WO2001000934A1 - Machine de chantier hybride et son dispositif de commande - Google Patents

Machine de chantier hybride et son dispositif de commande Download PDF

Info

Publication number
WO2001000934A1
WO2001000934A1 PCT/JP2000/004073 JP0004073W WO0100934A1 WO 2001000934 A1 WO2001000934 A1 WO 2001000934A1 JP 0004073 W JP0004073 W JP 0004073W WO 0100934 A1 WO0100934 A1 WO 0100934A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
power
generator
main battery
battery
Prior art date
Application number
PCT/JP2000/004073
Other languages
English (en)
French (fr)
Inventor
Masayuki Kagoshima
Original Assignee
Kobelco Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11179683A external-priority patent/JP2001003398A/ja
Priority claimed from JP17968199A external-priority patent/JP3781584B2/ja
Priority claimed from JP17968299A external-priority patent/JP3828678B2/ja
Application filed by Kobelco Construction Machinery Co., Ltd. filed Critical Kobelco Construction Machinery Co., Ltd.
Priority to EP00940793A priority Critical patent/EP1219751B1/en
Priority to DE60037740T priority patent/DE60037740T2/de
Publication of WO2001000934A1 publication Critical patent/WO2001000934A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/085Changing the parameters of the control units, e.g. changing limit values, working points by control input
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/207Control of propulsion units of the type electric propulsion units, e.g. electric motors or generators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/275Control of the prime mover, e.g. hydraulic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/78Control of multiple output members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a hybrid construction machine such as a hybrid shovel that performs various operations by combining an engine and a battery, and a control device thereof.
  • Construction machines such as shovels are generally configured such that an engine drives a hydraulic pump and the hydraulic pressure drives an actuator.
  • the engine is designed to respond to large load fluctuations during work. Since the work needs to be performed while the output fluctuates greatly, fuel efficiency is low and there are also problems in terms of noise and exhaust gas. Therefore, in recent years, electric motors and generators have been connected to engines to convert part or all of the engine output into electric power.
  • a hybrid construction machine and its control device have been developed and proposed to extract power from the battery during heavy work and use it for heavy load work (Japanese Utility Model Application Laid-open No. 5-485011). 0—4 2 5 8 7). With this configuration, for example, as shown in FIG.
  • the fluctuation of the work load (work energy) can be smoothed by charging and discharging the battery, so that the work load (work energy) is greatly increased.
  • Engine power fluctuations can be suppressed to a minimum, resulting in better fuel efficiency, lower noise, and lower exhaust gas.
  • the motor cannot be operated. Can not do. Therefore, for example, if the shovel fails when the boom is raised, the boom will stop at the top and this state will be left until the repair is completed, causing a safety problem.
  • the present invention provides a hybrid construction machine that can operate the motor urgently to ensure safety when it is no longer possible to obtain power from the generator / battery due to a failure or the like.
  • a first object of the present invention is to provide a control device for a hybrid construction machine capable of preventing deterioration due to excessive charging and discharging of a battery when performing various operations with different loads. The purpose of 2.
  • a third object of the present invention is to provide a control device for a hybrid construction machine capable of minimizing a reduction in work efficiency while preventing deterioration due to excessive discharge of a battery. Disclosure of the invention
  • the present invention operates an electric motor with electric power of a generator driven by an engine, electric power of a main battery capable of charging the electric power of the generator, and electric power of an auxiliary battery.
  • An enabled hybrid construction machine wherein the motor is operated by normal power of at least one of the generator and the main battery during normal operation, while the auxiliary battery is used during emergency operation in which the motor cannot be operated by the normal power.
  • a switching switch that can be switched to operate the motor with the auxiliary power.
  • the emergency operation can be performed by operating the electric motor with the auxiliary power from the auxiliary battery.Therefore, after moving the construction machine to a safe place or returning to a safe position to ensure safety, Repairs can be made.
  • the hybrid construction machine of the present invention has an actuator selector switch capable of selecting an electric motor that operates with the auxiliary power during the emergency operation.
  • an auxiliary battery having a smaller capacity than the main battery that needs to operate many motors at the same time can be employed. Therefore, the size of the auxiliary battery can be reduced, so that the increase in the size of the construction machine due to the mounting of the auxiliary battery can be minimized. Further, safety can be further improved by preventing unintended operation due to erroneous operation.
  • the hybrid construction machine of the present invention is a hybrid shovel.
  • the hybrid shovel takes various postures such as raising the boom and the arm, and thus can be suitably applied when stopped in such a posture.
  • the present invention is capable of charging a battery with electric power of a generator driven by an engine, and at least using electric power discharged from the battery.
  • the present invention relates to a control device for a hybrid construction machine that can be operated by operating an electric motor, and has a generator output control unit that changes electric power output from the generator according to the content of the operation.
  • control device of the present invention includes: an operation lever operated by an operator; and a work determination unit that determines the work content based on an operation signal from the operation lever and outputs the work content to the generator output control unit. have.
  • the work content can be determined and recognized based on the operation signal of the operation lever, so that the labor for the operator to specify the work content can be saved.
  • control device of the present invention includes a work content switching switch capable of designating a work content by an operator, and a switch switch for detecting the work content specified by the work content switching switch and outputting the work content to the generator output control unit.
  • the work content specified in the work content switching switch can be recognized with high reliability, so that excessive charging and discharging of the battery due to erroneous recognition can be reliably prevented.
  • the present invention provides a battery powered by a generator driven by an engine. And a work device for a hybrid construction machine that can be operated by operating the electric motor with the electric power of at least one of the generator and the battery, wherein the electric power of the generator is equal to or less than a predetermined value.
  • It has a work speed limiter that limits the work speed according to the work content so that the power consumption of the electric motor does not cause overdischarge of the battery.
  • a predetermined value such as when the engine is stopped or idling
  • the engine rotates sufficiently. Therefore, a predetermined delay time occurs until sufficient power is obtained from the generator. Then, during this delay time, the work of each work content is performed mainly using the electric power discharged from the battery. Therefore, when working with a large work load, if the work is performed at a normal working speed, the battery may be excessively discharged and deteriorated. The battery is not degraded by over-discharge because the battery is prevented from being over-discharged by restricting the working speed according to.
  • control device of the present invention includes: an operation lever operated by an operator; and a work determination unit that determines the work content based on an operation signal from the operation lever and outputs the work content to the work speed limiting unit.
  • a work determination unit that determines the work content based on an operation signal from the operation lever and outputs the work content to the work speed limiting unit.
  • control device includes a work content switching switch capable of designating the work content by an operator, and a work switch which detects the work content specified by the work content switch switch and outputs the work content to the work speed limiting unit.
  • a detection unit As a result, the work content specified in the work content switching switch can be recognized with high reliability, so that excessive discharge of the main battery due to erroneous recognition can be reliably prevented.
  • the hybrid construction machine provided with the control device of the present invention is a hybrid shovel.
  • the present invention can be suitably applied to a hybrid excavator that performs various kinds of work contents having a work load with a large fluctuation range.
  • FIG. 1 is a block diagram of a control device of the hybrid shovel.
  • FIG. 2 is a flow chart of an actuator selection routine.
  • FIG. 3 is an overall schematic side view of the hybrid shovel.
  • FIG. 4 is a block diagram of a control device of the hybrid shovel.
  • FIG. 5 is a flowchart of the output change routine.
  • FIG. 6 is an explanatory diagram showing load characteristics of each work.
  • FIG. 7 is an explanatory diagram showing a relationship between a work mode and a generator output.
  • FIG. 8 is a block diagram of a drive control system of the hybrid shovel.
  • FIG. 9 is a block diagram of a control device of the hybrid shovel.
  • FIG. 10 is a flowchart of an operation signal correction routine.
  • FIG. 11 is a block diagram of a drive control system of the hybrid shovel.
  • FIG. 12 is an explanatory diagram showing a state of charge / discharge of a battery when working in a hybrid system. BEST MODE FOR CARRYING OUT THE INVENTION
  • a hybrid shovel which is a hybrid construction machine according to the first embodiment, includes a lower traveling body 1 and an upper revolving body 2 that is rotatably provided at the center of the upper surface of the lower traveling body 1. And an excavation attachment 3 provided at the front of the upper revolving superstructure 2.
  • the undercarriage 1 includes a pair of crawler frames 4 arranged in parallel at both ends, a crawler frame 5 rotatably provided around each of the crawler frames 4, and a ground 5 that comes into contact with the ground in a planar manner. It has a speed reducer 35 5, 36 and a motor 6, 7 for rotationally driving the roller 5.
  • the lower traveling body 1 configured as described above rotates the crawlers 5 individually in the forward and reverse directions by the electric motors 6 and 7 via the speed reducers 35 and 36, respectively. Move forward, backward, rotate, and turn with respect to the ground.
  • a turning shaft 8 a is provided orthogonal to the lower traveling body 1.
  • a revolving frame 8 that forms a part of the upper revolving unit 2 is rotatably provided above the revolving shaft 8a.
  • a cabin 9 that serves as the operator's cockpit and a protective force A machine housing part 41 covered with a bar 40 is provided, and one end of the boom 17 and the boom cylinder 18 of the above-mentioned excavation attachment 3 is provided rotatably in the vertical direction. I have.
  • a swivel motor 13 and a speed reducer 14 are provided in the machine accommodating section 41, and an integrated boom actuator that integrally includes a boom motor 15 and a boom pump 16 is provided. A1 is provided.
  • the turning electric motor 13 drives the turning frame 8 to turn around the turning axis 8 a through the speed reducer 14.
  • the integrated actuator for boom A 1 is connected to the above-mentioned boom cylinder 18 via a hydraulic pipe (not shown), and the boom cylinder 18 is moved forward and backward by hydraulic pressure to move the boom cylinder 18. Move the tip side (other end side) of 7 up and down.
  • An arm 19 is rotatably provided at the tip of the boom 17. At the tip of the arm 19, a bucket 21 is provided rotatably.
  • each of these cylinders 20 and 22 is provided with an integral actuator A2 for the engine and an integral actuator A3 for the bucket, and each of the actuators A2 and -25 and pump 24, 26 are integrated. Then, each actuator 2'3 rotates the arm 19 and the bucket 21 in the vertical direction by moving the cylinder rod of the cylinders 20 and 22 forward and backward by hydraulic pressure.
  • the engine housing 10 and the AC power according to the rotation speed (engine output) of the engine 10 are provided in the above-mentioned machine housing section 41.
  • An auxiliary battery 42 and the like used for emergency operation are provided.
  • a secondary battery such as a lead storage battery or a nickel-metal hydride storage battery, which can be repeatedly charged and discharged by electric power, is used as the two batteries 12 and 42 described above.
  • the generator 11 is connected to a motor controller 37 of a control device as shown in FIG.
  • the motor controller 37 is connected to the various electric motors 6, 7, 13, 15, 15, 23, 25 described above, and also connected to the main battery 12 and the auxiliary battery 42 via the switching switch 43.
  • the switching switch 43 has three switch units 43a to 43c that can be switched in two directions, and the two switch units 43a and 43b are connected to the main battery 12. It is used for switching between charging and stopping, and the remaining one switch section 43c is used for switching between discharging from the main battery 12 and discharging from the auxiliary battery 42.
  • the switching switch 43 is set so that all the switches 43a to 43c connect the main battery 12 and the motor controller 37 during normal operation.
  • the switching operation of the switching switches 43 may be performed manually by an operator or automatically when an abnormality such as a decrease in power is detected.
  • the motor controller 37 described above has a power conversion function (inverter function) that converts AC power from the generator 11 into DC power and converts DC power from the batteries 12 and 42 into AC power.
  • Motor operation function that outputs AC power obtained by, for example, converting power from the main battery 12 based on operation signals from the operation levers 45 to each of the motors 6, 7, 13, 13, 15, 23, 25
  • the normal charging function that charges the power generated by the generator 11 to the main battery 12, and the main battery uses the regenerative power generated by each motor 6 ⁇ 7 ⁇ 13 ⁇ 15 ⁇ 2 3 ⁇ 25
  • the functions of detecting the amount of charge of main battery 12 and the amount of power generated by generator 11 are included. It is arbitrarily executed based on the charge amount of the main battery 12 and the power generation amount of the generator 11.
  • the motor controller 37 has a battery switching detection unit 52 and an actuator switching unit 53.
  • a switching switch 43 is connected to the battery switching detection section 52. The switching state of each of the switch sections 43a to 43c in the switching switch 43 is detected, and an actuator switching section is provided as a switching detection signal. 5 Output to 3.
  • the actuator switching unit 53 is connected to an operation lever 45 and an actuator selection switch 54 in addition to the battery switching detection unit 52 described above.
  • the operation lever 45 and the actuator selection switch 54 are provided in the cabin 9 shown in FIG. 3, and the operation lever 45 outputs an operation signal corresponding to the operation amount by the operator.
  • the actuator selection switch 54 is used when an operator designates a motor 6, 7, 13, 15, 15, 23, 25 that can be operated by the power of the auxiliary battery 42.
  • the actuator switching section 53 to which each signal is input from each section 45 52 52 is connected to the battery switching detection section 52 while executing the actuator selection routine shown in FIG.
  • the switching detection signal from the motor is monitored, and when it is recognized that the motor is connected to the main battery 12 based on this signal, all the motors 6, 7, 13, 13 and 15
  • the specific motor selected by the actuator selection switch 54, 6, 7, 1 3 ⁇ 1 5-2 3- Make only 2 5 operational.
  • the operation of the hybrid shovel will be described.
  • the motor controller 37 checks the charge amount of the main battery 12, and if the charge amount is insufficient, converts the AC power generated by the generator 11 rotated by the engine 1 ⁇ into DC power. Convert and charge main battery 12. If the amount of charge in the main battery 12 is extremely insufficient, the output (rotational speed) of the engine 10 is increased to increase the amount of power generated by the generator 11, so that the main battery 12 Charge the battery as soon as possible.
  • the output (rotational speed) of the engine 10 is set to the lowest idling state or the engine 10 is stopped, so that the Stands by until an operation signal is input from the operation lever 45 while preventing charging.
  • the operator switches the connection state of the switching switch 43 from the main battery 12 to the auxiliary battery 42 so that the auxiliary power of the auxiliary battery 42 is Electric motors 6 ⁇ 7 ⁇ 13 ⁇ 15 ⁇ 23 ⁇ 25 can be supplied.
  • the battery switching detection section 52 that has detected this connection state outputs to the actuator switching section 53 a switching detection signal indicating that the connection state to the auxiliary battery 42 is established.
  • the actuator switching unit 53 recognizes that it is connected to the auxiliary battery 42 based on the switching detection signal (S l, NO), it takes in the selection signal from the actuator selector switch 54 and selects this selection.
  • the arm 19 is selected (S5, YES)
