WO2000074152A1 - Transformateur piezo-electrique a structure composite multisortie en mode vibration d'extension - Google Patents

Transformateur piezo-electrique a structure composite multisortie en mode vibration d'extension Download PDF

Info

Publication number
WO2000074152A1
WO2000074152A1 PCT/CN2000/000131 CN0000131W WO0074152A1 WO 2000074152 A1 WO2000074152 A1 WO 2000074152A1 CN 0000131 W CN0000131 W CN 0000131W WO 0074152 A1 WO0074152 A1 WO 0074152A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
output
ceramic component
component
isolation
Prior art date
Application number
PCT/CN2000/000131
Other languages
English (en)
French (fr)
Inventor
Hongyi Li
Original Assignee
Hongyi Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hongyi Li filed Critical Hongyi Li
Priority to DE60028589T priority Critical patent/DE60028589D1/de
Priority to AU47408/00A priority patent/AU4740800A/en
Priority to US09/980,206 priority patent/US6577044B1/en
Priority to JP2001500349A priority patent/JP2003501810A/ja
Priority to EP00929201A priority patent/EP1220338B1/en
Priority to CA002373613A priority patent/CA2373613A1/en
Publication of WO2000074152A1 publication Critical patent/WO2000074152A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view

Definitions

  • the present invention relates to a piezoelectric transformer, and more particularly to a multi-output composite structure piezoelectric transformer with an expanded vibration mode. Background technique
  • piezoelectric ceramic transformers are mostly made of single- or multi-layer piezoelectric ceramics formed by a single sintering. Due to the single component material, it is difficult to meet the actual needs in terms of manufacturing process and product performance. Especially for step-down piezoelectric transformers, in order to adapt to various input and output matching, it is necessary to adjust the primary and secondary parameters of the piezoelectric transformer. Therefore, it is required to use different piezoelectric materials and different structural design parameters for the first stage. Because different materials have different sintering requirements, it is difficult to obtain an ideal piezoelectric transformer in a single firing process.
  • step-down piezoelectric ceramic transformers generally used a thickness vibration mode in order to utilize the piezoelectric properties in the direction of the piezoelectric material 33 and obtain a high operating frequency at the same time.
  • the stress distribution caused by the thickness vibration mode makes the arrangement of the primary and secondary very difficult, which often causes charge cancellation and imbalance, affects the working state of the transformer, and it is difficult to obtain a satisfactory output.
  • the conventional piezoelectric ceramic transformer structure also has an isolation layer between the primary and secondary, the primary-to-secondary isolation capacitance caused by the isolation layer is too large, forming an AC channel, which can only serve to isolate DC current.
  • High-frequency piezoelectric ceramic transformers do not actually provide isolation. Although some isolation layers reduce the capacitance between primary stages, they often cause adverse effects such as difficulty in stress transmission, increased losses, or limited power output.
  • the piezoelectric transformer itself is small, especially the thickness is only a few millimeters, even if the internal insulation strength of the transformer is high enough, it may cause space breakdown or surface creepage due to the short distance between the external primary stages. Isolation failure, resulting in equipment damage or even personal injury.
  • piezoelectric transformers mostly used a single output mode, and electronic devices often required multiple outputs. This also limits the scope of application of piezoelectric transformers.
  • the purpose of the present invention is to design a multi-output piezoelectric transformer with an expanded vibration-mode composite structure in view of the above-mentioned shortcomings.
  • the primary-stage matching parameters are easy to adjust, the output power and conversion efficiency are high, and the isolation between the primary stages is reliable, which can meet the voltage drop. The practical application of the power supply is required.
  • the technical solution adopted by the present invention is: a multi-output composite structure piezoelectric transformer with an expanded vibration mode, which is composed of a primary piezoelectric ceramic component and a secondary piezoelectric ceramic component, and is characterized by:
  • the multi-output composite structure piezoelectric transformer also includes a polymer composite structure, an insulating and isolating structure, and an electrode lead-out structure.
  • the primary piezoelectric ceramic component, the secondary piezoelectric ceramic component, and the insulating layer in the insulating and isolating structure are laminated and formed by The molecular polymer binding structure is tightly bonded together to form a sandwich structure; the piezoelectric ceramic parts are led by the electrode lead-out structure to form the input and output terminals; the outer surface of the piezoelectric ceramic component and the electrode lead-out structure is covered by a polymer insulating material film, The insulating material layer and the isolation layer together form a continuous and complete insulation isolation structure.
  • the primary and secondary constitute a sandwich structure: the primary piezoelectric ceramic component is divided into the same two groups and placed in the piezoelectric On the upper and lower sides of the transformer, the secondary piezoelectric ceramic components form a group and are located between the two primary piezoelectric ceramic components. The upper and lower sides of the secondary piezoelectric ceramic component group are respectively connected to the upper and lower primary piezoelectric ceramic components through an isolation layer. All the piezoelectric ceramic components and the isolation layer are tightly bonded together by a polymer bonding structure to form a sandwich structure.
  • the structure may also have a secondary piezoelectric ceramic component on both sides and a primary piezoelectric ceramic component centered.
  • This sandwich structure can ensure that the transformer does not generate bending vibration due to different primary and secondary damping states during operation, and ensures a single expanded vibration mode.
