WO2000058761A1 - Film multicouche antireflechissant, composant optique, et systeme reduisant l'exposition a des projections - Google Patents

Film multicouche antireflechissant, composant optique, et systeme reduisant l'exposition a des projections Download PDF

Info

Publication number
WO2000058761A1
WO2000058761A1 PCT/JP2000/001950 JP0001950W WO0058761A1 WO 2000058761 A1 WO2000058761 A1 WO 2000058761A1 JP 0001950 W JP0001950 W JP 0001950W WO 0058761 A1 WO0058761 A1 WO 0058761A1
Authority
WO
WIPO (PCT)
Prior art keywords
index layer
refractive index
optical
fluoride
layer
Prior art date
Application number
PCT/JP2000/001950
Other languages
English (en)
French (fr)
Inventor
Takeshi Shirai
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to DE10080898T priority Critical patent/DE10080898T1/de
Publication of WO2000058761A1 publication Critical patent/WO2000058761A1/ja
Priority to US09/684,517 priority patent/US6590702B1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating

Definitions

  • the present invention relates to a multilayer antireflection film, an optical member, and a reduction projection exposure apparatus, and more particularly, to a multilayer antireflection film for oblique incidence, which is effective for s-polarized light having a wavelength of 250 nm or less, such as excimer laser light.
  • the present invention relates to an optical member including the multilayer antireflection film, and a reduction projection exposure apparatus including the optical member.
  • lasers such as excimer lasers have been developed as light sources of ultraviolet light, and lasers are being used in optical devices utilizing ultraviolet light.
  • the optical members used in the optical systems of these devices be usable for obliquely incident light, and the antireflection film of the optical member is obliquely incident. It is required to have an anti-reflection effect on the emitted light.
  • Excimer laser light is generally linearly polarized light, and whether it enters the optical member as p-polarized light or s-polarized light depends on the arrangement of the optical member in the optical system. In other words, when the electric field vector of the wave of the incident light oscillates parallel to the incident surface of the optical member, it becomes p-polarized light, and when it oscillates perpendicular to the incident surface of the optical member. Becomes S-polarized light.
  • the angle of incidence is the angle between the surface normal of the substrate and the incident light.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and has an excellent antireflection effect on s-polarized light having a wavelength of 250 nm or less, such as excimer laser light.
  • An object of the present invention is to provide a multilayer antireflection film for oblique incidence, an optical member, and a reduced projection exposure apparatus that are effective in improving performance such as image performance.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that a multilayer anti-reflection film provided with a specific laminate, an optical member provided with the anti-reflection film, and a reduced projection provided with the optical member
  • the inventors have found that the above problems can be solved by an exposure apparatus, and have completed the present invention.
  • the multilayer antireflection film of the present invention is the multilayer antireflection film of the present invention.
  • optical member of the present invention is optically identical to optical member of the present invention.
  • a substrate capable of transmitting s-polarized light having a specific wavelength of 250 nm or less disposed on the substrate, at least one low refractive index layer and at least one And a high-refractive-index layer alternately laminated with the low-refractive-index layer. At least one of the outermost layers of the laminate on the side opposite to the substrate is a low-refractive-index layer.
  • An exposure light source a photomask on which a pattern original image is formed, an irradiation optical system for irradiating the photomask with light output from the light source, and projecting a pattern image output from the photomask onto a photosensitive substrate
  • An irradiation optical system for irradiating the photomask with light output from the light source, and projecting a pattern image output from the photomask onto a photosensitive substrate
  • a projection optical system and an alignment system for aligning the photomask and the photosensitive substrate.
  • At least one of the optical members constituting the light source, the illumination optical system, and the projection optical system is a substrate capable of transmitting s-polarized light having a specific wavelength of 250 nm or less, and is disposed on the substrate.
  • a multilayer antireflection film laminate at least one low refractive index layer and at least one high refractive index layer are alternately laminated, and at least one of the outermost layers is a low refractive index layer.
  • FIGS.1A and 1B are cross-sectional schematic views each showing an example of the multilayer antireflection film of the present invention formed on a substrate when the total number of low-refractive-index layers and high-refractive-index layers is an odd number and an even number, respectively.
  • FIG. 1A is cross-sectional schematic views each showing an example of the multilayer antireflection film of the present invention formed on a substrate when the total number of low-refractive-index layers and high-refractive-index layers is an odd number and an even number, respectively.
  • FIG. 2 is a schematic configuration diagram showing an example of the reduction projection exposure apparatus of the present invention.
  • FIG. 3 is a schematic configuration diagram showing an example of a projection optical system using the optical member of the present invention.
  • FIG. 4 is a graph showing the relationship between the reflectance and the incident angle for s-polarized light having a wavelength of 193 nm, obtained for the multilayer antireflection film of Example 1.
  • FIG. 5 is a graph showing the relationship between the reflectance and the incident angle for s-polarized light having a wavelength of 193 mn, obtained for the multilayer antireflection film of Example 2.
  • FIG. 6 is a graph showing the relationship between the reflectance and the incident angle for -s polarized light having a wavelength of 193 nm obtained for the multilayer antireflection film of Example 3.
  • FIG. 7 is a graph showing the relationship between the reflectance and the incident angle for s-polarized light having a wavelength of 193 nm obtained for the multilayer antireflection film of Example 4.
  • FIG. 8 is a graph showing the relationship between the reflectance and the incident angle for s-polarized light having a wavelength of 193 nm, obtained for the multilayer antireflection film of Example 5.
  • FIG. 1A and 1B are schematic cross-sectional views each showing an example of the multilayer antireflection film of the present invention formed on a substrate, and FIG. 1A shows a low refractive index layer constituting the antireflection film and FIG.
  • the total number (N) of the high refractive index layers is an odd number, and FIG. 1B is an even number.
  • the multilayer antireflection film 10 of the present invention the low-refractive-index layers 12 and the high-refractive-index layers 13 are alternately laminated on the substrate 11 so that the side farthest from the substrate 11 becomes the low-refractive-index layer 12. Layer (alternate layers), and if the number of layers (N) is an odd number as shown in FIG.
  • the low refractive index layer 12 is formed, and the number of layers (N) is an even number as shown in FIG. 1B
  • the high refractive index layers 13 are arranged so as to be adjacent to the substrate 11, respectively.
  • the low refractive index layer is a layer having a lower refractive index than the substrate
  • the high refractive index layer is a layer having a higher refractive index than the substrate.
  • the number of the low refractive index layers and the number (N H ) of the high refractive index layers have a relationship represented by the following equation.
  • the low refractive index layer according to the present invention is made of magnesium fluoride, aluminum fluoride, sodium fluoride, lithium fluoride, calcium fluoride, barium fluoride, strontium fluoride, cryolite. It is preferable to include at least one compound selected from the group consisting of thiolite and silicon oxide.
  • the form may be a mixture or a composite compound.
  • a mixture of sodium fluoride and aluminum fluoride may be used, and sodium hexafluoroaluminate (Na 3 A form such as AlF 6 ) may be used.
  • the material of each layer may be the same or different, but the optical thickness of each low refractive index layer (! ⁇ ) That is, the product of the physical thickness of the layer and the refractive index is substantially the same.
  • the high refractive index layer comprises at least one selected from the group consisting of neodymium fluoride, lanthanum fluoride, gadolinium fluoride, dysprosium fluoride, yttrium fluoride, lead fluoride, aluminum oxide and hafnium oxide.
  • Species Preferably, it contains a compound.
  • the high refractive index layer contains two or more compounds, the form may be a mixture or a composite compound.
  • the high refractive index layer contains lanthanum fluoride and neodymium fluoride, a mixture thereof may be used.
  • the material of each layer may be the same or different, but the optical thickness of each high refractive index layer (n H d H That is, the product of the physical thickness of the layer and the refractive index shows substantially the same value as each other.
  • the laminate according to the present invention has substantially the same optical film thickness (n H d H ) as the substantially same optical film thickness (i.e., the plurality of low refractive index layers 12 having ivy).
  • the laminate has a sum of optical thicknesses of adjacent low refractive index layers 12 and high refractive index layers 13, that is, It has an optical periodic structure in which the period lengths (nd) are all substantially the same, where the refractive index of the low refractive index layer and the refractive index of the high refractive index layer are various, and n H and the physical film thickness are respectively:
  • optical histological cycle length (nd) is the following formula:
  • optical period length (nd) is:
  • nd is less than the lower limit, the low reflection angle range tends to be on the low angle side, and if nd exceeds the upper limit, the low reflection angle region tends to be on the high angle side.
  • is outside the above range, a large number of layers are required to obtain the antireflection effect, and as a result, the absorption loss and scattering loss of light by the antireflection film tend to increase.
  • the limit angle at which the antireflection effect can be obtained tends to be small (about 45 °), and if ⁇ exceeds the upper limit, a large number of layers is required to obtain the antireflection effect. As a result, the absorption loss and scattering loss of light by the antireflection film tend to increase. Note that ⁇
  • the reflectance when s-polarized light having a wavelength of 250 nm or less is incident at any incident angle of 65 ° to 85 ° is preferably 1.0% or less, and 0.5% or less. % Is more preferable.
  • the multilayer antireflection film of the present invention has a sufficient antireflection effect on s-polarized light even if it is composed of only the low refractive index layer 12 and the high refractive index layer 13 as shown in FIGS. 1A and 1B. If necessary, the non-existent layer that does not reduce the antireflection effect with respect to the central design wavelength (person) of the light source to be used and the incident angle of light, that is, the optical film thickness (nd) is 0.6 persons. nd ⁇ 0.7 people.
  • the optical thickness (nd) of the absent layer is shown. This is because the optical thickness (nd) depends on the refractive index of the layer and the incident light. This is because it depends on the angle. Assuming that the refractive index of the layer with respect to human light is n ⁇ and the incident angle of light is 0, the optical thickness (nd) of the layer is given by the following formula:
  • the durability (such as moisture resistance) of the multilayer antireflection film tends to be improved without reducing the antireflection effect. If the compatibility between the low-refractive-index layer and the high-refractive-index layer or the compatibility between the layer and the substrate is insufficient, disposing them between them prevents deterioration of the interface and peeling of the layer. Tend to be.
  • the position where the absence layer is disposed is between the low-refractive-index layer 12 and the high-refractive-index layer 13, between the substrate 11 and the layer 12 or 13 in contact with the substrate 11, or on the farthest side from the substrate.
  • the material of the non-existing layer includes silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), strontium fluoride (SrF 2 ), neodymium fluoride (NdF 3 ), lanthanum fluoride (LaF 3 ), gadolinium fluoride (GdF 3 ), disposable fluoride (DyF 3 ), yttrium fluoride (YF 3 ), aluminum oxide two ⁇ arm (A1 2 0 3), oxide Hough two ⁇ beam (HF0 2), and the like.
  • the multilayer anti-reflection film of the present invention having the above-described laminated structure is formed from the above-mentioned materials by using a physical film forming method such as a conventionally known vacuum deposition method, a sputtering method, or an ion plating method;
  • a physical film forming method such as a conventionally known vacuum deposition method, a sputtering method, or an ion plating method;
