WO2000052397A1 - Dispositif frigorifique - Google Patents

Dispositif frigorifique Download PDF

Info

Publication number
WO2000052397A1
WO2000052397A1 PCT/JP2000/001183 JP0001183W WO0052397A1 WO 2000052397 A1 WO2000052397 A1 WO 2000052397A1 JP 0001183 W JP0001183 W JP 0001183W WO 0052397 A1 WO0052397 A1 WO 0052397A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
side pipe
less
refrigeration
weight
Prior art date
Application number
PCT/JP2000/001183
Other languages
English (en)
French (fr)
Inventor
Koichi Kita
Ryuzaburo Yajima
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to DE60032748T priority Critical patent/DE60032748T2/de
Priority to US09/914,535 priority patent/US6739143B1/en
Priority to EP00906585A priority patent/EP1162413B1/en
Priority to AU28240/00A priority patent/AU766849B2/en
Publication of WO2000052397A1 publication Critical patent/WO2000052397A1/ja
Priority to HK02106425.0A priority patent/HK1044983B/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus using a single refrigerant of R32 or a mixed refrigerant containing R32.
  • each of the above alternative refrigerants has a low ozone depletion potential, but a global warming potential (GWP) equivalent to that of R22. Therefore, the above alternative refrigerants cannot be said to be sufficiently satisfactory from the viewpoint of preventing global warming.
  • GWP global warming potential
  • the present invention has been made in view of the above, and an object of the present invention is to provide a refrigeration apparatus that can effectively prevent the global warming by effectively utilizing the characteristics of R32. . Disclosure of the invention
  • the present invention sets the pipe diameter of the gas-side pipe of the refrigerant circuit to be the same as the conventional one so as to reduce the amount of refrigerant charged in the refrigerant circuit while maintaining the performance of the apparatus at the same level as before.
  • the diameter of the liquid side piping was set smaller than before.
  • the first invention is directed to a refrigeration apparatus including a refrigerant circuit (10) forming a refrigeration cycle.
  • the ratio dg / d1 of the diameter dg of the gas side pipe (31) of the refrigerant circuit (10) to the diameter dl of the liquid side pipe (32) of the refrigerant circuit (10) is set to 2.6 or more. I have.
  • another invention forms a refrigeration cycle by using a mixed refrigerant of R32 and H125 or a single refrigerant of R32 of 75% by weight or more and less than 100% by weight as a refrigerant. It is intended for refrigeration equipment equipped with a refrigerant circuit (10).
  • the liquid side pipe (32) and the gas side pipe (31) of the refrigerant circuit (10) are the ratio of the diameter dg of the gas side pipe (31) to the diameter d1 of the liquid side pipe (32). It is formed so that dg / d1 becomes 2.6 or more.
  • the diameter means an outer diameter or an inner diameter.
  • another invention forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 as a refrigerant at 75% by weight or more and less than 100% by weight. It is intended for refrigeration equipment that has a refrigerant circuit (10) and has a cooling rating of more than 5 kW and less than 9 kW.
  • the liquid side pipe (32) and the gas side pipe (31) of the refrigerant circuit (10) have a ratio dg / dg of the diameter dg of the gas side pipe (31) to the diameter d1 of the liquid side pipe (32).
  • dl is formed to be 2.1 or more.
  • another invention forms a refrigeration cycle by using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 as a refrigerant of not less than 5% by weight and less than 100% by weight.
  • Refrigerant cycle It is intended for refrigeration systems that have road (10) and have a rated cooling capacity of more than 5 kW and less than 9 kW.
  • the liquid side pipe (32) and the gas side pipe (31) of the refrigerant circuit (10) have a ratio dg / dg of the diameter dg of the gas side pipe (31) to the diameter d1 of the liquid side pipe (32). It is formed so that dl is in the range of 2.1.3.5.
  • Another invention provides a refrigerant circuit (10) that forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 of 75% by weight or more and less than 100% by weight as a refrigerant. It is intended for refrigeration equipment whose cooling capacity is greater than 5 kW and 9 kW or less.
  • the liquid side pipe (32) and the gas side pipe (31) of the refrigerant circuit (10) have a ratio dg / dg of the diameter dg of the gas side pipe (31) to the diameter d1 of the liquid side pipe (32).
  • dl is formed in the range of 2.4 to 3.2.
  • another invention provides a refrigerant circuit (10) for forming a refrigeration cycle using a mixed refrigerant of R32 and H125 of not less than 75% by weight and less than 100% by weight or a single refrigerant of R32 as a refrigerant. It is intended for refrigeration equipment whose cooling capacity is greater than 5 kW and 9 kW or less.
  • the liquid-side pipe (32) and the gas-side pipe (31) of the refrigerant circuit (10) are defined by a ratio dg / dg of the diameter dg of the gas-side pipe (31) to the diameter d1 of the liquid-side pipe (32).
  • dl is formed in the range of 2.6 to 3.0.
  • Another invention relates to a refrigerant circuit (10) that forms a refrigeration cycle by using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 of 75% by weight or more and less than 100% by weight as a refrigerant. It is intended for refrigeration equipment with a rated cooling capacity of 5 kW or less or greater than 9 kW.
  • the liquid side pipe (32) and the gas side pipe (31) of the refrigerant circuit (10) have a ratio dg / dg of the diameter dg of the gas side pipe (31) to the diameter d1 of the liquid side pipe (32). It is formed so that dl is 2.6 or more.
  • Another invention relates to a refrigerant circuit (10) that forms a refrigeration cycle by using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 of 75% by weight or more and less than 100% by weight as a refrigerant. It is intended for refrigeration equipment with a rated cooling capacity of 5 kW or less or greater than 9 kW.
  • the liquid side pipe (32) and the gas side pipe (31) of the refrigerant circuit (10) have a ratio dg / dg of the diameter dg of the gas side pipe (31) to the diameter d1 of the liquid side pipe (32).
  • dl It is formed to be in the range of 2.6 to 3.5.
  • another invention forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 as a refrigerant at 75% by weight or more and less than 100% by weight. It is intended for refrigeration systems that have a refrigerant circuit (10) and have a rated cooling capacity of 5 kW or less or greater than 9 kW.
  • the liquid side pipe (32) and the gas side pipe (31) of the refrigerant circuit (10) have a ratio dg / dg of the diameter dg of the gas side pipe (31) to the diameter d1 of the liquid side pipe (32). It is formed so that d1 is in the range of 2.8 to 3.3.
  • another invention forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 as a refrigerant at 75% by weight or more and less than 100% by weight. It is intended for refrigeration systems that have a refrigerant circuit (10) and have a rated cooling capacity of 5 kW or less or greater than 9 kW.
  • the liquid side pipe (32) and the gas side pipe (31) of the refrigerant circuit (10) have a ratio dg / dg of the diameter dg of the gas side pipe (31) to the diameter d1 of the liquid side pipe (32). It is formed so that d1 is in the range of 2.9 to 3.1.
  • another invention forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 as a refrigerant at 75% by weight or more and less than 100% by weight. It is intended for refrigeration equipment that has a refrigerant circuit (10) and has a rated cooling capacity of 5 kW or less.
  • the liquid side pipe (32) of the refrigerant circuit (10) is formed by a pipe having an inner diameter of 4.2 mm or less.
  • another invention forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 as a refrigerant at 75% by weight or more and less than 100% by weight. It is intended for refrigeration equipment that has a refrigerant circuit (10) and has a rated cooling capacity of 5 kW or less.
  • the liquid side pipe (32) of the refrigerant circuit (10) has an inner diameter of 3.2 mn! ⁇ 4.2 mm is formed by the tubing.
  • another invention forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 as a refrigerant at 75% by weight or more and less than 100% by weight. It is intended for refrigeration equipment that has a refrigerant circuit (10) and has a rated cooling capacity of 5 kW or less.
  • the liquid side pipe (32) of the refrigerant circuit (10) has an inner diameter of 3.5 mm to 3.9 mm. It is formed by piping.
  • another invention provides a refrigerant circuit (10) that forms a refrigeration cycle using a refrigerant mixture of R32 and 125 or at least 75% by weight and less than 100% by weight or a single refrigerant of R32 as a refrigerant. It is intended for refrigeration equipment with a cooling rating of 5 kW or less.
  • the liquid side pipe (32) of the refrigerant circuit (10) is formed by a pipe having an inner diameter of 3.6 mm to 3.8 mm.
  • the liquid side pipe (32) has an inner diameter of 3.7 or less.
  • Another invention provides a refrigerant circuit (10) that forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 of 75% by weight or more and less than 100% by weight as a refrigerant. It is intended for refrigeration equipment whose cooling capacity is greater than 5 kW and less than 22.4 kW.
  • the liquid side pipe (32) of the refrigerant circuit (10) is formed by a pipe having an inner diameter of 7. Omm or less.
  • Another invention provides a refrigerant circuit (10) that forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 of 75% by weight or more and less than 100% by weight as a refrigerant. It is intended for refrigeration equipment whose cooling capacity is greater than 5 kW and less than 22.4 kW.
  • the liquid side pipe (32) of the refrigerant circuit (10) is formed by a pipe having an inner diameter of 5.4 mm to 7.0 mm.
  • another invention provides a refrigerant circuit (10) that forms a refrigeration cycle using a mixed refrigerant of H32 and R125 or a single refrigerant of R32 of 75% by weight or more and less than 100% by weight as a refrigerant. It is intended for refrigeration equipment whose cooling capacity is greater than 5 kW and less than 22.4 kW.
  • the liquid side pipe (32) of the refrigerant circuit (10) has an inner diameter of 5.7mn! It is formed by piping that is ⁇ 6.7 mm.
  • Another invention provides a refrigerant circuit (10) that forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 of 75% by weight or more and less than 100% by weight as a refrigerant. It is intended for refrigeration equipment whose cooling capacity is greater than 5 kW and less than 22.4 kW.
  • the liquid side pipe (32) of the refrigerant circuit (10) has an inner diameter of g PT 1
  • the liquid-side pipe (32) has an inner diameter of 6.2 or less.
  • another invention forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 as a refrigerant at 75% by weight or more and less than 100% by weight. It is intended for refrigeration equipment with a refrigerant circuit (10) and rated cooling capacity of 22.4 kW or more.
  • the liquid side pipe (32) of the refrigerant circuit (10) is formed by a pipe having an inner diameter of 9.8 mm or less.
  • another invention forms a refrigeration cycle by using a mixed refrigerant of R32 and H125 or a single refrigerant of H32 as a refrigerant at 75% by weight or more and less than 100% by weight. It is intended for refrigeration equipment that has a refrigerant circuit (10) and has a rated cooling capacity of 22.4 kW or more.
  • the liquid side pipe (32) of the refrigerant circuit (10) has an inner diameter of 7.5 mn! It is formed by piping that is ⁇ 9.8 mm.
