WO2000066953A1 - Dispositif refrigerant - Google Patents

Dispositif refrigerant Download PDF

Info

Publication number
WO2000066953A1
WO2000066953A1 PCT/JP2000/002307 JP0002307W WO0066953A1 WO 2000066953 A1 WO2000066953 A1 WO 2000066953A1 JP 0002307 W JP0002307 W JP 0002307W WO 0066953 A1 WO0066953 A1 WO 0066953A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat
endothermic
moisture
cooled
Prior art date
Application number
PCT/JP2000/002307
Other languages
English (en)
French (fr)
Inventor
Chun-Cheng Piao
Ryuichi Sakamoto
Yuji Watanabe
Manabu Yoshimi
Kazuo Yonemoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP00915445A priority Critical patent/EP1176372B1/en
Priority to KR1020017013875A priority patent/KR20020013859A/ko
Priority to DE60030106T priority patent/DE60030106D1/de
Priority to US09/959,583 priority patent/US6629427B1/en
Publication of WO2000066953A1 publication Critical patent/WO2000066953A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0085Systems using a compressed air circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/065Removing frost by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0662Environmental Control Systems with humidity control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Definitions

  • the present invention relates to a refrigeration system using an air cycle.
  • refrigerators that perform an air cycle are disclosed in, for example, “New Edition Cold Air Conditioning Handbook, 4th Edition, Basic Edition” published by the Japan Refrigeration Association, pp. 45-48.
  • Japanese Patent Application Laid-Open No. 5-238489 discloses an air conditioner using an air cycle. According to the air cycle, refrigeration can be performed without using artificial synthetic refrigerants such as chlorofluorocarbon refrigerants. Therefore, in recent years, attention has been paid to the growing concern about the global environment.
  • the air conditioner of the above publication includes a circuit in which an expander, a heat exchanger, and a compressor are sequentially connected to perform an air cycle.
  • the first air is taken into this circuit as the working fluid of the air cycle.
  • the taken-in first air is decompressed to below atmospheric pressure by the expander and becomes low temperature.
  • the cooled first air exchanges heat with the second air in the heat exchanger.
  • the second air is cooled by this heat exchange, and the cooled second air is supplied into the room to perform cooling.
  • the first air that has absorbed heat from the second air in the heat exchanger is compressed to atmospheric pressure by a compressor and discharged from the circuit.
  • the expander is constituted by the evening bottle device, and the compressor is constituted by the evening bottle compressor.
  • the respective impellers of the expander and the compressor are connected to each other by a turbine shaft.
  • a motor is connected to the turbine shaft, and the compressor and the expander are driven by the motor.
  • expansion work when air is expanded by the expander is recovered as driving force of the compressor via the turbine shaft.
  • the taken air is expanded as it is by the expander.
  • moisture condenses in the air. That is, a part of the expansion work when the air expands is taken away by the water as heat of condensation of the water.
  • the above-mentioned apparatus has a problem that the expansion work of the air in the expander cannot be sufficiently recovered. Insufficient recovery of expansion work increases the power required to drive the compressor, resulting in a lower COP (coefficient of performance).
  • the present invention has been made in view of such a point, and an object of the present invention is to improve the COP by reducing the power required for air compression in a refrigeration system using an air cycle. . Disclosure of the invention
  • the first solution taken by the present invention is directed to a refrigeration apparatus for cooling an object to be cooled. Then, while taking in the endothermic air and reducing the pressure, the air cycle part (11) for compressing the endothermic air that has absorbed heat from the object to be cooled after being decompressed, and dehumidifying the endothermic air and supplying it to the air cycle part (11) And dehumidifying means (60).
  • the second solution taken by the present invention is directed to a refrigeration apparatus that cools an object to be cooled.
  • An expander (22) that takes in heat-absorbing air and decompresses the heat, a heat-absorbing section (30) that absorbs heat from the object to be cooled, and a heat-absorbing section that absorbs heat from the heat-absorbing section (30).
  • An air cycle section (11) having a compressor (21) for compressing air; and a dehumidifying means (60) for dehumidifying endothermic air and supplying the dehumidified air to an expander (22) of the air cycle section (11). It is provided.
  • the heat absorbing air dehumidified by the dehumidifying means (60) and supplied to the air cycle section (11) and the object to be cooled are provided.
  • An internal heat exchanger (15) for exchanging heat with the endothermic air in the decompressed state is provided.
  • a fourth solution taken by the present invention is the above-mentioned third solution, wherein the internal heat exchanger (15) supplies moisture to decompressed endothermic air that has absorbed heat from the object to be cooled. It is configured to utilize the latent heat of evaporation for cooling the endothermic air supplied to the air cycle section (11).
  • the humidification cooling means for cooling the endothermic air depressurized in the air cycle section (11) by humidification. 90
  • the air cycle section (11) is configured such that the endothermic air cooled by the humidifying cooling means (90) absorbs heat from the object to be cooled.
  • the sixth solution taken by the present invention is the air conditioner according to any one of the first to fifth solutions, wherein the air cycle section (11) is configured to remove moisture from the heat absorbing air absorbing heat from the object to be cooled. It is configured to supply and utilize the latent heat of vaporization of water for heat absorption from the object to be cooled.
  • the air conditioner according to any one of the first to sixth aspects, wherein the air cycle section (11) absorbs heat from the air to be cooled, which is an object to be cooled.
  • the air cycle section (11) absorbs heat from the air to be cooled, which is an object to be cooled.
  • water condensed in the air to be cooled is supplied to heat absorbing air that absorbs heat from the air to be cooled, and the latent heat of evaporation of the water is used for heat absorption from the air to be cooled. Things.
  • the air cycle unit (11) is configured to absorb heat from the air to be cooled, which is an object to be cooled, in the heat absorption unit (30).
  • the heat absorbing section (30) separates the air to be cooled and the heat absorbing air by a partition member through which moisture can pass, and absorbs water condensed in the cooling air based on a pressure difference between both sides of the partition member. And the latent heat of evaporation of the water is used to absorb heat from the air to be cooled.
  • a ninth solution of the present invention in any one of the first to eighth solutions, water is evaporated in the endothermic air in a compression process in the air cycle section (11). Water supply means (99) for supplying moisture to the endothermic air is provided.
  • the air conditioner according to any one of the first to ninth aspects, wherein the air cycle unit (11) performs an air cycle operation to reduce the heat-absorbing air in a reduced pressure state to a cooling object. Operation that absorbs heat from the object, and stops the air cycle operation and takes in normal pressure And an operation in which the endothermic air absorbs heat from the object to be cooled.
  • the eleventh solution taken by the present invention is the solution according to any one of the first to tenth aspects, wherein the dehumidification means (60) comprises a humidity medium for absorbing and releasing moisture, The humidity medium absorbs moisture to dehumidify heat-absorbing air, and the humidity medium releases moisture to be regenerated.
  • the dehumidifying unit (60) releases moisture to the endothermic air compressed in the air cycle unit (11) by the humidity medium. It is configured as follows.
  • the humidity medium of the dehumidifying means (60) is provided with a solid adsorbent for adsorbing moisture.
  • the humidity medium of the dehumidifying means (60) is formed in a disk shape so that air can pass in the thickness direction and passes therethrough.
  • a drive mechanism for rotating the rotor member (61) so as to move between the moisture absorbing section (62) and the moisture releasing section (63).
  • the humidity medium of the dehumidifying means (60) is constituted by a liquid absorbent which absorbs moisture.
  • the dehumidifying means (60) is provided in the air cycle section (11) in order to release the liquid absorbent from the liquid absorbent. It is configured to heat by compressed endothermic air.
  • the dehumidifying means (60) comprises a moisture absorbing portion (2) in which the liquid absorbent and the endothermic air come into contact and the liquid absorbent absorbs moisture. 65), and a moisture-absorbing section (66) in which the liquid absorbent comes in contact with the heat-absorbing air so that the liquid absorbent can humidify the air, between the moisture-absorbing section (65) and the moisture-absorbing section (66).
  • Circulation circuit for circulating liquid absorbent (64) It is composed of
  • the eighteenth solution taken by the present invention is the heating means (1) for heating the endothermic air compressed by the air cycle part (11) and supplying the heat-absorbing air to the dehumidification means (60) in the first solution. 101).
  • a heating means (101) for heating endothermic air immediately before being compressed in the air cycle part (11) is provided. .
  • the dehumidifying means (60) dehumidifies the endothermic air and supplies it to the air cycle unit (11).
  • the air cycle section (11) takes in the dehumidified endothermic air and performs the air cycle using the endothermic air as the working fluid. That is, the endothermic air is decompressed, and the decompressed endothermic air absorbs heat from the object to be cooled. This heat absorption cools the object to be cooled.
  • the endothermic air that has absorbed the heat is discharged from the air cycle section (11) after being compressed. Since the endothermic air taken in by the air cycle unit (11) has been dehumidified in advance, no moisture condenses in the endothermic air when it expands.
  • the dehumidifying means (60) dehumidifies the endothermic air and supplies it to the air cycle unit (11).
  • the air cycle section (11) takes in the dehumidified endothermic air and performs the air cycle using the endothermic air as the working fluid. That is, the pressure of the endothermic air is reduced by the expander (22).
  • the heat absorbing section (30) the heat from the object to be cooled is absorbed by the decompressed heat absorbing air. This heat absorption cools the object to be cooled.
  • the compressor (21) the endothermic air absorbed by the endothermic part (30) is compressed. The compressed endothermic air is discharged from the air cycle section (11). Since the endothermic air taken in by the air cycle section (11) has been dehumidified in advance, no moisture condenses in the endothermic air when expanded by the expander (22).
  • the endothermic air before being supplied to the air cycle unit (11) and the endothermic air reduced in the air cycle unit (11) are heated. Make a replacement.
  • the endothermic air decompressed in the air cycle section (11) absorbs heat from the object to be cooled, but is supplied to the air cycle section (11) even after the endotherm. May be cooler than previous state. In such a case, the temperature of the endothermic air supplied to the air cycle section (11) decreases due to heat exchange in the internal heat exchanger (15).
  • moisture is supplied to the decompressed endothermic air in the internal heat exchanger (15).
  • the supplied water absorbs heat from the endothermic air before being supplied to the air cycle section (11) and evaporates.
  • the latent heat of evaporation of water is used to cool the endothermic air before it is supplied to the air cycle section (11).
  • the humidifying and cooling means (90) supplies moisture to the endothermic air depressurized in the air cycle section (11).
  • the endothermic air since the endothermic air is dehumidified by the dehumidifying means (60), it does not become saturated air even after expansion. Therefore, the moisture evaporates in the endothermic air, and the endothermic air is cooled. That is, the endothermic air is further cooled by the humidifying cooling means (90) after its temperature is reduced by expansion. Then, the endothermic air absorbs heat from the object to be cooled.
  • water is supplied to the endothermic air that is absorbing heat from the object to be cooled in the air cycle section (11).
  • the supplied water absorbs heat from the object to be cooled and evaporates. That is, in the air cycle section (11), both the decompressed endothermic air and the water supplied to the endothermic air absorb heat from the object to be cooled, and the latent heat of evaporation of the water is also used for cooling the object to be cooled.
  • the air to be cooled which is the object to be cooled, is cooled.
  • water condenses to drain water.
  • the air cycle section (11) supplies the drain water to the endothermic air that is decompressed and is absorbing heat from the cooled air.
  • the supplied drain water absorbs heat from the cooled air in the endothermic air and evaporates. . That is, in the air cycle section (11), both the decompressed heat absorbing air and the drain water supplied to the heat absorbing air absorb heat from the cooled air, and the latent heat of evaporation of the drain water also cools the cooled air. Used.
  • the air to be cooled which is the object to be cooled, is cooled. Specifically, heat is exchanged between the heat-absorbing air and the air to be cooled through the partition member in the heat-absorbing section (30). C In the cooled air to be cooled, water condenses to drain water. In the heat absorbing section (30), The endothermic air is under reduced pressure, while the air to be cooled is at normal pressure. Therefore, the drain water passes through the partition member due to a pressure difference between both sides of the partition member, and is supplied to the heat absorbing air in a reduced pressure state.
  • the supplied drain water absorbs heat from the air to be cooled in the heat absorbing air and evaporates. That is, in the heat absorbing section (30), both the decompressed heat absorbing air and the drain water supplied to the heat absorbing air absorb heat from the cooled air, and the latent heat of evaporation of the drain water is also used for cooling the cooled air. You.
  • the water supply means (99) supplies moisture to the endothermic air.
  • the water evaporates in the endothermic air being compressed in the air cycle section (11). This evaporation of water lowers the endothermic ruby of the endothermic air after compression.
  • an operation for performing an air cycle operation and an operation for stopping the air cycle operation are performed.
  • the air cycle section (11) takes in the endothermic air and decompresses it, and the decompressed endothermic air absorbs heat from the object to be cooled.
  • the air cycle section (11) takes in endothermic air, and the endothermic air taken in absorbs heat from the object to be cooled without being decompressed.
  • the air cycle section (11) may take in outdoor air as endothermic air. For this reason, when the outside air temperature is low, such as in winter, the cooling target may be cooled only by the low-temperature outdoor air without performing the air cycle operation. Therefore, in such an operation state, the air cycle operation is stopped to cool the object to be cooled.
  • the humidity medium of the dehumidifying means (60) absorbs moisture from the endothermic air, and the endothermic air is dehumidified.
  • the humidity medium releases moisture absorbed from the endothermic air. This moisture release regenerates the humidity medium.
  • the regenerated humidity medium absorbs moisture from the endothermic air again.
  • the humidity medium of the dehumidifying means (60) releases moisture to the endothermic air compressed in the air cycle unit (11).
  • the endothermic air has a high temperature due to endothermic and compression in the air cycle section (11). Accordingly, the humidity medium is regenerated by releasing moisture to the high-temperature endothermic air.
  • the humidity medium absorbs moisture by adsorbing the water to the solid adsorbent. Also, as the moisture desorbs from the solid adsorbent, the humidity medium releases moisture.
  • the humidity medium is constituted by the disk-shaped rotor member (61).
  • a portion of the rotatable member (61) contacts the endothermic air at the moisture absorbing section (62) to absorb moisture.
  • the rotatable member (61) is rotationally driven by the drive mechanism, and the portion of the rotatable member (61) that has absorbed moisture moves to the moisture releasing section (63).
  • the mouth opening member (61) contacts the endothermic air from the air cycle section (11) to release moisture. This regenerates the humidity member (61), which is a humidity medium. After that, the regenerated portion of the mouth member (61) moves to the moisture absorbing portion (62) again, and this operation is repeated.
  • the moisture medium absorbs moisture by absorbing the water into the liquid absorbent. Also, as the moisture desorbs from the liquid absorbent, the humidity medium releases moisture.
  • the liquid absorbent absorbs moisture from the endothermic air before being supplied to the air cycle section (11).
  • the liquid absorbent is heated by the high-temperature endothermic air compressed in the air cycle section (11), and is made to be in a state where it is easy to release moisture, and then released to the endothermic air. This moisture release regenerates the liquid absorbent.
  • the liquid absorbent absorbs the moisture of the endothermic air in the moisture absorbing section (65), whereby the endothermic air is dehumidified.
  • This liquid absorbent flows through the circulation circuit (64) and reaches the moisture release section (66).
  • the liquid absorbent releases moisture to the endothermic air from the air cycle section (11), thereby regenerating the liquid absorbent.
  • the regenerated liquid absorbent flows through the circulation circuit (64), reaches the moisture absorbing section (65) again, and repeats this circulation.
  • air may be brought into direct contact with the liquid absorbent, or may be brought into indirect contact with the liquid absorbent through a moisture permeable membrane or the like.
  • the heating means (101) heats the endothermic air compressed in the air cycle section (11).
  • the endothermic air that has been compressed and raised in temperature is further heated by the heating means (101) to increase its temperature.
  • the endothermic air is supplied to the dehumidifying means (60),
  • the humidity medium is regenerated by releasing moisture to the endothermic air. That is, the heat supplied to the endothermic air by the heating means (101) is used for regeneration of the humidity medium.
  • the heating means (101) heats the endothermic air immediately before being compressed in the air cycle section (11).
  • the endothermic air heated by the heating means (101) is then compressed and supplied to the dehumidifying means (60).
  • the dehumidifying means (60) the humidity medium is regenerated by releasing moisture to the endothermic air. That is, the heat supplied to the endothermic air by the heating means (101) is used for regeneration of the humidity medium.
  • the endothermic air is previously dehumidified by the dehumidifying means (60), and then the air cycle unit is dehumidified.
  • the expansion in (11) Because of the expansion in (11), it is possible to prevent condensation of moisture in the endothermic air during the expansion process. Therefore, it is possible to prevent the expansion work when the endothermic air expands from being consumed by the condensation of moisture, and it is possible to reliably recover the expansion work. As a result, the recovered expansion work can be used for compressing the endothermic air in the air cycle section (11), and the power required for compression can be reduced and COP can be improved.
  • the internal heat exchanger (15) is provided. Therefore, when the endothermic air after heat absorption is lower in temperature than the endothermic air before expansion, the endothermic air before expansion can be cooled by heat exchange between the two. Therefore, the temperature of the endothermic air before expansion can be reduced.
  • the endothermic air before expansion can be cooled using the latent heat of vaporization of water, and the temperature of the endothermic air can be further reduced. As a result, the power required for compressing the endothermic air can be reduced, and COP can be further improved.
  • the object to be cooled can be cooled by using the endothermic air further cooled by the humidifying and cooling means (90) after the temperature is reduced by expansion.
  • water is supplied to the endothermic air that is absorbing heat from the object to be cooled, and the object to be cooled is cooled using the latent heat of evaporation of the water. Can be. Therefore, according to each of the above solutions, it is necessary to increase the power required for compressing the endothermic air. Instead, the cooling capacity can be increased only by supplying water. Therefore, COP can be improved by increasing the cooling capacity.
  • drain water generated in the air to be cooled which is the object to be cooled, is supplied to the heat absorbing air, and the latent heat of evaporation of the drain water is used for cooling the air to be cooled. Can be used. For this reason, drainage treatment of drain water generated by cooling of the cooled air becomes unnecessary, and the configuration can be simplified.
  • the moisture can be evaporated in the endothermic air in the compression process, so that the endothermic ruby of the endothermic air after compression can be reduced. For this reason, it is possible to reduce the difference between the end-to-end ruby of the endothermic air before and after compression, and to reduce the power required for compression. Therefore, according to the present solution, COP can be further improved.
  • the operation in which the air cycle operation is stopped can be performed. For this reason, unnecessary air cycle operation can be avoided, and the energy required for cooling the object to be cooled can be reduced.
