WO2000075951A1 - Afficheur a plasma et procede de fabrication associe - Google Patents

Afficheur a plasma et procede de fabrication associe Download PDF

Info

Publication number
WO2000075951A1
WO2000075951A1 PCT/JP2000/003577 JP0003577W WO0075951A1 WO 2000075951 A1 WO2000075951 A1 WO 2000075951A1 JP 0003577 W JP0003577 W JP 0003577W WO 0075951 A1 WO0075951 A1 WO 0075951A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas discharge
display device
pair
electrodes
discharge
Prior art date
Application number
PCT/JP2000/003577
Other languages
English (en)
French (fr)
Inventor
Ryuichi Murai
Yuusuke Takada
Akira Shiokawa
Katutoshi Shindo
Hidetaka Higashino
Nobuaki Nagao
Toru Ando
Masaki Nishimura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US09/744,378 priority Critical patent/US6670754B1/en
Publication of WO2000075951A1 publication Critical patent/WO2000075951A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/24Sustain electrodes or scan electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/36Spacers, barriers, ribs, partitions or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/24Sustain electrodes or scan electrodes
    • H01J2211/245Shape, e.g. cross section or pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/32Disposition of the electrodes
    • H01J2211/323Mutual disposition of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/444Means for improving contrast or colour purity, e.g. black matrix or light shielding means