  • the arm Only the motor 23 is enabled (S6).
  • the bucket 21 has not been selected (S5, NO)
  • the hybrid shovel uses the electric power of the generator 11 driven by the engine 10, the electric power of the main battery 12 capable of charging the electric power of the generator 11, and the electric power of the auxiliary battery 42.
  • the generator 11 and the main battery 12 operates the motor 15 at normal power, while the motor 15 operates at normal power.
  • the switching switch 43 for switching the motors 15 and the like to operate with the auxiliary power of the auxiliary battery 42 is provided. It is configured to have.
  • the switching switch 43 assists.
  • the emergency operation can be performed by operating the motors 15 and the like with the auxiliary power from the auxiliary battery 42, so that the construction machine can be moved to a safe place or placed in a safe posture. After returning and ensuring safety, the faulty part can be repaired.
  • the hybrid shovel is configured to have an actuator selection switch 54 that can select a motor 15 or the like that operates with auxiliary power during an emergency operation.
  • an actuator selection switch 54 that can select a motor 15 or the like that operates with auxiliary power during an emergency operation.
  • the motors 15 and the like selected by the actuator selector switch 54 are operated by the auxiliary power, so that the capacity is smaller than that of the main battery 12 which needs to operate many motors 15 and the like at the same time.
  • An auxiliary battery 42 can be employed.
  • the size of the auxiliary battery 42 can be reduced, so that an increase in the size of the shovel due to the mounting of the auxiliary battery 42 can be minimized.
  • safety can be further improved.
  • the configuration of this embodiment and the configurations of the second and third embodiments described later are preferably applied to a hybrid shovel having various postures such as raising the boom 17 and the arm 19.
  • the present invention is not limited to this, and can be applied to all hybrid construction machines such as bulldozers and cranes.
  • FIGS. 3 to 8 A second embodiment of the present invention will be described below with reference to FIGS. 3 to 8.
  • the same members as those in the first embodiment are denoted by the same reference numerals. The description is omitted.
  • the hybrid shovel which is a hybrid construction machine according to the present embodiment, includes a motor controller 37 as shown in FIG.
  • An operation lever 45 provided in the cabin 9 in FIG. 3 is connected to the motor controller 37.
  • the operation lever 45 is connected to a work discriminator 46 together with the above-mentioned motor controller 37, and the work discriminator 46 discriminates a work mode based on an operation signal from the operation lever 45.
  • the work determination section 46 is connected to a generator output control section 51 which forms a part of the control device, and the generator output control section 51 executes the output change routine shown in FIG.
  • the rotation speed of the engine 10 is controlled by governor control or the like so that the power output of the generator 11 corresponding to the work mode is obtained.
  • the generator output control section 51 may control the generator 11 by field current control or the like instead of controlling the engine 10.
  • the generator 11 that outputs electric power according to the operation mode in the operation determination section 46 is connected to the motor controller 37.
  • Other configurations are the same as those of the first embodiment.
  • the operator in the cabin 9 shown in FIG. 3 performs a start operation such as turning the operation key to turn on the power to the motor controller 37.
  • the motor controller 37 first checks the charge amount of the main battery 12, and if the charge amount is insufficient, the generator 11 rotated by the engine 10.
  • the main battery 12 is charged by converting the AC power generated in step 1 into DC power. If the amount of charge in the main battery 12 is extremely insufficient, the output (rotational speed) of the engine 10 is increased to increase the amount of power generated by the generator 11 so that the main battery 1 Immediately charge 2.
  • the output (rotational speed) of the engine 10 is set to the lowest idling state or the engine 10 is stopped, so that the Wait until an operation signal is input from the operation lever 45 while preventing charging.
  • an operation signal corresponding to the operation amount is output from the operation lever 45.
  • the operation signal is input to the motor controller 37 and the work determination unit 46, respectively.
  • the motor controller 37 the electric power discharged from the main battery 12 is operated so as to operate each of the motors 6-7-13-1-15-23-3-25 with an operation amount corresponding to the operation signal.
  • the work discriminating section 46 extracts the feature of the operation signal and discriminates the work.
  • a work discrimination method for example, a method disclosed in Japanese Patent Application Laid-Open No. Hei 9-212770 is used.
  • the work mode recognized by the work determination unit 46 as described above is output as a signal to the generator output control unit 51.
  • the generator output control unit 51 is executing an output change routine, and by taking in a work mode signal (work content) from the work determination unit 46, the The work mode (work content) included is recognized (S21).
  • the output data of the generator 11 corresponding to the recognized work mode is selected from the relationship between the work mode stored in the storage unit and the output of the generator 11, as shown in Fig. 7. I do. For example, when it is recognized that the operation mode is "baraki", the output data of 4 kW set corresponding to this operation mode is selected, and the operation mode is recognized as "pressing and excavation".
  • the output data of 20 kW set according to this work mode is selected (S22). Thereafter, the rotational speed of the engine 10 corresponding to the selected output data is obtained, and the engine 10 is controlled so as to achieve this rotational speed (S23).
  • the work mode of “distributing” is a small work load and the amount of discharge of the main battery 12 is small, it is possible to efficiently charge the battery while avoiding excessive charging.
  • the electric power (20 kW) generated by the generator 11 becomes large. Is a large workload, and the amount of discharge of the main battery 12 is large, so that efficient charging can be performed while avoiding excessive discharge.
  • the hybrid shovel can charge the main battery 12 with the power of the generator 11 driven by the engine 10 and at least the main battery 12 as shown in FIG.
  • a control device is provided which can be operated by operating the motor 6 and the like with the electric power discharged from the generator.
  • the control device controls the electric power output from the generator 11 according to the work load in the work mode (work content).
  • a generator output control unit 51 for changing the power.
  • control device determines an operation lever (operation content) based on an operation signal from the operation lever 45 operated by the operator, and outputs the operation mode (operation content) to the generator output control unit 51. And a work discriminator 46 for outputting. According to this configuration, since the work mode can be determined and recognized based on the operation signal of the operation lever 45, it is possible to save the labor for the operator to specify the work mode. .
  • the operation mode is recognized by the operation determining section 46 based on the operation signal of the operation lever 45.
  • the force is not limited to this. That is, as shown in FIG. 8, the control device includes a work mode changeover switch 49 capable of designating a work mode by an operator and a work mode designated by a work mode changeover switch 49 (work contents). ) May be configured to include a switching switch detection section 50 for detecting the output of the power supply and outputting the detected output to the generator output control section 51. According to this configuration, the work mode specified by the work mode switching switch 49 can be recognized with high reliability, so that excessive charging and discharging of the main battery 12 due to erroneous recognition is reliably prevented. can do.
  • a hybrid shovel which is a hybrid construction machine according to the present embodiment, includes a motor controller 37 as shown in FIG.
  • An operation signal system 44 constituting a part of the control device is connected to the motor controller 37.
  • the operation signal system 44 includes an operation lever 45 provided in the cabin 9 in FIG. 3 and a work discriminator 4 for discriminating a work mode (work content) based on an operation signal from the operation lever 45. 6 and a work speed limiter 4 7.
  • the work speed limiter 47 is connected to the operation lever 45 and the work discriminator 46 and is a power detector that detects the power consumption of the electric motors 6, 7, 13, 15, 23, 25 It is connected to 4 8 mag.
  • the work speed limiter 47 executes the operation signal correction routine shown in FIG. 10, and operates according to the operation signals, work mode signals, power consumption signals, etc. input from the respective parts 46, 45, 48. Based on the operation mode, the operation signal is output to the motor controller 37 under a predetermined condition so as to prevent the main battery 12 from being over-discharged. Further, the work speed limiter 47 inputs a power generation amount detection signal of the generator 11 from the motor controller 37. Other configurations are the same as those of the first embodiment.
  • the motor controller 37 When the operator in the cabin 9 shown in FIG. 3 performs a start operation such as rotating the operation key, the motor controller 37 is turned on. When the engine 10 is operated, the motor controller 37 first checks the charge amount of the main battery 12, and if the charge amount is insufficient, the engine ends. The main battery 12 is charged by converting the AC power generated by the generator 11 rotated and driven by the motor 10 into DC power. If the amount of charge in the main battery 12 is extremely insufficient, the output (rotational speed) of the engine 10 is increased to increase the amount of power generated by the generator 11, so that the main battery 12 Charge the battery as soon as possible.
  • the output (rotational speed) of the engine 10 is set to the lowest idling state or the engine 10 is stopped, so that the Waits for operation signal input from operation signal system 4 while preventing charging.
  • an operation signal corresponding to the operation amount is output from the operation lever 45.
  • the operation signal is input to the work discriminator 46 and the work speed limiter 47, respectively.
  • the work discriminating section 46 extracts the feature of the operation signal and discriminates the work.
  • a work discrimination method for example, a method disclosed in Japanese Patent Application Laid-Open No. Hei 9-212770 is used.
  • the work mode recognized by the work determination unit 46 as described above is output to the work speed limiting unit 47.
  • the work speed limiter 47 executes an operation signal correction routine, and when an operation signal is input from the operation lever 45, the operation signal is directly transmitted to the motor controller. Output to Troller 37. Then, the motor controller 37 in the standby state is operated with the operation amount of the operation signal to operate the electric motor 6. 7 .13 .15.2. (S 31).
  • the engine 10 is in a stopped state or an idling state based on, for example, the power generation amount of the generator 11 (S32). If the engine 10 is driving the generator 11 at a sufficient rotational speed (S32, NO), by using the large electric power from the generator 11 and the electric power from the main battery 12, the work in all the work modes can be performed without limiting the speed. Then, the operation signal is output to the motor controller 37 as it is to continue the operation. On the other hand, when the engine 10 is stopped or idling (S32, YES), the power discharged from the main battery 12 until the engine 10 reaches the predetermined rotation speed is reduced. Since the main battery 12 is mainly used, operations after S33 are executed so as to prevent deterioration due to excessive discharge of the main battery 12.
  • the power consumption of the motor 6, 7, 13, 13, 15, 23, 25 is obtained via the power detector 48 (S33), and the total value of the power consumption is calculated (S3).
  • the set value preset to prevent excessive discharge of the main battery 12 is compared with the above total value, and it is determined whether the total value is equal to or more than the set value (S35). . If the total value is not equal to or greater than the set value (S35, NO), even if the motors 6, 7, 13, 15, 15, 23, 25 are operated with the current operation signal and the work is continued, the main battery Since it can be determined that there is no damage due to the excessive discharge of 12, the operation is re-executed from S31 and the work is continued at the work speed corresponding to the operation signal of the operation lever 45.
  • the limit value corresponding to the work mode is a reference discharge amount that does not degrade the main battery 12 because load changes and load levels vary greatly depending on the work mode (work content). It is a value that is individually set according to each work mode. For example, in the case of a large load fluctuation such as running or excavation or a work mode with a load level, the rotation speed (work speed) of the motor 6, 7, 13, 13, 15-23-25 is set to be larger than that in normal operation. Decline In the case of small load fluctuations such as lifting work and load-level work mode, the motor is controlled by the motor 6 ⁇ 7 ⁇ 1 3 ⁇ 1 5 ⁇ 2 3
  • a limit value is set so that the rotation speed (working speed) of -25 is slightly lower than in normal operation (S37).
  • the operation signal from the operation lever 45 is fetched as shown in FIG. 9 (S38), and the limit value is set as the upper limit. After correcting so as to be the operation amount, the operation signal is output to the motor controller 37 (S39).
  • the limit value of each work mode is set based on the reference discharge amount, in the case of the work mode with a small load, work can be performed at almost the same work speed as the normal work speed.
  • the hybrid shovel is capable of charging the main battery 12 with the power of the generator 11 driven by the engine 10 and the power of at least one of the generator 11 and the main battery 12.
  • the control device is provided with a control device that can operate by operating the motor 6 and the like, and the control device is configured to control the power of the generator 11 to a predetermined value or less that may cause overdischarge of the main battery 12.
  • a work speed limiter 47 that limits the work speed according to the work mode (work content) is used so that the power consumption of the electric motor 6 or the like that does not cause overdischarge of the main battery 12 is achieved. is there.
  • the work speed for each work should be set to the maximum value that does not cause overdischarge. Can be. Therefore, in the case of work with a small work load, the work can be performed at almost the same work speed as the normal work speed. You can get higher working efficiency, As a result, it is possible to minimize a decrease in work efficiency due to the limitation of the work speed.
  • control device has an operation lever 45 operated by an operator, and a work determination unit 46 for determining a work mode (work content) based on an operation signal from the operation lever 45.
  • a work mode work content
  • the work mode can be determined and recognized based on the operation signal of the operation lever 45, the labor for the operator to specify the work mode can be saved. .
  • the work determination unit 46 recognizes the work mode based on the operation signal of the operation lever 45, but is not limited to this. That is, as shown in FIG. 11, the control device detects a work mode switching switch 49 capable of designating a work mode by an operator and a work mode specified by the switch 49, thereby detecting It may be configured to have a switching switch detecting section 50 that recognizes the work mode (work content) and outputs the work mode (work content) to the motor speed correction section 47. In this case, since the operation mode can be recognized with high reliability, it is possible to reliably prevent the main battery 12 from being excessively discharged due to erroneous recognition.
  • S33, S34 and S35 can be omitted in the flow of FIG. That is, when the amount of power generated by the generator 11 becomes equal to or less than the predetermined value, it is also possible to always operate the function of limiting the speed in accordance with the work contents of S36 to S40. Even with such a configuration, when the amount of power generated by the generator 11 becomes equal to or less than the predetermined value, the power consumption is suppressed by the speed limitation according to the work content, so the degree of the speed limitation must be appropriately set. Thus, overdischarge of the battery can be prevented. Also, with such a configuration, the power detector 4 8 By eliminating the need for, the control system can be simplified. Industrial applicability
  • the present invention is suitable for use in a hybrid construction machine that requires emergency operation of an electric motor to ensure safety when power cannot be obtained from a generator / battery due to a failure or the like. I have. Also, when performing various tasks with different loads, prevent deterioration due to excessive battery charge and discharge, and minimize deterioration in work efficiency while preventing deterioration due to excessive battery discharge. It is suitable for use in a control device of a hybrid construction machine that needs to be installed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Operation Control Of Excavators (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Description