  • the dehumidifying means (60) can be constituted by using a humidity medium for absorbing and releasing moisture.
  • the energy of the high-temperature endothermic air from the air cycle section (11) can be used for the regeneration of the humidity medium, and the energy can be effectively used.
  • the configuration of the dehumidifying means (60) can be embodied by using a humidity medium such as a solid adsorbent or a liquid absorbent.
  • the humidity medium can be regenerated by using the heat supplied by the heating means (101) to the endothermic air.
  • the endothermic air can be heated by the heating means (101). Therefore, the compression ratio of the endothermic air in the air cycle section (11) can be reduced while maintaining the temperature of the endothermic air after compression. Therefore, make sure that the humidity medium is sufficiently regenerated.
  • the power required to compress the endothermic air can be reduced and COP can be improved.
  • FIG. 1 is a schematic configuration diagram illustrating a configuration of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 2 is a psychrometric chart showing the operation of the air-conditioning apparatus according to Embodiment 1.
  • FIG. 3 is a schematic configuration diagram illustrating a configuration of the air-conditioning apparatus according to Embodiment 2.
  • FIG. 4 is a psychrometric chart showing the operation of the air-conditioning apparatus according to Embodiment 2.
  • FIG. 5 is a schematic configuration diagram illustrating a configuration of an air conditioner according to a modification of the second embodiment.
  • FIG. 6 is a schematic configuration diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 3.
  • FIG. 7 is a psychrometric chart showing the operation of the air-conditioning apparatus according to Embodiment 3.
  • FIG. 8 is a schematic configuration diagram illustrating a configuration of an air conditioner according to a modification of the third embodiment.
  • FIG. 9 is a schematic configuration diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 4.
  • FIG. 10 is a psychrometric chart showing the operation of the air-conditioning apparatus according to Embodiment 4.
  • FIG. 11 is a schematic configuration diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 5.
  • FIG. 12 is a schematic configuration diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 6.
  • FIG. 13 is a schematic configuration diagram illustrating a configuration of an air-conditioning apparatus according to Embodiment 6.
  • FIG. 14 is a schematic configuration diagram illustrating a configuration of an air conditioner according to another embodiment.
  • the refrigeration apparatus of the present embodiment is configured as an air conditioner (10) that cools room air to perform cooling. Therefore, in the present embodiment, the indoor air is the object to be cooled, that is, the air to be cooled.
  • the air conditioner (10) includes an air cycle unit (11), a dehumidifying mechanism (60) as dehumidifying means, and an internal heat exchanger (15).
  • the air cycle section (11) includes a cycle circuit (20).
  • the cycle circuit (20) includes an expander (22), a heat exchanger (30) as a heat absorber,
  • the compressor (21) is connected by a duct in order, and is configured so that the endothermic air flows to perform the air cycle operation.
  • This cycle circuit (20) includes an inlet duct (23) connected to the inlet side of the expander (22) and an outlet duct (24) connected to the outlet side of the compressor (21).
  • One end of the inlet duct (23) is open to the outside of the room to take in outdoor air as endothermic air and supply the taken endothermic air to the expander (22).
  • One end of the outlet duct (24) opens to the outside of the room, and discharges endothermic air from the compressor (21) to the outside of the room.
  • the compressor (21) and the expander (22) are connected to each other by a rotating shaft (36).
  • a motor (35) is connected to the rotating shaft (36).
  • the compressor (21) is driven to rotate by the motor (35).
  • the heat exchanger (30) has a heat absorbing side passageway (32) formed therein. Endothermic passage
  • the heat exchanger (30) is configured to exchange heat between the heat-absorbing air in the heat-absorbing-side passageway (32) and the indoor air that is the air to be cooled.
  • the dehumidification mechanism (60) is provided in the middle of the inlet duct (23) and the outlet duct (24).
  • This dehumidifying mechanism (60) is provided with a mouth opening / closing member (61), a moisture absorbing section (62), and a moisture releasing section (63), and is configured similarly to a so-called mouth opening / closing type dehumidifier.
  • the rotor member (61) is formed in a disc shape and allows air to pass in the thickness direction.
  • the mouth member (61) includes a solid adsorbent for adsorbing moisture, and constitutes a humidity medium for bringing passing air into contact with the solid adsorbent.
  • a drive motor which is a drive mechanism, is connected to the mouth opening member (61), and is driven to rotate by the drive motor to connect the moisture absorbing section (62) and the moisture releasing section (63). Move between.
  • the solid adsorbent of the mouth member (61) is mainly composed of a porous inorganic compound. As the inorganic compound, those having a pore diameter of about 0.1 to 20 nm and adsorbing moisture are selected.
  • the moisture absorbing section (62) is arranged in the middle of the inlet duct (23).
  • the endothermic air in the inlet duct (23) passes through the opening / closing member (61), and the moisture in the endothermic air is adsorbed by the solid adsorbent of the roasting member (61). Thereby, the endothermic air is dehumidified.
  • the moisture releasing section (63) passes through the outlet duct Bok (In 2 is arranged in the middle.
  • the mouth opening member (61) is driven by the driving mode to move between the moisture absorbing section (62) and the moisture releasing section (63). Then, the portion of the roasting member (61) that has absorbed moisture from the endothermic air in the moisture absorbing portion (62) moves to the moisture releasing portion (63) as the mouth opening member (61) rotates. In the moisture release section (63), water is desorbed from the solid adsorbent of the mouth opening member (61) and regenerated. That is, the mouth opening member (61) releases moisture to the endothermic air. After that, the regenerated portion of the mouth-to-mouth member (61) moves to the moisture absorbing portion (62) again. By repeating the above operation, the dehumidifying mechanism (60) continuously dehumidifies the endothermic air.
  • a first passage (16) and a second passage (17) are defined in the internal heat exchanger (15).
  • the first passage (16) is connected between the moisture absorbing section (62) and the expander (22) at the inlet duct (23). Heat-absorbing air that is dehumidified by the dehumidifying mechanism (60) and supplied to the expander (22) flows through the first passage (16).
  • the second passage (17) is connected between the heat exchanger (30) and the compressor (21) in the cycle circuit (20). In the second passage (17), heat-absorbed air in a decompressed state that has exchanged heat with room air in the heat exchanger (30) flows.
  • the internal heat exchanger (15) is configured to exchange heat between the endothermic air in the first passage (16) and the endothermic air in the second passage (17).
  • the outdoor air at the point A is taken in from the inlet duct (23) as endothermic air.
  • This heat-absorbing air is dehumidified by contacting the raw material (61) in the moisture absorbing part (62) of the dehumidifying mechanism (60), and the absolute humidity decreases due to the iso-rubber change, the temperature rises, and The state changes from point A to point B.
  • the endothermic air in the state of point B again passes through the inlet duct (23) and passes through the internal heat exchanger (15). Flow into the first passage (16). In the internal heat exchanger (15), heat is absorbed between the heat-absorbing air in the first passage (16) and the heat-absorbing air in the second passage (17). Then, the heat-absorbing air in the state at the point B is cooled while flowing through the first passage (16) to be in the state at the point C.
  • the endothermic air in the state at point C is supplied again to the expander (22) through the inlet duct (23).
  • the expander (22) the endothermic air in the state at the point C expands, and the temperature and the pressure are reduced at the absolute humidity constant to the state at the point D.
  • the heat-absorbing air in the state at the point D flows into the heat-absorbing-side passage (32) of the heat exchanger (30) and exchanges heat with the indoor air while flowing through the heat-absorbing-side passage (32). Then, the endothermic air in the state at the point D absorbs heat from the room air, and the temperature rises to the state at the point E, while the room air is cooled. The indoor air is cooled by this cooling of the indoor air.
  • the endothermic air in the state at the point E flows into the second passage (17) of the internal heat exchanger (15). As described above, in the internal heat exchanger (15), heat is absorbed between the heat-absorbing air in the first passage (16) and the heat-absorbing air in the second passage (17). Then, the endothermic air in the state at the point E is heated while flowing through the second passage (17) to be in the state at the point F.
  • the endothermic air at the point F is supplied to the compressor (21).
  • the compressor (21) the endothermic air in the state at the point F is compressed, and the temperature and pressure rise to the state at the point G at a constant absolute humidity.
  • the endothermic air in the state at the point G flows into the dehumidifying section (63) of the dehumidifying mechanism (60) through the outlet duct (24).
  • the endothermic air comes into contact with the mouth opening member (61), and the mouth opening member (61) releases moisture to the endothermic air.
  • the endothermic air in the state at the point G changes in temperature from the state at the point G to the state at the point H from the state at the point G due to an increase in the absolute humidity due to a change in isenthalpy.
  • the endothermic air at the point H is discharged again through the outlet duct (24).
  • the rotor member (61) In the dehumidifying mechanism (60), the rotor member (61) is driven to rotate. Then, the rotatable member (61) moves between the moisture absorbing part (62) and the moisture releasing part (63), and the moisture absorption in the moisture absorbing part (62) and the moisture releasing in the moisture releasing part (63) are performed. repeat. Thus, dehumidification of the endothermic air is performed continuously.
  • the internal heat exchanger (15) is provided. Therefore, the endothermic air dehumidified by the dehumidifying mechanism (60) can be cooled by heat exchange in the internal heat exchanger (15) and then supplied to the expander (22). Therefore, the temperature of the endothermic air at the inlet of the expander (22) can be reduced, and the expansion ratio at the expander (22) can be reduced while maintaining the temperature of the endothermic air at the outlet of the expander (22). Can be. As a result, the compression ratio in the compressor (21) can be reduced, and the input to the motor (35) can be reduced to further improve COP.
  • the second embodiment of the present invention is the same as the first embodiment, except that a water inlet (42) is provided.
  • Other configurations are the same as those of the first embodiment.
  • the water introduction section (42) is provided in the heat absorption side passageway (32) of the heat exchanger (30).
  • the water introduction section (42) is provided with a moisture-permeable membrane through which moisture can pass.
  • a water-side space is formed on one of the moisture-permeable membranes, and the other side of the water-side space across the moisture-permeable membrane is heated. It is configured in the heat absorption side passageway (32) of the exchanger (30).
  • a water pipe (50) is connected to this water side space, and tap water and the like are supplied to the inside thereof. Then, in the water introduction section (42), the water in the water side space permeates the moisture permeable membrane and is supplied to the heat absorbing air in the heat absorbing side passageway (32).
  • the water introduction section (42) supplies moisture to the endothermic air in the endothermic passage (32).
  • the heat absorbing air absorbs heat from the room air, and the moisture supplied to the heat absorbing air also absorbs heat from the room air and evaporates.
  • the water introduction part (42) uses the latent heat of vaporization to cool the indoor air, so that water is absorbed into the heat-absorbing air in the heat-absorbing side passageway (32). This constitutes a water supply means for supplying water.
  • the outdoor air at the point A is taken in from the inlet duct (23) as endothermic air.
  • This heat-absorbing air passes through the states at points B and C, as in the first embodiment, and becomes the state at point D.
  • the endothermic air in the state of point A is dehumidified by the dehumidifying mechanism (60) to the state of point B, cooled by the internal heat exchanger (15) to the state of point C, and the expansion machine (22) To expand to the state of point D.
  • the heat-absorbing air in the state at the point D flows into the heat-absorbing-side passage (32) of the heat exchanger (30) and exchanges heat with the indoor air while flowing through the heat-absorbing-side passage (32). Further, water is supplied to the endothermic air in the endothermic passage (32) from the water introduction part (42), and the water evaporates in the endothermic air. Then, the endothermic air in the state of the point D and the moisture supplied to the endothermic air absorb heat from the room air, and the room air is cooled. The indoor air is cooled by this cooling of the indoor air. On the other hand, the endothermic air in the state of point D becomes saturated air due to endothermic heat and evaporation of moisture, and then the absolute humidity and temperature rise while maintaining the state of the saturated air, resulting in the state of point I.
  • the temperature in the state at the point I is equal to the endothermic air temperature at the outlet of the heat exchanger (30) in the first embodiment (point E in FIG. 2).
  • the moisture supplied by the water inlet (42) also absorbs heat from the room air. That is, the indoor air is cooled by the latent heat change of the water in addition to the sensible heat change of the endothermic air. For this reason, in the present embodiment, the amount of heat absorbed from the indoor air, that is, the cooling capacity is increased as compared with the first embodiment.
  • the endothermic air in the state at the point I flows into the second passage (17) of the internal heat exchanger (15).
  • heat is exchanged between the endothermic air in the first passage (16) and the endothermic air in the second passage (17). Then, the endothermic air in the state at the point I is heated while flowing through the second passage (17) to be in the state at the point J.
  • the endothermic air at the point J is supplied to the compressor (21). In the compressor (21), the endothermic air at the point J is compressed, and the temperature and pressure rise to the point K at a constant absolute humidity.
  • the heat-absorbing air in the state at the point K flows into the moisture releasing section (63) of the dehumidifying mechanism (60) through the outlet duct (24).
  • the endothermic air comes into contact with the mouth opening member (61), and the mouth opening member (61) releases moisture to the endothermic air.
  • the endothermic air in the state at the point K changes in temperature from the state at the point K to the state at the point L from the state at the point K due to an increase in the absolute humidity due to an isenthalpic change.
  • the endothermic air in the state at the point L is again discharged outside through the outlet duct (24).
  • the rotor member (61) In the dehumidifying mechanism (60), the rotor member (61) is driven to rotate. Then, the mouth member (61) moves between the moisture absorbing section (62) and the moisture releasing section (63), and absorbs moisture in the moisture absorbing section (62) and releases moisture in the moisture releasing section (63). repeat. Thus, dehumidification of the endothermic air is performed continuously.
  • a water inlet (42) is provided in the heat exchanger (30), and the water inlet (42) supplies moisture to the endothermic air that is absorbing heat from the object to be cooled. For this reason, the indoor air can be cooled using the latent heat of vaporization of the water supplied by the water inlet (42). As a result, it is possible to increase the cooling capacity only by supplying water from the water inlet (42) without increasing the input to the motor (35), and to improve the COP by increasing the cooling capacity. Can be planned.
  • a water inlet (42) is provided in the heat exchanger (30), and water from the water pipe (50) is supplied to the heat-absorbing air in the heat-absorbing-side passage (32).
  • drain water generated by cooling indoor air with the heat exchanger (30) may be used to supply the drain water to the heat absorbing air in the heat absorbing side passageway (32).
  • the heat exchanger (30) is provided with a moisture permeable membrane that is a partition member through which moisture can pass.
  • This moisture permeable membrane is the same as the moisture permeable membrane of the water introduction section (42).
  • the heat-absorbing side passageway (32) is defined by the moisture permeable membrane, and heat is exchanged between the room air, which is the air to be cooled, and the heat-absorbing air in the heat-absorbing side passageway (32) across the moisture-permeable membrane.
  • the water in the indoor air condenses due to cooling, and drain water is generated.
  • the drain water passes through the moisture permeable membrane due to the pressure difference between the two sides of the moisture permeable membrane and is supplied to the heat absorbing air in the heat absorbing side passageway (32). That is, while the indoor air is at atmospheric pressure, the endothermic air in the endothermic passage (32) is decompressed by expansion in the expander (22). For this reason, a pressure difference is generated on both sides of the moisture permeable membrane, and the pressure difference drives the drain water to pass through the moisture permeable membrane.
  • the drain water supplied to the heat absorbing air in the heat absorbing passage (32) absorbs heat from room air and evaporates. Then, the latent heat of evaporation of the drain water is used for cooling the indoor air. For this reason, drainage treatment of drain water generated by cooling the indoor air becomes unnecessary, and the configuration required for this drainage treatment can be omitted to simplify the configuration.
  • the water inlet (42) is provided in the integral heat exchanger (30).
  • the heat exchanger (30) is composed of two parts, the first heat exchange part (30a) and the second heat exchange part (30b), and the second heat exchange part (30b) ) May be provided with a water introduction section (42).
  • each heat exchanging section (30a, 30b) has a heat-absorbing side passageway (32) defined therein, and is configured to exchange heat between the heat-absorbing air in the heat-absorbing side passageway (32) and the indoor air that is the air to be cooled. ing.
  • Each heat exchange section (30a, 30b) is provided between the expander (22) and the compressor (21) in the cycle circuit (20).
  • the first heat exchange section (30a) is arranged on the expander (22) side
  • the second heat exchange section (30b) is arranged on the compressor (21) side.
  • the second heat exchange section (30b) is provided with a water introduction section 2).
  • the water introduction section (42) is configured in the same manner as in the second embodiment, and supplies moisture to the endothermic air in the endothermic passage (32) in the second heat exchange section (30b). Then, in the first heat exchange section (30a), the endothermic air in the endothermic passage (32) absorbs heat from the indoor air. In the second heat exchange section (30b), the endothermic air in the endothermic passage (32) and the water supplied by the water introduction section (42) absorb heat from the room air, and the water evaporates.
  • Embodiment 3 of the present invention is different from Embodiment 2 in that a humidifying cooler (90) as humidifying cooling means and a heating heat exchanger (101) as heating means are provided.
  • a humidifying cooler (90) as humidifying cooling means and a heating heat exchanger (101) as heating means are provided.
  • a configuration different from the second embodiment will be described.
  • the humidifying cooler (90) is provided between the expander (22) and the heat exchanger (30) in the cycle circuit (20).
  • the humidifying cooler (90) is provided with a moisture-permeable film through which moisture can pass, and an air-side space and a water-side space are defined by the moisture-permeable film.
  • One end of the air side space is connected to the expander (22), and the other end is connected to the heat absorbing side passageway (32) of the heat exchanger (30), and heat absorbing air flows.
  • a water pipe (50) is connected to the water side space, and tap water and the like are supplied to the inside thereof.
  • the humidifying cooler (90) supplies moisture in the water side space to the heat absorbing air in the air side space through the moisture permeable membrane, and cools the heat absorbing air by evaporating the supplied water in the heat absorbing air. It is configured as follows.
  • the heating heat exchanger (101) is provided in the outlet duct (24) on the upstream side of the moisture release section (63).
  • the cooling water pipe (102) is connected to the heating heat exchanger (101).
  • C The cooling water pipe (102) is connected at both ends to the fuel cell (100), which is a waste heat source, and the cooling water flows through it. ing.
  • the heating heat exchanger (101) exchanges heat between the endothermic air in the outlet duct (24) and the cooling water in the cooling water pipe (102), and supplies waste heat from the fuel cell (100) to the endothermic air. It is configured to be.
  • the endothermic air heated by the heating heat exchanger (101) flows to the dehumidifying section (63) of the dehumidifying mechanism (60), and the waste heat from the fuel cell (100) is transferred to the solid adsorbent of the rotor member (61). Used to play.
  • the outdoor air at the point A is taken in from the inlet duct (23) as endothermic air.
  • This heat-absorbing air passes through the state at point B to the state at point C, as in the first embodiment. That is, the endothermic air in the state of the point A is dehumidified by the dehumidifying mechanism (60) to the state of the point B, and is cooled by the internal heat exchanger (15) to the state of the point C.