  • another invention forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 as a refrigerant at 75% by weight or more and less than 100% by weight. It is intended for refrigeration equipment that has a refrigerant circuit (10) and has a rated cooling capacity of 22.4 kW or more.
  • the liquid side pipe (32) of the refrigerant circuit (10) is formed by a pipe having an inner diameter of 7.8 mm to 9.5 mm.
  • another invention forms a refrigeration cycle using a mixed refrigerant of R32 and R125 or a single refrigerant of R32 as a refrigerant at 75% by weight or more and less than 100% by weight. It is intended for refrigeration equipment that has a refrigerant circuit (10) and has a rated cooling capacity of 22.4 kW or more.
  • the liquid side pipe (32) of the refrigerant circuit (10) is formed by a pipe having an inner diameter of 8.1 mm to 9.1 mm.
  • the liquid side pipe (32) has an inner diameter of 8.7 or less.
  • the inner diameter of the liquid side pipe (32) of the refrigerant circuit (10) is smaller than before.
  • R32 single refrigerant or R32 not less than 75% by weight and less than 100% by weight
  • the refrigerant containing R32 / 125 contains a smaller pressure loss than R22 as a refrigerant characteristic. Therefore, even if the inner diameter of the liquid side pipe (32) becomes smaller, the pressure loss in the pipe is maintained at the same level as before.
  • the liquid side pipe (32) may be the entire pipe between the condenser outlet and the evaporator inlet, or may be a part thereof.
  • the gas side pipe (31) may be the entire pipe between the evaporator outlet and the condenser inlet, or the whole between the evaporator outlet and the compressor suction side. Or a part of them.
  • the gas side pipe (31) and the liquid side pipe (32) may be connection pipes for connecting the indoor unit (17) and the outdoor unit (16).
  • the liquid side pipe (32) may be a liquid side connection pipe for connecting the indoor unit (17) and the outdoor unit (16).
  • connection pipe is likely to be a long pipe, the effect of reducing the refrigerant charge is more remarkably exhibited.
  • the refrigerant is preferably a single refrigerant of R32. Effect of one invention—
  • the inner diameter of the liquid side pipe (32) is smaller than that of the conventional apparatus using R22, so that the refrigerant circuit (10) can maintain the same performance as the conventional one.
  • Refrigerant charge can be reduced.
  • the R32 single refrigerant or the R32 mixed refrigerant can be used more effectively than before, and global warming is achieved by reducing the global warming potential of the refrigerant itself and reducing the refrigerant charge. The effect can be greatly reduced. Therefore, An apparatus suitable for global environmental conservation can be provided.
  • FIG. 1 is a refrigerant circuit diagram of the air conditioner.
  • Figure 2 is a Mollier diagram.
  • Figure 3 is a table showing the results of calculating the ratio of the inner diameter of the heat transfer tubes.
  • FIG. 4 is a sectional view of a grooved tube.
  • Figure 5 is a Mollier diagram.
  • FIG. 6 is a table showing calculation results of the inner diameter ratio of the liquid side pipe.
  • FIG. 7 is a diagram showing the pipe diameter of the gas side pipe and the liquid side pipe for R22 with respect to the rated cooling capacity.
  • FIG. 8 is a diagram showing a small diameter ratio of the gas side pipe and the liquid side pipe to the rated cooling capacity.
  • FIG. 9 is a diagram showing the relationship between the R22 copper tube and the R32 copper tube.
  • Figure 10 is a table showing global warming potential.
  • the refrigeration apparatus is an air conditioner (1) formed by connecting an indoor unit (17) and an outdoor unit (16).
  • the refrigerant circuit (10) of the air conditioner (1) uses a single refrigerant of R32 (hereinafter referred to as R32 single refrigerant) as a refrigerant, or 75% by weight or more and 100% by weight.
  • % Of a mixed refrigerant of R32 and R125 (a mixed refrigerant rich in R32 composition, hereinafter referred to as an H32 / R125 mixed refrigerant) is used as a refrigerant.
  • the refrigerant circuit (10) is a refrigerant circuit forming a vapor compression refrigeration cycle, and is a compressor (11), a four-way switching valve (12), an outdoor heat exchanger (13), and an expansion mechanism.
  • the gas side pipe (31) and the liquid side pipe in which the expansion valve (14) and the indoor heat exchanger (15) are refrigerant pipes in this order. (32).
  • the discharge side of the compressor (11) and the first port (12a) of the four-way switching valve (12) are connected by a first gas side pipe (21).
  • the second port (12b) of the four-way switching valve (12) and the outdoor heat exchanger (13) are connected by the second gas side pipe (22).
  • the outdoor heat exchanger (13) and the expansion valve (14) are connected by the first liquid side pipe (25).
  • the expansion valve (14) and the indoor heat exchanger (15) are connected by the second liquid side pipe (26).
  • the indoor heat exchanger (15) and the third port (12c) of the four-way switching valve (12) are connected by a third gas side pipe (23).
  • the fourth port (12d) of the four-way switching valve (12) and the suction side of the compressor (11) are connected by a fourth gas side pipe (24).
  • the valve (14) and the fourth gas side pipe (24) are housed in an outdoor unit (16) together with an outdoor blower (not shown).
  • the indoor heat exchanger (15) is housed in an indoor unit (17) together with an indoor blower (not shown).
  • a part of the second liquid-side pipe (26) and the third gas-side pipe (23) constitutes a so-called communication pipe that connects the outdoor unit (16) and the indoor unit (17).
  • R32 single refrigerant or R32 / R125 mixed refrigerant has a greater refrigeration effect per unit volume than R222, the required amount of refrigerant circulation to achieve the specified capacity is R2. Less than 2 Therefore, in the case of the R32 single refrigerant or the R321 / 225 mixed refrigerant, when the inner diameter of the heat transfer tube of the heat exchanger is fixed, the refrigerant circulation amount is reduced, and the pressure loss in the tube is R22. It is smaller than.
  • the part of the refrigerant circuit (10) that has the largest amount of refrigerant is the outdoor heat exchanger. (13). Therefore, by reducing the diameter of the heat transfer tube of the outdoor heat exchanger (13), the amount of refrigerant charged can be effectively reduced.
  • the outdoor heat exchanger (13) and the indoor heat exchanger (15) will be downsized by reducing the diameter of the heat transfer tubes, so that the outdoor unit (16) and the indoor unit (17) will be made more compact. Is also possible.
  • the diameter of the heat transfer tubes of the outdoor heat exchanger (13) and the indoor heat exchanger (15) must be reduced until the pressure loss in the tubes becomes the same level as R22. did.
  • the amount of change in the refrigerant saturation temperature corresponding to the pressure loss in the heat transfer tube is considered, and the outdoor heat exchange is performed so that the amount of change in temperature becomes equal to R22.
  • the inner diameter of the heat transfer tubes of the heat exchanger (13) and the indoor heat exchanger (15) was set.
  • the outdoor heat exchanger (T) is set so that the saturation temperature change amount ⁇ Te corresponding to the pressure loss of the evaporative refrigerant becomes equal to the saturation temperature change amount of R 22 in the conventional device. 13) Set the heat transfer tubes of the indoor heat exchanger (15). That is,
  • A Channel cross-sectional area ( 2 )
  • the saturation temperature change amount ⁇ ⁇ e is represented by the following equation.
  • the ratio of the inner diameter of the R32 heat transfer tube to the R22 heat transfer tube that is, the small diameter ratio of the heat transfer tube Can be obtained by the following equation.
  • FIG. 3 shows a calculation result obtained by substituting each physical property value into the above equation (6).
  • the evaporation temperature T e is assumed to be 2 ° C
  • the shrinkage temperature T c is assumed to be 49 ° C
  • superheat at the evaporator outlet SH 5 deg
  • subcool SC 5 at the condenser outlet. deg.
  • the heat transfer tube of the indoor heat exchanger (15) is formed of a heat transfer tube with an inner diameter of 4.7 mm to 5.9 mm
  • the heat transfer tube of the outdoor heat exchanger (13) is The heat transfer tube is formed of a heat transfer tube with an inner diameter of 5.4 mm to 6.7 mm.
  • the heat transfer tube of the indoor heat exchanger (15) is formed by a heat transfer tube with an inner diameter of 4.7 mm to 6.2 mm, and the outdoor heat exchanger (13 The heat transfer tube of) was made of a heat transfer tube with an inner diameter of 5.4 mm to 7.1 mm.
  • each heat transfer tube When the inner diameter of each heat transfer tube is smaller than the above numerical range, the refrigerant pressure is further reduced, but the refrigerant pressure loss becomes excessive. On the other hand, if the inner diameter of each heat transfer tube is larger than the above numerical range, the refrigerant pressure loss is reduced and the efficiency of the device is improved, but the effects of R32, such as the effect of reducing the refrigerant charge, should be fully utilized. Becomes difficult.
  • the inner diameters of the heat transfer tubes of the outdoor heat exchanger (13) and the indoor heat exchanger (15) are set within the above numerical ranges.
  • the heat transfer tube of the indoor heat exchanger (15) is formed of a heat transfer tube with an inner diameter of 4.9 mm to 5.7 mm, and the heat transfer tube of the outdoor heat exchanger (13)
  • the heat transfer tube may be formed of a heat transfer tube having an inner diameter of 5.6 mm to 6.5 mm.
  • the heat transfer tube of the indoor heat exchanger (15) is formed of a heat transfer tube with an inner diameter of 5.1 mm to 5.5 mm, and the heat transfer tube of the outdoor heat exchanger (13)
  • the heat transfer tube may be formed of a heat transfer tube having an inner diameter of 5.8 mm to 6.3 mm.
  • the heat transfer tube of the indoor heat exchanger (15) is formed of a heat transfer tube with an inner diameter of 4.9 mm to 6.0 mm, and the outdoor heat exchanger (13) May be formed of a heat transfer tube having an inner diameter of 5.6 mm to 6.9 mm.
  • the heat transfer of the indoor heat exchanger (15)
  • the tube is formed of a heat transfer tube with an inner diameter of 5.2 mm to 5.7 mm, and the heat transfer tube of the outdoor heat exchanger (13) has an inner diameter of 5.9 mn! It may be formed of a heat transfer tube of up to 6.6 mm.
  • the inner diameter of the heat transfer tube means the inner diameter of the tube after expansion in the case of a smooth inner surface tube.
  • the heat transfer tube various heat transfer tubes such as a copper tube and an aluminum tube can be used.
  • the external heat exchanger (13) and the indoor heat exchanger (13) according to the present embodiment are a type of air heat exchanger for performing heat exchange with air, which is a plate fin tube heat exchanger composed of copper tubes and aluminum fins.
  • the heat transfer tubes are made of copper tubes.
  • the pressure loss of the refrigerant is reduced. Therefore, even if the inside diameter of the liquid side pipe (32) of the refrigerant circuit (10) is reduced to increase the pressure loss in the pipe to the same level as when R22 is used, the performance of the device is maintained at the same level as before. Is done. Therefore, in the present air conditioner (1), the liquid side pipe (32) is reduced in diameter until the pressure loss in the pipe becomes R22, so that the refrigerant circuit (10) is maintained while maintaining the performance of the apparatus. Refrigerant charge was reduced.
