WO2016075851A1 - ヒートポンプ装置 - Google Patents

ヒートポンプ装置 Download PDF

Info

Publication number
WO2016075851A1
WO2016075851A1 PCT/JP2015/004163 JP2015004163W WO2016075851A1 WO 2016075851 A1 WO2016075851 A1 WO 2016075851A1 JP 2015004163 W JP2015004163 W JP 2015004163W WO 2016075851 A1 WO2016075851 A1 WO 2016075851A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
compressor
heat
evaporator
Prior art date
Application number
PCT/JP2015/004163
Other languages
English (en)
French (fr)
Inventor
繁男 青山
道美 日下
俊二 森脇
西山 吉継
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201580054540.0A priority Critical patent/CN106796060A/zh
Priority to EP15858912.7A priority patent/EP3220075A4/en
Publication of WO2016075851A1 publication Critical patent/WO2016075851A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements

Definitions

  • the present invention relates to a heat pump apparatus.
  • FIG. 7 is a schematic block diagram of the conventional heat pump apparatus described in Patent Document 1. As shown in FIG. As shown in FIG. 7, this heat pump apparatus includes a refrigerant circuit in which a compressor 101, an outdoor heat exchanger 102, an expansion valve 103, an indoor heat exchanger 104, and a four-way valve 105 are annularly connected.
  • This heat pump apparatus uses R32 as a refrigerant. Moreover, it is assumed that this heat pump apparatus is applied to an air conditioner. Therefore, both the outdoor heat exchanger 102 and the indoor heat exchanger 104 are fin-tube type heat exchangers that exchange heat between the refrigerant and the air.
  • Non-Patent Document 1 There is one that has clarified the relationship between the pressure loss in the heat transfer tube and the flow rate of the refrigerant when the refrigerant evaporates (see Non-Patent Document 1 and Non-Patent Document 2).
  • FIG. 8A is a graph showing the relationship between the flow rate of the refrigerant and the pressure loss when the refrigerant evaporates, which is described in Non-Patent Document 1.
  • FIG. 8 (b) is a graph described in Non-Patent Document 2, showing the relationship between the flow rate of the refrigerant and the pressure loss when the refrigerant is evaporated. From these graphs, it can be seen that the pressure loss is proportional to approximately the square of the flow rate of the refrigerant.
  • R32 is used as the refrigerant on the premise that the heat pump apparatus is applied to the air conditioner, and the application to an apparatus for exchanging heat between the refrigerant and the liquid is not considered.
  • the present invention is to solve the above-mentioned conventional problems, and it is an object of the present invention to improve the energy saving performance of a heat pump apparatus which exchanges heat between a refrigerant and a liquid.
  • the heat pump apparatus of the present invention comprises a refrigerant circuit in which a compressor, a condenser, an expansion means, and an evaporator are annularly connected by a refrigerant pipe, and the condenser or
  • the evaporator is a plate type heat exchanger in which the refrigerant and the liquid exchange heat, and the refrigerant sealed in the refrigerant circuit is characterized in that R32 is a main component.
  • FIG. 1 is a schematic configuration view showing a heat pump apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a Mollier (ph) diagram of R410A and R32.
  • FIG. 3 shows (a) the flow velocity distribution of the refrigerant inlet header when the refrigerant inlet and the refrigerant outlet are formed on different surfaces.
  • B It is a graph which shows the flow velocity distribution of a refrigerant
  • FIG. 4 is a graph showing the relationship between the compression ratio of the compressor and the volume ratio R of the heat exchanger when R410A is used as the heat pump device.
  • FIG. 5 is a graph showing the relationship between the compression ratio of the compressor and the volume ratio R of the heat exchanger when R32 is used as the heat pump device.
  • FIG. 6 is a Mollier diagram showing the difference in compression process between a low pressure shell compressor and a high pressure shell compressor.
  • FIG. 7 is a schematic configuration diagram of a conventional heat pump apparatus.