  • the endothermic air in the state at point C is supplied to the expander (22) and expands.
  • the expansion ratio in the expander (22) in the present embodiment is set smaller than in the second embodiment. Therefore, the endothermic air in the state at the point C is expanded by the expander (22), and the state at the point D 'is higher than the state at the point D.
  • the humidifying cooler (90) moisture is supplied to the endothermic air, and the moisture evaporates in the endothermic air. Then, in the humidifying cooler (90), the absolute humidity of the heat-absorbing air increases and the temperature decreases, and the state becomes the point M. At the point M, the endothermic air is saturated air.
  • the endothermic air in the state at the point M flows into the endothermic passage (32) of the heat exchanger (30) and exchanges heat with the indoor air while flowing through the endothermic passage (32). Further, water is supplied to the endothermic air in the endothermic passage (32) from the water introduction part (42), and the water evaporates in the endothermic air. Then, the endothermic air in the state of the point M and the moisture supplied to the endothermic air absorb heat from the indoor air, and the indoor air is cooled. The indoor air is cooled by this cooling of the indoor air. On the other hand, the endothermic air in the state at the point M rises in absolute humidity and temperature while maintaining the state of the saturated air due to the heat absorption and evaporation of the water, and reaches the state at the point I.
  • the endothermic air in the state at the point I is heated by the internal heat exchanger (15) to the state at the point J as in the first embodiment.
  • the endothermic air at the point J is supplied to the compressor (21) and compressed.
  • the compression ratio of the compressor (21) according to the present embodiment is set smaller than that of the second embodiment in accordance with the expansion ratio of the above-described expander (22). Therefore, the endothermic air in the state at the point J is compressed by the compressor (21), and the state at the point K ′ is lower than the state at the point K.
  • the heat-absorbing air exchanges heat with the cooling water from the fuel cell (100), and the heat-absorbing air is heated to a point K.
  • the heat-absorbing air in the state at the point K flows into the dehumidifying section (63) of the dehumidifying mechanism (60) through the outlet duct (24).
  • the mouth opening member (61) is regenerated in the same manner as in the first embodiment. Then, the endothermic air in the state of the point K changes in the iso-evening ruby to increase the absolute humidity, and the temperature decreases, and the state of the point K changes to the state of the point L.
  • the endothermic air in the state at the point L is again discharged outside through the outlet duct (24).
  • the COP in addition to the effects of the second embodiment, the COP can be improved by installing the humidifying cooler (90) and the heating heat exchanger (101).
  • the humidifying cooler (90) and the heating heat exchanger (101).
  • the specific difference between the endothermic air at the inlet (point C) and the outlet (point D) of the expander (22) is ⁇ he ′.
  • the specific difference between the endothermic air at the inlet (point D) and the outlet (point I) of the heat exchanger (30) is ⁇ '.
  • the humidifying cooler (90) is provided, and the expansion ratio in the expander (22) is set smaller than that in the second embodiment. Therefore, the relative difference between the endothermic air at the inlet (point C) and the outlet (point D ') of the expander (22) is ⁇ he.
  • the relative difference between the endothermic air at the inlet (point M) and the outlet (point I) of the heat exchanger (30) is A hr. That is, in the present embodiment, the specific ruby difference of the endothermic air is reduced by Ah as compared with the second embodiment.
  • the relative ruby difference at the entrance and exit of the expander (22) has a proportional relationship with the input to the unit (35). That is, the ratio of the specific enthalpy difference at the entrance and exit of the heat exchanger (30) and the specific enthalpy difference at the entrance and exit of the expander (22) is proportional to COP. Therefore, comparing the third embodiment with the second embodiment, it can be seen that the difference between the relative Ruby difference ⁇ hr ′ and the relative Ruby difference ⁇ he ′ is not greater than hr ′> A he ′. There is a relationship. From this, the following relationship is derived.
  • the third embodiment as compared with the second embodiment, at the entrance and exit of the heat exchanger (30). It is possible to increase the ratio between the relative ruby difference at the entrance and exit and the expander (22), thereby improving the COP.
  • the temperature of the endothermic air at the outlet of the compressor (21) decreases as the expansion ratio in the expander (22) is set small.
  • the heating heat exchanger (101) is provided, and the endothermic air is heated by the waste heat of the fuel cell (100). Therefore, the temperature of the endothermic air when flowing into the dehumidifying section (63) of the dehumidifying mechanism (60) can be maintained at the same temperature (point K) as in the second embodiment. Therefore, the regeneration of the rotor member (61) can be performed under the same conditions as in the second embodiment.
  • the heating heat exchanger (101) is provided in the outlet duct (24).
  • the heating heat exchanger (101) may be provided between the internal heat exchanger (15) and the compressor (21) in the cycle circuit (20).
  • the heat is passed through the second passage (17) of the internal heat exchanger (15) and heated, and then the endothermic air heated by the heating heat exchanger (101) is compressed by the compressor (21). Is done. Then, the endothermic air compressed by the compressor (21) flows into the moisture release section (63) of the dehumidification mechanism (60), and the mouth opening member (61) is regenerated.
  • the endothermic air upstream of the compressor (21) in the cycle circuit (20) is heated.
  • the heating heat exchanger (101) heat is absorbed between the endothermic air before being compressed and the cooling water from the fuel cell (100).
  • the endothermic air before compression is lower in temperature than the endothermic air after compression. Therefore, in the present embodiment, it is possible to increase the temperature difference between the fluids performing heat exchange in the heating heat exchanger (101). For this reason, the amount of heat exchange in the heating heat exchanger (101) can be increased, and the waste heat of the fuel cell (100) can be more effectively used.
  • a water inlet (18) is provided in the internal heat exchanger (15). It is provided. This water inlet (18) is almost the same as the water inlet (42) provided in the heat exchanger (30). It is configured as follows.
  • the water introduction section (18) is provided with a moisture-permeable membrane through which moisture can pass, a water-side space is formed on one of the moisture-permeable membranes, and the water-side space is separated by the moisture-permeable membrane.
  • the second passage (17) of the internal heat exchanger (15) On the other side is formed the second passage (17) of the internal heat exchanger (15).
  • a water pipe (50) is connected to this water-side space, and tap water and the like are supplied inside.
  • the water in the water side space permeates through the moisture permeable membrane and is supplied to the endothermic air in the second passage (17). Then, the moisture is evaporated by the heat-absorbing air in the second passage (17), and the heat-absorbing air in the first passage (16) is cooled using the latent heat of evaporation of the water.
  • the outdoor air at the point A is taken in from the inlet duct (23) as endothermic air.
  • This heat-absorbing air is dehumidified by the dehumidifying mechanism (60) in the same manner as in the first embodiment, and is in the state of point B.
  • the endothermic air in the state at the point B flows into the first passage (16) of the internal heat exchanger (15) and exchanges heat with the endothermic air in the second passage (17). During this time, moisture is supplied to the endothermic air in the second passage (17) from the water inlet (18), and the moisture absorbs heat from the endothermic air in the first passage (16) and evaporates. Then, the endothermic air in the state at the point B is cooled while flowing through the first passage (16), so that the state at the point C ′ is lower than the state at the point C.
  • the endothermic air in the state at the point C ′ flows into the expander (22) and expands, and the temperature and the pressure decrease at the absolute humidity and the state at the point D is reached.
  • the endothermic air in the internal heat exchanger (15) is cooled to a state at a point C ′ lower than the state at the point C. Therefore, in the present embodiment, the expansion ratio in the expander (22) is set smaller than in the second embodiment.
  • the heat-absorbing air in the state at the point D flows into the heat-absorbing-side passage (32) of the heat exchanger (30), and exchanges heat with the indoor air while flowing through the heat-absorbing-side passage (32). Also, the heat absorbing air in the heat absorbing side passageway (32) Water is supplied to the air from the water inlet (42), and the water evaporates in the endothermic air. Then, the endothermic air in the state of the point D and the moisture supplied to the endothermic air absorb heat from the room air, and the room air is cooled. The indoor air is cooled by this cooling of the indoor air. On the other hand, the endothermic air in the state of point D becomes saturated air due to endotherm and evaporation of moisture, and then the absolute humidity and temperature rise while maintaining the state of the saturated air. The state of I 'is low.
  • the endothermic air in the state of point I flows into the second passage (17) of the internal heat exchanger (15). Water is supplied to the endothermic air in the second passage (17) from the water introduction part (18). In the second passage (17), the heat-absorbing air and the supplied moisture absorb heat from the heat-absorbing air in the first passage (16), and the heat-absorbing air evaporates and evaporates the heat-absorbing air from the point I 'to the point I.
  • the state at point J is reached via.
  • the endothermic air in the state at the point J is in the state at the point L through the states at the points K 'and ⁇ , as in the third embodiment. That is, the endothermic air in the state at the point J is compressed by the compressor (21) to a state at the point K ', heated by the heating heat exchanger (101) to the state at the point K, and dehumidified by the dehumidifying mechanism (60). At the moisture release section (63), moisture is released from the low-rise member (61), and the state becomes point L. The endothermic air in the state at the point L is discharged outside through the outlet duct (24).
  • COP can be improved by installing the water inlet (18) in the internal heat exchanger (15).
  • this point will be described with reference to the psychrometric chart of FIG.
  • the relative end difference between the endothermic air at the inlet (point C) and the outlet (point D) of the expander (22) is A he ′.
  • the specific enthalpy difference between the endothermic air at the inlet (point D) and the outlet (point I) of the heat exchanger (30) is ⁇ hr '.
  • a water inlet (18) is provided in the internal heat exchanger (15), and the amount of humidification in the water inlet (42) of the heat exchanger (30) and the expansion in the expander (22) are increased.
  • the ratio is set smaller than in the second embodiment. Therefore, the specific enthalpy difference between the endothermic air at the inlet (point C ′) and the outlet (point D) of the expander (22) is ⁇ he.
  • the heat exchanger (30) inlet (point The relative difference between the endothermic air at D) and the exit (point ⁇ ') is Ahr.
  • the endothermic air in the second passage (17) changes from point I ′ to point I due to evaporation of moisture
  • the endothermic air moves from point C to point C ′. Is also cooled to the low temperature point C,.
  • the specific Rubi difference between the endothermic air at points I ′ and I and the specific Rubi difference between the endothermic air at points C and C are both Ah, and in the present embodiment, Compared with the form 2, the specific difference of each endothermic ruby of the endothermic air decreases by ⁇ ⁇ .
  • the ratio of the relative Ruby difference at the entrance and exit of the heat exchanger (30) and the relative Ruby difference at the entrance and exit of the expander (22) is proportional to COP. Therefore, also in the fourth embodiment, the following relationship is established as in the third embodiment.
  • the difference between the ruby and the ruby at the heat exchanger (30) entrance and exit and the expander (22) is the difference between the ruby and the ruby at the entrance and exit. Ratio can be increased, and COP can be improved.
  • Embodiment 5 of the present invention is different from Embodiment 2 in that a water supply device (99) is provided as water supply means.
  • a water supply device 99
  • a configuration different from the second embodiment will be described.
  • the water supply (99) is located between the internal heat exchanger (15) and the compressor (21) in the cycle circuit (20) and is immediately upstream of the compressor (21). It is located on the side.
  • the water supply device (99) is configured to supply moisture to the endothermic air in a reduced pressure state in the cycle circuit (20).
  • the water supplied to the endothermic air from the water supply device (99) evaporates in the process of compressing the endothermic air by the compressor (21).
  • the operation of the air conditioner (10) of the present embodiment is substantially the same as that of the second embodiment described above, and differs only in that moisture evaporates in the endothermic air in the compressor (21).
  • Embodiment 6 of the present invention is configured as an air conditioner (10) for cooling a room that needs cooling throughout the year, for example, a room where a large convenience store is installed.
  • the air conditioner (10) performs an operation of cooling the indoor air by performing an air cycle operation, and stops the air cycle operation and converts the indoor air by the taken-in outdoor air. Both the cooling operation and the cooling operation are possible.
  • the air conditioner (10) is configured by adding a switching valve (111, 112) and the like to the first embodiment.
  • a switching valve 111, 112
  • a configuration different from the first embodiment will be described.
  • a first switching valve (111) is provided in the inlet duct (23) between the internal heat exchanger (15) and the expander (22).
  • One end of a first bypass duct (113) is connected to the first switching valve (111).
  • the other end of the first bypass duct (113) is connected between the expander (22) and the heat exchanger (30) in the cycle circuit (20).
  • the first bypass duct (113) is provided with a bypass fan (11.
  • the bypass fan (114) is provided to allow air to flow from one end to the other end of the first bypass duct (113). It is configured.
  • the first switching valve (111) connects the internal heat exchanger (15) side of the inlet duct (23) with the expander (22) side, and the first bypass duct (113) and the inlet duct (23). (See Figure 12) and the internal heat exchanger (15) side of the inlet duct (23) and the expander (22) side, and the internal heat exchanger of the inlet duct (23). It is configured to switch to a state where the (15) side communicates with the first bypass duct (113) (see FIG. 13).
  • a second switching valve (II 2 ) is provided between the heat exchanger (30) and the internal heat exchanger (15) in the cycle circuit (20).
  • One end of a second bypass duct (115) is connected to the second switching valve (II 2 ).
  • the other end of the second bypass duct (115) is connected between the compressor (21) and the moisture release section (63) in the outlet duct (24).
  • the second switching valve (112) connects the heat-absorbing-side passage (32) of the heat exchanger (30) with the second passage (17) of the internal heat exchanger (15).
  • the state in which the second passage (17) and the second bypass duct (115) are shut off see FIG. 12
  • the configuration is such that the two passages (17) are shut off and the heat absorbing side passage (32) communicates with the second bypass duct (115) (see FIG. 13).
  • the first switching valve (111) and the second switching valve (112) are switched as shown in FIG. In this state, the endothermic air flows through the air cycle section (11) in the same manner as in the first embodiment, and the air cycle operation is performed. Then, in the heat exchanger (30), the endothermic air, which has been decompressed and cooled, exchanges heat with the indoor air, and the indoor air is cooled to perform cooling.
  • the first switching valve (111) and the second switching valve (112) are switched as shown in FIG. In this state, the endothermic air flows in the air cycle part (11), bypassing the expander (22), the internal heat exchanger (15), and the compressor (21). For this reason, the air cycle operation is stopped in the air cycle section (11), and the outdoor air taken in from the inlet duct (23) is directly supplied to the heat-absorbing side passageway (32) of the heat exchanger (30).
  • the outdoor air taken in as heat absorbing air from the inlet duct (23) flows into the heat absorbing side passageway (32) through the first bypass duct (113).
  • the heat absorption air which is the outdoor air, exchanges heat with the indoor air, and the indoor air is cooled. Thereafter, the endothermic air flows through the second bypass duct (115), and is discharged outside through the outlet duct (24).
  • the outdoor air when the outside air temperature is low as in winter, the outdoor air is directly introduced into the heat absorbing passage (32) of the heat exchanger (30) by switching the switching valves (111, 112). Driving can be performed. For this reason, unnecessary air cycle operation can be avoided, and the room can be cooled with less energy. Therefore, the energy required for cooling throughout the year can be reduced, and the cost required for cooling can be reduced.
  • the dehumidifying mechanism (60) is configured using a solid adsorbent.
  • the dehumidifying mechanism (60) may be configured using a liquid absorbent.
  • a dehumidifying mechanism (60) using a liquid absorbent will be described by taking as an example a case where the dehumidifying mechanism (60) is applied to the first embodiment.
  • the dehumidifying mechanism (60) of the present modified example is a circulating system that connects a moisture absorbing section (65), a moisture releasing section (66), and a pump (67) in order by a liquid pipe (68). It consists of a circuit (64).
  • This circulation circuit (64) is filled with an aqueous solution of a metal halide as a liquid absorbent.
  • a metal halide examples include LiCl, LiBr, CaCl 2 and the like.
  • the liquid absorbent may be an aqueous solution of a hydrophilic organic compound. Examples of this type of organic compound include ethylene glycol, glycerin, and a water-absorbing resin.
  • the moisture absorbing section (65) is arranged in the middle of the inlet duct (23).
  • the moisture absorbing section (65) is provided with a hydrophobic porous membrane through which moisture can pass, and an air-side space and a liquid-side space are defined by the hydrophobic porous membrane.
  • An inlet duct (23) is connected to the air side space, through which heat-absorbing air flows.
  • a liquid pipe (68) is connected to the liquid side space, through which a liquid absorbent flows. Then, in the moisture absorbing section (65), the endothermic air in the air side space and the liquid absorbent in the liquid side space come into indirect contact with each other via the hydrophobic porous membrane, and the moisture contained in the endothermic air is converted into the hydrophobic porous membrane. And is absorbed by the liquid absorbent. That is, in the moisture absorbing section (65), the heat absorbing air is dehumidified.
  • the moisture release section (66) has the same configuration as the moisture absorption section (65), and is arranged in the middle of the outlet duct (24).
  • the moisture releasing section (66) has a hydrophobic porous membrane and has an air-side space and a liquid-side space defined therein.
  • An outlet duct (24) is connected to the air side space. Endothermic air flows inside the interior.
  • a liquid pipe (68) is connected to the liquid side space, through which a liquid absorbent flows. Then, in the moisture release section (66), the heat absorbing air in the air side space and the liquid absorbent in the liquid side space come into indirect contact with each other via the hydrophobic porous membrane, and the liquid absorbent is exchanged with the heat absorbing air by heat exchange. Heated. Then, the moisture of the liquid absorbent is desorbed by the heating, and the desorbed water moves to the endothermic air. That is, in the moisture release section (66), the liquid absorbent is regenerated.
  • the liquid absorbent is circulated inside by the pump (67), whereby the dehumidification of the endothermic air is continuously performed. That is, the liquid absorbent that has absorbed the moisture in the endothermic air at the moisture absorbing section (65) flows through the liquid pipe (68) and enters the moisture releasing section (66). In the moisture release section (66), the liquid absorbent is heated and releases moisture to the endothermic air. This regenerates the liquid absorbent. The regenerated liquid absorbent flows through the liquid pipe (68), enters the moisture absorbing section (65) again, and repeats this circulation.
  • the indoor air is used as a cooling target, and the indoor air is cooled in the heat exchanger (30) to perform cooling.
  • the water may be cooled in the heat exchanger (30) to generate cold water, and the cold water may be used to cool indoor air to perform cooling.
  • the object to be cooled by the refrigerating device is room air, and air conditioning is performed.
  • the cooling water for cooling the equipment may be used as a cooling target, and the cooling water cooled in the heat exchanger (30) may be used to radiate heat from equipment requiring cooling.
  • the refrigeration apparatus according to the present invention is useful for cooling indoors and cooling equipment, and is particularly suitable for a cooling operation using an air cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pulmonology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Description