Definitions

  • the present invention relates to a gas discharge display device provided with a gas discharge panel such as a plasma display panel and a method for manufacturing the same.
  • CTRs liquid crystal displays
  • PDPs plasma display panels
  • CRTs excel in terms of resolution and image quality, and have been widely used in televisions and other devices.
  • LCDs have low power consumption compared to CRTs, have excellent performance with a small depth and light weight, and are now widely used as computer monitors.
  • a typical TFT (ThinFilmTransistor) type LCD has a very fine structure, so that it is necessary to go through a number of complicated steps to manufacture a TFT type LCD. Therefore, when the size of the LCD screen increases, the above process becomes more complicated, and the yield in manufacturing decreases. For this reason, it is currently difficult to make LCDs that are larger than 30 inches.
  • PDP is a gas discharge panel display device that is relatively lightweight and advantageous in realizing a large screen, unlike CRT and LCD described above. Therefore, at the present time when next-generation displays are required, research on increasing the screen size of PDPs Development has been particularly aggressive, with products already in excess of 50 inches.
  • the configuration of the PDP is such that a glass plate in which a plurality of pairs of display electrodes and a plurality of partition walls are arranged in a stripe shape is opposed to the other glass plate, and a phosphor is applied between the partition walls for each RGB color. And a discharge gas sealed in a discharge space between the partition wall and the two glass plates emits fluorescent light by ultraviolet rays (UV) generated by the discharge of the plurality of pairs of display electrodes.
  • FIG. 13 (a) is a perspective view showing a pair of display electrodes 22, 23 in a conventional PDP provided on a front panel glass 21, and
  • FIG. 13 (b) is a view showing the pair of display electrodes 22, 23.
  • each cell 340 having a phosphor layer of R (red), G (green), and B (blue) is used for the display electrodes 22 and 23. They are arranged in parallel with the longitudinal direction and form pixels for color display.
  • Such PDPs are classified into DC (direct current) type and AC (alternating current) type due to the difference in drive method.
  • DC direct current
  • AC alternating current
  • the AC type is considered to be suitable for large screens, and this is becoming popular as a general PDP.
  • a phosphor converts ultraviolet light into visible light.
  • the present invention has been made in view of the above-described problem, and has an appropriate discharge efficiency for ensuring appropriate luminous efficiency and obtaining good display performance with low power consumption compared to the related art.
  • An object of the present invention is to provide a gas discharge display device that can be secured and a method for manufacturing the same.
  • the above object is achieved by providing, in a matrix, a plurality of cells filled with a discharge gas between a pair of substrates provided to face each other, wherein a second substrate of a first substrate is provided.
  • a gas discharge display device in which at least one pair of display electrodes is arranged over a plurality of cells on a surface facing a substrate, the pair of display electrodes extend in a row direction of the matrix.
  • Two extending portions a plurality of inner projecting portions which are electrically connected to one of the extending portions and are arranged so as to project toward the other extending portion;
  • the display electrode is formed by the combination of the inner protruding portion and the connecting portion, the discharge generated in the gap between the pair of display electrodes gradually becomes the inner protruding portion and the connection connecting these components. Enlarge by part.
  • the connecting portion and each of the inner protruding portions so as to be electrically connected, it is possible to favorably increase the discharge scale along the longitudinal direction of the display electrode.
  • a plurality of void regions exist between the extending portion and the plurality of connecting portions. Naturally, no electric charge is accumulated in this void area, so the discharge At the beginning, the configuration is such that the amount of charge stored in the display electrode is reduced as compared with the related art. Also, once the discharge starts, the discharge spreads and expands also in the vacancy region, so that the discharge magnitude is good even though the vacancy region is provided.
  • the gas discharge display device of the present invention has a configuration in which the amount of electric charge accumulated in the display electrode is reduced and the power consumption is suppressed, but the display performance is secured equal to or higher than the conventional one. . That is, in the present invention, it is possible to realize a gas discharge display device excellent in luminous efficiency by reducing the area (electrical capacity) of the display electrode of the display portion rationally and omitting extra power consumption.
  • documents such as Japanese Patent Application Laid-Open No. Hei 8-250029 and US Pat. No. 5,587,624 disclose an example in which a plurality of projections are provided on a display electrode, which has the effect of improving luminous efficiency. It is thought that it can be obtained.
  • the inner protruding portion and the connecting portion may be made of a transparent electrode material, and the extending portion may be made of a metal material.
  • the extension is a bus line. Since the transparent electrode material has higher electric resistance than the metal material, it can be expected that the power consumption can be efficiently improved by applying the present invention.
  • the outer protruding portion may be provided in a direction opposite to the inner protruding portion with both ends in the width direction of one bus line interposed therebetween.
  • a region corresponding to the shortest discharge gap between the pair of display electrodes is formed of a layer made of magnesium oxide, and the other region is made of magnesium oxide. It may be made of a material with low emission rate (specifically, alumina). As a result, when the gas discharge display device is driven, an effect can be expected when the discharge easily occurs at the beginning of the discharge.
  • FIG. 1 is a partial cross-sectional perspective view of a panel portion of a PDP according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a PDP panel drive unit, display electrodes, and the like according to the first embodiment.
  • FIG. 3 is a diagram showing a driving process performed by the panel driving unit according to the first embodiment.
  • FIG. 4 is a front view showing a display electrode in the PDP according to the first embodiment.
  • FIG. 5 is a front view showing a display electrode in a PDP according to the second embodiment.
  • FIG. 6 is a front view showing a display electrode in a PDP according to the third embodiment.
  • FIG. 7 is a front view showing a display electrode in a PDP according to the fourth embodiment.
  • FIG. 8 is a front view showing a display electrode in a PDP according to the fifth embodiment.
  • FIG. 9 is a front view showing a modification of the display electrode in the PDP of the fifth embodiment.
  • FIG. 10 is a partial cross-sectional view of the PDP according to the sixth embodiment.
  • FIG. 11 is a front view showing the display electrode of the first embodiment in which the black matrix processing has been performed.
  • FIG. 12 is a diagram showing a configuration of a gas discharge device as one application example of the present invention.
  • (a) is an overall perspective view of the gas discharge device.
  • (b) is a diagram showing the structure of the discharge electrode of the gas discharge device.
  • FIG. 13 is a front view showing a display electrode in a conventional PDP.
  • (a) is a partial perspective view showing a conventional display electrode.
  • (b) is a front view showing a conventional display electrode.
  • FIG. 1 is a partial cross-sectional perspective view showing a main configuration of a panel unit 2 of an AC surface discharge type PDP which is an example of the gas discharge display device according to the first embodiment of the present invention.
  • the z direction corresponds to the thickness direction of the PDP
  • the xy plane corresponds to a plane parallel to the panel surface of the PDP.
  • the x, y, and z directions are common to all the drawings 1 to 13 described below.
  • the configuration of the present PDP is roughly divided into a panel section 2 and a panel drive section 1 described later.
  • the panel section 2 of the present PDP includes a front panel 20 and a back panel 26 arranged with their main surfaces facing each other.
  • a pair of display electrodes 22 and 23 (an X electrode 22 and a Y electrode 23) are formed on one surface along the x direction, and a pair of display electrodes 22 and 23 are formed. And a surface discharge is performed.
  • the detailed configuration of the display electrodes 22 and 23 will be described later.
  • the front panel glass 21 provided with the display electrodes 22 and 23 is coated with a dielectric layer 24 over the entire surface of the glass 21, and the dielectric layer 24 is coated with a protective layer 25.
  • a plurality of address electrodes 28 are arranged on one side in a stripe shape at a constant interval with the y-direction as a longitudinal direction.
  • the dielectric film 29 is coated on the entire surface of the panel glass 27.
  • a partition 30 is disposed on the dielectric film 29 in accordance with a gap between the adjacent address electrodes 28, and red (R), red (R), and the like on the side surface of the adjacent partition 30 and the surface of the dielectric film 29 between them.
  • Phosphor layers 31 to 33 corresponding to either green (G) or blue (B) are formed.
  • the R, G, and B phosphor layers 31 to 33 are sequentially arranged in the X direction, and form a color display on the panel.
  • the front panel 20 and the back panel 26 having such a configuration are arranged so that the address electrode 28 and the display electrodes 22 and 23 are opposed to each other so that the longitudinal directions thereof are orthogonal to each other. And sealed. And both panels 20, 26 A discharge gas (filled gas) consisting of a rare gas component such as He, Xe, Ne, etc. is filled at a predetermined pressure (usually usually about 4 x 10 4 to 8 x 10 4 Pa), and adjacent A discharge space 38 is formed between the partition walls 30, and a region where a pair of adjacent display electrodes 22 and 23 and one address electrode 28 intersect with the discharge space 38 interposed therebetween is a cell 340 for image display (see FIG. 2 and subsequent figures). (Shown).
  • a discharge gas filled gas
  • a predetermined pressure usually about 4 x 10 4 to 8 x 10 4 Pa
  • the panel drive unit 1 When driving this PDP, the panel drive unit 1 causes the address electrode 28 and one of the display electrodes 22 and 23 (this is an X electrode 22 in the present embodiment.
  • the X electrode 22 is The scan electrode and the Y electrode 23 are called a sustain electrode), and short-wave ultraviolet rays (resonant lines having center wavelengths of about 147 nm and 173 nm) due to discharge between the pair of display electrodes 22 and 23. Is generated, the phosphor layers 31 to 33 emit light, and an image is displayed.
  • FIG. 2 is a schematic diagram of the front panel glass 21 on which the display electrodes 22 and 23 are arranged, and the panel drive unit 1 connected to the display electrodes 22 and 23 and the address electrode 28.
  • the panel driving section 1 shown in FIG. 1 has a known configuration, and is connected to each data electrode 101 connected to each address electrode 28, a sustain driver 102 connected to each Y electrode 22, and each X electrode 23. And a drive circuit 100 for controlling these drivers 101 to 103.
  • Each of the drivers 101 to 103 controls the energization of each of the connected electrodes 22, 23, 28, etc., and the drive circuit 100 controls and controls the operation of each of the drivers 101 to 103. Display.
  • the drive circuit 100 has a built-in storage unit that stores video data input from outside the PDP for a certain period of time, and a plurality of circuits that sequentially retrieve the stored image data and perform image processing such as gamma correction processing. Have been.
  • the panel driving unit 1 applies an initialization pulse to each X electrode 22 by the scan drino 103 to initialize the electric charge (wall electric charge) existing in each cell 340.
  • the panel drive unit 1 uses the scan driver 103 and the data driver 101 to apply a scan pulse to the first X electrode 22 from the top of the panel plane, and to apply a scan pulse to the address electrode 28 corresponding to the sensor 340 for display.
  • a write pulse is simultaneously applied to each of the layers, and a write discharge is performed to accumulate wall charges on the surface of the dielectric layer 24.
  • the panel drive unit 1 simultaneously applies a scan pulse to the second X electrode 22 and a write pulse to the address electrode 28 corresponding to the cell 340 for display to perform a write discharge, and the dielectric layer 24 Accumulates wall charges on the surface of the.
  • the panel driving section 1 sequentially accumulates the wall charges corresponding to the cells 340 for performing the display by the continuous scanning pulse on the surface of the dielectric layer 24, and writes the latent image for one screen of the panel.
  • the panel driving section 1 grounds the address electrode 28 to perform sustain discharge (surface discharge), and alternately maintains the pair of display electrodes 22 and 23 using the scan driver 103 and the sustain driver 102. Apply a pulse.
  • a discharge occurs when the potential of the surface of the dielectric layer 24 exceeds the discharge start voltage, and a period during which the sustain pulse is applied is generated.
  • the discharge ie, surface discharge
  • the panel drive unit 1 applies a narrow pulse to the X electrode 22 through the scan dryer 103 to generate incomplete discharge to eliminate wall charges and erase the screen (erasing period). By repeating such an operation, the panel driving section 1 displays the screen of the panel section 2.
  • the above is the overall configuration of the panel driving unit 1 and the panel unit 2 of the present PDP, and the rough operation thereof.
  • the feature of the present invention lies mainly in the configuration centering on the display electrodes 22 and 23.
  • FIG. 4 is a partial front view of the display electrodes 22 and 23 formed on the front panel 21 of the PDP when viewed from the z direction (the thickness direction of the PDP).
  • a space between two dotted lines extending in parallel to the y direction is a cell pitch (360 m) in the X direction between two adjacent partition walls 30.
  • the thickness between the parallel dashed lines corresponds to the thickness of the partition wall 30.
  • the illustration of the address electrode 28 and the like is omitted for simplification.
  • the pair of display electrodes 22 and 23 are largely composed of a transparent electrode 220 (230) and a bus line 221 (231).
  • the transparent electrode 220 (230) is composed of indium tin oxide (ITO), and the bus line 221 (231) is composed of Cr / Cu / Cr or Ag (here, Ag).
  • the transparent electrode 220 (230) includes a base 2201 (2301), an inner protruding part 2202a (2302a), and a connecting part 2203 (2303) as shown in FIG.
  • the base 2201 (2301) is a strip extending in the X direction (width in the y direction 40 mx z direction 0.5 m), and is placed on the base 2201 (2301) in the y direction (width 30 mx z).
  • a bus line 221 (231) having a thickness of 4 m) is extended and laminated so as to make electrical contact.
  • the inner protruding portion 2202a is a strip having a width in the X direction 40 / mx extending in the y direction from the base 2201 (2301) in the gap between the pair of display electrodes 22 and 23 in the y direction. And are arranged side by side at regular intervals (every 50 im) along the X direction.
  • the inner protruding portions 2202a (2302) are arranged corresponding to four cells (a total of eight electrodes for the pair of display electrodes 22 and 23) in the cell pitch.
  • the connecting portion 2203 is a band-shaped body (width in the y direction 30 mx thickness in the z direction 0.5 m) extending in the x direction, and connects the tips of the inner protruding portions 2202a (2302 a).
  • the transparent electrode 220 (230) Due to such a configuration of the transparent electrode 220 (230), the transparent electrode 220 (230) has a plurality of substantially square-shaped (50 m in the X direction and 50 Um in the y direction) hollow cells at every cell pitch along the x direction.
  • the hole regions 2204 (2304) are arranged side by side to form an array pattern.
  • the discharge gap D of the connecting portion 2203, 2303 is the shortest gap between the pair of display electrodes 22, 23, it is 40 m, the discharge gap D 2 of the bus lines 221, 231 each other 210 ⁇ m, one pair in the display electrodes 22, 23, the maximum discharge gap D 3 is 280 m.
  • the gap between the display electrodes 22 (23) adjacent in the y direction is set to 400 m in order to prevent the occurrence of crosstalk and the like, and the cell pitch in the y direction is set to 1080 m.
  • FIG. 4 in order to clearly illustrate the shape characteristics of the transparent electrode 220 (230) of the first embodiment, The width and interval of 2201 (2301), the inner protruding portion 2202a (2302a), etc. are displayed thinner than they actually are.
  • the display electrodes 22 and 23 having such a configuration are manufactured mainly in consideration of the following points.
  • ITO and the like constituting the transparent electrode 220 (230) have a relatively higher electric resistance than the metal material (Ag or the like) used for the bass line 221 (231).
  • the electric power supplied from the outside to the transparent electrode 220 (230) is not always used for the discharge that generates ultraviolet light or for the discharge itself. Some parts accumulate charge and are wasted.
  • the degree of directly contributing to light emission is low even if the bent transparent electrode is provided. This can easily lead to extra power consumption.
  • the transparent electrode 220 (230) of the first embodiment has a smaller area than the conventional one to avoid accumulation of extra charges and suppresses power consumption, while at the same time reducing the surface discharge scale (particularly in the X direction). It is designed in a well-balanced shape to maintain good discharge spread).
  • the discharge gap between the pair of display electrodes 22 and 23 is devised as follows. That is, first, the discharge gap D, of the inner protruding portions 2202a and 2302a is set based on the well-known Paschen rule. That is, the discharge gas pressure P, when the discharge gap is d, using shown to Paschen curve the relationship between the discharge start voltage between P d product, the discharge gas pressure (2. 6 xl 0 5 P a ) to The discharge gap D is set to about 40 m as a gap value where the discharge starting voltage is slightly larger than the minimum, taking into account the variation of the individual units in mass production.
  • the positions of the inner protruding portions 2202a and 2302a are changed due to an error in the manufacturing process. Is slightly affected, so that the discharge is not affected so much.
  • the above-mentioned Paschen's rule indicates that the start discharge is optimal.