  • Optical member with excellent anti-reflection effect against 250 nm s-polarized light by forming a film on the substrate of optical member such as lens, prism and plate by chemical film forming method such as Can be obtained.
  • a multilayer antireflection film having the following laminated structure is given.
  • the low refractive index layer is a magnesium fluoride (MgF 2 ) layer
  • the high refractive index layer is a lanthanum fluoride (LaF 3 ) layer.
  • the design center wavelength (human) is 193 nm
  • the refractive indices of air, fluorite, MgF 2 and LaF 3 are 1.00, 1.50, 1.42 and 1.69, respectively.
  • Ri optical film thickness (n H d H) are the same for each high refractive index layer (LaF 3 layers).
  • ni A n H d H 2 0.323. Therefore, the optical period length (nd) is 0.646 mm.
  • the ratio ⁇ of the optical film thickness of the high refractive index layer to the optical period length is 0.500.
  • the low refractive index layer is an aluminum fluoride (A1F 3 ) layer
  • the high refractive index layer is a neodymium fluoride (NdF 3 ) layer.
  • the design center wavelength ( ⁇ ) is 193 nm.
  • the refractive indexes of air, quartz glass, A1F 3 and NdF 3 are 1.00, 1.55, 1.39 and 1.72, respectively.
  • the same optical film thickness of each low refractive index layer (A1F 3-layer), an optical film thickness of each high refractive index layer (NdF 3 layer) (n H d H) are identical.
  • the optical period length (nd) is 0.635.
  • the ratio ⁇ of the optical film thickness of the high refractive index layer to the optical period length is 0.328.
  • a multilayer antireflection film having the following laminated structure.
  • the optical film thickness (nd) as an absent layer is 0.650 on the low refractive index layer (A1F three layers) disposed farthest from the substrate (quartz glass). Except that Der Ru silicon oxide (Si0 2) layer is disposed is the same as in the second embodiment.
  • a multilayer antireflection film having the following laminated structure.
  • the low refractive index layer is a sodium hexafluoroaluminate (Na 3 AlF 6 ) layer
  • the high refractive index layer is a lanthanum fluoride (LaF 3 ) layer.
  • the design center wavelength (input) is 193 nm
  • the refractive indexes of air, fluorite, Na 3 AlF 6 and LaF 3 are 1.00, 1.50, 1.35 and 1.69, respectively.
  • the optical film thickness of each low refractive index layer (Na 3 AlF 6 layer) is the same, and the optical film thickness (n H d H ) of each high refractive index layer (LaF 3 layer) is the same.
  • the optical period length (nd) is 0.658 mm.
  • the ratio ⁇ of the optical film thickness of the high refractive index layer to the optical period length is 0.529.
  • a multilayer antireflection film having the following laminated structure.
  • the low refractive index layer is a magnesium fluoride (MgF 2 ) layer
  • the high refractive index layer is a lanthanum fluoride (LaF 3 ) layer.
  • the design center wavelength (input) is 193 nm
  • the refractive indices of air, fluorite, MgF 2 and LaF 3 are 1.00, 1.52, 1.45 and 1.72, respectively.
  • the optical film thickness () of each low refractive index layer (Na 3 AlF 6 layer) is the same, and the optical film thickness (n H d H ) of each high refractive index layer (LaF 3 layer) is the same. It is.
  • the optical period length (nd) is 0.664.
  • the ratio ⁇ of the optical film thickness of the high refractive index layer to the optical period length is 0.578.
  • each of the low-refractive-index layers and each of the high-refractive-index layers are each formed of the same compound.
  • durability, compatibility between the substrate and the film, etc. Of course, different materials may be used depending on the characteristics.
  • multilayer antireflection film of the present invention is also applicable to shorter wavelength ultraviolet light in the F 2 laser beam or the like having excimer one laser light not only possess a wavelength of 157nm with a wavelength of 193nm .
  • FIG. 2 is a schematic diagram showing the overall configuration of a reduction projection exposure apparatus having a catadioptric optical system.
  • the Z axis is set parallel to the optical axis AX of the projection optical system 208
  • the X axis is set parallel to the plane of FIG. 2 in the plane perpendicular to the optical axis AX
  • the Y axis is set perpendicular to the plane of FIG. I have.
  • the reduction projection exposure apparatus shown in FIG. 2 includes a light source 201 for supplying illumination light having a wavelength of 250 nm or less.
  • the light source 201 monitors a front mirror (semi-transmissive) and a rear mirror for resonance, a wavelength selecting element (diffraction grating, prism, etalon, etc.) for narrowing a wavelength band, and monitors an absolute value of an oscillation wavelength.
  • the light source 201 is filled with a mixed gas such as a rare gas halide or the like.
  • KrF Kishimare one The (248 nm), ArF excimer one The (193nm), F 2 laser (157 nm) Hitoshigakyo is down.
  • the light emitted from the light source 201 uniformly illuminates a photomask 203 on which a predetermined pattern is formed via an illumination optical system 202.
  • the illumination optical system 202 includes, for example, a fly-eye lens or an internal reflection type integer gray light to form a surface light source having a predetermined size and shape, and an illumination area size on the photomask 203. It has an optical system such as a field stop for defining the shape and a field stop imaging optical system for projecting an image of the field stop onto a mask.
  • the optical path between the light source 201 and the illumination optical system 202 is sealed by a casing 214, and the space from the light source 201 to the optical member closest to the mask in the illumination optical system 202 is the absorption rate of the exposure light. Has been replaced by a low inert gas.
  • the photomask 203 is held on a mask stage 205 via a mask holder 204 in parallel with the XY plane.
  • a pattern to be transferred is formed on the photomask 203, and a rectangular (slit-shaped) pattern area having a long side along the Y direction and a short side along the X direction in the entire pattern area. Is illuminated.
  • the mask stage 205 is two-dimensionally movable along the mask plane (XY plane), and its position coordinates are measured and controlled by an interferometer 207 using a mask moving mirror 206. .
  • Wafer 209 is held on wafer stage 211 via wafer holder 210 in parallel with the XY plane. Then, on the wafer 209, a rectangular exposure having a long side along the Y direction and a short side along the X direction so as to optically correspond to the rectangular illumination region on the photomask 203. A pattern image is formed in the area.
  • the wafer stage 211 is two-dimensionally movable along the wafer surface (XY plane), and its position coordinates are measured by an interferometer 213 using a wafer moving mirror 212 and the position is controlled. ing.
  • the inside of the projection optical system 208 is configured to be kept airtight, and the gas inside the projection optical system 208 is replaced with an inert gas.
  • a photomask 203, a mask stage 205, and the like are disposed in a narrow optical path between the illumination optical system 202 and the projection optical system 208, and a casing 215 that hermetically surrounds the photomask 203, the mask stage 205, and the like.
  • the inside is filled with inert gas.
  • the wafer 209 In the narrow optical path between the projection optical system 208 and the wafer 209, the wafer 209, the wafer stage 211, and the like are arranged. Filled with inert gas such as gas.
  • the viewing area (illumination area) on the photomask 203 and the projection area (exposure area) on the wafer 209 defined by the projection optical system 208 are rectangular with short sides along the X direction. . Therefore, while controlling the position of the photomask 203 and the wafer 209 using the drive system and the interferometers (207, 213), the mask stage 205 is moved along the short side direction of the rectangular exposure area and the illumination area, that is, along the X direction. And the wafer stage 211, and thus the photomask 203 and the wafer 209 are synchronously moved (scanned), so that the wafer 209 has a width equal to the long side of the exposure area and scans the wafer 209. The mask pattern is scanned and exposed in an area having a length corresponding to the amount (movement amount).
  • the number of optical members constituting the light source, the irradiation optical system and the projection optical system is reduced. At least one is the optical member of the present invention. Also, using the optical member of the present invention having the multilayer anti-reflection film for S-polarized light and the optical member having the multilayer anti-reflection film for p-polarized light together enables optimization of the performance of the apparatus and downsizing. It is more preferable in this respect.
  • FIG. 3 is a schematic diagram showing an example of a lens configuration of the projection optical system 208 according to FIG.
  • the projection optical system 208 shown in FIG. 3 includes, in order from the reticle R side as the first object, a first lens group G1 having a positive power, a second lens group G2 having a positive power, and a second lens group G2 having a negative power. It has a third lens group G3, a fourth lens group G4 having a positive power, a fifth lens group G5 having a negative power, and a sixth lens group G6 having a positive power. It is almost telecentric on the reticle R side and on the image side (wafer side), and has a reduction ratio. N.A.
  • this projection optical system is 0.6, and the projection magnification is 1.
  • L45, L46, L63, L65, L666, and L67 are made of calcium fluoride single crystal for the purpose of correcting chromatic aberration, and quartz glass is used for lenses other than the six. Is used.
  • the optical member of the present invention for at least one of the lenses constituting the lens groups G1 to G6.
  • the optical member of the present invention having the multilayer antireflection film for s-polarized light in combination with the optical member having the antireflection film for p-polarized light.
  • the reflectance for s-polarized light having a wavelength of 250 mn or less is obtained. Since the reduction is achieved, optimization of performance such as improvement in resolution is achieved, and the degree of freedom in designing the device is increased, so that the size of the device can be reduced.
  • Example 1 the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples.
  • Example 1
  • MgF 2 and LaF 3 were alternately heated and evaporated by a vacuum evaporation method to form a film on the fluorite substrate, thereby producing an optical member having a multilayer antireflection coating having the following laminated structure.
  • the film forming conditions were as follows.
  • the design center wavelength (person) was 193 nm
  • the optical thickness (n ⁇ L) of each low refractive index layer (MgF two layers) was 0.323.
  • the optical thickness (n H d H ) of each high refractive index layer (LaF 3 layer) was 0.323.
  • the optical period length (nd) is 0.646.
  • the ratio ⁇ of the optical film thickness of the high refractive index layer to the optical period length was set to 0.500.
  • the A1F 3 and NdF 3 the material of the multilayer antireflection film, a quartz glass substrate, respectively
  • An optical member having a multilayer antireflection film having the following laminated structure was prepared in the same manner as in Example 1 except that the number of layers was 6, and the optical film thickness of each layer was as follows. .
  • the design center wavelength (human) is 193 nm
  • the optical period length (nd) is 0.635.
  • the ratio ⁇ of the optical film thickness of the high refractive index layer to the optical period length was set to 0.328.
  • the design center wavelength (E.) is 193 nm
  • the optical thickness (riLd :) of each low refractive index layer (A1F 3 layers) is 0.427.
  • the optical period length (nd) is 0.635.
  • the ratio ⁇ of the optical film thickness of the high refractive index layer to the optical period length was set to 0.328.
  • Example 1 An optical member having a multilayer antireflection film having a laminated structure was manufactured.
  • Substrate Fluorite In the multilayer antireflection film of this optical member, the design center wavelength (human) was 193 nm, and the optical thickness ⁇ of each low refractive index layer (Na 3 AlF 6 layer) was 0.310. The optical thickness (n H d H ) of each high refractive index layer (LaF 3 layer) was 0.348. The optical period length (nd) is 0.658. The ratio ⁇ of the optical film thickness of the high refractive index layer to the optical period length was set to 0.529.
  • a multilayer antireflection film having the following laminated structure was provided in the same manner as in Example 1 except that the number of layers of the multilayer antireflection film was 10 and the optical thickness of each layer was as follows. An optical member was manufactured.
  • the design center wavelength (E) was 193 nm, 0.280 person having an optical film thickness (Ivlj of each low refractive index layer (MgF 2 layers)., 0.384 people having an optical film thickness (n H d H) of each of the high refractive index layer (LaF 3 layers).
  • Optical The period length (nd) was 0.664, and the ratio ⁇ of the optical film thickness of the high refractive index layer to the optical period length was 0.578.
  • the multilayer antireflection film of the present invention on an optical member, the reflectance for s-polarized light having a wavelength of 250 nm or less is sufficiently reduced. Therefore, by using an optical member having such a multilayer anti-reflection film in an optical system of a reduction projection exposure apparatus, the degree of freedom in designing the apparatus is increased in terms of performance optimization and compactness.