  • the gas side pipe (31), especially the fourth gas side pipe (24), which is the suction pipe for the compressor (11), is reduced in diameter, the amount of refrigerant charged will not be reduced so much, but the suction
  • the efficiency of the equipment is greatly reduced due to the effect of the increased pressure loss. Such a reduction in the efficiency of the equipment indirectly leads to an increase in the effect of global warming.
  • the gas side pipe (31) is the same as the conventional R22 gas side pipe, and only the liquid side pipe (32) is smaller than the conventional R22 liquid side pipe. Was also reduced in diameter. ⁇ Basic principle of refrigerant piping configuration
  • the liquid-side piping (32) is set so that the ratio of the pressure drop of the liquid-side piping (32) to the pressure drop of the refrigerant from the condenser outlet to the evaporator inlet occupies the same level as in R22. ) Is designed. That is, the following equation is established using the symbols shown in FIG.
  • FIG. 6 shows a calculation result obtained by substituting each physical property value into the above equation (12).
  • the evaporation temperature Te is 2. C
  • the condensing temperature Tc was 49 ° C
  • the superheat SH2 was 5 deg
  • the subcool SC was 5 deg.
  • the liquid side pipe (32) of the R32 single refrigerant can be reduced to about 0.76 times the diameter of the liquid side pipe for R22. It was also found that the R32 / R125 mixed refrigerant can be reduced in diameter to about 0.76 to 0.8 times if the composition of R32 is contained at 75% by weight or more. . For reference, similar calculations were performed for other alternative refrigerants, but it was found that the effect of reducing the diameter as compared to R32 was not obtained (see Fig. 6).
  • FIG. 7 is a diagram showing the pipe diameter (outer diameter) of the gas side pipe and the liquid side pipe in the conventional apparatus using R22 for each cooling capacity rating.
  • the gas side pipe (31) uses the same diameter as the R22 gas side pipe, while the liquid side pipe (32) uses the above. Use a pipe with a smaller diameter than the liquid side pipe for R22.
  • gas side piping (31) and liquid side piping (32) having the following inner diameter ratios are used according to the rated cooling capacity. That is, when the rated cooling capacity is more than 5 kW and 9 kW or less, use the gas side pipe (31) and the liquid side pipe (32) so that the above inner diameter ratio becomes 2.1 to 3.5. When the rated cooling capacity is 5 kW or less or larger than 9 kW, use gas side piping (31) and liquid side piping (32) so that the above inner diameter ratio becomes 2.6 to 3.5.
  • the liquid side pipe (32) When the rated cooling capacity is 5 kW or less, use piping with an inner diameter of 3.2 mm to 4.2 mm as the liquid side piping (32). When the rated cooling capacity is greater than 5 kW and less than 22.4 kW, the liquid side pipe (32) has an inner diameter of 5.4mn! Use a pipe of ⁇ 7.0 mm. If the rated cooling capacity is 22.4 kW or more, use a pipe with an inner diameter of 7.5 mm to 9.8 mm as the liquid side pipe (32).
  • the inner diameter ratio or the inner diameter of the liquid side pipe (32) is smaller than the above numerical range, the refrigerant performance is further reduced, though the refrigerant charging amount is further reduced.
  • the inner diameter ratio or the inner diameter of the liquid side pipe (32) is larger than the above numerical range, the effect of reducing the refrigerant charge is reduced although the refrigerant pressure loss is reduced and the device performance is improved.
  • the gas-side pipe (31) and the liquid-side pipe (32) are set within the above numerical ranges so that the refrigerant filling amount can be sufficiently reduced while maintaining the performance of the apparatus. .
  • the above inner diameter ratio may be set to 2.4 to 3.2.
  • the above inner diameter ratio may be 2.8 to 3.3.
  • the above inner diameter ratio may be set to 2.6 to 3.0.
  • the above inner diameter ratio may be set to 2.9 to 3.1.
  • the inner diameter of the liquid side pipe (32) should be 3.5 mm to 3.9 mm when the cooling capacity is 5 kW or less, and when the cooling capacity is more than 5 kW and less than 22.4 kW. Is 5.7 to 6.7 mm, and when the rated cooling capacity is 22.4 kW or more, 7. ⁇
  • the inner diameter of the liquid side pipe (32) is 3.6 mm to 3.8 mm when the cooling capacity is 5 kW or less, and when the cooling capacity is more than 5 kW and less than 22.4 kW. 6. Omn! If the cooling capacity is 22.4 kW or more, it may be 8.1 mm to 9.1 mm.
  • both the liquid side pipe (32) and the gas side pipe (31) should be composed of only standard products. Is preferred.
  • Figure 9 compares the specifications of the copper pipe for R22 (JISB 8607) with the specifications of the high-pressure-compatible pipe for R32 proposed by the Japan Refrigeration and Air Conditioning Industry Association.
  • the optimum inner diameter ratio calculated from the above calculation result is 0.76 for the R32 single refrigerant, and 0.80 for the R32 / 125 mixed refrigerant containing 75% by weight of R32. From FIG. 9 above, it was found that the combination of standard products can easily realize the inner diameter ratio within a range of ⁇ 10% of the optimum inner diameter ratio.
  • the present embodiment is a form that can be easily realized by combining standard products.
  • the operation of the air conditioner (1) will be described based on the refrigerant circulation operation in the refrigerant circuit (10).
  • the four-way switching valve (12) is set to the solid line side shown in Fig. 1. That is, in the four-way switching valve (12), the first port (12a) and the second port (12b) communicate with each other, and the third port (12c) and the fourth port (12d) communicate with each other.
  • the gas refrigerant discharged from the compressor (11) flows through the first gas side pipe (21), the four-way switching valve (12), and the second gas side pipe (22), and passes through the outdoor heat exchanger. Condensed in (13).
  • the liquid refrigerant flowing out of the outdoor heat exchanger (13) flows through the first liquid side pipe (25) and is decompressed by the expansion valve (14) to become a gas-liquid two-phase refrigerant.
  • the two-phase refrigerant flowing out of the expansion valve (14) flows through the second liquid side pipe (26), exchanges heat with the indoor air in the indoor heat exchanger (15), evaporates, and cools the indoor air.
  • the gas refrigerant flowing out of the indoor heat exchanger (15) flows through the third gas-side pipe (23), the four-way switching valve (12), and the fourth gas-side pipe (24), and flows to the compressor (11). Inhaled.
  • the four-way switching valve (12) is set to the broken line side shown in FIG. In other words, the four-way switching valve (12) is in a state where the first port (12a) and the fourth port (12d) communicate with each other, and the second port (12b) and the third port (12c) communicate with each other. .
  • the gas refrigerant discharged from the compressor (11) flows through the first gas-side pipe (21), the four-way switching valve (12), and the third gas-side pipe (23), and passes through the indoor heat exchanger. (15).
  • the refrigerant flowing into the indoor heat exchanger (15) exchanges heat with the indoor air to condense and heat the indoor air.
  • the liquid refrigerant flowing out of the indoor heat exchanger (15) flows through the second liquid side pipe (26) and is decompressed by the expansion valve (14) to become a gas-liquid two-phase refrigerant.
  • the two-phase refrigerant flowing out of the expansion valve (14) flows through the first liquid side pipe (25) and evaporates in the outdoor heat exchanger (13).
  • the gas refrigerant flowing out of the outdoor heat exchanger (13) flows through the second gas pipe (22), the four-way switching valve (12), and the fourth gas pipe (24), and is sucked into the compressor (11). Is done.
  • the R32 single refrigerant or the R32 / R125 mixed refrigerant is used as the refrigerant, and the liquid-side pipe (32) is formed by a relatively small-diameter pipe.
  • the amount of refrigerant charged in the refrigerant circuit (10) can be reduced while maintaining the same operating efficiency as the conventional one. Therefore, the characteristic of R32, which has a small global warming potential and a small pressure drop in the pipe, can be fully utilized, and the global warming effect can be greatly reduced.
  • the diameter of the heat transfer tubes of the outdoor heat exchanger (13) and the indoor heat exchanger (15) must be reduced. With 1 g , the amount of refrigerant charged can be further reduced, and the effect of global warming can be further reduced.
  • the cost and size of the outdoor heat exchanger (13) and the indoor heat exchanger (15) can be reduced, and the indoor unit (17) and the outdoor unit (16) can be reduced. ) Can be reduced in size.
  • the so-called heat pump type air conditioner capable of selectively performing the cooling operation and the heating operation is described. It may be a cooling only machine.
  • the present invention is applied to a heating-only machine by setting the inner diameter of the liquid side pipe (32) and the gas side pipe (31) or the ratio of the inner diameter to each of the heating rated capacity corresponding to the cooling rated capacity. It is also possible to do so.
  • the gas side pipe (31) and the liquid side pipe (32) need not necessarily be formed of copper pipes, but may be formed of other pipes such as SUS pipes, aluminum pipes, and iron pipes.
  • the outdoor heat exchanger (13) and the indoor heat exchanger (15) are not limited to the air heat exchanger, but may be a liquid-liquid heat exchanger such as a double tube heat exchanger.
  • the internal volume of the refrigerant circuit (10) is reduced. (The internal volume of the part through which the refrigerant passes). Therefore, the amount of air, moisture, impurities and the like mixed in the refrigerant circuit (10) becomes smaller than before, and the opportunity for the refrigerating machine oil to come into contact with moisture and the like is reduced. Therefore, according to the present embodiment, the deterioration of the refrigerating machine oil is less likely to occur than before. Therefore, when synthetic oil such as ether oil or ester oil is used as the refrigerating machine oil, the superiority of the present embodiment is more remarkably exhibited.
  • the refrigeration apparatus of the present invention is not limited to a refrigeration apparatus in a narrow sense, but is a refrigeration apparatus in a broad sense including a refrigeration apparatus, a dehumidifier, and the like, as well as the air conditioner described above.
  • the cooling rated capacity in the above embodiment means the capacity of the evaporator. It is not limited to the cooling capacity of the air conditioner.
  • the rated cooling capacity is based on the specified JIS conditions (indoor dry bulb temperature of 27 ° C, indoor wet bulb temperature) when the connecting pipe length is 5 m and the height difference between the indoor unit and the outdoor unit is 0 m. 19, the ability to be exhibited under an outdoor dry bulb temperature of 35 ° C).
  • the refrigeration apparatus of the present invention is useful when a refrigerant having a small ozone depletion coefficient is used, and is suitable for a refrigeration apparatus that can truly prevent global warming.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