  • the discharge gap D 1 3 ⁇ 4 that is, the surface discharge starts at the tips of the inner protrusions 2202 a and 2302 a.
  • the discharge gap D which is about 40 m, is narrower than the conventional gap, so the voltage required for starting discharge (discharge start voltage) is lower than when no inward protrusion is provided, and good power consumption is suppressed. Discharge starts.
  • the area of the display electrodes 22 and 23 contributing to the discharge expands through the bus lines 221 and 231 in the xy direction (panel surface direction) as the discharge maintaining time elapses.
  • the expansion of the discharge in the X direction is improved by the provision of the connecting portions 2203 (2303).
  • the pore area 2204 (2304) is provided to reduce the area of the transparent electrode 220 (230). Despite this, when the discharge starts, the discharge reaches the vacancy region 2204 (2304) and the scale of the discharge can be secured well.
  • Discharge generated in the discharge gap is finally expanded to the maximum discharge gap D 3 of outer protrusions 222 b, 232 b, so that the surface discharge area a wide range is performed. Therefore, the PDP of the first embodiment suppresses excess power consumption and secures a sufficient surface discharge scale. It has become.
  • the number of the inner protrusions 2202a (2302a) in the cell pitch is not limited to four, but may be other numbers.
  • the size of the connecting portion 2203 (2303), including the inner protruding portion 2202a (2302a), may be appropriately adjusted according to the cell size.
  • the connecting part 2203 (2303) is made too thin, the electrical resistance will increase, As a result, extra power consumption such as Joule heat loss occurs. For this reason, it is desirable to set the size after confirming the balance between power consumption and light emission efficiency in advance by experiments.
  • the size of each part of the transparent electrode 220 (230) in each of the following embodiments may be changed.
  • the transparent electrode 220 (230) having the base 2201 (2301) is used.However, the base 2201 (2301) is omitted, and the base 2201 (2301) and the bus line 221 (231) are arranged in the z direction. Improvements may be made to further reduce the power consumption of the transparent electrode 220 (230) in the overlapping area.
  • the front view of the pair of display electrodes 22 and 23 in FIG. 5 is a diagram showing the features of Embodiment 2 in which the above-described improvement is made.
  • the outer protrusion 2202b extended from the inner protrusion 2202a (2302a) from the gap between the pair of display electrodes 22 and 23 in the y direction toward the outside in the y-direction. 2302b) (x direction width 40 mxy direction length 30 mxz direction thickness 0.5 m).
  • the protrusion 2202 (2302) in which the inner protrusion 2202a (230a) and the outer protrusion 2202b (2302b) are integrated is orthogonal to the bus line 221 (231), and the tip of the inner protruding portion 2202a (2302a) is connected to the connecting portion 2203 (2303).
  • D is 40 ⁇ M
  • D 2 is 200 ⁇ M
  • D 3 is the respective value of 320 ⁇ m.
  • the cell pitch in the X and y directions is set to 360 m and 1080 m, respectively.
  • the electric charge accumulated when the base 2201 (2301) is present during the discharge sustaining period at the time of driving the PDP since the extra power consumption is reduced, further improvement in power saving is expected.
  • the generated discharge spreads beyond the bus line 221 (231) to the outer protrusion 2202b (2302b), the scale of the surface discharge is further expanded and the surface discharge with good luminous efficiency becomes possible.
  • at least one of 2202b and 2302b should be provided for the outer protruding portion.However, both 2202b and 2302b should be provided to secure the above-mentioned good surface discharge. Is desirable.
  • the transparent electrode 220 (230) of the third embodiment is based on the second embodiment, and has a plurality of connecting portions, that is, as shown in the front view of the pair of display electrodes 22 and 23 in FIG. , A first connecting part 2203a (2303b) and a second connecting part 2203b (2303b), and the connecting parts 2203a,... Are connected to the protruding part 2204 (2304).
  • the base 2201 (2301) provided in the first embodiment is omitted, and the protrusion 2202 (2302) is orthogonal to the bus line 221 (231), so that the inner protrusion 2202a (2302a) and the outer protrusion While the part 2202b (2302b) is provided, the first connecting part 2203a (2303a) and the second connecting part 2203b (2303b) are arranged in parallel in the x direction.
  • the third embodiment in each transparent electrode 220 (230), there is an array pattern of a plurality of void regions 2204 (2304) arranged in two stages in a matrix in the Xy direction. .
  • each part including the transparent electrode 220 (230) is, for example, as follows.
  • the shape of the void region 2204 (2304) and the like is slightly changed from the actual shape so that the shape of the transparent electrode 220 (230) can be easily grasped.
  • Second connecting part 2203b (2303b); length in y direction 20 m, thickness in z direction 0.5 m
  • Void area 2204 (2304); 50 m in x direction, 10 m in y direction
  • Inner protrusion 2202a (2302a); width in the x direction 40 m x length in the y direction 80 m x thickness in the z direction 0.5 ⁇ m
  • the PDP is substantially the same as that of the third embodiment, but the inner projection 2202a (2302a ) Are aligned with the connecting part (the second connecting part 2203b (2303b) in the figure).
  • the shortest discharge gap effective at the initial stage of discharge is uniformly present in the X direction.
  • the discharge can be generated uniformly in place, and the discharge can be generated relatively easily.
  • the PDP is provided with a to c (2303 a to c), of which a third connection portion 2203 c (2303 c) connects the tips of the inner protruding portions 2203 a (2303 a).
  • each void region 2204 (2304) having an array pattern formed in three stages along the y direction is set so as to become smaller as the distance from the gap between the pair of display electrodes 22 and 23 increases,
  • the width of 2202 a (2302 a) in the x direction is gradually increased along the direction facing the gap between the pair of display electrodes 22 and 23.
  • Such a shape of the transparent electrode 220 (230) is intended to set the increasing the accumulation amount from the discharge gap D 3 D, the headed charge.
  • the transparent electrode 220 (230) in the initial stage of discharge during the discharge period when driving the PDP, the transparent electrode 220 (230) has the most electric charge near the shortest gap between the pair of display electrodes 22 and 23. Since the charge easily accumulates, the discharge is satisfactorily started with a sufficient amount of charge. After that, when the surface discharge becomes stable, the discharge scale spreads to the vicinity of the gaps D 2 and D 3 where the charge amount is reduced as compared with D, and as a result, the surface discharge is performed over a wide range. By accumulating an appropriate amount of electric charge in the transparent electrode 220 (230) according to the required amount, excessive power consumption can be avoided, A PDP with an excellent balance between power consumption and luminous efficiency can be obtained.
  • FIG. 8 shows an example in which the area of each hole region 2204 (2304) is changed, instead of this, as shown in FIG. 9, the area of each hole region 2204 (2304) is fixed, Even if the pitch of the void region 2204 (2304) to be formed (that is, the width in the x direction of the inner protrusion 2203a (2303a)) gradually increases toward the gap D, the same effect as described above can be expected. .
  • the amount of accumulated gradually charges towards the maximum discharge gap D 3 is decline
  • the present invention is not limited to this, the present invention is not limited to this, and the amount of accumulated charges may be set in another form by the pair of display electrodes 22 and 23.
  • the pore area 2204 (2304) having the three-stage arrangement pattern shown in Fig. 8 is changed from the shortest discharge gap D, to the large ⁇ small ⁇ medium size, toward the bus line 220 (230). Accordingly, the amount of charge stored in the transparent electrode 220 (230) along the same direction may be changed from small to large to medium.
  • the amount of accumulated charge is high in the middle of the discharge process, that is, a large amount of fluorescent light is emitted in a region where energy efficiency is high.
  • the effect is that the body is excited.
  • the configuration of the pair of display electrodes 22 and 23 in the sixth embodiment is almost the same as that in the first embodiment (see FIG. 4), and the feature of the sixth embodiment lies mainly in the configuration of the protective layer 25. . 10, in the c wherein is a partial cross-sectional view taken along the thickness direction (z-direction) of the PDP, and through the dielectric layer 24 formed on the entire surface of the front panel glass 21, an inner protrusion 2202 a (2302 a) (the area just above the inner protrusion 2202 a (2302 a) in FIG. 10), a magnesium oxide (MgO) protective layer 251 in the area corresponding to the area (a), and alumina (Al 2 ⁇ 3 ) in the other areas. ) A protective layer 252 is formed.
  • the discharge gap D which is the shortest discharge gap, is generated. Discharge becomes easier, the discharge start voltage is kept low, and power consumption at the start of discharge can be reduced. After that, the whole cell 340 is filled with electrons. However, after the sustain discharge, the discharge also occurs in the alumina protective layer 252. However, the emission of extra electrons that hardly contribute to light emission is suppressed, and as a result, the current amount can be reduced. The light emitting region at this time is sufficiently ensured as in the other embodiments.
  • the protective layer having a low electron emission rate is not limited to alumina, and other materials may be used. Further, the shape of the display electrode is not limited as in the above-described embodiment, and may be appropriately changed within a possible range. Further, as described above, the magnesium oxide protective layer 251 is not limited to the method of arranging it corresponding to the inner protruding portion 2202a (2302), but is provided uniformly from the position shown in FIG. 10 to the region corresponding to. However, similar effects are expected.
  • the present invention is not necessarily limited to a method in which the display electrode is always constituted by the protrusion made of the transparent electrode material and the bus line made of the metal material. That is, it is also possible to manufacture both of them using the same material. By doing so, the manufacturing process can be facilitated, and this is particularly advantageous in producing a fine display electrode in a high-definition PDP.
  • the metal material in this case, for example, an Ag material is suitable, and in addition thereto, there are also Cr / Cu / Cr.
  • the display electrode when the display electrode is made of Ag material, the reflectance of the discharge light reflected by the display electrode reaches 80% to 95% or more at the maximum. Has been. Therefore, even if the light generated in the cell hits the display electrode (even if the discharge light is reflected three or four times), the light emission returns to the cell with little attenuation. Thus, without being affected so much the aperture ratio of the cells still c effect is obtained such discharge generated in Viewing electrodes are contributed to efficiently light emitting display, the visible light transmittance of a conventional transparent electrode Is less than about 80%, which makes it difficult to obtain excellent discharge efficiency as in the present invention. Further, in the present invention, the display electrode may be subjected to black matrix processing.
  • FIG. 11 shows a front view of the display electrode of the first embodiment subjected to black matrix processing as viewed from the PDP display side.
  • a black layer 2205 is formed using a black material made of a metal material containing a metal oxide or Ag at a position on the front panel glass where a transparent electrode is to be formed in advance. It can be formed by providing 2305.
  • the present invention is not limited to this, and display electrodes having other shapes may be used.
  • the present invention may be applied to a display electrode made of only a metal material.
  • the display electrodes are fabricated on the surface of a front panel glass made of soda-lime glass with a thickness of about 2.6 mm.
  • a transparent electrode is formed by the following photoetching.
  • a photo resist for example, an ultraviolet curing resin
  • a photomask of a certain pattern is superimposed on the photomask and irradiated with ultraviolet rays.
  • ITO or the like as a material for the transparent electrode is applied to the resist gap of the front panel glass by the CVD method. Thereafter, when the resist is removed with a cleaning solution or the like, a transparent electrode is obtained.
  • a bus line having a thickness of about 4 ⁇ m is formed on the transparent electrode using a metal material mainly composed of Ag or Cr / Cu / Cr.
  • a metal material mainly composed of Ag or Cr / Cu / Cr When using Ag, screw In the case of using Cr / Cu / Cr, an evaporation method or a sputtering method can be applied.
  • the display electrodes are made of Ag, for example, the display electrodes can be made at once by the above-described photoetching or the like.
  • a lead-based glass paste is coated over the entire surface of the front panel glass with a thickness of about 15 to 45 m from above the display electrode and baked to form a dielectric layer.
  • a protective layer having a thickness of about 0.3 to 0.6111 is formed on the surface of the dielectric layer by a vapor deposition method (chemical vapor deposition method) or the like.
  • a vapor deposition method chemical vapor deposition method
  • M g O magnesium oxide in the protective layer
  • a conductive material containing Ag as the main component is applied in stripes at regular intervals on the surface of a back panel glass made of soda-lime glass with a thickness of about 2.6 mm by screen printing.
  • An address electrode is formed.
  • the distance between two adjacent address electrodes should be set to about 0.4 mm or less.
  • a lead-based glass paste is applied with a thickness of about 20 to 30 m over the entire surface of the back panel glass on which the pad electrode is formed, and baked to form a dielectric film.
  • a partition having a height of about 60 to 100 m is formed on the dielectric film between adjacent address electrodes. This partition can be formed, for example, by repeatedly screen-printing a paste containing the above-mentioned glass material and then firing it.
  • any one of red (R) phosphor, green (G) phosphor, and blue (B) phosphor is contained on the wall surfaces of the partition walls and the surface of the dielectric film exposed between the partition walls.
  • a fluorescent ink is applied, and this is dried and baked to form a phosphor layer.
  • Red phosphor (Y X G d ⁇ ⁇ 3 : E u 3+
  • a powder having an average particle size of about 3 m is used. It can.
  • There are several methods for applying the phosphor ink Here, a method of discharging the phosphor ink while forming a meniscus (crosslinking by surface tension) from a very fine nozzle, which is known as a meniscus method, is considered here. Used. This method is advantageous for uniformly applying the phosphor ink to a target area.
  • the present invention is, of course, not limited to this method, and other methods such as a screen printing method can be used.
  • front panel glass and the back panel glass are made of soda lime glass, this is given as an example of a material, and other materials may be used.
  • the manufactured front panel and back panel are bonded together using sealing glass. Thereafter, the inside of the discharge space is evacuated to a high vacuum (1.1 x10- 4 Pa) degree, which to a Jo Tokoro pressure (here 2.7xl0 5 Pa) in N e - X e system or H e - N e - X E-type, He-Ne-Xe-Ar type, etc. are filled with discharge gas.
  • a high vacuum 1.1 x10- 4 Pa
  • a Jo Tokoro pressure here 2.7xl0 5 Pa
  • the present invention is not limited to this. It is not necessary. In this case, only one of the inner projecting portion 2202a (2302a) and the connecting portion 2203 (2303) may be provided. Alternatively, one of the pair of display electrodes may be configured with a metal electrode (that is, only a bus line), and the other may be configured with a transparent electrode and a bus line. Further, in each of Embodiments 1 to 6, an example is shown in which the inner protruding portions 2202a (2302a) are provided so as to face each other in the y direction. However, the present invention is not limited to this, and each of the positions is shifted in the X direction. May be provided.
  • the pitch in the x direction at which the inner protruding portions 2202a (2302a) are provided may be different between the pair of transparent electrodes 220 and 230, respectively.
  • the pitches be the same because a uniform discharge scale can be obtained in each cell.
  • outer protrusion 2202b may be provided on only one of the transparent electrodes 220 and 230.
  • the number of the inner protruding portions 2202a (2302a) and the number of the outer protruding portions 2202b (2302b) do not need to match, and the size of each may be changed as appropriate.
  • connecting portion is not limited to the inner protruding portion 2202a (2302a), and may be provided on the outer protruding portion 2202b (2302b).
  • the number of connecting portions 2202a is not limited to the number shown in each of Embodiments 1 to 6, and may be adjusted as appropriate. However, in this case, care must be taken because if the number is too large, extra charges are accumulated and the difference from the conventional transparent electrode is lost.
  • the shape of the hole region is not limited to a rectangular shape (or a square shape), but may be any other shape.
  • inner protrusion 2202a (2302a) or the outer protrusion 2202b (2302b) need not be orthogonal to the bus line, but may have a slight slope.
  • the discharge device 400 is a cover having a semi-cylindrical outer shell on both sides of a plate 401 having discharge electrodes (display electrodes) 422 and 423 (Y electrodes 422, X electrodes 423) disposed on a plate (substrate) 401. It has a configuration covered with glass 401a and 401b.
  • the cover glasses 401a and 401b are in close contact with the plate 401, and a discharge gas is sealed therein.
  • the display electrodes 422 and 423 have a plurality of comb-like electrode limbs 4220 and 4230, respectively, as shown in FIG. It is arranged to be located.
  • the electrode limbs 4220 and 4230 are used as the electrode body (or bus line), and the connecting portions 2202 a,...,
  • the inner protruding portions 2202 a (2302 a) and the outer protruding portions as described in the first to sixth embodiments are used. 2202b (2302b) etc. will be provided as appropriate.
  • the present invention may be applied to the display electrodes 422 and 423 of such a gas discharge device 400.
  • the black matrix processing described above may be performed on the display electrodes 422 and 423 of the gas discharge device 400.
  • the gas discharge display device and the method of manufacturing the same according to the present invention described above can be used mainly for PDPs used in high-vision televisions and the like and the method of manufacturing the same.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