Description

明糸田書 多層反射防止膜、 光学部材、 及び縮小投影露光装置
技術分野
本発明は、 多層反射防止膜、 光学部材及び縮小投影露光装置に関し、 詳しくは、 エキシマレ一ザ光等の 250nm以下の波長を有する s偏光に対して有効な、 斜入 射用多層反射防止膜、 前記多層反射防止膜を備えた光学部材、 及び前記光学部材 を備えた縮小投影露光装置に関する。
背景技術
近年、紫外光の光源としてエキシマレーザ等のレーザの開発が進められており、 これに伴いレーザが紫外光を利用した光学装置に使用されつつある。ここで、種々 の目的のため、 これらの装置の光学系に使用される光学部材は斜入射される光に 対して使用可能であることが必要であり、 光学部材の反射防止膜には斜入射され る光に対して反射防止効果を有することが要求される。
エキシマレ一ザ光は一般に直線偏光であり、 光学部材に対して p 偏光として 入射するか、 s 偏光として入射するかは光学系における光学部材の配置に依存す る。 すなわち、 入射光の波動の電界ベク トルが光学部材の入射面に対して平行に 振動する位置関係にある場合には p 偏光となり、 光学部材の入射面に垂直に振 動する位置関係にある場合には S偏光となる。
特開平 10-26816号公報には、 斜入射用多層反射防止膜の技術が開示されてお り、 入射光が p偏光である場合に、 5層、 7層及び 9層構造の反射防止膜がそれ それ入射角 0 = 70° 、 72° および 74° で入射させた p偏光に対して反射防止効 果を有することが記載されている。 なお、 入射角とは基板の面法線と入射光との なす角度である。 このように、 光学部材上に形成された反射防止膜に入射する光が p 偏光とな るように光学部材を配置することによって、 光学部材表面での光の反射を低減す ることが可能である。 発明の開示
しかしながら、 従来の反射防止膜は p 偏光に対してのみ有効な反射防止膜で あり、 縮小投影露光装置の光学系等においてレンズ、 ミラー、 プリズム等の光学 部材を配置する場合には、 光が全ての光学部材に対して p 偏光として入射する ように考慮しなければならなかった。 このことは、 装置の設計における自由度を 狭め、 装置の性能の最適化や小型化における制約となっていた。
本発明は上記従来技術の有する課題に鑑みてなされたものであり、エキシマレ一 ザ光等の 250nm以下の波長を有する s偏光に対して優れた反射防止効果を有し、 縮小投影露光装置の結像性能等の性能を向上させる上で有効な、 斜入射用多層反 射防止膜、 光学部材及び縮小投影露光装置を提供することを目的とする。
本発明者らは、 上記目的を達成すべく鋭意研究を重ねた結果、 特定の積層体を 備えた多層反射防止膜、 前記反射防止膜を備えた光学部材、 及び前記光学部材を 備えた縮小投影露光装置により上記課題が解決されることを見いだし、 本発明を 完成するに至った。
すなわち、 本発明の多層反射防止膜は、
少なくとも 1つの低屈折率層と少なくとも 1つの高屈折率層とが交互に積層さ れた積層体を備え、 該積層体における最外層のうちの少なくとも一方が低屈折率 層であり、 該低屈折率層の側から入射する 250mn以下の特定波長を有する s偏 光に対して反射防止効果を有するものである。
また、 本発明の光学部材は、
250nm以下の特定波長を有する s偏光が透過することが可能である基板と、 前記基板上に配置されており、 少なくとも 1つの低屈折率層と少なくとも 1つ の高屈折率層とが交互に積層された積層体を備え、 該積層体における最外層のう ちの少なくとも基板と反対側の層が低屈折率層であり、 該低屈折率層の側から入 射する 250nm以下の特定波長を有する s偏光に対して反射防止効果を有する多 層反射防止膜と、
を備えたものである。
更に、 本発明の縮小投影露光装置は、
露光光源と、 パターン原像の形成されたフォトマスクと、 前記光源から出力さ れる光を前記フォトマスクに照射する照射光学系と、 前記フォトマスクから出力 されるパターン像を感光性基板上に投影する投影光学系と、 前記フォトマスクと 前記感光性基板との位置合わせを行うァライメント(alignmenり系と、 を有する 縮小投影露光装置であって、
前記光源、照明光学系及び投影光学系を構成する光学部材の少なくとも 1つが、 250nm以下の特定波長を有する s偏光が透過することが可能である基板と、 前記基板上に配置されており、 少なくとも 1つの低屈折率層と少なくとも 1つ の高屈折率層とが交互に積層された積層体を備え、 該積層体における最外層のう ちの少なくとも基板と反対側の層が低屈折率層であり、 該低屈折率層の側から入 射する 250nm以下の特定波長を有する s偏光に対して反射防止効果を有する多 層反射防止膜と、
を備えた光学部材である縮小投影露光装置である。
本発明によれば、 多層反射防止膜の積層体において、 少なくとも 1つの低屈折 率層と少なくとも 1つの高屈折率層とを交互に積層し、 最外層の少なくとも一方 を低屈折率層とすることによって、 250nm以下の波長を有する s偏光を前記反 射防止膜の低屈折率層の側から斜入射させたときの反射率が低減される。従って、 このような多層反射防止膜が基板と反対側の最外層が低屈折率層となるように配 置された光学部材を縮小投影露光装置に用いることによって、 装置の設計の自由 度が増大して性能の最適化や小型化が可能となると共に、 従来の装置では達成さ れ得なかつた優れた結像性能を得ることが可能となる。 図面の簡単な説明
図 1A及び図 1Bはそれそれ低屈折率層と高屈折率層との総数が奇数及び偶数 である場合の、 基板上に成膜された本発明の多層反射防止膜の一例を示す断面模 式図である。
図 2は本発明の縮小投影露光装置の一例を示す概略構成図である。
図 3は本発明の光学部材を用いた投影光学系の一例を示す概略構成図である。 図 4は実施例 1の多層反射防止膜について得られた、 193nmの波長を有する s偏光に対する反射率と入射角との関係を示すグラフである。
図 5は実施例 2の多層反射防止膜について得られた、 193mnの波長を有する s偏光に対する反射率と入射角との関係を示すグラフである。
図 6は実施例 3の多層反射防止膜について得られた、 193nmの波長を有する - s偏光に対する反射率と入射角との関係を示すグラフである。
図 7 は実施例 4の多層反射防止膜について得られた、 193nm の波長を有する s偏光に対する反射率と入射角との関係を示すグラフである。
図 8は実施例 5の多層反射防止膜について得られた、 193nmの波長を有する s偏光に対する反射率と入射角との関係を示すグラフである。 発明を実施するための最良の形態
以下に、 場合により図面を参照しつつ、 本発明の好適な実施形態について詳細 に説明する。 なお、 図面中、 同一及び相当部分については同一符号を付するもの とする。
図 1 A及び図 1Bはそれそれ基板上に成膜された本発明の多層反射防止膜の一 例を示す断面模式図であり、 図 1 Aは前記反射防止膜を構成する低屈折率層と高 屈折率層との総数 (N)が奇数のものであり、 図 1Bは総数 (N)が偶数のものである。 本発明の多層反射防止膜 10においては、 基板 11上に、 基板 11から最も遠い 側が低屈折率層 12となるように、 低屈折率層 12と高屈折率層 13とが交互に積 層された積層体 (交互層) を備えており、 図 1A のように層数 (N)が奇数である 場合には低屈折率層 12せ、 図 1Bのように層数 (N)が偶数である場合には高屈折 率層 13 が、 それぞれ基板 11 と隣接するように配置されている。 ここで、 低屈 折率層とは基板と比べて低い屈折率を有する層のことであり、 高屈折率層とは基 板と比べて高い屈折率を有する層のことである。 また、 前記低屈折率層の数 と前記高屈折率層の数 (NH)とは下記式で表される関係にある。
N + 1 (Nが奇数である場合)
1
Figure imgf000007_0001
(Nが偶数である場合) 本発明にかかる低屈折率層は、フッ化マグネシウム、フッ化アルミニウム、フッ ィ匕ナトリウム、 フッ化リチウム、 フッ化カルシウム、 フッ化バリウム、 フッ化ス トロンチウム、 クリオライ ト、 チォライ ト及び酸化硅素からなる群より選ばれる 少なくとも 1 種の化合物を含むことが好ましい。 ここで、 前記低屈折率層に 2 種以上の化合物が含まれる場合は、 その形態は混合物であってもよく、 また複合 化合物であってもよい。 具体的には例えば、 前記低屈折率層がフッ化ナトリウム とフッ化アルミニウムとを含む場合は、 フッ化ナトリゥムとフッ化アルミニウム との混合物であってもよく、 六フッ化アルミン酸ナトリウム (Na3AlF6)等の形態 をとつていてもよい。 低屈折率層に上記の化合物が含まれると、 250nm 以下の 特定波長を有する紫外光に対して高い透過性が得られる傾向にある。 なお、 本発 明においては、 前記反射防止膜が複数の低屈折率層を有する場合、 各層の材料は 同一でも異なっていてもよいが、 各低屈折率層の光学的膜厚 (!^ )、 すなわち、 層の物理的膜厚と屈折率との積は互いに実質的に同一である。