明 細 書 ハイプリッド建設機械およびその制御装置 技術分野
本発明は、 エンジンとバッテリとを組み合わせて各種の作業を行うハ イブリツドショベル等のハイブリッド建設機械およびその制御装置に関 するものである。 背景技術
ショベル等の建設機械は、 一般に、 エンジンにより油圧ポンプを駆動 し、 その油圧によってァクチユエ一タを駆動するように構成されている 力 この構成では、 作業時における大きな負荷変動に対応するようにェ ンジン出力を大幅に変動させながら作業を行う必要があるため、 燃費効 率が悪いと共に、 騒音や排気ガス等の環境上の点でも問題がある。 そこで、 近年においては、 エンジンに電動機や発電機を連結し、 ェン ジン出力の一部や全部を電力に変換し、 軽負荷の作業時に余った電力を バッテリに充電しておく一方、 重負荷の作業時にバッテリから電力を取 り出して重負荷の作業に利用するというハイプリッド建設機械およびそ の制御装置が開発や提案されている (実開平 5— 4 8 5 0 1号公報ゃ特 開平 1 0— 4 2 5 8 7号公報等) 。 そして、 この構成であれば、 例えば 第 1 2図に示すように、 作業負荷 (作業エネルギー) の変動分をバッテ リの充放電で平滑化することができるため、 作業負荷 (作業エネルギー ) が大幅に変動した場合であっても、 エンジン出力の変動を最小限に抑 制することができ、 結果として良好な燃費効率、 低騒音化および排気ガ スの低減化を実現することが可能になっている。 しかしながら、 上記従来の構成では、 エンジンや発電機、 バッテリ等 が故障することによって、 発電機ゃバッテリから電力を得ることができ なくなると、 電動機を作動させることができないため、 以後の動作を行 うことができない。 従って、 例えばショベルがブームを上昇したときに 故障した場合には、 ブームが上方で停止した状態となり、 この状態が修 理を完了するまで放置されることになるため、 安全上の問題が発生する また、 建設機械は、 例えばショベルの作業にあっては堀削や水平引き 均し、 土羽打ち、 ばらまき等の作業が存在するように、 作業負荷が大幅 に異なる各種の作業を行う必要がある。 従って、 作業の種類とエンジン 出力とバッテリの充電状態との関係を考慮しないと、 エネルギーの無駄 やバッテリの劣化、 作業効率の低下等の問題が発生する。
そこで、 本発明は、 故障等により発電機ゃバッテリから電力を得るこ とができくなつたときに、 電動機を緊急に作動させて安全性を確保する ことができるハイプリッド建設機械を提供することを第 1の目的とする また、 本発明は、 負荷の異なる各種の作業を行う場合に、 バッテリの 過剰な充電および放電による劣化を防止することができるハイブリッド 建設機械の制御装置を提供することを第 2の目的とする。
さらに、 本発明は、 バッテリの過剰な放電による劣化を防止しつつ作 業効率の低下を最小限に抑制することができるハイブリッド建設機械の 制御装置を提供することを第 3の目的とする。 発明の開示
本発明は、 エンジンで駆動される発電機の電力と、 該発電機の電力を 充電可能な主バッテリの電力と、 捕助バッテリの電力とで電動機を作動 可能にされたハイプリッド建設機械であって、 通常運転時には前記発電 機および主バッテリの少なくとも一方の通常電力により前記電動機を作 動させる一方、 前記通常電力で電動機を作動できない緊急運転時には前 記補助バッテリの補助電力で前記電動機を作動させるように切り換え可 能な切換スィツチを有している。
上記の構成によれば、 通常運転時に発電機や主バッテリ等の故障によ り電動機に対して通常電力を供給することができなくなったときに、 切 換スィツチにより捕助バッテリに切り換えることによって、 捕助バッテ リからの補助電力で電動機を作動させて緊急運転することができるため 、 建設機械を安全な場所に移動したり、 安全な姿勢に復帰して安全性を 確保した後に、 故障箇所の修理を行うことができる。
さらに、 本発明のハイブリッド建設機械は、 前記緊急運転時に、 前記 補助電力で作動する電動機を選択可能なァクチユエータ選択スィッチを 有している。 これにより、 ァクチユエータ選択スィッチで選択された電 動機のみが補助電力で作動するため、 多くの電動機を同時に作動させる 必要のある主バッテリよりも小さな容量の補助バッテリを採用すること ができる。 従って、 補助バッテリを小型化することができるため、 補助 バッテリを搭載することによる建設機械の大型化を必要最小限に抑制す ることができる。 さらに、 誤操作による意図しない動作を防止すること によって、 より安全性を向上させることができる。
さらに、 本発明のハイプリッド建設機械は、 ハイプリッドショベルで ある。 これにより、 ハイブリッドショベルが例えばブームやアームを上 昇させる等の各種の姿勢をとるため、 このような姿勢で停止したときに 好適に適用することができる。
また、 本発明は、 エンジンで駆動される発電機の電力によりバッテリ を充電可能であると共に、 少なくともバッテリから放電される電力によ り電動機を作動させることにより作業可能なハイブリッド建設機械の制 御装置であって、 作業内容に応じて前記発電機から出力される電力を変 更する発電機出力制御部を有している。
上記の構成によれば、 作業内容に応じて発電機から出力される電力を 変更すると、 大きな作業負荷のときには大きな電力が発電機から出力さ れ、 小さな作業負荷のときには小さなで電力が発電機から出力可能とな る。 また、 作業負荷は、 電動機の消費電力に対して比例関係にあるため 、 大きな作業負荷のときには大きな電力がバッテリから放電され、 小さ な作業負荷のときには小さなで電力がバッテリから放電される。 従って 、 所定の作業内容で作業が行われると、 負荷に応じてバッテリ力 放電 される電力が増減することになるが、 負荷に応じて発電機から出力され る電力も増減され、 結果的にバッテリへの充電量も増減されるため、 バ ッテリが過剰に放電や充電されて劣化することはなレ、。
さらに、 本発明の制御装置は、 オペレータにより操作される操作レバ —と、 前記操作レバーからの操作信号に基づいて、 前記作業内容を判別 して前記発電機出力制御部に出力する作業判別部とを有している。 これ により、 操作レバ一の操作信号を基にして作業内容を判別して認識する ことができるため、 オペレータが作業内容を指定する手間を省力するこ とができる。
さらに、 本発明の制御装置は、 オペレータにより作業内容を指定可能 な作業内容切換えスィツチと、 前記作業内容切替えスィツチで指定され た作業内容を検出して前記発電機出力制御部に出力する切換えスィツチ 検出部とを有している。 これにより、 作業内容切替えスィッチに指定さ れた作業内容を高い信頼性で認識することができるため、 誤認識による バッテリの過剰な充電および放電を確実に防止することができる。 また、 本発明は、 エンジンで駆動される発電機の電力によりバッテリ を充電可能であると共に、 これら発電機およびバッテリの少なくとも一 方の電力により電動機を作動させることにより作業可能なハイプリッド 建設機械の制御装置であって、 発電機の電力が所定値以下のときに、 前 記バッテリの過放電を生じさせない前記電動機の消費電力となるように 作業内容に応じて作業速度を制限する作業速度制限部を有している。 上記の構成によれば、 エンジンが停止状態であったり、 アイ ドリング状 態である場合のように、 エンジンで駆動される発電機の電力が所定値以 下であると、 エンジンが十分に回転して発電機から十分な電力が得られ るまでに所定の遅れ時間が発生する。 そして、 この遅れ時間の期間にお いては、 バッテリが放電した電力を主に用いて各作業内容の作業が行わ れることになる。 従って、 大きな作業負荷で作業を行う場合、 通常の作 業速度で作業と行うと、 バッテリが過剰に放電して劣化する原因になる が、 本発明の構成においては、 作業速度制限部が作業内容に応じて作業 速度を制限することによりバッテリの過放電を防止するため、 バッテリ が過放電により劣化することはない。
さらに、 過放電を生じさせない電動機の消費電力となるように、 作業 内容に応じて作業速度を制限しているため、 各作業内容の作業速度を過 放電を生じさせない範囲の最大値に設定することができる。 従って、 小 さな作業負荷の作業内容の場合には、 通常の作業速度と殆ど同一の作業 速度で作業を行うことができるため、 従来のように全ての作業内容に対 して一律に作業速度を制限する場合よりも、 高い作業効率を得ることが でき、 結果として作業速度を制限することによる作業効率の低下を最小 限に抑制することができる。
さらに、 本発明の制御装置は、 オペレータにより操作される操作レバ 一と、 前記操作レバーからの操作信号に基づいて、 前記作業内容を判別 して前記作業速度制限部に出力する作業判別部とを有している。 これに より、 操作レバ一の操作信号を基にして作業内容を判別して認識するこ とができるため、 オペレータが作業内容を指定する手間を省力すること ができる。
さらに、 本発明の制御装置は、 オペレータにより前記作業内容を指定 可能な作業内容切換えスィツチと、 前記作業内容切替えスィツチで指定 された作業内容を検出して前記作業速度制限部に出力する切換えスィッ チ検出部とを有している。 これにより、 作業内容切替えスィッチに指定 された作業内容を高い信頼性で認識することができるため、 誤認識によ る主バッテリの過剰な放電を確実に防止することができる。
さらに、 本発明の制御装置を備えたハイブリッド建設機械は、 ハイブ リツドショベルである。 これにより、 大きな変動幅の作業負荷を有した 各種の作業内容を実施するハイプリッ ドショベルに対して好適に適用す ることができる。 図面の簡単な説明
第 1図は、 ハイブリッドショベルの制御装置のブロック図である。 第 2図は、 ァクチユエータ選択ルーチンのフローチヤ一トである。 第 3図は、 ハイブリ ッ ドショベルの全体概略側面図である。
第 4図は、 ハイブリッドショベルの制御装置のブロック図である。 第 5図は、 出力変更ル一チンのフローチャートである。
第 6図は、 各作業の負荷特性を示す説明図である。
第 7図は、 作業モードと発電機出力との関係を示す説明図である。 第 8図は、 ハイブリッドショベルの駆動制御系のブロック図である。 第 9図は、 ハイブリ ッ ドショベルの制御装置のプロック図である。 第 1 0図は、 操作信号補正ルーチンのフローチャートである。 第 1 1図は、 ハイブリッドショベルの駆動制御系のブロック図である 第 1 2図は、 ハイブリツド方式で作業した場合におけるバッテリの充 放電の状態を示す説明図である。 発明を実施するための最良の形態
〔実施形態 1〕
本発明の第 1の実施の形態を第 1図ないし第 3図に基づいて以下に説 明する。 尚、 以降の説明においては、 シリーズ型ハイブリッド方式を採 用したハイブリッドショベルについて説明するが、 パラレル型ハイブリ ッ ド方式を採用したハイブリッ ドショベルに適用することもできる。 第 1の実施の形態に係るハイプリッド建設機械であるハイプリッドシ ョベルは、 第 3図に示すように、 下部走行体 1と、 下部走行体 1の上面 中心部に旋回可能に設けられた上部旋回体 2と、 上部旋回体 2の前部に 設けられた堀削アタッチメント 3とを有している。 下部走行体 1は、 両 端部に平行配置された一対のクローラフレーム 4と、 各クローラフレ一 ム 4の周囲に回転可能に設けられ、 地面に対して面状に接地するクロー ラ 5と、 クロ一ラ 5を回転駆動する減速機 3 5 · 3 6および電動機 6 · 7とを有している。 そして、 このように構成された下部走行体 1は、 各 クローラ 5を減速機 3 5 · 3 6を介して電動機 6 · 7により個別に正方 向および逆方向に回転駆動することによって、 ショベル全体を地面に対 して前進や後退、 回転、 旋回させる。