  • FIGS. 8A and 8B are graphs showing the relationship between the flow rate of the refrigerant and the pressure loss at the time of evaporation of the refrigerant.
  • the first invention comprises a refrigerant circuit in which a compressor, a condenser, an expansion means, and an evaporator are annularly connected by a refrigerant pipe, and in the condenser or the evaporator, the refrigerant and the liquid exchange heat between the refrigerant and the liquid.
  • Plate type heat exchanger, and the refrigerant sealed in the refrigerant circuit is a heat pump apparatus having R32 as a main component.
  • the condenser is the plate heat exchanger
  • the evaporator is a finned-tube heat exchanger in which the refrigerant and the gas exchange heat, and the evaporation is performed
  • the compressor is a high pressure shell compressor.
  • FIG. 1 is a schematic configuration view showing a heat pump device of the present embodiment.
  • FIG. 2 is a Mollier (ph) diagram of R410A and R32.
  • FIG. 3 is a graph showing the flow velocity distribution of the refrigerant inlet header of the plate type heat exchanger, wherein (a) is a graph when the refrigerant inlet and the refrigerant outlet are formed on different surfaces, (b) These are graphs when a refrigerant
  • FIG. 4 is a graph which shows the relationship between the compression ratio of a compressor at the time of using R410A for a heat pump apparatus, and volume ratio R of a heat exchanger.
  • FIG. 5 is a graph showing the relationship between the compression ratio of the compressor and the volume ratio R of the heat exchanger when R32 is used as the heat pump device.
  • FIG. 6 is a Mollier (ph) diagram showing the difference in compression process between a low pressure shell compressor and a high pressure shell compressor.
  • the heat pump apparatus 100 of the present embodiment decompresses the refrigerant 1 by compressing the refrigerant, the four-way valve 2 switching the flow direction of the refrigerant, the first heat exchanger 3, and the high pressure refrigerant.
  • a refrigerant circuit 100a is provided in which expansion means 4 for expansion and a second heat exchanger 5 are sequentially connected by a refrigerant pipe.
  • the compressor 1 is provided with a shell which is an outer shell.
  • the compressor 1 includes a compression mechanism and an electric motor inside a shell.
  • the compression mechanism comprises a compression chamber. The rotation of the motor reduces the volume of the compression chamber and compresses the refrigerant.
  • the compressor 1 is a high pressure shell type compressor in which the inside of the shell is at high pressure.
  • the first heat exchanger 3 is a plate type heat exchanger in which a refrigerant and a liquid (for example, water) exchange heat.
  • the second heat exchanger is a finned tube heat exchanger in which the refrigerant and a gas (for example, air) exchange heat.
  • the heat pump apparatus 100 further includes a liquid circuit 100b in which the first heat exchanger 3, a circulation pump (not shown), a heating terminal (not shown) such as a floor heating panel, etc. are connected by liquid piping.
  • an expansion valve capable of adjusting the flow passage cross-sectional area through which the refrigerant flows, or a capillary tube having a constant flow passage cross-sectional area can be adopted.
  • the heat pump apparatus 100 uses the first heat exchanger 3 as a condenser and the second heat exchanger 5 as an evaporator by switching the flow direction of the refrigerant with the four-way valve 2, and the first heat exchanger It is possible to switch between the case where 3 is used as the evaporator and the case where the second heat exchanger 5 is used as the condenser.
  • the condenser the high-pressure refrigerant compressed by the compressor 1 dissipates heat.
  • the gas-liquid two-phase refrigerant expanded and decompressed by the expansion means 4 evaporates.
  • a refrigerant containing R32 (difluoromethane) as a main component is used as the refrigerant sealed in the refrigerant circuit.
  • the refrigerant preferably contains 70% or more of R32. More preferably, all the refrigerants are R32. Even when all the refrigerants are R32, some impurities may be contained.
  • the finned tube heat exchanger exchanges heat between the refrigerant flowing inside the heat exchanger and the gas (air) flowing outside.