また、 本発明にかかる高屈折率層は、 フッ化ネオジム、 フッ化ランタン、 フッ 化ガドリニウム、 フッ化デイスプロシゥム、 フッ化イットリウム、 フッ化鉛、 酸 化アルミニウム及び酸化ハフニウムからなる群より選ばれる少なくとも 1 種の 化合物を含むことが好ましい。 ここで、 前記高屈折率層に 2種以上の化合物が含 まれる場合は、 その形態は混合物であってもよく、 また複合化合物であってもよ レ、。 具体的には例えば、 前記高屈折率層がフッ化ランタンとフッ化ネオジゥムと を含む場合は、 それらの混合物であってもよい。 前記高屈折率層にこれらの化合 物が含まれると、 250nm 以下の特定波長を有する紫外光に対して高い透過性が 得られる傾向にある。 なお、 本発明においては、 前記反射防止膜が複数の高屈折 率層を有する場合、 各層の材料は同一でも異なっていてもよいが、 各高屈折率層 の光学的膜厚 (nHdH)、 すなわち、 層の物理的膜厚と屈折率との積が互いに実質的 に同一の値を示すものである。
このように、 本発明にかかる積層体が、 実質的に同一の光学的膜厚 (ivyを有 する複数の低屈折率層 12 と実質的に同一の光学的膜厚 (nHdH)を有する複数の高 屈折率層 13 とが交互に積層されたものである場合、 前記積層体は隣接する低屈 折率層 12 と高屈折率層 13 との光学的膜厚の和、 すなわち光学的周期長 (nd)が 全て実質的に同一となる光学的周期構造を有する。 ここで、 低屈折率層及び高屈 折率層の屈折率をそれそれ 、 nH、 物理的膜厚をそれぞれ 、 dHとすると、 光 学的周期長 (nd)は下記式:
nd - nLdL +nHdH
で表される。 本発明においては、 前記光学的周期長 (nd)が、
0.6入。 ≤ nd ^ 0.7入。
であることが好ましい。 nd が前記下限値未満であると低反射角度域が低角度側 になるという傾向にあり、 前記上限値を超えると低反射角度域が高角度側になる という傾向にある。なお、 上記式中、 人。は使用する光源の設計中心波長を表し、 本発明においては 250nm以下であり、 好ましくは 150mn以上 250nm以下であ る。 更に、 本発明においては、 高屈折率層の光学的膜厚 (nHdH) の光学的周期 長 (nd)に対する比率( Γ = nHdH / nd )力
0.3 ≤ Γ < 0.75 であることが好ましい。 Γが前記範囲外であると反射防止効果を得るために多く の層数が必要となり、 その結果、 反射防止膜による光の吸収損失や散乱損失が増 大する傾向にある。
また、 本発明の多層反射防止膜が有する低屈折率層及び高屈折率層の数の総和 (擊、
3 ≤ Ν ≤ 13
であることが好ましい。 Ν が前記下限値未満であると反射防止効果の得られる 限界角度が小さくなる (4 5 ° 程度) という傾向にあり、 前記上限値を超えると 反射防止効果を得るために多くの層数が必要となり、 その結果、 反射防止膜によ る光の吸収損失や散乱損失が増大するという傾向にある。 なお、 Νが、
3 ≤ Ν ≤ 7
であることは、 反射防止膜の光吸収率および光散乱率が低減されると共に製造が 比較的容易となる傾向にあるので特に好ましい。
更に、 前記多層反射防止膜においては、 波長 250nm以下の s偏光を 65° 以上 85° 以下のうちの何れかの入射角で入射させたときの反射率が 1.0%以下である ことが好ましく、 0.5%以下であることがより好ましい。
本発明の多層反射防止膜は、 図 1A及び図 1B に示すように低屈折率層 12及 び高屈折率層 13のみからなるものであっても s偏光に対する十分な反射防止効 果を有するが、 必要に応じて、 使用する光源の中心設計波長 (人。)および光の入射 角に対して反射防止効果を低減させない不在層、 すなわち、 光学的膜厚 (nd)が、 0.6人。 nd ≤ 0.7人。
である層を有することが好ましい。 なお、 上記式では不在層の光学的膜厚 (nd)と 中心設計波長 (人。)との関係が示されているが、 これは光学的膜厚 (nd)が層の屈 折率と入射角とに依存しているためである。 波長人の光に対する層の屈折率を n λ、 光の入射角を 0とすると、 層の光学的膜厚 (nd)は下記式:
Figure imgf000010_0001
で与えられる。 このような不在層を多層反射防止膜の最上層に配置することは、 反射防止効果が低減することなく前記多層反射防止膜の耐久性 (耐湿性等) が向 上する傾向にある。 また、 低屈折率層と高屈折率層との適合性、 又は層と基板と の適合性が不十分である場合、 これらの間に配置することは、 界面の変質や層の 剥離等が防止される傾向にある。 ここで、 前記不在層の配置される位置は低屈折 率層 12と高屈折率層 13との間、 基板 11と基板 11に接する層 12又は 13との 間、 もしくは基板から最も遠い側に配置された低屈折率層 12上の何れであって もよい。 また、 前記不在層の材料としては、 酸化硅素 (SiO2)、 フッ化マグネシゥ ム (MgF2)、 フッ化カルシウム(CaF2)、 フヅ化バリウム(BaF2)、 フッ化ス トロン チウム (SrF2)、 フッ化ネオジム(NdF3)、 フヅ化ランタン (LaF3)、 フッ化ガドリ二 ゥム (GdF3)、 フッ化デイスプロシゥム (DyF3)、 フッ化イッ トリウム (YF3)、 酸化 アルミ二ゥム (A1203)、 酸化ハフ二ゥム (Hf02)等が挙げられる。
以上説明したような積層構造を有する本発明の多層反射防止膜を、 上記の材料 を用いて、 従来より公知の真空蒸着方、 スパッタ法、 イオンプレーティング法等 の物理的成膜法;又は CVD法等の化学的成膜法、 等の方法により、 レンズ、 プ リズム、 プレート等の光学部材の基板上に成膜することによって、 250nm の s 偏光に対して優れた反射防止効果を有する光学部材を得ることができる。
[第 1の実施形態]
本発明の第 1 の実施形態として、 以下に示す積層構造を有する多層反射防止 膜が挙げられる。
光学的膜厚 第 1層 MgF。 0.323入。 LaF3 0.323 λ„
MgF2 0.323人。
LaF3 0.323 / 。
MgF2 0.323 / 。
基板 蛍石
上記第 1の実施形態においては、 低屈折率層がフッ化マグネシウム (MgF2)層、 高屈折率層がフッ化ランタン (LaF3)層である。ここで、設計中心波長 (人。;)は 193nm であり、 空気、 蛍石、 MgF2及び LaF3の屈折率はそれそれ 1.00、 1.50、 1.42及 び 1.69である。 また、
Figure imgf000011_0001
り、 各高屈折率層 (LaF3層)の光学的膜厚 (nHdH)が同一である。 そして、 niA=nHdH二 0.323入。であるから、 光学的周期長 (nd)は 0.646え。、 高屈折率層の光学的膜厚の 光学的周期長に対する比率 Γは 0.500である。
[第 2の実施形態]
本発明の第 2 の実施形態として、 以下に示す積層構造を有する多層反射防止 膜が挙げられる。
光学的膜厚
媒質 空気
A1F3 0.427人 0
NdF3 0.208人。
A1F3 0.427え。
3 0.208入。
A1F3 0.427え。
爾 3 0.208入。
基板 石英ガラス
上記第 2の実施形態においては、 低屈折率層がフッ化アルミニウム (A1F3)層、 高屈折率層がフッ化ネオジム (NdF3)層である。ここで、設計中心波長( λ。)は 193nm であり、 空気、石英ガラス、 A1F3及び NdF3の屈折率はそれぞれ 1.00、 1.55、 1.39 及び 1.72である。 また、 各低屈折率層 (A1F3層)の光学的膜厚 が同一であり、 各高屈折率層 (NdF3層)の光学的膜厚 (nHdH)が同一である。 そして、 光学的周期 長 (nd)は 0.635人。、 高屈折率層の光学的膜厚の光学的周期長に対する比率 Γは 0.328である。
[第 3の実施形態]
本発明の第 3 の実施形態として、 以下に示す積層構造を有する多層反射防止 膜が挙げられる。
光学的膜厚 +
媒質 空気
Si02 0.650 /1。
A1F3 0.427人。
3 0.208 Λ0