明糸田書 ガス放電表示装置とその製造方法 技術分野
本発明は、 プラズマディスプレイパネルなどのガス放電パネルを備えたガス放 電表示装置とその製造方法に関する。 技術背景
近年、 ハイビジョンなどに代表される高品位で大画面のディスプレイに対する 期待が高まっており、 CRT、 液晶ディスプレイ (以下 L C Dと記載する)、 ブラ ズマディスプレイパネル (Plasma Display Panel、 以下 P DPと記載する) とい つた各ディ スプレイについての研究開発がなされている。 このようなディスプレ ィにはそれぞれ次のような特徴がある。
CRTは、 解像度や画質の点で優れており、 従来からテレビなどに広く使用さ れている。 しかし、 大画面化すると奥行きのサイズや重量が非常に増大するとい つた課題があり、 この問題をどう解決するかがポイン トとされている。 このこと から C RTでは、 40ィンチを超す大画面のものは作りにくいと考えられている。 一方、 L C Dは C RTに比べて消費電力が少なく、 奥行きのサイズが小さくて 重量も軽いという優れた性能を有しており、 現在ではコンピュータのモニタとし て普及が進んでいる。 しかし、 LCDで代表的な TFT (ThinFilmTransistor) 方式のものは非常に微細な構造を有するので、 TFT方式の L C Dを製造するに は複雑な工程を幾つも経る必要がある。 したがって L CDの画面のサイズが増大 すると、 上記工程がさらに複雑化してしまい、 製造時の歩留まりが低下するとい つた性質がある。 このため現在では、 30インチを超えるサイズの L C Dは作りに くいとされている。
これに対し P DPは、 上記のような C RTや L C Dとは違って、 比較的軽量で 大画面を実現することが有利なガス放電パネル表示装置である。 したがって次世 代のディスプレイが求められている現在では、 P D Pを大画面化するための研究 開発が特に積極的に進められており、既に 50ィンチを超える製品も開発されるに 到っている。
具体的な P D Pの構成は、 複数対の表示電極と複数の隔壁をス トライプ状に並 設したガラス板と、 他方のガラス板とを対向させ、 隔壁間に RGB各色毎に蛍光 体を塗布して気密接着し、 隔壁と 2枚のガラス板の間の放電空間に封入した放電 ガスが、 前記複数対の表示電極の放電によって発生する紫外線 (UV) により蛍 光発光させる構成をもつ。 ここで、 図 13 (a) はフロン トパネルガラス 21 上に 配設された従来の P D Pにおける一対の表示電極 22、 23を示す斜視図であり、 図 13 (b) は当該一対の表示電極 22、 23を z方向から見下ろした正面図である。 当 図 (a)、 (b) のように一対の表示電極 22、 23は、 帯状体の透明電極 220、 230 に金属製のバスラィン (バス電極) 221、 231 を重ねた構成となつている。 340は、 隣接する隔壁 30で仕切られる画像表示のためのセルであり、 例えば R (赤)、 G (緑)、 B (青) の蛍光体層を有する各セル 340が表示電極 22、 23の長手方向と 平行に配設され、 カラ一表示のための画素を形成している。
このような PD Pは駆動方式の違いから D C (直流) 型と AC (交流) 型に分 けられる。 このうち A C型が大画面化に適していると考えられており、 これが一 般的な P D Pとして普及しつつある。
ところで、 できるだけ消費電力を抑えた電気製品が望まれる今日では、 PD P においても駆動時の消費電力を低くする期待が寄せられている。 特に昨今の大画 面化および高精細化の動向によって、 開発される P D Pの消費電力が増加傾向に あるため、 省電力化を実現させる技術への要望が高くなつている。 このようなこ とから、 P DPの消費電力を低減させることが望まれる。
しかしながら、 単に PD Pの消費電力を減らす対策を行うだけでは、 前記複数 対の表示電極間で発生する放電規模が小さくなってしまい、 十分な発光量が得ら れなくなるので、 消費電力を抑えながらも良好な表示性能を得る (すなわち良好 な発光効率を得る) 必要がある。 発光量が不足すれば P D Pの表示性能が低下す るため、 単純に PD Pの消費電力を減らすといった対策は、 発光効率を向上させ るための有効な対策とは言いがたい。
また発光効率を向上させるために、 例えば蛍光体が紫外線を可視光に変換する 際の変換効率を向上させる研究もなされているが、 現段階ではあまり際だった改 善は見られておらず、 依然といして研究の余地が多い。
以上の問題は、 P D Pなどのガス放電パネルに限らず、 例えば (放電ガスを充 満させたガラス容器中で放電して発光する) P D P以外のガス放電デバィスを備 えたガス放電表示装置においても存在する。
このようにガス放電表示装置において、 発光効率を適切に確保することは、 現 在では非常に困難が伴うとされている。 発明の開示
本発明は上記問題に鑑みてなされたものであって、 発光効率を適切に確保し、 これによつて従来に比べて低い消費電力でありながら、 良好な表示性能を得るた めの放電規模を確保することが可能なガス放電表示装置と、 その製造方法を提供 することを目的とする。
上記目的は、 対向して設けられた一対の基板間に、 放電ガスが封入された複数 のセルがマ ト リ クス状に配され、 前記一対の基板のうち、 第一の基板の第二の基 板に対向する面上に、 一対以上の表示電極が複数のセルにまたがる状態で配設さ れたガス放電表示装置において、 一対の表示電極は、 前記マ ト リクスの行方向に 延伸された 2本の延伸部と、 当該 2本の延伸部において、 一方の延伸部に電気的 に連結しつつ、他方の延伸部に向かって突出して配設された複数の内側突出部と、 前記 2本の延伸部の間で一定距離を保ちつつ、 同一の延伸部に配設された 2個以 上の内側突出部を電気的に連結する連結部とを備えるガス放電表示装置とするこ とで実現できる。
このように、 本発明では内側突出部と連結部との組合せによって表示電極を形 成することから、 一対の表示電極の間隙で発生する放電は、 次第に各内側突出部 と、 これらを連結する連結部によって拡大する。 本発明では特に連結部と各内側 突出部とを電気的に連結するように設けることにより、 表示電極の長手方向に沿 つて良好に放電規模を拡大することが可能となっている。
また、 延伸部と複数の連結部との間には複数の空孔領域が存在する。 当然この 空孔領域には電荷が蓄積されないので、 ガス放電表示装置稼働時における放電開 始時には、従来より表示電極に蓄積される電荷量を低減させる構成となっている。 また、 一旦放電が始まると、 空孔領域のところにも放電が拡散し、 拡大するので、 放電規模は空孔領域が設けられているにも関わらず良好な規模となる。
このような特徴により、 本発明のガス放電表示装置は、 表示電極に蓄積される 電荷量を低減して、 消費電力を抑えた構成でありながら、 表示性能が従来と同等 以上に確保されている。 つまり本発明では、 表示部の表示電極の面積 (電気容量) を合理的に削減し、 余分な消費電力を省いて、 発光効率に優れたガス放電表示装 置を実現することが可能である。
ここで、 例えば特開平 8— 250029号公報、 U S P 5587624などの文献では、 表 示電極に複数の突出部を設ける例が開示されており、 これによつて発光効率を向 上させるなどの効果が得られると考えられる。
しかしながら、 これらの文献には本発明のように、 2個以上の内部突出部を電 気的に連結するように連結部を設ける技術については開示されておらず、 各突出 部は独立して設けられるためにその位置合わせが困難であった。 このことから本 発明では、 前記連結部を表示電極に設けることによって、 製造上の精度において ばらつきが生じて製造コス トが大幅アツプする問題や、 画像の均一性の劣化とい つた問題を回避することが可能であり、 この点でも優れた効果を有している。 なお本発明のガス放電表示装置としては、具体的には P D Pなどが挙げられる。 P D Pでは現在大画面化に伴う電力消費量の増大を効果的に抑制することが課題 となっており、本発明を P D Pに適用することは極めて有用であると考えられる。 なお、 本発明では、 連結部を延伸部のそれぞれに複数配設するようにしてもよ い。
また、 内側突出部と連結部とを透明電極材料で作製し、 延伸部を金属材料で作 製してもよい。 この場合、 延伸部はバスラインとなる。 透明電極材料は金属材料 よりも電気抵抗が高いため、 本発明を適用すれば電力消費を効率的に改善される のが期待できる。
さらに本発明では、 1 本のバスラインの幅方向両端部を挟んで、 内側突出部と 反対側の方向に外側突出部を設けるようにしてもよい。 こうすることで上記効果 に加え、 放電の規模をバスラインよりも外側へ拡大させ、 より優れた発光効率を 得ることが可能となる。
また、 一対以上の表示電極を被覆するように層を形成する場合、 一対の表示電 極の最短の放電間隙に対応する領域を酸化マグネシウムからなる層で構成し、 そ れ以外を酸化マグネシウムより電子放出率の低い材質 (具体的にはアルミナ) で 構成してもよい。 これにより、 ガス放電表示装置の駆動時において、 放電初期に 放電が発生し易くなるといつた効果が期待できる。 図面の簡単な説明
図 1 は、 本発明の実施の形態 1 における P D Pのパネル部の部分的な断面斜視 図である。
図 2は、 実施の形態 1 における P D Pのパネル駆動部と表示電極等の概略図で ある。
図 3は、 実施の形態 1 におけるパネル駆動部による駆動プロセスを示す図であ る。
図 4は、 実施の形態 1の P D Pにおける表示電極を示す正面図である。
図 5は、 実施の形態 2の P D Pにおける表示電極を示す正面図である。
図 6は、 実施の形態 3の P D Pにおける表示電極を示す正面図である。
図 7は、 実施の形態 4の P D Pにおける表示電極を示す正面図である。
図 8は、 実施の形態 5の P D Pにおける表示電極を示す正面図である。
図 9は、実施の形態 5の P D Pにおける表示電極の変形例を示す正面図である。 図 10は、 実施の形態 6における P D Pの部分断面図である。
図 1 1 は、ブラックマト リクス処理を行った実施の形態 1 の表示電極を示す正面 図である。
図 12は、 本発明の一適用例であるガス放電デバィスの構成を示す図である。 ( a ) はガス放電デバイスの全体斜視図である。
( b ) はガス放電デバィスの放電電極の構造を示す図である。
図 13は、 従来型 P D Pにおける表示電極を示す正面図である。
( a ) は従来の表示電極を示す部分斜視図である。
( b ) は従来の表示電極を示す正面図である。 発明を実施するための好ましい形態
1 .ガス放電表示装置の構成
卜 1 .実施の形態 1
図 1 は、 本発明の実施の形態 1 にかかるガス放電表示装置の一例である交流面 放電型 P D Pのパネル部 2の主要構成を示す部分的な断面斜視図である。 図中、 z方向が P D Pの厚み方向、 X y平面が P D Pのパネル面に平行な平面に相当す る。 当該 x y z各方向は、 以降に説明する全図 1〜13にわたつて共通している。 本 P D Pの構成は、 このパネル部 2と、後述するパネル駆動部 1 とに大別される。 図 1 に示すように、 本 P D Pのパネル部 2は互いに主面を対向させて配設され たフロン トパネル 20およびバックパネル 26から構成される。
フロン トパネル 20の基板となるフロン トパネルガラス 21 には、 その片面に一 対の表示電極 22、 23 ( X電極 22、 Y電極 23) が x方向に沿って構成され、 一対 の表示電極 22、 23との間で面放電を行うようになっている。 表示電極 22、 23の 詳細な構成については後述する。
表示電極 22、 23を配設したフロントパネルガラス 21 には、 当該ガラス 21の面 全体にわたって誘電体層 24がコートされ、さらに誘電体層 24には保護層 25がコ 一トされている。
バックパネル 26の基板となるバックパネルガラス 27には、 その片面に複数の ァドレス電極 28が y方向を長手方向として一定間隔でス トライプ状に並設され、 このアドレス電極 28を内包するようにバックパネルガラス 27の全面にわたって 誘電体膜 29がコートされている。 誘電体膜 29上には、 隣接するァドレス電極 28 の間隙に合わせて隔壁 30が配設され、 そして隣接する隔壁 30の側面とその間の 誘電体膜 29の面上には、 赤色 (R )、 緑色 (G )、 青色 (B ) の何れかに対応する 蛍光体層 31〜33が形成されている。 これらの R G B各蛍光体層 31 ~ 33は X方向 に順次配され、 パネルのカラー表示をなす。
このような構成を有するフロントパネル 20とバックパネル 26は、 アドレス電 極 28と表示電極 22、 23の互いの長手方向が直交するように対向させつつ、 両パ ネル 20、 26 の外周縁部にて接着し封止されている。 そして前記両パネル 20、 26 の間に H e、 X e、 N eなどの希ガス成分からなる放電ガス (封入ガス) が所定 の圧力 (従来は通常 4 x 104〜8 x 104 P a程度) で封入され、 隣接する隔壁 30間が 放電空間 38 となり、 隣り合う一対の表示電極 22、 23 と 1 本のア ドレス電極 28 が放電空間 38を挟んで交叉する領域が、 画像表示にかかるセル 340 (図 2以降に 図示) に対応している。
そして、 この P D Pを駆動する時にはパネル駆動部 1 によって、 ア ドレス電極 28と表示電極 22、 23のいずれか (本実施の形態ではこれを X電極 22とする。 な お一般に、 当該 X電極 22はスキャ ン電極、 Y電極 23はサスティ ン電極と称され る)、 また一対の表示電極 22、 23同士での放電によって短波長の紫外線 (波長約 147 n mおよび 173 n mを中心波長とする共鳴線) が発生し、 蛍光体層 31〜33が 発光して画像表示がなされる。
なお放電ガスは、 バックパネル 26に揷設されたチップ管 (不図示) を通して放 電空間 38内を脱気し、 その後に所定の圧力 (本 P D Pでは 2. 6 x l 05 P a) で封入 されるようになつている。 放電ガス圧が大気圧より高い場合には、 フロン トパネ ル 20とバックパネル 26は隔壁 30の頂部で接着するのが好ましい。
ここで、 図 2は表示電極 22、 23を配したフロン トパネルガラス 21 と、 表示電 極 22、 23およびァドレス電極 28に接続したパネル駆動部 1の概略図である。 当図に示すパネル駆動部 1 は、 公知の構成のものであって、 各ァドレス電極 28 と接続されたデータ ドライノ 101、各 Y電極 22と接続されたサスティンドライバ 102、 各 X電極 23 と接続されたスキヤンドライバ 103、 およびこれらのドライバ 101〜103を制御する駆動回路 100等からなる。
各ドライバ 101〜103はそれぞれ接続先の各電極 22、 23、 28等への通電を制御 し、 駆動回路 100 は各ドライバ 101〜103 の作動を統括して制御し、 パネル部 2 を適切に画面表示させる。
駆動回路 100には本 P D Pの外部より入力される映像データを一定期間記憶す る記憶部、 および記憶した画像データを順次取り出し、 ガンマ補正処理などの画 像処理を行うための複数の回路が内蔵されている。
次に、以上の構成 100〜104からなるパネル駆動部 1 による本 P D Pの大まかな 駆動プロセスを、 図 3に従って説明する。 まず、 パネル駆動部 1 はスキャ ンドライノ 1 03により、各 X電極 22に初期化パ ルスを印加し、 各セル 340内に存在する電荷 (壁電荷) を初期化する。
次にパネル駆動部 1 は、 スキャンドライバ 103と、 データ ドライバ 1 01 を用い て、パネル平面において上から一番目の X電極 22に走査パルスを、表示を行うセ ノレ 340に対応するァ ドレス電極 28に書き込みパルスをそれぞれ同時に印加し、書 き込み放電を行って誘電体層 24の表面に壁電荷を蓄積する。
