portion 54. In other words, looking at the cooling water at a certain moment, the cooling water moves while moving around the outer flow path 52 over a wide range, so that the temperature uniformity in the outer flow path 52 becomes higher. .
  • the inner flow path 5 1 Also in this case, the cooling water vigorously flows out of the narrow outlet of the communicating portion 54 and spreads in the inner flow passage 51, so that the temperature uniformity also increases.
  • FIG. 8 is a view showing still another example of the cooling water channel unit 5.
  • the outer flow path 52 is formed in a coil shape along the outer peripheral surface of the heating furnace 100 from the inlet 61 at the lower end upward.
  • the lower end of the inner flow path 51 is connected to the upper end of the outer flow path 52, and is formed in a coil shape from the lower end to the inside of the outer flow path 52, and the upper end is a cooling water outlet 6. It is 2.
  • the vertical portion that transitions from the upper end of the outer flow path 52 to the inner flow path 51 corresponds to the communication section 54.
  • FIG. 7 shows a schematic view of a vertical heat treatment apparatus including the heating furnace 100.
  • a plurality of semiconductor wafers W are held in a shelf shape on a holder 201 called a wafer boat. Then, the semiconductor wafer W is lifted by the boat elevator 220 to raise the holder 201, and is carried into the heating furnace 203, where the semiconductor wafer W is subjected to a predetermined heat treatment.
  • the heating furnace 203 is configured by disposing a heater and a heat insulator around a vertical reaction tube, and covering the outside thereof with a cylindrical exterior body 204.
  • reference numerals 205 and 206 denote processing gas supply pipes and exhaust pipes, respectively.
  • the cooling water unit 5 described above is provided outside the exterior body 204 of the heating furnace 203, but is provided inside the exterior body 204 as shown in FIG. (Indicated by “100” in other figures).
  • the cooling water channel unit 5 is provided so as to surround the outer peripheral surface of the heat insulator 207, and the exterior body 204 is provided outside the cooling water channel unit 5.
  • the heat recovery apparatus is configured to supply the cooling water tank 31 and the cooling water in the cooling water tank 31 to a plurality of cooling water passage units 5 (in this example, three cooling water passage units 5 for convenience).
  • Supply pipe 3 an outlet pipe 4 under the flow path of cooling water (hot drainage) from each cooling channel unit 5, a hot drain tank 41 for temporarily storing the hot drainage, and flowing inside the cooling channel unit.
  • a flow control pump 42 which is a flow control unit for controlling the flow rate of the cooling water
  • a temperature detecting unit 43 which detects the temperature of the cooling water (hot drainage) at the outlet of each cooling water channel unit 5, Via the flow control pump 42 based on the temperature detection value of the detection unit 43
  • a control unit 44 for controlling the flow rate of the cooling water.
  • this embodiment includes a heat recovery unit 2, and the hot waste water in the hot drain tank 41 is sent to the heat recovery unit 2 by the pump 31.
  • the heat recovery unit 2 is configured as a heat exchanger for heating a liquid 22 used in a semiconductor manufacturing plant, for example, boiler water.
  • the used hot waste water that has been cooled by heat exchange in the heat recovery section 2 (heat exchanger) is returned to the cooling water tank 31 via the return pipe 23.
  • the used hot waste water is further cooled by cooling after cooling, as shown by the dotted line in Fig. 4 (return pipe 23a). It may be returned to the cooling water tank 31.
  • the hydrogen gas diluted with the nitrogen gas can be introduced from the cylinder 32 into the cooling water in the cooling water tank 31.
  • hydrogen gas is introduced into the cooling water, oxygen in the cooling water is removed by publishing (deoxygenation), and at the same time, hydrogen is dissolved in the cooling water.
  • deoxidizing the cooling water and dissolving a reducing substance such as hydrogen in the cooling water as described above corrosion of the metal constituting the piping is suppressed.
  • the reducing substance is not limited to hydrogen.
  • a reducing substance is a substance that dissolves in water and can prevent oxidation of piping.
  • the inorganic substances include hydrogen, sodium thiosulfate, and metals.
  • organic substances sodium oxalate, sodium ascorbate, isopropyl alcohol and the like are used. These compounds have a function of making the oxidation-reduction voltage of water negative (-1) to prevent oxidation of metals.
  • the reason why the cooling water in which the reducing substance is dissolved suppresses the corrosion of the metal in contact with the cooling water is that there is no dissolved oxygen in the cooling water, and there is dissolved hydrogen and the water becomes reducing water. That is, in the cooling water in which dissolved hydrogen is present, the oxidation-reduction voltage becomes minus (-) 30 O mV with respect to the hydrogen electrode, and the water becomes reducing water.
  • cooling water that is deoxygenated and contains hydrogen having a concentration of saturated solubility at 0.4 ppm or higher and a saturation solubility at the operating temperature as in this embodiment
  • the cooling water according to the present embodiment is normally used. It can be applied to metal piping. In particular, the effect of corrosion prevention and prevention of cooling pipes made of steel or copper is great.
  • the surfaces of the cooling water unit 5 and the outlet pipe 4 where the clean room air is exposed are covered with a heat insulating material that does not generate gaseous pollutants.
  • a heat insulating material As the heat insulating material, it is necessary to analyze the heat insulating material according to the test method described later and to use a material which does not particularly generate gaseous organic matter.
  • the cooling water in the cooling water tank 31 enters the cooling water channel unit 5 provided at the outer periphery of the heating furnace provided in the semiconductor manufacturing equipment 1 at a temperature of 10 ° C. or more and less than 45 ° C.
  • the cooling water takes heat released from the semiconductor manufacturing equipment 1 and is heated to a temperature of 70 ° (: up to 95 ° C) and flows out to the outlet pipe 4.
  • each control unit 44 Based on the temperature detection value of the temperature detecting section 43 and the preset temperature, the flow rate of the flow control pump 42 is controlled so that the difference between the two signals becomes zero.
  • the pump 42 can be of a type that changes the motor output by adjusting the electric power using an AC motor or a DC motor with an inverter as a drive source. As long as dust prevention measures are taken, the gear speed and pulley converter may be used to change the motor speed.
  • the pump 42 may be provided in the supply pipe 3, or a pump whose flow rate is not variable may be used. In this case, a flow control valve may be provided in parallel with the pump, and the flow rate may be controlled by the flow control valve.
  • the cooling water channel unit 5 for cooling the semiconductor manufacturing equipment 1 since the cooling water channel unit 5 for cooling the semiconductor manufacturing equipment 1 has the inner and outer water channels, the temperature difference between the cooling water at the inlet and the outlet is 35 ° C. Even if it is larger than the above, the degree to which the temperature difference is reflected in the temperature difference of the semiconductor manufacturing equipment 1 is small. By increasing the temperature difference between the cooling water at the inlet and the outlet as described above, the amount of cooling water is reduced, so that energy saving can be achieved. Then, the heat of the cooling water heated by the semiconductor manufacturing equipment 1 is recovered by the heat recovery unit 2 and the recovered heat is used in the semiconductor manufacturing plant, for example, to be used for heating in the factory heating or the like. Energy can be reduced. In addition, since the hot wastewater is cooled by heat recovery, cooling equipment for cooling water can be simplified.
  • the flow rate of the cooling water was controlled so that the temperature of the cooling water (hot drainage) at the outlet of the cooling water unit 5 was 85 ° C.
  • Pure water was used as cooling water.
  • hydrogen was dissolved in pure water in an amount of 0.4% or more and at a saturation solubility at the operating temperature to obtain hydrogen dissolved water.
  • Hydrogen dissolved water was produced using the cooling water tank 31 shown in FIG. Diluted hydrogen was blown into the cooling water in the cooling water tank 31 from a cylinder 32 containing diluted hydrogen diluted with nitrogen, and hydrogen was dissolved simultaneously with deoxygenation by bubbling.
  • Hot water was passed from the hot drain tank 41 to the heat exchanger 2 by the hot drain pump 21, and the outside air (5 ° C) that was taken in for the clean room as the fluid 22 to be heated was flowed.
  • the outside air was warmed to 24 ° C by the heat of the hot water, and this 24 ° C air was sent to the clean room.
  • the water after heat recovery was returned to the cooling water tank 31 through the return pipes 23 and 23a of the hot waste water in FIG.
  • Cooling tower 24 was bypassed because the outside air was at 5 ° C. Cooling evening 24 was used in hot and humid conditions such as in summer.
