WO2000076066A1 - Vibrateur piezoelectrique - Google Patents

Vibrateur piezoelectrique Download PDF

Info

Publication number
WO2000076066A1
WO2000076066A1 PCT/JP2000/003715 JP0003715W WO0076066A1 WO 2000076066 A1 WO2000076066 A1 WO 2000076066A1 JP 0003715 W JP0003715 W JP 0003715W WO 0076066 A1 WO0076066 A1 WO 0076066A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
bonding
substrate
piezoelectric substrate
electrode
Prior art date
Application number
PCT/JP2000/003715
Other languages
English (en)
French (fr)
Inventor
Takaya Watanabe
Original Assignee
Takaya Watanabe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaya Watanabe filed Critical Takaya Watanabe
Priority to EP00935588A priority Critical patent/EP1104099A1/en
Publication of WO2000076066A1 publication Critical patent/WO2000076066A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device

Definitions

  • the present invention relates to a technology capable of treating a piezoelectric vibrating body as if it were integral and without a package.
  • the quartz crystal in the piezoelectric material has the best performance among piezoelectric materials in terms of frequency stability against high Q and temperature. "MCF").
  • the piezoelectric vibrator is housed in a ceramic package or the like.
  • the ceramic package has a seal ring for hermetic sealing.After mounting the crystal unit in the ceramic package, cover the seal ring with a metal cap and hermetically seal it by seam welding or other means to achieve high reliability. Is maintained.
  • the conductive adhesive applies a voltage to the formed extraction electrode and the extraction electrode. Connect to the electrode end formed in the ceramic package for applying voltage. Since the conductive adhesive has conductivity, the power supply voltage and the extraction electrode are electrically connected.
  • the present invention has as its main object to provide a crystal resonator that does not require a conventional ceramic package, and can realize a high-Q crystal resonator by vacuum sealing. It is an object of the present invention to provide a highly stable and highly reliable piezoelectric vibrating body with extremely little change over time. Disclosure of the invention
  • the invention according to claim 1 is a piezoelectric substrate that vibrates piezoelectrically, an electrode attached to the front and back surfaces of the piezoelectric substrate, and a protection substrate of the same material as the piezoelectric substrate, which is disposed on the front and back surfaces of the piezoelectric substrate. And a bonding part that performs diffusion bonding or room temperature bonding between the piezoelectric substrate and the protection substrate.
  • the bonding portion is bonded by diffusion bonding at a relatively low temperature of 300 ° C or less or bonding at room temperature, there is no thermal effect at the bonding interface, and the strength is high.
  • An extremely good joint surface can be formed both in terms of quality and quality.
  • the piezoelectric substrate and the protective substrate are made of the same material, the seal of the piezoelectric substrate is not broken by thermal expansion.
  • the invention according to claim 2 is the invention according to claim 1, wherein the joining portion is At least one of a metal thin film, a diamond thin film, a boron thin film and a carbon nitride thin film.
  • Metals are, for example, platinum, gold, silver, copper, aluminum, nickel, chromium, molybdenum, tungsten, titanium, palladium, niobium, tantalum, beryllium, magnesium, tin, indium and lead.
  • Boron is particularly preferably cubic boron (cBN).
  • Carbon nitride, in particular six-cubic-based carbon nitride (5 C3N 4) is preferable.
  • the invention according to claim 3 is the invention according to claim 1, wherein the piezoelectric substrate is any one of a single-crystal piezoelectric substrate, a piezoelectric ceramic, and a high-molecular piezoelectric polymer.
  • the single crystal piezoelectric substrate is, for example, quartz, lithium tantalate, lithium niobate, lithium tetraoxide, langasite, and aluminum phosphate.
  • One of these single crystal piezoelectric substrates is a piezoelectric substrate.
  • the invention according to claim 4 is the invention according to claim 1, wherein the external connection electrode provided on the protective substrate and the bonding portion and the external connection electrode are joined by diffusion bonding or room temperature, and the material is And an external extraction electrode that is a metal thin film.
  • the metal referred to here is a metal having relatively high conductivity.
  • platinum, gold, silver, copper and aluminum One of these is used as the material of the external extraction electrode.
  • the invention according to claim 5 is the invention according to claim 1, comprising an internal extraction electrode formed by diffusion bonding or room temperature bonding of the electrode and the bonding portion, and made of a metal thin film.
  • the metal referred to here is a metal having relatively high conductivity.
  • platinum, gold, silver, copper and aluminum One of these is used as the material of the internal extraction electrode.
  • the invention according to claim 6 is the invention according to claim 1, wherein the thickness of the bonding interface is larger than the thickness of the electrode.
  • the invention according to claim 7 is the invention according to claim 1, wherein a portion of the piezoelectric substrate to which the electrode is attached is depressed.
  • the invention according to claim 8 is the invention according to claim 1, wherein a portion corresponding to the electrode is recessed in the protective substrate.
  • the invention according to claim 9 is the invention according to claim 1, wherein the piezoelectric substrate and the protection substrate are single crystal plates having the same cut orientation.
  • the invention according to claim 10 is the invention according to claim 1, wherein the material of the piezoelectric substrate is quartz and the bonding interface is made of gold and silver.
  • FIG. 1 is a cross-sectional view of the piezoelectric vibrator according to the first embodiment of the present invention. It is sectional drawing of the piezoelectric vibrating body which concerns on 2nd Embodiment of this invention.
  • FIG. 3 is a cross-sectional view of a piezoelectric vibrator according to a third embodiment of the present invention.
  • FIG. 1 is a sectional view of a piezoelectric vibrating body according to the first embodiment of the present invention.
  • the piezoelectric vibrator according to the first embodiment includes a piezoelectric substrate 100, electrodes 101, 102, protective substrates 105, 106, joints 107, 108, 109. , 110.
  • the material of the piezoelectric substrate 100 may be any one of a single-crystal piezoelectric substrate, a piezoelectric ceramic, and a high-molecular piezoelectric polymer.
  • the single crystal piezoelectric substrate is, for example, quartz, lithium tantalate, lithium niobate, lithium tetraoxide, langasite, and aluminum phosphate.
  • the piezoelectric substrate 100 is a 05 mm (diameter) circular 80-m thick mirror-polished quartz plate (AT-unit: 3 ° 00 '). At this time, the frequency of the thickness vibration of the fundamental wave is 20 MHz.
  • the electrodes 101 and 102 are formed by depositing Ag by a 2000A deposition method using NiCr 200A as a base. The diameter is 1.0mm.
  • the electrodes 101 and 102 are provided on the front and back surfaces of the piezoelectric substrate 100.
  • the protection substrates 105 and 106 are made of the same material as the piezoelectric substrate 100. In the present embodiment, it is quartz.
  • the protection The substrates 105 and 106 have the same shape as the piezoelectric substrate 100 and the same cut direction. Mirror-polished.
  • the protection substrate 105 is disposed on the front side of the piezoelectric substrate 100, and the protection substrate 106 is disposed on the back side of the piezoelectric substrate 100.
  • the joint 107, 108, 109, 110 has gold and silver.
  • the bonding portions 107, 108, 109, 110 bond the piezoelectric substrate 100 and the protection substrates 105, 106 at room temperature or by diffusion bonding.
  • the thickness of the joints 107, 108, 109, 110 is greater than the thickness of the electrodes 101, 102.
  • a gap of 02 mm is provided concentrically at the center, and a film of Au is formed in a donut shape using NiCr 200A as a base by 5000A vapor deposition. Then, a 02 mm gap is provided concentrically on the surface of the protection substrates 105 and 106 facing the piezoelectric substrate 100, and a doughnut-shaped Ag is formed on the NiCr 200A base by 5 ⁇ m evaporation method.
  • these films are not limited to vapor deposition, sputtering or I on play tee ring may be formed.
  • the thickness of a thin film manufactured using these film forming techniques is several thousand A to several tens of m.
  • the piezoelectric substrate 100 and the protective substrates 105 and 106 are overlapped and sandwiched between two metal jigs for bonding, and the entire quartz plate is 80 kg'f ⁇ : lOOKg ' Heat at 310 ° C for 1 hour in a vacuum furnace so that the force of f is applied evenly.
  • a vacuum furnace is used because perfect bonding cannot be achieved without removing the adsorbed layer (moisture, oxygen, oxide film).
  • the joints 107, 108, 109, and 110 have gold and silver.
  • metals include, for example, platinum, gold, silver, copper, aluminum, nickel, chrome, molybdenum, tungsten, titanium, palladium, niobium, and tan.
  • Metal beryllium, magnesium, tin, indium and lead.
  • Boron is particularly preferably cubic boron (cBN).
  • the carbon nitride is particularly preferably hexagonal carbon nitride (5C3N4).
  • the internal extraction electrode 103 performs room temperature bonding or diffusion bonding between the electrode 101 and the bonding portion 107.
  • the internal extraction electrode 104 performs room temperature bonding or diffusion bonding between the electrode 102 and the bonding portion 110.
  • the metal mentioned here is a metal having relatively high conductivity. For example, platinum, gold, silver, copper and aluminum. One of these is used as the material of the internal extraction electrode.