次に、 パネル駆動部 1 は、 二番目の X電極 22に走査パルスを、 表示を行うセル 340に対応するァドレス電極 28に書き込みパルスをそれぞれ同時に印加して書き 込み放電を行い、 誘電体層 24の表面に壁電荷を蓄積する。
同様にパネル駆動部 1 は、 継続する走査パルスで表示を行うセル 340に対応す る壁電荷を誘電体層 24の表面に順次蓄積し、パネル 1画面分の潜像を書き込んで いく。
続いてパネル駆動部 1 は、 維持放電 (面放電) を行うため、 ア ドレス電極 28 を接地し、 スキャンドライバ 1 03とサスティンドライバ 102を用いて任意の一対 の表示電極 22、 23に交互に維持パルスを印加する。 これによつて誘電体層 24の 表面に壁電荷が蓄積されたセル 340では、誘電体層 24の表面の電位が放電開始電 圧を上回って放電が発生し、 維持パルスが印加されている期間 (図中に示す放電 維持期間) において、 その放電 (すなわち面放電) が維持される。
その後パネル駆動部 1 は、スキャンドライノ 1 03を通じて X電極 22に幅の狭い パルスを印加し、 不完全な放電を発生させて壁電荷を消滅させ、 画面の消去を行 う (消去期間)。 このような動作を繰り返すことにより、 パネル駆動部 1 はパネル 部 2の画面表示を行う。
以上が本 P D Pのパネル駆動部 1 とパネル部 2の全体の構成、 およびそれらの 大まかな動作である。 ここにおいて本発明の特徴は、 主として表示電極 22、 23 を中心とした構成にある。
図 4は、 当該 P D Pのフロントパネル 21上に形成された表示電極 22、 23を z 方向 (P D Pの厚み方向) から見た部分正面図である。 図中、 y方向に平行に延 伸された 2本の点線間が、隣接する 2本の隔壁 30の間における X方向のセルピッ チ (360〃m ) となる。 また、 平行な一点鎖線の間が隔壁 30の厚みに相当する。 なお、 当該図 4およびこれ以降図 5から図 9、 図 11では、 簡単化のためァドレス 電極 28等の図示を省略している。
一対の表示電極 22、 23は、 透明電極 220 (230) とバスライ ン 221 (231) とか ら大きく構成される。 透明電極 220 (230) はイ ンジウム酸化スズ ( I TO)、 バ スライン 221 (231) は C r /C u/C rもしくは A g (ここでは A g) などからそ れぞれなる。
透明電極 220 (230)は、当図のように基部 2201 (2301)、内側突出部 2202a (2302 a)、 および連結部 2203 (2303) の各部分からなる。
基部 2201 (2301) は、 X方向に延伸された帯状体 (y方向幅 40 mx z方向厚 み 0.5 m) であり、 当該基部 2201 (2301) 上に帯状体 (y方向幅 30 mx z方 向厚み 4 m) のバスライン 221 (231) が電気的に接触するように延伸されて積 層されている。
内側突出部 2202a (2302a ) は一対の表示電極 22、 23の間隙において、 基部 2201 (2301) より y方向に延伸された X方向幅 40 /mx y方向長 80 mx z方向 厚み 0.5 mの短冊状体であり、 X方向に沿って一定間隔毎 (50i m毎) に並設 されている。 本実施の形態 1では、 内側突出部 2202a (2302 ) はセルピッチ内 に 4本ずつ (一対の表示電極 22、 23で合計 8本ずつ) 対応して配設されている。 連結部 2203 (2303) は、 x方向に延伸された帯状体 ( y方向幅 30 m x z方向 厚み 0.5 m) であり、 前記内側突出部 2202a (2302 a) の先端を連結している。
このような透明電極 220 (230) の構成により、 当該透明電極 220 (230) は x方 向に沿ってセルピッチ毎に複数のほぼ正方形状 (X方向長 50 mx y方向長 50 U m) の空孔領域 2204 (2304) が並んで配列パターンを形成するようになってい る。
なお図 4において、一対の表示電極 22、 23の最短間隙である連結部 2203、 2303 の放電間隙 D,は 40 m、 バスライン 221、 231 同士の放電間隙 D2は 210〃 m、 一 対の表示電極 22、 23で、 最大の放電間隙 D3は 280 mである。 また、 y方向に 隣接する表示電極 22 (23) との間隙は、 クロス トーク等の発生を防止するために 400 mに設定し、 y方向のセルピッチは 1080 mにしている。 図 4では本実施 の形態 1の透明電極 220 (230) の形状の特徴を分かり易く図示するために、 基部 2201 (2301 )、 内側突出部 2202 a (2302 a ) 等の幅や間隔を実際よりも細く表示 している。
このような構成の表示電極 22、 23は、以下の点を主に鑑みて作製されたもので ある。
透明電極 220 (230) を構成する I T Oなどは、 バスラィン 221 ( 231 ) に使用す る金属材料 (A gなど) よりも比較的高い電気抵抗を有している。
ここで、 透明電極 220 (230) に外部より供給される電力は、 そのすべてが必ず しも紫外線を発生する放電や、 放電そのものに用いられる訳ではなく、 透明電極 220 ( 230) 中に余分に電荷を蓄積され、 無駄に消費される部分もある。
また、 隔壁 30と透明電極 220 (230) が交叉する (すなわち透明電極 220 ( 230) の隔壁 30に近い)領域付近では、折角透明電極を設けても発光に直接寄与する度 合いが低く、 前述の余分な電力消費に繋がりやすいといえる。
そこで本発明では、 従来型の透明電極から上述した余分な電力消費を生じる部 分を削減するものとした。 これに基づき、 本実施の形態 1 の透明電極 220 ( 230) は、 従来より面積を小さく して余分な電荷の蓄積を避け、 電力消費を抑える一方 で、 面放電の規模 (特に X方向への放電の広がり規模) を良好に維持する形状と してバランス良く設計されている。
さらに本実施の形態 1 では、発光効率を良好にするために一対の表示電極 22、 23 の放電間隙に次のような工夫をしている。 すなわち第一に、 内側突出部 2202 a、 2302 aの放電間隙 D ,は公知のパッシェン則に基づいて設定している。 つまり 放電ガス圧を P、 放電間隙を dとするとき、 P d積と放電開始電圧との関係を示 すパッシェン曲線を用いて、 上記放電ガス圧 (2. 6 x l 05 P a) に対し、 量産上の個 体のばらつきを考慮して、 放電開始電圧が極小よりやや太なる間隙値として放電 間隙 D ,を約 40 mに設定している。 また、 上記パッシェン曲線に基づき、 バス ライン 221、 231間 D 2は、 放電効率において放電維持電圧が極小付近となる値に 合わせ、 一対の表示電極 22、 23で最大の放電間隔 D 3は十分な規模の面放電が得 られるように設定している。
なお、 パッシェン曲線の形状は放電ガスの種類によって異なるため、 0 ,〜0 3 の値は各放電ガスのパッシェン曲線に依存する性質がある。 したがって、 D ,〜D 3を設定する場合は、 パッシェン曲線に基づいて、 その都度適切に D i〜D 3の値 を調べるのが望ましい。
また本実施の形態 1では、連結部 2203 (2303)によつて複数の内側突出部 2202a ( 2302a) が電気的に連結されているため、製造工程の誤差によって内側突出部の 2202a と 2302aの位置が若干ずれてしまっても、 それほど放電に影響が及ばない ようになつている。
以上の構成を有する本 P D Pによれば、 P D P駆動時の放電維持期間の初期に おいて、 一対の表示電極 22、 23に維持パルスが印加されると、 上記のパッシェン 則により開始放電に最適とされる放電間隙 D 1 ¾すなわち内側突出部 2202 a、 2302 aの先端部同士で面放電が開始する。 このとき放電間隙 D ,が約 40 mと従来の 間隙に比べて狭いため、内側突出部を設けない場合より開始放電に必要な電圧(放 電開始電圧) は低くなり、 消費電力を抑えつつ良好に放電が開始する。
放電が開始すると、 本 P D Pでは放電維持時間の経過に伴って x y方向 (パネ ル面方向) に広がり、 放電に寄与する表示電極 22、 23の領域がバスライン 221、 231 を経て拡大する。本発明では特に、 X方向への放電の拡大が連結部 2203 (2303) の配設によって良好になる。 つまり本発明では、 放電の規模は電荷の蓄積した電 極の領域以上に拡大する性質があることを利用し、 空孔領域 2204 ( 2304) を設け て透明電極 220 (230) の面積を減らしているにもかかわらず、 放電が開始すると 空孔領域 2204 (2304) にも放電が行きわたり、 放電の規模を良好に確保できるよ うになつている。
放電間隙 で発生した放電は、 最終的に外側突出部 222 b、 232 bの最大放電 間隙 D 3まで拡大され、広範囲にわたる面積の面放電が行われることとなる。 した がって本実施の形態 1の P D Pは、 余分な電力消費を抑制し、 かつ十分な面放電 の規模を確保していることから、 発光と電力消費のバランス、 すなわち発光効率 に優れた P D Pとなっている。
ここで、 セルピッチ内の内側突出部 2202 a (2302 a ) の本数は 4本に限らず、 これ以外の本数であってもよい。 さらに内側突出部 2202 a (2302 a ) をはじめ、 連結部 2203 (2303) 等のサイズもセルサイズに合わせて適宜調節してもよい。 た だし、 連結部 2203 (2303) などをあまり細く しすぎると電気抵抗が増大し、 かえ つてジュール熱損失などの余分な電力消費が生じる。 このため、 電力消費量と発 光効率とのバランスを予め実験で確認した上でサイズ設定するのが望ましい。 ま た同様の条件に基づき、 これ以降の各実施の形態における透明電極 220 (230) の 各部サイズを変更してもよい。
以下、 その他の実施の形態について説明する。 なお、 各実施の形態の特徴部分 以外の重複する説明を割愛する。
卜 2.実施の形態 2
前記実施の形態 1では、 基部 2201 (2301) を有する透明電極 220 (230) とした が、 この基部 2201 (2301) を省略し、 基部 2201 (2301) とバスライ ン 221 (231) が z方向で重畳する領域における透明電極 220 (230) の電力消費量をさらに減ら す改良を行ってもよい。
こ こで図 5の一対の表示電極 22、 23の正面図は、上記改良を行った本実施の形 態 2の特徴を示す図である。 本実施の形態 2では上記改良の他に、 一対の表示電 極 22、 23の間隙から y方向へ外側に向かって、 内側突出部 2202 a (2302 a) よ り延長された外側突出部 2202b (2302b) ( x方向幅 40 m x y方向長 30 m x z方向厚み 0.5 m) を配設している。 すなわち、 本実施の形態 2では、 内側突 出部 2202a (230 a) と外側突出部 2202b (2302b) を一体化した突出部 2202 (2302) (X方向幅 40 mx y方向長 110 mx z方向厚み 0.5 m) がバスライ ン 221 (231) と直交しており、 内側突出部 2202 a (2302a ) の先端が連結部 2203 (2303) と連結している。 これにより、 各放電間隙 Di〜D3において、 D, は 40 〃m、 D2は 200〃m、 D3は 320〃 mの各値となる。
なお、 X方向と y方向のセルピッチは、 それぞれ 360 mと 1080〃mに設定さ れている。
このような構成を有する本実施の形態 2の P D Pによれば、 実施の形態 1の効 果に加え、 P D P駆動時の放電維持期間において、 基部 2201 (2301) が存在する 場合に蓄積する電荷による余分な電力消費が低減されるため、 省電力性のさらな る向上が期待される。 また、 発生した放電がバスライ ン 221 (231) を超えて外側 突出部 2202b (2302b) にまで広がるため、 面放電の規模がその分さらに拡大さ れ、 良好な発光効率の面放電が可能となる。 なお、 外側突出部は、 2202bと 2302bの少なく ともどちらか一方を設けるよう にすれば良いが、 上記した良好な規模の面放電を確保するためには、 やはり 2202 bと 2302bの両方を設けるのが望ましい。
卜 3.実施の形態 3
本実施の形態 3の透明電極 220 (230) は前記実施の形態 2に基づいた上で、 複 数の連結部、すなわちここでは図 6の一対の表示電極 22、 23の正面図に示すよう に、 第一連結部 2203a (2303b), 第二連結部 2203b (2303b) とを備え、 突出 部 2204 (2304) に当該各連結部 2203 a、 ……を連結した構成となっている。 具体的には、 実施の形態 1で配設した基部 2201 (2301) を省略し、 突出部 2202 (2302) をバスライ ン 221 (231) に直交させて、 内側突出部 2202a (2302a), 外側突出部 2202b (2302b) を設ける一方、 第一連結部 2203a (2303a ), 第二 連結部 2203b (2303b) を x方向に平行に配設している。 これにより、 本実施の 形態 3では、 各透明電極 220 (230) において、 X y方向にマ ト リ クス状に 2段に 配された複数の空孔領域 2204 (2304) の配列パターンが存在する。
この透明電極 220 (230) を含む各部のサイズは、 例えば以下の通りである。 な お図 4中では、透明電極 220 (230)の形状を把握しやすくするため、空孔領域 2204 (2304) 等の形状を実際より若干変更してある。
-第一連結部 2203a (2303a)、 第二連結部 2203b (2303 b ) ; y方向長 20 m z方向厚み 0.5 m
•空孔領域 2204 (2304) ; x方向 50 mx y方向 10 m
• 内側突出部 2202a (2302a) ; x方向幅 40 m x y方向長 80 m x z方向厚 み 0.5〃 m
•外側突出部 2202b (2302b) ; x方向幅 40 mx y方向長 30 mx z方向厚 み 0.5 m
• X方向、 y方向の各セルピッチ : それぞれ 360〃m、 1080^m
'放電間隙 D2、 D3 : それぞれ 40〃m、 200〃m、 320 このような構成を有する本実施の形態 3の P D Pによれば、 実施の形態 2の効 果に加え、 P D P駆動時の放電維持期間初期から以降において、 合計 4本の連結 部 (第一連結部 2203 a、 2203 b , および第二連結部 2303 a、 2303 b ) によって、 X方向への面放電の広がりがさらに良好になるといった効果が期待される。
卜 4.実施の形態 4
本実施の形態 4では、 図 7に示す一対の表示電極 22、 23の正面図のように、 大 体において実施の形態 3と同様の構成の P D Pであるが、内側突出部 2202 a ( 2302 a ) の各先端を連結部 (図中では第二連結部 2203 b ( 2303 b ) ) に揃えたことを 特徴とする P D Pである。
このような構成の透明電極 220 (230) を有する本実施の形態 4の P D Pでは、 実施の形態 3の効果に加え、放電初期に有効な最短の放電間隙 が X方向に一様 に存在するため、 P D P駆動時の放電維持期間初期において、 場所的に均一に放 電を発生させられ、 比較的容易に放電を発生させることが可能である。
卜 5.実施の形態 5
本実施の形態 5では、 図 8に示す一対の表示電極 22、 23の正面図に示すように、 透明電極 220 ( 230) に X方向に平行な 3本の第一〜第三連結部. 2203 a〜 c (2303 a〜 c )を備え、このうち第三連結部 2203 c ( 2303 c )で各内側突出部 2203 a (2303 a ) の先端部を連結させた P D Pとしている。 そして y方向に沿って 3段に形成 された配列パターンを持つ各空孔領域 2204 (2304) の面積が、 一対の表示電極 22、 23 の間隙から遠ざかるほど小さくなるように設定し、 内側突出部 2202 a ( 2302 a ) の x方向幅を、 一対の表示電極 22、 23の間隙で対向する方向に沿って次第に 太く させている。 このような透明電極 220 (230) の形状は、 放電間隙 D 3から D , に向かって電荷の蓄積量を増大させることを意図して設定したものである。