  • the finned-tube heat exchanger includes a plurality of heat transfer tubes and a plurality of flat fins. The plurality of heat transfer tubes pass through the plurality of fins. Then, the refrigerant flowing inside the heat transfer pipe exchanges heat with the air flowing between the fins.
  • a fan (not shown) for blowing air between the fins is provided in the vicinity of the finned-tube heat exchanger.
  • the plate type heat exchanger exchanges heat between the refrigerant flowing in the refrigerant flow passage inside the heat exchanger and the liquid (water) flowing in the liquid flow passage inside the heat exchanger.
  • a plate type heat exchanger is provided with a flat plate (plate) provided with a plurality of stacked unevenness.
  • a refrigerant channel or a liquid channel is formed between the flat plate and the adjacent flat plate.
  • the refrigerant flow path and the liquid flow path are alternately formed by stacking a plurality of flat plates. Then, the refrigerant flowing in the refrigerant channel and the liquid (water) flowing in the liquid channel exchange heat.
  • the plate type heat exchanger has a refrigerant inlet header at one end in a direction perpendicular to the stacking direction, and has a refrigerant outlet header at the other end.
  • the refrigerant inlet header portion includes a refrigerant inlet portion connected to an external refrigerant pipe at one end.
  • the refrigerant inlet header portion penetrates the plurality of flat plates from the refrigerant inlet portion in the stacking direction and is in communication with the refrigerant flow path.
  • the refrigerant outlet header portion includes a refrigerant outlet portion connected to an external refrigerant pipe at one end.
  • the refrigerant outlet header portion penetrates the plurality of flat plates from the refrigerant outlet portion in the stacking direction and is in communication with the refrigerant flow path.
  • the refrigerant inlet portion and the refrigerant outlet portion may be provided on different surfaces of the plate type heat exchanger (see the schematic configuration in FIG. 3A). Or you may provide in the same surface (refer schematic structure in FIG.3 (b)).
  • the plate heat exchanger also includes a liquid inlet header and a liquid outlet header.
  • the refrigerant flow path of the first heat exchanger 3 which is a plate type heat exchanger is connected to the refrigerant circuit 100a, and the liquid flow path of the first heat exchanger 3 is It is connected to the liquid circuit 100b. Then, the heat pump apparatus 100 can be applied to a hot water generating apparatus that heats a liquid using the first heat exchanger 3 as a condenser.
  • the present invention can be applied to a hot water heating apparatus that heats a room by circulating a heated liquid (hot water) to a heating terminal such as a floor heating panel.
  • a heated liquid hot water
  • the heat pump apparatus 100 of the present embodiment can also be applied to a cold / hot water generating apparatus.
  • the operating state of the refrigeration cycle when the heat pump apparatus 100 is operated under standard operating conditions will be described using a Mollier (ph) diagram.
  • the enthalpy difference h2 in the case of using R32 as the refrigerant increases by about 1.5 times as compared to the enthalpy difference h1 in the case of using R410A. Therefore, the amount of refrigerant circulation required to exert the same heating capacity is smaller for R32 than for R410A.
  • the refrigerant circulation amount may be about 66% of R410A.
  • the degree of dryness x decreases.
  • the dryness x of the refrigerant at the inlet of the evaporator is 0.24 when using R410A, whereas it is 0.19 when using R32. descend.
  • the flow velocity distribution of the refrigerant in the refrigerant inlet header portion of the plate type heat exchanger will be described.
  • the flow velocity distribution in the case where the plate type heat exchanger has the refrigerant inlet portion and the refrigerant outlet portion on different surfaces (FIG. 3A) and the case where the refrigerant inlet portion and the refrigerant outlet portion are provided on the same surface (FIG. It differs in 3 (b)).
  • FIG. 3A when the refrigerant inlet and the refrigerant outlet are provided on different surfaces, the flow velocity on the surface provided with the refrigerant inlet is low, and the refrigerant outlet is provided.
  • the dryness x of the refrigerant at the inlet of the evaporator decreases, the ratio of the liquid refrigerant to the refrigerant flowing in the evaporator increases and the flow velocity of the refrigerant decreases.