  • the insulation isolation structure is composed of an isolation layer and an insulation film. The isolation layer is located between the primary and secondary, and is also used between different secondary groups when multiple outputs are needed. The diameter is slightly larger than the piezoelectric ceramic component, which serves as the electrical isolation inside the transformer.
  • the isolation layer is made of ceramic, glass or composite Made of material diaphragm, its characteristic is that the elastic modulus value of the isolation layer must be in the range of one tenth to ten times of the elastic modulus value of the piezoelectric ceramic material used to ensure that the isolation layer will not affect the transformer.
  • the insulating film is located on the outer surfaces of the primary and secondary piezoelectric ceramic component groups and the exposed surfaces of the lead-out electrodes and is combined with the isolation layer to form an insulating isolation structure that completely covers the piezoelectric ceramic component group and tightly combines with the isolation layer To prevent insulation failure caused by electrical breakdown, external air breakdown and surface creepage of the transformer.
  • the insulating film is made of epoxy resin, high molecular polymer materials such as phenol, urea, polyurethane, polyester, and polyimide, and is made by coating or spraying.
  • FIG. 1 is a schematic structural diagram of a piezoelectric ceramic sheet of the present invention
  • FIG. 2 is a schematic structural diagram of an output piezoelectric ceramic component according to the present invention.
  • FIG. 3 is a schematic diagram of an arrangement method of piezoelectric ceramic discs of a secondary group of positive and negative outputs of the common ground of the present invention
  • FIG. 4 is a schematic diagram of the arrangement of the electrodes on the side of the output piezoelectric ceramic component of the present invention.
  • FIG. 5 is a schematic structural diagram of a lead-out electrode of a subpolar piezoelectric ceramic component according to the present invention.
  • FIG. 6 is a schematic diagram of a piezoelectric transformer main body structure composed of an input piezoelectric ceramic component, an output piezoelectric ceramic component, and an isolation sheet according to the present invention
  • FIG. 7 is a schematic diagram of a primary electrode lead-out structure of the present invention.
  • FIG. 8 is a schematic diagram of an isolation and insulation structure of the present invention.
  • FIG. 9 is a schematic diagram of the structure and electrical connection of the piezoelectric transformer of the present invention. Detailed Description
  • the piezoelectric ceramic component is a circular sheet 103 having the same diameter, and metal electrodes 101 and 105 are prepared on the upper and lower planes, and two lead-out electrodes 102 and 104 are prepared on the side and are respectively aligned with the upper and lower planes. The electrodes are connected to form part of the lead-out electrode structure.
  • the piezoceramic circular sheet is polarized in the thickness direction.
  • the primary piezoelectric ceramic component is composed of a single piece or multiple pieces of piezoelectric ceramic wafers of the same thickness. Each piece is laminated in a primary group in such a way that the polarization directions of adjacent pieces are opposite and adjacent electrodes are connected.
  • the thickness and number of slices are determined by input impedance matching, input voltage, and input power matching requirements.
  • the secondary piezoelectric ceramic components are divided into corresponding secondary groups according to the number of output terminals. Each group is composed of piezoelectric ceramic sheets of the same material with the same thickness. The thickness and the piezoelectric ceramic material used can be different between different groups. ; The number, thickness, and type of piezoelectric ceramic materials of each group are determined according to the output voltage, power, and output impedance matching requirements; the secondary groups of a single output or independent output are opposite polarized directions of adjacent sheets, and adjacent electrodes are connected The layered structure is shown in FIG. 2; the arrangement method of the piezoelectric ceramic discs of the secondary group of common positive and negative outputs is shown in FIG.
  • the output of the secondary pole group is the same.
  • the two ceramic pieces 34, 35 on the two sides of the positive and negative output groups that belong to the positive and negative output groups are arranged in the same way.
  • the direction of the electrode on the side of the adjacent side of 34, 35 is the same. the same.
  • the side electrodes of the positive and negative output groups belonging to the same group as the lead-out electrodes of the adjacent faces of 34 and 35, respectively, are connected by the terminal sheet as the common ground of the double output 33.
  • the other side electrode component of the positive and negative output groups constitutes the output electrodes 31, 32 of the positive and negative output groups.
  • Each subgroup can be separated by an isolation layer.
  • the electrode lead-out structure is divided into two parts: one part is the side electrodes 41 and 42 on the side of the piezoelectric ceramic disc, which are respectively connected to the upper and lower planar electrodes of the piezoelectric ceramic disc;
  • the side electrodes of the ceramic disc are drawn in the same direction to facilitate mutual connection;
  • One part is used as a terminal piece for input and output wiring.
  • One end is connected with the side electrode of the corresponding piezoelectric ceramic component group in a rigid manner to connect the side electrodes of the same group in the same direction. The other end is used as an input or output interface.
  • the polymer bonding structure is an adhesive layer between a single wafer of a primary piezoelectric ceramic component, a secondary piezoelectric ceramic component, and an isolation layer in an insulating isolation structure. It can be composed of epoxy, phenolic, urea, polyether, polyimide, and other high-temperature-resistant heterocyclic polymer resins; it is made by surface coating, lamination, curing or infusion process.
  • the second-stage piezoelectric ceramic component is made of P5 piezoelectric ceramic material, with ten layers in total. Both are round flakes 103 as shown in FIG. 1 with a thickness of 0.3 mm and a diameter of 26 mm.