  • the external connection electrodes 115 and 116 are for connecting the electrodes 101 and 102 to a power source not shown.
  • the external connection electrodes 115 and 116 are provided on the surface of the protection substrate 106 opposite to the surface facing the piezoelectric substrate 100.
  • the surfaces of the external connection electrodes 115 and 116 are treated with gold electrodes.
  • the external connection electrode 115 is electrically connected to the electrode 101 via the joint 107 and the external extraction electrode 113.
  • the external lead electrodes 113 are provided on the side surfaces of the piezoelectric substrate 100 and the protective substrate 106, and bond the bonding portion 107 and the external connection electrode 115 at room temperature or by diffusion bonding.
  • the material of the external extraction electrodes 113 is a metal having relatively high conductivity. For example, platinum, gold, silver, copper and aluminum. One of these is used as the material of the external extraction electrode.
  • the surface of the external extraction electrodes 113 is treated with a gold electrode.
  • the external connection electrode 116 is electrically connected to the electrode 102 via the joint 110 and the external lead electrode 114.
  • the external lead-out electrodes 114 are provided on the side surfaces of the protective substrate 106, and bond the bonding portion 110 and the external connection electrodes 116 at room temperature or by diffusion bonding.
  • the material of the external extraction electrode 116 is a metal having relatively high conductivity. For example, platinum, gold, silver, copper and aluminum. One of these is used as the material of the external extraction electrode.
  • the surfaces of the external extraction electrodes 114 are treated with gold electrodes. As a result, the center frequency of the piezoelectric vibrator becomes 20.5 MHz and the equivalent resistance becomes less than 10 ⁇ . It is needless to mention that the same effect can be obtained even if the method of forming the airtight portion and the method of forming the electrical connection portion are independently formed.
  • the piezoelectric substrate 100 can be sealed by the joints 107, 108, 109, 110. Since the joints 107, 108, 109, 110 are bonded at a relatively low temperature of 300 ° C or less by diffusion bonding or room temperature bonding, there is no thermal effect at the bonding interface However, it is possible to form a very good joint surface in terms of strength and quality.
  • the external extraction electrodes 113, 114 and the internal extraction electrodes 103, 104 are metals having relatively high conductivity, and the external connection electrodes and the electrodes are connected at a relatively low temperature of 300 ° C or less. Since diffusion bonding or room-temperature bonding is used, there is no thermal effect at the bonding interface, and an extremely good bonding surface in terms of strength and quality can be formed.
  • the piezoelectric substrate 100 and the protective substrates 105 and 106 are made of the same material, the seal of the piezoelectric substrate 100 is not broken by thermal expansion. Also, the thickness of the joint 107, 108, 109, 110 is the electrode 101, Since the thickness is larger than the thickness of 102, a vibration region of the piezoelectric substrate 100 can be secured. Second embodiment
  • the piezoelectric vibrating body according to the second embodiment is different from the piezoelectric vibrating body according to the first embodiment in that concave portions 2 1 1 and 2 1 2 are formed on the protection substrates 205 and 206 by mesa processing or the like. The difference is that they are formed.
  • FIG. 2 is a cross-sectional view of a piezoelectric vibrator according to a second embodiment of the present invention.
  • the piezoelectric vibrating body according to the second embodiment includes a piezoelectric substrate 200, electrodes 201, 202, a protective substrate 205, 206, a joint part 207, 208, 209. , 210.
  • the material of the piezoelectric substrate 200 may be any one of a single-crystal piezoelectric substrate, a piezoelectric ceramic, and a high-molecular piezoelectric polymer.
  • the single crystal piezoelectric substrate is, for example, quartz, lithium tantalate, lithium niobate, lithium tetraoxide, langasite, and aluminum phosphate.
  • the piezoelectric substrate 200 is a 0.5 mm (diameter) circular 80 mm thick mirror-polished quartz plate (AT-power: 3 ° 00 '). At this time, the frequency of the fundamental vibration is 20MHz.
  • the electrodes 201 and 202 are formed by depositing Ag by a 2000A vapor deposition method using NiCr 200A as a base. The diameter is 1.0mm.
  • the electrodes 201 and 202 are provided on the front surface and the back surface of the piezoelectric substrate 200.
  • the protection substrates 205 and 206 are made of the same material as the piezoelectric substrate 200. Book In the embodiment, it is quartz. In this embodiment, the protection substrates 205 and 206 have the same cutting direction as the piezoelectric substrate 200. It is mirror polished. However, in order to form the recesses 211 and 212, the thickness is as thick as 240 m.
  • the protection substrate 205 is disposed on the front side of the piezoelectric substrate 200, and the protection substrate 206 is disposed on the back side of the piezoelectric substrate 200.
  • the joints 207, 208, 209, 210 have gold and silver.
  • the bonding portions 207, 208, 209, 210 bond the piezoelectric substrate 200 and the protection substrates 205, 2 ° 6 at room temperature or by diffusion bonding.
  • a gap of 02 mm is provided concentrically at the center, and a film of Au is formed in a donut shape using NiCr 200A as a base by 5000A deposition.
  • a 02 mm gap is provided concentrically on the surface of the protection substrates 205 and 206 facing the piezoelectric substrate 200, and a 5 mm thick Ag is deposited on a corner with a NiCr 200 A underlayer.
  • the piezoelectric substrate 200 and the protective substrates 205, 206 are overlaid, sandwiched between two metal jigs for bonding, and the entire quartz plate is 80 kg ' f ⁇ : Apply the same lOOOKg'f force evenly and heat in a vacuum furnace at 310 ° C for 1 hour.
  • the joining portions 207, 209, 209, 210 join the piezoelectric substrate 200 and the protection substrates 205, 206 at room temperature or by diffusion bonding.
  • a physical destructive inspection was performed on the bonding surface, and it was confirmed that diffusion bonding was successfully performed.
  • the applied pressure is uniform. It has been confirmed that bonding can be performed only by diffusion bonding, and there is no problem with the bonding layer.
  • the joints 207, 209, 209, 210 have gold and silver.
  • one or more metals, diamonds, boron or carbon nitride may be used.
  • Metals are, for example, platinum, gold, silver, copper, aluminum, nickel, chromium, molybdenum, tungsten, titanium, palladium, niobium, tantalum, beryllium, magnesium, tin, indium and lead.
  • Boron is particularly preferably cubic boron (cBN).
  • the carbon nitride is particularly preferably hexagonal carbon nitride (5C3N4).
  • the internal extraction electrode 203 joins the electrode 201 and the joint portion 207 at room temperature or by diffusion bonding.
  • the internal extraction electrode 204 performs room-temperature bonding or diffusion bonding between the electrode 202 and the bonding portion 210.
  • the metal mentioned here is a metal having relatively high conductivity. For example, platinum, gold, silver, copper and aluminum. One of these is used as the material of the internal extraction electrode.
  • the recesses 2 1 1 and 2 1 2 to secure the vibration area are made of a 05 mm (diameter) circular 240 mm thick mirror-polished protective substrate 205 with the same cutting orientation as the piezoelectric substrate 200. It is formed by chemically etching 206 in an ammonium hydrogen fluoride solution heated to 90 ° C.
  • the dimensions are 0.2 mm at the center of the protection substrates 205 and 206, and a depth of 20 jm from the surface of the protection substrates 205 and 206.
  • the concave portions 211, 212 of the protective substrates 205, 206 can be formed by high-speed cutting using diamond or ultrasonic machining, or mechanical machining, in addition to chemical etching. . In the case of machining, it can be machined to a depth of 50 m while cooling the machined part with grinding fluid. In addition, the same results as those obtained by forming the recess by chemical etching were obtained for the bonding.
  • the external connection electrodes 2 15 and 2 16 are for connecting the electrodes 201 and 202 to a power supply not shown.
  • the external connection electrodes 115 and 216 are provided on the surface of the protection substrate 206 opposite to the surface facing the piezoelectric substrate 200.
  • the surfaces of the external connection electrodes 2 15 and 2 16 are treated with gold electrodes.
  • the external connection electrode 215 is electrically connected to the electrode 201 via the joint portion 207 and the external extraction electrode 213.
  • the external extraction electrodes 2 13 are provided on the side surfaces of the piezoelectric substrate 200 and the protection substrate 206, and bond the bonding portion 207 and the external connection electrodes 2 15 at room temperature or by diffusion bonding.
  • the material of the outer extraction electrode 2 13 is a metal having relatively high conductivity. For example, platinum, gold, silver, copper and aluminum. One of these is used as the material of the external extraction electrode.
  • the surface of the external extraction electrode 2 13 is treated with a gold electrode.
  • the external connection electrode 2 16 is electrically connected to the electrode 202 via the bonding portion 210 and the external extraction electrode 214.
  • the external extraction electrode 214 is provided on the side surface of the protective substrate 206, and the bonding part 210 and the external connection electrode 216 are bonded at room temperature or diffusion.