上記の下部走行体 1の上面中心部には、 旋回軸 8 aが下部走行体 1に 対して直交して設けられている。 旋回軸 8 aの上部には、 上部旋回体 2 の一部を構成する旋回フレーム 8が回動自在に設けられている。 旋回フ レーム 8の上面には、 オペレータの操縦室となるキャビン 9と、 保護力 バー 4 0で覆われた機械収容部 4 1とが設けられていると共に、 上述の 堀削アタッチメント 3のブーム 1 7およびブ一ムシリンダ 1 8の一端部 が上下方向に回動自在に設けられている。
機械収容部 4 1内には、 旋回用電動機 1 3および減速機 1 4が設けら れていると共に、 ブーム用電動機 1 5とブームポンプ 1 6とを一体化し て備えたブーム用一体型ァクチユエ一タ A 1が設けられている。 旋回用 電動機 1 3は、 減速機 1 4を介して旋回フレーム 8を旋回軸 8 aを旋回 中心として旋回駆動する。 また、 ブーム用一体型ァクチユエータ A 1は 、 上述のブ一ムシリンダ 1 8に図示しない油圧配管を介して接続されて おり、 ブームシリンダ 1 8のシリンダロッドを油圧により進退移動させ ることによって、 ブーム 1 7の先端側 (他端側) を上下動させる。 上記のブーム 1 7の先端部には、 アーム 1 9が回動自在に設けられて いる。 アーム 1 9の先端部には、 バケツト 2 1が回動自在に設けられて いる。 また、 ブーム 1 7とアーム 1 9とは、 アームシリンダ 2 0を介し て連結されており、 アーム 1 9とバケツト 2 1とは、 バケツトシリンダ 2 2を介して連結されている。 これらのシリンダ 2 0 · 2 2には、 了一 ム用一体型ァクチユエ一タ A 2とバケツト用一体型ァクチユエータ A 3 とがそれぞれ設けられており、 各ァクチユエータ A 2 · Α 3は、 電動機 2 3 - 2 5とポンプ 2 4 · 2 6とを一体化して構成されている。 そして 、 各ァクチユエ一タ Α 2 ' 3は、 シリンダ 2 0 · 2 2のシリンダロッ ドを油圧により進退移動させることによって、 アーム 1 9およびバケツ ト 2 1をそれぞれ上下方向に回動させる。
また、 上述の機械収容部 4 1内には、 旋回用電動機 1 3やブーム用一 体型ァクチユエータ A 1の他に、 エンジン 1 0や、 エンジン 1 0の回転 速度 (エンジン出力) に応じた交流電力を生成する発電機 1 1、 通常運 転時に使用される主バッテリ 1 2、 主バッテリ 1 2が使用不能になった 緊急運転時に使用される補助バッテリ 4 2等が設けられている。 尚、 上 記の両バッテリ 1 2 · 4 2には、 鉛蓄電池やニッケル水素蓄電池のよう な電力を繰り返して充放電可能な二次電池が使用される。
上記の発電機 1 1は、 第 1図に示すように、 制御装置のモータコント ローラ 3 7に接続されている。 モータコントローラ 3 7は、 上述の各種 の電動機 6 · 7 · 1 3 · 1 5 · 2 3 · 2 5に接続されていると共に、 主 バッテリ 1 2および補助バッテリ 42に切換スィツチ 4 3を介して接続 されている。 切換スィッチ 4 3は、 二方向に連動して切換可能なスイツ チ部 4 3 a〜43 cを 3系統備えており、 2系統のスィツチ部 4 3 a · 4 3 bは、 主バッテリ 1 2に対する充電およびその停止の切換えに使用 され、 残りの 1系統のスィッチ部 4 3 cは、 主バッテリ 1 2からの放電 と捕助バッテリ 4 2からの放電との切換えに使用される。 そして、 切換 スィッチ 4 3は、 通常運転時において全スィツチ部 4 3 a〜4 3 cが主 バッテリ 1 2とモータコントローラ 3 7とを接続状態にするように設定 されており、 緊急運転時にスィツチ部 4 3 a - 4 3 bが主バッテリ 1 2 から切り離され、 スィツチ部 4 3 cが捕助バッテリ 4 2とモータコント ローラ 3 7とを接続状態にするように切り換えられる。 尚、 切換スイツ チ 4 3の切換え操作は、 オペレータにより手動で行われても良いし、 電 力低下等の異常を検知したときに自動で行われても良い。
上記のモータコントロ一ラ 3 7は、 発電機 1 1からの交流電力を直流 電力に変換したり、 バッテリ 1 2 · 4 2からの直流電力を交流電力に変 換する電力変換機能 (インバータ機能) や、 操作レバー 4 5からの操作 信号に基づいて例えば主バッテリ 1 2から電力変換して得た交流電力を 各電動機 6 · 7 · 1 3 · 1 5 · 2 3 · 25に出力する電動機作動機能、 発電機 1 1で生成された電力を主バッテリ 1 2に充電する通常充電機能 、 各電動機 6 · 7 · 1 3 · 1 5 · 2 3 · 2 5で生じた回生電力を主バッ テリ 1 2に充電する回生充電機能等の諸制御機能を備えると共に、 主バ ッテリ 1 2の充電量や発電機 1 1の発電量等を検出する機能を含んでお り、 これら諸制御機能を主バッテリ 1 2の充電量や発電機 1 1の発電量 等に基づいて任意に実行する。
また、 モータコントローラ 3 7は、 ノくッテリ切換検出部 5 2とァクチ ユエータ切換部 5 3とを有している。 バッテリ切換え検出部 5 2には、 切換スィツチ 4 3が接続されており、 切換スィツチ 4 3における各スィ ツチ部 4 3 a〜4 3 cの切換え状態を検出して切換え検出信号としてァ クチユエータ切換部 5 3に出力する。 また、 ァクチユエータ切換部 53 には、 上記のバッテリ切換検出部 5 2の他、 操作レバー 4 5およびァク チユエータ選択スィツチ 54が接続されている。 これらの操作レバ一 4 5およびァクチユエ一タ選択スィツチ 54は、 第 3図のキャビン 9内に 設けられており、 操作レバー 4 5は、 オペレータによる操作量に応じた 操作信号を出力する。 また、 ァクチユエータ選択スィッチ 54は、 補助 バッテリ 42の電力により作動可能にする電動機 6 · 7 · 1 3 · 1 5 · 2 3 - 2 5をオペレータが指定する際に使用される。
上記のようにして各部 4 5 · 5 2 · 54から各信号が入力されるァク チユエ一タ切換部 5 3は、 第 2図のァクチユエ一タ選択ルーチンを実行 しながらバッテリ切換検出部 5 2からの切換え検出信号を監視しており 、 この信号を基にして主バッテリ 1 2への接続状態であると認識したと きに、 全ての電動機 6 · 7 · 1 3 · 1 5 · 2 3 · 2 5を作動可能にする 一方、 補助バッテリ 4 2への接続状態であると認識したときに、 ァクチ ユエータ選択スィッチ 54で選択された特定の電動機 6 · 7 · 1 3 ■ 1 5 - 2 3 - 2 5のみを作動可能にする。
上記の構成において、 ハイブリッドショベルの動作について説明する 第 3図のキヤビン 9内のオペレータが運転キーを回動させる等の始動 操作を行うことによって、 モ一タコントロ一ラ 3 7に電源が投入される と共にエンジン 1 0が運転されると、 モータコントロ一ラ 37は、 先ず 、 主バッテリ 1 2の充電量を確認し、 充電量が不十分であれば、 ェンジ ン 1 ◦により回転駆動される発電機 1 1で生成された交流電力を直流電 力に変換して主バッテリ 1 2を充電する。 尚、 主バッテリ 1 2の充電量 が極めて不十分である場合には、 エンジン 1 0の出力 (回転速度) を増 大させて発電機 1 1の発電量を増大させることによって、 主バッテリ 1 2に対する充電を早急に行う。 一方、 主バッテリ 1 2の充電量が十分で あれば、 エンジン 1 0の出力 (回転速度) を最低のアイ ドリング状態に したり、 エンジン 1 0を停止することによって、 主バッテリ 1 2の過剰 な充電を防止しながら、 操作レバ一 45から操作信号が入力されるまで 待機する。
次に、 オペレータが所定の作業を行うように操作レバー 45を操作す ると、 操作レバー 45から操作量に応じた操作信号が出力される。 操作 信号は、 モータコントローラ 37のァクチユエータ切換部 53に入力さ れる。 この際、 ァクチユエ一タ切換部 53においては、 第 2図のァクチ ユエ一タ選択ルーチンを実行しながらバッテリ切換検出部 52からの切 換え検出信号を基にして切換スィッチ 43の接続状態 (選択状態) を監 視している (S 1) 。 そして、 主バッテリ 1 2への接続状態であると認 識した場合には (S l, YES) 、 操作レバ一 45からの操作信号に応 じた操作量でもって各電動機 6 · 7 · 1 3 · 1 5 · 23 · 25を作動さ せるように主バッテリ 1 2や発電機 1 1からの通常電力を利用して作業 を行う (S 2) 。
次に、 作業を行っているときに、 エンジン 1 0や発電機 1 1、 主バッ テリ 1 2等が故障することによって、 電動機 6 · 7 · 1 3 · 1 5 ■ 23 • 25に対して通常電力を供給することができなくなると、 作業の途中 で第 3図のブーム 1 7やアーム 1 9等が停止する。 そして、 例えばブー ム 1 7が上方に回動した姿勢で停止した場合には、 故障箇所の修理中に 突然にブーム 1 7が自重で降下するおそれがあるため、 作業員にとって 極めて危険である。 また、 傾斜地で停止した場合には、 ショベルのバラ ンスが悪レ、と共に、 傾斜した状態で修理用の工具を取り扱う必要がある ため、 作業員に大きな負担がかかる。
そこで、 作業の途中で停止した場合には、 オペレータが切換スィッチ 43の接続状態を主バッテリ 1 2から捕助バッテリ 42に切り換えるこ とによって、 補助バッテリ 42の補助電力がモータコントローラ 37を 介して各電動機 6 · 7 · 1 3 · 1 5 · 23 · 25に供給可能にされる。 切換スィツチ 43の接続状態が切り換えられると、 この接続状態を検出 したバッテリ切換検出部 52が補助バッテリ 42への接続状態であるこ とを示す切換え検出信号をァクチユエータ切換部 53に出力する。 そし て、 ァクチユエータ切換部 53が切換え検出信号を基にして補助バッテ リ 42への接続状態であると認識すると (S l, NO) 、 ァクチユエ一 タ選択スィツチ 54からの選択信号を取り込み、 この選択信号を基にし てブーム 1 7の作動が選択されているか否かを判定する (S 3) 。 例え ばブーム 1 7が上方に回動した姿勢で停止した場合において、 ォペレ一 タがァクチユエータ選択スィッチ 54における "ブーム選択" を指定す ると、 ブーム 1 7が選択されていると判定し (S 3, YES) 、 ブーム 用電動機 15のみを補助バッテリ 42からの電力で作動可能にする (S 4) 。 これにより、 オペレータが操作レバ一 45を操作することによつ て、 ブーム 1 7を安全な位置まで降下させることができると共に、 誤操 作した場合でも、 オペレータの意図しない動作でショベルで作動するこ とはない。 また、 ブーム 1 7が選択されていなければ (S 3, NO) 、 アーム 1 9が選択されているか否かを判定し (S 5) 、 選択されていれば (S 5 , YES) 、 アーム用電動機 23のみを作動可能にする (S 6) 。 一方 、 選択されていなければ (S 5, NO) 、 バケツト 21が選択されてい るか否かを判定する (S 7) 。 そして、 バケツ 卜 2 1が選択されていれ ば (S 7, YES) 、 パケット用電動機 25のみを作動可能にする一方
(S 8) 、 選択されていなければ (S 7, NO) 、 旋回動作が選択され ているか否かを判定する (S 9) 。 旋回動作が選択されていれば (S 9 , YES) 、 旋回用電動機 1 3のみを作動可能にする一方 (S 1 0) 、 選択されていなければ (S 9, NO) 、 走行動作が選択されているか否 かを判定し (S 1 1) 、 走行動作が選択されていれば (S 1 1, YE S ) 、 左走行用電動機 6および右走行用電動機 7のみを作動可能にする ( S 1 2) 。