  • Silver electrodes 101 and 105 are prepared on the upper and lower sides, and lead-out electrodes 102 and 104 connected to the upper and lower silver electrodes are prepared on the sides. A distance of not less than 0.3 mm is ensured between the upper and lower electrode surfaces and the lead-out electrode to ensure isolation between the two electrodes. As shown in FIG.
  • the ten-layer electric ceramic circular thin sheets are stacked one on another, and the polarization directions P of two adjacent sheets are opposite.
  • the lead-out electrodes 2011, 2024, 2092, and 2104 of the positive-polarity surface electrodes of each layer are placed at the same angle to form the positive-lead-side electrode group 42 of the subpolar piezoelectric ceramic component (see FIG. 4).
  • the lead-out electrodes 2015, 2022, 2095, and 2102 of the directional surface electrodes are all placed at another angle to form the negative lead-out side electrode of the sub-pole piezoelectric ceramic component, so as to facilitate the lead-out of the electrode lead-out component.
  • Adjacent surface electrodes are all surface electrodes with the same polarization direction (2014, 2021;..., 2094, 2101). All ten layers are bonded by epoxy resin adhesive layers 2016, 2026,..., 2090 as a whole. .
  • the structure of the lead-out electrode of the sub-pole piezoelectric ceramic component is shown. 51 and 57 in the figure are lead-out tabs, which pass through the solder 52, 56 and the two side electrode groups 53 of the sub-pole piezoelectric ceramic component 54. And 55 are connected together, so that each side electrode in the side electrode group and other The other electrode is turned on, and the output electrode of the transformer is constituted by the lead-out tab.
  • the primary piezoelectric ceramic component consists of two P8 piezoelectric ceramic materials with a thickness of 1.6 mm and a diameter of 26 mm. Silver electrodes are prepared on both planes, and two lead-out electrodes are connected to the two surface electrodes on the side.
  • the structure diagram is the same as in Figure 1.
  • FIG. 6 is a schematic diagram of the main structure of the piezoelectric transformer composed of the input piezoelectric ceramic component, the output piezoelectric ceramic component, and the separator.
  • the primary piezoelectric ceramic components 61, 69 are located above and below the transformer, respectively, and the sub-pole piezoelectric ceramic component 65 is located in the middle.
  • the primary-pole piezoelectric ceramic component and the sub-pole piezoelectric ceramic component are separated by spacers 63, 67.
  • the above parts are tightly bonded together by epoxy adhesive layers 62, 64, 66, 68.
  • FIG. 7 is a schematic diagram of the primary electrode lead-out structure. Both ends of the terminal pieces 71 and 72 are respectively welded with the side electrodes 74 of the primary piezoelectric ceramic component through the tin 73. The terminal pieces connect the same ends of the primary piezoelectric ceramic component. At the same time, the terminal piece constitutes the input electrode.
  • FIG. 8 is a schematic diagram of an isolation structure.
  • a 0.3 mm thick epoxy-type encapsulant 82 is completely coated on the exposed surface of the secondary piezoelectric ceramic component between the upper and lower separators 81 and 83, and the exposed surface of the secondary electrode lead-out structure and the output lead.
  • 81, 82, and 83 form a completely closed envelope, which completely insulates the secondary from the outside world, thereby achieving reliable isolation from the primary.
  • the working parameters of the transformer are as follows:
  • FIG. 9 is a schematic diagram of the structure and electrical connection of the piezoelectric transformer.
  • each part of the primary pole piezoelectric ceramic component is composed of two pieces of binary PZT piezoelectric ceramic discs 913, 914 and 915, 916 with a thickness of 0.6 mm and a diameter of 30 mm.
  • the arrangement method and the arrangement method of the side electrodes are shown in Fig. 9. All side electrodes in the positive polarization direction are connected together by the terminal piece to form one pole 902 of the input terminal, and all side electrodes in the negative polarization direction are connected together by the terminal plate to form the other pole 901 of the input terminal.
  • the 15-volt output sub-pole piezoelectric ceramic component is made of six P5 series PZT piezoelectric ceramics with a thickness of 0.3 mm and a diameter of 30 mm.
  • the structure is the same as that in Figure 1. Its two sets of side electrode groups constitute independent two poles 904, 905 with 15 volt output.
  • the common ground positive and negative 5 volt sub-piezoelectric ceramic components are respectively composed of three and two P4 series piezoelectric ceramic plates with a thickness of 0.12 mm and a diameter of 30 mm. Among them, three slices are a positive 5 volt output group, and two slices are a negative 5 volt output group. The polarization directions of two sets of adjacent piezoelectric ceramic plates 910 and 911 are the same. The positive side electrode group of the positive 5 volt output group and the negative side electrode group of the negative 5 volt output group are connected by a terminal sheet to form a common ground 908.
  • Positive 5 volt output group with polarized side electrodes in the negative direction constitutes a positive 5 volt output electrode 907
  • negative 5 volt output group with polarized side electrodes in the positive direction constitutes a negative 5 volt output Pole 909.
  • Separate pieces 903, 912 with a thickness of 0.3 mm and a diameter of 32 mm are made of ultra-hard glass between the primary pole piezoelectric ceramic component and the secondary pole piezoelectric ceramic component.
  • the 15 volt output group and the plus and minus 5 volt output group are separated by a spacer 906 having a thickness of 0.2 mm and a diameter of 31 mm.
  • All piezoelectric ceramic components and separators are bonded together with a modified phenolic resin adhesive.
  • the side surfaces of all sub-pole piezoelectric ceramic components are coated with epoxy resin.
  • the epoxy resin coating layer and the separator form a closed structure, which completely isolates the primary pole from the secondary pole.
  • the main parameters of the piezoelectric transformer are as follows: Operating frequency: 72KHz, 15V output maximum power: 45W positive 5V output maximum power: 8W negative 5V output maximum power: 5W Maximum operating efficiency: 98% Size: 32X5.2mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