A1F3 0.427人。
蕭 3 0.208 / 。
A1F3 0.427人。
3 0.208入 0
基板 石英ガラス
上記第 3の実施形態においては、 基板 (石英ガラス)から最も遠い側に配置され た低屈折率層 (A1F3層)の上に、 更に不在層として光学的膜厚 (nd)が 0.650人。であ る酸化硅素 (Si02)層が配置されている以外は、上記第 2の実施形態と同様である。
[第 4の実施形態]
本発明の第 4 の実施形態として、 以下に示す積層構造を有する多層反射防止 膜が挙げられる。
光学的膜厚 Na具 0.310人。
LaF3 0.348人 0
Na3AlF6 0.310人。
基板 蛍石
上記第 4 の実施形態においては、 低屈折率層がへキサフルォロアルミン酸ナ トリウム (Na3AlF6)層、 高屈折率層がフッ化ランタン (LaF3)層である。 ここで、 設計中心波長 (入。)は 193nmであり、 空気、 蛍石、 Na3AlF6及び LaF3の屈折率 はそれぞれ 1.00、 1.50, 1.35及び 1.69である。 また、 各低屈折率層 (Na3AlF6層) の光学的膜厚 が同一であり、 各高屈折率層 (LaF3層)の光学的膜厚 (nHdH)が 同一である。 そして、 光学的周期長 (nd)は 0.658え。、 高屈折率層の光学的膜厚の 光学的周期長に対する比率 Γは 0.529である。
[第 5の実施形態]
本発明の第 5 の実施形態として、 以下に示す積層構造を有する多層反射防止 膜が挙げられる。
光学的膜厚
媒質 空気
MgF2 0.280入。
LaF3 0.384人 0
MgF2 0.280入。
LaF3 0.384入。
MgF2 0.280入。
LaF3 0.384人 0
MgF2 0.280 Λ0
LaF3 0.384え。
MgF2 0.280人。
LaF3 0.384人 0 基板 蛍石
上記第 5の実施形態においては、 低屈折率層がフッ化マグネシゥム (MgF2)層、 高屈折率層がフッ化ランタン (LaF3)層である。ここで、設計中心波長 (入。)は 193nm であり、 空気、 蛍石、 MgF2及び LaF3の屈折率はそれそれ 1.00、 1.52、 1.45及 び 1.72である。 また、 各低屈折率層 (Na3AlF6層)の光学的膜厚 ( )が同一であ り、 各高屈折率層 (LaF3層)の光学的膜厚 (nHdH)が同一である。 そして、 光学的周 期長 (nd)は 0.664人。、 高屈折率層の光学的膜厚の光学的周期長に対する比率 Γは 0.578である。
なお、 上記第 1〜第 5の実施形態においては、 各低屈折率層及び各高屈折率層 はそれそれ同一の化合物で形成されているが、 耐久性、 基板と膜との適合性等の 特性に応じて、 それぞれ互いに異なる材料を用いてもよいことは勿論である。 更 に、 本発明の多層反射防止膜は、 193nm の波長を有するエキシマレ一ザ光のみ ならず、 157nmの波長を有する F2レーザ光等のより短波長の紫外光に対しても 適用可能である。
[第 6の実施形態]
次に、 本発明の縮小投影露光装置の好適な実施形態の一例を図 2に示す。 図 2 は反射屈折光学系を備えた縮小投影露光装置の全体構成を示す概略模式 図である。 なお、 図 2 において投影光学系 208 の光軸 A Xに平行に Z軸を、 光 軸 A Xに垂直な面内において図 2 の紙面に平行に X軸を、 紙面に垂直に Y軸を 設定している。
図 2の縮小投影露光装置は 250n m以下の波長を有する照明光を供給するため の光源 201 を備えている。 光源 201 は、 共振のためのフロントミラ一 (半透過 性) とリアミラ一、 波長挟帯化のための波長選択素子 (回折格子、 プリズム、 ェ タロン等)、 発振波長の絶対値をモニタ一するための分光器、 レーザパワーのモ 二夕一用のディテクタ、 及びシャッターを有し、 光源 201 の内部には希ガスハ ライ ド等の混合ガスが封入されている。 このような光源 201 としては、 KrF ェ キシマレ一ザ (248nm)、 ArF エキシマレ一ザ (193nm)、 F2レーザ (157nm)等が挙 げられる。
光源 201 から射出された光は、 照明光学系 202 を介して所定のパターンが形 成されたフォトマスク 203 を均一に照明する。 なお、 光源 201 から照明光学系 202 までの光路には、 必要に応じて光路を偏光するための 1つ又は複数の折り曲 げミラーが配置される。 また、 照明光学系 202 は、 例えばフライアイレンズや 内面反射型ィンテグレー夕からなり所定のサイズ ·形状の面光源を形成するォプ ティカルインテグレ一夕や、 フォ トマスク 203 上での照明領域のサイズ ·形状 を規定するための視野絞り、 この視野絞りの像をマスク上へ投影する視野絞り結 像光学系などの光学系を有する。 更に、 光源 201 と照明光学系 202 との間の光 路はケ一シング 214で密封されており、 光源 201から照明光学系 202中の最も マスク側の光学部材までの空間は露光光の吸収率が低い不活性ガスで置換されて いる。
フォトマスク 203はマスクホルダ 204を介してマスクステージ 205上に X Y 平面に平行に保持されている。 フォトマスク 203 には転写すべきパターンが形 成されており、 パターン領域全体のうち Y方向に沿って長辺を有し且つ X方向に 沿って短辺を有する矩形状 (スリット状) のパターン領域が照明される。
マスクステージ 205 はマスク面 (X Y平面) に沿って二次元的に移動可能で あり、 その位置座標はマスク移動鏡 206 を用いた干渉計 207 によって計測され 且つ位置制御されるように構成されている。
フォトマスク 203 に形成されたパターンからの光は、 投影光学系 208 を介し て感光性基板であるウェハ 209 上にマスクパターン像を形成する。 ウェハ 209 はウェハホルダ 210 を介してウェハステージ 211 上に X Y平面に平行に保持さ れている。 そして、 フォトマスク 203 上での矩形状の照明領域に光学的に対応 するように、 ウェハ 209 上では Y方向に沿って長辺を有し且つ X方向に沿って 短辺を有する矩形状の露光領域にパターン像が形成される。 ウェハステージ 211はウェハ面 (XY平面) に沿って二次元的に移動可能であ り、 その位置座標はウェハ移動鏡 212 を用いた干渉計 213 によって計測され且 つ位置制御されるように構成されている。
また、 図 2 の縮小投影露光装置では、 投影光学系 208 の内部が気密状態を保 つように構成され、 投影光学系 208 の内部の気体は不活性ガスで置換されてい る。
更に、 照明光学系 202 と投影光学系 208 との間の狭い光路にはフォトマスク 203及びマスクステージ 205等が配置されているが、 フォトマスク 203及びマ スクステージ 205などを密封包囲するケーシング 215 の内部に不活性ガスが充 填されている。
また、 投影光学系 208 とウェハ 209 との間の狭い光路にはウェハ 209及びゥ ェハステージ 211などが配置されているが、 ウェハ 209及びウェハステージ 211 等を密封包囲するケーシング 216 の内部に窒素やヘリウムガスなどの不活性ガ スが充填されている。
このように、 光源 201 からウェハ 209 までの光路の全体に亘つて露光光がほ とんど吸収されることのなレ、雰囲気が形成されている。
上述したように、 投影光学系 208 によって規定されるフォトマスク 203 上の 視野領域 (照明領域) 及びウェハ 209 上の投影領域 (露光領域) は、 X方向に 沿って短辺を有する矩形状である。 したがって、 駆動系及び干渉計 (207、 213) 等を用いてフォトマスク 203及びウェハ 209の位置制御を行いながら、 矩形状 の露光領域及び照明領域の短辺方向すなわち X方向に沿ってマスクステージ 205 とウェハステージ 211 とを、 ひいてはフォトマスク 203 とウェハ 209 とを同期 的に移動 (走査) させることにより、 ウェハ 209 上には露光領域の長辺に等し い幅を有し且つウェハ 209 の走査量 (移動量) に応じた長さを有する領域に対 してマスクパターンが走査露光される。
本発明においては、 光源、 照射光学系及び投影光学系を構成する光学部材の少 なくとも一つが本発明の光学部材である。 また、 S 偏光用多層反射防止膜を有す る本発明の光学部材と、 p偏光用多層反射防止膜を有する光学部材と、 を併用す ることは、 装置の性能の最適化及びコンパクト化の点でより好ましい。