そして、 このようにして選択した特定の電動機 6 · 7 · 1 3 · 1 5 ·
23 - 25のみを作動可能にしてショベルを安全な姿勢や安全な場所に 移動した後、 故障箇所の検出や修理を行う。 この後、 修理が完了すれば 、 切換スィツチ 43を主バッテリ 1 2への接続状態に切り換えることに よって、 全電動機 6 · 7 · 1 3 · 1 5 · 23 · 25を通常電力で作動可 能にして通常の動作で作業を行う。
以上のように、 ハイブリッドショベルは、 エンジン 10で駆動される 発電機 1 1の電力と、 発電機 1 1の電力を充電可能な主バッテリ 1 2の 電力と、 捕助バッテリ 42の電力とで電動機 1 5等を作動可能にされた ものであって、 通常運転時には発電機 1 1および主バッテリ 1 2の少な くとも一方の通常電力により電動機 1 5等を作動させる一方、 通常電力 で電動機 1 5等を作動できない緊急運転時には補助バッテリ 42の補助 電力で電動機 1 5等を作動させるように切り換える切換スィツチ 43を 有した構成にされている。
上記の構成によれば、 通常運転時に発電機 1 1や主バッテリ 1 2等の 故障により電動機 1 5等に対して通常電力を供給することができなくな つたときに、 切換スィツチ 4 3により補助バッテリ 4 2に切り換えるこ とによって、 補助バッテリ 4 2からの補助電力で電動機 1 5等を作動さ せて緊急運転することができるため、 建設機械を安全な場所に移動した り、 安全な姿勢に復帰して安全性を確保した後に、 故障箇所の修理を行 うことができる。
また、 ハイブリッ ドショベルは、 緊急運転時に、 補助電力で作動する 電動機 1 5等を選択可能なァクチユエ一タ選択スィツチ 5 4を有した構 成にされている。 これにより、 ァクチユエ一タ選択スィッチ 5 4で選択 された電動機 1 5等のみが補助電力で作動するため、 多くの電動機 1 5 等を同時に作動させる必要のある主バッテリ 1 2よりも小さな容量の補 助バッテリ 4 2を採用することができる。 これにより、 補助バッテリ 4 2を小型化することができるため、 補助バッテリ 4 2を搭載することに よるショベルの大型化を必要最小限に抑制することができる。 さらに、 誤操作による意図しない動作を防止することによって、 より安全性を向 上させることができる。
また、 本実施形態の構成および後述する第 2、 第 3の実施形態の構成 は、 ブーム 1 7やアーム 1 9を上昇させる等の各種の姿勢をとるハイブ リッドショベルに対して好適に適用することができるが、 これに限定さ れるものではなく、 ブルドーザゃクレーン等の全てのハイブリッ ド建設 機械に適用することができる。
〔実施形態 2〕
本発明の第 2の実施の形態を第 3図ないし第 8図に基づいて以下に説 明する。 尚、 第 1の実施の形態と同一の部材には同一の符号を付記して その説明を省略する。
本実施の形態に係るハイプリッド建設機械であるハイブリッドショベ ルは、 第 4図に示すように、 モータコント口一ラ 3 7を備えている。 モ 一タコントローラ 3 7には、 第 3図のキャビン 9内に設けられた操作レ バー 4 5が接続されている。 操作レバー 4 5は、 上記のモ一タコントロ —ラ 3 7と共に作業判別部 4 6に接続されており、 作業判別部 4 6は、 操作レバー 4 5からの操作信号に基づいて作業モードを判別する。 作業判別部 4 6は、 制御装置の一部を構成する発電機出力制御部 5 1 に接続されており、 発電機出力制御部 5 1は、 第 5図の出力変更ルーチ ンを実行することによって、 作業モードに対応した発電機 1 1の発電出 力となるようにエンジン 1 0の回転速度をガバナ制御等により制御する 。 尚、 発電機出力制御部 5 1は、 エンジン 1 0を制御する代わりに、 界 磁電流制御等により発電機 1 1を制御するようになっていても良い。 そ して、 作業判別部 4 6で作業モードに応じた電力を出力する発電機 1 1 は、 モ一タコントローラ 3 7に接続されている。 その他の構成は、 第 1 の実施形態と同一である。
上記の構成において、 ハイブリッ ドショベルの動作について説明する 第 3図のキヤビン 9内のオペレータが運転キーを回動させる等の始動 操作を行うことによって、 モータコントロ一ラ 3 7に電源が投入される と共にエンジン 1 0が運転されると、 モータコントローラ 3 7は、 先ず 、 主バッテリ 1 2の充電量を確認し、 充電量が不十分であれば、 ェンジ ン 1 0により回転駆動される発電機 1 1で生成された交流電力を直流電 力に変換して主バッテリ 1 2を充電する。 尚、 主バッテリ 1 2の充電量 が極めて不十分である場合には、 エンジン 1 0の出力 (回転速度) を増 大させて発電機 1 1の発電量を増大させることによって、 主バッテリ 1 2に対する充電を早急に行う。 一方、 主バッテリ 1 2の充電量が十分で あれば、 エンジン 1 0の出力 (回転速度) を最低のアイ ドリング状態に したり、 エンジン 1 0を停止することによって、 主バッテリ 1 2の過剰 な充電を防止しながら、 操作レバ一 4 5から操作信号が入力されるまで 待機する。
次に、 オペレータが所定の作業を行うように操作レバー 4 5を操作す ると、 操作レバー 4 5から操作量に応じた操作信号が出力される。 操作 信号は、 モータコントローラ 3 7および作業判別部 4 6にそれぞれ入力 される。 そして、 モータコントローラ 3 7においては、 操作信号に応じ た操作量でもって各電動機 6 - 7 - 1 3 - 1 5 - 2 3 - 2 5を作動させ るように主バッテリ 1 2から放電した電力を利用して作業を開始する。 また、 作業判別部 4 6においては、 操作信号の特徴を抽出し、 作業を判 別する。 作業判別方法としては、 例えば特開平 9一 2 1 7 7 0 2号公報 に示されるものを用いる。
上記のようにして作業判別部 4 6で認識された作業モードは、 発電機 出力制御部 5 1に信号出力される。 この際、 発電機出力制御部 5 1は、 第 5図に示すように、 出力変更ルーチンを実行しており、 作業判別部 4 6から作業モード信号 (作業内容) を取り込むことによって、 信号中に 含まれる作業モード (作業内容) を認識する (S 2 1 ) 。 作業モードを 認識すると、 第 7図に示すように、 記憶部に格納された作業モードと発 電機 1 1の出力との関係から、 認識した作業モードに対応した発電機 1 1の出力データを選択する。 例えば "ばらまき" の作業モードであると 認識した場合には、 この作業モードに対応して設定された 4 k Wの出力 データを選択し、 "押しつけ堀削" の作業モードであると認識した場合 には、 この作業モードに対応して設定された 2 0 k Wの出力デ一タを選 択する (S 2 2 ) 。 この後、 選択した出力データに対応したエンジン 1 0の回転速度を求 め、 この回転速度となるようにエンジン 1 0を制御する (S 2 3 ) 。 こ れにより、 例えば "ばらまき" の作業モードで作業が行われる場合には 、 発電機 1 1で発電される電力 (4 k W) が小さなものになるが、 第 6 図に示すように、 "ばらまき" の作業モードが小さな作業負荷であって 主バッテリ 1 2の放電量が僅かなものであるため、 過剰な充電を回避し ながら効率良く充電することができる。 また、 例えば "押しつけ堀削" の作業モードで作業が行われる場合には、 発電機 1 1で発電される電力 ( 2 0 k W) が大きなものになるが、 "押しつけ堀削" の作業モードが 大きな作業負荷であって主バッテリ 1 2の放電量が大きなものであるた め、 過剰な放電を回避しながら効率良く充電することができる。
この後、 作業モード信号や操作信号等の状態を監視することによって 、 作業が終了したか否かを判定し (S 2 4 ) 、 作業が終了していなけれ ば (S 2 4, N O ) 、 上述の作業モードに対応して選択した発電機 1 1 の出力を維持するように、 エンジン 1 0を制御する。 そして、 作業が終 了すれば (S 2 4 , Y E S ) 、 次の作業モードに対応した制御を行うよ うに S 2 1から再実行する。
以上のように、 ハイブリッ ドショベルは、 第 4図に示すように、 ェン ジン 1 0で駆動される発電機 1 1の電力により主バッテリ 1 2を充電可 能であると共に、 少なくとも主バッテリ 1 2から放電される電力により 電動機 6等を作動させることにより作業可能な制御装置を備えており、 この制御装置は、 作業モード (作業内容) の作業負荷に応じて発電機 1 1から出力される電力を変更する発電機出力制御部 5 1を有した構成に されている。
上記の構成によれば、 作業モードの作業負荷に応じて発電機 1 1から 出力される電力を変更すると、 大きな作業負荷のときには大きな電力が 発電機 1 1から出力され、 小さな作業負荷のときには小さな電力が発電 機 1 1から出力される。 また、 作業負荷は、 電動機 6等の消費電力に対 して比例関係にあるため、 大きな作業負荷のときには大きな電力が主バ ッテリ 1 2から放電され、 小さな作業負荷のときには小さな電力が主バ ッテリ 1 2から放電される。 従って、 所定の作業モードで作業が行われ ると、 作業負荷に応じて主バッテリ 1 2から放電される電力が増減する ことになるが、 作業負荷に応じて発電機 1 1から出力される電力も増減 され、 結果的に主バッテリ 1 2への充電量も増減されるため、 主バッテ リ 1 2が過剰に放電や充電されて劣化することはない。
また、 上記の制御装置は、 オペレータにより操作される操作レバ一 4 5と、 操作レバ一 4 5からの操作信号に基づいて作業モード (作業内容 ) を判別して発電機出力制御部 5 1に出力する作業判別部 4 6とを有し た構成にされている。 そして、 この構成によれば、 操作レバー 4 5の操 作信号を基にして作業モードを判別して認識することができるため、 ォ ペレータが作業モ一ドを指定する手間を省力することができる。
尚、 本実施形態の制御装置においては、 作業判別部 4 6により操作レ バー 4 5の操作信号に基づいて作業モードを認識するようになっている 力 これに限定されるものではない。 即ち、 第 8図に示すように、 制御 装置は、 オペレータにより作業モ一ドを指定可能な作業モード切換えス イッチ 4 9と、 作業モ一ド切換えスィツチ 4 9で指定された作業モード (作業内容) を検出して発電機出力制御部 5 1に出力する切換えスィッ チ検出部 5 0とを有した構成にされていても良い。 そして、 この構成に よれば、 作業モード切換えスィッチ 4 9に指定された作業モードを高い 信頼性で認識することができるため、 誤認識による主バッテリ 1 2の過 剰な充電および放電を確実に防止することができる。
〔実施形態 3〕 本発明の第 3の実施の形態を第 3図、 第 6図、 第 9図ないし第 1 1図 に基づいて以下に説明する。 尚、 第 1の実施の形態と同一の部材には同 一の符号を付記してその説明を省略する。
本実施の形態に係るハイブリッ ド建設機械であるハイプリッドショベ ルは、 第 9図に示すように、 モータコントローラ 3 7を備えている。 モ 一タコントローラ 3 7には、 制御装置の一部を構成する操作信号系 4 4 が接続されている。 操作信号系 4 4は、 第 3図のキャビン 9内に設けら れた操作レバ一 4 5と、 操作レバー 4 5からの操作信号に基づいて作業 モード (作業内容) を判別する作業判別部 4 6と、 作業速度制限部 4 7 とを有している。