扩张振模的多输出复合结构压电变压器 发明领域 本发明涉及一种压电变压器, 特别是扩张振模的多输出复合结构压 电变压器。 背景技术
以往的压电陶瓷变压器多以一次烧结成型的单一或多层结构的压电 陶瓷制成。 由于构成材料单一, 在制造工艺和产品的性能上难以满足实 际需要, 特别是降压型压电变压器, 为了适应各种输入及输出匹配, 需 要调整压电变压器的初级及次级的各项参数, 因此要求初次级采用不同 的压电材料及不同的结构设计参数, 由于不同材料的烧结要求不同, 所 以, 一次烧成工艺很难得到理想的压电变压器。
以往的降压型压电陶瓷变压器一般采用厚度振动模式, 以期利用压 电材料 33方向的压电性能, 并同时得到很高的工作频率。 但是由于厚度 振动模式引起的应力分布使得初级和次级的排列十分困难, 往往会造成 电荷抵消和不平衡, 影响变压器的工作状态, 难以得到满意的输出。
另一方面, 以往的压电陶瓷变压器结构中虽然也有初级和次级间的 隔离层, 但是隔离层造成的初次级间隔离电容太大, 形成交流通道, 只 能起到隔离直流电的作用, 对于高频工作的压电陶瓷变压器实际起不到 隔离作用; 有的隔离层虽然减小了初次级间的电容量, 但经常造成应力 传递困难、 损耗加大或限制功率输出等等不利影响。 同时, 由于压电变 压器本身体积很小, 特别是厚度仅为数毫米, 即使变压器的内部隔离的 绝缘强度足够高, 也可能因为外部初次级间距离过近而引起空间击穿或 表面爬电, 使隔离失效, 从而造成设备损坏甚至人身伤害事故。
以往的压电变压器多为单一输出模式, 而电子设备往往要求多输出。 这也限制了压电变压器的应用范围 发明目的
本发明的目的是针对上述不足, 设计一种扩张振模复合结构的多输 出压电变压器, 其初次级匹配参数容易调整, 输出功率和转换效率高, 初次级间的隔离可靠, 可以满足降压型电源的实际应用需要。 简要说明
为了实现上述目的, 本发明采用的技术方案为: 一种扩张振模的多 输出复合结构压电变压器, 由初级压电陶瓷组件和次级压电陶瓷组件组 成, 其特征在于: 本扩张振模的多输出复合结构压电变压器还包括高分 子复合结构, 绝缘隔离结构和电极引出结构, 所述初级压电陶瓷组件、 次级压电陶瓷组件以及绝缘隔离结构中的隔离层层迭并由高分子聚合物 结合结构紧密粘合在一起组成夹层结构; 压电陶瓷件由电极引出结构引 出电极, 构成输入及输出端子; 压电陶瓷组件、 电极引出结构的外表面 由高分子绝缘材料膜覆盖, 该绝缘材料层与隔离层一起构成连续、 完整 的绝缘隔离结构。
所述扩张振模的多输出压电陶瓷与高分子聚合物复合结构的压电变 压器, 其初级和次级构成夹层结构: 将初级压电陶瓷组件分为相同的两 组,分别置于压电变压器的上、下两侧, 次级压电陶瓷组件构成一组, 处 于两个初级压电陶瓷组件中间。 次级压电陶瓷组件组上下两面分别通过 一个隔离层与上下两侧的初级压电陶瓷组件相连, 所有压电陶瓷组件及 隔离层由高分子结合结构紧密粘合在一起, 构成夹层结构。 该结构也可 以是次级压电陶瓷组件在两侧, 初级压电陶瓷组件居中。 这种夹层结构 可以保证变压器工作时不会因初级和次级的阻尼状态不同而产生弯曲振 动, 确保单一的扩张振动模式。 所述绝缘隔离结构由隔离层和绝缘膜构成。 隔离层处于初级和次级 之间, 必要时也用于多路输出时的不同次级组之间, 直径略大于压电陶 瓷组件, 起变压器内部电隔离作用, 隔离层用陶瓷、 玻璃或复合材料膜 片制成, 其特点是隔离层的弹性模量值必须处于所用的压电陶瓷材料的 弹性模量值的十分之一至十倍的范围内, 以保证隔离层不会影响变压器 的工作状态。 绝缘膜处于初级和次级压电陶瓷组件组的外表面及引出电 极的裸露表面并与隔离层结合, 与隔离层一起形成完全包覆压电陶瓷组 件组并与之紧密结合的绝缘隔离结构, 达到防止变压器内部电击穿和外 部空气击穿及表面爬电而引起的绝缘失败。 绝缘膜采用环氧类树脂, 酚 醛、 脲醛、 聚胺脂、 聚脂、 聚酰亚胺等高分子聚合物材料, 采用涂敷或 喷涂等工艺制成。
采用上述方案后, 由于是复合结构的多输出变压器, 使其初次级匹 配参数容易调整, 输出功率和转换效率高, 初次级间的隔离可靠, 可以 满足降压型电源的实际应用需要。 附图说明