明 細
技術分野
本発明は、 冷凍装置に係り、 特に、 R 3 2の単一冷媒または R 3 2を含む混合冷 媒を用いた冷凍装置に関する。 背景技術
これまで空気調和装置等の冷凍装置に好適な冷媒として、 2がよく用いられ てきた。 しかし、 R 2 2はオゾン破壊係数が大きいことから、 モントリオール議定書 により 2◦ 2 0年に全廃が予定されている。そこで、 R 2 2に代わる代替冷媒として、 R 4 0 7 C、 R 4 1 0 A又は R 1 3 4 aなどの各種冷媒の開発が進められている。
一解決課題一
しかし、 図 1 0に示すように、 上記の各代替冷媒は、 オゾン破壊係数は小さいも のの地球温暖化係数 (GWP ) は R 2 2と同等である。 そのため、 上記代替冷媒は、 地球温暖化防止の観点からは十分に満足のいく冷媒とは言い難い。
また、 上記代替冷媒を用いると、 従来よりも冷凍装置の C O Pが低下するため、 冷媒放出による直接的な地球温暖化効果とは別に、 電力消費の増大に伴つて火力発電 所等の負荷が増大し、 間接的に地球温暖化を助長することになる。 そのため、 真に地 球温暖化を抑制する代替冷媒の開発が望まれていた。
そこで、 GWPの小さな代替冷媒として、 R 3 2の単一冷媒または R 3 2を多く 含んだ混合冷媒の開発が進められている。
しかし、 : R 3 2の単一冷媒または R 3 2の混合冷媒を単に R 2 2用の冷凍装置に 充填しただけでは、 R 3 2の特性を十分に活かすことはできず、 地球温暖化防止効果 を十分に得ることはできない。 そのため、 地球温暖化を防止すべく R 3 2の特性を有 効利用した冷凍装置が待ち望まれている。 本発明は、 かかる点に鑑みてなされたものであり、 その目的とするところは、 R 3 2の特性を有効活用し、 真に地球温暖化を防止し得る冷凍装置を提供することにあ る。 発明の開示
上記目的を達成するために、 本発明は、 装置性能を従来と同等に維持したまま冷 媒回路の冷媒充填量を低減するように、 冷媒回路のガス側配管の管径を従来と同等に 設定する一方で、 液側配管の管径を従来よりも小さく設定することとした。 具体的に、 1の発明は、 冷凍サイクルを形成する冷媒回路 (10) を備えた冷凍装 置を対象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) の径 d lに対す る上記冷媒回路 (10) のガス側配管 (31) の径 d gの比 d g/ d 1が 2 . 6以上とし ている。
また、 他の発明は、 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と H 1 2 5 との混合冷媒または R 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備えた冷凍装置を対象としている。 そして、 上記冷媒回路 (10) の液側配 管 (32) とガス側配管 (31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (3 1) の径 d gの比 d g/ d 1が 2 . 6以上になるように形成されている。
なお、 上記各発明において、 径とは、 外径または内径を意味する。
また、 他の発明は、 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と R 1 2 5 との混合冷媒または R 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 k Wよりも大きく且つ 9 k W以下である冷凍装置 を対象としている。 そして、 上記冷媒回路(10) の液側配管(32) とガス側配管(31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 d gの比 d g/ d l が 2 . 1以上になるように形成されている。
また、 他の発明は、 Ί 5重量%以上で且つ 1 0 0重量%未満の R 3 2と R 1 2 5 との混合冷媒または R 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 kWよりも大きく且つ 9 kW以下である冷凍装置 を対象としている。 そして、 上記冷媒回路(10)の液側配管 (32) とガス側配管(31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/dl が 2. 1-3. 5の範囲内になるように形成されている。
また、 他の発明は、 75重量%以上で且つ 100重量%未満の R32と R 125 との混合冷媒または R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5kWよりも大きく且つ 9kW以下である冷凍装置 を対象としている。 そして、 上記冷媒回路(10)の液側配管 (32) とガス側配管(31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/dl が 2. 4〜3. 2の範囲内になるように形成されている。
また、 他の発明は、 75重量%以上で且つ 100重量%未満の R32と H 125 との混合冷媒まは R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回路 (10) を備え、 冷房定格能力が 5 kWよりも大きく且つ 9 kW以下である冷凍装置を 対象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) とガス側配管 (31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/dl が 2. 6~3. 0の範囲内になるように形成されている。
また、 他の発明は、 75重量%以上で且つ 100重量%未満の R 32と R 125 との混合冷媒または R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 k W以下または 9 kWよりも大きい冷凍装置を対 象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) とガス側配管 (31) と は、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/dlが 2. 6以上になるように形成されている。
また、 他の発明は、 75重量%以上で且つ 100重量%未満の R 32と R 125 との混合冷媒または R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 kW以下または 9 kWよりも大きい冷凍装置を対 象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) とガス側配管 (31) と は、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/dlが 2 . 6〜3 . 5の範囲内になるように形成されている。
また、 他の発明は、 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と R 1 2 5 との混合冷媒または R 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 k W以下または 9 kWよりも大きい冷凍装置を対 象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) とガス側配管 (31) と は、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 d gの比 d g/ d 1が 2 . 8〜3 . 3の範囲内になるように形成されている。
また、 他の発明は、 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と R 1 2 5 との混合冷媒または R 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 kW以下または 9 kWよりも大きい冷凍装置を対 象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) とガス側配管 (31) と は、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 d gの比 d g/ d 1が 2 . 9〜3 . 1の範囲内になるように形成されている。
また、 他の発明は、 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と R 1 2 5 との混合冷媒または R 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 kW以下である冷凍装置を対象としている。 そし て、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 4 . 2 mm以下である配管によ つて形成されている。
また、 他の発明は、 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と R 1 2 5 との混合冷媒または R 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 kW以下である冷凍装置を対象としている。 そし て、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 3 . 2 mn!〜 4 . 2 mmである 配管によって形成されている。
また、 他の発明は、 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と R 1 2 5 との混合冷媒または R 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 kW以下である冷凍装置を対象としている。 そし て、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 3 . 5 mm〜3 . 9 mmである 配管によって形成されている。
また、 他の発明は、 75重量%以上で且つ 100重量%未満の R 32と; 125 との混合冷媒または R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 kW以下である冷凍装置を対象としている。 そし て、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 3. 6mm〜3. 8 mmである 配管によって形成されている。
なお、 従来より冷媒充填量を少なくする観点から、 上記液側配管 (32) は、 内径 が 3. 7以下であることがより好ましい。
また、 他の発明は、 75重量%以上で且つ 100重量%未満の R32と R 125 との混合冷媒または R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 k Wよりも大きく且つ 22. 4kW未満である冷 凍装置を対象としている。 そして、 記冷媒回路(10)の液側配管(32)は、 内径が 7. Omm以下である配管によって形成されている。
また、 他の発明は、 75重量%以上で且つ 100重量%未満の R32と R 125 との混合冷媒または R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 k Wよりも大きく且つ 22. 4 kW未満である冷 凍装置を対象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 5. 4mm~7. 0 mmである配管によって形成されている。
また、 他の発明は、 75重量%以上で且つ 100重量%未満の H32と R 125 との混合冷媒または R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 kWよりも大きく且つ 22. 4 kW未満である冷 凍装置を対象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 5. 7mn!〜 6. 7 mmである配管によって形成されている。
また、 他の発明は、 75重量%以上で且つ 100重量%未満の R32と R 125 との混合冷媒または R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路 (10) を備え、 冷房定格能力が 5 k Wよりも大きく且つ 22. 4kW未満である冷 凍装置を対象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) は、 内径が g P T 1
6 . 0 mm〜6 . 4 mmである配管によって形成されている。
なお、 従来より冷媒充填量を少なくする観点から、 上記液側配管 (32) は、 内径 が 6 . 2以下であることがより好ましい。
また、 他の発明は、 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と R 1 2 5 との混合冷媒または R 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路(10)を備え、冷房定格能力が 2 2 . 4 k W以上である冷凍装置を対象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 9 . 8 mm以下である配管 によって形成されている。
また、 他の発明は、 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と H 1 2 5 との混合冷媒または H 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路(10)を備え、 冷房定格能力が 2 2 . 4 kW以上である冷凍装置を対象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 7 . 5 mn!〜 9 . 8 mmで ある配管によって形成されている。