  • the uneven distribution of the refrigerant inside the plate type heat exchanger is improved, and the divided flow of the refrigerant is improved. Therefore, heat exchange is efficiently performed in each refrigerant flow passage of the plate type heat exchanger, so that the heat exchange efficiency is improved. As a result, the energy saving performance of the heat pump device 100 is improved.
  • the internal volume Vf of the finned-tube heat exchanger does not include the internal volume of the refrigerant pipe connected to the inlet or outlet of the heat exchanger in order to connect with the expansion means 4 or the four-way valve 2, and the heat exchanger
  • coolant piping which connects heat transfer tubes are included.
  • the refrigerant pipes connecting the heat transfer pipes include a branch pipe, a header pipe, and the like for distributing the refrigerant to the plurality of heat transfer pipes and collecting the refrigerant from the plurality of heat transfer pipes.
  • the internal volume Vr of the plate type heat exchanger does not include the internal volume of the refrigerant pipe connected to the inlet and the outlet of the heat exchanger in order to connect with the expansion means 4 and the four-way valve 2
  • the product, the inner volume of the refrigerant inlet header, and the inner volume of the refrigerant outlet header are included.
  • the compressor 1 needs to use a compression ratio of 1.5 to 10 in order to ensure reliability. Therefore, when the heat pump apparatus 100 is applied to a hot water generating apparatus, the content of the heat exchanger is set so that the compression ratio of the compressor 1 falls within the range of 1.5 to 10 in the actual use range of the hot water generating apparatus. You need to set the product.
  • an actual use range a range of 7 to 16 kW in rated capacity, -15 to 12 ° C. in outside air temperature, and 35 to 55 ° C. in liquid (water) temperature is adopted. did.
  • the abscissa represents the volume ratio R
  • the ordinate represents the compression ratio
  • the maximum value and the minimum value of the compression ratio required in the actual use range are plotted. .
  • the maximum value and the minimum value of the compression ratio also tend to increase or decrease as the volume ratio R (Vf / Vp) is increased or decreased. Therefore, when using R410A as a refrigerant, using a plate type heat exchanger as a condenser, and using a finned-tube type heat exchanger as an evaporator, the compression ratio should be 1.5 in order to ensure the reliability of the compressor. In order to set to 10, as shown in FIG. 4, it is necessary to set the volume ratio R to 0.5 ⁇ R ⁇ 5.
  • the compressor 1 operates at a compression ratio in the range of 1.5 to 10 from the viewpoint of maintaining the reliability of the heat pump apparatus 100, particularly the compressor 1 You need to For this reason, as shown in FIG. 5, the volume ratio R needs to be 0.5 ⁇ R ⁇ 4.
  • the cross-sectional area S of the heat transfer tube of the evaporator can be reduced.
  • the cross-sectional area S of the heat transfer tube is the internal volume Vf of the finned-tube heat exchanger divided by the length L of the heat transfer tube of the finned-tube heat exchanger (Vf / L).
  • the cross-sectional area S of the heat transfer tube of the finned-tube heat exchanger is 0.8 to 1.0 times greater when R32 is used than when R 410A is used.
  • 0.8 can be calculated by dividing 4 which is the maximum volume ratio when R32 is used by 5 which is the maximum volume ratio when R410A is used.
  • 1.0 can be calculated by dividing 0.5 which is the minimum volume ratio when R32 is used by 0.5 which is the minimum volume ratio when R410A is used.
  • the refrigerant flow rate in the heat transfer tube of the finned-tube heat exchanger is 1.0 to 1.25 times greater when R32 is used than when R410A is used.
  • 1.0 is a reciprocal of 1.0 which is the maximum value of the cross-sectional area S.
  • 1.25 is a reciprocal of 0.8 which is the minimum value of the cross-sectional area S.
  • the enthalpy difference h is increased by about 1.5 times as compared to the case where R410A is used, so the same performance can be obtained even if the refrigerant flow rate is reduced to about 66%. It can be secured.