  • the amount of gaseous organic matter generated by the organic insulation material that can be used alone is 50 // gZg-sample or less. According to the studies by the present inventors, it has been confirmed that if the amount of gaseous organic matter generated is equal to or less than this value, the air in the clinin room will not be contaminated. The same applies to the protective tape used.
  • a polyethylene foam having a thickness of 20 mm analysis value: 27 / xg / g—data
  • a polyethylene tape (1.3 / g / g—sample) was wrapped around the surface.
  • the thermal drainage line in contact with the air in the clean room was fitted with heat-insulating material that does not generate gaseous organic matter, and a protective tape was wrapped over it.
  • the selection of the heat insulating material and the tape was made using a method generally called a purge & trap-gas chromatograph / mass spectrum (hereinafter abbreviated as P & T-GC / MS).
  • a sample tube of several tens of mg was filled in a sample tube, and heated at 100 ° C for 30 minutes while flowing helium.
  • the generated organic components were trapped in a trap tube cooled to 130 ° C.
  • the trapped organic components were rapidly heated to 300 under a helium stream, introduced into a GC / MS system, and analyzed.
  • Hewlett-Packard hereinafter abbreviated as HP
  • HP-589 OA type GC unit was used as the GC unit.
  • an HP-5970 B type mass spectrometer manufactured by HP was used as the MS apparatus.
  • HP-Ultra 2 (OV-5 system) was used as the column for the GC device.
  • the inner diameter of the column was 0.2 mm, the length was 25 m, and the film thickness was 0.33 x m.
  • the measurement temperature conditions were as follows.
  • the MS ionization method is an electron impact method, and the detection range is 25-100 at m / z.
  • the most significant feature of this embodiment is that the refrigerator provided in the conventional cooling facility shown in FIG. 2 is not installed. In addition, pumps, heat exchangers, pipes, etc., which were necessary for the refrigerator, became unnecessary, and resources were saved.
  • the power consumption has been reduced to less than 1/10 of the conventional level.
  • the temperature difference ⁇ between the inlet temperature Ti and the outlet temperature TO in equation (1) could be set to 30 ° C or more, the cooling water amount W could be reduced to 1/10 or less of the conventional value.
  • the diameter of the cooling water piping could be reduced to 1/3 or less, which reduced the piping weight.
  • Hot wastewater The hot wastewater stored in the evening tank was taken in the clean room and used to warm the outside air, and heat was recovered. This has led to a reduction in heating costs, especially during periods of low outside temperatures. (6) Corrosion prevention effect of cooling water
  • Hydrogen was dissolved in the cooling water to a concentration of more than 0.4 ppm and less than the saturation solubility at the operating temperature. Six months later, the cooling water line was inspected, but no corrosion was observed.
  • the wafer was exposed to the surrounding clean room using thermal insulation, and analyzed by the above-mentioned wafer heating desorption GC / MS method. No increase in organic matter was observed.
  • a conventionally used single-tube coil-shaped cooling pipe as shown in FIGS. 1A and 1B may be used instead of using a double water channel type cooling water channel unit.
  • a conventionally used single-tube coil-shaped cooling pipe as shown in FIGS. 1A and 1B may be used.
  • the outlet temperature is set to a temperature at which the heat can be recovered with respect to the normal inlet temperature
  • the temperature difference between the two will increase, and the internal temperature of semiconductor manufacturing equipment will become uneven, and A problem arises in that the amount of temperature distortion of itself increases. For this reason, it is necessary to reduce the temperature difference between the inlet temperature and the outlet temperature. Therefore, in the embodiment described below, a part of the cooling water is returned to the inlet by the bypass pipe to reduce the temperature difference of the cooling pipe.
  • FIG. 11 is a diagram showing a partial configuration of a semiconductor manufacturing facility according to a second embodiment of the present invention.
  • a single pipe coil-shaped cooling water channel unit 7 is used as the cooling water channel unit.
  • the supply pipe 3 is provided with a pump 71 serving as a flow control unit. Between the outlet side of the pump 71 and the outlet pipe, a part of the cooling water flowing out of the cooling water unit 7 is cooled.
  • a bypass pipe 72 is provided as a bypass for returning to the inlet side of the unit 7.
  • the bypass pipe 72 is provided with a pump 73 serving as a flow control unit.
  • a check valve (a valve for preventing the flow from the supply pipe 3 to the outlet pipe 4) 7 4 to prevent the cooling water from the pump 71 from flowing into the bypass pipe 72 Is provided.
  • pumps with variable flow rates for example, pumps driven by an AC motor with an inverter are used.
  • Temperature detectors T 2 and T for detecting the temperature of the cold and hot water at the outlet Has three.
  • T1 to T3 mean the signs of the temperature detection units and also have the meaning as the temperature detection values of these temperature detection units.
  • the water flow rate of the pump 71 is controlled based on ⁇ 1 and the set temperature so that ⁇ 1 becomes the set temperature.
  • the flow rate of the water supplied to the pump 73 is controlled such that the temperature difference between ⁇ 2 and ⁇ 3 becomes a set value (for example, a temperature difference 40).
  • T 1, T 2, ⁇ 3 and the pumps 71, 73 are connected by dotted signal lines, but a control unit (not shown) is interposed in the middle.
  • the output of the pump 73 of the bypass pipe 72 increases, so that the return amount of the cooling water at the outlet side of the cooling water channel unit 7 increases, and the temperature difference decreases.
  • the pump 73 is throttled, and the return amount decreases. In this way, the difference between the temperature of the hot waste water and the temperature of the inlet and outlet of the cooling water channel unit 7 can be controlled to a predetermined value. As a result, hot wastewater suitable for heat recovery can be obtained, and the temperature difference between the upper and lower portions of the cooling water channel unit 7 can be reduced.
  • the influence on the temperature inside the semiconductor manufacturing equipment due to the temperature difference inside the cooling water channel unit can be suppressed.
  • the amount of distortion caused by the expansion and contraction of the cooling pipe caused by the temperature difference in the cooling water pipe can be suppressed, and the structure of the cooling pipe does not need to be unnecessarily strengthened.
  • FIG. 12 is a diagram showing a configuration of a semiconductor manufacturing facility according to a third embodiment of the present invention.
  • a variable flow rate pump 75 whose flow rate is controlled based on ⁇ 1 is provided upstream of the bypass pipe 72 in the outlet pipe 4, and the bypass pipe 7 in the outlet pipe 4 is provided.
  • Flow control valves 8 1 and 8 2 are provided downstream of the connection point 2 and the bypass pipe 72, respectively, and the opening of the flow control valves 8 1 and 8 2 is set based on the temperature difference between ⁇ 2 and ⁇ 3. It is adjusted to control the flow rate. In this case, when ⁇ 1 becomes higher than the set temperature, the water supply flow rate of the pump 75 increases, and the outlet temperature of the cooling water unit 7 decreases.
  • the flow control valve 81 provided in the outlet pipe 4 is controlled so that the opening slightly increases when the flow control valve 82 is throttled, and is slightly throttled when the flow control valve 82 is opened. You. Also in this embodiment, the temperature of the hot waste water and the temperature difference can be controlled to a predetermined value.
  • FIG. 13 shows a partial configuration of a semiconductor manufacturing facility according to a fourth embodiment of the present invention.
  • a pump 76 that cannot change the flow rate is used instead of the variable flow rate pump 75 used in the above-described embodiment, and a bypass between the upstream side of the pump 76 and the outlet pipe 4 is used.
  • a bypass pipe 77 for bypassing the pump 76 is provided between the downstream side of the connection point of the pipe 72 and the flow control valve 83 in the bypass pipe 77.
  • the flow rate of the flow rate control valve 83 is adjusted by T1. That is, when T1 becomes higher than the set temperature, the opening of the flow control valve 83 becomes large, the amount of cooling water flowing through the cooling water unit 7 increases, and the outlet temperature of the cooling water unit 7 decreases. When T1 becomes lower than the set temperature, the flow control valve 83 is throttled, the amount of cooling water decreases, and the outlet temperature increases. Also in this embodiment, it is possible to control the temperature of the hot waste water and the temperature difference between the inlet and the outlet of the cooling water unit to a predetermined value.
  • the configuration shown in FIGS. 11 to 13 may be adopted even when the cooling water channel unit 5 having the double water channel is used.
  • the heat generated by the semiconductor manufacturing equipment is recovered and applied to the heat energy used in the semiconductor manufacturing factory, so that energy saving can be achieved in the semiconductor manufacturing factory. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