また、 他の発明は、 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と R 1 2 5 との混合冷媒または R 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路(10)を備え、冷房定格能力が 2 2 . 4 kW以上である冷凍装置を対象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 7 . 8 mm- 9 . 5 mmで ある配管によって形成されている。
また、 他の発明は、 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と R 1 2 5 との混合冷媒または R 3 2の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回 路(10)を備え、冷房定格能力が 2 2 . 4 kW以上である冷凍装置を対象としている。 そして、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 8 . l mm〜9 . 1 mmで ある配管によって形成されている。
なお、 従来より冷媒充填量を少なくする観点から、 上記液側配管 (32) は、 内径 が 8 . 7以下であることがより好ましい。
上記各発明では、 冷媒回路 (10) の液側配管 (32) の内径が従来よりも小さくな る。 また、 R 3 2単一冷媒または 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2を 含む R 3 2 / 1 2 5混合冷媒は、 冷媒の特性として R 2 2よりも圧力損失が小さい。 従って、 液側配管 (32) の内径が小さくなつても、 配管内の圧力損失は従来と同等レ ベルに維持される。
一方、 液側配管 (32) の内径が小さくなることにより、 冷媒回路 (10) の冷媒充 填量は減少する。従って、従来の R 2 2を使用した場合と同等の性能を維持したまま、 冷媒充填量が低減される。 そのため、 R 3 2の地球温暖化係数が低いことに加えて、 冷媒回路 (10) の冷媒充填量が低減することにより、 地球温暖化効果は著しく低減す る。
なお、 上記各発明において、 液側配管 (32) とは、 凝縮器出口と蒸発器入口との 間の配管の全体であってもよく、 また、 その一部であってもよい。 同様に、 ガス側配 管 (31) とは、 蒸発器出口と凝縮器入口との間の配管の全体であってもよく、 蒸発器 出口と圧縮機の吸入側との間の全体であってもよく、 また、 それらの一部であっても よい。
上記ガス側配管 (31) 及び液側配管 (32) は、 室内ュニット (17) と室外ュニヅ ト (16) とを接続する接続配管であってもよい。
上記液側配管 (32) は、 室内ュニット (17) と室外ュニット (16) とを接続する 液側の接続配管であってもよい。
上記発明では、 接続配管が長配管になりやすいことから、 冷媒充填量の低減効果 がより顕著に発揮されることになる。
また、 上記冷媒は、 R 3 2の単一冷媒であることが好ましい。 一発明の効果—
以上のように、 本発明によれば、 R 2 2を用いた従来装置よりも液側配管 (32) の内径が小さくなることにより、 従来と同等の性能を維持したまま冷媒回路 (10) の 冷媒充填量を低減することができる。 そのため、 R 3 2の単一冷媒または R 3 2の混 合冷媒を従来よりも有効に活用することができ、 冷媒自体の地球温暖化係数の低減と 冷媒充填量の低減とにより、地球温暖化効果を大幅に低減することができる。従って、 地球環境保全に適した装置を提供することができる。 図面の簡単な説明
図 1は、 空気調和装置の冷媒回路図である。
図 2は、 モリエル線図である。
図 3は、 伝熱管の内径比の計算結果を示す表である。
図 4は、 溝付管の断面図である。
図 5は、 モリエル線図である。
図 6は、 液側配管の内径比の計算結果を示す表である。
図 7は、 冷房定格能力に対する R 2 2用のガス側配管及び液側配管の管径を示す 図である。
図 8は、冷房定格能力に対するガス側配管と液側配管との細径比を示す図である。 図 9は、 R 2 2用銅管と R 3 2用銅管との関係を示す図である。
図 1 0は、 地球温暖化係数を示す表である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面に基づいて説明する。
一空気調和装置の構成一
図 1に示すように、 本実施形態に係る冷凍装置は、 室内ユニット (17) と室外ュ ニット (16) とを接続して成る空気調和装置 (1) である。 空気調和装置 (1) の冷媒 回路 (10) は、 R 3 2の単一冷媒 (以下、 R 3 2単一冷媒という) を冷媒とするか、 または 7 5重量%以上で且つ 1 0 0重量%未満の R 3 2と R 1 2 5との混合冷媒 (R 3 2組成リッチの混合冷媒、 以下、 H 3 2 /R 1 2 5混合冷媒という) を冷媒として いる。
そして、 上記冷媒回路 (10) は、 蒸気圧縮式冷凍サイクルを形成する冷媒回路で あって、 圧縮機 (11)、 四路切換弁 (12)、 室外熱交換器 (13)、 膨張機構である膨張 弁 (14) 及び室内熱交換器 (15) が順に冷媒配管であるガス側配管 (31) と液側配管 (32) を介して接続されて構成されている。
具体的には、 圧縮機 (11) の吐出側と四路切換弁 (12) の第 1ポート (12a) と は第 1ガス側配管 (21) によって接続されている。 四路切換弁 (12) の第 2ポート (1 2b) と室外熱交換器 (13) とは第 2ガス側配管 (22) によって接続されている。 室外 熱交換器 (13) と膨張弁 (14) とは第 1液側配管 (25) によって接続されている。 膨 張弁 (14) と室内熱交換器 (15) とは第 2液側配管 (26) によって接続されている。 室内熱交換器 (15) と四路切換弁 (12) の第 3ポート (12c) とは第 3ガス側配管 (2 3) によって接続されている。 四路切換弁 (12) の第 4ポート (12d) と圧縮機 ( 11) の吸入側とは第 4ガス側配管 (24) によって接続されている。
圧縮機 (11)、 第 1ガス側配管 (21)、 四路切換弁 (12)、 第 2ガス側配管 (22)、 室外熱交換器 (13)、 第 1液側配管 (25)、 膨張弁 (14)、 及び第 4ガス側配管 (24) は、 図示しない室外送風機とともに室外ユニット (16) に収容されている。 一方、 室 内熱交換器 (15) は、 図示しない室内送風機とともに室内ユニット (17) に収容され ている。第 2液側配管(26)及び第 3ガス側配管 (23)の一部は、 室外ュニット (16) と室内ユニット (17) とを連絡するいわゆる連絡配管を構成している。
一熱交換器の構成一
R 3 2単一冷媒または R 3 2 /R 1 2 5混合冷媒は、 単位体積あたりの冷凍効果 が R 2 2よりも大きいことから、 所定能力を発揮するために必要な冷媒循環量は R 2 2に比べて少ない。 従って、 R 3 2単一冷媒または R 3 2 / 1 2 5混合冷媒では、 熱交換器の伝熱管の内径を一定とした場合、 冷媒循環量が少なくなることから、 管内 圧力損失は R 2 2に比べると小さくなる。
一般に、 熱交換器の伝熱管の内径を小さくすると、 伝熱面積の減少ゃ冷媒圧力損 失の増加により、 装置全体の性能は低下する。 しかし、 R 3 2単一冷媒または R 3 2 /R 1 2 5混合冷媒を用いた場合、 伝熱管内の冷媒側熱伝達率が R 2 2よりも大きい ため、 管内圧力損失を H 2 2相当程度に大きくしたとしても、 全体として: 2 2と同 等またはそれ以上の性能を発揮することが可能である。
ところで、 冷媒回路 (10) において最も冷媒保有量が多い部分は、 室外熱交換器 (13) である。 そのため、 室外熱交換器 (13) の伝熱管を細径化することにより、 冷 媒充填量を効果的に低減することができる。 また、 伝熱管の細径化により、 室外熱交 換器 (13) 及び室内熱交換器 (15) が小型化するため、 室外ュニット (16) 及び室内 ユニット (17) のコンパクト化を促進することも可能となる。
そこで、 本空気調和装置 (1) では、 室外熱交換器 (13) 及び室内熱交換器 (15) の伝熱管を、 管内圧力損失が R 2 2と同等レベルになるまで細径化することとした。 具体的に、 本空気調和装置 (1) では、 伝熱管内における圧力損失分に相当する冷媒 飽和温度の変化量を考え、 当該温度変化量が R 2 2と同等になるように、 室外熱交換 器 (13) 及び室内熱交換器 (15) の伝熱管の内径寸法を設定することとした。
一伝熱管の構成の基本的原理一
次に、 室外熱交換器 (13) 及び室内熱交換器 (15) の伝熱管を構成する基本的原 理を具体的に説明する。
ここでは、 図 2に示すように、 蒸発冷媒の圧力損失に相当する飽和温度変化量△ T eが従来の装置における R 2 2の飽和温度変化量と同等になるように、 室外熱交換 器 (13) 及び室内熱交換器 (15) の各伝熱管を設定する。 つまり、
△ T e=Const. ……(1 )
とする。 ここで、
Δ P :配管圧力損失 (kPa)
L :配管長 (m)
G:冷媒循環量 (kg/s)
A:流路断面積 ( 2 )
λ :損失係数
d :配管内径 (m)
s:圧縮機の吸込冷媒密度 (kg/m3 )
とする。 そして、 上記飽和温度変化量 Δ Τ eは、 次式の通り表される。
Δ ΤΘ=|^·} Χ Δ ΡΘ - - - (2) 圧力損失 ΔΡは、 次式の円管の摩擦損失の式を用いて算出する,
G2
d 2· p s-A2
厶 Δ
冷房能力 Q = T P Gx Ahを一定とすると、
G2
A?o ^ (A 2- p s-d5) (4)
s.d5 厶 h:冷凍効果 (kJ/kg)
となる。 このため、 上記 (2) 式及び (4) 式より、 圧力損失 ΔΡは、
ATecc X (Ah2, p s-d5) (5) と表される。
従って、 上記 ( 1) 式及び (5) 式と、 R 2 2及び R 32の物性値とから、 R 2 2用伝熱管に対する R 32用伝熱管の内径の比率、 つまり伝熱管の細径比を次式の通 り求めることができる。
Figure imgf000013_0001
図 3は、上記(6)式に各物性値を代入した計算結果を示す。なお、 本計算では、 蒸発温度 T eを 2°C、 ; 縮温度 T cを 4 9°Cと仮定し、 蒸発器出口のスーパ一ヒート S H= 5 d e g, 凝縮器出口のサブクール S C= 5.d e gとした。
上記計算結果から、 R 3 2単一冷媒の伝熱管は R 2 2用伝熱管の 0. 7 6倍程度 まで細径化することが分かった。 また、 R 3 2/R 1 2 5混合冷媒用の伝熱管は、 R 2 2用伝熱管の 0. 7 6~0. 8倍程度まで細径化することができることが分かった。 なお、 参考までに他の代替冷媒についても同様の計算を行ったが、 R 3 2ほどの細径 化効果は得られないことが分かつた (図 3参照)。
本空気調和装置 (1) では、 このような原理に基づいて、 R22用伝熱管との比 較において、 以下の内径を有する伝熱管を用いることとした。
すなわち、 R 32単一冷媒を用いる場合には、 室内熱交換器 (15) の伝熱管を内 径が 4. 7mm~5. 9 mmの伝熱管で形成し、 室外熱交換器 (13) の伝熱管を内径 が 5. 4mm~6. 7 mmの伝熱管で形成する。
一方、 R32/R 125混合冷媒を用いる場合には、 室内熱交換器 (15) の伝熱 管を内径が 4. 7 mm- 6. 2 mmの伝熱管で形成し、 室外熱交換器 (13) の伝熱管 を内径が 5. 4mm〜7. 1 mmの伝熱管で形成することとした。
各伝熱管の内径が上記数値範囲よりも小さい場合には、 冷媒充填量は更に低減す るものの、 冷媒圧力損失が過大となる。 一方、 各伝熱管の内径が上記数値範囲よりも 大きい場合には、 冷媒圧力損失が低減し、 装置の効率は向上するものの、 冷媒充填量 の低減効果等の R 32の効果を十分に活かすことが難しくなる。
そこで、 本実施形態では、 室外熱交換器 (13) 及び室内熱交換器 (15) の伝熱管 の内径を上記数値範囲内に設定することとした。
なお、 装置の使用条件等によっては、 R32の特性をより顕著に発揮させるため に、 上記数値範囲をより限定してもよいことは勿論である。
例えば、 R 32単一冷媒を用いる場合には、 室内熱交換器 (15) の伝熱管を内径 が 4. 9 mm~ 5. 7 mmの伝熱管で形成し、 室外熱交換器 (13) の伝熱管を内径が 5. 6mm~6. 5 mmの伝熱管で形成してもよい。
更に、 R 32単一冷媒を用いる場合には、 室内熱交換器 (15) の伝熱管を内径が 5. 1 mm- 5. 5 mmの伝熱管で形成し、 室外熱交換器 (13)の伝熱管を内径が 5. 8mm~6. 3 mmの伝熱管で形成してもよい。
また、 R32/R 125混合冷媒を用いる場合には、 室内熱交換器 (15) の伝熱 管を内径が 4. 9mm~6. 0 mmの伝熱管で形成し、 室外熱交換器 (13) の伝熱管 を内径が 5. 6mm~6. 9 mmの伝熱管で形成してもよい。
更に、 R32/R 125混合冷媒を用いる場合には、 室内熱交換器 (15) の伝熱 管を内径が 5 . 2 mm〜5 . 7 mmの伝熱管で形成し、 室外熱交換器 (13) の伝熱管 を内径が 5 . 9 mn!〜 6 . 6 mmの伝熱管で形成してもよい。
なお、 ここで伝熱管の内径とは、 内面平滑管の場合には拡管後の管内径をいう。 また、 図 4に示すように、 内面溝付管の場合、 伝熱管の内径とは、 拡管後の外径から 底肉厚の 2倍を引いた値、 つまり内径 d i = d o - 2 tをいうものとする。
伝熱管としては、 銅管やアルミ管等の各種の伝熱管を用いることができる。 本実 施形態に係る外熱交換器 ( 13) 及び室内熱交換器 (13) は、 空気と熱交換を行う空気 熱交換器の一種として、 銅管とアルミフィンとから成るプレートフィンチューブ熱交 換器で構成されているため、 伝熱管は銅管によつて形成されている。
ー冷媒配管の構成一