以上の構成を有する本実施の形態 5の P D Pによれば、 P D P駆動時の放電期 間の放電初期において、 透明電極 220 (230) では一対の表示電極 22、 23の最短 間隙 付近で最も電荷がたまりやすいため、十分な電荷量によって良好に放電が 開始される。 その後、 面放電が安定してくると、 D ,に比べて電荷量が低減されて いる間隙 D 2、 D 3付近まで放電規模が広がり、 結果として広い範囲にわたって面 放電がなされることとなる。 このように必要量に合わせて透明電極 220 (230) に 適当量の電荷を蓄積させることにより、 過剰な電力を消費することが回避され、 電力消費と発光効率のバランスに優れた P D Pとすることができる。
なお、 図 8では各空孔領域 2204 (2304) の面積を変化させる例を示したが、 こ の代わりに図 9に示すように、 各空孔領域 2204 (2304) の面積を一定とし、 隣接 する空孔領域 2204 ( 2304) のピッチ (すなわち内側突出部 2203 a ( 2303 a ) の x 方向幅) を、 間隙 D ,に向かって次第に太くなるようにしても、 上記と同様の効果 が期待できる。
また、 本実施の形態 5では最短の放電間隙 付近の透明電極 220 ( 230) の領 域に電荷を蓄積し易く し、最大の放電間隙 D 3に向かって徐々に電荷の蓄積量が減 少する構成としたが、 本発明はこれに限定せず、 一対の表示電極 22、 23で電荷の 蓄積量を別の形態で設定するようにしてもよい。 例えば図 8の 3段の各配列バタ ーンを持つ空孔領域 2204 (2304)を、最短の放電間隙 D ,からバスライン 220 (230) へ向かって大→小→中のサイズに変化させることにより、 同方向に沿って透明電 極 220 (230) の電荷の蓄積量が、 小→大→中になるようにしてもよい。 このよう な工夫により、 一般に放電間隙からバスライン 221 (231 ) 方向へ広がっていく放 電過程において、 その放電過程の途中で電荷の蓄積量が高い、 すなわちエネルギ 一効率が高い領域で多くの蛍光体が励起されるといった効果が得られることとな る。
1 - 6.実施の形態 6
本実施の形態 6における一対の表示電極 22、 23の構成は大体において実施の形 態 1 と同様であり (図 4参照)、 本実施の形態 6の特徴は主として保護層 25の構 成にある。 図 10は、 当該 P D Pの厚み方向 (z方向) に沿った部分断面図である c ここにおいて、 フロン トパネルガラス 21の全面に形成された誘電体層 24を介 し、 内側突出部 2202 a (2302 a ) に対応する領域 (図 10では内側突出部 2202 a (2302 a ) の真上付近の領域) に酸化マグネシウム (M g O ) 保護層 251、 それ 以外の領域にアルミナ (A l 23) 保護層 252が形成されている。
このような構成の本 P D Pによれば、 酸化マグネシゥムはアルミナより電子放 出率が高いため、 これによつて P D P駆動時の放電期間の初期には、 最短の放電 間隙である放電間隙 D ,で放電し易くなり、放電開始電圧が低く抑えられ、 開始放 電時の消費電力を抑えることが可能である。 その後、 セル 340全体に電子が充満 し、 維持放電に以降すると、 アルミナ保護層 252でも放電が行われるようになる が、 発光に寄与しにくい余分な電子の放出が抑制され、 結果として電流量を減少 させることができる。 このときの発光領域は、 他の実施の形態と同様に十分に確 保される。
なお、 電子放出率の低い保護層はアルミナに限定せず、 この他の材料を用いて もよい。 また表示電極の形状も前記実施の形態と同様に限定するものではなく、 可能な範囲で適宜変えてやってもよい。 さらに、 酸化マグネシウム保護層 251 は 上記のように、 内側突出部 2202 a (2302 ) に対応させて配設する方法に限定せ ず、 図 10に配した位置から に対応する領域まで一様に設けても、 同様の効果 が期待される。
さらに本実施の形態 6は実施の形態 1 に基づいて説明したが、 これ以外の実施 の形態に基づいて行ってもよい。
以上、各実施の形態 1〜6について説明してきたが、本発明は表示電極を必ずし も透明電極材料からなる突出部と金属材料からなるバスラインとで構成する方法 に限定するものではない。 つまり、 これら両者を同一の材質で作製することも可 能である。 こうすることで製造工程を容易にすることが可能であり、 特に高精細 の P D Pにおける微細な表示電極を作製する上ではメ リ ッ トが大きい。 具体的に は、 表示電極をすベて金属材料で作製するのが望ましい。 この場合の金属材料と しては、 例えば A g材料が好適であり、 この他に C r / C u / C r等もある。 特に A g材料で表示電極を作成すると、 C r / C u / C rで作成するよりも表示電極の 抵抗値を下げることができるので望ましい。
このように A g材料で表示電極を構成する場合、 表示電極で反射される放電発 光の反射率は、 80%から最大 95%以上に達することが本願発明者らの実験によつ て明らかにされている。 したがって、 セル内で発生した発光が表示電極に当たつ ても (3、 4 回にわたって放電発光が反射しても)、 その発光量がほとんど減衰す ることなくセル内に戻る。 このため、 セルの開口率にそれほど影響されずに、 表 示電極で発生した放電が効率よく発光表示に寄与されるといった効果が得られる c なお、 従来の一般的な透明電極の可視光透過率はほぼ 80%以下にとどまり、 この ことから本発明のような優れた放電効率は得られにくい。 また、 本発明においてはさらに、 表示電極にブラックマ ト リ クス処理を行って もよい。
ここで図 1 1 は、 ブラックマト リクス処理した実施の形態 1 の表示電極を、 P D Pの表示側から見た正面図を示している。 このブラックマト リクス処理は、 表示 電極を形成する前に、 予め透明電極を形成するフロン トパネルガラス上の位置に 金属酸化物または A gを含む金属材料からなる黒色材料を利用して黒色層 2205、 2305を設けることで形成することができる。
このようなブラックマト リクス処理によれば、 P D P駆動時の放電維持期間に おいて、外部よりディスプレイに入射した可視光が表示電極 22、 23によってきら つくのが防止される。 これにより、 従来に比べて格段に視認性に優れる表示性能 が得られることとなる。
なお、 ここでは一例として実施の形態 1 の表示電極 22、 23にブラックマ ト リク ス処理を行う例を示したが、 当然ながら本発明ではこれに限定せず、 これ以外の 形状の表示電極や、 金属材料のみからなる表示電極に適用してもよい。
2. P D Pの作製方法
次に、 上記した各実施の形態の P D Pの作製方法について、 その一例を説明す る。
2-1.フロン トパネルの作製
厚さ約 2. 6m mのソーダライムガラスからなるフロントパネルガラスの面上に 表示電極を作製する。 これにはまず、 透明電極を次のフォ トエッチングにより形 成する。
フロントパネルガラスの全面に、 厚さ約 0. 5 171でフオ ト レジス ト (例えば紫 外線硬化型樹脂) を塗布する。 そして一定のパターンのフォ トマスクを上に重ね て紫外線を照射し、 現像液に浸して未硬化の樹脂を洗い出す。 次に C V D法によ り、 透明電極の材料として I T O等を、 フロントパネルガラスのレジス トのギヤ ップに塗布する。 この後に洗浄液などでレジス トを除去すると、 透明電極が得ら れる。
続いて、 A gもしくは C r /C u / C rを主成分とする金属材料により、 前記透 明電極上に厚さ約 4〃mのバスラインを形成する。 A gを用いる場合にはスク リ ーン印刷法が適用でき、 C r/C u/C rを用いる場合には蒸着法またはスパッタ リング法などが適用できる。
なお、 表示電極をすベて Agで作製する場合などには、 例えば上記フォ トエツ チング等により一度に作製することができる。
次に、表示電極の上から鉛系ガラスのペース トを厚さ約 15〜45 mでフ口ント パネルガラスの全面にわたつてコート し、 焼成して誘電体層を形成する。
次に誘電体層の表面に、厚さ約 0.3〜0.6 111の保護層を蒸着法ぁるぃはじ¥0 (化学蒸着法) などにより形成する。 保護層には基本的に酸化マグネシウム (M g O) を使用するが、 部分的に保護層の材質を変える場合、 例えば MgOとアル ミナ (A 1203) を区別して用いるには、 適宜金属マスクを用いたパターニング により形成する。
これでフロン トパネルが作製される。
2- 2.バックパネルの作製
厚さ約 2.6mmのソーダライムガラスからなるバックパネルガラスの表面上に、 スクリーン印刷法により A gを主成分とする導電体材料を一定間隔でス トライプ 状に塗布し、 厚さ約 5 mのア ドレス電極を形成する。 ここで、 作製する PDP を例えば 40インチクラスの NTS Cもしくは VGAとするためには、 隣り合う 2 つのアドレス電極の間隔を 0.4mm程度以下に設定する。
続いて、 ァドレス電極を形成したバックパネルガラスの面全体にわたって鉛系 ガラスペース トを厚さ約 20〜30 mで塗布して焼成し、 誘電体膜を形成する。 次に、 誘電体膜と同じ鉛系ガラス材料を用いて、 誘電体膜の上に、 隣り合うァ ドレス電極の間毎に高さ約 60〜100 mの隔壁を形成する。 この隔壁は、 例えば 上記ガラス材料を含むペース トを繰り返しスクリーン印刷し、 その後焼成して形 成できる。
隔壁が形成できたら、 隔壁の壁面と、隔壁間で露出している誘電体膜の表面に、 赤色 (R) 蛍光体、 緑色 (G) 蛍光体、 青色 (B) 蛍光体のいずれかを含む蛍光 インクを塗布し、 これを乾燥 '焼成してそれぞれ蛍光体層とする。
一般的に P D Pに使用されている蛍光体材料の一例を以下に列挙する。 赤色蛍光体 (YXG dト Β Ο3: E u3+
緑色蛍光体 Ζ n2S i Ο4 : Μ η
青色蛍光体 Β a Mg A 110Ο17: Ε u3+ (或いは Β a Mg A 11423: E u3+) 各蛍光体材料は、 例えば平均粒径約 3 m程度の粉末が使用できる。 蛍光体ィ ンクの塗布法は幾つかの方法が考えられるが、 ここでは公知のメニスカス法と称 される極細ノズルからメニスカス (表面張力による架橋) を形成しながら蛍光体 イ ンクを吐出する方法を用いる。 この方法は蛍光体ィンクを目的の領域に均一に 塗布するのに好都合である。 なお、 本発明は当然ながらこの方法に限定するもの ではなく、 スク リーン印刷法など他の方法も使用可能である。
以上でバックパネルが完成される。
なおフロントパネルガラスおよびバックパネルガラスをソーダライムガラスか らなるものとしたが、 これは材料の一例として挙げたものであって、 これ以外の 材料でもよい。
2- 3. P D Pの完成
作製したフロントパネルとバックパネルを、 封着用ガラスを用いて貼り合わせ る。 その後、 放電空間の内部を高真空 (1.1 x10— 4Pa) 程度に排気し、 これに所 定の圧力 (ここでは 2.7xl05Pa) で N e - X e系や H e - N e - X e系、 H e- N e -X e -A r系などの放電ガスを封入する。
なお、 封入時のガス圧は、 1.1 X 105〜5.3x 105Paの範囲内に設定すると発光効 率が向上することが実験により知られている (詳細は特願平 9一 141954号公報を 参照のこと)。
3.その他の事項
上記各実施の形態 1〜6では、 一対の表示電極 22、 23で対称的に透明電極 220、 230 を形成する例を示したが、 本発明はこれに限定せず、 必ずしも対称的な形状 にしなくてもよい。 これには内側突出部 2202 a (2302 a) や連結部 2203 (2303) をどちらか一方のみ設けるようにしてもよい。 また、 一対の表示電極の片方を金 属電極 (すなわちバスライ ンのみ) で構成し、 他方を透明電極とバスラインより 構成してもよい。 また、 各実施の形態 1〜6では内側突出部 2202a (2302a ) を y方向に対向す るように設ける例を図示したが、 本発明はこれに限定せず、 それぞれ X方向にず れた位置に設けてもよい。
また、 各内側突出部 2202a (2302 a ) を設ける x方向のピッチも、 一対の透明 電極 220、 230でそれぞれ異なるようにしてもよい。 ただし当該ピッチは、 一致さ せた方が各セルで均一な放電規模が得られると思われるため望ましい。
また、 上記実施の形態 2〜4で外側突出部 2202b (2302b) を設ける例を示し たが、 これらは必ずしも設けなくてもよい。
また、 外側突出部 2202b (2302b) は透明電極 220、 230の一方のみに設けて もよい。
また、 外側突出部 2202 b (2302b) を内側突出部 2202 a (2302a) と一体化し、 突出部 2202 (2303) として配設する例を示したが、 本発明はこれに限定せず、 一 体化せずに別々に設けてもよい。
また、 内側突出部 2202a (2302a ) と外側突出部 2202b (2302b) の本数も一 致させる必要はなく、 互いのサイズを適宜変更してよい。
また、 連結部は内側突出部 2202a (2302 a) だけに限定するものではなく、 さ らに外側突出部 2202b (2302b) にも設けてもよい。
さらに、 連結部 2202 a、 ……についても、 各実施の形態 1〜6で示した本数に 限定するものではなく、 適宜本数を調節してもよい。 ただしこの場合、 あまり本 数をあまり多く しすぎると余分な電荷を蓄積してしまい、 従来の透明電極との差 がなくなってしまうので注意が必要である。
さらに、 空孔領域の形状は長方形状 (または正方形状) に限定するものではな く、 これ以外の形状であってもよい。
さらに内側突出部 2202 a (2302a) または外側突出部 2202 b (2302b) はバス ラインに直交する必要はなく、 多少の傾斜を持たせるようにしてもよい。
上記各実施の形態 1〜6では、 本発明をガス放電パネル (P D P) に適用する例 について説明した。 しかしながら本発明はガス放電パネルへの適用のみに限定す るものではなく、 これ以外のデバイス (ガス放電デバイス) であってもよい。 こ こで図 12に示す構成はガス放電デバイスの一例である。 当図 12 (a) に示すガス 放電デバイス 400は、 プレート (基板) 401 上に放電電極 (表示電極) 422、 423 ( Y電極 422、 X電極 423) が配設されたプレート 401の両面を、 半円柱状の外殻 を持つカバーガラス 401 a、 401 bで被覆した構成を持つ。 カバーガラス 401 a、 401 bはプレート 401 に密着されており、 その内部には放電ガスが封入されている。 表示電極 422、 423は、 ここでは図 (b ) に示すように、 それぞれ複数の櫛歯状の 電極肢 4220、 4230を有するものであつて、プレート 401上において各電極肢 4220、 4230が交互に位置するように配設されている。 この電極肢 4220、 4230 を電極本 体 (またはバスライン) として、 各実施の形態 1〜6 に示したような連結部 2202 a、 ……、 内側突出部 2202 a ( 2302 a )、 外側突出部 2202 b ( 2302 b ) 等が適宜 配設される。 本発明は、 このようなガス放電デバイス 400 の表示電極 422、 423 に適用してもよい。
さらに、 このようなガス放電デバィス 400の表示電極 422、 423に前述したブラ ックマト リクス処理を行ってもよい。 産業上の利用可能性
以上の本発明のガス放電表示装置とその製造方法は、 主にハイビジヨンテレビ などに用いられる P D Pとその製造方法に利用することができる。