明 細 書 冷凍装置 技術分野
本発明は、 空気サイクルを用いた冷凍装置に関するものである。 背景技術
従来より、 空気サイクルを行う冷凍機は、 例えば、 日本冷凍協会発行 「新版 冷 凍空調便覧 第 4版 基礎編」 p.45~p.48に開示されている。 また、 特開平 5 - 2 3 8 4 8 9号公報には、 空気サイクルを利用した空気調和装置が開示されている。 空気 サイクルによれば、 フロン冷媒をはじめとする人工合成冷媒を使用することなく冷凍 動作が可能となるため、 近年、 地球環境への関心が高まる中で注目を集めている。
具体的に、 上記公報の空気調和装置は、 膨張機と熱交換器と圧縮機とが順に接続 されて空気サイクルを行う回路を備えている。 この回路には、 第 1の空気が空気サイ クルの作動流体として取り込まれる。 取り込まれた第 1の空気は、 膨張機で大気圧以 下に減圧されて低温となる。 低温となった第 1の空気は、 熱交換器において第 2の空 気と熱交換を行う。 この熱交換により第 2の空気を冷却し、 冷却した第 2の空気を室 内に供給して冷房を行うようにしている。 熱交換器で第 2の空気から吸熱した第 1の 空気は、 圧縮機で大気圧まで圧縮されて上記回路から排出される。
また、 上記空気調和装置では、 膨張機が夕一ビン装置で構成され、 圧縮機が夕一 ボ圧縮機で構成されている。 膨張機及び圧縮機の各羽根車は、 互いにタービン軸で連 結されている。 そして、 タービン軸にモー夕を連結し、 このモ一夕で圧縮機及び膨張 機を駆動している。 また、 空気が膨張機で膨張する際の膨張仕事は、 タービン軸を介 して圧縮機の駆動力として回収している。
一解決課題一
上記公報の装置では、 取り込んだ空気をそのまま膨張機で膨張させている。 従つ て、 膨張機で空気が膨張する間には、 該空気中で水分が凝縮する。 つまり、 空気が膨 張する際の膨張仕事の一部は、 水分の凝縮熱として該水分に奪われてしまう。 このた め、 上記装置では、 膨張機における空気の膨張仕事を充分に回収することができない という問題があった。 そして、 膨張仕事の回収が不充分となると圧縮機を駆動するた めの動力が増大し、 これに起因して C O P (成績係数) の低下を招くという問題があ つた。
本発明は、 かかる点に鑑みてなされたものであり、 その目的とするところは、 空 気サイクルを利用した冷凍装置において、 空気の圧縮に要する動力を低減して C O P の向上を図ることにある。 発明の開示
本発明が講じた第 1の解決手段は、 冷却対象物を冷却する冷凍装置を対象として いる。 そして、 吸熱空気を取り込んで減圧する一方、 減圧された後に冷却対象物から 吸熱した吸熱空気を圧縮する空気サイクル部 (11) と、 吸熱空気を除湿して上記空気 サイクル部 (11) に供給する除湿手段 (60) とを設けるものである。
本発明が講じた第 2の解決手段は、 冷却対象物を冷却する冷凍装置を対象として いる。 そして、 吸熱空気を取り込んで減圧する膨張機 (22) と、 膨張機 (22) で減圧 された吸熱空気が冷却対象物から吸熱する吸熱部 (30) と、 吸熱部 (30) で吸熱した 吸熱空気を圧縮する圧縮機 (21) とを有する空気サイクル部 (11) と、 吸熱空気を除 湿して上記空気サイクル部 (11) の膨張機 (22) に供給する除湿手段 (60) とを設け るものである。
本発明が講じた第 3の解決手段は、 上記第 1又は第 2の解決手段において、 除湿 手段 (60) で除湿されて空気サイクル部 (11) へ供給される吸熱空気と、 冷却対象物 から吸熱した減圧状態の吸熱空気とを熱交換させる内部熱交換器 (15) を設けるもの である。
本発明が講じた第 4の解決手段は、 上記第 3の解決手段において、 内部熱交換器 ( 15) は、 冷却対象物から吸熱した減圧状態の吸熱空気に対して水分を供給し、 該水 分の蒸発潜熱を空気サイクル部 (11) へ供給される吸熱空気の冷却に利用するように 構成されるものである。
本発明が講じた第 5の解決手段は、 上記第 1から第 4までの何れか 1つの解決手 段において、 空気サイクル部 (11) で減圧された吸熱空気を加湿により冷却する加湿 冷却手段 (90) を設ける一方、 上記空気サイクル部 (11) は、 加湿冷却手段 (90) で 冷却された吸熱空気が冷却対象物から吸熱するように構成されるものである。
本発明が講じた第 6の解決手段は、 上記第 1から第 5の何れか 1つの解決手段に おいて、 空気サイクル部 (11) は、 冷却対象物から吸熱する吸熱空気に対して水分を 供給し、 該水分の蒸発潜熱を冷却対象物からの吸熱に利用するように構成されるもの である。
本発明が講じた第 7の解決手段は、 上記第 1力ら第 6の何れか 1つの解決手段に おいて、 空気サイクル部 (11) は、 冷却対象物である被冷却空気から吸熱するように 構成される一方、 被冷却空気中で凝縮した水分を該被冷却空気から吸熱する吸熱空気 に対して供給し、 該水分の蒸発潜熱を被冷却空気からの吸熱に利用するように構成さ れるものである。
本発明が講じた第 8の解決手段は、 上記第 2の解決手段において、 空気サイクル 部 (11) は、 吸熱部 (30) において冷却対象物である被冷却空気から吸熱するように 構成される一方、 吸熱部 (30) は、 水分が透過可能な仕切部材によって被冷却空気と 吸熱空気とを仕切り、 該仕切部材の両側における圧力差に基づいて被冷却空気中で凝 縮した水分を吸熱空気に対して供給し、 該水分の蒸発潜熱を被冷却空気からの吸熱に 利用するように構成されるものである。
本発明が講じた第 9の解決手段は、 上記第 1から第 8の何れか 1つの解決手段に おいて、 空気サイクル部 (11) で圧縮過程にある吸熱空気中で水分が蒸発するように 吸熱空気に水分を供給する給水手段 (99) を設けるものである。
本発明が講じた第 1 0の解決手段は、 上記第 1から第 9の何れか 1つの解決手段 において、 空気サイクル部 (11) は、 空気サイクル動作を行って減圧状態の吸熱空気 が冷却対象物から吸熱する運転と、 空気サイクル動作を停止し且つ取り込んだ常圧状 態の吸熱空気が冷却対象物から吸熱する運転とを行うように構成されるものである。 本発明が講じた第 1 1の解決手段は、 上記第 1力ら第 1 0の何れか 1つの解決手 段において、 除湿手段 (60) は、 吸湿と放湿とを行う湿度媒体を備え、 該湿度媒体が 吸湿して吸熱空気を除湿し、 且つ該湿度媒体が放湿して再生されるように構成される ものである。
本発明が講じた第 1 2の解決手段は、 上記第 1 1の解決手段において、 除湿手段 (60) は、 湿度媒体が空気サイクル部 (11) で圧縮された吸熱空気に対して放湿する ように構成されるものである。
本発明が講じた第 1 3の解決手段は、 上記第 1 2の解決手段において、 除湿手段 (60) の湿度媒体には、 水分を吸着する固体吸着剤を設けるものである。
本発明が講じた第 1 4の解決手段は、 上記第 1 3の解決手段において、 除湿手段 (60) の湿度媒体は、 円板状で厚さ方向に空気が通過可能に形成されて通過する空気 と固体吸着剤とを接触させる口一夕部材(61)により構成される一方、 除湿手段(60) には、 上記ロータ部材 (61) を通過する吸熱空気から該ロー夕部材 (61) が吸湿する 吸湿部(62)と、上記ロー夕部材(61)を通過する吸熱空気に対して該ロ一夕部材(61) が放湿する放湿部 (63) と、 上記ロー夕部材 (61) が吸湿部 (62) と放湿部 (63) と の間で移動するように該ロータ部材 (61) を回転駆動する駆動機構とを設けるもので ある。
本発明が講じた第 1 5の解決手段は、 上記第 1 2の解決手段において、 除湿手段 (60) の湿度媒体は、 水分を吸収する液体吸収剤により構成されるものである。
本発明が講じた第 1 6の解決手段は、 上記第 1 5の解決手段において、 除湿手段 (60) は、 液体吸収剤から放湿させるために該液体吸収剤を空気サイクル部 (11) で 圧縮された吸熱空気により加熱するように構成されるものである。
本発明が講じた第 1 7の解決手段は、 上記第 1 5の解決手段において、 除湿手段 (60) は、 液体吸収剤と吸熱空気とが接触して該液体吸収剤が吸湿する吸湿部 (65) と、 液体吸収剤と吸熱空気とが接触して該液体吸収剤が放湿する放湿部 (66) とを有 して上記吸湿部 (65) と放湿部 (66) の間で液体吸収剤を循環させる循環回路 (64) より構成されるものである。
本発明が講じた第 1 8の解決手段は、 上記第 1 1の解決手段において、 空気サイ クル部(11)で圧縮された吸熱空気を加熱して除湿手段(60)へ供給する加熱手段(101) を設けるものである。
本発明が講じた第 1 9の解決手段は、 上記第 1 1の解決手段において、 空気サイ クル部 (11) で圧縮される直前の吸熱空気を加熱する加熱手段 (101) を設けるもの である。
一作用—
上記第 1の解決手段では、 除湿手段 (60) が吸熱空気を除湿して空気サイクル部 ( 11) へ供給する。 空気サイクル部 (11) は除湿された吸熱空気を取り込み、 この吸 熱空気を作動流体として空気サイクルを行う。 つまり、 吸熱空気を減圧し、 減圧した 吸熱空気に冷却対象物からの熱を吸熱させる。 この吸熱により、 冷却対象物が冷却さ れる。 吸熱した吸熱空気は、 圧縮された後に空気サイクル部 (11) から排出される。 空気サイクル部 (11) が取り込む吸熱空気は予め除湿されているため、 膨張する際に 吸熱空気中で水分の凝縮は生じない。
上記第 2の解決手段では、 除湿手段 (60) が吸熱空気を除湿して空気サイクル部 ( 11) へ供給する。 空気サイクル部 (11) は除湿された吸熱空気を取り込み、 この吸 熱空気を作動流体として空気サイクルを行う。 つまり、 吸熱空気を膨張機 (22) で減 圧する。 吸熱部 (30) では、 減圧した吸熱空気に冷却対象物からの熱を吸熱させる。 この吸熱により、 冷却対象物が冷却される。 圧縮機 (21) では、 吸熱部 (30) で吸熱 した吸熱空気が圧縮される。 圧縮された吸熱空気は、 空気サイクル部 (11) から排出 される。 空気サイクル部 (11) が取り込む吸熱空気は予め除湿されているため、 膨張 機 (22) で膨張する際に吸熱空気中で水分の凝縮は生じない。
上記第 3の解決手段では、 内部熱交換器 (15) において、 空気サイクル部 (11) へ供給される前の吸熱空気と、 空気サイクル部 (11) において減圧状態とされた吸熱 空気とが熱交換を行う。 つまり、 空気サイクル部 (11) で減圧された吸熱空気は、 冷 却対象物からの吸熱を行うが、 吸熱後においても空気サイクル部 (11) へ供給される 前の状態より低温である場合がある。 この様な場合には、 内部熱交換器 ( 15) での熱 交換によって、 空気サイクル部 (11) へ供給される吸熱空気の温度が低下する。
上記第 4の解決手段では、 内部熱交換器 (15) 内の減圧状態の吸熱空気に対して 水分が供給される。 供給された水分は、 空気サイクル部 (11) へ供給される前の吸熱 空気から吸熱して蒸発する。 つまり、 空気サイクル部 (11) へ供給される前の吸熱空 気を冷却するために、 水分の蒸発潜熱が利用される。
上記第 5の解決手段では、 加湿冷却手段 (90) が空気サイクル部 (11) で減圧さ れた吸熱空気に対して水分を供給する。 ここで、 吸熱空気は除湿手段 (60) で除湿さ れているため、 膨張後においても飽和空気とはならない。 従って、 該水分は吸熱空気 中で蒸発し、 吸熱空気が冷却される。 つまり、 吸熱空気は、 膨張により温度低下した 後に、 更に加湿冷却手段 (90) で冷却される。 その後、 吸熱空気が冷却対象物から吸 熱する。
上記第 6の解決手段では、 空気サイクル部 (11) において冷却対象物から吸熱を 行いつつある吸熱空気に対して水分が供給される。 供給された水分は、 冷却対象物か ら吸熱して蒸発する。 つまり、 空気サイクル部 (11) では、 減圧された吸熱空気と該 吸熱空気に供給された水分との双方が冷却対象物から吸熱し、 該水分の蒸発潜熱も冷 却対象物の冷却に利用される。
上記第 7の解決手段では、 冷却対象物である被冷却空気の冷却が行われる。 冷却 された被冷却空気中では、 水分が凝縮してドレン水となる。 空気サイクル部 (11) は、 減圧されて被冷却空気から吸熱しつつある吸熱空気に対して上記ドレン水を供給する 供給されたドレン水は、 吸熱空気中で被冷却空気から吸熱して蒸発する。 つまり、 空 気サイクル部 (11) では、 減圧された吸熱空気と該吸熱空気に供給されたドレン水と の双方が被冷却空気から吸熱し、 該ドレン水の蒸発潜熱も被冷却空気の冷却に利用さ れる。
上記第 8の解決手段では、 冷却対象物である被冷却空気の冷却が行われる。 具体的 に、 吸熱部 (30) において仕切部材を介して吸熱空気と被冷却空気とが熱交換を行う c 冷却された被冷却空気中では、 水分が凝縮してドレン水となる。 吸熱部 (30) では、 吸熱空気は減圧状態であるのに対し、 被冷却空気は常圧状態である。 このため、 上記 ドレン水は、 仕切部材の両側における圧力差によって該仕切部材を通過し、 減圧状態 の吸熱空気に供給される。
供給されたドレン水は、吸熱空気中で被冷却空気から吸熱して蒸発する。つまり、 吸熱部 (30) では、 減圧された吸熱空気と該吸熱空気に供給されたドレン水との双方 が被冷却空気から吸熱し、 該ドレン水の蒸発潜熱も被冷却空気の冷却に利用される。
上記第 9の解決手段では、 給水手段 (99) が吸熱空気に水分を供給する。 該水分 は、 空気サイクル部 (11) において圧縮されつつある吸熱空気中で蒸発する。 この水 分の蒸発によって、 圧縮後の吸熱空気のェン夕ルビが低下する。
上記第 1 0の解決手段では、 空気サイクル動作を行う運転と空気サイクル動作を 停止する運転とが行われる。 前者の運転時には、 空気サイクル部 (11) が吸熱空気を 取り込んで減圧し、減圧した吸熱空気が冷却対象物から吸熱する。後者の運転時には、 空気サイクル部 (11) が吸熱空気を取り込み、 取り込まれた吸熱空気は減圧されるこ となく冷却対象物から吸熱する。
空気サイクル動作を停止する運転は、 次のような場合に行われる。 例えば、 空気 サイクル部 (11) が吸熱空気として室外空気を取り込むことがある。 このため、 冬期 などの外気温度が低い状態では、 空気サイクル動作を行わなくても低温の室外空気の みによって冷却対象物の冷却が可能な場合がある。 従って、 この様な運転状態では、 空気サイクル動作を停止して冷却対象物の冷却を行う。
上記第 1 1の解決手段では、 除湿手段 (60) の湿度媒体が吸熱空気から吸湿し、 吸熱空気が除湿される。 また、 湿度媒体は、 吸熱空気から吸湿した水分を放湿する。 この放湿により、 湿度媒体が再生される。 再生された湿度媒体は、 再び吸熱空気から の吸湿を行う。
上記第 1 2の解決手段では、 除湿手段 (60) の湿度媒体が空気サイクル部 (11) で圧縮された吸熱空気に対して放湿する。 該吸熱空気は、 空気サイクル部 (11) にお ける吸熱と圧縮とによって高温となっている。 従って、 上記湿度媒体は、 高温の吸熱 空気に対して放湿し、 再生される。 上記第 1 3の解決手段では、 水分が固体吸着剤に吸着されることによって、 湿度 媒体が吸湿を行う。 また、 水分が固体吸着剤から脱着することによって、 湿度媒体が 放湿を行う。
上記第 1 4の解決手段では、 円板状のロータ部材 (61) によって湿度媒体が構成 される。 ロー夕部材 (61) の一部は、 吸湿部 (62) で吸熱空気と接触して水分を吸湿 する。 ロー夕部材 (61) は駆動機構に回転駆動され、 ロー夕部材 (61) の吸湿した部 分が放湿部 (63) に移動する。 放湿部 (63) では、 口一夕部材 (61) が空気サイクル 部 (11) からの吸熱空気と接触して水分を放湿する。 これによつて、 湿度媒体である ロー夕部材 (61) が再生される。 その後、 口一夕部材 (61) の再生された部分が再び 吸湿部 (62) に移動し、 この動作を繰り返す。
上記第 1 5の解決手段では、 水分が液体吸収剤に吸収されることによって、 湿度 媒体が吸湿を行う。 また、 水分が液体吸収剤から脱着することによって、 湿度媒体が 放湿を行う。
上記第 1 6の解決手段では、 空気サイクル部 (11) に供給される前の吸熱空気か ら液体吸収剤が水分を吸収する。 この液体吸収剤は、 空気サイクル部 (11) で圧縮さ れた温度の高い吸熱空気によって加熱され、 放湿しやすい状態とされた上で該吸熱空 気に放湿する。 この放湿によって液体吸収剤が再生される。