また、 本空気調和装置 (1) では、 冷媒充填量の低減を目的として、 熱交換器 (1 3, 15) の伝熱管だけでなく、 冷媒回路 (10) の冷媒配管についても細径化を図って いる。
上述した通り、 R 2 2用の泠媒配管に R 3 2単一冷媒または R 3 2 / 1 2 5混 合冷媒をそのまま用いた場合、 冷媒の圧力損失は低減する。そのため、冷媒回路(10) の液側配管 (32) の内径を小さくして、 管内圧力損失を R 2 2使用時と同等のレベル にまで増加させたとしても、 装置性能は従来と同等に維持される。 そこで、 本空気調 和装置 (1 ) においては、 液側配管 (32) を管内圧力損失が R 2 2相当になるまで細 径化することにより、 装置性能を維持したまま冷媒回路 (10) の冷媒充填量を低減す ることとした。
これに対し、 ガス側配管 (31)、 特に、 圧縮機 (11) の吸入配管となる第 4ガス 側配管 (24) を細径化すると、 冷媒充填量の削減量はそれほど多くない反面、 吸入圧 力損失の増大の影響により、 装置の効率は大きく低下する。 このような装置の効率低 下は、 間接的に地球温暖化効果の増大を招く。
そこで、 本空気調和装置 (1) では、 ガス側配管 (31) は従来の R 2 2用ガス側 配管と同様としつつ、 液側配管 (32) のみを従来の R 2 2用液側配管よりも細径化す ることとした。 ー冷媒配管の構成の基本的原理一
次に、 液側配管 (32) を構成する基本的原理について説明する。
ここでは、 凝縮器出口から蒸発器入口に至るまでの冷媒の圧力降下量に対する液 側配管 (32) の圧力損失の占める割合が、 R 2 2の場合と同等になるように液側配管 (32) の設計を行う。 つまり、 図 5に示す符号を用いて、 次式が成立する。
(Pco-Pvi) + (Pvo-Pbi;
=uonst. ··· (7)
(Pco-Pei) _こ、
ΔΡ :配管圧力損失 (kPa)
L :配管長 (m)
G :冷媒循環量 (kg/s)
A:流路断面積 (m2)
λ :損失係数
d :配管内径 (m)
ps:圧縮機の吸込冷媒密度 (kg/m3)
とし、 上記 (7) 式の分子の各項は、 次式の円管の摩擦損失の式を用いて算出する, ?= λ' - ' 2^ …
ここで、 能力 Q = GxAhを一定とし、 上記 (8) 式から次式が導出される。
G2
△ pcx. c^ (Ah2- p s-d5)-1 (9)
p s- d5
Δ h:冷凍効果 (kJ/kg)
従って、 次式が導き出される。
(Pco-Pvi) + (Pvo-Pbi) cc (Ah2- p s-d5)"1 …(10) そして、 上記 (7) 式及び ( 1 0) 式より、 次式が導き出される,
(Pco-Pvi) + (Pvo-Pbi) ^ (Ah2- p s'd5)一1 (n
(Pco-Pei) ~~ (HP- LP) 7 JP
15
従って、 上記 (7) 式及び (11) 式と、 R22及び R32の物性値とから、 R 22の液側配管に対する R 32の液側配管 (32) の細径比を次式の通り求めることが できる。
Figure imgf000017_0001
図 6は、 上記 ( 12) 式に各物性値を代入した計算結果を示す。 なお、 本計算に おいても、 蒸発温度 Teは 2。C、 凝縮温度 T cは 49°Cとし、 スーパーヒート SH二 5 de g、 サブクール S C= 5 d e gとした。
上記計算結果から、 R 32単一冷媒の液側配管 (32) は、 R 22用の液側配管の 0. 76倍程度まで細径化できることが分かった。 また、 R32/R 125混合冷媒 においても、 R 32の組成が 75重量%以上含まれていれば、 0. 76〜0. 8倍程 度まで細径化することが可能であることが分かった。 なお、 参考までに他の代替冷媒 についても同様の計算を行ったが、 R32ほどの細径化効果は得られないことが分か つた (図 6参照)。
図 7は、従来の R 22を用いた装置におけるガス側配管と液側配管の管径(外径) を、 冷房定格能力毎に示した図である。
本空気調和装置 (1) では、 冷房定格能力に応じて、 ガス側配管 (31) について は上記 R 22用ガス側配管と同径の配管を用いる一方、 液側配管 (32) については、 上記 R 22用液側配管よりも細径化された配管を用いる。
図 8は、 液側配管の内径 d lに対するガス側配管の内径 dgの比、 すなわち、 内 径比 (=ガス側配管内径 dg/液側配管内径 d 1) を示した図である。 本空気調和装 置 (1) では、 冷房定格能力に応じて、 以下の内径比を有するガス側配管 (31) 及び 液側配管 (32) を用いる。 すなわち、 冷房定格能力が 5 kWよりも大きく且つ 9 kW以下のときには、 上記 内径比が 2. 1〜3. 5になるようなガス側配管(31)及び液側配管(32)を用いる。 冷房定格能力が 5 kW以下または 9 kWよりも大きいときには、 上記内径比が 2. 6 〜3. 5になるようなガス側配管 (31) 及び液側配管 (32) を用いる。
また、 冷房定格能力が 5 k W以下のときには、 液側配管 (32) として内径が 3. 2mm〜4. 2mmの配管を用いる。 冷房定格能力が 5 kWよりも大きく且つ 22. 4 kW未満のときには、 液側配管 (32) として内径が 5. 4mn!〜 7. 0 mmの配管 を用いる。 冷房定格能力が 22. 4kW以上のときには、 液側配管 (32) として内径 が 7. 5mm〜9. 8 mmの配管を用いる。
上記内径比または液側配管 (32) の内径が上記数値範囲よりも小さい場合には、 冷媒充填量が更に低減するものの、 装置性能が低下する。 一方、 上記内径比または液 側配管 (32) の内径が上記数値範囲よりも大きい場合には、 冷媒圧力損失が低減して 装置性能が向上するものの、 冷媒充填量低減の効果が小さくなる。
そのため、 本実施形態では、 装置の性能を維持しつつ冷媒充填量を十分に低減で きるように、 上記数値範囲内でガス側配管 (31) 及び液側配管 (32) を設定すること とした。
なお、装置の使用条件等によっては、 R 32の特性をより有効に活用するために、 上記数値範囲をより限定してもよいことは勿論である。
例えば、 冷房定格能力が 5 kWよりも大きく且つ 9 kW以下のときには上記内径 比を 2. 4〜3. 2としてもよい。 冷房定格能力が 5 kW以下または 9 kWよりも大 きいときには上記内径比を 2. 8〜3. 3としてもよい。
更に、 冷房定格能力が 5kWよりも大きく且つ 9 kW以下のときには上記内径比 を 2. 6〜3. 0としてもよい。 冷房定格能力が 5 kW以下または 9 kWよりも大き いときには上記内径比を 2. 9〜3. 1としてもよい。
また、 液側配管 (32) の内径は、 冷房定格能力が 5 kW以下のときには 3. 5m m〜3. 9 mmとし、 冷房定格能力が 5 kWよりも大きく且つ 22. 4kW未満のと きには 5. 7mm~6. 7 mmとし、 冷房定格能力が 22. 4 kW以上のときには 7. Λ
17
8mm〜9. 5mmとしてもよい。
更に、 液側配管 (32) の内径は、 冷房定格能力が 5 k W以下のときには 3. 6 m m〜3. 8 mmとし、 冷房定格能力が 5 kWよりも大きく且つ 22. 4kW未満のと きには 6. Omn!〜 6. 4 mmとし、冷房定格能力が 22. 4 kW以上のときには 8. 1 mm~ 9. 1mmとしてもよい。
ところで、 従来より冷媒配管として、 コストが安く且つ取り扱いが容易なことか ら、 銅管がよく用いられている。 銅管には種々の規格品が存在するため、 既存の規格 品を利用することにより、 冷媒配管 (31, 32) の低コスト化を図ることができる。 従 つて、 装置の低コスト化のために、 上記内径比を有するように規格品を組み合わせる ことにより、 液側配管 (32) 及びガス側配管 (31) の双方を規格品のみで構成するこ とが好ましい。
図 9は、 R 22用の銅管 (J I SB 8607) の仕様と、 日本冷凍空調工業会提 案 (曰冷ェ案) の R 32用高圧対応配管の仕様とを比較した図である。
そして、上記計算結果から算出された最適内径比は、 R 32単一冷媒の場合に 0. 76であり、 R32を 75重量%含む R 32/ 125混合冷媒の場合に 0. 80で ある。 上記図 9より、 最適内径比の ± 10%の範囲内であれば、 規格品を組み合わせ ることにより、 当該内径比を容易に実現することができることが分かつた。
例えば、 R22用として 9. 5 mmの規格化配管を用いていた場合、 R32を 使用する際には、これに代わって 08. Ommの規格化配管を利用することができる。 このように、 本実施形態は、 規格品を組み合わせることにより容易に実現可能な形態 である。
一空気調和装置 (1) の運転動作一
空気調和装置 (1) の運転動作を、 冷媒回路 (10) における冷媒循環動作に基づ いて説明する。
冷房運転時には、 四路切換弁 (12) が図 1に示す実線側に設定される。 つまり、 四路切換弁 (12) は、 第 1ポート (12a) と第 2ポート (12b) とが連通すると共に第 3ポート (12c) と第 4ポート (12d) とが連通する状態となる。 この状態で、 圧縮機 (11) から吐出されたガス冷媒は、 第 1ガス側配管 (21)、 四路切換弁 (12) 及び第 2ガス側配管 (22) を流通し、 室外熱交換器 (13) で凝縮す る。 室外熱交換器 (13) を流出した液冷媒は、 第 1液側配管 (25) を流通し、 膨張弁 (14) で減圧されて気液二相冷媒となる。 膨張弁 (14) を流出した二相冷媒は、 第 2 液側配管 (26) を流通し、 室内熱交換器 (15) で室内空気と熱交換を行って蒸発し、 室内空気を冷却する。室内熱交換器(15) を流出したガス冷媒は、 第 3ガス側配管 (2 3)、 四路切換弁 (12) 及び第 4ガス側配管 (24) を流通し、 圧縮機 (11) に吸入され る。
一方、 暖房運転時には、 四路切換弁 (12) が図 1に示す破線側に設定される。 つ まり、 四路切換弁 (12) は、 第 1ポート (12a) と第 4ポート (12d) とが連通すると 共に第 2ポート (12b) と第 3ポート (12c) とが連通する状態となる。
この状態で、 圧縮機 (11) から吐出されたガス冷媒は、 第 1ガス側配管 (21)、 四路切換弁 (12) 及び第 3ガス側配管 (23) を流通し、 室内熱交換器 (15) に流入す る。 室内熱交換器 (15) に流入した冷媒は、 室内空気と熱交換を行って凝縮し、 室内 空気を加熱する。 室内熱交換器 (15) を流出した液冷媒は、 第 2液側配管 (26) を流 通し、 膨張弁 (14) で減圧されて気液二相冷媒となる。 膨張弁 (14) を流出した二相 冷媒は、 第 1液側配管 (25) を流通し、 室外熱交換器 (13) で蒸発する。 室外熱交換 器 (13) を流出したガス冷媒は、 第 2ガス側配管 (22)、 四路切換弁 (12) 及び第 4 ガス側配管 (24) を流通し、 圧縮機 ( 11) に吸入される。
一本実施形態の効果一
本実施形態によれば、 冷媒として R 3 2単一冷媒または R 3 2 /R 1 2 5混合冷 媒を用いると共に、比較的小径の配管によつて液側配管(32)を形成したことにより、 運転効率を従来と同等に維持しつつ、 冷媒回路 (10) の冷媒充填量を低減することが できる。 従って、 地球温暖化係数が小さく且つ管内圧力損失が小さいという R 3 2の 特性を十分に有効活用することができ、 地球温暖化効果を大幅に減少することができ る o
また、 室外熱交換器 (13) 及び室内熱交換器 (15) の伝熱管も細径化することと 1 g したので、 冷媒充填量を更に低減することができ、 地球温暖化効果の一層の低減を図 ることができる。
また、 伝熱管の細径化により室外熱交換器 (13) 及び室内熱交換器 (15) の低コ スト化及びコンパクト化を達成することができ、 室内ユニット (17) 及び室外ュニッ ト (16) を小型化することができる。
—その他の実施形態一
上記実施形態は、 冷房運転及び暖房運転を選択的に実行可能ないわゆるヒートポ ンプ式の空気調和装置であつたが、 本発明の適用対象はヒートポンプ式空気調和装置 に限定されるものではなく、 例えば、 冷房専用機であってもよい。 また、 冷房定格能 力に対応する暖房定格能力毎に液側配管 (32) 及びガス側配管 (31) の内径またはそ れらの内径比を設定することにより、 暖房専用機に本発明を適用することも可能であ る。
ガス側配管 (31) 及び液側配管 (32) は必ずしも銅管で形成する必要はなく、 S U S管、 アルミ管、 鉄管等の他の配管で形成してもよいことは勿論である。
室外熱交換器 (13) 及び室内熱交換器 (15) は、 空気熱交換器に限らず、 二重管 式熱交換器などの液—液熱交換器であってもよい。
室外熱交換器 (13) 及び室内熱交換器 (15) の伝熱管やガス側配管 (31) 及び液 側配管 (32) が細径化されることにより、 冷媒回路 (10) の内容積 (冷媒が通過する 部分の内容積) が小さくなる。 そのため、 冷媒回路 (10) 内に空気、 水分、 不純物等 が混入する量が従来よりも少なくなり、 冷凍機油が水分等と接触する機会が少なくな る。 そのため、 本実施形態によれば、 冷凍機油の劣化が従来よりも起こりにくい。 従 つて、 冷凍機油として、 エーテル油やエステル油などの合成油を用いた場合に、 本実 施形態の優位性はより顕著に発揮されることになる。
なお、 本発明の冷凍装置は、 狭義の冷凍装置に限定されるものではなく、 上記の 空気調和装置は勿論、 冷蔵装置、 除湿機等をも含む広い意味での冷凍装置である。
また、 上記実施形態でいうところの冷房定格能力とは、 蒸発器における能力を意 味するものであり、 空気調和装置における冷房時の能力に限定されるものではない。 なお、 この冷房定格能力は、 接続配管の長さが 5 m、 室内ユニットと室外ユニットの 高低差が 0 mのときに、 所定の J I S条件 (室内乾球温度 2 7 °C、 室内湿球温度 1 9 、 室外乾球温度 3 5 °C) のもとで発揮される能力である。 産業上の利用可能性
以上のように、 本発明の冷凍装置は、 オゾン破壊係数は小さい冷媒を使用する場 合に有用であり、 その上で真に地球温暖化を防止し得る冷凍装置に適している。