Claims

請求の範囲
1 .
対向して設けられた一対の基板間に、 放電ガスが封入された複数のセルがマト リクス状に配され、 前記一対の基板のうち、 第一の基板の第二の基板に対向する 面上に、 一対以上の表示電極が複数のセルにまたがる状態で配設されたガス放電 表示装置において、
一対の表示電極は、 前記マ ト リクスの行方向に延伸された 2本の延伸部と、 当該 2本の延伸部において、 一方の延伸部に電気的に連結しつつ、 他方の延伸 部に向かって突出して配設された複数の内側突出部と、
前記 2本の延伸部の間で一定距離を保ちつつ、 同一の延伸部に配設された 2個 以上の内側突出部を電気的に連結する連結部と
を備えることを特徴とするガス放電表示装置。
2.
前記ガス放電表示装置はプラズマディスプレイパネルであることを特徴とする 請求の範囲 1 に記載のガス放電表示装置。
3.
同一の延伸部に配設された 2個以上の内側突出部を電気的に連結するように、 同一の延伸部において複数の連結部が設けられ、これにより一対の表示電極には、 各延伸部の長手方向に沿って複数の空孔領域の配列パターンが設けられ、 かつ当 該複数の空孔領域の配列パターンが、 各延伸部の幅方向に沿って 2段以上形成さ れていることを特徴とする請求の範囲 1 に記載のガス放電表示装置。
4.
連結部は、 延伸部の長手方向と平行に配された帯状体であることを特徴とする 請求の範囲 1 に記載のガス放電表示装置。
5.
各延伸部において設けられた複数の空孔領域のサイズが、 配列パターン毎に互 いに異なる構成であることを特徴とする請求の範囲 3に記載のガス放電表示装置。
6. 各延伸部において設けられた複数の空孔領域のサイズが、 一対の表示電極の最 短間隙から遠ざかるにつれて徐々に大きく形成されていることを特徴とする請求 の範囲 5に記載のガス放電表示装置。
7.
前記複数の空孔領域の配列パターンのピッチが、 各延伸部において設けられた 前記配列パターン毎に異なる構成であることを特徴とする請求の範囲 3に記載の ガス放電表示装置。
8.
前記複数の空孔領域の配列パターンのピッチが、 各延伸部において、 一対の表 示電極の最短間隙から遠ざかるほど狭くなる構成であることを特徴とする請求の 範囲 7に記載のガス放電表示装置。
9.
前記一対の表示電極の間隙において、 2本の延伸部にそれぞれ配設する 2個以 上の内側突出部の尖端を連結部で電気的に連結し、 2 本の延伸部のそれぞれで前 記 2個以上の内側突出部の尖端を連結する連結部同士の間隙が、 当該一対の表示 電極の最短間隙であることを特徴とする請求の範囲 1に記載のガス放電表示装置。
10.
前記 2本の延伸部の対向する側と反対側の端部の少なくとも一方より、 列方向 に沿って、 1個以上の外側突出部が設けられていることを特徴とする請求の範囲 1 に記載のガス放電表示装置。
1 1 .
延伸部は金属材料からなるバスラィンであり、
内側突出部は透明電極材料からなることを特徴とする請求の範囲 1 に記載のガ ス放電表示装置。
12.
前記バスラインは A g材料からなることを特徴とする請求の範囲 1 1 に記載のガ ス放電表示装置。
13.
前記一対の表示電極は A g材料からなることを特徴とする請求の範囲 1 に記載の ガス放電表示装置。
14.
第一の基板表面に、一対以上の表示電極を被覆するように層が形成されており、 当該層は、 一対の表示電極の最短の放電間隙に対応する領域が酸化マグネシゥ ムから構成され、
それ以外の領域が酸化マグネシウムよりも電子放出率の低い材質で構成されて いることを特徴とする請求の範囲 1 に記載のガス放電表示装置。
15.
前記電子放出率の低い材質はアルミナであることを特徴とする請求の範囲 14 に記載のガス放電表示装置。
16.
放電ガス圧を P、 放電間隙を dとするとき、 前記一対の表示電極間で最短の間 隙は、 P d積と放電開始電圧との関係を示すパッシェン曲線において、 放電開始 電圧の極小またはその付近となる間隙に相当するものであることを特徴とする請 求の範囲 1 に記載のガス放電表示装置。
17.
前記一対以上の表示電極と、 当該一対以上の表示電極を形成した第一基板の間 において、 前記一対以上の表示電極のパターンに合わせてブラックマ ト リ クスの ための黒色層が配されていることを特徴とする請求の範囲 1 に記載のガス放電表 示装置。
18.
前記ブラックマト リクスのための黒色層は、 金属酸化物または A gを含む金属 材料からなることを特徴とする請求の範囲 17に記載のガス放電表示装置。
19.
放電ガスが封入された放電空間に臨んで一対以上の放電電極が配され、 当該一 対以上の放電電極のそれぞれが給電されることにより、 各対の放電電極間で放電 して発光するガス放電表示装置であって、
一対の放電電極は、 同一方向に延伸された 2本の延伸部と、
当該 2本の延伸部において、 一方の延伸部に電気的に連結しつつ、 他方の延伸 部に向かって突出して配設された複数の内側突出部と、
前記 2本の延伸部の間で一定距離を保ちつつ、 同一の延伸部に配設された 2個 以上の内側突出部を電気的に連結する連結部と
を備えることを特徴とするガス放電表示装置。
20.
同一の延伸部に配設された 2個以上の内側突出部を電気的に連結するように、 同一の延伸部において複数の連結部が設けられ、これにより一対の放電電極には、 各延伸部の長手方向に沿って複数の空孔領域の配列パターンが設けられ、 かつ当 該複数の空孔領域の配列パターンが、 各延伸部の幅方向に沿って 2段以上形成さ れていることを特徴とする請求の範囲 19に記載のガス放電表示装置。
21 .
連結部は、 延伸部の長手方向と平行な帯状体であることを特徴とする請求の範 囲 19に記載のガス放電表示装置。
22.
前記一対の放電電極の間隙において、 2本の延伸部にそれぞれ配設する 2個以 上の内側突出部の尖端を連結部が電気的に連結し、 2 本の延伸部のそれぞれで前 記 2個以上の内側突出部の尖端を連結する連結部同士の間隙が、 当該一対の放電 電極の最短間隙であることを特徴とする請求の範囲 19 に記載のガス放電表示装 置。
23.
前記 2本の延伸部の対向する側と反対側の端部の少なく とも一方より、 列方向 に沿って 1個以上の外側突出部が設けられていることを特徴とする請求の範囲 19 に記載のガス放電表示装置。
24.
放電ガス圧を P、 放電間隙を dとするとき、 前記一対の放電電極間で最短の間 隙は、 P d積と放電開始電圧との関係を示すパッシェン曲線において、 放電開始 電圧の極小またはその付近となる間隙に相当するものであることを特徴とする請 求の範囲 19に記載のガス放電表示装置。
25. 前記一対以上の放電電極の表面の少なく とも一部には、 当該一対以上の放電電 極のパターンに合わせてブラックマ ト リクスのための黒色層が形成されているこ とを特徴とする請求の範囲 1 に記載のガス放電表示装置。
26.
前記ブラックマ ト リ クスのための黒色層は、 金属酸化物または A gを含む金属 材料からなることを特徴とする請求の範囲 25に記載のガス放電表示装置。
27.
第一の基板の面上に、 一対以上の表示電極を延伸して設ける第一ステップと、 当該第一ステツプの後に、 前記一対以上の表示電極を設けた第一の基板の面と、 第二の基板の面を、 複数の隔壁を介して対向させ、 隣接する隔壁間と一対の表示 電極の交叉する領域を発光表示の各セルとして形成する第二ステップとを有する ガス放電表示装置の製造方法であって、
前記第一ステツプは、
一対の表示電極を、
2本のバスラインを設けるバスライン配設ステップと、
当該 2本のバスラインにおいて、 一方のバスラインょり他方のバスラインに向 かって複数の内側突出部を突出させて配する突出部配設ステップと、
前記 2本のバスラィンの間で一定距離を保ちつつ、 同一のバスラィンに配設し た 2個以上の内側突出部を電気的に連結するように連結部を配する連結部配設ス テツプと
を有することを特徴とするガス放電表示装置の製造方法。
28.
前記第一ステツプにおいて各バスラインを行方向に延伸し、 前記第ニステツプ において前記各セルを行列方向にマ ト リクス状に形成することにより、 プラズマ ディスプレイパネルを製造することを特徴とする請求の範囲 27 に記載のガス放 電表示装置の製造方法。
29.
前記連結部配設ステツプにおいて、 同一のバスラインに配された 2個以上の内 側突出部を電気的に連結するように、 同一のバスラインに複数の連結部を設け、 これにより一対の表示電極において、 各延伸部の長手方向に沿って複数の空孔領 域の配列パターンを設け、 かつ当該複数の空孔領域の配列パターンを各延伸部の 幅方向に沿って 2段以上形成することを特徴とする請求の範囲 27に記載のガス放 電表示装置の製造方法。
30.
前記連結部配設ステツプにおいて、 連結部をバスラインの長手方向と平行な帯 状体として設けることを特徴とする請求の範囲 27 に記載のガス放電表示装置の 製造方法。
31 .
前記第一ステップにおいて、 各バスラインにおいて設けられた複数の空孔領域 のサイズが、 配列パターン毎に互いに異なるように複数の連結部と複数の内側突 出部を配することを特徴とする請求の範囲 29 に記載のガス放電表示装置の製造 方法。
32.
前記第一ステップにおいて、 各バスラインにおいて設けられた複数の空孔領域 のサイズが、 一対の表示電極の最短間隙から遠ざかるにつれて徐々に大きくなる ように、 複数の連結部と複数の内側突出部を配することを特徴とする請求の範囲 31 に記載のガス放電表示装置の製造方法。
33.
前記第一ステップにおいて、 前記複数の空孔領域の配列パターンのピッチが、 各バスラィンにおいて設けられた前記配列パターン毎に異なるように、 複数の連 結部と複数の内側突出部を配することを特徴とする請求の範囲 29 に記載のガス 放電表示装置の製造方法。
34.
前記第一ステップにおいて、 前記複数の空孔領域の配列パターンのピッチが、 各バスラインにおいて、 一対の表示電極の最短間隙から遠ざかるほど徐々に狭く なるように、 複数の内側突出部と複数の連結部を設けることを特徴とする請求の 範囲 27に記載のガス放電表示装置の製造方法。
35. 前記第一ステップにおいて、 前記一対の表示電極の間隙において、 2 本の延伸 部にそれぞれ配設する 2個以上の内側突出部の尖端を連結部で電気的に連結し、 2 本の延伸部のそれぞれで前記 2個以上の内側突出部の尖端を連結する連結部同士 の間隙が、 当該一対の表示電極の最短間隙となるように設定することを特徴とす る請求の範囲 27に記載のガス放電表示装置の製造方法。
36.
前記第一ステップにおいて、 前記 2本のバスラインの対向する側と反対側の端 部の少なく とも一方より、 マ ト リクスの列方向に沿って、 1 個以上の外側突出部 を設けることを特徴とする請求の範囲 28に記載のガス放電表示装置の製造方法。
37.
前記バスライ ン配設ステップにおいて、 バスライ ンを金属材料で作製し、 前記 突出部配設ステツプにおいて、 各突出部を透明電極材料で作製することを特徴と する請求の範囲 27に記載のガス放電表示装置の製造方法。
38.
第一ステップと第二ステップの間において、 第一の基板上に、 一対以上の表示 電極を被覆するように層を形成し、 このうち一対の表示電極の最短の放電間隙に 対応する層の領域を酸化マグネシウムで作製し、 それ以外の層の領域を酸化マグ ネシゥムよりも電子放出率の低い材質で作製する層形成ステツプを経ることを特 徴とする請求の範囲 27に記載のガス放電表示装置の製造方法。
39.
前記層形成ステツプにおいて、 前記電子放出率の低い材質にアルミナを使用す ることを特徴とする請求の範囲 38に記載のガス放電表示装置の製造方法。
40.
前記第一ステップにおいて、 放電ガス圧を P、 放電間隙を dとするとき、 前記 一対の表示電極の最短の放電間隙を、 P d積と放電開始電圧との関係を示すパッ シェン曲線において、 放電開始電圧の極小またはその付近となる間隙に合わせて 設定することを特徴とする請求の範囲 27に記載のガス放電表示装置の製造方法。
41 .
前記第一ステップにおいて、 前記一対以上の表示電極と、 当該一対以上の表示 電極を形成した第一基板の間に、 前記一対以上の表示電極のパターンに合わせて ブラックマ ト リクスのための黒色層を配する黒色層配設ステップを経ることを特 徴とする請求の範囲 27に記載のガス放電表示装置の製造方法。
42.
前記黒色層配設ステップにおいて、 ブラックマ ト リ クスのための黒色層を、 金 属酸化物または A gを含む金属材料を用いて配することを特徴とする請求の範囲 41 に記載のガス放電表示装置の製造方法。
PCT/JP2000/003577 1999-06-04 2000-06-02 Afficheur a plasma et procede de fabrication associe WO2000075951A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/744,378 US6670754B1 (en) 1999-06-04 2000-06-02 Gas discharge display and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15822099 1999-06-04
JP11/158220 1999-06-04