明細書 半導体製造設備 技術分野
本発明は、 半導体製造設備に係わり、 特に半導体製造機器から発生する熱を回 収する熱回収装置を有する半導体製造設備に関する。
背景技術
半導体製造工場には、 ボイラーや冷凍機が設置され、 冷暖房用の冷熱源として 使用されている。 半導体製造工場の省エネルギー化を図るには、 ボイラーや冷凍 機の運転負荷を低減する必要がある。 例えば、 クリーンルームに供給する空気量 を低減する、 あるいはクリーンルーム内の循環空気量を低減して、 この空気を冷 却するためのドライコイルで除去する熱量を下げ、 このドライコイルへ冷媒を供 給している冷凍機の負荷を下げることにより冷凍機により消費される電力を節約 する方法が考えられる。 し力、し、 この方法は、 半導体製造機器から発生する熱に よってクリーンルーム内の温度が上昇する場合には、 クリーンルームの温度を調 節できないと言う問題を有する。
現状のクラス 1 0 (塵挨粒子径 0 . 1 u rn) のクリーンルームでは、 クリーン ルーム内の空気の循環回数は、 1時間に数 1 0 0回である。 このように循環回数 が多いのは、 塵挨を除去するためばかりではなく、 クリーンルームの温度を 2 3 °Cに維持するためでもある。 すなわち、 ドライコイルでの熱交換による除熱上必 要なためである。 換気回数を減らした場合、 半導体製造装置の運転状況によって は、 クリーンルームの温度変動を制御できなくなる。 その結果、 装置の性質上温 度制御が必要な半導体製造機器の温度変化による加工寸法ばらつきが大きくなつ てしまい、 製品の歩留まりが悪くなつてしまうという間題も発生する。
したがって、 半導体工場の空調エネルギーを節減するという点からいえば、 現 状の設備では、 クリーンルームの設定温度をなるベく高くすることが好ましい。 しかし、 クリーンルーム内でクリーン服を着衣している作業者にとっては、 2 3 °C以上の温度環境は暑さを感じる不快な作業環境である。 さらに、 作業者の発汗 によってナトリウムやアンモニア等が発生し、 作業環境を悪化させることもある 。 従って、 作業環境の点からは、 クリーンルームの設定温度を 2 3 °C以上に上げ ることは好ましくない。
以上のことから、 例えばクリーンルームの換気回数を低減するとか、 あるいは 、 クリーンルームの空気の設定温度を上げるといった方法は、 省エネルギーの决 定的な解決策ではないと言える。
次に、 半導体製造機器を冷却するための従来の装置について説明する。 図 1 A は半導体製造機器の加熱炉 (詳しくはその発熱部分) を冷却するために従来用い られている単管コイル状の冷却管 1 0の斜視図である。 図 1 Bは冷却管 1 0の正 面図である。 冷却管 1 0は半体製造機器の外周にコイル状に巻かれ、 下部の冷却 水入口 1 1から冷却水が供給される。 冷却水はコイル状の部分を流れ、 上部の冷 却水出口 1 2から流出する。 この冷却水によって半導体製造機器の熱を回収する ことにより外部 (クリーンルーム内) への放熱を抑えている。
冷却水入口 1 1に供給される冷却水の温度は、 結露を起こさないようにクリー ンルームの設定温度である 2 3 °C付近に維持される。冷却水出口 1 2から流出す. る冷却水の温度は運転条件によって変動するが、 通常 2 5 ° (:〜 2 8 °C程度である 。 すなわち冷却水入口 1 1と出口 1 2との温度差は 5 °C程度である。
次に、 冷却管 1 0に供給される冷却水の冷却系について、 図 2を参照しながら 説明する。 冷凍機 1 0 1で 6 °C程度に冷却された冷水は、 冷水槽 1 0 2に一時的 に蓄えられた後、 熱交換器 1 0 3に送られる。 熱交換器 1 0 3に供給された冷水 は、 コイル式冷却管 1 0に供給される冷却水を冷却し、 その後冷水槽 1 0 2に戻 される。 一方、 バッファタンク 1 0 4に蓄えられている 2 3 °Cよりも高い温度の 冷却水は、 送水ポンプ 1 0 5により熱交換器 1 0 3に送られ、 上記 6 °Cの冷水と の熱交換によって 2 3 °Cに冷却される。 この冷却水はコイル式冷却管 1 0の入口 1 1から当該冷却管 1 0を通り、 出口 1 2に出てバッファタンク 1 0 4に戻され る。 なお、 図 2において、 1 0 6は冷却塔、 1 0 7は温度センサ一、 1 0 8〜 1 1 0は送水ポンプである。
上述の冷却装置では、 冷却管 1 0の出口温度が 3 0 °C以下と低いため、 熱交換 する空気や水との温度差が小さい。 このために熱交換効率が悪く、 冷却水を熱回 収に使用することができなかった。 また冷却管 1 0に供給する冷却水の温度をク リーンルームの設定温度である 2 3 °C程度にしているため、 冷凍機 1 0 1で製造 した 6 °C程度の冷水を用いて熱交換器 1 0 3にて熱交換することにより別系統の 冷却水を 2 3 QC程度に制御することが必要となる。 従って、 冷凍機 1 0 1と熱交 換器 1 0 3とが必要となるので熱的エネルギーのロスが大きく、 また、 冷却水の 搬送ラインが 2系統必要なので夫々のラインに個別の送水ポンプを設置しなけれ ばならない。 この結果、 設備の面積が増大し、 設備機器のコストが増大するとい う問題があった。
一方、 上述の冷却系統において冷却水が発熱源 (半導体製造装置 1 ) から吸収 する吸熱量 Qは、 冷却水量を W、 重量比熱を C w、 入口温度を T i、 出口温度を T 0、 入口と出口との温度差を ΔΤとすると (1 ) 式で表される。
Q = W · C w (T O -T i ) = W · C w ΔΤ ( 1 ) 重量比熱 Cwは一定であり、 温度差 ΔΤが 5 °C程度と小さいため、 吸熱量 Qを 増大するためには冷却水量 Wを大きくする必要がある。 このため多量の冷却水を 必要とし、 ポンプ動力コストが増大するという問題がある。 また、 定常時でもポ ンプをフル稼動にして冷却水を冷却水コイル 1 0に供給していたため、 装置運転 時の負荷の急増による出口 1 2温度の急上昇に対しては冷却が不十分となってい た。
また、 多量の冷却水を冷却管に流すことによって必然的に送水メイン管におけ る冷却水量も増大するため、 送水メイン管に微振動が発生してしまう。 その微振 動が送水メイン管の支持体であるクリ一ンルーム構造体に伝播すると、 プロセス 領域における振動に敏感な機器である露光機や走査型電子頭微鏡などに悪影響を 及ぼす懸念もある。 こうした問題に加え、 冷却水が流れる冷却管、 配管、 ポンプ 、 熱交換器などにおいて鲭ゃ腐食が発生するという問題もあった。 発明の開示
本発明は、 上述の問題を解決した改良された有用な半導体製造設備を提供する ことを目的とする。 本発明のより具体的な目的は、 半導体製造機器から発生する熱を半導体製造ェ 場の冷暖房や使用原料の加温などに有効利用することによって、 半導体製造工場 全体としてのエネルギー消費量を低減することである。
本発明の他の目的は、 半導体製造機器に使用する冷却水量を低減し、 ポンプ動 力などの省エネルギー化を図ることである。
本発明発明の更に他の目的は、 半導体製造機器に使用する冷却水の冷却設備を 簡素化することである。
上述の目的を達成すために、 本発明によれば、
半導体製造機器と、
半導体製造機器を冷却水により冷却する冷却水路ュニッ卜と、
冷却水路ュニットを通過して半導体製造機器から放出された熱を吸収した冷却 水である温排水から熱を回収する熱回収部と、
熱回収部で熱を回収した温排水を前記冷却水路ュニットに供給する供給配管と を備え、 熱回収部で回収した熱を半導体製造工場内で使用する熱源として利用 することを特徴とする半導体製造設備が提供される。
本発明によれば、 半導体製造機器で発生した熱を冷却水を媒体として半導体製 造工場内で使用する熱源として利用するため、 半導体製造工場で消費されるエネ ルギ一の節約を図ることができる。 本発明においては、 冷却水路ユニットの出口 側の温度を検出する温度検出部と、 この温度検出部による温度検出値が設定温度 となるように冷却水路ュニットを流れる冷却水の流量を制御する流量制御部と、 を備える構成とすることが好ましい。 また、 冷却水路ユニットの入口側と出口側 との間を結び、 出口側から入口側に向かって冷却水路ユニットを迂回して冷却水 を流すためのバイパス路と、 バイパス路に設けられ、 冷却水の流量を制御する流 量制御部と、 を備えた構成としてもよい。 更には、 冷却水路ユニットの入口側と 出口側との温度差を検出する手段と、 この手段により検出された温度差に応じて 、 バイパス路に設けられた流量制御部を介して、 冷却水路ユニットを流れる冷却 水の流量を制御する構成を採用してもよい。 このようにバイパス路を設ける構成 は、 冷却水路ユニットを単管状のコイルとする場合に特に有効である。 また供給 配管を流れる温排水を冷却して冷却水とするための熱交換器を備え、 この熱交換 器から出た冷却水を冷却水路ュニットに供給するようにしてもよい。