下面是本发明的附图说明, 通过下面的说明并结合以下的详细描述 及具体实施例, 可以更清楚地了解本发明, 其中- 图 1是本发明压电陶瓷片结构示意图;
图 2是本发明输出压电陶瓷部件结构示意图;
图 3是本发明共地的正负输出的次级组的压电陶瓷圆片的排布方法示 意图;
图 4是本发明输出压电陶瓷部件引出侧电极排布示意图;
图 5是本发明次极压电陶瓷组件引出电极结构示意图;
图 6是本发明输入压电陶瓷组件与输出压电陶瓷组件以及隔离片构成 压电变压器主体结构的示意图; 图 7是本发明初级电极引出结构示意图;
图 8是本发明隔离绝缘结构的示意图;
图 9是本发明压电变压器的结构与电连接示意图。 详细描述
如图 1所示, 所述压电陶瓷组件为直径相同的圆形薄片 103, 其上下 两个平面均制备金属电极 101, 105 , 侧面制备两个引出电极 102, 104并 分别与上下两个平面电极相连构成引出电极结构的一部分。 压电陶瓷圆 形薄片沿厚度方向极化。 初级压电陶瓷组件由单片或厚度相同的多片压 电陶瓷圆片组成, 各片按相邻片极化方向相反, 相邻电极相连的方式层 迭构各成初级组, 压电陶瓷圆片的厚度和数量由输入阻抗匹配、 输入电 压及输入功率匹配要求确定。 次级压电陶瓷组件根据输出端子数量的要 求分为相应的次级组; 每一组均由厚度相同的同种材料的压电陶瓷片组 成, 不同组间厚度和所用压电陶瓷材料可以不同; 每一组的数量、 厚度 及压电陶瓷材料种类均根据输出电压、 功率及输出阻抗匹配要求确定; 单一输出或独立输出的次级组均按相邻片极化方向相反, 相邻电极相连 的方式层迭构成如图 2所示; 共的正负输出的次级组的压电陶瓷圆片的排 布方法如图 3所示, 正负输出组内的压电陶瓷片排列方式与单一输出的次 极组相同, 正负输出组结合面两侧分属正负输出组的两个陶瓷片 34, 35 按极化方向相同的方式排列, 34, 35的相邻面的引出侧电极方向相同。 分别与 34, 35的相邻面的引出侧电极属于同组的正负输出组的侧电极组 由端子片相联作为双输出的共同地 33。 正负输出组的另一个侧电极组分 别构成正负输出组的输出极 31, 32。 各次级组间可以有隔离层隔离。
如图 4所示, 所述电极引出结构分为两部分: 其中一部分为压电陶瓷 圆片侧面的分别与压电陶瓷圆片上下两个平面电极相连的侧电极 41和 42, 同组压电陶瓷圆片的侧电极引出方向相同, 以便于相互连接; 另一 部分是作为输入和输出连线的端子片, 一端与对应压电陶瓷组件组的侧 电极以悍接方式相连, 将同组的同方向侧电极连接在一起; 另一端则作 为输入或输出接口。
所述高分子结合结构是处于初级压电陶瓷组件、 次级压电陶瓷组件 和绝缘隔离结构中的隔离层的单个圆片之间的粘合层。它可以由环氧, 酚 醛, 脲醛, 聚醚, 聚酰亚胺及其他耐高温的杂环聚合物树脂构成; 采用 表面涂敷, 迭片, 固化的方式或采用灌注的工艺制成。
下面是本发明的实施例, 所述的实施例是用于说明本发明, 而不是 限定本发明:
实施例 1
一种适用于 170伏至 250伏驱动电压, 输出电压 12伏, 最佳匹配阻抗 为 8欧姆的压电变压器, 其次级压电陶瓷组件由 P5压电陶瓷材料制成, 共 十层, 每层均为 如图 1所示圆薄片 103, 厚度为 0.3毫米, 直径为 26毫米, 上下两面制备银电极 101及 105, 在侧面分别制备了分别与上下两个银电 极相联的引出电极 102及 104, 上下两个电极面及引出电极之间均保证有 不小于 0.3毫米的距离以保证两个电极之间的隔离。 如图 2所示, 十层压 电陶瓷圆薄片层层相迭, 相邻两片的极化方向 P相反。 每一层的极化正方 向的面电极的引出电极 2011, 2024, 2092, 2104均置于同一角度, 构成 次极压电陶瓷组件的正引出侧电极组 42 (见图 4 ), 极化负方向的面电极 的引出电极 2015, 2022, 2095 , 2102均置于另一角度, 构成次极压电陶 瓷组件的负引出侧电极, 以便于电极引出组件的引出。 相邻面电极均为 极化方向相同的面电极 ( 2014, 2021; ……, 2094, 2101 ) 所有十层均 由环氧树脂粘合剂层 2016, 2026, ……, 2090粘结成为一个整体。