図 3は図 2にかかる投影光学系 208のレンズ構成の一例を示す概略図である。 図 3 に示す投影光学系 208 は、 第 1物体としてのレチクル R側より順に、 正 のパワーの第 1レンズ群 G 1と、 正のパワーの第 2レンズ群 G 2と、 負のパワー の第 3レンズ群 G 3と、 正のパワーの第 4レンズ群 G 4と、 負のパワーの第 5レ ンズ群 G 5と、 正のパワーの第 6レンズ群 G 6とを有し、 物体側 (レチクル R側) 及び像側 (ウェハ 側) においてほぼテレセントリックとなっており、 縮小倍率 を有するものである。 また、 この投影光学系の N . A . は 0 . 6、 投影倍率が 1 この投影光学系においては、 G 1〜G 6のレンズ群を構成するレンズのうち、 L 4 5、 L 4 6、 L 6 3、 L 6 5、 L 6 6、 L 6 7の 6箇所には、 色収差を補正 する目的でフッ化カルシウム単結晶からなるものを用い、 前記 6箇所以外のレン ズには石英ガラスからなるものを用いる。 ここで、 G 1〜G 6のレンズ群を構成 するレンズの少なくとも一つに本発明の光学部材を用いることが好ましい。更に、 s 偏光用多層反射防止膜を有する本発明の光学部材と、 p 偏光用反射防止膜を有 する光学部材とを併用することがより好ましい。
このように、 縮小投影露光装置の露光光源、 照明光学系及び投影光学系を構成 する光学部材の少なくとも 1つが本発明の光学部材であると、 250mn 以下の波 長を有する s偏光に対する反射率が低減されるので、 解像度の向上等の性能の最 適化が達成されると共に、 装置の設計における自由度が増大して装置の小型化が 可能となる。
実施例
以下、 実施例に基づいて本発明をより具体的に説明するが、 本発明は以下の実 施例に限定されるものではない 実施例 1
真空蒸着法により、 MgF2及び LaF3を交互に加熱蒸発させて蛍石基板上に成 膜させ、 以下に示す積層構造を有する多層反射防止被膜を備えた光学部材を作製 した。
光学的膜厚
媒質 空気
MgF2 0.323人。
LaF3 0.323人。
MgF2 0.323え。
LaF3 0.323入 Q
MgF2 0.323入。
基板 蛍石
なお、 成膜条件は以下の通りとした。
圧力: 1 X 10— 4 Torr以下
温度: 100°C以上
なお、 この光学部材の多層反射防止膜においては、 設計中心波長 (人。)を 193nm、 各低屈折率層 (MgF2層)の光学旳膜厚 (n^L)を 0.323人。、 各高屈折率層 (LaF3層) の光学的膜厚 (nHdH)を 0.323え。、 光学的周期長 (nd)を 0.646人。、 高屈折率層の光 学的膜厚の光学的周期長に対する比率 Γを 0.500とした。
このようにして得られた光学部材について、 波長 193nmの s偏光を斜入射さ せたときの反射率を測定した。 この測定により得られた反射率 (Rs)と s偏光の入 射角(0 )との関係を図 4 に示す。 図 4においては、 θ = 12。 のときに Rs = 0 で あり、 上記の多層反射防止膜が s偏光に対して高い反射防止効果を有することが 確認された。
実施例 2
多層反射防止膜の材料に A1F3及び NdF3を、 基板に石英ガラスを、 それぞれ 用い、 層数を 6 とし、 各層の光学的膜厚を以下の通りとしたこと以外は実施例 1と同様にして、 以下に示す積層構造を有する多層反射防止膜を備えた光学部材 を作製した。
光学的膜厚
媒質 空気
A1F3 0.427人。
3 0.208え。
A1F3 0.427え。
蕭 3 0.208え。
A1F3 0.427人。
爾 3 0.208人 0
基板 石英ガラス
なお、 この光学部材の多層反射防止膜においては、設計中心波長(人。)を 193nm、 各低屈折率層 (A1F3
Figure imgf000019_0001
を 0.427え。、 各高屈折率層 (NdF3層)の 光学的膜厚 (nHdH)を 0.208人。、 光学的周期長 (nd)を 0.635え。、 高屈折率層の光学 的膜厚の光学的周期長に対する比率 Γを 0.328とした。
このようにして得られた光学部材について、 実施例 1 と同様にして 193nmの 波長を有する s 偏光に対する反射率を測定した。 その結果を図 5 に示す。 図 5 においては、 θ = 80° のときに Rs は実質的に 0%であり、 上記の多層反射防止 膜が s偏光に対して高い反射防止効果を有することが確認された。
実施例 3
Si02を用いて最上層に不在層を成膜したこと以外は実施例 2 と同様にして、 以下に示す積層構造を有する多層反射防止膜を備えた光学部材を作製した。
光学的膜厚 第 1層 SiO, 0.650ん 第 2層 A1F, 0.427人 (
NdF3 0.208人,
第 4層 A1F3 0.427え。
第 5層 NdF3 0.208入。
第 6層 A1F3 0.427人。
第 7層 爾 3 0.208人。„
石英ガラス
なお、 :の光学部材の多層反射防止膜においては、 設計中心波長 (え。)を 193nm、 各低屈折率層 (A1F3層)の光学的膜厚 (riLd:)を 0.427人。、 各高屈折率層 (NdF3層)の 光学的膜厚 (nHdH)を 0.208え。、 不在層 (Si02層) の光学的膜厚 (n'd')を 0.650人。、 光学的周期長 (nd)を 0.635人。、 高屈折率層の光学的膜厚の光学的周期長に対する 比率 Γを 0.328とした。
このようにして得られた光学部材について、 実施例 1 と同様にして 193nmの 波長を有する s偏光に対する反射率を測定した。 その結果を図 6 に示す。 図 6 においては、 0 =80° のときに Rs は実質的に 0%であり、 上記の多層反射防止 膜が s偏光に対して高い反射防止効果を有することが確認された。
実施例 4
多層反射防止膜の材料に Na3AlF6及び LaF3を用い、 層数を 3とし、 各層の光 学的膜厚を以下の通りとしたこと以外は実施例 1と同様にして、 以下に示す積層 構造を有する多層反射防止膜を備えた光学部材を作製した。
光学的膜厚
媒質 空気
Na3AlF6 0.310入。
LaF3 0.348入。
Na3AlF6 0.310人 0
基板 蛍石 なお、 この光学部材の多層反射防止膜においては、 設計中心波長(人。)を 193nm、 各低屈折率層 (Na3AlF6層)の光学的膜厚 ^ を 0.310え。、各高屈折率層 (LaF3層) の光学的膜厚 (nHdH)を 0.348え。、 光学的周期長 (nd)を 0.658人。、 高屈折率層の光 学的膜厚の光学的周期長に対する比率 Γを 0.529とした。
このようにして得られた光学部材について、 実施例 1 と同様にして 193nmの 波長を有する s 偏光に対する反射率を測定した。 その結果を図 7 に示す。 図 7 においては、 0 =65° のときに Rs は実質的に 0%であり、 上記の多層反射防止 膜が s偏光に対して高い反射防止効果を有することが確認された。
実施例 5
多層反射防止膜の層数を 10層とし、 各層の光学的膜厚を以下の通りとしたこ と以外は実施例 1と同様にして、 以下に示す積層構造を有する多層反射防止膜を 備えた光学部材を作製した。
光学的膜厚
媒質 空気
MgF2 0.280入。
LaF3 0.384入。
MgF2 0.280入 0
¾ 4 曰 LaF3 0.384人。
MgF2 0.280人。
LaF3 0.384 λ0
MgF2 0.280入。
LaF3 0.384人 0
MgF2 0.280入。
第 10層 LaF3 0·384 λ0
基板 蛍石
なお、 この光学部材の多層反射防止膜においては、 設計中心波長(え。)を 193nm、 各低屈折率層 (MgF2層)の光学的膜厚 (ivljを 0.280人。、 各高屈折率層 (LaF3層) の光学的膜厚 (nHdH)を 0.384人。、 光学的周期長 (nd)を 0.664人。、 高屈折率層の光 学的膜厚の光学的周期長に対する比率 Γを 0.578とした。
このようにして得られた光学部材について、 実施例 1 と同様にして 193nmの 波長を有する s偏光に対する反射率を測定した。 その結果を図 8 に示す。 図 8 においては、 0 = 85° のときに Rs は実質的に 0%であり、 上記の多層反射防止 膜が s偏光に対して高い反射防止効果を有することが確認された。 産業上の利用可能性
以上説明したように、 本発明の多層反射防止膜を光学部材に成膜させることに より、 250nm以下の波長を有する s偏光に対する反射率が十分に低減される。 従って、 このような多層反射防止膜を備えた光学部材を縮小投影露光装置の光学 系に用いることによって、 性能の最適化やコンパクト化の点で装置の設計におけ る自由度が増大する。