そして、 冷却水路ユニットは、 半導体製造機器の発熱部分を囲むように形成さ れると共に冷却水の出口を備えた内側流路と、 冷却水の入口を備えると共に前記 内側流路と連通し、 内側流路を囲むようにかつ内側流路の冷却水との間で熱交換 できるように形成された外側流路と、 を有するいわば二重水路を備えた構成とす ることが好ましい。 このようにすれば、 外側流路の冷却水は内側流路の冷却水に より温められるので、 半導体製造機器側の温度差を小さく抑えながら、 冷却水路 ユニットの入口、 出口の温度差を大きくとることができ、 冷却水量を低減するこ とができる。
具体的には、 冷却水路ユニットに供給される冷却水の温度は、 例えば 1 0 °c以 上で 4 5 °C未満であり、 冷却水路ュニッ卜から取り出される冷却水の温度は 9 8 °C未満であり、 冷却水路ュニットに対して供給される冷却水と排出される冷却水 との温度差は 3 5 °C以上である。 なお、 冷却水路ユニットに供給する冷却水は、 脱酸素され且つ還元性物質が溶解されていることが好ましい。 このようにすれば 、 配管などの金属部分の腐食を抑えることができる。 例えば、 還元性物質として 水素が用いられる。 水素の冷却水に対する溶解量は 0 . 4 p p m以上が好ましい 。 また、 冷却水路ュニッ卜及び少なくとも冷却水路ュニットの出口からクリーン ルームの空気に触れる範囲の出口配管の表面は、 ガス状汚染物質の発生しない断 熱材により覆われていることが好ましい。
本発明の他の目的、 特徴及び利点は、 添付の図面を参照しながら以下の詳細な 説明を読むことにより一層明瞭となるであろう。 図面の簡単な説明
図 1 Aは単管コイル状の冷却水路ュニッ卜の斜視図である。
図 1 Bは単管コイル状の冷却水路ュニッ卜の正面図である。
図 2は半導体製造機器を冷却する従来の冷却設備の構成図である。
図 3は本発明の第 1実施例による半導体製造設備の構成図である。
図 4は本発明の第 1実施例による半導体製造設備の詳細を示す構成図である。 図 5 A及び 5 Bは、 図 4に示す冷却水路ュニッ卜の一例を示す説明図である。 図 6は図 4に示す冷却水路ュニッ卜の他の例を示す説明図である。
図 7は図 6に示す冷却水路ュニッ卜の断面図である。
図 8は冷却水路ュニッ卜の更に他の例を示す説明図である。
図 9は本発明の第 1実施例による半導体製造設備に設けられた縦型熱処理装置 の斜視図である。
図 1 0は冷却水路ュニッ卜の更にまた他の例の斜視図である。
図 1 1は本発明の第 2実施例による半導体製造設備の一部の構成を示す図であ る。
図 1 2は本発明の第 3実施例による半導体製造設備の一部の構成を示す図であ る。
図 1 3は本発明の第 4実施例による半導体製造設備の一部の構成を示す図であ る。 発明を実施するための最良の実施の形態
以下、 図面を参照しながら本発明の第 1実施例による半導体製造設備について 説明する。 図 3は、 本発明の第 1実施例による半導体製造設備の全体構成を示す 図である。
図 3に示す半導体製造設備では、 半導体製造機器 1 ( 1 A, 1 B ) に対してポ ンプ P l, P 2により夫々供給配管 3 ( 3 A, 3 B ) を介して冷却水を供給して いる。 半導体製造機器 1 ( 1 A, I B ) で暖められた冷却水 (温排水) は、 出口 配管 4を介して熱回収部 2 ( 2 A〜2 C ) に供給され、 温排水から熱が回収され る。
本実施例における半導体製造機器 1とは、 半導体基板 (例えばシリコンウェハ ) 上に半導体回路を形成するためのプロセスを行うときに発熱を伴う機器である 。 例えば、 半導体基板をバッチで熱処理する縦型熱処理装置や、 半導体基板を 1 枚ずつ熱処理する枚葉式熱処理装置などのプロセス装置である。 その他、 ターボ 分子ポンプなどの真空ポンプや稼動時に発熱を伴う用力機器なども含まれる。 熱回収部 2は、 半導体製造工場内における熱源に利用する熱を温排水から回収 する手段である。 熱回収部 2が回収する熱源として、 例えば事務所の暖房のため の温水 (ボイラー水) 配管中を流れる温水に対して熱交換を行う熱交換器、 温水 そのものつまり温水の流れる流路部分、 外部からクリーンルーム内に空気を取り 入れる際に温湿度調整するための空調機の予熱部、 空調機の加熱部 (外部の空気 を冷却して水分を除去した後、湿度調整された空気を加熱する部分)、純水を温調 する温調部、 クリーンルームの循環空気の空調のための熱源、 低圧蒸気ガスの保 温部などが相当する。
なお、 半導体製造工場とは、 半導体装置を製造するために必要なクリーンルー ムを含む工場、 その用役を供給するための設備や事務所、 倉庫などを意味する。 上述の例では、 熱回収部 2で熱回収が行われた後の温排水は、 例えば 3 0 °C〜 4 0 °Cの温度になっている。 温排水は水槽 2 0に一旦貯水された後、 半導体製造 機器 1に送られる。 半導体製造機器 1 Aが縦型熱処理装置 (更に詳しくいえば縦 型熱処理装置で用いられる加熱炉) である場合には、 加熱炉内のプロセス領域の 加熱温度への影響を考慮して、 ある程度目標温度、 例えば 2 5 °Cに調整された冷 却水を供給する必要がある。 このため、 水槽 2 0内の冷却水を熱交換器 2 0 aを 通すことによりその温度を調整している。 この熱交換器 2 0 aの一次側には例え ば冷凍機で冷却された冷水が供給される。
一方、 半導体製造装置 1 Bがターボ分子ポンプである場合、 その冷却はラフで よいため、 水槽 2 1内の冷却水を熱交換器 2 2を通さずに直接半導体製造機器 1 Bに供給している。 半導体製造機器 1には、 図 3には示していないが、 例えば後 述する冷却水路ュニッ卜が設けられており、 このュニット内を冷却水が流れるこ とによって半導体製造機器 1の熱が冷却水に回収され、 出口側の冷却水つまり温 排水の温度は例えば 8 5 °Cになる。
図 4は本実施例による半導体製造設備の構成を詳細に示した図である。 図 4に 示す 3個の半導体製造機器 1の各々は縦型熱処理装置である。 この半導体製造機 器 1には、 半導体製造機器 1 (詳しくいえばその発熱部分) を冷却するための冷 却水路ュニット 5が設けられている。 以下にこの冷却水路ュニット 5の好ましい 構成例について図 5 A〜図 8を参照しながら説明する。
図 5 Aに示す冷却水路ュニットは、 半導体製造機器 1である縦型熱処理装置の 加熱炉 1 0 0の外周部を囲むように形成された内側流路 5 1と、 内側流路 5 1の 外周部を囲むように形成された外側流路 5 2とを有している。 内側流路 5 1及び 外側流路 5 2は、 加熱炉 1 0 0に対応する高さを有するリング状の流路であり、 銅製の空洞のリング状部材を用い、 この中に内側流路 5 1と外側流路 5 2との間 を仕切る仕切り部 5 3を形成して構成される。
外側流路 5 2の下部側には冷却水の入口 6 1が形成されており、 この入口 6 1 から見て外側流路 5 2における最も遠いところにて外側流路 5 2と内側流路 5 1 との連通部 5 4が設けられている。 即ち、 この例では外側流路 5 2は入口 6 1が 形成されている位置を始点とすると、 ここから加熱炉 1 0 0の外周に沿って図 5 A中時計まわりにほぼ一周に亘つて形成され、 前記始点に戻る直前で内側流路 5 1に連通している。 内側流路 5 1はこの連通部 5 4を始点として図 5 A中反時計 まわりにほぼ一周に亘つて形成され、 終点位置の上部に冷却水の出口 6 2が形成 されている。 なお、 入口 6 1及び出口 6 2は、 実際には夫々外側流路 5 2及び内 側流路 5 1の側面の開口部であるが、 図の便宜上少し外側に延出した部位として 示してある。