  • the pressure loss dPc at the time of evaporation of the refrigerant is proportional to the square of the flow rate of the refrigerant, as shown in FIGS. As described above, since the refrigerant flow rate of R32 is 1.0 to 1.25 times that of R410A, the pressure drop of R32 is 0.44 to 0.68 times that of R410A. It becomes.
  • 0.44 is the ratio of the refrigerant flow rate when using R32 to 0.66 multiplied by 1.0, which is the minimum ratio of the flow velocity when using R32, to a square. It can be calculated by Also, 0.68 is the ratio of the refrigerant flow rate when using R32 to the value of 0.66 that is the maximum ratio of the flow velocity when using R32 by squaring a value that is 1.25 It can be calculated.
  • the flow rate of the refrigerant flowing through the condenser for exerting the same heating capacity is smaller in the case of using R32 than in the case of using R410A. Therefore, the operating rotational speed of the compressor 1 can be reduced, and the power of the compressor 1 is reduced. Furthermore, when R32 is used, the pressure loss is reduced as compared to the case where R410A is used, so the pressure of the refrigerant at the outlet of the evaporator, that is, the pressure of the refrigerant sucked into the compressor 1 is To rise. Therefore, the specific volume of the refrigerant drawn into the compressor 1 is reduced, and the amount of refrigerant drawn into the compressor 1 is increased. As a result, even when the power of the compressor 1 is reduced, a sufficient refrigerant circulation amount can be secured. Thereby, the condensing ability and the evaporation ability can be improved.
  • the evaporator can be made smaller, as compared to when R410A is used, and By reducing the internal volume of the evaporator, the required amount of refrigerant can be reduced, and the energy saving performance of the heat pump device can be improved.
  • the compressor 1 it is preferable to use a high pressure shell type compressor.
  • a low pressure shell type compressor in which the inside of the shell is at low pressure, the refrigerant sucked into the compressor once flows into the inside of the shell and is drawn into the compression chamber in the compressor while being heated by the high temperature motor . Therefore, as shown in FIG. 6, in the compression process, the compression is started in a state where the temperature of the refrigerant is higher than when it is sucked into the compressor. For this reason, there is a possibility that the temperature (discharge temperature) of the refrigerant after the compression is completed may become excessive.
  • the heat pump apparatus is described as having one condenser and one evaporator, but a plurality of condensers or evaporators may be provided.