Claims

青求の範囲
1. 少なくとも 1つの低屈折率層と少なくとも 1つの高屈折率層とが交互に 積層された積層体を備え、 該積層体における最外層のうちの少なくとも一方が低 屈折率層であり、 該低屈折率層の側から入射する 250nm以下の特定波長を有す る s偏光に対して反射防止効果を有する多層反射防止膜。
2. 前記低屈折率層の数 (NJが 2以上であり、 該低屈折率層が互いに実質的 に同一の光学的膜厚を有する、 請求項 1に記載の多層反射防止膜。
3. 前記低屈折率層の数 (NJ及び前記高屈折率層の数 (NH)がそれぞれ 2以上 であり、 該低屈折率層が互いに実質的に同一の光学的膜厚を有し、 且つ該高屈折 率層が互いに実質的に同一の光学的膜厚を有する、 請求項 1に記載の多層反射防 止膜。
4. 光学的周期長 (nd)が、
0.6入。 ≤ nd ≤ 0.7え。
(式中、 人。は入射する s偏光の設計中心波長を表す)
であり、 前記高屈折率層の光学的膜厚 (nHdH)の前記光学的周期長 (nd)に対する比 率(Γ = nHdH/nd)が、
0.3 ≤ Γ ≤ 0.75
である請求項 1に記載の多層反射防止膜。
5. 前記低屈折率層と前記高屈折率層との総数 (N)が
3 ≤ N ≤ 13
である請求項 1に記載の多層反射防止膜。
6. 前記積層体における前記低屈折率層と前記高屈折率層との間、 あるいは 前記積層体の最外層の外側に、 光学的膜厚 (nd)が
0.6え。 ^ nd ≤ 0.7入。
(式中、 人0は入射する s偏光の設計中心波長を表す) である不在層を配置した、 請求項 1に記載の多層反射防止膜。
7. 前記低屈折率層が、 フッ化マグネシウム、 フッ化アルミニウム、 フッ化 ナトリウム、 フッ化リチウム、 フッ化カルシウム、 フッ化バリウム、 フヅ化スト ロンチウム、 クリオライ ト、 チォライ ト及び酸化硅素からなる群より選ばれる少 なくとも一種の化合物を含み、 且つ前記高屈折率層が、 フッ化ネオジム、 フッ化 ランタン、 フッ化ガドリニウム、 フッ化デイスプロシゥム、 フッ化イットリウム、 フッ化鉛、 酸化アルミニウム及び酸化ハフニウムからなる群より選ばれる少なく とも一種の化合物を含む、 請求項 1に記載の多層反射防止膜。
8. 前記 s偏光の波長が 1 9 3 n mである、 請求項 1の多層反射防止膜。
9. 前記 s偏光の波長が 1 5 7 n mである、 請求項 1の多層反射防止膜。
10. 250nm以下の特定波長を有する s偏光が透過することが可能である基 板と、
前記基板上に配置されており、 少なくとも 1つの低屈折率層と少なくとも 1つ の高屈折率層とが交互に積層された積層体を備え、 該積層体における最外層のう ちの少なくとも基板と反対側の層が低屈折率層であり、 該低屈折率層の側から入 射する 250nm以下の特定波長を有する s偏光に対して反射防止効果を有する多 層反射防止膜と、
を備えた光学部材。
11. 露光光源と、 パターン原像の形成されたフォトマスクと、 前記光源か ら出力される光を前記フォトマスクに照射する照射光学系と、 前記フォトマスク から出力されるパターン像を感光性基板上に投影する投影光学系と、 前記フォト マスクと前記感光性基板との位置合わせを行うァライメント(alignment)系と、 を有する縮小投影露光装置であって、
前記光源、照明光学系及び投影光学系を構成する光学部材の少なくとも 1つが、 250nm以下の特定波長を有する s偏光が透過することが可能である基板と、 前記基板上に配置されており、 少なくとも 1つの低屈折率層と少なくとも 1つ の高屈折率層とが交互に積層された積層体を備え、 該積層体における最外層のう ちの少なくとも基板と反対側の層が低屈折率層であり、 該低屈折率層の側から入 射する 250nm以下の特定波長を有する s偏光に対して反射防止効果を有する多 層反射防止膜と、
を備えた光学部材である縮小投影露光装置。
PCT/JP2000/001950 1999-03-29 2000-03-29 Film multicouche antireflechissant, composant optique, et systeme reduisant l'exposition a des projections WO2000058761A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10080898T DE10080898T1 (de) 1999-03-29 2000-03-29 Mehrschicht-Antireflexionsfilm, optisches Element und Reduktionsprojektionsbelichtungsapparat
US09/684,517 US6590702B1 (en) 1999-03-29 2000-10-10 Multilayer antireflection film, optical member, and reduction projection exposure apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8727599 1999-03-29
JP11/87275 1999-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/684,517 Continuation-In-Part US6590702B1 (en) 1999-03-29 2000-10-10 Multilayer antireflection film, optical member, and reduction projection exposure apparatus

Publications (1)

Publication Number Publication Date
WO2000058761A1 true WO2000058761A1 (fr) 2000-10-05

Family

ID=13910232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001950 WO2000058761A1 (fr) 1999-03-29 2000-03-29 Film multicouche antireflechissant, composant optique, et systeme reduisant l'exposition a des projections

Country Status (3)