Claims

請 求 の 範 囲
1. 冷凍サイクルを形成する冷媒回路 (10) を備えた冷凍装置であって、
上記冷媒回路 (10) の液側配管 (32) の径 d 1に対する上記冷媒回路 (10) のガ ス側配管 (31) の径 dgの比 dg/d 1が 2. 6以上である冷凍装置。
2. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒また は R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回路 (10) を備えた 冷凍装置であって、
上記冷媒回路 (10)の液側配管 (32) とガス側配管 (31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/dlが 2. 6以上になるよう に形成されている冷凍装置。
3. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒また は R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回路 (10) を備え、 冷房定格能力が 5 kWよりも大きく且つ 9 kW以下である冷凍装置であって、
上記冷媒回路 (10)の液側配管 (32) とガス側配管 (31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/d 1が 2. 1以上になるよう に形成されている冷凍装置。
4. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒また は R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回路 (10) を備え、 冷房定格能力が 5 kWよりも大きく且つ 9 kW以下である冷凍装置であって、
上記冷媒回路 (10)の液側配管 (32) とガス側配管 (31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/d 1が 2. 1〜3. 5の範囲 内になるように形成されている冷凍装置。
5. 75重量%以上で且つ 100重量%未満の R 32と R 125との混合冷媒また は R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回路 (10) を備え、 冷房定格能力が 5 kWよりも大きく且つ 9 kW以下である冷凍装置であって、
上記冷媒回路 (10)の液側配管 (32) とガス側配管 (31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/d 1が 2. 4〜3. 2の範囲 内になるように形成されている冷凍装置。
6. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒また は R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回路 (10) を備え、 冷房定格能力が 5kWよりも大きく且つ 9 kW以下である冷凍装置であって、
上記冷媒回路 (10)の液側配管 (32) とガス側配管 (31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 d gの比 d g/d 1が 2. 6〜3. 0の範囲 内になるように形成されて 、る冷凍装置。
7. 75重量%以上で且つ 100重量%未満の: R32と R 125との混合冷媒また は R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回路 (10) を備え、 冷房定格能力が 5 kW以下または 9 kWよりも大きい冷凍装置であって、
上記冷媒回路 (10)の液側配管 (32) とガス側配管 (31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31)の径 dgの比 dg/dlが 2. 6以上になるよう に形成されている冷凍装置。
8. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒また は R 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回路 (10) を備え、 冷房定格能力が 5 kW以下または 9 kWよりも大きい冷凍装置であって、
上記冷媒回路 (10)の液側配管 (32) とガス側配管 (31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/d 1が 2. 6〜3. 5の範囲 内になるように形成されて t、る冷凍装置。 WO 00/52397 つ ^ PCT/JPOO/01183
9. 75重量%以上で且つ 100重量%未満の R 32と R 125との混合冷媒また は H 32の単一冷媒を冷媒として、 冷凍サイクルを形成する冷媒回路 (10) を備え、 冷房定格能力が 5 kW以下または 9 kWよりも大きい冷凍装置であって、
上記冷媒回路 (10)の液側配管 (32) とガス側配管 (31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/d 1が 2. 8〜3. 3の範囲 内になるように形成されてレ、る冷凍装置。
10. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒ま たは R32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 5 kW以下または 9 kWよりも大きい冷凍装置であって、
上記冷媒回路 (10)の液側配管 (32) とガス側配管 (31) とは、 該液側配管 (32) の径 d 1に対するガス側配管 (31) の径 dgの比 dg/d 1が 2. 9〜3. 1の範囲 内になるように形成されている冷凍装置。
1 1. 75重量%以上で且つ 100重量%未満の R 32と R 125との混合冷媒ま たは R32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 5 kW以下である冷凍装置であって、
上記冷媒回路 (10) の液側配管 (32) は、 内径が 4. 2 mm以下である配管によ つて形成されている冷凍装置。
12. 75重量%以上で且つ 100重量%未満の R32と H 125との混合冷媒ま たは 2の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 5 k W以下である冷凍装置であって、
上記冷媒回路 (10) の液側配管 (32) は、 内径が 3. 2mn!〜 4. 2 mmである 配管によって形成されている冷凍装置。
13. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒ま たは R32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 5 k W以下である冷凍装置であって、
上記冷媒回路 (10) の液側配管 (32) は、 内径が 3. 5mm〜3. 9 mmである 配管によって形成されている冷凍装置。
14. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒ま たは R32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 5 k W以下である冷凍装置であって、
上記冷媒回路 (10) の液側配管 (32) は、 内径が 3. 6mm〜3. 8 mmである 配管によって形成されている冷凍装置。
15. 請求項 12~14のいずれか 1項に記載の冷凍装置であって、
液側配管 (32) の内径は、 3. 7 mm以下である冷凍装置。
16. 75重量%以上で且つ 100重量%未満の R32と: R 125との混合冷媒ま たは R32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 5 kWよりも大きく且つ 22. 4 kW未満である冷凍装置であって、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 7. Omm以下である配管によ つて形成されている冷凍装置。
17. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒ま たは R32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 5 kWよりも大きく且つ 22. 4 kW未満である冷凍装置であって、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 5. 4mn!〜 7. Ommである 配管によって形成されている冷凍装置。
18. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒ま たは R32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 5kWよりも大きく且つ 22. 4 kW未満である冷凍装置であって、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 5. 7mm〜6. 7 mmである 配管によって形成されている冷凍装置。
19. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒ま たは R32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 5kWよりも大きく且つ 22. 4 kW未満である冷凍装置であって、 上記冷媒回路 (10) の液側配管 (32) は、 内径が 6. 0mm〜6..4 mmである 配管によって形成されている冷凍装置。
20. 請求項 17〜19のいずれか 1項に記載の冷凍装置であって、
液側配管 (32) の内径は、 6. 2 mm以下である冷凍装置。
21. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒ま たは R32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 22. 4 kW以上である冷凍装置であって、
上記冷媒回路 (10) の液側配管 (32) は、 内径が 9. 8 mm以下である配管によ つて形成されている冷凍装置。
22. 75重量%以上で且つ 100重量%未満の R32と R 125との混合冷媒ま たは R32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 22. 4 kW以上である冷凍装置であって、
上記冷媒回路 (10) の液側配管 (32) は、 内径が 7. 5mm〜9. 8 mmである 配管によって形成されている冷凍装置。
23. 75重量%以上で且つ 100重量%未満の 2と R 125との混合冷媒ま たは R 32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 22. 4 kW以上である冷凍装置であって、
上記冷媒回路 (10) の液側配管 (32) は、 内径が 7. 8mn!〜 9. 5 mmである 配管によって形成されている冷凍装置。
24. 75重量%以上で且つ 100重量%未満の R 32と R 125との混合冷媒ま たは R32の単一冷媒を冷媒として、冷凍サイクルを形成する冷媒回路(10)を備え、 冷房定格能力が 22. 4 kW以上である冷凍装置であって、
上記冷媒回路 (10) の液側配管 (32) は、 内径が 8. lmm~9. 1mmである 配管によつて形成されている冷凍装置。
25. 請求項 22〜 24のいずれか 1項に記載の冷凍装置であって、
液側配管 (32) の内径は、 8. 7 mm以下である冷凍装置。
26. 請求項 1〜 10のいずれか 1項に記載の冷凍装置において、
ガス側配管 (31)及び液側配管 (32) は、 室内ュニット (17) と室外ュニット (1 6) とを接続する接続配管である冷凍装置。
27. 請求項 1 1~14、 請求項 16〜19及び請求項 2 1〜24のいずれか 1項 に記載の冷凍装置において、
液側配管 (32) は、 室内ユニット (17) と室外ユニット (16) とを接続する液側 の接続配管である冷凍装置。
28. 請求項 1〜14、 請求項 16〜19及び請求項 2 1-24のいずれか 1項に 記載の冷凍装置において、
冷媒は、 R 32の単一冷媒である冷凍装置。
PCT/JP2000/001183 1999-03-02 2000-03-01 Dispositif frigorifique WO2000052397A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60032748T DE60032748T2 (de) 1999-03-02 2000-03-01 Kältevorrichtung
US09/914,535 US6739143B1 (en) 1999-03-02 2000-03-01 Refrigerating device
EP00906585A EP1162413B1 (en) 1999-03-02 2000-03-01 Refrigerating device
AU28240/00A AU766849B2 (en) 1999-03-02 2000-03-01 Refrigerating device
HK02106425.0A HK1044983B (zh) 1999-03-02 2002-08-30 製冷裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5428299 1999-03-02
JP11/54282 1999-03-02