上述のような構成の冷却水路ュニッ卜 5によれば、 冷却水が外側流路 5 2から 内側流路 5 1に流れ、 加熱炉 1 0 0の熱は内側流路 5 1から仕切り部 5 3を介し て外側流路 5 2へと移動する。 従つて、 外側流路 5 2を流れる温度の低い冷却水 は、 内側流路 5 1を流れる温度の高い冷却水により温められるので、 内側流路 5 1に入る冷却水と内側流路 5 1から出る冷却水との温度差は小さくなる。 即ち、 冷却水路ユニット 5が図 2に示すような単管コイルであれば、 入口 6 1と出口 6 2との温度差がそのまま加熱炉 1 0 0の外面の温度差に反映されるが、 図 5 A及 び 5 Bに示すような二重水路を構成すれば、 加熱炉 1 0 0の外面に反映される温 度差が、 外側流路 5 2の冷却水が温められた分だけ緩和されることになる。 冷却水路ュニット 5の入口 6 1側の冷却水の温度は、 半導体製造環境の空気に おいて結露が生じない温度に設定する。 その理由は、 過度に冷たい冷却水を流し て冷却水路ュニット 5に結露が生じると、 結露による水分が周辺を濡らしたり、 あるいは、 発熱している炉を損傷するおそれがあり、 これを防止するためである そして冷却水路ュニッ卜 5の温度を半導体製造機器内部の運転に必要な温度条 件を乱さないような温度に維持するとともに、 冷却水路ユニット 5を出た冷却水 の温度が効率よく熱回収できるような設定温度となるように自動調整する機構が 必要である。 半導体製造機器内部の運転に必要な温度条件を乱さないような温度 とは、 冷却水を流すことにより必要以上に半導体製造機器内部が冷却されること なく、 所望の処理工程作業が円滑に行われるような温度である。 そのような温度 としては、 半導体製造機器内部の温度に対する差が小さい方がよい。 しかも、 よ り高温にすることにより、 この温められた冷却水を熱回収しやすくなる。 しかし 、 冷却水路ュニット 5の外側は冷却の目的が達成できるように冷却されている状 態とする必要があり、 両方を満足するような温度を設定する必要がある。 冷却水 路ュニット 5に供給される冷却水の温度は、 具体的には 1 0 °C以上 4 5 °C未満で あることが好ましい。
1 o °c未満の冷却水を配管や冷却管に流すと、 通常のクリーンルームの空気は 室温 2 3 °Cで相対湿度 4 0 %にされているので、 クリーンルーム内の冷却管に結 露が発生する。 結露発生を防止するには、 配管や冷却管に 1 0 °C以上の冷却水を 流す必要がある。 一方、 冷却水の温度を 4 5 °C以上にすると、 作業者が配管や冷 却管に触れた場合に火傷をするおそれがある。 また、 周辺の機器に対する熱から の保護が不十分になる。 したがって、 冷却水の温度は 1 0 °C以上 4 5 °C未満とす ることが好ましい。
本発明においては、 従来の冷却水のように冷凍機を使用して 2 3 °C前後の温度 に制御する必要はない。 また、 冷却水として純水製造装置で浄化した純水を使用 しても良いが、 工業用水を使用することもできる。 更に、 本発明の冷却水は、 温 排水を熱回収して 4 5 °C未満の温度になったら、 そのままでも使用できる。 ある いは、 クーリングタワーで温度をさらに下げて使用することもできる。
本発明では、 熱回収を容易にするために冷却水出口温度は、 4 5 °C以上にする ことが好ましい。 ここで、 冷却水出口温度が 4 5 °C未満では、 熱交換による熱回 収効率が悪くなつてしまう。 また、 9 8 °C以上にすると、 冷却管内が不安定にな り、 微振動が発生する。 また、 冷却管出口以降に配置された流量制御ポンプや制 御弁においてキヤビテーシヨンが発生して泡が発生し、 流量制御が困難になるお それがある。
また、 冷却水路ユニット 5の入口側と出口側との温度差は、 冷却水量を少なく する点などから 3 5 °C以上であることが好ましい。
以上の条件を考慮すると、 半導体製造機器の動作温度が数 1 0 0 °Cである場合 には、 冷却水温度を 5 0 °Cから 8 0 °C程度にすることが好ましい。 また、 半導体 製造機器の動作温度が 1 0 0 0 °C近い温度である場合には、 冷却水温度を 7 0 °C から 9 5 °Cに設定することが好ましい。
これに対して、 2 3 °C前後の水を供給する従来の冷却方法では、 冷却水側の温 度が低いので、 不必要に過度に冷却されていることが多かったといえる。
上述の冷却水路ュニット 5の他の例を図 6及び図 7に示す。 この例では内側流 路 5 1及び外側流路 5 2が空洞のリング状部材であることは、 図 5 A及び 5 Bに 示す例と同じであるが、 入口 6 1が外側流路 5 2の側面下部に、 出口 6 2が内側 流路 5 1の上面に形成されている。 なお、 冷却水路ユニット 5は二重の筒状であ るが図 4では模式的に描いてある。 連通部 5 4は入口 6 1に対して周方向に 1 8 0度ずれた位置において、 外側流路 5 2の上面から内側流路 5 1の底面付近に冷 却水を送るための連通管として構成されている。 また、 出口 6 2は連通部 5 4に 対して周方向に 1 8 0度ずれて位置している。 従って、 入口 6 1から流入した冷 却水は外側流路 5 2の全体に亘つてほぼ均一に流れ、 連通部 5 4に流入する。 連 通部 5 4を通過した冷却水は内側流路 5 1の全体に亘つてほぼ均一に流れる。 連 通部 5 4は図 5 A〜図 8のように局所的に設けることが好ましい。 その理由は、 外側流路 5 2に流れ込んだ冷却水が一旦全体に広がり、 その後狭い連通部 5 4の 入口に集中する流れができるからである。 すなわち、 ある瞬間に入った冷却水に ついてみると、 冷却水は外側流路 5 2の中を広範囲に動きまわりながら移動する ので、 外側流路 5 2の中の温度均一性が高くなるのである。 また、 内側流路 5 1 においても、 冷却水は連通部 5 4の狭い出口から勢いよく流出して内側流路 5 1 の中に広がるので、 同様に温度均一性が高くなる。
図 8は冷却水路ュニット 5の更に他の例を示す図である。 この例では外側流路 5 2は加熱炉 1 0 0の外周面に沿って下端部の入口 6 1から上へ向かってコイル 状に形成されている。 内側流路 5 1の下端部は外側流路 5 2の上端部に接続され 、 下端部から外側流路 5 2の内側を上へ向かってコイル状に形成され、 上端部が 冷却水の出口 6 2となっている。 なお、 この例では外側流路 5 2の上端部から内 側流路 5 1に移行する垂直部位が連通部 5 4に相当する。
加熱炉 1 0 0を含む縦型熱処理装置の概観図を図 7に示す。 縦型熱処理装置に おいて、 半導体ウェハ Wはウェハボートと呼ばれる保持具 2 0 1に複数枚棚状に 保持される。 そして、 半導体ウェハ Wはボートエレべ一夕 2 0 2により保持具 2 0 1を上昇させて加熱炉 2 0 3の中に搬入され、 半導体ウェハ Wに所定の熱処理 が施される。 加熱炉 2 0 3は、 縦型の反応管の周囲にヒー夕及び断熱体を配置し 、 その外側を筒状の外装体 2 0 4で覆われて構成される。 図中、 2 0 5, 2 0 6 は夫々処理ガス供給管及び排気管である。
上述の冷却水路ュニット 5は加熱炉 2 0 3の外装体 2 0 4の外側に設けられて いるが、 図 1 0に示すように外装体 2 0 4の内側に設け、 加熱炉 2 0 3 (他の図 で 「1 0 0」 で示している) と一体化してもよい。 図 1 0の例では断熱体 2 0 7 の外周面を囲むように冷却水路ュニット 5を設け、 冷却水路ュニット 5の外側に 外装体 2 0 4を設けている。
次に、 図 4に示す実施例の全体構成の説明に戻る。 本実施例による熱回収装置 は、 冷却水タンク 3 1と、 冷却水タンク 3 1内の冷却水を複数の冷却水路ュニッ ト 5 (この例では便宜上 3個の冷却水路ユニット 5 ) に供給するための供給配管 3と、 各冷却水路ユニット 5から出る冷却水 (温排水) の流路下ある出口配管 4 と、 前記温排水を一旦貯めるための温排水タンク 4 1と、 冷却水路ユニット内を 流れる冷却水の流量を制御するための流量制御部である流量制御ポンプ 4 2と、 各冷却水路ユニット 5の出口側の冷却水 (温排水) の温度を検出する温度検出部 4 3と、 この温度検出部 4 3の温度検出値に基づいて流量制御ポンプ 4 2を介し て冷却水の流量を制御する制御部 4 4とを備えている。
更に、 この実施例は熱回収部 2を備えており、 温排水タンク 4 1内の温排水は ポンプ 3 1により熱回収部 2に送られる。 熱回収部 2は、 半導体製造工場で使用 される液体 2 2、 例えばボイラー水を加熱するための熱交換器として構成される 。 熱回収部 2 (熱交換器)で熱交換されて冷却された使用後の温排水は、 戻り配管 2 3を介して冷却水タンク 3 1に戻される。 なお、 外気温が高い時期には、 使用 後の温排水を、 図 4の点線により流路 (戻り配管 2 3 a ) を示すように、 クーリ ング夕ヮ一 2 4にて更に冷却してから冷却水タンク 3 1に戻してもよい。