上記第 1 7の解決手段では、 液体吸収剤が吸湿部 (65) で吸熱空気の水分を吸収し、 これによつて吸熱空気が除湿される。 この液体吸収剤は、 循環回路 (64) 内を流れて 放湿部 (66) に至る。 放湿部 (66) では、 液体吸収剤が空気サイクル部 (11) からの 吸熱空気に対して放湿し、 これによつて液体吸収剤が再生される。 再生された液体吸 収剤は、 循環回路 (64) 内を流れて再び吸湿部 (65) に至り、 この循環を繰り返す。 尚、 吸湿部 (65) 及び放湿部 (66) では、 空気と液体吸収剤とを直接接触させてもよ く、 透湿膜等を介して間接的に接触させてもよい。
上記第 1 8の解決手段では、 加熱手段 (101) が空気サイクル部 (11) で圧縮さ れた吸熱空気を加熱する。 つまり、 圧縮されて温度上昇した吸熱空気は、 加熱手段 ( 101) で更に加熱されて昇温する。 その後、 吸熱空気は除湿手段 (60) へ供給され、 湿度媒体が吸熱空気に対して放湿して再生される。 つまり、 加熱手段 (101) が吸熱 空気に供給する熱は、 湿度媒体の再生のために利用される。
上記第 1 9の解決手段では、 加熱手段 (101) が空気サイクル部 (11) で圧縮さ れる直前の吸熱空気を加熱する。 加熱手段 (101) により加熱された吸熱空気は、 そ の後、 圧縮されて除湿手段 (60) へ供給される。 つまり、 加熱手段 (101) での加熱 により予め昇温された吸熱空気は、 圧縮されて更に温度上昇する。 そして、 除湿手段 (60)では、湿度媒体が吸熱空気に対して放湿して再生される。つまり、加熱手段(101) が吸熱空気に供給する熱は、 湿度媒体の再生のために利用される。
—効果—
本発明によれば、 吸熱空気を予め除湿手段 (60) で除湿してから空気サイクル部
( 11) で膨張させているため、 膨張過程における吸熱空気中での水分の凝縮を防ぐこ とができる。 従って、 吸熱空気が膨張する際の膨張仕事が水分の凝縮により消費され るのを回避でき、 膨張仕事を確実に回収することができる。 この結果、 回収した膨張 仕事を空気サイクル部 (11) における吸熱空気の圧縮に利用することができ、 圧縮に 要する動力を削減して C O Pの向上を図ることができる。
上記第 3 , 第 4の解決手段では、 内部熱交換器 ( 15) を設けるようにしている。 従って、 吸熱後における吸熱空気が膨張前の吸熱空気よりも低温となる場合には、 両 者の熱交換によって膨張前の吸熱空気を冷却することができる。 このため、 膨張前の 吸熱空気の温度を低下させることができる。 特に、 上記第 4の解決手段によれば、 水 分の蒸発潜熱を利用して膨張前の吸熱空気を冷却でき、 該吸熱空気の温度を一層低下 させることができる。この結果、吸熱空気の圧縮に要する動力を削減することができ、 C O Pを一層向上させることができる。
上記第 5の解決手段によれば、 膨張により温度低下した後に、 更に加湿冷却手段 (90) で冷却された吸熱空気を用いて、 冷却対象物の冷却を行うことができる。 また、 上記第 6 , 第 7, 第 8の解決手段によれば、 冷却対象物から吸熱しつつある吸熱空気 に水分を供給し、 該水分の蒸発潜熱を利用して冷却対象物を冷却することができる。 このため、 上記各解決手段によれば、 吸熱空気の圧縮に要する動力を増加させること なく、 水分の供給のみによって冷却能力を増大させることができる。 従って、 冷却能 力の増大により C O Pの向上を図ることができる。
更に、 上記第 7 , 第 8の解決手段によれば、 冷却対象物である被冷却空気中で生 じたドレン水を吸熱空気に供給し、 該ドレン水の蒸発潜熱を被冷却空気の冷却に利用 することができる。 このため、 被冷却空気の冷却により生じるドレン水の排水処理が 不要となり、 構成の簡略化を図ることができる。
上記第 9の解決手段によれば、 圧縮過程の吸熱空気中で水分を蒸発させることに よって、 圧縮後の吸熱空気のェン夕ルビを低下させることができる。 このため、 圧縮 前後における吸熱空気のェン夕ルビ差を縮小でき、 圧縮に要する動力を削減すること ができる。 従って、 本解決手段によれば、 C O Pを一層向上させことができる。
上記第 1 0の解決手段によれば、 空気サイクル動作を行わなくても冷却対象を充 分に冷却できる場合には、 空気サイクル動作を停止した運転を行うことができる。 こ のため、 無用の空気サイクル動作を回避することができ、 冷却対象物の冷却に要する エネルギを削減することができる。
上記第 1 1から第 1 7までの各解決手段によれば、 吸放湿を行う湿度媒体を用い て除湿手段 (60) を構成することができる。 特に、 上記第 1 2の解決手段によれば、 空気サイクル部 (11) からの高温の吸熱空気が有するエネルギを湿度媒体の再生に利 用することができ、 エネルギの有効利用を図ることができる。 また、 上記第 1 3から 第 1 7までの解決手段によれば、 固体吸着剤や液体吸収剤などの湿度媒体を用いるこ とによって除湿手段 (60) の構成を具体化することができる。
上記第 1 8, 第 1 9の解決手段によれば、 加熱手段 (101) が吸熱空気に供給する 熱を利用して、 湿度媒体の再生を行うことができる。 ここで、 湿度媒体の再生を確実 に行うためには、 空気サイクル部 (11) から除湿手段 (60) へ送られる吸熱空気の温 度を充分に高めて該吸熱空気の相対湿度を低下させる必要がある。 これに対し、 上記 各実施形態によれば、 加熱手段 (101) において吸熱空気を加熱することができる。 このため、 圧縮後の吸熱空気の温度を維持しつつ、 空気サイクル部 (11) における吸 熱空気の圧縮比を小さくすることができる。 従って、 湿度媒体の再生を充分に行いつ つ、 吸熱空気の圧縮に要する動力を削減して C O Pの向上を図ることができる。 図面の簡単な説明
図 1は、 実施形態 1に係る空気調和装置の構成を示す概略構成図である。
図 2は、 実施形態 1に係る空気調和装置の動作を示す空気線図である。
図 3は、 実施形態 2に係る空気調和装置の構成を示す概略構成図である。
図 4は、 実施形態 2に係る空気調和装置の動作を示す空気線図である。
図 5は、実施形態 2の変形例に係る空気調和装置の構成を示す概略構成図である。 図 6は、 実施形態 3に係る空気調和装置の構成を示す概略構成図である。
図 7は、 実施形態 3に係る空気調和装置の動作を示す空気線図である。
図 8は、実施形態 3の変形例に係る空気調和装置の構成を示す概略構成図である。 図 9は、 実施形態 4に係る空気調和装置の構成を示す概略構成図である。
図 1 0は、 実施形態 4に係る空気調和装置の動作を示す空気線図である。
図 1 1は、 実施形態 5に係る空気調和装置の構成を示す概略構成図である。
図 1 2は、 実施形態 6に係る空気調和装置の構成を示す概略構成図である。
図 1 3は、 実施形態 6に係る空気調和装置の構成を示す概略構成図である。
図 1 4は、その他の実施形態に係る空気調和装置の構成を示す概略構成図である。 発明を実施するための最良の形態
以下、 本発明の実施形態を図面に基づいて詳細に説明する。
《発明の実施の形態 1》
図 1に示すように、 本実施形態の冷凍装置は、 室内空気を冷却して冷房を行う空 気調和装置 (10) に構成されている。 従って、 本実施形態では、 室内空気が冷却対象 物、 即ち被冷却空気とされている。上記空気調和装置(10) は、 空気サイクル部(11) と、 除湿手段である除湿機構 (60) と、 内部熱交換器 (15) とを備えている。 上記空 気サイクル部 (11) は、 サイクル回路 (20) を備えている。
上記サイクル回路 (20) は、 膨張機 (22) と、 吸熱器である熱交換器 (30) と、 圧縮機 (21) とを順にダクト接続して成り、 吸熱空気が流れて空気サイクル動作を行 うように構成されている。 このサイクル回路 (20) は、 膨張機 (22) の入口側に接続 される入口ダクト (23) と、 圧縮機 (21) の出口側に接続される出口ダクト (24) と を備えている。 入口ダクト (23) は、 一端が室外に開口して室外空気を吸熱空気とし て取り込み、 取り込んだ吸熱空気を膨張機 (22) へ供給する。 出口ダクト (24) は、 一端が室外に開口して圧縮機 (21) からの吸熱空気を室外へ排出する。
上記圧縮機 (21) と膨張機 (22) は、 互いに回転軸 (36) によって連結されてい る。 この回転軸 (36) には、 モ一夕 (35) が連結されている。 そして、 圧縮機 (21) は、 モ一夕 (35) によって回転駆動される。
上記熱交換器 (30) には、 吸熱側通路 (32) が区画形成されている。 吸熱側通路
(32) は、 一端が上記膨張機 (22) と、 他端が圧縮機 (21) とそれそれダクト接続さ れ、 その内部を吸熱空気が流れる。 そして、 この熱交換器 (30) は、 吸熱側通路(32) の吸熱空気と被冷却空気である室内空気とを熱交換させるように構成されている。
上記除湿機構 (60) は、 入口ダクト (23) 及び出口ダクト (24) の途中に設けら れている。 この除湿機構 (60) は、 口一夕部材 (61)、 吸湿部 (62) 及び放湿部 (63) を備えて、 いわゆる口一夕リ式の除湿器と同様に構成されている。
上記ロータ部材 (61) は、 円板状で且つ厚さ方向に空気を通過させるように形成 される。 この口一タ部材 (61) は、 水分を吸着する固体吸着剤を備え、 通過する空気 を固体吸着剤とを接触させる湿度媒体を構成している。 また、 口一夕部材 (61) には、 図示しないが、 駆動機構である駆動モ一夕が連結され、 駆動モー夕で回転駆動されて 吸湿部 (62) と放湿部 (63) との間を移動する。 口一夕部材 (61) の固体吸着剤は、 多孔性の無機化合物を主成分として構成される。 該無機化合物は、 細孔径が 0 . 1〜 2 0 nm程度で水分を吸着するものが選ばれる。
上記吸湿部 (62) は、 入口ダクト (23) の途中に配置されている。 吸湿部 (62) では、 入口ダクト (23) 内の吸熱空気が口一夕部材 (61) を通過し、 該吸熱空気中の 水分がロー夕部材 (61) の固体吸着剤に吸着される。 これによつて、 吸熱空気が除湿 される。 上記放湿部 (63) は、 出口ダク卜 (2 の途中に配置されている。 放湿部 (63) では、 出口ダクト (24) 内の吸熱空気がロー夕部材(61) を通過し、 ロータ部材(61) の固体吸着剤に吸着された水分が脱着して該吸熱空気中に放湿される。これによつて、 固体吸着剤が再生される。
上述のように、 口一夕部材 (61) は、 駆動モ一夕で駆動されて吸湿部 (62) と放 湿部 (63) との間を移動する。 そして、 吸湿部 (62) で吸熱空気から吸湿したロー夕 部材 (61) の部分は、 口一夕部材 (61) の回転に伴って放湿部 (63) に移動する。 放 湿部 (63) では、 口一夕部材 (61) の固体吸着剤から水分が脱着されて再生される。 つまり、 口一夕部材 (61) が吸熱空気に対して放湿する。 その後、 口一夕部材 (61) の再生された部分は、 再び吸湿部 (62) に移動する。 以上の動作を繰り返すことによ つて、 除湿機構 (60) が連続的に吸熱空気の除湿を行う。
上記内部熱交換器 (15) には、 第 1通路 (16) と第 2通路 (17) とが区画形成さ れている。第 1通路 ( 16) は、 入口ダク卜 (23) における吸湿部 (62) と膨張機 (22) の間に接続されている。 この第 1通路 ( 16) には、 除湿機構 (60) で除湿されて膨張 機 (22) へ供給される吸熱空気が流れる。 第 2通路 ( 17) は、 サイクル回路 (20) に おける熱交換器 (30) と圧縮機 (21) の間に接続されている。 この第 2通路 (17) に は、 熱交換器 (30) で室内空気と熱交換した減圧状態の吸熱空気が流れる。 そして、 この内部熱交換器 ( 15) は、 第 1通路 (16) の吸熱空気と第 2通路 (17) の吸熱空気 とを熱交換させるように構成されている。
—運転動作一
次に、 上記空気調和装置 (10) の運転動作について、 図 2の空気線図を参照しな がら説明する。
サイクル回路 (20) では、 点 Aの状態の室外空気が入口ダクト (23) から吸熱空 気として取り込まれる。 この吸熱空気は、 除湿機構 (60) の吸湿部 (62) でロー夕部 材 (61) と接触して除湿され、 等ェン夕ルビ変化によって絶対湿度が低下して温度が 上昇し、 点 Aの状態から点 Bの状態となる。
点 Bの状態の吸熱空気は、 再び入口ダクト (23) を通って内部熱交換器 (15) の 第 1通路 (16) へ流入する。 内部熱交換器 (15) では、 第 1通路 ( 16) の吸熱空気と 第 2通路 (17) の吸熱空気とが熱交換する。 そして、 点 Bの状態の吸熱空気は、 第 1 通路 (16) を流れる間に冷却されて点 Cの状態となる。
点 Cの状態の吸熱空気は、 再び入口ダクト (23) を通って膨張機 (22) に供給さ れる。 膨張機 (22) では、 点 Cの状態の吸熱空気が膨張し、 絶対湿度一定で温度及び 圧力が低下して点 Dの状態となる。
点 Dの状態の吸熱空気は、 熱交換器 (30) の吸熱側通路 (32) に流入し、 吸熱側 通路 (32) を流れる間に室内空気と熱交換を行う。 そして、 点 Dの状態の吸熱空気が 室内空気から吸熱し、 温度上昇して点 Eの状態となる一方、 室内空気が冷却される。 この室内空気の冷却によって、 室内の冷房を行う。
点 Eの状態の吸熱空気は、 内部熱交換器 (15) の第 2通路 (17) へ流入する。 上 述のように、 内部熱交換器 (15) では、 第 1通路 ( 16) の吸熱空気と第 2通路 (17) の吸熱空気とが熱交換する。 そして、 点 Eの状態の吸熱空気は、 第 2通路 (17) を流 れる間に加熱されて点 Fの状態となる。
点 Fの状態の吸熱空気は、 圧縮機 (21) に供給される。 圧縮機 (21) では、 点 F の状態の吸熱空気が圧縮され、 絶対湿度一定で温度及び圧力が上昇して点 Gの状態と なる。
点 Gの状態の吸熱空気は、出口ダクト(24)を通って除湿機構(60)の放湿部(63) へ流入する。 放湿部 (63) では吸熱空気と口一夕部材 (61) とが接触し、 口一夕部材 (61) が吸熱空気に対して放湿する。 そして、 点 Gの状態の吸熱空気は、 等ェンタル ピ変化によって絶対湿度が上昇して温度が低下し、点 Gの状態から点 Hの状態となる。 点 Hの状態の吸熱空気は、 再び出口ダク卜 (24) を通って室外に排出される。
除湿機構 (60) では、 ロータ部材 (61) が回転駆動される。 そして、 このロー夕 部材 (61) が吸湿部 (62) と放湿部 (63) との間を移動し、 吸湿部 (62) での吸湿と 放湿部 (63) での放湿とを繰り返す。 これによつて、 吸熱空気の除湿が連続して行わ れる。
一実施形態 1の効果— 本実施形態 1では、 除湿機構 (60) で吸熱空気を予め除湿してから膨張機 (22) へ供給しているため、 膨張機 (22) において、 膨張過程にある吸熱空気中で水分が凝 縮するのを防ぐことができる。 この結果、 吸熱空気が膨張する際の膨張仕事 水分の 凝縮により消費されるのを回避でき、 膨張仕事を確実に回収することができる。 上述 のように、 膨張機 (22) と圧縮機 (21) とは、 回転軸 (36) で連結されている。 従つ て、 膨張機 (22) で回収した膨張仕事を圧縮機 (21) の回転駆動力として利用するこ とができ、 モ一夕 (35) への入力を削減して C O Pの向上を図ることができる。
また、 本実施形態 1では、 内部熱交換器 ( 15) を設けている。 従って、 除湿機構 (60) で除湿された吸熱空気を内部熱交換器 (15) での熱交換により冷却してから膨 張機 (22) へ供給することができる。 このため、 膨張機 (22) 入口における吸熱空気 の温度を低下させることができ、 膨張機 (22) 出口における吸熱空気の温度を維持し つつ、 膨張機 (22) での膨張比を小さくすることができる。 この結果、 圧縮機 (21) における圧縮比を小さくすることができ、 モ一夕 (35) への入力を削減して C O Pを 一層向上させることができる。
《発明の実施の形態 2》
本発明の実施形態 2は、 上記実施形態 1において、 水導入部 (42) を設けるもの である。 その他の構成は、 実施形態 1と同様である。