如图 5所示, 次极压电陶瓷组件引出电极结构示意图, 图中 51, 57 为引出焊片, 它们分别通过钎料 52, 56与次极压电陶瓷组件 54的两个侧 电极组 53和 55悍接在一起, 使得侧电极组中的每一个侧电极与本组的其 它侧电极导通, 通过引出焊片构成变压器的输出电极。
初级压电陶瓷组件由两片厚 1.6毫米, 直径 26毫米的 P8压电陶瓷材料 构成, 其两平面均制备银电极, 侧面制备两个分别与两个面电极相联的 引出电极。 结构示意图同图一。
隔离绝缘组件中的隔离片由玻璃制成, 其厚度为 0.3毫米, 直径为 27 图 6为输入压电陶瓷组件与输出压电陶瓷组件以及隔离片构成压电 变压器主体结构的示意图。 初级压电陶瓷组件 61, 69, 分别位于变压器 上下面, 次极压电陶瓷组件 65位于中间, 初极压电陶瓷组件与次极压电 陶瓷组件之间由隔离片 63, 67隔离。 以上各部分由环氧黏合剂层 62, 64 , 66, 68紧密粘结在一起。
图 7为初级电极引出结构示意图, 端子片 71, 72的两端分别与初级 压电陶瓷组件的侧电极 74通过悍锡 73焊接在一起, 端子片将初极压电陶 瓷组件的同极端连接, 同时端子片构成输入电极。
图 8为隔离绝缘结构的示意图。
在上下两个隔离片 81, 83之间的次级压电陶瓷组件的裸露表面及次 级电极引出结构和输出导线的裸露表面上完全涂覆一层 0.3毫米厚的环氧 型包封胶 82, 81、 82与 83形成一个完全封闭的包覆, 将次级与外界完全 绝缘, 从而实现与初级之间的可靠隔离。
该变压器的工作参数如下:
工作频率: 90KHz
最大输出功率: 45 W
输出电压: 12V
最高效率: 98%
初次极间绝缘强度: 5000伏直流, 漏流小于 80微安。 实施例 2:
通过实验, 制成了一种适用于 110伏 50赫兹输入, 同时具有正 15伏, 正负 5伏三输出的压电电源的三输出扩张振模复合结构压电变压器。
图 9为该压电变压器的结构与电连接示意图。
为适应 110伏输入电压, 初极压电陶瓷组件由的每一个部分均由两 片厚度为 0.6毫米, 直径为 30毫米的二元系 PZT压电陶瓷圆片 913, 914及 915 , 916构成, 其排列方法和侧电极的布置方法如图九所示。 所有极化 正方向的侧电极全部由端子片连接在一起, 构成输入端的一极 902, 所有 极化负方向的侧电极全部由端子片连接在一起构成输入端的另一极 901。
15伏输出次极压电陶瓷组件由六片厚度为 0.3毫米直径为 30毫米的 P5 系列 PZT压电陶瓷制成, 其结构与图一相同。 其两组侧电极组分别构成 15 伏输出的独立两极 904, 905。
共地的正负 5伏次极压电陶瓷组件分别由三片和两片厚度为 0.12毫 米, 直径为 30毫米的 P4系列压电陶瓷片构成。 其中, 三片组为正 5伏输出 组, 两片为负 5伏输出组。 两组相邻的压电陶瓷片 910和 911的极化方向相 同。 正 5伏输出组的极化正方向的侧电极组与负 5伏输出组的极化负方向 的侧电极组由端子片相联构成正负输出的共同地 908。 正 5伏输出组的极 化负方向的侧电极由端子片相联构成正 5伏输出极 907, 负 5伏输出组的极 化正方向的侧电极组由端子片相联构成负 5伏输出极 909。 初极压电陶瓷 组件与次极压电陶瓷组件之间由超硬玻璃制成的厚度为 0.3毫米, 直径为 32毫米的隔离片 903, 912隔离。 15伏输出组与正负 5伏输出组之间由厚度 为 0.2毫米, 直径为 31毫米的隔离片 906隔离。
所有压电陶瓷组件以及隔离片均由改性酚醛树脂黏合剂粘结在一 起。 所有次极压电陶瓷组件的侧面均由环氧树脂涂覆, 环氧树脂涂覆层 与隔离片形成封闭结构, 将初极与次极完全隔离。
该压电变压器的主要参数如下: 工作频率: 72千赫兹 15伏输出最大功率: 45瓦 正 5伏输出最大功率: 8瓦 负 5伏输出最大功率: 5瓦 最高工作效率: 98% 尺寸: 32X5.2毫米。