  • the material of the external extraction electrode 216 is a metal having relatively high conductivity. For example, platinum, gold, silver, copper and aluminum. One of these is used as the material of the external extraction electrode.
  • the surface of the external extraction electrode 214 is treated with a gold electrode. As a result, the center frequency of the piezoelectric vibrator becomes 20.5 MHz and the equivalent resistance becomes less than 10 ⁇ .
  • the piezoelectric substrate 200 can be sealed by the joints 207, 208, 209, 210. Since the joints 207, 209, 209, 210 are bonded by diffusion bonding or room temperature bonding, the electrical resistance value can be kept low. In addition, since the bonding portion is stronger than the low-melting glass, it can be made extremely thin, so that the piezoelectric substrate 200 and the protective substrates 205 and 206 can be handled as if they were integrated. This is exactly packageless.
  • the external extraction electrodes 2 13, 2 14 and the internal extraction electrodes 203, 204 are metals having relatively high conductivity, and the external connection electrode and the electrode are connected at a relatively low temperature of 300 ° C. or less. Since diffusion bonding or room-temperature bonding is used, there is no thermal effect at the bonding interface, and an extremely good bonding surface in terms of strength and quality can be formed.
  • the sealing of the piezoelectric substrate 200 is not broken by thermal expansion.
  • a vibration region of the piezoelectric substrate 200 can be secured by the concave portions 211 and 212.
  • the material of the piezoelectric substrate 300 may be any one of a single-crystal piezoelectric substrate, a piezoelectric ceramic, and a high-molecular piezoelectric polymer.
  • the single crystal piezoelectric substrate is, for example, quartz, lithium tantalate, lithium niobate, lithium tetraoxide, langasite, and aluminum phosphate.
  • the piezoelectric substrate 300 is a 05 mm (diameter) circular mirror-polished quartz plate (AT-cut: 3 ° 00 ′) having a thickness of 120 ⁇ m. At this time, the frequency of the fundamental vibration is 20MHz.
  • the thickness is larger than that of the piezoelectric substrate 300 in the first and second embodiments.
  • the recesses 3 12 and 3 13 are formed by chemical etching in a heated ammonium fluoride solution and then chemically etching the center from both directions of 02 mm to a depth of 40 zm from each surface. . Therefore, the thickness of the mesa processing portion 301 is 40 ⁇ m.
  • high-speed cutting with diamond bytes as ultrasonic processing or mechanical processing is also possible.
  • the electrodes 302 and 303 are formed by depositing Ag on the concave portions 312 and 313 by using NiCr 100 A as a base and depositing Ag at 1000 A. The diameter is 1.0mm.
  • the electrodes 302 and 303 are provided on the front surface and the back surface of the piezoelectric substrate 300.
  • the protection substrates 303 and 307 are made of the same material as the piezoelectric substrate 300. In the present embodiment, it is quartz.
  • the protection substrates 306 and 307 have the same cutting direction and shape as the piezoelectric substrate 300. Mirror-polished.
  • the protection substrate 306 is arranged on the front side of the piezoelectric substrate 300, and the protection substrate 307 is arranged on the back side of the piezoelectric substrate 300.
  • the joints 308, 309, 310, 310 have gold and silver.
  • the bonding portions 308, 309, 310, and 313 bond the piezoelectric substrate 300 and the protective substrates 306, 307 at room temperature or by diffusion bonding.
  • a 02 mm gap is formed concentrically at the center on the front and back sides of the piezoelectric substrate 300, and a film of An is formed by a 5000 A vapor deposition method using a NiCr 200 A base as a base in a donor shape. Then, a 02 mm gap is provided concentrically on the surface of the protection substrates 300 and 307 facing the piezoelectric substrate 300, and a donut-shaped Ag is formed by Ni / 200A as a 5 / m evaporation method under NiCr 200A.
  • the piezoelectric substrate 300 and the protective substrates 303 and 307 are overlapped and sandwiched between two metal jigs for bonding, and the entire quartz plate is 80 kg'f ⁇ : lOOKg ' Heat at 310 ° C for 1 hour in a vacuum furnace so that the force of f is applied evenly.
  • the joints 308, 309, 310, and 31 form the piezoelectric substrate 300 and the protective substrates 306, 307 at room temperature or at room temperature. Splicing. Actually, after being taken out of the vacuum furnace and allowed to stand naturally, a physical destructive inspection was performed on the bonding surface, and it was confirmed that diffusion bonding was successfully performed.
  • the joints 308, 309, 310, and 311 have gold and silver.
  • one or more metals, diamonds, boron or carbon nitride may be used.
  • Metals are, for example, platinum, gold, silver, copper, aluminum, nickel, chromium, molybdenum, tungsten, titanium, palladium, niobium, tantalum, beryllium, magnesium, tin, indium and lead.
  • Boron is particularly preferably cubic boron (cBN).
  • the carbon nitride is particularly preferably hexagonal carbon nitride (5C3N4).
  • the internal extraction electrode 304 joins the electrode 302 and the joint 308 at room temperature or diffusion.
  • the internal extraction electrode 305 performs room temperature bonding or diffusion bonding between the electrode 303 and the bonding portion 311.
  • the metal mentioned here is a metal having relatively high conductivity.
  • the external connection electrodes 316 and 317 are for connecting the electrodes 302 and 303 to a power source not shown.
  • the external connection electrodes 316 and 317 are provided on the surface of the protection substrate 307 opposite to the surface facing the piezoelectric substrate 300.
  • the surfaces of the external connection electrodes 3 16 and 3 17 are treated with metal electrodes.
  • the external connection electrode 316 is electrically connected to the electrode 302 via the joint portion 308 and the external extraction electrode 314.
  • the external extraction electrodes 314 are provided on the side surfaces of the piezoelectric substrate 300 and the protection substrate 307, and bond the bonding portion 308 and the external connection electrodes 316 at room temperature or by diffusion bonding.
  • the external extraction electrodes 314, 315 and the internal extraction electrodes 304, 305 are relatively high conductivity metals, and are formed by bonding the external connection electrode and the electrode at room temperature or by diffusion bonding. As a result, the electrical resistance can be kept low.
  • the piezoelectric vibrating body of the present invention has a structure in which the conventional piezoelectric vibrating body is released from a ceramic package or a metal package which is a box housing the piezoelectric element, and therefore does not require an extra mounting area. It is a chip component that can reduce the stray capacitance from the package, which has always been a problem in the high frequency band, and that enables ultra-thin-ultra-miniature / high-frequency operation.
  • a low-resistance connection can be stably maintained at a connection point over a long period of time, so that the conductive bonding portion, which has been a problem, has been a problem.
  • the feature of the dog of the present invention is that the phenomenon that the resistance value increases can be avoided and high reliability of various piezoelectric units can be realized.
  • the piezoelectric vibrator of the present invention can be obtained by appropriately selecting a high-coupling piezoelectric material such as lithium nitrate, lithium niobate, lithium tetraborate, langasite, aluminum phosphate, and piezoelectric ceramic as the piezoelectric substrate material.
  • a piezoelectric unit having a small capacitance ratio utilizing thickness vibration can be realized.
  • mass production effects can be expected because existing technologies that have been established up to now can be applied, and excellent piezoelectric units can be realized.
  • the piezoelectric vibrating body of the present invention can be realized by applying room-temperature bonding even to a polymer piezoelectric polymer that has recently become a topic.
  • the piezoelectric vibrator of the present invention is not limited to a vibrator but can be applied to an MCF that is a filter. If the piezoelectric substrate with a three-layer structure is a single crystal, the same cut orientation can be selected to match the material constants, reducing the effects of heat distortion during the manufacturing process and residual stress during processing. However, in the case of room temperature bonding, it is further improved, and its practicality is extremely high.
  • a quartz resonator using quartz as a piezoelectric material will be described.
  • the packageless piezoelectric unit of the present invention The physical thickness of the device is 245 m (thickness of the external connection electrode is 3 m) .
  • a mesa-processed vibrating element with a thickness of 80 m is housed in a conventional ceramic package, its outer dimensions are about 0 mm. 7mm X 1.0mm.
  • the volume of the piezoelectric vibrator of the present invention when mounted is 1/5 or less of that of the conventional product, indicating that the piezoelectric vibrator can greatly contribute to an increase in occupied area and a reduction in thickness. Further, the piezoelectric vibrator of the present invention has an excellent effect of reducing stray capacitance from a package, which has always been a problem when using a package.
  • the mesa structure of the crystal placed at the center of the three-layer structure By selecting the thickness of the center at 16.7 100m, 100MHz (diaphragm) while maintaining the physical thickness of the laminated crystal unit at 245m A crystal oscillator that operates with a section thickness of 16.7 ⁇ m) can be realized.
  • the diaphragm area required as a vibration area is less than lmm, so it is strong against external environments such as shock and vibration while maintaining the outer shape of 0.5mm. As a result, a crystal oscillator having excellent properties can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