作業速度制限部 4 7は、 操作レバー 4 5および作業判別部 4 6に接続 されていると共に、 電動機 6 · 7 · 1 3 · 1 5 · 2 3 · 2 5の消費電力 を検出する電力検出器 4 8等に接続されている。 そして、 作業速度制限 部 4 7は、 第 1 0図の操作信号補正ルーチンを実行しており、 各部 4 6 • 4 5 · 4 8から入力された操作信号や作業モード信号、 消費電力信号 等に基づき、 主バッテリ 1 2の過放電を防止するように所定条件下で作 業モードに応じて操作信号を制限しながらモータコントローラ 3 7に出 力する。 また、 作業速度制限部 4 7は、 発電機 1 1の発電量検出信号を モータコントローラ 3 7から入力する。 その他の構成は、 第 1の実施形 態と同一である。
上記の構成において、 ハイブリッドショベルの動作について説明する 第 3図のキヤビン 9内のオペレータが運転キーを回動させる等の始動 操作を行うことによって、 モ一タコントローラ 3 7に電源が投入される と共にエンジン 1 0が運転されると、 モータコントローラ 3 7は、 先ず 、 主バッテリ 1 2の充電量を確認し、 充電量が不十分であれば、 ェンジ ン 1 0により回転駆動される発電機 1 1で生成された交流電力を直流電 力に変換して主バッテリ 1 2を充電する。 尚、 主バッテリ 1 2の充電量 が極めて不十分である場合には、 エンジン 1 0の出力 (回転速度) を増 大させて発電機 1 1の発電量を増大させることによって、 主バッテリ 1 2に対する充電を早急に行う。 一方、 主バッテリ 1 2の充電量が十分で あれば、 エンジン 1 0の出力 (回転速度) を最低のアイ ドリング状態に したり、 エンジン 1 0を停止することによって、 主バッテリ 1 2の過剰 な充電を防止しながら、 操作信号系 4 4から操作信号が入力されるまで 待機する。
次に、 オペレータが所定の作業を行うように操作レバー 4 5を操作す ると、 操作レバー 4 5から操作量に応じた操作信号が出力される。 操作 信号は、 作業判別部 4 6および作業速度制限部 4 7にそれぞれ入力され る。 そして、 作業判別部 4 6においては、 操作信号の特徴を抽出し、 作 業を判別する。 作業判別方法としては、 例えば特開平 9一 2 1 7 7 0 2 号公報に示されるものを用いる。
上記のようにして作業判別部 4 6で認識された作業モードは、 作業速 度制限部 4 7に出力される。 この際、 作業速度制限部 4 7は、 第 1 0図 に示すように、 操作信号補正ルーチンを実行しており、 操作レバー 4 5 から操作信号が入力されたときに、 この操作信号をそのままモータコン トローラ 3 7に出力する。 そして、 待機状態にあるモータコントローラ 3 7に対して操作信号の操作量でもって操作信号に対応する電動機 6 · 7 · 1 3 . 1 5 . 2 3 · 2 5を作動させることによって、 例えばショべ ルの走行や堀削、 土羽打ち等の各作業を行わせる (S 3 1 ) 。
この後、 エンジン 1 0が停止状態やアイ ドリング状態にあるか否かを 例えば発電機 1 1の発電量等に基づいて判定する (S 3 2 ) 。 エンジン 1 0が十分な回転速度で発電機 1 1を駆動している場合には (S 3 2, NO) 、 発電機 1 1からの大きな電力と主バッテリ 1 2からの電力とを 用いることによって、 全ての作業モードの作業を速度を制限することな く行うことができるため、 S 31を再実行して操作信号をそのままモ一 タコントロ一ラ 37に出力して作業を継続する。 一方、 エンジン 10が 停止状態やアイ ドリング状態にある場合には (S 32, YES) , ェン ジン 1 0が所定の回転速度に到達するまでの期間、 主バッテリ 1 2から 放電される電力が主に使用されるため、 主バッテリ 1 2の過剰な放電に よる劣化を防止するように S 33以降の動作が実行される。
即ち、 電動機 6 · 7 · 1 3 · 1 5 · 23 · 25の消費電力を電力検出 器 48を介して取得し (S 33) 、 消費電力の合計値を算出する (S 3
4) 。 そして、 主バッテリ 1 2の過剰な放電を防止するように予め設定 された設定値と、 上記の合計値とを比較し、 合計値が設定値以上である か否かを判定する (S 35) 。 合計値が設定値以上でない場合には (S 35, NO) 、 現状の操作信号で各電動機 6 · 7 · 1 3 · 1 5 · 23 · 25を作動させて作業を継続した場合でも、 主バッテリ 1 2の過剰な放 電による損傷はないと判断できるため、 S 31から再実行して操作レバ 一 45の操作信号に対応した作業速度で作業を継続する。
一方、 消費電力の合計値が設定値以上である場合には (S 35, ΥΕ
5) 、 上述の作業判別部 46から入力されている作業モード (作業内容 ) を取り込み (S 36) 、 この作業モードに対応した制限値を選択する 。 尚、 作業モードに対応した制限値とは、 第 6図に示すように、 作業モ ード (作業内容) によって負荷変動や負荷レベルが大きく異なるため、 主バッテリ 1 2を劣化させない基準放電量を基にして各作業モードに応 じて個々に設定される値のことである。 例えば走行や堀削等の大きな負 荷変動や負荷レベルの作業モードの場合には、 電動機 6 · 7 · 1 3 · 1 5 - 23 - 25の回転速度 (作業速度) を通常運転時よりも大きく低下 させるように制限値が設定される一方、 吊り作業等の小さな負荷変動や 負荷レベルの作業モードの場合には、 電動機 6 · 7 ■ 1 3 · 1 5 · 2 3
- 2 5の回転速度 (作業速度) を通常運転時よりも僅かに低下させるよ うに制限値が設定される (S 3 7 ) 。
上記のようにして作業モ一ドに対応した制限値が選択されると、 第 9 図に示すように、 操作レバー 4 5からの操作信号を取り込み (S 3 8 ) 、 制限値を上限とした操作量となるように補正した後、 操作信号をモー タコントロ一ラ 3 7に出力する (S 3 9 ) 。 これにより、 オペレータが 操作レバ一 4 5を最大速度となるように操作していても、 制限値の作業 速度 (消費電力) で作業が行われるため、 主バッテリ 1 2が過剰な放電 による劣化を生じることはない。 また、 基準放電量に基づいて各作業モ ―ドの制限値が設定されているため、 負荷の小さな作業モードの場合に は、 通常の作業速度と殆ど同じ作業速度で作業を行うことができる。 従 つて、 作業全体としての効率の低下を最小限に抑制することができる。 この後、 エンジン 1 0の回転速度や発電機 1 1の発電量等に基づいて 操作信号の制限を継続するか否かを判定する (S 4 0 ) 。 エンジン 1 0 が十分な回転速度で回転し、 発電機 1 1の発電量と主バッテリ 1 2の放 電量とで作業速度を制限しなくても主バッテリ 1 2を過放電させること なく作業を行える場合には、 操作信号の制限を終了すると判断する (S 4 0, N O ) 。 そして、 S 3 1を再実行し、 操作信号をそのままモータ コントローラ 3 7に出力して通常の作業速度で作業を行う。 一方、 ェン ジン 1 0の回転速度や主バッテリ 1 2の発電量が不十分である場合には 、 操作信号の制限を継続すると判断し (S 4 0, Y E S ) 、 主バッテリ 1 2の過剰な放電による劣化を防止するため、 S 3 8から再実行する。 そして、 操作量を制限しながらモータコントロ一ラ 3 7に出力すること によって、 抑制された作業速度で作業を継続する。
以上のように、 ハイブリッドショベルは、 エンジン 1 0で駆動される 発電機 1 1の電力により主バッテリ 1 2を充電可能であると共に、 これ ら発電機 1 1および主バッテリ 1 2の少なくとも一方の電力により電動 機 6等を作動させることにより作業可能な制御装置を備えており、 この 制御装置は、 発電機 1 1の電力が主バッテリ 1 2の過放電を生じさせる 可能性のある所定値以下のときに、 主バッテリ 1 2の過放電を生じさせ ない電動機 6等の消費電力となるように、 作業モード (作業内容) に応 じて作業速度を制限する作業速度制限部 4 7を有する構成である。 上記の構成によれば、 エンジン 1 0が停止状態であったり、 アイ ドリ ング状態である場合のように、 エンジン 1 0で駆動される発電機 1 1の 電力が所定値以下の場合には、 エンジン 1 0が十分に回転して発電機 1 1から十分な電力が得られるまでに所定の遅れ時間が発生する。 そして 、 この遅れ時間の期間においては、 主バッテリ 1 2が放電した電力を主 に用いて作業が行われることになる。 従って、 大きな作業負荷の作業を 行う場合、 通常の作業速度で作業と行うと、 主バッテリ 1 2が過剰に放 電して劣化する原因になるが、 上記の構成においては、 作業速度制限部 4 7が作業に応じて作業速度を制限することにより主バッテリ 1 2の過 放電を防止するため、 主バッテリ 1 2が過放電により劣化することはな レ、。
さらに、 過放電を生じさせない電動機 6等の消費電力となるように、 作業に応じて作業速度を制限しているため、 各作業の作業速度を過放電 を生じさせない範囲の最大値に設定することができる。 従って、 小さな 作業負荷の作業の場合には、 通常の作業速度と殆ど同一の作業速度で作 業を行うことができるため、 従来のように全ての作業に対して一律に作 業速度を制限する場合よりも、 高い作業効率を得ることができ、 結果と して作業速度を制限することによる作業効率の低下を最小限に抑制する ことができる。
また、 上記の制御装置は、 オペレータにより操作される操作レバー 4 5と、 操作レバー 4 5からの操作信号に基づいて、 作業モード (作業内 容) を判別する作業判別部 4 6とを有した構成にされている。 そして、 この構成によれば、 操作レバ一 4 5の操作信号を基にして作業モードを 判別して認識することができるため、 オペレータが作業モ一ドを指定す る手間を省力することができる。
尚、 本実施形態の制御装置においては、 作業判別部 4 6により操作レ バ一4 5の操作信号に基づいて作業モードを認識するようになっている が、 これに限定されるものではない。 即ち、 制御装置は、 第 1 1図に示 すように、 オペレータにより作業モ一ドを指定可能な作業モード切換え スィツチ 4 9と、 このスィツチ 4 9で指定された作業モードを検出する ことによって、 作業モード (作業内容) を認識して電動機速度補正部 4 7に出力する切換えスィツチ検出部 5 0とを有した構成にされていても 良い。 そして、 この場合には、 作業モードを高い信頼性で認識すること ができるため、 誤認識による主バッテリ 1 2の過剰な放電を確実に防止 することができる。
また、 本実施形態の制御装置においては、 第 1 0図のフローの中で、 S 3 3、 S 3 4および S 3 5を省略することも可能である。 即ち、 発電 機 1 1の発電量が所定値以下となった場合は、 常に、 S 3 6〜S 4 0の 作業内容に応じて速度制限を行う機能を働かすようにすることも可能で ある。 このように構成しても、 発電機 1 1の発電量が所定値以下になつ た場合に、 作業内容に応じた速度制限により消費電力が抑制されるので 、 速度制限の度合いを適宜設定することによりバッテリの過放電を防止 することが可能である。 また、 このような構成により、 電力検出器 4 8 が不要になることによって、 制御系を簡略化することができる。 産業上の利用可能性
本発明は、 故障等により発電機ゃバッテリから電力を得ることができ くなったときに、 電動機を緊急に作動させて安全性を確保することが必 要なハイブリッド建設機械に用いるのに適している。 また、 負荷の異な る各種の作業を行う場合に、 バッテリの過剰な充電および放電による劣 化を防止したり、 バッテリの過剰な放電による劣化を防止しつつ作業効 率の低下を最小限に抑制することが必要なハイブリッド建設機械の制御 装置に用いるのに適している。