図 3に示すように、 上記水導入部 (42) は、 熱交換器 (30) の吸熱側通路 (32) に設けられている。 水導入部 (42) には、 水分が透過可能な透湿膜が設けられ、 透湿 膜の一方に水側空間が形成されると共に、 透湿膜を隔てて水側空間の反対側は熱交換 器 (30) の吸熱側通路 (32) に構成されている。 この水側空間には水配管 (50) が接 続され、 その内部に水道水等が供給される。 そして、 水導入部 (42) では、 水側空間 の水分が透湿膜を透過して吸熱側通路 (32) の吸熱空気へ供給される。
上述のように、 水導入部 (42) は、 吸熱側通路 (32) の吸熱空気に水分を供給す る。 そして、 吸熱側通路 (32) では、 吸熱空気が室内空気から吸熱すると共に、 吸熱 空気に供給された水分も室内空気から吸熱して蒸発する。つまり、上記水導入部(42) は、 室内空気の冷却に蒸発潜熱を利用するために吸熱側通路 (32) の吸熱空気へ水分 を供給する水分供給手段を構成している。
一運転動作一
次に、 上記空気調和装置 (10) の運転動作について、 図 4の空気線図を参照しな がら説明する。 尚、 図 4において図 2と同じ符号を付した点は、 同じ状態を示してい る。
サイクル回路 (20) では、 点 Aの状態の室外空気が入口ダクト (23) から吸熱空 気として取り込まれる。 この吸熱空気は、 上記実施形態 1と同様に、 点 B, 点 Cの状 態を経て点 Dの状態となる。 つまり、 点 Aの状態の吸熱空気は、 除湿機構 (60) で除 湿されて点 Bの状態となり、 内部熱交換器 (15) で冷却されて点 Cの状態となり、 膨 張機 (22) で膨張して点 Dの状態となる。
点 Dの状態の吸熱空気は、 熱交換器 (30) の吸熱側通路 (32) に流入し、 吸熱側 通路 (32) を流れる間に室内空気と熱交換を行う。 また、 吸熱側通路 (32) の吸熱空 気には水導入部 (42) から水分が供給され、 該水分が吸熱空気中で蒸発する。 そして、 点 Dの状態の吸熱空気と該吸熱空気に供給された水分とが室内空気から吸熱し、 室内 空気が冷却される。 この室内空気の冷却によって、 室内の冷房を行う。 一方、 点 Dの 状態の吸熱空気は、 吸熱と水分の蒸発により飽和空気となり、 その後、 飽和空気の状 態を保ったまま絶対湿度及び温度が上昇して点 Iの状態となる。
ここで、 点 Iの状態における温度は、 上記実施形態 1における熱交換器 (30) 出 口の吸熱空気温度 (図 2における点 E ) と等しい。 しかしながら、 本実施形態では、 吸熱空気に加えて水導入部 (42) が供給する水分も室内空気から吸熱する。 つまり、 吸熱空気の顕熱変化に加え、 上記水分の潜熱変化によっても室内空気の冷却が行われ る。 このため、 本実施形態では、 実施形態 1に比して、 室内空気からの吸熱量、 即ち 冷却能力が増大している。
点 Iの状態の吸熱空気は、 内部熱交換器 (15) の第 2通路 (17) へ流入する。 実 施形態 1と同様に、 内部熱交換器 (15) では、 第 1通路 (16) の吸熱空気と第 2通路 ( 17)の吸熱空気とが熱交換する。そして、 点 Iの状態の吸熱空気は、 第 2通路(17) を流れる間に加熱されて点 Jの状態となる。 点 Jの状態の吸熱空気は、 圧縮機 (21) に供給される。 圧縮機 (21) では、 点 J の状態の吸熱空気が圧縮され、 絶対湿度一定で温度及び圧力が上昇して点 Kの状態と なる。
点 Kの状態の吸熱空気は、出口ダクト(24)を通って除湿機構(60)の放湿部(63) へ流入する。 放湿部 (63) では吸熱空気と口一夕部材 (61) とが接触し、 口一夕部材 (61) が吸熱空気に対して放湿する。 そして、 点 Kの状態の吸熱空気は、 等ェンタル ビ変化によって絶対湿度が上昇して温度が低下し、点 Kの状態から点 Lの状態となる。 点 Lの状態の吸熱空気は、 再び出口ダクト (24) を通って室外に排出される。
除湿機構 (60) では、 ロータ部材 (61) が回転駆動される。 そして、 この口一夕 部材 (61) が吸湿部 (62) と放湿部 (63) との間を移動し、 吸湿部 (62) での吸湿と 放湿部 (63) での放湿とを繰り返す。 これによつて、 吸熱空気の除湿が連続して行わ れる。
一実施形態 2の効果—
本実施形態 2によれば、 実施形態 1の効果に加えて、 以下の効果が得られる。 つまり、 熱交換器 (30) に水導入部 (42) を設け、 該水導入部 (42) によって冷 却対象物から吸熱しつつある吸熱空気へ水分を供給している。 このため、 水導入部 (42) により供給された水分の蒸発潜熱を利用して、 室内空気の冷却を行うことがで きる。 この結果、 モ一夕 (35) への入力を増大させることなく、 水導入部 (42) から の水分供給のみによつて冷却能力を増大させることができ、 冷却能力の増大によって C O Pの向上を図ることができる。
—実施形態 2の変形例 1一
上記実施形態 2では、 熱交換器 (30) に水導入部 (42) を設け、 水配管 (50) か らの水を吸熱側通路(32) 内の吸熱空気に供給している。 これに対し、 熱交換器(30) で室内空気を冷却することにより生じるドレン水を利用し、 該ドレン水を吸熱側通路 (32) 内の吸熱空気に供給するようにしてもよい。
具体的に、 熱交換器 (30) には、 水分が透過可能な仕切部材である水分透過膜を設 ける。 この水分透過膜は、 上記水導入部 (42) の透湿膜と同様のものである。 そして、 水分透過膜によって吸熱側通路 (32) を区画形成し、 該水分透過膜を挟んで被冷却空 気である室内空気と吸熱側通路 (32) の吸熱空気とが熱交換を行う。
その際、 冷却により室内空気中の水分が凝縮し、 ドレン水が発生する。 このドレ ン水は、 水分透過膜の両側における圧力差によって該水分透過膜を通過し、 吸熱側通 路 (32) 内の吸熱空気に供給される。 つまり、 室内空気は大気圧であるのに対し、 吸 熱側通路 (32) の吸熱空気は膨張機 (22) での膨張によって減圧状態となっている。 このため、 水分透過膜の両側では圧力差が生じ、 この圧力差を駆動力としてドレン水 が水分透過膜を通過する。
吸熱側通路 (32) の吸熱空気に供給されたドレン水は、 室内空気から吸熱して蒸 発する。 そして、 該ドレン水の蒸発潜熱が室内空気の冷却に利用される。 このため、 室内空気の冷却により生じるドレン水の排水処理が不要となり、 この排水処理に要す る構成を省略して構成の簡略化を図ることができる。
一実施形態 2の変形例 2—
上記実施形態 2では、 一体の熱交換器 (30) に水導入部 (42) を設けるようにし ている。 これに対し、 図 5に示すように、 熱交換器 (30) を第 1熱交換部 (30a) と 第 2熱交換部(30b)の 2つの部分で構成し、第 2熱交換部(30b)のみに水導入部(42) を設けるようにしてもよい。
第 1熱交換部 (30a) 及び第 2熱交換部 (30b) は、 共に上記実施形態 2の熱交換 器 (30) と同様に構成されている。 つまり、 各熱交換部 (30a,30b) は、 吸熱側通路 (32) が区画形成され、 吸熱側通路 (32) の吸熱空気と被冷却空気である室内空気と を熱交換させるように構成されている。各熱交換部(30a,30b)は、サイクル回路(20) における膨張機 (22) と圧縮機 (21) の間に設けられている。 第 1熱交換部 (30a) は膨張機 (22) 側に配置され、 第 2熱交換部 (30b) は圧縮機 (21) 側に配置されて いる。
第 2熱交換部 (30b) には、 水導入部 2) が設けられている。 該水導入部 (42) は、 上記実施形態 2と同様に構成されており、 第 2熱交換部 (30b) における吸熱側 通路 (32) 内の吸熱空気に水分を供給する。 そして、 第 1熱交換部 (30a) では、 吸熱側通路 (32) 内の吸熱空気が室内空気 から吸熱する。 また、 第 2熱交換部 (30b) では、 吸熱側通路 (32) 内の吸熱空気と 水導入部 (42) が供給する水分とが室内空気から吸熱し、 該水分が蒸発する。
《発明の実施の形態 3》
本発明の実施形態 3は、 上記実施形態 2において、 加湿冷却手段である加湿冷却 器 (90) と、 加熱手段である加熱熱交換器 (101) とを設けるものである。 以下、 実 施形態 2と異なる構成について説明する。
図 6に示すように、 上記加湿冷却器 (90) は、 サイクル回路 (20) における膨張 機 (22) と熱交換器 (30) の間に設けられている。 加湿冷却器 (90) には、 水分が透 過可能な透湿膜が設けられ、 この透湿膜によって隔てられて空気側空間と水側空間と が区画形成されている。 該空気側空間の一端は膨張機 (22) と接続され、 他端は熱交 換器 (30) の吸熱側通路 (32) と接続されており、 吸熱空気が流れる。 該水側空間に は水配管 (50) が接続されて、 その内部に水道水等が供給される。 そして、 加湿冷却 器 (90) は、 透湿膜を透過させて水側空間の水分を空気側空間の吸熱空気へ供給し、 供給した水分が吸熱空気中で蒸発することによって吸熱空気を冷却するように構成さ れている。
上記加熱熱交換器 (101) は、 出口ダクト (24) における放湿部 (63) の上流側 に設けられている。 加熱熱交換器 (101) には、 冷却水配管 (102) が接続されている c 冷却水配管 (102) は、 両端が廃熱源である燃料電池 (100) に接続され、 冷却水が流 通している。 加熱熱交換器 (101 ) は、 出口ダクト (24) 内の吸熱空気と冷却水配管 ( 102) 内の冷却水とを熱交換させ、 燃料電池(100) からの廃熱を該吸熱空気に供給 するように構成されている。 そして、 加熱熱交換器 (101) で加熱された吸熱空気が 除湿機構 (60)の放湿部(63)へ流れ、燃料電池(100)からの廃熱がロータ部材(61) の固体吸着剤を再生するために利用される。
—運転動作—
次に、 上記空気調和装置 (10) の運転動作について、 図 7の空気線図を参照しな がら説明する。 尚、 図 7において図 4と同じ符号を付した点は、 同じ状態を示してい る。
サイクル回路 (20) では、 点 Aの状態の室外空気が入口ダクト (23) から吸熱空 気として取り込まれる。 この吸熱空気は、 上記実施形態 1と同様に、 点 Bの状態を経 て点 Cの状態となる。 つまり、 点 Aの状態の吸熱空気は、 除湿機構 (60) で除湿され て点 Bの状態となり、 内部熱交換器 (15) で冷却されて点 Cの状態となる。
点 Cの状態の吸熱空気は、 膨張機 (22) へ供給されて膨張する。 ここで、 本実施 形態における膨張機 (22) での膨張比は、 上記実施形態 2よりも小さく設定されてい る。 このため、 点 Cの状態の吸熱空気は膨張機 (22) で膨張し、 点 Dの状態よりも高 温の点 D ' の状態となる。
点 D ' の状態の吸熱空気は、 加湿冷却器 (90) へ流入する。 加湿冷却器 (90) で は吸熱空気に水分が供給され、 該水分が吸熱空気中で蒸発する。 そして、 加湿冷却器 (90) では、 吸熱空気の絶対湿度が上昇すると共に温度が低下して点 Mの状態となる。 点 Mの状態で、 吸熱空気は飽和空気となっている。
点 Mの状態の吸熱空気は、 熱交換器 (30) の吸熱側通路 (32) に流入し、 吸熱側 通路 (32) を流れる間に室内空気と熱交換を行う。 また、 吸熱側通路 (32) の吸熱空 気には水導入部 (42) から水分が供給され、 該水分が吸熱空気中で蒸発する。 そして、 点 Mの状態の吸熱空気と該吸熱空気に供給された水分とが室内空気から吸熱し、 室内 空気が冷却される。 この室内空気の冷却によって、 室内の冷房を行う。 一方、 点 Mの 状態の吸熱空気は、 吸熱と水分の蒸発によって、 飽和空気の状態を保ったまま絶対湿 度及び温度が上昇して点 Iの状態となる。
点 Iの状態の吸熱空気は、 上記実施形態 1と同様に、 内部熱交換器 (15) で加熱 されて点 Jの状態となる。
点 Jの状態の吸熱空気は、 圧縮機 (21) へ供給されて圧縮される。 ここで、 本実 施形態における圧縮機 (21) での圧縮比は、 上述の膨張機 (22) における膨張比に対 応して、 上記実施形態 2よりも小さく設定されている。 このため、 点 Jの状態の吸熱 空気は圧縮機 (21) で圧縮され、 点 Kの状態よりも低温の点 K ' の状態となる。
点 ' の状態の吸熱空気は、 出口ダクト (24) を通って加熱熱交換器 (101) に 流入する。 加熱熱交換器(101) では、 吸熱空気と燃料電池 (100) からの冷却水とが 熱交換を行い、 吸熱空気が加熱されて点 Kの状態となる。
点 Kの状態の吸熱空気は、 出口ダクト (24) を通って除湿機構(60)の放湿部(63) へ流入する。 放湿部 (63) では、 実施形態 1と同様にして口一夕部材 (61) が再生さ れる。 そして、 点 Kの状態の吸熱空気は、 等ェン夕ルビ変化によって絶対湿度が上昇 して温度が低下し、 点 Kの状態から点 Lの状態となる。 点 Lの状態の吸熱空気は、 再 び出口ダクト (24) を通って室外に排出される。
—実施形態 3の効果—
本実施形態 3によれば、 上記実施形態 2の効果に加え、 加湿冷却器 (90) 及び加 熱熱交換器 (101 ) の設置により C O Pを向上させることができる。 以下、 この点に ついて、 図 7の空気線図を参照しながら説明する。
上記実施形態 2では、 膨張機 (22) の入口 (点 C ) と出口 (点 D ) における吸熱 空気の比ェン夕ルビ差は Δ he'となる。 また、 熱交換器(30)入口 (点 D ) と出口 (点 I ) における吸熱空気の比ェン夕ルビ差は Δ ΙΙΓ'となる。
一方、 本実施形態 3では、 加湿冷却器 (90) を設け、 膨張機 (22) での膨張比を 実施形態 2よりも小さく設定している。 従って、 膨張機 (22) の入口 (点 C ) と出口 (点 D ' ) における吸熱空気の比ェン夕ルビ差は△ he となる。 また、 熱交換器 (30) の入口 (点 M) と出口 (点 I ) における吸熱空気の比ェン夕ルビ差は A hr となる。 即ち、 本実施形態では、 上記実施形態 2に比して、 上記吸熱空気の各比ェン夕ルビ差 がそれそれ A hだけ減少する。
ここで、 膨張機 (22) 出入口での比ェン夕ルビ差は、 モ一夕 (35) への入力と比 例関係にある。 即ち、 熱交換器 (30) 出入口での比ェンタルビ差と膨張機 (22) 出入 口での比ェン夕ルビ差との比は、 C O Pに比例する。 そこで、 本実施形態 3と上記実 施形態 2とを比較すると、比ェン夕ルビ差△ hr'と比ェン夕ルビ差 Δ h e'との間には、 厶 hr'> A he'の関係がある。 このことから、 以下の関係が導かれる。
(Δ hr/Δ he) = (厶 hr'-Δ h)/(A he'-Δ h) > (Δ hr'/Δ he')
従って、 本実施形態 3によれば、 上記実施形態 2に比べて、 熱交換器 (30) 出入口で の比ェン夕ルビ差と膨張機 (22) 出入口での比ェン夕ルビ差との比を大きくすること ができ、 C O Pを向上させることが可能となる。
また、 膨張機 (22) での膨張比を小さく設定したことに伴って、 本実施形態では 圧縮機 (21) 出口における吸熱空気の温度が低下する。 しかしながら、 本実施形態で は、 加熱熱交換器(101) を設け、 燃料電池 (100) の廃熱で吸熱空気を加熱している。 このため、 除湿機構 (60) の放湿部 (63) へ流入する際の吸熱空気の温度を、 上記実 施形態 2と等しい温度 (点 K ) に維持できる。 このため、 ロータ部材 (61) の再生に ついては、 上記実施形態 2と同様の条件で行うことができる。
—実施形態 3の変形例一
上記実施形態 3では、 加熱熱交換器 (101) を出口ダクト (24) に設けるように している。これに対し、 図 8に示すように、加熱熱交換器(101)をサイクル回路(20) における内部熱交換器 (15) と圧縮機 (21) の間に設けるようにしてもよい。
本変形例では、 内部熱交換器 (15) の第 2通路 ( 17) を流れて加熱され、 その後、 更に加熱熱交換器 (101) で加熱された吸熱空気が、 圧縮機 (21) で圧縮される。 そ して、 圧縮機 (21) で圧縮された吸熱空気が除湿機構 (60) の放湿部 (63) へ流入し、 口一夕部材 (61) が再生される。
本変形例では、 サイクル回路 (20) における圧縮機 (21) 上流側の吸熱空気を加 熱している。 つまり、 加熱熱交換器 (101) では、 圧縮される前の吸熱空気と燃料電 池 (100) からの冷却水とが熱交換を行う。 ここで、 圧縮前の吸熱空気は、 圧縮後の 吸熱空気よりも低温である。 従って、 本実施形態では、 加熱熱交換器 (101) におい て熱交換を行う流体の温度差を拡大することができる。このため、加熱熱交換器(101) における熱交換量を増大させることができ、 燃料電池 (100) の廃熱を一層有効に利 用することができる。