明 細 圧 電 振 動 体 技術分野
本発明は、 圧電振動体をあたかも一体であり、 パッケージがないもの として取り扱える技術に関する。
背景技術
近年、 移動体通信分野における大容量、 高周波化の流れにしたがって、 使用される圧電材料を使ったエレク トロメカニカル機能部品である圧電 振動子や SAW ( surface acoustic wave) フィル夕を始めとする各種フィ ル夕は、 超小型化 ·薄型化と高周波化対応せざるを得なくなってきてい る。 10MHz〜: 100MHz帯は圧電材料のバルク波振動を利用した圧電振動 子ゃ圧電フィルタ、 100MHz〜lGHz 帯は弾性表面波振動を利用した SAWフィル夕等が数多く使用されている。
これら圧電製品群の内でも、 特に圧電材料中水晶は、 高 Qや温度に対 する周波数安定度は圧電材料の中でも最も優れた性能を有し水晶振動子 やモノ リシッククリスタルフィル夕 (以下、 「MCF」 ということがある) として実現されている。
ところで、 これら圧電製品群においては、 薄膜電極を水晶などの圧電 板の表裏二面に形成する。 そして、 圧電振動子に電圧をかけて、 圧電効 果により圧電振動子を振動させる。 ここで、 薄膜電極外部環境変化の悪 影響を回避する。 そこで、 圧電振動子をセラミ ックパッケージ等に収納 する。 セラミ ックパッケージには、 気密封止用のシールリングがついて おり、 水晶振動子をセラミ ックパッケージ内に実装後、 シールリング上 に金属キャップを被せ、 シーム溶接等の手段で気密封止し、 高信頼性を 保っている。 導電性接着剤は、 形成された引出電極と、 引出電極に電圧 を印加する為のセラミ ックパッケージ内に形成された電極端部とを接続 する。 導電性接着剤は、 導電性があるので、 電源電圧と引出電極とが電 気的に接続されることになる。
しかし、 導電性接着剤中の銀フイラは、 経年変化等により、 抵抗値が 増大することがある。 したがって、 一定電圧の電源によって圧電振動子 にかけられる実効的な電圧が低下してしまう。 これにより、 圧電振動子 のドライブレベルが低下し、固有振動が正確に行われなくなつてしまう。 そこで、 本発明は、 従来のセラミ ック P K Gを必要としない水晶振動 子を提供することを主目的とし、 真空封止で高 Qの水晶振動子を実現で き、 真空中のため、 薄膜電極の経年変化が極めて少ない高安定で高信頼 性を有する圧電振動体を提供することを課題とする。 発明の開示
請求項 1に記載の発明は、 圧電振動する圧電基板と、 圧電基板の表面 および裏面に取り付けられた電極と、 圧電基板の表面および裏面に重ね て配置された、 圧電基板と同一材質の保護基板と、 圧電基板と保護基板 との間を拡散接合あるいは常温接合する接合部と、 を備えるように構成 される。 上記のように構成された圧電振動体によれば、 接合部は、 300°C以下 の比較的低温での拡散接合あるいは常温接合している為に、 接合界面で の熱的影響が無く、 強度的にも品質的にも極めて良好な接合面を形成す ることができる。
しかも、 圧電基板と保護基板との材質が同一なので、 熱膨張によって 圧電基板の密封が破壊されることがない。
請求項 2に記載の発明は、請求項 1に記載の発明であって、接合部は、 一種類以上の金属薄膜、 ダイヤモン ド薄膜、 硼素薄膜および窒化炭素薄 膜の内のいずれか一つである。 金属とは、 例えば、 白金、 金、 銀、 銅、 アルミニウム、 ニッケル、 ク ロム、 モリブデン、 タングステン、 チタン、 パラジウム、 ニオブ、 タン タル、 ベリ リウム、 マグネシウム、 スズ、 インジウムおよび鉛である。 これらの金属の内の一種類あるいは、 二種類以上組み合わせて接合部と する。 硼素は、 特に立方晶系硼素 ( c BN) が好ましい。 窒化炭素は、 特に六 方晶系窒化炭素 ( 5 C3N4) が好ましい。 請求項 3に記載の発明は、 請求項 1に記載の発明であって、 圧電基板 が、 単結晶圧電基板、 圧電セラミ ックスおよび高分子圧電ポリマーの内 のいずれか一つであるものである。 単結晶圧電基板とは、 例えば、 水晶、 タンタル酸リチウム、 ニオブ酸 リチウム、 四方酸リチウム、 ランガサイ トおよび燐酸アルミニウムであ る。 これらの単結晶圧電基板の内のいずれか一つを圧電基板とする。 請求項 4に記載の発明は、 請求項 1に記載の発明であって、 保護基板 に設けられた外部接続電極と、 接合部と外部接続電極とを拡散接合ある いは常温接合し、 材質が金属薄膜である外部引出電極と、 を備える。 ここでいう金属は、 導電率の比較的高い金属である。 例えば、 白金、 金、 銀、 銅およびアルミニウムである。 これらのうち一つを外部引出電 極の材質とする。 請求項 5に記載の発明は、 請求項 1に記載の発明であって、 電極と接 合部とを拡散接合あるいは常温接合し、 材質が金属薄膜である、 内部引 出電極を備える。 ここでいう金属は、 導電率の比較的高い金属である。 例えば、 白金、 金、 銀、 銅およびアルミニウムである。 これらのうち一つを内部引出電 極の材質とする。 請求項 6に記載の発明は、 請求項 1に記載の発明であって、 接合界面 の厚さが、 電極の厚さよりも大きい、 ものである。 請求項 7に記載の発明は、 請求項 1に記載の発明であって、 圧電基板 において、 電極が取りつけられる部分がくぼんでいる、 ものである。 請求項 8に記載の発明は、 請求項 1に記載の発明であって、 保護基板 において、 電極に対応する部分がくぼんでいる、 ものである。 請求項 9に記載の発明は、 請求項 1に記載の発明であって、 圧電基板 と保護基板とが、 同一カッ ト方位の単結晶板である、 ものである。 請求項 1 0に記載の発明は、 請求項 1に記載の発明であって、 圧電基 板の材質が水晶であり、 接合界面が金と銀からなる、 ものである。 図面の簡単な説明
図 1は、 本発明の第一の実施形態に係る圧電振動体の断面図である 図 2は、 本発明の第二の実施形態に係る圧電振動体の断面図である。 図 3は、 本 発明の第三の実施形態に係る圧電振動体の断面図である。 発明を実施するための最良の形態
以下、 本発明の実施形態を図面を参照しながら説明する。 第一の実施形態
図 1は、 本発明の第一の実施形態に係る圧電振動体の断面図である。 第一の実施形態に係る圧電振動体は、 圧電基板 1 0 0、 電極 1 0 1、 1 0 2、 保護基板 1 0 5、 1 0 6、 接合部 1 0 7、 1 0 8、 1 0 9、 1 1 0を備える。 圧電基板 1 0 0の材質は、 単結晶圧電基板、 圧電セラミ ックスおよび 高分子圧電ポリマーの内のいずれか一つであればよい。 単結晶圧電基板 とは、 例えば、 水晶、 タンタル酸リチウム、 ニオブ酸リチウム、 四方酸 リチウム、 ランガサイ トおよび燐酸アルミニウムである。 この実施形態においては、 圧電基板 1 0 0を 05mm (直径) の円形の 厚み 80 m の鏡面研磨された水晶板 (AT-力ッ ト : 3° 00' ) とする。 このとき、 基本波の厚み振動の周波数は 20MHzである。 電極 1 0 1、 1 0 2は、 NiCr 200Aを下地に Agを 2000A蒸着法で膜 形成したものである。 なお、 直径 1.0mm である。 電極 1 0 1、 1 0 2 は、 圧電基板 1 0 0の表面および裏面に設けられている。 保護基板 1 0 5、 1 0 6は、 圧電基板 1 0 0と同一の材質である。 本 実施形態においては、 水晶である。 なお、 本実施形態においては、 保護 基板 1 0 5、 1 0 6は、 圧電基板 1 0 0と同一形状であり、 カッ ト方向 も同じである。 鏡面研磨もされている。 保護基板 1 0 5が圧電基板 1 0 0の表側に、保護基板 1 0 6が圧電基板 1 0 0の裏側に配置されている。 接合部 1 0 7、 1 08、 1 0 9、 1 1 0は、 金と銀とを有する。 接合 部 1 0 7、 1 0 8、 1 0 9、 1 1 0は、 圧電基板 1 0 0と保護基板 1 0 5, 1 0 6とを常温接合あるいは拡散接合する。 なお、 接合部 1 0 7、 1 0 8、 1 0 9、 1 1 0の厚さは、 電極 1 0 1、 1 0 2の厚さよりも厚 い。 これにより、 圧電基板 1 0 0の振動領域を確保できる空間 1 1 1、 1 1 2が確保できる。 本実施形態においては、 圧電基板 1 0 0の表側および裏側に、 同心円 状に中心部に 02mmの空隙を設けド一ナツ形状に NiCr 200Aを下地に Auを 5000A蒸着法で膜形成する。 そして、 保護基板 1 0 5、 1 0 6の、 圧電基板 1 0 0と向かい合う面に同心円状に中心部に 02mm の空隙を 設けドーナツ形状に NiCr 200Aを下地に Agを 5〃m蒸着法で形成する c なお、 これらの薄膜は、 蒸着法に限らず、 スパッタリングあるいはィ オンプレーティ ングによって、 形成してもよい。 これら膜形成技術を用 いて作製される薄膜の厚みは数千 A〜数十〃 mである。 