Publications (1)

Publication Number Publication Date
WO2000052397A1 true WO2000052397A1 (fr) 2000-09-08

Family

ID=12966220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001183 WO2000052397A1 (fr) 1999-03-02 2000-03-01 Dispositif frigorifique

Country Status (8)

Country Link
US (1) US6739143B1 (ja)
EP (1) EP1162413B1 (ja)
CN (2) CN1233969C (ja)
AU (1) AU766849B2 (ja)
DE (1) DE60032748T2 (ja)
ES (1) ES2278591T3 (ja)
HK (1) HK1044983B (ja)
WO (1) WO2000052397A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003242493B2 (en) * 1999-03-02 2004-07-01 Daikin Industries, Ltd. Refrigerating device
JP2013200090A (ja) * 2012-03-26 2013-10-03 Hitachi Appliances Inc 冷凍サイクル装置
JPWO2015140827A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 ヒートポンプ装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248941A (ja) * 1999-12-28 2001-09-14 Daikin Ind Ltd 冷凍装置
JP3894222B2 (ja) * 2004-12-28 2007-03-14 ダイキン工業株式会社 冷凍装置
US8118084B2 (en) * 2007-05-01 2012-02-21 Liebert Corporation Heat exchanger and method for use in precision cooling systems
CN103542565A (zh) * 2012-07-10 2014-01-29 珠海格力电器股份有限公司 房间空调器
US9835341B2 (en) * 2013-01-28 2017-12-05 Daikin Industries, Ltd. Air conditioner
US20220049879A1 (en) * 2019-09-13 2022-02-17 Carrier Corporation Vapor compression system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156714U (ja) * 1986-03-27 1987-10-05
JPH04306463A (ja) * 1991-04-02 1992-10-29 Matsushita Seiko Co Ltd 空気調和機
JPH10246520A (ja) * 1997-03-04 1998-09-14 Toshiba Corp 空気調和装置
WO1998041803A1 (fr) * 1997-03-17 1998-09-24 Daikin Industries, Ltd. Conditionneur d'air
JPH1163735A (ja) * 1997-08-12 1999-03-05 Toshiba Corp 冷凍サイクル装置
WO1999031444A1 (fr) * 1997-12-16 1999-06-24 Matsushita Electric Industrial Co., Ltd. Conditionneur d'air dans lequel un refrigerant inflammable est utilise

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4688390A (en) 1986-05-27 1987-08-25 American Standard Inc. Refrigerant control for multiple heat exchangers
JP3237263B2 (ja) * 1992-03-02 2001-12-10 株式会社デンソー 冷凍装置
WO1994021759A1 (en) * 1993-03-25 1994-09-29 Asahi Denka Kogyo Kabushiki Kaisha Refrigerator lubricant and refrigerant composition containing the same
JPH0764922A (ja) 1993-08-30 1995-03-10 Kano Densan Hongkong Yugenkoshi 時刻表示装置及びこれを有する電子手帳システム
WO1996001882A1 (fr) * 1994-07-11 1996-01-25 Solvay (Societe Anonyme) Refrigerants
JPH10325624A (ja) 1997-05-28 1998-12-08 Matsushita Seiko Co Ltd 冷凍サイクル装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156714U (ja) * 1986-03-27 1987-10-05
JPH04306463A (ja) * 1991-04-02 1992-10-29 Matsushita Seiko Co Ltd 空気調和機
JPH10246520A (ja) * 1997-03-04 1998-09-14 Toshiba Corp 空気調和装置
WO1998041803A1 (fr) * 1997-03-17 1998-09-24 Daikin Industries, Ltd. Conditionneur d'air
JPH1163735A (ja) * 1997-08-12 1999-03-05 Toshiba Corp 冷凍サイクル装置
WO1999031444A1 (fr) * 1997-12-16 1999-06-24 Matsushita Electric Industrial Co., Ltd. Conditionneur d'air dans lequel un refrigerant inflammable est utilise

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"JYOKYU HYOJUN TEXT REITO KUCHO GIJUTSU", SHADAN HOJIN NIPPON REITO KYOKAI, XX, XX, 20 January 1988 (1988-01-20), XX, pages 125 - 143, XP002946287 *
See also references of EP1162413A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003242493B2 (en) * 1999-03-02 2004-07-01 Daikin Industries, Ltd. Refrigerating device
JP2013200090A (ja) * 2012-03-26 2013-10-03 Hitachi Appliances Inc 冷凍サイクル装置
WO2013146103A1 (ja) * 2012-03-26 2013-10-03 日立アプライアンス株式会社 冷凍サイクル装置
US10066859B2 (en) 2012-03-26 2018-09-04 Hitachi-Johnson Controls Air Conditioning, Inc. Refrigerating cycle device
JPWO2015140827A1 (ja) * 2014-03-17 2017-04-06 三菱電機株式会社 ヒートポンプ装置

Also Published As

Publication number Publication date
CN2416444Y (zh) 2001-01-24
DE60032748D1 (de) 2007-02-15
AU2824000A (en) 2000-09-21
CN1233969C (zh) 2005-12-28
US6739143B1 (en) 2004-05-25
DE60032748T2 (de) 2007-04-26
EP1162413A1 (en) 2001-12-12
CN1339099A (zh) 2002-03-06
ES2278591T3 (es) 2007-08-16
AU766849B2 (en) 2003-10-23
HK1044983A1 (en) 2002-11-08
HK1044983B (zh) 2006-08-11
EP1162413A4 (en) 2003-03-12
EP1162413B1 (en) 2007-01-03

Similar Documents

Publication Publication Date Title
WO2000052396A1 (fr) Dispositif frigorifique
JP2979926B2 (ja) 空気調和機
CN104011471B (zh) 空调装置
JP3763120B2 (ja) 空気調和装置
JP2004361036A (ja) 空気調和装置
JP4848576B2 (ja) 冷凍装置
JP4815656B2 (ja) 冷凍装置
JP4488712B2 (ja) 空気調和装置
EP1243877A1 (en) Refrigerating device
WO2000052397A1 (fr) Dispositif frigorifique
JP2012122677A (ja) 空気調和機
JP2001304783A (ja) 室外熱交換器、室内熱交換器、及び空気調和装置
WO2000052398A1 (fr) Dispositif frigorifique
JP2003050061A (ja) 空気調和装置
JP7118247B2 (ja) 空気調和機
JP2004170048A (ja) 空気調和装置
WO2016075851A1 (ja) ヒートポンプ装置
AU2003242493B2 (en) Refrigerating device
JPH109714A (ja) 冷凍装置
WO2010038403A1 (ja) 空気調和装置
JP3736809B2 (ja) 空気調和機
JP4370674B2 (ja) 熱交換器
JPH11108483A (ja) 空気調和機
JP2008215773A (ja) 空気調和装置
JPH1073394A (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00803516.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2000 602572

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 28240/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09914535

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000906585

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000906585

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 28240/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2000906585

Country of ref document: EP