また、 この例では、 窒素ガスで希釈された水素ガスをボンべ 3 2から冷却水夕 ンク 3 1内の冷却水に導入することができるようになつている。 水素ガスを冷却 水に導入すると、 パブリングによって冷却水中の酸素が除去され (脱酸素) 、 同 時に水素が冷却水に溶解する。 このように冷却水に対して脱酸素を行い、 水素の ような還元性物質を冷却水に溶解させると、 配管を構成する金属の腐食が抑えら れる。
還元性物質は水素に限られない。 この発明において、 還元性物質とは、 水に溶 解し配管の酸化を防ぐことのできる物質である。 通常は、 無機物としては、 水素 、 チォ硫酸ソーダ、 金属等がある。 また、 有機物では、 シユウ酸ソーダ、 ァスコ ルビン酸ソーダ、 イソプロピルアルコールなどが使用される。 これらの化合物は 、 水の酸化還元電圧をマイナス(一)にして、 金属の酸化を防止する機能を持つも のである。
還元性物質が溶解した冷却水が冷却水に接する金属の腐食を抑える理由は、 冷 却水中に溶存酸素がなく、 かつ、 溶存水素が存在して還元性の水となるためであ る。 すなわち、 溶存水素が存在した冷却水では、 酸化還元電圧が水素電極に対し てマイナス(―) 3 0 O mVとなり、 還元性の水となるためである。 このため、 本 実施例のように脱酸素され 0 . 4 p p m以上でかつ使用温度で飽和溶解度の濃度 の水素が溶存した冷却水を使用すると、 冷却水が流れる配管系、 熱交換器、 送水 ポンプ ·冷却管などの内面に金属の酸化による鲭が発生しない。 従って、 腐食に よるピンホールや腐食孔が発生しない。 本実施例による冷却水は、 通常使用され る金属系の配管に適用できる。 特に、 鋼鉄製や銅製の冷却系配管に対する防食と 鲭防止の効果は大きい。
冷却水路ュニット 5及び出口配管 4におけるクリーンルームの空気に触れる個 所の表面は、 ガス状汚染物質が発生しない断熱材により被覆されている。 断熱材 としては、 後述の試験方法により断熱材を分析して特にガス状有機物が発生しな いものを用いる必要がある。
次に、 図 4に示す実施例の全体の作用について説明する。 冷却水タンク 3 1内 の冷却水は 1 0 °C以上 4 5 °C未満の温度で、 半導体製造機器 1に設けられている 加熱炉の外周に設けられている冷却水路ユニット 5内に入る。 冷却水は、 半導体 製造機器 1から放出される熱を奪って 7 0 ° (:〜 9 5 °Cの温度に加熱され、 出口配 管 4に流出する。 このとき各制御部 4 4は、 対応する温度検出部 4 3の温度検出 値と予め設定された設定温度とに基づき、 両信号差がゼロになるように流量制御 ポンプ 4 2の送水流量をコントロールする。 すなわち、 各冷却水路ュニット 5の 出口側の冷却水温度が設定温度となるように流量制御ポンプ 4 2の送水流量をコ ントロールする。 検出部 4 3による温度検出値が設定温度よりも高い場合には、 インバー夕によりモー夕の回転数を高くする。 これにより、 ポンプ 4 2の送水量 が増大し、 冷却水路ユニット 5の出口側の温度が下がる。 一方、 温度検出値が設 定温度よりも低い場合には、 モー夕の回転数を下げる。 これにより、 ポンプ 4 2 の送水量が減少し、 出口側の温度が上昇する。 こうして出口側の冷却水の温度が 設定度となるようにコントロールされる。
なお、 ポンプ 4 2としては、 インバー夕付きの交流モー夕や直流モー夕を駆動 源として電力を調整してモー夕出力を変えるタイプのものを使用できる。 発塵防 止対策が施されたものであれば、 ギヤ変換機やプーリ変換機によりモー夕回転数 を変えるようにしてもよい。 本発明ではポンプ 4 2を供給配管 3に設けてもよい し、 流量が可変でないポンプを用いてもよい。 この場合、 ポンプと並列に流量調 節弁を設けてこの流量調節弁により流量をコントロールしてもよい。
上述のように、 本実施例では半導体製造機器 1を冷却する冷却水路ュニット 5 は内、 外の二重水路を備えているため、 入口及び出口の冷却水の温度差を 3 5 °C 以上と大きくしても、 その温度差が半導体製造機器 1の温度差に反映される程度 が少ない。 このように入口及び出口の冷却水の温度差を大きくすることにより、 冷却水量が低減されるので省エネルギー化を達成することができる。 そして、 半 導体製造機器 1により温められた冷却水の熱を熱回収部 2にて回収し、 回収した 熱を半導体製造工場内で利用することにより、 例えば工場内の暖房等における加 熱に使用するネルギーを低減することができる。 また、 熱回収によって温排水が 冷却されるので、 冷却水用の冷却設備を簡素化することができる。
次に、 図 4に示す熱回収装置を実際に運転した場合について説明する。
[冷却水の設定温度]
冷却水路ュニット 5の出口側の冷却水 (温排水) の温度が 8 5 °Cになるように 冷却水の流量をコントロールした。
[冷却水]
冷却水として純水を使用した。 また、 冷却水の腐食性を低減するために、 純水 に 0 . 4 %以上でかつ使用温度で飽和溶解度となる量の水素を溶解させて水素溶 解水とした。 水素溶解水は、 図 4の冷却水タンク 3 1を使用して製造した。 冷却 水タンク 3 1内の冷却水に、 窒素で希釈した希釈水素の入ったボンべ 3 2から希 釈水素を吹き込み、 バブリングによって脱酸素と同時に水素の溶解を行った。
[熱回収]
温排水タンク 4 1に蓄えられた温排水から熱回収するために、 クリーンルーム の採り入れ外気を温めるために使用した。 すなわち、 温排水を利用する熱交換器 2を空気加熱装置として使用した。 熱交換器 2に温排水タンク 4 1から温水を温 排水ポンプ 2 1により流し、 加熱される流体 2 2としてクリーンルーム用採り入 れ外気 (5 °C) を流した。 外気は温水の熱で暖められて 2 4 °Cとなり、 この 2 4 °Cの空気をクリーンルームに送りこんだ。 熱回収後の水は、 図 4の温排水の戻り 配管 2 3及び 2 3 aを通して冷却水タンク 3 1に戻した。 外気が 5 °Cであったた め、 ク一リングタワー 2 4はバイパスした。 ク一リング夕ヮ一 2 4は、 夏期など の高温多湿の際に使用した。
[断熱材の使用] 単体で使用できる有機系断熱材のガス状有機物の発生量は、 50// gZg—試 料以下である。 本発明者らのこれまでに研究によれば、 ガス状有機物の発生量が この値以下であれば、 クリニンルーム空気を汚染することははないことが確認さ れた。 使用する保護テープについても同様である。 本実施例では、 厚さ 20mm のポリエチレン発泡体 (分析値 27 /xg/g—資料) を使用し、 この表面にポリ エチレンテープ(1. 3 / g/g—試料)を巻き付けた。
[断熱材から発生するガス状有機物の分析方法]
クリーンルームの空気に接する温排水ラインには、 ガス状有機物の発生しない 断熱材を取り付け、 その上から保護テープを巻いた。 この断熱材およびテープの 選定は、一般にパージ &トラップ一ガスクロマトグラフ/マススぺクトル(以下 P &T— G C/M Sと略す) と呼ばれている方法を用いて行つた。
まず、 数 1 Omgの資料を試料管に充填し、 ヘリウムを流しながら 100°Cで 30分間加熱した。 発生した有機成分を 130°Cに冷却したトラップ管でトラッ プした。 試料加熱終了後、 トラップした有機成分をヘリウム気流下で 300でに 急速加熱し GC/MS装置に導入して分析した。 GC装置として、 ヒューレット パッカード (以下 HPと略す) 社 HP— 589 OA型 GC装置を使用した。 また 、 MS装置として HP社の HP— 5970 B型の質量分析器を使用した。 GC装 置のカラムは、 HP—ウルトラ 2 (OV— 5系)を用いた。 カラムの内径は 0. 2 mm、 長さは 25m、 膜厚は 0. 33 xmであった。 測定温度条件は、 次の通り であった。
初期温度 40°C → 昇温(10°C/分) → 最終温度 300°C(15分保持) キャリアガスはヘリウムとし、注入方式はスプリット法で、 スプリット比は 1/
200とした。 MSイオン化法は電子衝撃法で、検出範囲は m/zで 25 - 100
0とした。
[クリーンルームの有機物汚染を測定する方法]
クリーンルームの有機物汚染測定に際して、 酸化膜を付けたシリコンウェハを クリーンルーム内に 24時間暴露した。 暴露後のウェハを上記のパージ &トラッ プの代わりに、 ウェハ昇温脱離装置 (ジ一エルサイエンス社製、 シリコンウェハ アナライザ一) に入れ、 吸着した有機物を昇温脱離した後、 上記の GC/MS法 で分析測定した。
[本実施例の効果]
( 1 )半導体製造機器の冷却効果
冷却の本来の目的である半導体製造機器の表面を常温に保つという目的では、 従来のコイル式冷却管と同様の冷却効果を達成できた。 すなわち、 二重管式の冷 却水路ュニット 5の使用によって、 冷却水路ュニット 5の外側流路 52の温度が 常温となったため、 作業者が冷却水路ユニット 5に触れて火傷をしたり、 他の装 置や設備を熱的に劣化させることはなかった。