接合表面をプラズマ処理後、 圧電基板 1 00と保護基板 1 0 5、 1 0 6とを重ね合わせて、 二枚の接合用金属冶具の間に挟みこみ水晶板全体 に 80Kg'f〜: lOOKg'f の力が均等にかかるようにし、 真空炉で 310°C 1 時間加熱する。 真空炉を用いるのは、 吸着層 (水分、 酸素、 酸化膜) を 除去しなければ完全な接合は実現できないからである。 これは、 以降の 実施形態においても同様である。 真空中での接合をおこなうことから結 果として高 Q、 つま り空気中への振動エネルギーの散逸を回避でき、 実 現できる振動素子の等価抵抗を小さく抑えることができる利点がある。 真空封止することで、 経年変化に対しても極めて良好となり圧電板上の 電極膜の安定性が確保できる。 このようにして、 接合部 1 0 7、 1 0 8、 1 0 9、 1 1 0は、 圧電基 板 1 0 0 と保護基板 1 0 5、 1 0 6とを常温接合あるいは拡散接合する。 実際に、 真空炉から取り出し自然放置後、 接合表面を物理的破壊検査し たところ、 良好に拡散接合されていることを確認できた。 なお、 このような拡散接合に比較して、 従来のろう接合である金属薄 膜の間にインシユレ一夕 (インジウム等の箔) を入れる方法では、 接合 時の条件によって溶融した接合金属薄膜が両端からの流出量が異なった り不均一に接合される場合があり、 実際テ一パ状に接合されることを実 験でも確認している。 ただし、 金薄膜と銀薄膜の組合せでは、 接合表面をプラズマ処理しな くても、 加圧力が均一に接合しょうとする圧電基板 1 0 0と保護基板 1 0 5、 1 0 6 とにかかれば、 拡散接合だけで接合でき、 接合層に問題の 無い事を確認している。 なお、 本実施形態では、 接合部 1 0 7、 1 0 8、 1 0 9、 1 1 0は、 金と銀とを有することになつている。 しかし、 一種類以上の金属、 ダイ ャモンド、 硼素あるいは窒化炭素であればいい。 金属とは、 例えば、 白金、 金、 銀、 銅、 アルミニウム、 ニッケル、 ク ロム、 モリブデン、 タングステン、 チタン、 パラジウム、 ニオブ、 タン タル、 ベリ リウム、 マグネシウム、 スズ、 インジウムおよび鉛である。 これらの金属の内の一種類あるいは、 二種類以上組み合わせて接合部と する。 硼素は、 特に立方晶系硼素 ( c BN) が好ましい。 窒化炭素は、 特に六 方晶系窒化炭素 ( 5 C3N4) が好ましい。 内部引出電極 1 0 3は、 電極 1 0 1 と接合部 1 0 7とを常温接合ある いは拡散接合する。 内部引出電極 1 0 4は、 電極 1 0 2 と接合部 1 1 0 とを常温接合あるいは拡散接合する。 ここでいう金属は、 導電率の比較 的高い金属である。 例えば、 白金、 金、 銀、 銅およびアルミニウムであ る。 これらのうち一つを内部引出電極の材質とする。 外部接続電極 1 1 5、 1 1 6は、電極 1 0 1、 1 0 2を図示省略した電 源に接続するためのものである。 外部接続電極 1 1 5、 1 1 6は、 保護 基板 1 0 6の圧電基板 1 0 0に向かい合う面とは反対側の面に設けられ ている。 外部接続電極 1 1 5、 1 1 6の表面は金電極処理されている。 外部接続電極 1 1 5は、 電極 1 0 1 と、 接合部 1 0 7および外部引出 電極 1 1 3を介して電気的に接続されている。 外部引出電極 1 1 3は、 圧電基板 1 0 0および保護基板 1 0 6の側面に設けられており、 接合部 1 0 7および外部接続電極 1 1 5を常温接合あるいは拡散接合する。 外 部引出電極 1 1 3の材質は、 導電率の比較的高い金属である。 例えば、 白金、 金、 銀、 銅およびアルミニウムである。 これらのうち一つを外部 引出電極の材質とする。 なお、 外部引出電極 1 1 3の表面は金電極処理 されている。 外部接続電極 1 1 6は、 電極 1 0 2 と、 接合部 1 1 0および外部引出 電極 1 1 4を介して電気的に接続されている。 外部引出電極 1 1 4は、 保護基板 1 0 6の側面に設けられており、 接合部 1 1 0および外部接続 電極 1 1 6を常温接合あるいは拡散接合する。 外部引出電極 1 1 6の材 質は、 導電率の比較的高い金属である。 例えば、 白金、 金、 銀、 銅およ びアルミニウムである。これらのうち一つを外部引出電極の材質とする。 外部引出電極 1 1 4の表面は金電極処理されている。 これにより、 圧電振動体の中心周波数が 20.5MHz となり、 等価抵抗 は 1 0 Ω以下となる。 なお、 気密部の形成と電気的接続部の形成方法を 各々独立に形成しても同様な効果が得られることは、 言及するまでもな い。 第一の実施形態によれば、 接合部 1 0 7、 1 0 8、 1 0 9、 1 1 0に より圧電基板 1 0 0を封じることができる。 接合部 1 0 7、 1 0 8、 1 0 9、 1 1 0は、 300°C以下の比較的低温での拡散接合あるいは常温接 合している為に、 接合界面での熱的影響が無く、 強度的にも品質的にも 極めて良好な接合面を形成することができる。
しかも、 外部引出電極 1 1 3、 1 1 4および内部引出電極 1 0 3、 1 0 4は導電率の比較的高い金属であり、 外部接続電極と電極とを 300°C 以下の比較的低温で拡散接合あるいは常温接合している為に、 接合界面 での熱的影響が無く、 強度的にも品質的にも極めて良好な接合面を形成 することができる。
さらに、 圧電基板 1 0 0 と保護基板 1 0 5、 1 0 6 との材質が同一な ので、 熱膨張によって圧電基板 1 0 0の密封が破壊されることがない。 また、 接合部 1 0 7、 1 0 8、 1 0 9、 1 1 0の厚みが、 電極 1 0 1、 1 0 2の厚みよりも大きいため、 圧電基板 1 0 0の振動領域を確保でき る。 第二の実施形態
第二の実施形態に係る圧電振動体は、 第一の実施形態に係る圧電振動 体と比較して、 保護基板 2 0 5、 2 0 6にメサ加工等により凹部 2 1 1、 2 1 2が形成されている点が異なる。 図 2は、 本発明の第二の実施形態に係る圧電振動体の断面図である。 第二の実施形態に係る圧電振動体は、 圧電基板 2 0 0、 電極 2 0 1、 2 0 2、 保護基板 2 0 5、 2 0 6、 接合部 2 0 7、 2 0 8、 2 0 9、 2 1 0を備える。 圧電基板 2 0 0の材質は、 単結晶圧電基板、 圧電セラミ ックスおよび 高分子圧電ポリマーの内のいずれか一つであればよい。 単結晶圧電基板 とは、 例えば、 水晶、 タンタル酸リチウム、 ニオブ酸リチウム、 四方酸 リチウム、 ランガサイ トおよび燐酸アルミニウムである。 この実施形態においては、 圧電基板 2 0 0を 0 5mm (直径) の円形の 厚み 80〃m の鏡面研磨された水晶板 (AT-力ッ ト : 3 ° 00 ' ) とする。 このとき、 基本振動の周波数は 20MHzである。 電極 2 0 1、 2 0 2は、 NiCr 200Aを下地に Agを 2000A蒸着法で膜 形成したものである。 なお、 直径 1.0mm である。 電極 2 0 1、 2 0 2 は、 圧電基板 2 0 0の表面および裏面に設けられている。 保護基板 2 0 5、 2 0 6は、 圧電基板 2 0 0と同一の材質である。 本 実施形態においては、 水晶である。 なお、 本実施形態においては、 保護 基板 2 0 5、 2 0 6は、 圧電基板 2 0 0とカツ ト方向が同じである。 鏡 面研磨もされている。 ただし、 凹部 2 1 1、 2 1 2を形成するため、 厚 みは 240〃mと厚くなつている。 保護基板 2 0 5が圧電基板 2 0 0の表 側に、 保護基板 2 0 6が圧電基板 2 0 0の裏側に配置されている。 接合部 2 07、 2 0 8、 2 0 9、 2 1 0は、 金と銀とを有する。 接合 部 2 07、 2 0 8、 2 0 9、 2 1 0は、 圧電基板 2 0 0と保護基板 2 0 5、 2 ◦ 6とを常温接合あるいは拡散接合する。 本実施形態においては、 圧電基板 2 0 0の表側および裏側に、 同心円 状に中心部に 02mmの空隙を設けドーナツ形状に NiCr 200Aを下地に Auを 5000A蒸着法で膜形成する。 そして、 保護基板 2 0 5、 2 0 6の、 圧電基板 2 0 0と向かい合う面に同心円状に中心部に 02mm の空隙を 設けド一ナヅ形状に NiCr 200Aを下地に Agを 5〃m蒸着法で形成する < 接合表面をプラズマ処理後、 圧電基板 2 0 0と保護基板 2 0 5、 2 0 6 とを重ね合わせて、 二枚の接合用金属冶具の間に挟みこみ水晶板全体に 80Kg'f〜: lOOKg'f の力が均等にかかるようにし、 真空炉で 310°C 1 時 間加熱する。 このようにして、 接合部 2 0 7、 2 0 8、 2 0 9、 2 1 0 は、 圧電基板 2 00と保護基板 2 0 5、 2 0 6とを常温接合あるいは拡 散接合する。 