Country Link
US (1) US6590702B1 (ja)
DE (1) DE10080898T1 (ja)
WO (1) WO2000058761A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009015A1 (fr) * 2001-07-18 2003-01-30 Nikon Corporation Element optique comportant un film de fluorure de lanthane
WO2004006310A1 (ja) * 2002-07-09 2004-01-15 Nikon Corporation 露光装置
JP2004046079A (ja) * 2002-05-22 2004-02-12 Canon Inc 反射防止膜、該反射防止膜を有する光学素子及び光学系
US6732546B1 (en) 1999-08-12 2004-05-11 Nikon Corporation Product method of synthetic silica glass and thermal treatment apparatus
JP2005136244A (ja) * 2003-10-31 2005-05-26 Semiconductor Leading Edge Technologies Inc 露光方法
US7301695B2 (en) 2004-06-16 2007-11-27 Canon Kabushiki Kaisha Anti-reflective film and optical element having anti-reflective film
US7544619B2 (en) 2005-09-29 2009-06-09 Renesas Technology Corp. Method of fabricating semiconductor device
US8552443B2 (en) 2009-02-20 2013-10-08 Lg Innotek Co., Ltd. Light emitting device, light emitting device package and lighting system including the same
JP2017054105A (ja) * 2015-09-11 2017-03-16 旭硝子株式会社 マスクブランク

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10064143A1 (de) * 2000-12-15 2002-06-20 Zeiss Carl Reflexionsminderungsbeschichtung für Ultraviolettlicht bei großen Einfallswinkeln
NL1018139C2 (nl) * 2001-05-23 2002-11-26 Stichting Fund Ond Material Meerlagenspiegel voor straling in het XUV-golflengtegebied en werkwijze voor de vervaardiging daarvan.
JP2003149404A (ja) * 2001-11-09 2003-05-21 Canon Inc 光学薄膜およびその製造方法、及び光学薄膜による光学素子、光学系、該光学系を備える撮像装置、記録装置、露光装置
US8049964B2 (en) * 2005-06-14 2011-11-01 Carl Zeiss Smt Gmbh Optical element with an antireflection coating, projection objective, and exposure apparatus comprising such an element
US20070099001A1 (en) * 2005-10-27 2007-05-03 Cymer, Inc. Blister resistant optical coatings
US7692855B2 (en) * 2006-06-28 2010-04-06 Essilor International Compagnie Generale D'optique Optical article having a temperature-resistant anti-reflection coating with optimized thickness ratio of low index and high index layers
JP2008020563A (ja) * 2006-07-11 2008-01-31 Murakami Corp 誘電体多層膜フィルタ
JP2008098299A (ja) * 2006-10-10 2008-04-24 Mitsubishi Electric Corp 半導体光素子及びその製造方法
EP1965229A3 (en) * 2007-02-28 2008-12-10 Corning Incorporated Engineered fluoride-coated elements for laser systems
DE102007025600B4 (de) * 2007-05-31 2009-05-28 Schott Ag Interferenzfilter und Verfahren zu dessen Herstellung
DE102011054837A1 (de) 2011-10-26 2013-05-02 Carl Zeiss Laser Optics Gmbh Optisches Element
US9835952B2 (en) * 2013-03-14 2017-12-05 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and methods for a narrow band high transmittance interference filter
KR20160034534A (ko) * 2014-09-19 2016-03-30 삼성전자주식회사 반도체 발광 소자
DE102015100091A1 (de) 2015-01-07 2016-07-07 Rodenstock Gmbh Schichtsystem und optisches Element mit einem Schichtsystem
JP6549458B2 (ja) * 2015-09-30 2019-07-24 株式会社トプコン 反射防止膜、光学素子、及び眼科装置
US11650361B2 (en) * 2018-12-27 2023-05-16 Viavi Solutions Inc. Optical filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127701A (ja) * 1985-11-29 1987-06-10 Toshiba Corp 反射防止膜
JPH10253802A (ja) * 1997-03-07 1998-09-25 Nikon Corp 反射防止膜
US5963365A (en) * 1996-06-10 1999-10-05 Nikon Corporation three layer anti-reflective coating for optical substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622225A (en) * 1969-12-22 1971-11-23 Union Carbide Corp Single plate laser beam polarizer
US5764416A (en) * 1988-04-19 1998-06-09 Litton Systems, Inc. Fault tolerant antireflective coatings
US5339441A (en) * 1992-07-02 1994-08-16 Advanced Intervention Systems, Inc. Polarizing device with optically contacted thin film interface for high power density ultraviolet light
US5521759A (en) * 1993-06-07 1996-05-28 National Research Council Of Canada Optical filters for suppressing unwanted reflections
JP4034365B2 (ja) * 1995-03-09 2008-01-16 大日本印刷株式会社 超微粒子含有反射防止フィルム、偏光板及び液晶表示装置
US5925438A (en) * 1996-06-17 1999-07-20 Dai Nippon Printing Co., Ltd. Antireflection film
JP4161387B2 (ja) 1997-01-23 2008-10-08 株式会社ニコン 多層反射防止膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127701A (ja) * 1985-11-29 1987-06-10 Toshiba Corp 反射防止膜
US5963365A (en) * 1996-06-10 1999-10-05 Nikon Corporation three layer anti-reflective coating for optical substrate
JPH10253802A (ja) * 1997-03-07 1998-09-25 Nikon Corp 反射防止膜

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6732546B1 (en) 1999-08-12 2004-05-11 Nikon Corporation Product method of synthetic silica glass and thermal treatment apparatus
WO2003009015A1 (fr) * 2001-07-18 2003-01-30 Nikon Corporation Element optique comportant un film de fluorure de lanthane
US6809876B2 (en) 2001-07-18 2004-10-26 Nikon Corporation Optical element equipped with lanthanum fluoride film
JP2004046079A (ja) * 2002-05-22 2004-02-12 Canon Inc 反射防止膜、該反射防止膜を有する光学素子及び光学系
WO2004006310A1 (ja) * 2002-07-09 2004-01-15 Nikon Corporation 露光装置
JP2005136244A (ja) * 2003-10-31 2005-05-26 Semiconductor Leading Edge Technologies Inc 露光方法
US7301695B2 (en) 2004-06-16 2007-11-27 Canon Kabushiki Kaisha Anti-reflective film and optical element having anti-reflective film
US7544619B2 (en) 2005-09-29 2009-06-09 Renesas Technology Corp. Method of fabricating semiconductor device
US7935636B2 (en) 2005-09-29 2011-05-03 Renesas Electronics Corporation Method of fabricating semiconductor device
US8552443B2 (en) 2009-02-20 2013-10-08 Lg Innotek Co., Ltd. Light emitting device, light emitting device package and lighting system including the same
JP2017054105A (ja) * 2015-09-11 2017-03-16 旭硝子株式会社 マスクブランク

Also Published As

Publication number Publication date
DE10080898T1 (de) 2001-06-28
US6590702B1 (en) 2003-07-08

Similar Documents

Publication Publication Date Title
WO2000058761A1 (fr) Film multicouche antireflechissant, composant optique, et systeme reduisant l&#39;exposition a des projections
US7583443B2 (en) Reflective optical element for ultraviolet radiation, projection optical system and projection exposure system therewith, and method for forming the same
US5850309A (en) Mirror for high-intensity ultraviolet light beam
US6310905B1 (en) Mirror for an ultraviolet laser and method
US5963365A (en) three layer anti-reflective coating for optical substrate
US9684252B2 (en) Optical element with an antireflection coating, projection objective, and exposure apparatus comprising such an element
JP2007294979A (ja) マイクロリソグラフィ用の紫外線偏光ビームスプリッタ
WO2001023933A1 (fr) Systeme optique de projection
WO1999052004A1 (fr) Appareil et procede d&#39;exposition a projection, et systeme optique reflechissant a refraction
TW200908083A (en) Exposure apparatus and semiconductor device fabrication method
JPH10268106A (ja) 多層反射防止膜
US6967771B2 (en) Antireflection coating for ultraviolet light at large angles of incidence
JP2006227099A (ja) 紫外光用反射光学素子,光学系,光学装置及び露光装置
JPH09258006A (ja) 反射防止膜及びそれを施した光学系
JP2004302113A (ja) 反射防止膜、光学部材、光学系及び投影露光装置、並びに反射防止膜の製造方法
JPH10160915A (ja) エキシマレーザー用ミラー
JPH10253802A (ja) 反射防止膜
JP2017083789A (ja) 反射光学素子及び露光装置
JP2004260081A (ja) 紫外域用反射ミラー装置及びそれを用いた投影露光装置
US8179520B2 (en) Optical element, projection optical system, exposure apparatus, and device fabrication method
JPH11167003A (ja) 2波長反射防止膜
JP2004260080A (ja) 紫外域用反射ミラー及びそれを用いた投影露光装置
JP2002189101A (ja) 反射防止膜、光学素子及び露光装置
JP3720609B2 (ja) 反射防止膜及びそれを施した光学系
JP2000357654A (ja) 反射防止膜、光学素子、露光装置、及び電子物品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

WWE Wipo information: entry into national phase

Ref document number: 09684517

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 10080898

Country of ref document: DE

Date of ref document: 20010628

WWE Wipo information: entry into national phase

Ref document number: 10080898

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607