Claims

权 利 要 求
1. 一种扩张振模的多输出复合结构压电变压器, 由初级压电陶瓷组 件和次级压电陶瓷组件组成, 其特征在于: 本扩张振模的多输出复合结 构压电变压器还包括高分子结合结构, 绝缘隔离结构和电极引出结构, 所述初级压电陶瓷组件、 次级压电陶瓷组件以及绝缘隔离结构中的隔离 层层迭并由高分子聚合物结合结构紧密粘合在一起组成夹层结构; 压电 陶瓷件由电极引出结构引出电极, 构成输入及输出端子; 压电陶瓷组件、 电极引出结构的外表面由高分子绝缘材料膜覆盖, 该绝缘材料层与隔离 层一起构成连续、 完整的绝缘隔离结构。
2. 根据权利要求 1所述的扩张振模的多输出复合结构压电变压器, 其特征在于: 压电变压器可以具有多路输出, 对于独立的输出压电陶瓷 组件, 由隔离片与其它输出压电陶瓷组件相互隔离, 组件内相邻压电陶 瓷片的极化方向相反; 对于共地的正负输出压电陶瓷组件之间, 则采用 两组件间相联的压电陶瓷片极化方向相同, 组件组内仍采用相邻片极化 方向相反的方式排列构成, 正输出压电陶瓷组件中和与负输出压电陶瓷 组件相邻的电极的极化方向相同的所有电极面的引出侧电极由引出组件 相联, 并与负输出压电陶瓷组件中与正输出压电陶瓷组件相邻的电极面 的极化方向相同的所有电极面的侧电极相连, 构成输出共同地, 而正负 输出压电陶瓷组件中的另一组侧电极则分别由引出组件引出, 分别构成 正输出及负输出的另一极。
3. 根据权利要求 1所述的扩张振模的多输出复合结构压电变压器, 其特征在于: 具有由初级压电陶瓷组件、 次级压电陶瓷组件和隔离绝缘 组件中的隔离片构成的夹层结构。 其中初级压电陶瓷组件分为两组, 分 别位于夹层结构的最外侧; 次级压电陶瓷组件位于中间, 隔离绝缘组件 中的隔离片位于初级压电陶瓷组件和次级压电陶瓷组件的所有结合面及 不同次级压电陶瓷组件组间的结合面之间。
4. 根据权利要求 1所述的扩张振模的多输出复合结构压电变压器, 其特征在于: 其中的次级压电陶瓷组件被处于其外侧的隔离片和绝缘膜 完全包覆, 可靠地与初级压电陶瓷组件隔离, 隔离片可由玻璃, 陶瓷, 高分子材料膜片以及复合材料膜片等低介电常数, 高绝缘电阻及高击穿 电场强度的材料制成, 其外型与初级压电陶瓷组件相同, 尺寸大于初级 压电陶瓷组件, 厚度可以保证所要求的绝缘强度, 弹性模量大于压电陶 瓷弹性模量的十分之一, 小于压电陶瓷弹性模量的十倍, 绝缘膜包覆于 次级压电陶瓷组件的侧面裸露部分, 与隔离片紧密结合, 形成封闭结构, 绝缘膜为环氧, 酚醛, 聚胺酯类材料。
5. 根据权利要求 1所述的扩张振模的多输出复合结构压电变压器, 其特征在于变压器具有独立可靠的电极引出组件, 该组件由压电陶瓷片 上的侧电极和引出端子片构成; 引出端子片一端与压电陶瓷片的侧电极 通过钎悍的方式牢固悍接, 同时将需要连接在一起的侧电极连接在一起, 端子片的另一端与输入输出导线压接, 构成牢固可靠的输入及输出端子, 端子片由铜或钢制成, 与压电陶瓷片侧电极焊接部分制成与需连接的侧 电极或侧电极组的形状相同, 面积相同或略小。
PCT/CN2000/000131 1999-06-01 2000-05-26 Transformateur piezo-electrique a structure composite multisortie en mode vibration d'extension WO2000074152A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60028589T DE60028589D1 (de) 1999-06-01 2000-05-26 Ein verbund-piezoelektrischer umformer mit mehreren ausgängen und expansions-vibrations-modus
AU47408/00A AU4740800A (en) 1999-06-01 2000-05-26 A multi-output composite piezoelectric transformer with expansion vibration mode
US09/980,206 US6577044B1 (en) 1999-06-01 2000-05-26 Multi-output composite piezoelectric transformer with expansion vibration mode
JP2001500349A JP2003501810A (ja) 1999-06-01 2000-05-26 拡張振動式の多出力復合構造の圧電トランス
EP00929201A EP1220338B1 (en) 1999-06-01 2000-05-26 A multi-output composite piezoelectric transformer with expansion vibration mode
CA002373613A CA2373613A1 (en) 1999-06-01 2000-05-26 A multi-output composite piezoelectric transformer with expansion vibration mode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN99107845.4 1999-06-01
CNB991078454A CN1138287C (zh) 1999-06-01 1999-06-01 扩张振模的多输出复合结构压电变压器