実際に、 真空炉から取り出し自然放置後、 接合表面を物理 的破壊検査したところ、 良好に拡散接合されていることを確認できた。 ただし、 金薄膜と銀薄膜の組合せでは、 接合表面をプラズマ処理しな くても、 加圧力が均一に接合しょうとする圧電基板 2 00と保護基板 2 0 5、 2 0 6とにかかれば、 拡散接合だけで接合でき、 接合層に問題の 無い事を確認している。 なお、 本実施形態では、 接合部 2 0 7、 2 0 8、 2 0 9、 2 1 0は、 金と銀とを有することになつている。 しかし、 一種類以上の金属、 ダイ ャモン ド、 硼素あるいは窒化炭素であればいい。 金属とは、 例えば、 白金、 金、 銀、 銅、 アルミニウム、 ニッケル、 ク ロム、 モリブデン、 タングステン、 チタン、 パラジウム、 ニオブ、 タン タル、 ベリ リウム、 マグネシウム、 スズ、 インジウムおよび鉛である。 これらの金属の内の一種類あるいは、 二種類以上組み合わせて接合部と する。 硼素は、 特に立方晶系硼素 ( c BN) が好ましい。 窒化炭素は、 特に六 方晶系窒化炭素 ( 5 C3N4) が好ましい。 内部引出電極 2 0 3は、 電極 2 0 1 と接合部 2 0 7とを常温接合ある いは拡散接合する。 内部引出電極 2 0 4は、 電極 2 0 2 と接合部 2 1 0 とを常温接合あるいは拡散接合する。 ここでいう金属は、 導電率の比較 的高い金属である。 例えば、 白金、 金、 銀、 銅およびアルミニウムであ る。 これらのうち一つを内部引出電極の材質とする。 振動領域を確保するための凹部 2 1 1、 2 1 2は、 圧電基板 2 0 0 と 同じカツ ト方位の 05mm (直径) の円形の厚み 240〃mの鏡面研磨され た保護基板 2 0 5、 2 0 6を 90°Cに加熱したフッ化水素アンモニゥム溶 液中で化学エッチングして形成される。 その寸法は、 保護基板 2 0 5、 2 0 6の中心部に 0 2mm、保護基板 2 0 5 , 2 0 6の表面からの深さ 20 j mである。 なお、 保護基板 2 0 5、 2 0 6の凹部 2 1 1、 2 1 2の形成法として は、 化学エッチングの他に、 超音波加工、 機械加工としてのダイヤモン ドバイ トによる高速切削でも可能である。 機械加工の場合は、 機械加工 部を研削液で冷却しながら 50〃mの深さにまで加工することができる。 しかも、 接合に関しても化学エッチングで凹部を形成したものと同様な 結果が得られている。 外部接続電極 2 1 5、 2 1 6は、 電極 2 0 1、 2 0 2を図示省略した電 源に接続するためのものである。 外部接続電極 1 1 5、 2 1 6は、 保護 基板 2 0 6の圧電基板 2 0 0に向かい合う面とは反対側の面に設けられ ている。 外部接続電極 2 1 5 , 2 1 6の表面は金電極処理されている。 外部接続電極 2 1 5は、 電極 2 0 1 と、 接合部 2 0 7および外部引出 電極 2 1 3を介して電気的に接続されている。 外部引出電極 2 1 3は、 圧電基板 2 0 0および保護基板 2 0 6の側面に設けられており、 接合部 2 0 7および外部接続電極 2 1 5を常温接合あるいは拡散接合する。 外 部引出電極 2 1 3の材質は、 導電率の比較的高い金属である。 例えば、 白金、 金、 銀、 銅およびアルミニウムである。 これらのうち一つを外部 引出電極の材質とする。 なお、 外部引出電極 2 1 3の表面は金電極処理 されている。 外部接続電極 2 1 6は、 電極 2 0 2 と、 接合部 2 1 0および外部引出 電極 2 1 4を介して電気的に接続されている。 外部引出電極 2 1 4は、 保護基板 2 0 6の側面に設けられており、 接合部 2 1 0および外部接続 電極 2 1 6を常温接合あるいは拡散接合する。 外部引出電極 2 1 6の材 質は、 導電率の比較的高い金属である。 例えば、 白金、 金、 銀、 銅およ びアルミニウムである。これらのうち一つを外部引出電極の材質とする。 外部引出電極 2 1 4の表面は金電極処理されている。 これにより、 圧電振動体の中心周波数が 20.5MHz となり、 等価抵抗 は 1 0 Ω以下となる。 なお、 気密部の形成と電気的接続部の形成方法を 各々独立に形成しても同様な効果が得られることは、 言及するまでもな い。 第二の実施形態によれば、 接合部 2 0 7、 2 0 8、 2 0 9、 2 1 0に より圧電基板 2 0 0を封じることができる。 接合部 2 0 7、 2 0 8、 2 0 9 , 2 1 0は、 拡散接合あるいは常温接合しているので、 電気的な抵 抗値を低く保つことができる。 しかも、 接合部は低融点ガラスに比べて 強度が強いため極めて薄くでき、 圧電基板 2 0 0、 保護基板 2 0 5 , 2 0 6をあたかも一体として取り扱える。 これそ、 まさにパッケージレス である。
しかも、 外部引出電極 2 1 3、 2 1 4および内部引出電極 2 0 3、 2 0 4は導電率の比較的高い金属であり、 外部接続電極と電極とを 300°C 以下の比較的低温で拡散接合あるいは常温接合している為に、 接合界面 での熱的影響が無く、 強度的にも品質的にも極めて良好な接合面を形成 することができる。
さらに、 圧電基板 2 0 0 と保護基板 2 0 5、 2 0 6 との材質が同一な ので、 熱膨張によって圧電基板 2 0 0の密封が破壊されることがない。 また、 凹部 2 1 1、 2 1 2により圧電基板 2 0 0の振動領域を確保で きる。
第三の実施形態
第三の実施形態に係る圧電振動体は、 第一の実施形態に係る圧電振動 体と比較して、 圧電基板 3 0 0にメサ加工等により凹部 3 1 2、 3 1 3 が形成されている点が異なる。 図 3は、 本発明の第三の実施形態に係る圧電振動体の断面図である。 第三の実施形態に係る圧電振動体は、 圧電基板 3 0 0、 電極 3 0 2、 3 0 3、 保護基板 3 0 6、 3 0 7、 接合部 3 0 8、 3 0 9、 3 1 0、 3 1 1を備える。 圧電基板 3 0 0の材質は、 単結晶圧電基板、 圧電セラミ ックスおよび 高分子圧電ポリマ一の内のいずれか一つであればよい。 単結晶圧電基板 とは、 例えば、 水晶、 タンタル酸リチウム、 ニオブ酸リチウム、 四方酸 リチウム、 ランガサイ トおよび燐酸アルミニウムである。 この実施形態においては、 圧電基板 3 0 0を 05mm (直径) の円形の 厚み 120〃mの鏡面研磨された水晶板 (AT-カッ ト : 3° 00' ) とする。 このとき、 基本振動の周波数は 20MHzである。 なお、 第一及び第二の 実施形態における圧電基板 3 0 0よりも厚いのは、 圧電基板 3 0 0に凹 部 3 1 2、 3 1 3を形成するためである。 凹部 3 1 2、 3 1 3は、 加熱したフッ化水素アンモニゥム溶液中で化 学エッチングして中心部に 02mm の両方向から化学エッチングして 各々の表面からの深さ 40 zmまで加工して形成する。 よって、 メサ加工 部 301の厚みは 40〃mである。 なお、 圧電基板 3 0 0の凹部 3 1 2, 3 1 3の形成法としては、 化学 ェヅチングの他に、 超音波加工、 機械加工としてのダイヤモンドバイ ト による高速切削でも可能である。 機械加工の場合は、 機械加工部を研削 液で冷却しながら 50〃mの深さにまで加工することができる。しかも、 接合に関しても化学ェッチングで凹部を形成したものと同様な結果が得 られている。 電極 3 0 2、 30 3は、 NiCr 100 Aを下地に Agを 1000 A蒸着法で凹 部 3 1 2、 3 1 3に膜形成したものである。 なお、 直径 1.0mmである。 電極 3 0 2、 3 0 3は、 圧電基板 3 0 0の表面および裏面に設けられて いる。 保護基板 3 0 6、 3 07は、 圧電基板 3 0 0と同一の材質である。 本 実施形態においては、 水晶である。 なお、 本実施形態においては、 保護 基板 30 6、 3 07は、 圧電基板 3 0 0とカッ ト方向および形状が同一 である。 鏡面研磨もされている。 保護基板 3 0 6が圧電基板 30 0の表 側に、 保護基板 30 7が圧電基板 30 0の裏側に配置されている。 接合部 3 08、 3 0 9、 3 1 0、 3 1 1は、 金と銀とを有する。 接合 部 30 8、 30 9、 3 1 0、 3 1 1は、 圧電基板 3 0 0と保護基板 3 0 6、 30 7とを常温接合あるいは拡散接合する。 本実施形態においては、 圧電基板 3 00の表側および裏側に、 同心円 状に中心部に 02mmの空隙を設けドーナヅ形状に NiCr 200Aを下地に Anを 5000A蒸着法で膜形成する。 