(2)装置の削減効果
本実施例では、 図 2に示す従来の冷却設備に設けられていた冷凍機が設置され ていないのが最大の特徴である。 また、 冷凍機に付随して必要であったポンプ、 熱交換器、 配管等も不要になり、 省資源を図ることができた。
(3)電力消費量
冷凍機が不要になることによって、 電力消費量は従来の 1/10以下となった。 更に、 式 (1) の入口温度 T iと出口温度 TOとの温度差 ΔΤを 30°C以上に設 定できたので、 冷却水量 Wは、 従来の 1/10以下にすることが可能であった。 こ れにより、 送水ポンプ 1/10以下の動力で運転することができた。 また、 冷却水 配管類の口径を 1 / 3以下にすることができ、 これによる配管重量も低減できた。 このように、 本発明による熱回収装置による冷却方法は、 省電源と省エネルギー の点で大きな効果があった。
(4)微振動の制御
送水ポンプ ·配管系の冷却水の流れによる微振動を約半分以下に低減できた。 本実験では、 従来の配管微振動の 20%に低減することができた。
(5)熱回収による省エネルギー
温排水夕ンクに蓄えられた温排水を、 クリーンルームの採り入れ外気を温める ために使用して、 熱回収することができた。 これによつて、 特に、 外気温の低い 時期の暖房費を低減することができた。 ( 6 )冷却水による腐食防止効果
冷却水に水素を 0 . 4 p p m以上かつ使用温度での飽和溶解度以下の濃度に溶 解した。 半年後に冷却水ラインの点検をしたが、 腐食ゃ鲭の発生は認められなか つた。
( 7 )断熱材のアウトガス対策
断熱材を使用した周辺のクリーンルームにウェハを暴露して、 上記ウェハ昇温 脱離 G C ZM S法で分析したが、 有機物の増加は認められなかった。
上述の実施例において、 冷却水路ュニットとして二重水路式のものを用いる代 りに、 従来用いられていた図 1 A及び 1 Bに示すような単管コイル状の冷却管を 用いてもよい。 しかし、 通常の冷却管では、 常温の入口温度に対して出口温度を 熱回収可能な温度にすると、 両者の温度差が大きくなり、 半導体製造機器の内部 温度が不均一になることや、 冷却管自体の温度歪み量が大きくなるという問題が 発生する。 このため、 入口温度と出口温度との温度差を少なくする必要がある。 そこで、 以下に説明する実施例では、 冷却水の一部をバイパス管によって入口 に戻して、 冷却管の温度差を小さくしている。
図 1 1は本発明の第 2実施例による半導体製造設備の一部の構成を示す図であ る。 図 1 1において、 冷却水路ユニットとして単管コイル状の冷却水路ユニット 7が使用されている。 供給配管 3には、 流量制御部をなすポンプ 7 1が設けられ 、 このポンプ 7 1の出口側と出口配管との間には、 冷却水路ュニッ卜 7から流出 した冷却水の一部を冷却水路ュニッ卜 7の入口側に戻すためのバイパス路である バイパス管 7 2が設けられている。 バイパス管 7 2には流量制御部をなすポンプ 7 3が設けられている。 ポンプ 7 3の出口側には、 ポンプ 7 1からの冷却水がバ ィパス管 7 2内に流入しないように逆流防止弁(供給配管 3から出口配管 4に向 かう流れを防止する弁) 7 4が設けられている。ポンプ 7 1 , 7 3は流量可変なポ ンプ例えばインバー夕付き交流モー夕により駆動されるボンプが用いられる。 また、 本実施例では、 出口配管 4におけるバイパス管 7 2の分岐点の下流側の 冷却水の温度を検出する温度検出部 T 1、 冷却水路ュニッ卜 7の入口付近 (入口 側) 及び出口付近 (出口側) の冷动水の温度を夫々検出する温度検出部 T 2, T 3を備えている。 なお、 以下では説明を簡略化するために、 T 1〜T 3が温度検 出部の符号を意味すると共にこれら温度検出部での温度検出値としての意味を持 つものとする。 ポンプ 7 1は Τ 1と設定温度とに基づいて Τ 1が設定温度となる ように送水流量が制御される。 またポンプ 7 3は Τ 2と Τ 3との温度差が設定値 (例えば温度差 4 0 ) となるように送水流量が制御される。 図では T 1 . T 2 , Τ 3とポンプ 7 1 , 7 3との間を点線の信号ラインで結んであるが、 実際には途 中に図示しない制御部が介在している。
本実施例では Τ 1が高くなるとポンプ 7 1の出力が大きくなつて冷却水量が増 加し、 冷却水路ユニット 7の出口側の温度が下がるように作用する。 また、 T 1 が低くなると、 ポンプ 7 1の出力が小さくなって冷却水量が減少し、 冷却水路ュ ニット 7の出口側の温度が高くなる。
更に、 Τ 2, Τ 3の温度差が大きくなるとバイパス管 7 2のポンプ 7 3の出力 が大きくなつて、 冷却水路ユニット 7の出口側の冷却水の戻り量を多くし、 温度 差を小さくする。 逆に、 Τ 2, Τ 3の温度差が小さくなるとポンプ 7 3が絞られ 、 戻り量が少なくなる。 このようにして温排水の温度と冷却水路ユニット 7の入 口、 出口の温度差を所定値に制御することができる。 この結果、 熱回収に適した 温排水を得ることができると共に冷却水路ュニット 7の上下の温度差を小さくす ることができる。 これによつて冷却水路ュニット内温度差による半導体製造機器 内温度への影響を抑制することができる。 また、 冷却水管内の温度差によって生 じる冷却管の伸縮による歪み量も抑えることができ、 冷却管の構造を不要に頑丈 にする必要もなくなる。
図 1 2は本発明の第 3実施例による半導体製造設備の構成を示す図である。 図 1 2に示す熱回収装置では、 出口配管 4におけるバイパス管 7 2の上流側に、 Τ 1に基づいて流量が制御される流量可変なポンプ 7 5を設けると共に、 出口配管 4におけるバイパス管 7 2の接続点の下流側とバイパス管 7 2とに夫々流量調節 弁 8 1 , 8 2を設け、 Τ 2と Τ 3との温度差に基づいて流量調節弁 8 1, 8 2の開 度を調整して流量を制御している。 この場合、 Τ 1が設定温度よりも高くなると ポンプ 7 5の送水流量が多くなつて冷却水路ュニット 7の出口温度が低くなる。 T 1が設定温度よりも低くなるとポンプ 7 5の送水流量が少なくなつて冷却水路 ユニット 7の出口温度が高くなる。 また、 T 2, T 3の温度差が小さくなれば流量 調節弁 8 2が絞られ、 バイパス管 7 2を流れる冷却水量が少なくなる。 温度差が 大きくなれば流量調節弁 8 2が開かれてバイパス管 7 2を流れる冷却水量が多く なる。
出口配管 4に設けられた流量調節弁 8 1については、 流量調節弁 8 2が絞られ るときには僅かに開度が大きくなり、 流量調節弁 8 2が開かれるときには僅かに 絞られるように制御される。 本実施例においても温排水の温度と前記温度差とを 所定値に制御することができる。
図 1 3は本発明の第 4実施例による半導体製造設備の一部の構成を示す。 図 1 3に示す熱回収装置では、 上述の実施例において用いた流量可変なポンプ 7 5の 代りに流量を変えられないポンプ 7 6を使用し、 ポンプ 7 6の上流側と出口配管 4におけるバイパス管 7 2の接続点の下流側との間にポンプ 7 6をバイパスする バイパス管 7 7を設けて、 バイパス管 7 7に流量調節弁 8 3を設けた構成である 。 なお、 ポンプ 7 6から温排水タンクまでの配管が短い場合には、 図 1 2の実施 例のように出口配管 4に流量調節弁 8 1を設けることが好ましい。
本実施例では、 T 1により流量調節弁 8 3の流量が調整される。 即ち、 T 1が 設定温度よりも高くなると流量調節弁 8 3の開度が大きくなって冷却水路ュニッ 卜 7を流れる冷却水量が多くなり、 冷却水路ュニット 7の出口温度が低くなる。 T 1が設定温度よりも低くなると流量調節弁 8 3が絞られて冷却水量が少なくな り、 出口温度が高くなる。 本実施例においても、 温排水の温度と冷却水路ュニッ トプの入口、 出口の温度差とを所定値に制御することができる。
なお、 二重水路を有する冷却水路ュニット 5を用いた場合においても図 1 1〜 図 1 3に示す構成を採用してもよい。
以上のように、 本発明によれば、 半導体製造機器で発熱した熱を回収して半導 体製造工場にて使用する熱エネルギーに当てているので、 半導体製造工場におい て省エネルギー化を達成することができる。
本発明は具体的に開示された上述の実施例に限定されるものではなく、 本発明 の範囲を逸脱すること無く様々な改良例及び変形例がなされるであろう。