Publications (1)

Publication Number Publication Date
WO2000074152A1 true WO2000074152A1 (fr) 2000-12-07

Family

ID=5272983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000131 WO2000074152A1 (fr) 1999-06-01 2000-05-26 Transformateur piezo-electrique a structure composite multisortie en mode vibration d'extension

Country Status (9)

Country Link
US (1) US6577044B1 (zh)
EP (1) EP1220338B1 (zh)
JP (1) JP2003501810A (zh)
CN (1) CN1138287C (zh)
AT (1) ATE329373T1 (zh)
AU (1) AU4740800A (zh)
CA (1) CA2373613A1 (zh)
DE (1) DE60028589D1 (zh)
WO (1) WO2000074152A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1407497A1 (en) * 2000-12-15 2004-04-14 Clark Davis Boyd Composite piezoelectric transformer

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787975B2 (en) * 2000-05-31 2004-09-07 Denso Corporation Piezoelectric device for injector
JP4729260B2 (ja) * 2004-02-18 2011-07-20 富士フイルム株式会社 積層構造体及びその製造方法
DE102004036704A1 (de) * 2004-05-26 2005-12-22 Epcos Ag Piezoelektrischer Transformator
DE102004064303B3 (de) * 2004-05-26 2019-02-21 Tdk Electronics Ag Piezoelektrischer Transformator
DE102004036703B4 (de) * 2004-05-26 2016-02-18 Epcos Ag Piezoelektrischer Transformator
EP1776725B1 (de) * 2004-08-13 2010-06-30 Epcos Ag Piezoelektrischer transformator
DE102005015600A1 (de) * 2005-04-05 2006-10-12 Epcos Ag Piezoelektrischer Transformator
US20080061919A1 (en) * 2006-03-22 2008-03-13 Marek Richard P Insulators for transformers
CN103125029B (zh) * 2010-10-07 2016-01-06 埃普科斯股份有限公司 压电多层组件
DE102010055620A1 (de) * 2010-12-22 2012-06-28 Epcos Ag Aktor, Aktorsystem und Ansteuerung eines Aktors
DE102010055621A1 (de) * 2010-12-22 2012-06-28 Epcos Ag Aktor, Aktorsystem und Ansteuerung eines Aktors
DE102011006764A1 (de) * 2011-04-05 2012-10-11 Robert Bosch Gmbh Piezotransformator, Verfahren zum Herstellen eines Piezotransformators und Inverter mit einem Piezotransformator
CN102324461B (zh) * 2011-07-20 2013-11-06 广州金升阳科技有限公司 一种径向扩张独石圆片型压电陶瓷变压器及其制备方法
KR101435913B1 (ko) 2012-05-04 2014-11-04 한국기계연구원 에너지 하베스터 층상구조 및 이의 제조 방법
CN103280523B (zh) 2013-06-18 2015-03-25 厦门乃尔电子有限公司 高温压电元件电极制作方法及压电元件结构
CN104200980B (zh) * 2014-08-20 2016-08-24 北京卫星制造厂 一种大功率平面变压器的装联方法
US10312429B2 (en) * 2016-07-28 2019-06-04 Eyob Llc Magnetoelectric macro fiber composite fabricated using low temperature transient liquid phase bonding
CN106784293B (zh) * 2017-01-13 2019-08-23 江苏汇博机器人技术股份有限公司 一种堆叠式压电陶瓷
CN109888087A (zh) * 2019-03-06 2019-06-14 中国船舶重工集团公司第七二六研究所 压电陶瓷圆管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130292A (zh) * 1995-08-04 1996-09-04 北京伟泰电子电器有限公司 多层压电陶瓷变压器及其制作方法
JPH11145527A (ja) * 1997-11-10 1999-05-28 Nec Corp 圧電磁器トランスおよびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165380A (ja) * 1986-01-14 1987-07-21 Nec Corp 積層圧電素子
DE4201937C2 (de) * 1991-01-25 1997-05-22 Murata Manufacturing Co Piezoelektrisches laminiertes Stellglied
JP3064458B2 (ja) * 1991-04-02 2000-07-12 日本電気株式会社 厚み縦振動圧電磁器トランスとその駆動方法
JPH04359576A (ja) * 1991-06-06 1992-12-11 Nec Corp 積層型圧電/電歪効果素子
JPH07202286A (ja) * 1993-12-28 1995-08-04 Toto Ltd 積層型圧電セラミックス素子
AU3838895A (en) * 1994-11-10 1996-06-06 Beijing Wide Tech, Electron & Electric Equiment Co. Ltd. Composite piezoelectric ceramic transformer and manufacture method thereof
JPH08195513A (ja) * 1995-01-19 1996-07-30 Tokin Corp 圧電トランス
JPH09153649A (ja) * 1995-12-01 1997-06-10 Sony Corp 積層型圧電素子の製造方法
JPH09191137A (ja) * 1996-01-11 1997-07-22 Wac Data Service Kk 電圧変換積層型圧電アクチュエータ
JPH09275231A (ja) * 1996-04-02 1997-10-21 Toto Ltd 積層型圧電トランスの駆動方法
US5892318A (en) * 1997-01-02 1999-04-06 Motorola Inc. Piezoelectric transformer with multiple output
JPH11330575A (ja) * 1998-05-13 1999-11-30 Tokin Corp 圧電トランス、および圧電トランスの実装方法
JP2000150978A (ja) * 1998-11-06 2000-05-30 Tokin Corp 積層型圧電トランス
JP2000315828A (ja) * 1999-04-28 2000-11-14 Mitsui Chemicals Inc 圧電トランス
US6366006B1 (en) * 2000-12-15 2002-04-02 Clark Davis Boyd Composite piezoelectric transformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130292A (zh) * 1995-08-04 1996-09-04 北京伟泰电子电器有限公司 多层压电陶瓷变压器及其制作方法
JPH11145527A (ja) * 1997-11-10 1999-05-28 Nec Corp 圧電磁器トランスおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1407497A1 (en) * 2000-12-15 2004-04-14 Clark Davis Boyd Composite piezoelectric transformer
EP1407497A4 (en) * 2000-12-15 2006-03-22 Clark Davis Boyd COMPOSITE PIEZOELECTRIC TRANSFORMER

Also Published As

Publication number Publication date
CN1275781A (zh) 2000-12-06
CN1138287C (zh) 2004-02-11
AU4740800A (en) 2000-12-18
EP1220338B1 (en) 2006-06-07
EP1220338A1 (en) 2002-07-03
US6577044B1 (en) 2003-06-10
DE60028589D1 (de) 2006-07-20
CA2373613A1 (en) 2000-12-07
ATE329373T1 (de) 2006-06-15
EP1220338A4 (en) 2005-04-06
JP2003501810A (ja) 2003-01-14

Similar Documents

Publication Publication Date Title
WO2000074152A1 (fr) Transformateur piezo-electrique a structure composite multisortie en mode vibration d'extension
JPH06224484A (ja) 圧電磁器トランスとその駆動方法
JP2842382B2 (ja) 積層型圧電トランスおよびその製造方法
EP0821419B1 (en) Piezoelectric transformer
JP3111946B2 (ja) 圧電トランス
WO1996015560A1 (fr) Transformateur ceramique piezo-electrique composite et son procede de fabrication
CN111180570B (zh) 一种可实现不同升压比的单层压电变压器
JPH03270944A (ja) 積層型圧電アクチュエータ
JP3022373B2 (ja) 圧電磁器トランスとその駆動方法
CN201233910Y (zh) 一种复合结构压电变压器
WO2000070688A1 (fr) Transducteur piezo-electrique stratifie
US9337411B2 (en) Slat-constructed autonomic transformers
CN201233908Y (zh) 压电变压器
CN202067836U (zh) 一种径向复合多层独石压电降压变压器
JP2531087B2 (ja) 圧電磁器トランス及びその駆動方法
CN210866241U (zh) 一种新型压电陶瓷摆动致动器
CN101640250A (zh) 一种拱形结构压电变压器
KR100272842B1 (ko) 높은 출력전류를 내는 다층 압전트랜스포머
JP2907153B2 (ja) 圧電トランスおよびその製造方法
JPH11298056A (ja) 圧電トランスとその駆動方法
JP3709114B2 (ja) 圧電トランス
JP2006032384A (ja) 圧電トランス
JP3080033B2 (ja) 積層型圧電トランス
JP2001044527A (ja) 圧電トランス
JP4831859B2 (ja) 圧電トランス

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2373613

Country of ref document: CA

Ref country code: CA

Ref document number: 2373613

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09980206

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 500349

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000929201

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000929201

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000929201

Country of ref document: EP