そして、 保護基板 3 0 6、 3 07の、 圧電基板 3 0 0と向かい合う面に同心円状に中心部に 02mm の空隙を 設けドーナツ形状に NiCr 200Aを下地に Agを 5 /m蒸着法で形成する c 接合表面をプラズマ処理後、 圧電基板 30 0と保護基板 3 0 6、 30 7 とを重ね合わせて、 二枚の接合用金属冶具の間に挟みこみ水晶板全体に 80Kg'f〜: lOOKg'f の力が均等にかかるようにし、 真空炉で 310°C 1 時 間加熱する。 このようにして、 接合部 30 8、 30 9、 3 1 0、 3 1 1 は、 圧電基板 3 00と保護基板 3 0 6、 3 0 7とを常温接合あるいは拡 散接合する。 実際に、 真空炉から取り出し自然放置後、 接合表面を物理 的破壊検査したところ、 良好に拡散接合されていることを確認できた。 ただし、 金薄膜と銀薄膜の組合せでは、 接合表面をプラズマ処理しな くても、 加圧力が均一に接合しょうとする圧電基板 3 0 0と保護基板 3 0 6、 3 0 7とにかかれば、 拡散接合だけで接合でき、 接合層に問題の 無い事を確認している。 なお、 本実施形態では、 接合部 3 0 8、 3 0 9、 3 1 0、 3 1 1は、 金と銀とを有することになつている。 しかし、 一種類以上の金属、 ダイ ャモン ド、 硼素あるいは窒化炭素であればいい。 金属とは、 例えば、 白金、 金、 銀、 銅、 アルミニウム、 ニッケル、 ク ロム、 モリブデン、 タングステン、 チタン、 パラジウム、 ニオブ、 タン タル、 ベリ リウム、 マグネシウム、 スズ、 インジウムおよび鉛である。 これらの金属の内の一種類あるいは、 二種類以上組み合わせて接合部と する。 硼素は、 特に立方晶系硼素 ( c BN) が好ましい。 窒化炭素は、 特に六 方晶系窒化炭素 ( 5 C3N4) が好ましい。 内部引出電極 3 0 4は、 電極 3 0 2 と接合部 3 0 8とを常温接合ある いは拡散接合する。 内部引出電極 3 0 5は、 電極 3 0 3と接合部 3 1 1 とを常温接合あるいは拡散接合する。 ここでいう金属は、 導電率の比較 的高い金属である。 例えば、 白金、 金、 銀、 銅およびアルミニウムであ る。 これらのうち一つを内部引出電極の材質とする。 外部接続電極 3 1 6、 3 1 7は、 電極 3 0 2 , 3 0 3を図示省略した電 源に接続するためのものである。 外部接続電極 3 1 6 , 3 1 7は、 保護 基板 3 0 7の圧電基板 3 0 0に向かい合う面とは反対側の面に設けられ ている。 外部接続電極 3 1 6 , 3 1 7の表面は金属極処理されている。 外部接続電極 3 1 6は、 電極 3 0 2 と、 接合部 3 0 8および外部引出 電極 3 1 4を介して電気的に接続されている。 外部引出電極 3 1 4は、 圧電基板 3 0 0および保護基板 3 0 7の側面に設けられており、 接合部 3 0 8および外部接続電極 3 1 6を常温接合あるいは拡散接合する。 外 部引出電極 3 1 4の材質は、 導電率の比較的高い金属である。 例えば、 白金、 金、 銀、 銅およびアルミニウムである。 これらのうち一つを外部 引出電極の材質とする。 なお、 外部引出電極 3 1 4の表面は金属極処理 されている。 外部接続電極 3 1 7は、 電極 3 0 3と、 接合部 3 1 1および外部引出 電極 3 1 5を介して電気的に接続されている。 外部引出電極 3 1 5は、 保護基板 3 0 7の側面に設けられており、 接合部 3 1 1および外部接続 電極 3 1 7を常温接合あるいは拡散接合する。 外部引出電極 3 1 7の材 質は、 導電率の比較的高い金属である。 例えば、 白金、 金、 銀、 銅およ びアルミニウムである。これらのうち一つを外部引出電極の材質とする。 外部引出電極 3 1 5の表面は金電極処理されている。 これにより、 圧電振動体の中心周波数が 20.5MHz となり、 等価抵抗 は 1 0 Ω以下となる。 なお、 気密部の形成と電気的接続部の形成方法を 各々独立に形成しても同様な効果が得られることは、 言及するまでもな い。 第三の実施形態によれば、 接合部 3 0 8、 3 0 9、 3 1 0、 3 1 1に より圧電基板 3 0 0を封じることができる。 接合部 3 0 8、 3 0 9、 3 1 0、 3 1 1は、 拡散接合あるいは常温接合しているので、 電気的な抵 抗値を低く保つことができる。 しかも、 接合部は低融点ガラスに比べて 強度が強いため極めて薄くでき、 圧電基板 2 0 0、 保護基板 2 0 5、 2 0 6をあたかも一体として取り扱える。 これそ、 まさにパッケージレス である。
しかも、 外部引出電極 3 1 4、 3 1 5および内部引出電極 3 0 4、 3 0 5は導電率の比較的高い金属であり、 外部接続電極と電極とを常温接 合あるいは拡散接合したものであるので、 電気的な抵抗値を低く保つこ とができる。
さらに、 圧電基板 3 0 0と保護基板 3 0 6、 3 0 7との材質が同一な ので、 熱膨張によって圧電基板 3 0 0の密封が破壊されることがない。 また、 凹部 3 1 2、 3 1 3により圧電基板 3 0 0の振動領域を確保で ぎる。 以上の通り、 本発明の圧電振動体は、 真空中で接合をおこなうことで 結果として高 Q、 つまり空気中への振動エネルギーの散逸を回避できる ことから振動子として実現できる等価抵抗を小さくできる利点がある。 真空封止することで、 絰年変化に対しても極めて良好となり圧電板上の 電極膜の安定性が確保できる。 本発明の圧電振動体は、 従来の圧電振動体を圧電素子を収納している 箱物であるセラミックパッケージや金属パッケージから解放された構造 であることから、 余分な実装面積も必要とせず、 これまで高周波帯で常 に問題になっているパッケージからの浮遊容量を低減でき、 超薄型化 - 超小型化 ·高周波化を可能にするチップ部品である。 本発明で使用している拡散接合技術または常温接合技術を使うことで、 接続個所で低抵抗接続が長期に渡っても安定に維持できることから、 こ れまで問題となっていた導電性接着部の抵抗値の増大する現象を回避で き、 各種圧電ユニッ トの高信頼性が実現可能となることが、 本発明の最 犬の特長と言える。 本発明の圧電振動体は、 圧電基板材料として高結合圧電材料である夕 ン夕ル酸リチウム、 ニオブ酸リチウム、 四方酸リチウム、 ランガサイ ト、 燐酸アルミニウム、圧電セラミ ックスを適切に材料選択することで、厚み 振動を利用した容量比の小さい圧電ュニッ トを実現できる。 製造方法に 関しても、 これまで確立されている既存技術を適用できることから量産 効果も期待でき、 優れた圧電ユニッ トが実現可能なことである。 また最 近話題になっている高分子圧電ポリマ一でも、 常温接合を適用すること で、 本発明の圧電振動体が実現できる。 このように、 本発明の圧電振動体は、 振動子に限定されることもなく フィル夕である M C Fにも適用できる。 また三層構造の圧電基板が単結 晶の場合には、同じカツ ト方位を選ぶことで材料定数的にも整合がとれ、 製造プロセス中の熱による歪や加工時の残留応力の影響も少なく、 常温 接合の場合にはさらに改善され、 その実用性は極めて高い。 なお、 本発明を適用したさらなる一例として圧電材料として水晶を使 用した水晶振動子を取り上げてみる。 例えば 0 5mmの水晶板 (厚さ 80 〃m:基本振動で 20MHz) を三枚、上下に 1〃 mの金属薄膜またはダイ ャモンド薄膜または硼素 ·炭素 ·窒素系薄膜の接合層を拡散接合または 常温接合で接合し、 気密封止する。 本発明のパッケージレス圧電ュニッ 卜の物理的厚みは 245〃m (外部接続電極の厚み 3〃m)となるが、 一方 従来のセラミ ックパッケージにメサ加工された厚さ 80〃m の振動素子 を収納するとその外形寸法は約 0 7mm X 1.0mm となる。 本発明の圧電振動体は、 従来品と比べて実装時の体積の比較では 1/5 以下となり、 占有面積の向上や薄型化にも大きく寄与できることがわか る。 また本発明の圧電振動体は、 パッケージを使用する場合に常に問題 になっていたパッケージからの浮遊容量の低減にも優れた効果がある。 三層構造の中心部に配置する水晶をメサ構造: 中心部の厚みを 16.7〃m に選ぶことにより、 積層された水晶振動子の物理的厚みを 245 mに保 持したままで、 100MHz (ダイァフラム部の厚み 16.7〃m)で動作する水 晶振動子が実現できる。 より高い周波数では振動領域として必要とされ るダイアフラム面積は、 lmm以下で充分であることから、 0 5mmの 外形形状を保ったままで衝撃や振動等の外的環境に対しても強い、 耐環 境性に優れた水晶振動子が得られることになる。 産業上の利用可能性
本発明は圧電板のバルク波の厚み振動を利用したパッケージレス圧電 ュニッ 卜の圧電板自体の構造に関し、 特にあらゆる周波数帯での圧電チ ップ部品として使用されることを目的とし、 同一圧電板を三層状に積層 して組合せた一体化構造の圧電ュニッ 卜に関し、 超薄型化 ·超小型化 · 高周波化対応可能なパッケージレス圧電振動子やパッケージレス · モノ リシッククリスタルフィル夕 (MCF)を提供することにある。