《発明の実施の形態 4》
本発明の実施形態 4は、 図 9に示すように、 上記実施形態 3における加湿冷却器 (90) に代えて (図 6参照)、 内部熱交換器 (15) に水導入部 (18) を設けるもので ある。 この水導入部 (18) は、 熱交換器 (30) に設けられた水導入部 (42) とほぼ同 様に構成されている。
具体的に、 上記水導入部 (18) には、 水分が透過可能な透湿膜が設けられ、 透湿 膜の一方に水側空間が形成されると共に、 透湿膜を隔てて水側空間の反対側は内部熱 交換器 (15) の第 2通路 (17) に構成されている。 この水側空間には水配管 (50) が 接続され、 その内部に水道水等が供給される。 水導入部 (18) では、 水側空間の水分 が透湿膜を透過して第 2通路(17)の吸熱空気へ供給される。そして、 第 2通路 ( 17) の吸熱空気で水分が蒸発し、 該水分の蒸発潜熱を利用して第 1通路 (16) における吸 熱空気の冷却が行われる。
一運転動作一
次に、 上記空気調和装置 (10) の運転動作について、 図 1 0の空気線図を参照し ながら説明する。 尚、 図 1 0において図 7と同じ符号を付した点は、 同じ状態を示し ている。
サイクル回路 (20) では、 点 Aの状態の室外空気が入口ダクト (23) から吸熱空 気として取り込まれる。 この吸熱空気は、 上記実施形態 1と同様に、 除湿機構 (60) で除湿されて点 Bの状態となる。
点 Bの状態の吸熱空気は、 内部熱交換器 (15) の第 1通路 (16) へ流入し、 第 2 通路 ( 17) の吸熱空気と熱交換する。 その間、 第 2通路 ( 17) の吸熱空気には水導入 部 (18) から水分が供給され、 該水分が第 1通路 (16) の吸熱空気から吸熱して蒸発 する。 そして、 点 Bの状態の吸熱空気は、 第 1通路 (16) を流れる間に冷却され、 点 Cの状態よりも低温の点 C ' の状態となる。
点 C ' の状態の吸熱空気は、 膨張機 (22) に流入して膨張し、 絶対湿度一定で温 度及び圧力が低下して点 Dの状態となる。ここで、本実施形態では、内部熱交換器( 15) において、 吸熱空気が点 Cの状態よりも低温の点 C ' の状態にまで冷却される。 従つ て、 本実施形態では、 膨張機 (22) での膨張比を上記実施形態 2よりも小さく設定で さる。
点 Dの状態の吸熱空気は、 熱交換器 (30) の吸熱側通路 (32) に流入し、 吸熱側 通路 (32) を流れる間に室内空気と熱交換を行う。 また、 吸熱側通路 (32) の吸熱空 気には水導入部 (42) から水分が供給され、 該水分が吸熱空気中で蒸発する。 そして、 点 Dの状態の吸熱空気と該吸熱空気に供給された水分とが室内空気から吸熱し、 室内 空気が冷却される。 この室内空気の冷却によって、 室内の冷房を行う。 一方、 点 Dの 状態の吸熱空気は、 吸熱と水分の蒸発により飽和空気となり、 その後、 飽和空気の状 態を保ったまま絶対湿度及び温度が上昇し、 点 Iの状態よりも絶対湿度及び温度の低 い点 I ' の状態となる。
点 I, の状態の吸熱空気は、 内部熱交換器 (15) の第 2通路 (17) へ流入する。 第 2通路(17)の吸熱空気には、水導入部(18)から水分が供給される。第 2通路(17) では、 吸熱空気と供給された水分とが第 1通路 (16) の吸熱空気から吸熱し、 吸熱と 水分の蒸発によって、 吸熱空気が点 I ' の状態から点 Iの状態を経て点 Jの状態とな る。
点 Jの状態の吸熱空気は、 上記実施形態 3と同様に、点 K ',点 Κの状態を経て点 Lの状態となる。 つまり、 点 Jの状態の吸熱空気は、 圧縮機 (21)で圧縮されて点 K ' の状態となり、 加熱熱交換器 (101) で加熱されて点 Kの状態となり、 除湿機構 (60) の放湿部 (63) でロー夕部材 (61) から放湿されて点 Lの状態となる。 点 Lの状態の 吸熱空気は、 出口ダクト (24) を通って室外に排出される。
一実施形態 4の効果一
本実施形態 4によれば、 上記実施形態 3と同様の効果が得られる。 つまり、 内部 熱交換器 (15) に水導入部 (18) を設置したことにより、 C O Pを向上させることが できる。 以下、 この点について、 図 1 0の空気線図を参照しながら説明する。
上記実施形態 2では、 膨張機 (22) の入口 (点 C ) と出口 (点 D ) における吸熱 空気の比ェン夕ルビ差は A he'となる。 また、 熱交換器(30)入口 (点 D ) と出口 (点 I ) における吸熱空気の比ェンタルピ差は Δ hr'となる。
一方、 本実施形態 4では、 内部熱交換器 (15) に水導入部 (18) を設け、 熱交換 器 (30) の水導入部 (42) での加湿量と膨張機 (22) における膨張比とを実施形態 2 よりも小さく設定している。 従って、 膨張機 (22) の入口 (点 C ' ) と出口 (点 D ) における吸熱空気の比ェンタルピ差は Δ heとなる。 また、熱交換器(30)の入口(点 D ) と出口 (点 Ι ' ) における吸熱空気の比ェン夕ルビ差は A hrとなる。 更に、 内部 熱交換器 (15) では、 第 2通路 (17) 内の吸熱空気が水分の蒸発により点 I ' から点 Iに変化する一方、 第 1通路 (16) では吸熱空気が点 Cよりも低温の点 C, にまで冷 却される。 このため、 点 I ' と点 Iにおける吸熱空気の比ェン夕ルビ差と、 点 Cと点 C における吸熱空気の比ェン夕ルビ差とは共に A hとなり、 本実施形態では、 上記 実施形態 2に比べて、上記吸熱空気の各比ェン夕ルビ差がそれそれ Δ ΐιだけ減少する。
上述のように、 熱交換器 (30) 出入口での比ェン夕ルビ差と膨張機 (22) 出入口 での比ェン夕ルビ差との比は、 C O Pに比例する。従って、 本実施形態 4においても、 上記実施形態 3と同様に、 以下の関係が成立する。
(A hr/A he) = (Δ hr'-Δ h)/(A he'-Δ h) > (A hr'/A he')
従って、 本実施形態 4によれば、 上記実施形態 2に比して、 熱交換器 (30) 出入口で の比ェン夕ルビ差と膨張機 (22) 出入口での比ェン夕ルビ差との比を大きくすること ができ、 C O Pを向上させることが可能となる。
《発明の実施の形態 5》
本発明の実施形態 5は、 上記実施形態 2において、 給水手段である給水器 (99) を設けるものである。 以下、 実施形態 2と異なる構成について説明する。
図 1 1に示すように、 上記給水器 (99) は、 サイクル回路 (20) における内部熱 交換器 ( 15) と圧縮機 (21) の間であって、 該圧縮機 (21) のすぐ上流側に配置され ている。 給水器 (99) は、 サイクル回路 (20) における減圧状態の吸熱空気に水分を 供給するように構成されている。 給水器 (99) から吸熱空気に供給された水分は、 該 吸熱空気が圧縮機 (21) で圧縮される過程で蒸発する。
本実施形態の空気調和装置 (10) の運転動作は、 上記実施形態 2とほぼ同様であ り、 圧縮機 (21) 内の吸熱空気中で水分が蒸発する点のみで相違する。
一実施形態 5の効果—
本実施形態 5では、 圧縮機 (21) で吸熱空気が圧縮される過程において、 該吸熱 空気中で水分を蒸発させるようにしている。 従って、 圧縮機 (21) 出口における吸熱 空気のェン夕ルビを低下させることができ、 圧縮機 (21) 出入口での吸熱空気のェン 夕ルビ差を縮小することができる。 このため、 圧縮に要する動力、 即ちモ一夕 (35) への入力を削減することができ、 C O Pを一層向上させことができる。
《発明の実施の形態 6》
本発明の実施形態 6は、 一年を通じて冷房を要する部屋、 例えば大型コンビユー 夕が設置されている部屋などを冷房するための空気調和装置 (10) に構成されている。 そして、 これに対応して、 上記空気調和装置 (10) は、 空気サイクル動作を行って室 内空気を冷却する運転と、 空気サイクル動作を停止し且つ取り込んだ室外空気によつ て室内空気を冷却する運転との両方が可能に構成されている。
図 1 2及び図 1 3に示すように、 上記空気調和装置 (10) は、 上記実施形態 1に 切換弁(111,112)等を追加することにより構成されている。以下、 実施形態 1と異な る構成について説明する。
入口ダクト (23) における内部熱交換器 (15) と膨張機 (22) の間には、 第 1切 換弁 (111) が設けられている。 第 1切換弁 (111) には、 第 1バイパスダクト (113) の一端が接続されている。 第 1バイパスダクト (113) の他端は、 サイクル回路 (20) における膨張機 (22) と熱交換器 (30) の間に接続されている。 第 1バイパスダクト ( 113) には、 バイパス用ファン (11 が設けられている。 バイパス用ファン (114) は、 第 1バイパスダクト (113) の一端側から他端側へ空気を流通させるように構成 されている。
第 1切換弁 (111) は、 入口ダク卜 (23) の内部熱交換器 (15) 側と膨張機 (22) 側とを連通させ、 且つ第 1バイパスダクト (113) と入口ダクト (23) とを遮断する 状態 (図 1 2参照) と、 入口ダクト (23) の内部熱交換器 (15) 側と膨張機 (22) 側 とを遮断し、且つ入口ダクト(23)の内部熱交換器(15)側と第 1バイパスダクト(113) とを連通させる状態 (図 1 3参照) とに切り換わるように構成されている。
サイクル回路 (20) における熱交換器 (30) と内部熱交換器 (15) の間には、 第 2切換弁(II2)が設けられている。第 2切換弁(II2)には、第 2バイパスダクト(115) の一端が接続されている。 第 2バイパスダクト (115) の他端は、 出口ダクト (24) における圧縮機 (21) と放湿部 (63) との間に接続されている。 第 2切換弁 (112) は、 熱交換器 (30) の吸熱側通路 (32) と内部熱交換器(15) の第 2通路 ( 17) とを連通させ、 且つ吸熱側通路 (32) 及び第 2通路 ( 17) と第 2バ ィパスダクト (115) とを遮断する状態 (図 1 2参照) と、 熱交換器 (30) の吸熱側 通路(32) と内部熱交換器(15) の第 2通路 ( 17) とを遮断し、 且つ吸熱側通路 (32) と第 2バイパスダクト (115) とを連通させる状態 (図 1 3参照) とに切り換わるよ うに構成されている。
一運転動作一
次に、 上記空気調和装置 (10) の運転動作について説明する。
夏期などの外気温度が室内温度よりも高い場合には、 第 1切換弁 (111) 及び第 2切換弁 (112) が図 1 2に示すように切り換えられる。 この状態で、 空気サイクル 部 (11) において吸熱空気は上記実施形態 1と同様に流通し、 空気サイクル動作が行 われる。 そして、 熱交換器 (30) では減圧されて低温となった吸熱空気が室内空気と 熱交換し、 室内空気が冷却されて冷房が行われる。
一方、 冬期などの外気温度が室内温度よりも低い場合には、 第 1切換弁 (111) 及び第 2切換弁 (112) が図 1 3に示すように切り換えられる。 この状態で、 空気サ ィクル部(11)において吸熱空気は膨張機(22)、 内部熱交換器 ( 15)及び圧縮機 (21) をバイパスして流通する。 このため、 空気サイクル部 (11) では空気サイクル動作が 停止され、 入口ダクト (23) から取り込まれた室外空気がそのまま熱交換器 (30) の 吸熱側通路 (32) に供給される。
具体的に、 入口ダクト (23) から吸熱空気として取り込まれた室外空気は、 第 1 バイパスダクト (113) を通って吸熱側通路 (32) に流入する。 吸熱側通路 (32) で は、 室外空気である吸熱空気が室内空気と熱交換し、 室内空気が冷却される。その後、 吸熱空気は、 第 2バイパスダクト (115) を流れ、 出口ダクト (24) を通って室外に 排出される。
—実施形態 6の効果—
本実施形態 6によれば、冬期のように外気温度が低い場合には、切換弁(111,112) の切り換え等によって室外空気をそのまま熱交換器 (30) の吸熱側通路 (32) へ導入 する運転を行うことができる。 このため、 無用の空気サイクル動作を回避することが でき、 より少ないエネルギで室内を冷房することができる。 このため、 一年を通じて の冷房に要するエネルギを削減することができ、 冷房に要するコス卜を削減すること ができる。
《発明のその他の実施の形態》
—第 1の変形例一
上記の各実施形態では固体吸着剤を用いて除湿機構 (60) を構成するようにした が、 これに代えて、 液体吸収剤を用いて除湿機構 (60) を構成するようにしてもよい。 以下、 液体吸収剤を用いた除湿機構 (60) について、 上記実施形態 1に適用した場合 を例に説明する。
図 1 4に示すように、 本変形例の除湿機構(60) は、 吸湿部(65) と放湿部(66) とポンプ (67) とを順に液配管 (68) で接続して成る循環回路 (64) によって構成さ れている。 この循環回路 (64) には、 液体吸収剤として金属ハロゲン化物の水溶液が 充填されている。 この種の金属ハロゲン化物としては、 LiCl、 LiBr、 CaCl2等が例示 される。 尚、 この液体吸収剤を親水性の有機化合物の水溶液としてもよい。 この種の 有機化合物としては、 エチレングリコ一ル、 グリセリン、 吸水性樹脂等が例示される。
上記吸湿部 (65) は、 入口ダクト (23) の途中に配置されている。 吸湿部 (65) には、 水分が透過可能な疎水性多孔膜が設けられ、 この疎水性多孔膜によって隔てら れて空気側空間と液側空間とが区画形成されている。 該空気側空間には入口ダク ト (23) が接続され、 その内部を吸熱空気が流れる。 該液側空間には液配管 (68) が接 続され、 その内部を液体吸収剤が流れる。 そして、 吸湿部 (65) では、 空気側空間の 吸熱空気と液側空間の液体吸収剤とが疎水性多孔膜を介して間接的に接触し、 該吸熱 空気に含まれる水分が疎水性多孔膜を透過して該液体吸収剤に吸収される。 つまり、 吸湿部 (65) では、 吸熱空気の除湿が行われる。
上記放湿部 (66) は、 吸湿部 (65) と同様に構成されて出口ダクト (24) の途中 に配置されている。 放湿部 (66) は、 疎水性多孔膜を備えると共に、 空気側空間と液 側空間とが区画形成されている。 該空気側空間には出口ダクト (24) が接続され、 そ の内部を吸熱空気が流れる。 該液側空間には液配管 (68) が接続され、 その内部を液 体吸収剤が流れる。 そして、 放湿部 (66) では、 空気側空間の吸熱空気と液側空間の 液体吸収剤とが疎水性多孔膜を介して間接的に接触し、 吸熱空気との熱交換によって 液体吸収剤が加熱される。 そして、 この加熱によって液体吸収剤の水分が脱着し、 脱 着した水分が吸熱空気へと移動する。 つまり、 放湿部 (66) では、 液体吸収剤の再生 が行われる。
上記循環回路 (64) ではポンプ (67) によって内部を液体吸収剤が循環し、 これ によって、 吸熱空気の除湿が連続して行われる。 つまり、 吸湿部 (65) で吸熱空気中 の水分を吸収した液体吸収剤は、 液配管 (68) を流れて放湿部 (66) に入る。 放湿部 (66) では、 液体吸収剤は、 加熱されると共に吸熱空気に対して放湿する。 これによ つて、 液体吸収剤が再生される。 再生された液体吸収剤は、 液配管 (68) を流れて再 び吸湿部 (65) に入り、 この循環を繰り返す。
一第 2の変形例一
上記各実施形態では、 室内空気を冷却対象物とし、 熱交換器 (30) において室内 空気を冷却して冷房を行うようにしている。 これに対し、 熱交換器 (30) において水 を冷却して冷水を生成し、 該冷水によって室内空気を冷却して冷房を行うようにして もよい。
また、 上記各実施形態では、 冷凍装置の冷却対象物を室内空気とし、 空調を行う ようにしている。 これに対し、機器冷却用の冷却水を冷却対象物とし、 熱交換器(30) において冷却した冷却水によって、 冷却を要する機器からの放熱を行うようにしても よい。 産業上の利用可能性
以上のように、 本発明に係る冷凍装置は、 室内の冷房や機器の冷却を行うものと して有用であり、 特に、 空気サイクルによる冷却運転を行うものに適している。