Claims

請 求 の 範 囲
1. エンジン (1 0) で駆動される発電機 (1 1) の電力と、 該発電機 (1 1) の電力を充電可能な主バッテリ (1 2) の電力と、 補助バッテ リ (42) の電力とで電動機 (6、 7、 1 3、 1 5、 23、 25) を作 動可能にされたハイプリッド建設機械であって、
通常運転時には前記発電機 (1 1) および主バッテリ (1 2) の少な くとも一方の通常電力により前記電動機 (6、 7、 1 3、 1 5、 23、
25) を作動させる一方、 前記通常電力で電動機 (6、 7、 1 3、 1 5 、 23、 25) を作動できない緊急運転時には前記補助バッテリ (42 ) の補助電力で前記電動機 (6、 7、 1 3、 1 5、 23、 25) を作動 させるように切り換え可能な切換スィッチ (43) を有している。
2. 請求項 1記載のハイプリッド建設機械であって、
前記緊急運転時に、 前記補助電力で作動する電動機 (6、 7、 1 3、 1 5、 23、 25) を選択可能なァクチユエ一タ選択スィッチ (54) を有している。
3. 請求項 1または 2に記載のハイブリッド建設機械は、 ハイブリッド ショベルである。
4. エンジン (1 0) で駆動される発電機 (1 1) の電力により主バッ テリ (1 2) を充電可能であると共に、 少なくとも主バッテリ (1 2) から放電される電力により電動機 (6、 7、 1 3、 1 5、 23、 25) を作動させることにより作業可能なハイプリッド建設機械の制御装置で あって、
作業内容に応じて前記発電機 (1 1) から出力される電力を変更する 発電機出力制御部 (51) を有している。
5. 請求項 4記載のハイプリッド建設機械の制御装置であって、 オペレータにより操作される操作レバ— (4 5) と、
前記操作レバー (45) からの操作信号に基づいて、 前記作業内容を 判別して前記発電機出力制御部 (51) に出力する作業判別部 (46) とを有している。
6. 請求項 4記載のハイブリッド建設機械の制御装置であつて、
オペレータにより作業内容を指定可能な作業モード切換えスィツチ (
49) と、
前記作業モード切換えスィッチ (49) で指定された作業内容を検出 して前記発電機出力制御部 (51) に出力する切換えスィッチ検出部 (
50) とを有している。
7. エンジン (1 0) で駆動される発電機 (1 1) の電力により主バッ テリ (1 2) を充電可能であると共に、 これら発電機 (1 1) および主 バッテリ (1 2) の少なくとも一方の電力により電動機 (6、 7、 1 3 、 1 5、 23、 25) を作動させることにより作業可能なハイブリッド 建設機械の制御装置であって、
発電機 (1 1) の電力が所定値以下のときに、 作業内容に応じて作業 速度を制限する作業速度制限部 (47) を有している。
8. 請求項 7記載のハイブリッド建設機械の制御装置であつて、
オペレータにより操作される操作レバ— (45) と、
前記操作レバー (45) からの操作信号に基づいて、 前記作業内容を 判別して前記作業速度制限部 (47) に出力する作業判別部 (46) と を有している。
9. 請求項 7記載のハイプリッド建設機械の制御装置であって、
オペレータにより前記作業內容を指定可能な作業モード切換えスィッ チ (49) と、
前記作業内容切替えスィツチで指定された作業内容を検出して前記作 業速度制限部 (4 7 ) に出力する切換えスィッチ検出部 (5 0 ) とを有 している。
1 0 . 請求項 4ないし 9の何れか 1項に記載のハイブリッド建設機械の 制御装置であって、 前記ハイブリッド建設機械がハイプリッドショベル である。
PCT/JP2000/004073 1999-06-25 2000-06-21 Machine de chantier hybride et son dispositif de commande WO2001000934A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00940793A EP1219751B1 (en) 1999-06-25 2000-06-21 Hybrid construction machinery and control device of the construction machinery
DE60037740T DE60037740T2 (de) 1999-06-25 2000-06-21 Hybridbaumaschine und steuervorrichtung für diese baumaschine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP11179683A JP2001003398A (ja) 1999-06-25 1999-06-25 ハイブリッド建設機械
JP11/179682 1999-06-25
JP17968199A JP3781584B2 (ja) 1999-06-25 1999-06-25 ハイブリッド建設機械の制御装置
JP11/179681 1999-06-25
JP17968299A JP3828678B2 (ja) 1999-06-25 1999-06-25 ハイブリッド建設機械の制御装置
JP11/179683 1999-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/893,262 Division US7279801B2 (en) 1999-06-25 2004-07-19 Hybrid construction machine having auxiliary battery and control apparatus thereof

Publications (1)

Publication Number Publication Date
WO2001000934A1 true WO2001000934A1 (fr) 2001-01-04

Family

ID=27324750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004073 WO2001000934A1 (fr) 1999-06-25 2000-06-21 Machine de chantier hybride et son dispositif de commande

Country Status (6)

Country Link
US (1) US7279801B2 (ja)
EP (2) EP1782991B1 (ja)
KR (1) KR100466766B1 (ja)
AT (1) ATE383473T1 (ja)
DE (2) DE60040625D1 (ja)
WO (1) WO2001000934A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089310A1 (fr) * 2001-04-27 2002-11-07 Kobelco Construction Machinery Co., Ltd. Appareil de commande de l'electricite d'un vehicule hybride et equipement de construction hybride utilisant ledit appareil
WO2003044940A1 (fr) 2001-11-21 2003-05-30 Kobelco Construction Machinery Co., Ltd. Dispositif d'entrainement d'actionneur d'une machine de travaux
EP1932705A3 (en) * 2001-12-03 2008-07-09 Kobelco Construction Machinery Co., Ltd. Working Machine
US7742272B2 (en) 2005-01-31 2010-06-22 Sumitomo (Shi) Construction Machinery Manufacturing Co., Ltd. Handling machine using lifting magnet
CN103270223A (zh) * 2010-12-24 2013-08-28 斗山英维高株式会社 混合型工程机械的旋转控制装置