Claims

請 求 の 範 囲
1 . 圧電振動する圧電基板と、
前記圧電基板の表面および裏面に取り付けられた電極と、
前記圧電基板の前記表面および前記裏面に重ねて配置された、 前記圧 電基板と同一材質の保護基板と、
前記圧電基板と前記保護基板との間を拡散接合あるいは常温接合する 接合部と、
を備えた圧電振動体。
2 . 前記接合部は、 一種類以上の金属薄膜、 ダイヤモン ド薄膜、 硼素 薄膜および窒化炭素薄膜の内のいずれか一つである請求項 1に記載の圧 電振動体。
3 . 前記圧電基板が、 単結晶圧電基板、 圧電セラミ ックスおよび高分 子圧電ポリマーの内のいずれか一つである請求項 1に記載の圧電振動体 (
4 . 前記保護基板に設けられた外部接続電極と、
前記接合部と前記外部接続電極とを拡散接合あるいは常温接合し、 材 質が金属薄膜である外部引出電極と、
を備えた請求項 1に記載の圧電振動体。
5 . 前記電極と前記接合部とを拡散接合あるいは常温接合し、 材質が 金属薄膜である、 内部引出電極を備えた請求項 1に記載の圧電振動体。
6 . 前記接合界面の厚さが、 前記電極の厚さよりも大きい、 請求項 1 に記載の圧電振動体。
7 . 前記圧電基板において、 前記電極が取りつけられる部分がくぼん でいる、 請求項 1に記載の圧電振動体。
8 .前記保護基板において、 前記電極に対応する部分がくぼんでいる、 請求項 1に記載の圧電振動体。
9 . 前記圧電基板と前記保護基板とが、 同一カッ ト方位の単結晶板で ある、 請求項 1に記載の圧電振動体。
1 0. 前記圧電基板の材質が水晶であり、 前記接合界面が金と銀からなる、 請求項 1に記載の圧電振動体。
PCT/JP2000/003715 1999-06-08 2000-06-08 Vibrateur piezoelectrique WO2000076066A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00935588A EP1104099A1 (en) 1999-06-08 2000-06-08 Piezoelectric vibrator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19640499 1999-06-08
JP11/196404 1999-06-08

Publications (1)

Publication Number Publication Date
WO2000076066A1 true WO2000076066A1 (fr) 2000-12-14

Family

ID=16357309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003715 WO2000076066A1 (fr) 1999-06-08 2000-06-08 Vibrateur piezoelectrique

Country Status (2)

Country Link
EP (1) EP1104099A1 (ja)
WO (1) WO2000076066A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101390A (ja) * 2002-09-10 2004-04-02 Nippon Platec Co Ltd ダイヤモンドqcmの作製方法及びそのダイヤモンドqcm
US7518291B2 (en) 2006-03-22 2009-04-14 Epson Toyocom Corporation Piezoelectric device
US8069549B2 (en) 2007-03-22 2011-12-06 Seiko Epson Corporation Method for sealing a quartz crystal device
JP4993204B2 (ja) * 2005-03-30 2012-08-08 セイコーエプソン株式会社 圧電振動子及びその製造方法
WO2013133320A1 (ja) * 2012-03-09 2013-09-12 株式会社ニコン 積層圧電素子及びその製造方法
JP2016163090A (ja) * 2015-02-27 2016-09-05 京セラクリスタルデバイス株式会社 圧電デバイス及び圧電デバイスの製造方法
CN106416066A (zh) * 2013-12-20 2017-02-15 株式会社大真空 压电振动器件
WO2021210596A1 (ja) * 2020-04-16 2021-10-21 株式会社村田製作所 圧電デバイス
WO2021210595A1 (ja) * 2020-04-16 2021-10-21 株式会社村田製作所 圧電デバイス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003264717A1 (en) * 2002-08-16 2004-03-03 New Transducers Limited Method of bonding a piezoelectric material and a substrate
RU198435U1 (ru) * 2019-09-30 2020-07-08 Игорь Владимирович Абрамзон Кварцевый резонатор-термостат

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122490A (en) * 1976-04-07 1977-10-14 Seiko Instr & Electronics Ltd Fixing method of crystal oscillator piece
JPS63285195A (ja) * 1987-05-19 1988-11-22 Yokogawa Electric Corp 単結晶水晶体の接合方法
GB2229855A (en) * 1989-03-29 1990-10-03 Pennwalt Corp Laminated piezoelectric structures and process of forming the same
US5818151A (en) * 1995-02-14 1998-10-06 Murata Manufacturing Co., Ltd. Electrode for electronic component
JPH10297931A (ja) * 1997-04-24 1998-11-10 Matsushita Electric Ind Co Ltd 複合圧電基板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122490A (en) * 1976-04-07 1977-10-14 Seiko Instr & Electronics Ltd Fixing method of crystal oscillator piece
JPS63285195A (ja) * 1987-05-19 1988-11-22 Yokogawa Electric Corp 単結晶水晶体の接合方法
GB2229855A (en) * 1989-03-29 1990-10-03 Pennwalt Corp Laminated piezoelectric structures and process of forming the same
US5818151A (en) * 1995-02-14 1998-10-06 Murata Manufacturing Co., Ltd. Electrode for electronic component
JPH10297931A (ja) * 1997-04-24 1998-11-10 Matsushita Electric Ind Co Ltd 複合圧電基板の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101390A (ja) * 2002-09-10 2004-04-02 Nippon Platec Co Ltd ダイヤモンドqcmの作製方法及びそのダイヤモンドqcm
JP4993204B2 (ja) * 2005-03-30 2012-08-08 セイコーエプソン株式会社 圧電振動子及びその製造方法
US7518291B2 (en) 2006-03-22 2009-04-14 Epson Toyocom Corporation Piezoelectric device
US8069549B2 (en) 2007-03-22 2011-12-06 Seiko Epson Corporation Method for sealing a quartz crystal device
US8344599B2 (en) 2007-03-22 2013-01-01 Seiko Epson Corporation Quartz crystal device and method for sealing the same
WO2013133320A1 (ja) * 2012-03-09 2013-09-12 株式会社ニコン 積層圧電素子及びその製造方法
CN106416066A (zh) * 2013-12-20 2017-02-15 株式会社大真空 压电振动器件
JP2016163090A (ja) * 2015-02-27 2016-09-05 京セラクリスタルデバイス株式会社 圧電デバイス及び圧電デバイスの製造方法
WO2021210596A1 (ja) * 2020-04-16 2021-10-21 株式会社村田製作所 圧電デバイス
WO2021210595A1 (ja) * 2020-04-16 2021-10-21 株式会社村田製作所 圧電デバイス

Also Published As

Publication number Publication date
EP1104099A9 (en) 2001-08-29
EP1104099A1 (en) 2001-05-30

Similar Documents

Publication Publication Date Title
US8875362B2 (en) Method of manufacturing piezoelectric device
JP5115092B2 (ja) 圧電振動片、圧電デバイス、及び発振器
JP2010187373A (ja) 複合基板及びそれを用いた弾性波デバイス
JP2017169139A (ja) 弾性波デバイス
US8269568B2 (en) Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and oscillator
JP2007258917A (ja) 圧電デバイス
KR101661361B1 (ko) 복합 기판, 및 그것을 이용한 탄성 표면파 필터와 탄성 표면파 공진기
WO2000076066A1 (fr) Vibrateur piezoelectrique
JP5500220B2 (ja) 振動片、振動子、発振器、及びセンサー
JP5168568B2 (ja) 薄膜バルク波共振器
JP5090836B2 (ja) 圧電デバイス及び圧電デバイスの製造方法
JP2008048275A (ja) 圧電振動片および圧電デバイス
JP3709113B2 (ja) 圧電振動子とその製造方法
JPH07249957A (ja) 電子部品及びその形成方法
JP4274215B2 (ja) 圧電デバイスおよび圧電デバイスの製造方法
JP3164891B2 (ja) 水晶振動子とその製造方法
JP3164890B2 (ja) 水晶振動子とその製造方法
JP2003008094A (ja) 圧電体装置及びその製造方法
JP4828966B2 (ja) 圧電薄膜デバイス
JP7389410B2 (ja) 圧電振動子及びその製造方法
JP2015142172A (ja) 積層型超音波振動デバイス、積層型超音波振動デバイスの製造方法および超音波医療装置
WO2021210214A1 (ja) 圧電振動子及びその製造方法
JP2011071693A (ja) 弾性表面波デバイス、および圧電素子の固定方法
JP4739068B2 (ja) 圧電薄膜デバイス
JP2023013314A (ja) 圧電振動子及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2000935588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09700208

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 502232

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000935588

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000935588

Country of ref document: EP