Claims

請 求 の 範 囲
1 . 冷却対象物を冷却する冷凍装置であって、
吸熱空気を取り込んで減圧する一方、 減圧された後に冷却対象物から吸熱した吸 熱空気を圧縮する空気サイクル部 (11) と、
吸熱空気を除湿して上記空気サイクル部 (11) に供給する除湿手段 (60) とを備 えている冷凍装置。
2 . 冷却対象物を冷却する冷凍装置であって、
吸熱空気を取り込んで減圧する膨張機 (22) と、 膨張機 (22) で減圧された吸熱 空気が冷却対象物から吸熱する吸熱部 (30) と、 吸熱部 (30) で吸熱した吸熱空気を 圧縮する圧縮機 (21) とを有する空気サイクル部 (11) と、
吸熱空気を除湿して上記空気サイクル部 (11) の膨張機 (22) に供給する除湿手 段 (60) とを備えている冷凍装置。
3 . 除湿手段 (60) で除湿されて空気サイクル部 (11) へ供給される吸熱空気と、 冷 却対象物から吸熱した減圧状態の吸熱空気とを熱交換させる内部熱交換器 ( 15) を備 えている請求の範囲第 1項又は第 2項記載の冷凍装置。
4 . 内部熱交換器 (15) は、 冷却対象物から吸熱した減圧状態の吸熱空気に対して水 分を供給し、 該水分の蒸発潜熱を空気サイクル部 (11) へ供給される吸熱空気の冷却 に利用するように構成されている請求の範囲第 3項記載の冷凍装置。
5 . 空気サイクル部 (11) で減圧された吸熱空気を加湿により冷却する加湿冷却手段 (90) を備える一方、
上記空気サイクル部 (11) は、 加湿冷却手段 (90) で冷却された吸熱空気が冷却 対象物から吸熱するように構成されて t、る請求の範囲第 1項又は第 2項記載の冷凍装
6 . 空気サイクル部 (11) は、 冷却対象物から吸熱する吸熱空気に対して水分を供給 し、 該水分の蒸発潜熱を冷却対象物からの吸熱に利用するように構成されている請求 の範囲第 1項又は第 2項記載の冷凍装置。
7 . 空気サイクル部 (11) は、 冷却対象物である被冷却空気から吸熱するように構成 される一方、 被冷却空気中で凝縮した水分を該被冷却空気から吸熱する吸熱空気に対 して供給し、 該水分の蒸発潜熱を被冷却空気からの吸熱に利用するように構成されて いる請求の範囲第 1項又は第 2項記載の冷凍装置。
8 . 空気サイクル部 (11) は、 吸熱部 (30) において冷却対象物である被冷却空気か ら吸熱するように構成される一方、
吸熱部 (30) は、 水分が透過可能な仕切部材によって被冷却空気と吸熱空気とを 仕切り、 該仕切部材の両側における圧力差に基づいて被冷却空気中で凝縮した水分を 吸熱空気に対して供給し、 該水分の蒸発潜熱を被冷却空気からの吸熱に利用するよう に構成されている請求の範囲第 2項記載の冷凍装置。
9 . 空気サイクル部 (11) で圧縮過程にある吸熱空気中で水分が蒸発するように吸熱 空気に水分を供給する給水手段 (99) を備えている請求の範囲第 1項又は第 2項記載 の冷凍装置。
1 0 . 空気サイクル部 (11) は、 空気サイクル動作を行って減圧状態の吸熱空気が冷 却対象物から吸熱する運転と、 空気サイクル動作を停止し且つ取り込んだ常圧状態の 吸熱空気が冷却対象物から吸熱する運転とを行うように構成されている請求の範囲第 1項又は第 2項記載の冷凍装置。
1 1 . 除湿手段 (60) は、 吸湿と放湿とを行う湿度媒体を備え、 該湿度媒体が吸湿し て吸熱空気を除湿し、 且つ該湿度媒体が放湿して再生されるように構成されている請 求の範囲第 1項又は第 2項記載の冷凍装置。
1 2 . 除湿手段 (60) は、 湿度媒体が空気サイクル部 (11) で圧縮された吸熱空気に 対して放湿するように構成されている請求の範囲第 1 1項記載の冷凍装置。
1 3 . 除湿手段 (60) の湿度媒体は、 水分を吸着する固体吸着剤を備えている請求の 範囲第 1 2項記載の冷凍装置。
1 4 . 除湿手段 (60) の湿度媒体は、 円板状で厚さ方向に空気が通過可能に形成され て通過する空気と固体吸着剤とを接触させる口一夕部材 (61) により構成される一方、 除湿手段 (60) は、 上記ロー夕部材 (61) を通過する吸熱空気から該ロータ部材 (61) が吸湿する吸湿部 (62) と、 上記ロー夕部材 (61) を通過する吸熱空気に対し て該ロー夕部材(61)が放湿する放湿部(63) と、上記ロー夕部材(61)が吸湿部(62) と放湿部 (63) との間で移動するように該ロー夕部材 (61) を回転駆動する駆動機構 とを備えている請求の範囲第 1 3項記載の冷凍装置。
1 5 . 除湿手段 (60) の湿度媒体は、 水分を吸収する液体吸収剤により構成されてい る請求の範囲第 1 2項記載の冷凍装置。
1 6 . 除湿手段 (60) は、 液体吸収剤から放湿させるために該液体吸収剤を空気サイ クル部 (11) で圧縮された吸熱空気により加熱するように構成されている請求の範囲 第 1 5項記載の冷凍装置。
1 7 . 除湿手段 (60) は、 液体吸収剤と吸熱空気とが接触して該液体吸収剤が吸湿す る吸湿部 (65) と、 液体吸収剤と吸熱空気とが接触して該液体吸収剤が放湿する放湿 部 (66) とを有して上記吸湿部 (65) と放湿部 (66) の間で液体吸収剤を循環させる 循環回路 (64) により構成されている請求の範囲第 1 5項記載の冷凍装置。
1 8 . 空気サイクル部 (11) で圧縮された吸熱空気を加熱して除湿手段 (60) へ供給 する加熱手段 (101) を備えている請求の範囲第 1 1項記載の冷凍装置。
1 9 . 空気サイクル部 (11) で圧縮される直前の吸熱空気を加熱する加熱手段(101) を備えている請求の範囲第 1 1項記載の冷凍装置。
PCT/JP2000/002307 1999-04-30 2000-04-07 Dispositif refrigerant WO2000066953A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00915445A EP1176372B1 (en) 1999-04-30 2000-04-07 Refrigerating device
KR1020017013875A KR20020013859A (ko) 1999-04-30 2000-04-07 냉동장치
DE60030106T DE60030106D1 (de) 1999-04-30 2000-04-07 Kältevorrichtung
US09/959,583 US6629427B1 (en) 1999-04-30 2000-04-07 Refrigerating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12451499A JP4172088B2 (ja) 1999-04-30 1999-04-30 冷凍装置
JP11/124514 1999-04-30

Publications (1)

Publication Number Publication Date
WO2000066953A1 true WO2000066953A1 (fr) 2000-11-09

Family

ID=14887378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002307 WO2000066953A1 (fr) 1999-04-30 2000-04-07 Dispositif refrigerant

Country Status (8)

Country Link
US (1) US6629427B1 (ja)
EP (1) EP1176372B1 (ja)
JP (1) JP4172088B2 (ja)
KR (1) KR20020013859A (ja)
CN (1) CN1224815C (ja)
DE (1) DE60030106D1 (ja)
ES (1) ES2270818T3 (ja)
WO (1) WO2000066953A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6360557B1 (en) * 2000-10-03 2002-03-26 Igor Reznik Counter flow air cycle air conditioner with negative air pressure after cooling
JP4389699B2 (ja) * 2004-07-07 2009-12-24 ダイキン工業株式会社 冷凍装置
EP1788323B1 (en) 2004-07-30 2018-12-19 Mitsubishi Heavy Industries Thermal Systems, Ltd. Air refrigerant type cooling apparatus
US20070051126A1 (en) 2004-11-29 2007-03-08 Seiichi Okuda Air refrigerant type freezing and heating apparatus
KR100688209B1 (ko) * 2005-04-11 2007-03-02 엘지전자 주식회사 공기조화기
US7334428B2 (en) * 2005-09-30 2008-02-26 Sullair Corporation Cooling system for a rotary screw compressor
US20080110193A1 (en) * 2006-11-10 2008-05-15 Honeywell International Inc. Environmental control system with adsorption based water removal
DE102009010151B4 (de) * 2009-02-23 2010-12-16 Airbus Deutschland Gmbh Flugzeugklimaanlage mit einer Luftentfeuchtungseinrichtung sowie Verfahren zum Betreiben einer derartigen Flugzeugklimaanlage
DE102009018401A1 (de) * 2009-04-22 2010-10-28 Airbus Deutschland Gmbh System und Verfahren zum Kühlen eines Raums in einem Fahrzeug
US10012107B2 (en) 2011-05-11 2018-07-03 Dresser-Rand Company Compact compression system with integral heat exchangers
KR101265683B1 (ko) * 2012-01-02 2013-05-22 한국에너지기술연구원 압축기용 제습기, 1단 압축-흡수식 히트펌프 시스템 및 2단 압축-흡수식 히트펌프 시스템
CN103604239B (zh) * 2013-11-15 2016-01-20 杭州锦华气体设备有限公司 一种大型冷库气体膨胀制冷系统及其制冷方法
CN105091142B (zh) * 2014-05-06 2018-03-09 创升科技股份有限公司 湿度调整装置
TW201542986A (zh) * 2014-05-06 2015-11-16 Altrason Inc 濕度調整裝置
CN105222443B (zh) * 2015-09-17 2017-11-10 广东美的制冷设备有限公司 空调系统
JP6627540B2 (ja) * 2016-02-02 2020-01-08 アイシン精機株式会社 吸収式ヒートポンプ装置
CN111854295A (zh) * 2020-07-28 2020-10-30 山东天瑞重工有限公司 一种气体制冷系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347714A (en) * 1980-07-25 1982-09-07 The Garrett Corporation Heat pump systems for residential use
JPS5981460A (ja) * 1982-10-27 1984-05-11 株式会社島津製作所 冷房装置
JPS62223573A (ja) * 1986-03-25 1987-10-01 松下電工株式会社 空気サイクルヒ−トポンプ
JPH02187542A (ja) * 1989-01-13 1990-07-23 Daikin Ind Ltd 除湿・加湿機及び除湿・加湿機を備えた空気調和機
JPH0379977A (ja) * 1989-08-22 1991-04-04 Nippon Sanso Kk 低温空気製造方法
GB2237372A (en) * 1989-10-10 1991-05-01 Aisin Seiki Air conditioning systems
JPH08318731A (ja) * 1995-05-25 1996-12-03 Komatsu Ltd 過給機付エンジン搭載車両の冷暖房装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2784571A (en) * 1957-03-12 Evaporative air cycle cooler
US2496602A (en) * 1946-01-29 1950-02-07 Ralph C Schlichtig Air-conditioning system
JPH03129267A (ja) * 1989-10-10 1991-06-03 Aisin Seiki Co Ltd 空調機
IL100172A (en) 1991-11-27 1995-12-08 Tat Aero Equipment Ind Ltd Air conditioning system
JP2546765B2 (ja) * 1992-10-30 1996-10-23 鹿島建設株式会社 氷利用施設の製氷装置
US5323624A (en) * 1992-11-13 1994-06-28 United Technologies Corporation Filtered environmental control system
NL9500130A (nl) * 1995-01-24 1996-09-02 Tno Regeneratieve warmtewisselaar; warmtepomp en koelinrichting voorzien van regeneratieve warmtewisselaar; werkwijze voor uitwisseling van warmte; werkwijze voor koelen; werkwijze voor verwarmen.
JP3274075B2 (ja) * 1996-11-13 2002-04-15 三菱電機株式会社 機能膜を用いた水蒸発式冷却装置
JPH11101520A (ja) * 1997-09-29 1999-04-13 Sharp Corp エアサイクル式空気調和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347714A (en) * 1980-07-25 1982-09-07 The Garrett Corporation Heat pump systems for residential use
JPS5981460A (ja) * 1982-10-27 1984-05-11 株式会社島津製作所 冷房装置
JPS62223573A (ja) * 1986-03-25 1987-10-01 松下電工株式会社 空気サイクルヒ−トポンプ
JPH02187542A (ja) * 1989-01-13 1990-07-23 Daikin Ind Ltd 除湿・加湿機及び除湿・加湿機を備えた空気調和機
JPH0379977A (ja) * 1989-08-22 1991-04-04 Nippon Sanso Kk 低温空気製造方法
GB2237372A (en) * 1989-10-10 1991-05-01 Aisin Seiki Air conditioning systems
JPH08318731A (ja) * 1995-05-25 1996-12-03 Komatsu Ltd 過給機付エンジン搭載車両の冷暖房装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1176372A4 *

Also Published As

Publication number Publication date
CN1349602A (zh) 2002-05-15
EP1176372B1 (en) 2006-08-16
US6629427B1 (en) 2003-10-07
KR20020013859A (ko) 2002-02-21
JP2000314569A (ja) 2000-11-14
EP1176372A4 (en) 2003-08-06
EP1176372A1 (en) 2002-01-30
CN1224815C (zh) 2005-10-26
JP4172088B2 (ja) 2008-10-29
DE60030106D1 (de) 2006-09-28
ES2270818T3 (es) 2007-04-16

Similar Documents

Publication Publication Date Title
EP2647416B1 (en) Dehumidifier
US7428821B2 (en) Dehumidifying system
JP4172088B2 (ja) 冷凍装置
JP7464868B2 (ja) 空気質の調整システム
EP1164339B1 (en) Air conditioner
WO1999022182A1 (fr) Installation de climatisation avec deshumidification et procede de fonctionnement de cette installation
JP2001241693A (ja) 空気調和装置
JP4066553B2 (ja) 空気調和装置
JP2012026700A (ja) デシカント空調システム
WO2005123225A1 (ja) 除湿装置
JP2002022291A (ja) 空気調和装置
JPH1144439A (ja) 空気調和装置
JP4999518B2 (ja) 除加湿装置および冷凍サイクル装置
JP2008304113A (ja) 調湿空調システム
JP2000297969A (ja) 空気調和装置
JP2000320864A (ja) 空気調和装置
JP2003139425A (ja) 空気調和装置
JP2000291980A (ja) 空気調和装置
JP2011218285A (ja) 除湿装置
JPS61230719A (ja) 除湿装置
JP2000314568A (ja) 空気調和装置
JP2003139424A (ja) 空気調和装置
JPH11132505A (ja) 空気調和装置
JP2003038929A (ja) 調湿エレメント及び調湿装置
JP2000283579A (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00806970.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09959583

Country of ref document: US

Ref document number: 1020017013875

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000915445

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000915445

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017013875

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020017013875

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000915445

Country of ref document: EP