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011888A (ja) * 1999-06-29 2001-01-16 Kobe Steel Ltd ショベル
JP3859982B2 (ja) * 2001-04-27 2006-12-20 株式会社神戸製鋼所 ハイブリッド建設機械の電力制御装置
JP4047110B2 (ja) * 2002-09-11 2008-02-13 株式会社小松製作所 建設機械
JP2004190845A (ja) * 2002-12-13 2004-07-08 Shin Caterpillar Mitsubishi Ltd 作業機械の駆動装置
US7389837B2 (en) * 2003-10-20 2008-06-24 General Motors Corporation Electric power control system for a hybrid vehicle
JP2005237178A (ja) * 2004-02-23 2005-09-02 Kobelco Contstruction Machinery Ltd 作業機械の動力源装置
DE112005001213T5 (de) * 2004-05-27 2009-05-14 Siemens Energy & Automation, Inc. Hilfsbus-System
WO2006004080A1 (ja) * 2004-07-05 2006-01-12 Komatsu Ltd. 旋回制御装置、旋回制御方法、および建設機械
US7104920B2 (en) * 2004-09-07 2006-09-12 Eaton Corporation Hybrid vehicle powertrain system with power take-off driven vehicle accessory
TWI302501B (en) * 2005-02-15 2008-11-01 Honda Motor Co Ltd Power control unit
JP2007064209A (ja) * 2005-08-05 2007-03-15 Fujitsu Ten Ltd エンジン制御装置、制御方法、及び制御システム
US7487023B2 (en) * 2005-10-27 2009-02-03 Kobelco Construction Machinery Co., Ltd. Construction machine
FI118882B (fi) * 2005-11-28 2008-04-30 Ponsse Oyj Menetelmä ja järjestely metsäkoneen tehonsiirrossa
US7484583B2 (en) * 2006-09-29 2009-02-03 Caterpillar Inc. Auxiliary power unit for moving a vehicle
JP5055948B2 (ja) * 2006-10-20 2012-10-24 コベルコ建機株式会社 ハイブリッド作業機械
EP1935712A1 (en) * 2006-12-22 2008-06-25 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Vehicle system and method
EP2144799A4 (en) * 2007-05-10 2018-01-24 Volvo Construction Equipment AB A method and a control system for controlling a work machine
US7992370B2 (en) 2008-03-14 2011-08-09 Deere & Company Work machine with auxiliary power unit and intelligent power management
JP5317517B2 (ja) * 2008-04-14 2013-10-16 カヤバ工業株式会社 ハイブリッド建設機械の制御装置
WO2010013537A1 (ja) * 2008-07-31 2010-02-04 日立建機株式会社 建設機械
JP5149826B2 (ja) 2009-01-29 2013-02-20 住友重機械工業株式会社 ハイブリッド式作業機械及びサーボ制御システム
US8087900B2 (en) * 2009-05-22 2012-01-03 Deere & Company Agricultural harvester with propulsion load shifting between dual engines
US7974757B2 (en) * 2009-05-22 2011-07-05 Deere & Company Agricultural harvester with dual engine failure power transfer system
JP5163593B2 (ja) * 2009-05-25 2013-03-13 コベルコ建機株式会社 ハイブリッド作業機械
JP5338479B2 (ja) * 2009-05-25 2013-11-13 コベルコ建機株式会社 ハイブリッド作業機械
JP5365432B2 (ja) * 2009-09-07 2013-12-11 コベルコ建機株式会社 建設機械の漏電検出装置
PL2333158T5 (pl) 2009-11-30 2018-05-30 Joseph Vögele AG Wykańczarka
US8655558B2 (en) * 2010-02-12 2014-02-18 Kayaba Industry Co., Ltd. Control system for hybrid construction machine
JP5703587B2 (ja) * 2010-04-14 2015-04-22 コベルコ建機株式会社 ハイブリッド作業機械
US20110262824A1 (en) * 2010-04-23 2011-10-27 Gm Global Technology Operations, Inc. Apparatus for a 12v hybrid fuel cell vehicle
JP5204150B2 (ja) * 2010-05-21 2013-06-05 日立建機株式会社 ハイブリッド式建設機械
US8606451B2 (en) * 2010-10-06 2013-12-10 Caterpillar Global Mining Llc Energy system for heavy equipment
JP5184616B2 (ja) * 2010-12-09 2013-04-17 住友重機械工業株式会社 ハイブリッド型作業機械
US20120169360A1 (en) * 2010-12-29 2012-07-05 Caterpillar Inc. System and methods for testing electrical power system components
US8606444B2 (en) * 2010-12-29 2013-12-10 Caterpillar Inc. Machine and power system with electrical energy storage device
JP5329574B2 (ja) * 2011-01-25 2013-10-30 住友重機械工業株式会社 ハイブリッド型建設機械
CN103299005B (zh) * 2011-02-21 2015-10-21 日立建机株式会社 电动式工程机械
JP5509433B2 (ja) * 2011-03-22 2014-06-04 日立建機株式会社 ハイブリッド式建設機械及びこれに用いる補助制御装置
KR101776965B1 (ko) * 2011-08-26 2017-09-08 두산인프라코어 주식회사 하이브리드 전원 장치 및 그 제어 방법
CN102493976B (zh) * 2011-12-01 2014-12-10 三一重工股份有限公司 一种工程机械的动力控制系统及控制方法
JP5928065B2 (ja) * 2012-03-27 2016-06-01 コベルコ建機株式会社 制御装置及びこれを備えた建設機械
CA2872608C (en) * 2012-06-08 2017-05-02 Volvo Construction Equipment Ab Apparatus for controlling a cascaded hybrid construction machine system and a method therefor
JP5873456B2 (ja) * 2013-04-05 2016-03-01 川崎重工業株式会社 作業機械の駆動制御システム、それを備える作業機械、及びその駆動制御方法
US9644345B2 (en) * 2013-08-05 2017-05-09 Deere & Company System and method for controlling a drive unit of a work machine during an idle state
US9441347B2 (en) 2013-08-05 2016-09-13 Deere & Company Methods and apparatus to control a dual function work machine
CN105705393B (zh) * 2013-09-10 2018-02-02 沃尔沃建造设备有限公司 用于混合动力操作机械的传感控制的方法和装置
JP6401241B2 (ja) * 2014-03-06 2018-10-10 住友建機株式会社 ショベル
JP6490668B2 (ja) * 2014-03-31 2019-03-27 住友建機株式会社 ショベル
BR112017026235B1 (pt) * 2015-06-08 2022-10-04 Nissan Motor Co., Ltd Dispositivo de controle de geração de potência para um veículo híbrido
JP6396867B2 (ja) 2015-08-25 2018-09-26 日立建機株式会社 ハイブリッド建設機械
JP6626371B2 (ja) * 2016-02-29 2019-12-25 日立建機株式会社 ハイブリッド作業機械
US10907326B2 (en) 2017-08-11 2021-02-02 Deere & Company Vision system for monitoring a work tool of a work vehicle
US10790670B1 (en) * 2018-03-08 2020-09-29 Zerobase Energy, Llc Hybrid generator system and method with multi tasked power inverter
KR102080031B1 (ko) 2019-01-16 2020-04-07 유혜정 네일아트 전동드릴 수납작업용 파우치
US11691526B2 (en) * 2020-04-14 2023-07-04 Caterpillar Paving Products Inc. Mobile charging station
KR20230017231A (ko) * 2020-07-17 2023-02-03 현대두산인프라코어(주) 건설기계용 하이브리드 전력분배시스템
AT525609A1 (de) * 2021-11-09 2023-05-15 Wacker Neuson Linz Gmbh Vorrichtung zum Antreiben einer mobilen, insbesondere elektrischen Arbeitsmaschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949248A (ja) * 1995-08-08 1997-02-18 Yutani Heavy Ind Ltd 油圧ショベルの操縦装置
JPH09217702A (ja) * 1996-02-15 1997-08-19 Yutani Heavy Ind Ltd 油圧ショベルの制御装置
JPH09331604A (ja) * 1996-06-11 1997-12-22 Toyota Motor Corp モータ制御装置
JPH10108304A (ja) * 1996-09-27 1998-04-24 Toyota Autom Loom Works Ltd ハイブリッド車の制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2729750A (en) * 1954-06-29 1956-01-03 Draper Carson Owen Motor vehicle electrical system
US3108190A (en) * 1958-12-23 1963-10-22 Frederick W Gebhard Plural battery system for vehicles
US3340402A (en) * 1964-09-24 1967-09-05 Curtis Carl Auxiliary battery system for motor vehicles
US3917017A (en) * 1974-01-25 1975-11-04 West Virginia High Bird Corp E Battery operated vehicle drive
JPS5928805A (ja) 1982-08-05 1984-02-15 Mitsubishi Heavy Ind Ltd 産業用車両
JPS62227819A (ja) * 1986-03-28 1987-10-06 Toyota Autom Loom Works Ltd スキツドステア車両のピツチング低減方法
US4780618A (en) * 1988-02-29 1988-10-25 Wareman Frederick C Tractor-trailer power conversion circuit
DE4133014A1 (de) * 1991-10-04 1993-04-08 Mannesmann Ag Nicht-spurgebundenes fahrzeug mit elektrodynamischem wandler und fahrhebel
US5318142A (en) * 1992-11-05 1994-06-07 Ford Motor Company Hybrid drive system
US5547208A (en) * 1995-03-14 1996-08-20 Dennis L. Chappell Vehicle safety exit apparatus
JPH08336205A (ja) * 1995-04-07 1996-12-17 Nippon Soken Inc ハイブリッド車両のバッテリ充電装置
FR2743343B1 (fr) * 1996-01-05 1998-02-13 Smh Management Services Ag Systeme d'entrainement pour vehicule automobile a propulsion hybride et son procede de commande
JP3609182B2 (ja) * 1996-01-08 2005-01-12 日立建機株式会社 建設機械の油圧駆動装置
JP3650846B2 (ja) * 1997-04-23 2005-05-25 株式会社鈴機商事 電源装置付き建設機械
US5967756A (en) * 1997-07-01 1999-10-19 Caterpillar Inc. Power management control system for a hydraulic work machine
JP3419661B2 (ja) * 1997-10-02 2003-06-23 日立建機株式会社 油圧建設機械の原動機のオートアクセル装置及び原動機と油圧ポンプの制御装置
US5869950A (en) * 1997-10-30 1999-02-09 Lockheed Martin Corp. Method for equalizing the voltage of traction battery modules of a hybrid electric vehicle
US6177737B1 (en) * 1997-12-17 2001-01-23 Proflow, Inc. Vehicle electrical power back-up circuit and method
US6109858A (en) * 1998-06-05 2000-08-29 Caterpillar Inc. Implement lift arm arrangement for a skid steer loader
US6486568B1 (en) * 1999-12-21 2002-11-26 General Electric Company Power system using a multi-functional power interface unit
US6427107B1 (en) * 2001-06-28 2002-07-30 Caterpillar Inc. Power management system and method
US6742619B2 (en) * 2001-10-03 2004-06-01 Trelleborg Ab Engine mounts, such as for a skid steer loader, having internally snubbed shocks and vibration isolators, and a method of making the engine mounts
JP2004340055A (ja) * 2003-05-16 2004-12-02 Honda Motor Co Ltd ハイブリッド方式の駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949248A (ja) * 1995-08-08 1997-02-18 Yutani Heavy Ind Ltd 油圧ショベルの操縦装置
JPH09217702A (ja) * 1996-02-15 1997-08-19 Yutani Heavy Ind Ltd 油圧ショベルの制御装置
JPH09331604A (ja) * 1996-06-11 1997-12-22 Toyota Motor Corp モータ制御装置
JPH10108304A (ja) * 1996-09-27 1998-04-24 Toyota Autom Loom Works Ltd ハイブリッド車の制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089310A1 (fr) * 2001-04-27 2002-11-07 Kobelco Construction Machinery Co., Ltd. Appareil de commande de l'electricite d'un vehicule hybride et equipement de construction hybride utilisant ledit appareil
US6864663B2 (en) 2001-04-27 2005-03-08 Kobelco Construction Machinery Co., Ltd. Hybrid vehicle power control apparatus and hybrid construction equipment using the power control apparatus
WO2003044940A1 (fr) 2001-11-21 2003-05-30 Kobelco Construction Machinery Co., Ltd. Dispositif d'entrainement d'actionneur d'une machine de travaux
EP1455439A1 (en) * 2001-11-21 2004-09-08 Kobelco Construction Machinery Co., Ltd. Actuator driving device of working machine
EP1455439A4 (en) * 2001-11-21 2009-11-11 Kobelco Constr Machinery Ltd ACTUATOR CONTROLLER OF A WORK MACHINE
EP1932705A3 (en) * 2001-12-03 2008-07-09 Kobelco Construction Machinery Co., Ltd. Working Machine
US7742272B2 (en) 2005-01-31 2010-06-22 Sumitomo (Shi) Construction Machinery Manufacturing Co., Ltd. Handling machine using lifting magnet
CN103270223A (zh) * 2010-12-24 2013-08-28 斗山英维高株式会社 混合型工程机械的旋转控制装置
CN103270223B (zh) * 2010-12-24 2015-09-09 斗山英维高株式会社 混合型工程机械的旋转控制装置

Also Published As

Publication number Publication date
KR100466766B1 (ko) 2005-01-24
DE60037740T2 (de) 2009-01-15
DE60037740D1 (de) 2008-02-21
US7279801B2 (en) 2007-10-09
EP1782991B1 (en) 2008-10-22
EP1782991A1 (en) 2007-05-09
KR20020016840A (ko) 2002-03-06
DE60040625D1 (de) 2008-12-04
EP1219751B1 (en) 2008-01-09
ATE383473T1 (de) 2008-01-15
US20050001606A1 (en) 2005-01-06
EP1219751A1 (en) 2002-07-03
EP1219751A4 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
WO2001000934A1 (fr) Machine de chantier hybride et son dispositif de commande
US6708787B2 (en) Hybrid construction equipment
JP4179465B2 (ja) 建設機械
JP5149826B2 (ja) ハイブリッド式作業機械及びサーボ制御システム
JP5747533B2 (ja) 旋回式作業機械
US8825316B2 (en) Hybrid-type construction machine
KR102372681B1 (ko) 전동식 건설 기계
KR101834598B1 (ko) 하이브리드식 건설 기계
WO2011145585A1 (ja) ハイブリッド式建設機械
US20100170239A1 (en) Hybrid working machine
JP3828678B2 (ja) ハイブリッド建設機械の制御装置
JP5922151B2 (ja) 作業機械
JP2012026180A (ja) ハイブリッド式建設機械
WO2015064507A1 (ja) 作業機械
WO2022153735A1 (ja) 建設機械
JP3828679B2 (ja) ハイブリッド建設機械
JP2001003398A (ja) ハイブリッド建設機械
JP3781584B2 (ja) ハイブリッド建設機械の制御装置
JP5614373B2 (ja) 旋回式作業機械
WO2024201964A1 (ja) 建設機械
JP7042778B2 (ja) 電動式建設機械
WO2024142866A1 (ja) 作業機械
JP2020141477A (ja) 作業機械
JP2007046584A (ja) 建設機械のエネルギ蓄積装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000940793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017016523

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10018859

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000940793

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000940793

Country of ref document: EP