Claims

請求の範囲
1. 半導体製造機器 (1) と、
該半導体製造機器 (1) を冷却水により冷却する冷却水路ユニット (5 ; 7) と、
該冷却水路ユニット (5 ; 7) を通過して前記半導体製造機器 (1) から放出 された熱を吸収した冷却水である温排水から熱を回収する熱回収部 (2) と、 該熱回収部 (2) で熱を回収した温排水を前記冷却水路ユニット (5 ; 7) に 供給する供給配管 (3) と
を備え、 前記熱回収部 (2) で回収した熱を半導体製造工場内で使用する熱源 として利用することを特徴とする半導体製造設備。
2. 請求の範囲第 1項記載の半導体製造設備であって、
前記冷却水路ユニット (5 ; 7) の冷却水出口の温度を検出する温度検出部 ( 43) と、 該温度検出部による温度検出値が設定温度となるように冷却水路ュニ ット (5 ; 7) を流れる冷却水の流量を制御する流量制御部 (44) と
を備えたことを特徴とする半導体製造設備。
3. 請求の範囲第 1項又は第 2項記載の半導体製造設備であつて、
冷却水路ュニッ卜 ( 7 ) の入口側と出口側との間を接続し、 出口側から入口側 に向かって冷却水路ユニット (7) を迂回して冷却水を流すためのバイパス路 ( 72) と、
該バイパス路 (72) に設けられ、 冷却水の流量を制御する流量制御部 (73 ) と、
を備えたことを特徴とする半導体製造設備。
4. 請求の範囲第 3項記載の半導体製造設備であって、
前記冷却水路ユニット (7) の入口側と出口側との温度差を検出する検出手段 (T2, T3) を有し、 該検出手段により検出された温度差に応じて、 前記バイ パス路 (72) に設けられた前記流量制御部 (73) を介して、 前記冷却水路ュ ニット (7) を流れる冷却水の流量を制御することを特徴とする半導体製造設備
5. 請求の範囲第 1項又は第 2項記載の半導体製造設備であつて、 供給配管 (3) を流れる温排水を冷却して冷却水とするための熱交換器 (20 a) を備え、 該熱交換器から出た冷却水を前記冷却水路ユニット (5 ; 7) に供 給することを特徴とする半導体製造設備。
6. 請求の範囲第 1項又は第 2項記載の半導体製造設備であって、 前記冷却水路ユニット (5 ; 7) は、
半導体製造機器 (1) の発熱部分を囲むように形成されると共に、 冷却水の出 口 (62) を備えた内側流路 (51) と、
冷却水の入口 (61) を備えると共に前記内側流路 (51) と連通し、 該内側 流路を囲むようにかつ内側流路 (51) の冷却水との間で熱交換できるように形 成された外側流路 (52) と
を有することを特徴とする半導体製造設備。
7. 請求の範囲第 1項又は第 2項記載の半導体製造設備であつて、 前記冷却水路ユニット (5 ; 7) に供給される冷却水の温度は 10°C以上 45 未満であり、 前記冷却水路ユニット (5 ; 7) から流出する冷却水の温度は 9 8 未満であり、 前記冷却水路ユニット (5 ; 7) に対して供給される冷却水と 前記冷却水路ユニット (5 ; 7) から流出する冷却水との温度差を 35°C以上に 設定したことを特徴とする半導体製造設備。
8. 請求の範囲第 1項又は第 2項記載の半導体製造設備であつて、
前記冷却水路ユニット (5 ; 7) に供給される冷却水は、 脱酸素されかつ還元 性物質が溶解されていることを特徴とする半導体製造設備。
9. 請求の範囲第 8項記載の半導体製造設備であって、
還元性物質は水素であり、 冷却水に対する水素の溶解量は 0. 4ppm以上で あることを特徴とする半導体製造設備。
10. 請求の範囲第 1項又は第 2項記載の半導体製造設備であって、 前記冷却水路ユニット (5 ; 7) 及び少なくとも冷却水路ユニットの出口 (6 2) からクリーンルームの空気に触れる範囲の出口配管の表面は、 ガス状汚染物 質の発生しない断熱材により覆われていることを特徴とする半導体製造設備。
PCT/JP2000/004312 1999-07-02 2000-06-29 Installation de fabrication de semi-conducteurs WO2001003168A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001508484A JP4391713B2 (ja) 1999-07-02 2000-06-29 半導体製造設備
KR1020017016838A KR100603096B1 (ko) 1999-07-02 2000-06-29 반도체 제조 설비
US09/670,343 US6370897B1 (en) 1999-07-02 2000-09-27 Semiconductor manufacturing facility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18974799 1999-07-02
JP11/189747 1999-07-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/670,343 Continuation US6370897B1 (en) 1999-07-02 2000-09-27 Semiconductor manufacturing facility

Publications (1)

Publication Number Publication Date
WO2001003168A1 true WO2001003168A1 (fr) 2001-01-11

Family

ID=16246511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004312 WO2001003168A1 (fr) 1999-07-02 2000-06-29 Installation de fabrication de semi-conducteurs

Country Status (5)

Country Link
US (1) US6370897B1 (ja)
JP (1) JP4391713B2 (ja)
KR (1) KR100603096B1 (ja)
TW (1) TW446809B (ja)
WO (1) WO2001003168A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246359A (ja) * 2001-02-20 2002-08-30 Tokyo Electron Ltd 半導体製造装置の排熱利用システム及び排熱利用方法、及び半導体製造装置の排熱利用に使用する熱交換器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256031B2 (ja) * 1999-07-27 2009-04-22 東京エレクトロン株式会社 処理装置およびその温度制御方法
US6953605B2 (en) 2001-12-26 2005-10-11 Messier-Bugatti Method for densifying porous substrates by chemical vapour infiltration with preheated gas
TWI235425B (en) * 2004-05-26 2005-07-01 Promos Technologies Inc Etching system and method for treating the etching solution thereof
JP4999415B2 (ja) 2006-09-29 2012-08-15 東京エレクトロン株式会社 基板処理装置及び基板処理方法並びに基板処理装置の用力供給装置及び基板処理装置の用力供給方法
KR100925236B1 (ko) * 2007-10-18 2009-11-05 주식회사 글로벌스탠다드테크놀로지 반도체 제조 장비의 온도 조절 시스템
KR101068273B1 (ko) * 2009-03-16 2011-09-28 (주)피앤테크 반도체 웨이퍼용 소형 열처리 장치
DE102013211563A1 (de) * 2013-06-19 2014-12-24 Behr-Hella Thermocontrol Gmbh Heizvorrichtung
US10939580B2 (en) * 2019-03-25 2021-03-02 Baidu Usa Llc Control strategy for immersion cooling system
JP2020188254A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
US11248822B2 (en) * 2019-07-25 2022-02-15 Globalfoundries U.S. Inc. Energy recovery system for a semiconductor fabrication facility
CN110610878B (zh) * 2019-09-24 2022-01-11 北京北方华创微电子装备有限公司 冷却装置、半导体处理腔室及设备
CN114318522A (zh) * 2021-12-23 2022-04-12 北京北方华创微电子装备有限公司 半导体腔室的冷却装置及半导体工艺设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724295A (ja) * 1993-07-08 1995-01-27 Teisan Kk シリンダ付ガス供給装置
JPH07284675A (ja) * 1994-04-18 1995-10-31 Sumitomo Metal Ind Ltd 液循環式恒温装置
JPH09251959A (ja) * 1996-03-14 1997-09-22 Kokusai Electric Co Ltd 加熱装置
JP3061067U (ja) * 1999-01-27 1999-09-14 株式会社ラスコ 熱交換装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308558A (ja) * 1989-05-24 1990-12-21 Hitachi Ltd 半導体冷却装置
JP2817698B2 (ja) * 1996-03-12 1998-10-30 日本電気株式会社 半導体基板の冷却装置
JPH1161067A (ja) 1997-08-26 1999-03-05 Du Pont Mitsui Polychem Co Ltd ホットメルト接着剤組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724295A (ja) * 1993-07-08 1995-01-27 Teisan Kk シリンダ付ガス供給装置
JPH07284675A (ja) * 1994-04-18 1995-10-31 Sumitomo Metal Ind Ltd 液循環式恒温装置
JPH09251959A (ja) * 1996-03-14 1997-09-22 Kokusai Electric Co Ltd 加熱装置
JP3061067U (ja) * 1999-01-27 1999-09-14 株式会社ラスコ 熱交換装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246359A (ja) * 2001-02-20 2002-08-30 Tokyo Electron Ltd 半導体製造装置の排熱利用システム及び排熱利用方法、及び半導体製造装置の排熱利用に使用する熱交換器
JP4601029B2 (ja) * 2001-02-20 2010-12-22 東京エレクトロン株式会社 半導体処理装置

Also Published As

Publication number Publication date
KR100603096B1 (ko) 2006-07-20
JP4391713B2 (ja) 2009-12-24
KR20020031349A (ko) 2002-05-01
TW446809B (en) 2001-07-21
US6370897B1 (en) 2002-04-16

Similar Documents

Publication Publication Date Title
WO2001003168A1 (fr) Installation de fabrication de semi-conducteurs
US20050039425A1 (en) Semiconductor manufacturing facility utilizing exhaust recirculation
KR101744953B1 (ko) 저노점 저온 제습 기능을 구비하는 efem
JP4421158B2 (ja) 冷却設備
EP3037152B1 (en) Carbon dioxide capturing system and method of operating the same
US20140206204A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and non-transitory computer-readable recording medium
US20150013953A1 (en) Fluid conduit systems
KR101842351B1 (ko) 공정설비용 냉각유체의 온도 제어장치
JP2014222086A (ja) 圧力緩衝装置、その圧力緩衝装置を備えた蓄熱燃焼式排ガス処理装置
JP5307507B2 (ja) 局所密閉型清浄化装置
JPH11223417A (ja) 製鉄プロセスから発生する低温排熱の回収方法
CN113426240B (zh) 一种电加热式半导体废气处理设备及其降温的方法
JP3111395B2 (ja) 熱処理装置
JP7178335B2 (ja) ガス処理システム
JP2010062194A (ja) 基板処理装置、半導体装置の製造方法及び排気トラップ
JPH0569773B2 (ja)
Chang et al. Development of clean technology in wafer drying processes
JP2011064352A (ja) 熱回収装置及び冷却システム
JP2012013414A (ja) 放射性気体廃棄物の処理装置及び放射性気体廃棄物の処理方法
US20060010877A1 (en) Method for the prevention of deposits in steam systems
JP2012101187A (ja) 溶剤回収装置
JP2012144393A (ja) 二酸化炭素回収システム
CN212180334U (zh) 一种水汽取样装置
JP2001126999A (ja) 熱処理装置
SU1333382A1 (ru) Способ дл термостатировани адсорбента и устройство дл его осуществлени

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09670343

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 508484

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017016838

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017016838

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020017016838

Country of ref document: KR