Publications (1)

Publication Number Publication Date
WO2000075951A1 true WO2000075951A1 (fr) 2000-12-14

Family

ID=15666918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003577 WO2000075951A1 (fr) 1999-06-04 2000-06-02 Afficheur a plasma et procede de fabrication associe

Country Status (5)

Country Link
US (1) US6670754B1 (ja)
KR (1) KR100794076B1 (ja)
CN (1) CN1263068C (ja)
TW (1) TW469466B (ja)
WO (1) WO2000075951A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220266A2 (en) * 2000-12-28 2002-07-03 Nec Corporation Plasma display panel
FR2824421A1 (fr) * 2001-05-04 2002-11-08 Samsung Sdi Co Ltd Plaque pour panneau d'affichage a plasma (pdp) , procede pour fabriquer la plaque , et pdp possedant le panneau
EP1313124A2 (en) * 2001-11-15 2003-05-21 Lg Electronics Inc. Plasma display panel
EP1530228A2 (en) * 2003-11-05 2005-05-11 LG Electronics, Inc. Plasma diplay panel
EP1271598A3 (en) * 2001-06-25 2005-10-26 Pioneer Corporation Plasma display panel and method of manufacturing the same
KR100589310B1 (ko) * 2001-01-15 2006-06-14 삼성에스디아이 주식회사 플라즈마 디스플레이 및 그 제조 방법

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748775B1 (ko) * 1999-01-22 2007-08-13 마츠시타 덴끼 산교 가부시키가이샤 가스방전패널 및 가스방전 디바이스와 그 제조방법
JP2002260535A (ja) * 2001-03-01 2002-09-13 Hitachi Ltd プラズマディスプレイパネル
JP4617032B2 (ja) * 2001-08-28 2011-01-19 篠田プラズマ株式会社 Acメモリ型ガス放電表示装置
US6940224B2 (en) * 2002-01-10 2005-09-06 Lg Electronics Inc. Plasma display panel having specifically spaced holes formed in the electrodes
US7323818B2 (en) 2002-12-27 2008-01-29 Samsung Sdi Co., Ltd. Plasma display panel
JP2004214166A (ja) * 2003-01-02 2004-07-29 Samsung Sdi Co Ltd プラズマディスプレイパネル
US7315122B2 (en) * 2003-01-02 2008-01-01 Samsung Sdi Co., Ltd. Plasma display panel
US7605537B2 (en) * 2003-06-19 2009-10-20 Samsung Sdi Co., Ltd. Plasma display panel having bus electrodes extending across areas of non-discharge regions
US7327083B2 (en) 2003-06-25 2008-02-05 Samsung Sdi Co., Ltd. Plasma display panel
US20050001551A1 (en) * 2003-07-04 2005-01-06 Woo-Tae Kim Plasma display panel
US7425797B2 (en) * 2003-07-04 2008-09-16 Samsung Sdi Co., Ltd. Plasma display panel having protrusion electrode with indentation and aperture
US7208876B2 (en) * 2003-07-22 2007-04-24 Samsung Sdi Co., Ltd. Plasma display panel
KR100536215B1 (ko) * 2003-08-05 2005-12-12 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR100515362B1 (ko) * 2003-09-04 2005-09-15 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
US7579263B2 (en) * 2003-09-09 2009-08-25 Stc.Unm Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer
EP1517349A3 (en) * 2003-09-18 2008-04-09 Fujitsu Hitachi Plasma Display Limited Plasma display panel and plasma display apparatus
KR100589369B1 (ko) * 2003-11-29 2006-06-14 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR20050060836A (ko) * 2003-12-17 2005-06-22 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR20050099260A (ko) * 2004-04-09 2005-10-13 삼성전자주식회사 플라즈마 디스플레이 패널
JP4500094B2 (ja) * 2004-04-27 2010-07-14 株式会社日立製作所 プラズマディスプレイパネル
US20050264233A1 (en) 2004-05-25 2005-12-01 Kyu-Hang Lee Plasma display panel (PDP)
KR100590031B1 (ko) * 2004-05-25 2006-06-14 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR100922747B1 (ko) * 2004-06-23 2009-10-22 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR100578972B1 (ko) * 2004-06-30 2006-05-12 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR100573158B1 (ko) * 2004-08-07 2006-04-24 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
US20060076877A1 (en) * 2004-10-11 2006-04-13 Lg Electronics Inc. Plasma display panel and plasma display apparatus comprising electrode
KR20060098936A (ko) 2005-03-09 2006-09-19 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR100646315B1 (ko) * 2005-03-30 2006-11-23 엘지전자 주식회사 플라즈마 디스플레이 패널
KR100717782B1 (ko) * 2005-04-06 2007-05-11 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR100736585B1 (ko) * 2005-05-11 2007-07-09 엘지전자 주식회사 플라즈마 디스플레이 패널
JP4908787B2 (ja) * 2005-06-29 2012-04-04 株式会社日立製作所 プラズマディスプレイパネル及びそれを用いた画像表示システム。
KR20070026954A (ko) * 2005-08-29 2007-03-09 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR100749500B1 (ko) * 2005-10-11 2007-08-14 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
JP2007305528A (ja) * 2006-05-15 2007-11-22 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネルおよびその製造方法
KR100762250B1 (ko) 2006-05-30 2007-10-01 엘지전자 주식회사 플라즈마 디스플레이 장치
KR100762251B1 (ko) 2006-05-30 2007-10-01 엘지전자 주식회사 플라즈마 디스플레이 장치
KR100762249B1 (ko) * 2006-05-30 2007-10-01 엘지전자 주식회사 플라즈마 디스플레이 장치
KR100780679B1 (ko) * 2006-05-30 2007-11-30 엘지전자 주식회사 플라즈마 디스플레이 장치
KR100850909B1 (ko) * 2006-08-07 2008-08-07 엘지전자 주식회사 플라즈마 디스플레이 패널
KR100836563B1 (ko) * 2006-10-26 2008-06-10 엘지전자 주식회사 플라즈마 디스플레이 패널
US20080259002A1 (en) * 2007-04-19 2008-10-23 Lg Electronics Inc. Plasma display apparatus
WO2009044445A1 (ja) * 2007-10-01 2009-04-09 Hitachi, Ltd. プラズマディスプレイパネル
KR20100023208A (ko) * 2008-08-21 2010-03-04 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
WO2011096176A1 (ja) * 2010-02-08 2011-08-11 パナソニック株式会社 プラズマディスプレイパネル
CN102012476B (zh) * 2010-07-27 2012-10-10 中国科学院等离子体物理研究所 低温超导绝缘帕邢放电试验装置
DE102014217237A1 (de) * 2014-08-28 2016-03-03 Hella Kgaa Hueck & Co. Leuchtvorrichtung
KR102464901B1 (ko) * 2016-03-29 2022-11-09 삼성디스플레이 주식회사 플렉서블 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138601A (ja) * 1993-11-18 1995-05-30 Kawasaki Steel Corp 耐摩耗焼結材用高Cr合金鋼粉およびその混合物
US5587624A (en) * 1994-02-23 1996-12-24 Pioneer Electronic Corporation Plasma display panel
US5742122A (en) * 1995-03-15 1998-04-21 Pioneer Electronic Corporation Surface discharge type plasma display panel
JPH10321142A (ja) * 1997-05-15 1998-12-04 Mitsubishi Electric Corp プラズマディスプレイパネル
JPH10334811A (ja) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルおよびその製造方法
JPH11109888A (ja) * 1997-10-03 1999-04-23 Dainippon Printing Co Ltd 積層電極

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US558762A (en) * 1896-04-21 Jules bengue
JP2734405B2 (ja) * 1995-05-12 1998-03-30 日本電気株式会社 プラズマディスプレイパネル
KR20010043102A (ko) * 1998-04-28 2001-05-25 마츠시타 덴끼 산교 가부시키가이샤 플라즈마 디스플레이 패널과 그 제조방법
US6465956B1 (en) * 1998-12-28 2002-10-15 Pioneer Corporation Plasma display panel
JP3875442B2 (ja) * 1999-05-20 2007-01-31 パイオニア株式会社 プラズマディスプレイパネルの製造方法及びプラズマディスプレイパネルの位置合わせ構造
KR100416083B1 (ko) * 1999-11-02 2004-01-31 삼성에스디아이 주식회사 플라즈마 디스플레이 소자
JP4027194B2 (ja) * 2001-10-26 2007-12-26 三菱電機株式会社 プラズマディスプレイパネル用基板、プラズマディスプレイパネル及びプラズマディスプレイ装置
JP3960813B2 (ja) * 2002-02-07 2007-08-15 パイオニア株式会社 プラズマディスプレイパネル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138601A (ja) * 1993-11-18 1995-05-30 Kawasaki Steel Corp 耐摩耗焼結材用高Cr合金鋼粉およびその混合物
US5587624A (en) * 1994-02-23 1996-12-24 Pioneer Electronic Corporation Plasma display panel
US5742122A (en) * 1995-03-15 1998-04-21 Pioneer Electronic Corporation Surface discharge type plasma display panel
JPH10321142A (ja) * 1997-05-15 1998-12-04 Mitsubishi Electric Corp プラズマディスプレイパネル
JPH10334811A (ja) * 1997-05-30 1998-12-18 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルおよびその製造方法
JPH11109888A (ja) * 1997-10-03 1999-04-23 Dainippon Printing Co Ltd 積層電極

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220266A2 (en) * 2000-12-28 2002-07-03 Nec Corporation Plasma display panel
EP1220266A3 (en) * 2000-12-28 2006-09-06 Pioneer Corporation Plasma display panel
KR100589310B1 (ko) * 2001-01-15 2006-06-14 삼성에스디아이 주식회사 플라즈마 디스플레이 및 그 제조 방법
FR2824421A1 (fr) * 2001-05-04 2002-11-08 Samsung Sdi Co Ltd Plaque pour panneau d'affichage a plasma (pdp) , procede pour fabriquer la plaque , et pdp possedant le panneau
EP1271598A3 (en) * 2001-06-25 2005-10-26 Pioneer Corporation Plasma display panel and method of manufacturing the same
EP1313124A2 (en) * 2001-11-15 2003-05-21 Lg Electronics Inc. Plasma display panel
EP1313124A3 (en) * 2001-11-15 2006-03-29 Lg Electronics Inc. Plasma display panel
EP1786014A1 (en) * 2001-11-15 2007-05-16 Lg Electronics Inc. Plasma display panel
US7256550B2 (en) 2001-11-15 2007-08-14 Lg Electronics Inc. Plasma display panel
US7687998B2 (en) 2001-11-15 2010-03-30 Lg Electronics Inc. Plasma display panel
EP1530228A2 (en) * 2003-11-05 2005-05-11 LG Electronics, Inc. Plasma diplay panel
EP1530228A3 (en) * 2003-11-05 2006-07-05 LG Electronics, Inc. Plasma diplay panel

Also Published As

Publication number Publication date
US6670754B1 (en) 2003-12-30
KR20010072239A (ko) 2001-07-31
KR100794076B1 (ko) 2008-01-10
CN1263068C (zh) 2006-07-05
CN1319244A (zh) 2001-10-24
TW469466B (en) 2001-12-21

Similar Documents

Publication Publication Date Title
WO2000075951A1 (fr) Afficheur a plasma et procede de fabrication associe
US7045962B1 (en) Gas discharge panel with electrodes comprising protrusions, gas discharge device, and related methods of manufacture
JP2001052623A (ja) ガス放電表示装置とその製造方法
JP2000223032A (ja) プラズマディスプレイパネルおよびその製造方法
US7675235B2 (en) Plasma display panel
KR101128671B1 (ko) 교류 구동형 플라즈마 표시장치 및 그 제조방법
JP4664542B2 (ja) ガス放電表示装置
JP2001243883A (ja) ガス放電パネルおよびガス放電デバイスとその製造方法
JP2001307646A (ja) ガス放電パネル
KR20100133009A (ko) 플라스마 디스플레이 패널
JP4085223B2 (ja) プラズマ表示装置
JP2003346661A (ja) ガス放電表示装置
JP2002083551A (ja) プラズマディスプレイパネルの背面基板とその製造方法、および、プラズマディスプレイパネルとその製造方法
JP2002042663A (ja) 交流駆動型プラズマ表示装置及びその製造方法
KR20040070563A (ko) 플라즈마 디스플레이 패널
JP2001118520A (ja) ガス放電パネル
KR100366944B1 (ko) 플라즈마 디스플레이 패널 및 그의 제조방법
JP2001256895A (ja) ガス放電表示装置
JP3984559B2 (ja) ガス放電パネル
JP2001135241A (ja) ガス放電パネル及びその製造方法
JP2011222325A (ja) プラズマディスプレイパネルの製造方法、及びプラズマディスプレイパネル
JP4299922B2 (ja) 放電式表示パネル及び表示装置
JP4674511B2 (ja) プラズマディスプレイパネル
JP2002117770A (ja) ガス放電パネル基板及びガス放電パネル
JP2001266758A (ja) プラズマ表示装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801612.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

WWE Wipo information: entry into national phase

Ref document number: 09744378

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017001491

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017001491

Country of ref document: KR