  • all of the heat exchangers used as condensers be plate heat exchangers and all the heat exchangers used as evaporators be finned tube heat exchangers.
  • the internal volume Vf of the finned-tube heat exchanger is the sum of the internal volumes of all the finned-tube heat exchangers.
  • the internal volume Vr of the plate heat exchanger is the sum of the internal volumes of all plate heat exchangers.
  • the heat pump device excellent in energy saving performance can be provided, it can be applied to applications such as a hot water generating device and a hot water heating device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 圧縮機(1)と、凝縮器(3または5)と、膨張手段(4)、蒸発器(5または3)とを冷媒配管で環状に接続した冷媒回路を備え、凝縮器(3または5)または蒸発器(5または3)は、冷媒と液体とが熱交換するプレート式熱交換器であり、冷媒回路に封入される前記冷媒は、R32を主成分とすることにより、凝縮器(3または5)の内部での冷媒の偏流が改善されるとともに、圧力損失が低減されるため、省エネルギー性能が向上する。

Description

ヒートポンプ装置
 本発明は、ヒートポンプ装置に関するものである。
 従来、フィンチューブ式熱交換器を備えたヒートポンプ装置に、冷媒としてR32を使用し、室内熱交換器と室外熱交換器の容積比を小さくすることにより、ヒートポンプ装置の小型化を図るものがある(例えば、特許文献1参照)。
 図7は特許文献1に記載された従来のヒートポンプ装置の概略構成図である。図7に示すように、このヒートポンプ装置は、圧縮機101、室外熱交換器102、膨張弁103、室内熱交換器104、四方弁105を環状に接続した冷媒回路を備える。
 このヒートポンプ装置は、冷媒としてR32を用いる。また、このヒートポンプ装置は、空気調和機に適用することを想定している。このため、室外熱交換器102、室内熱交換器104は、いずれも冷媒と空気を熱交換させるフィンチューブ式熱交換器である。そして、室外熱交換器102の内容積Voutと室内熱交換器104の内容積Vinとの比m(=Vout/Vin)を0.7≦m≦1.5の範囲としている。これにより、従来の冷媒、特にR410Aを用いた場合と比較して、ヒートポンプ装置の省エネルギー化、及び、室外熱交換器の小型化を図っている。
 また、フィンチューブ式熱交換器の内容積を小さくするためには、熱交換器を構成している伝熱管の管径を小さくする必要がある。この場合、伝熱管内を流れる冷媒の圧力損失を抑えながら伝熱性能を確保することが課題となる。
 冷媒が蒸発する際の伝熱管内での圧力損失と冷媒の流量との関係を明らかにしたものがある(非特許文献1、非特許文献2参照)。
 図8(a)は、非特許文献1に記載されている、冷媒が蒸発する時の冷媒の流量と圧力損失との関係を示すグラフである。図8(b)は、非特許文献2に記載されている、冷媒が蒸発する時の冷媒の流量と圧力損失との関係を示すグラフである。これらのグラフから、圧力損失は冷媒の流量の略2乗に比例することがわかる。
特開2001-248922号公報
法福守、外2名、"蒸発性能を向上した内面溝付管の開発"、日立電線株式会社、No.26(2007-1)、p.59 森康敏、外3名、"代替冷媒用高性能内面溝付管HFタイプの開発"、古河電工時報、古河電気工業株式会社、平成12年7月、第106号、p.8
 しかしながら、前記従来技術では、ヒートポンプ装置を空気調和機に適用することを前提に、冷媒としてR32を用いており、冷媒と液体を熱交換する機器に適用する場合については考慮されていない。
 したがって、従来の構成を、そのまま、冷媒と液体とを熱交換させるヒートポンプ装置に適用しても、十分に省エネルギー性能が向上しないという課題があった。
 本発明は前記従来の課題を解決するもので、冷媒と液体とを熱交換させるヒートポンプ装置の省エネルギー性能を向上させることを目的とする。
 前記従来の課題を解決するために、本発明のヒートポンプ装置は、圧縮機と、凝縮器と、膨張手段と、蒸発器とを冷媒配管で環状に接続した冷媒回路を備え、前記凝縮器または前記蒸発器は、冷媒と液体とが熱交換するプレート式熱交換器であり、前記冷媒回路に封入される前記冷媒は、R32を主成分とすることを特徴とするものである。
 R32を使用して、従来のR410Aを使用する場合と同一の能力を発揮させる条件では、R32を使用する場合には、R410Aを使用する場合と比べて、凝縮過程におけるエンタルピー差hは増加する。よって、R32を使用する場合には、所定の能力を得るために必要な冷媒循環量が減少する。したがって、熱交換器での冷媒流速が低下する。このため、プレート式熱交換器の冷媒入口部に近い流路から遠い流路にかけて生じる冷媒の偏流が改善される。その結果、ヒートポンプ装置の省エネルギー性能が向上する。
 本発明によれば、省エネルギー性能が向上したヒートポンプ装置を提供することができる。
図1は、本発明の実施の形態1のヒートポンプ装置を示す概略構成図である。 図2は、R410AとR32のモリエル(p-h)線図である。 図3は、本発明の実施の形態1のヒートポンプ装置のプレート式熱交換器において、(a)冷媒入口部と冷媒出口部とが異なる面に形成された場合の冷媒入口ヘッダー部の流速分布を示すグラフ、(b)冷媒入口部と冷媒出口部とが同一面に形成された場合の冷媒入口ヘッダー部の流速分布を示すグラフである。 図4は、ヒートポンプ装置にR410Aを用いた場合の圧縮機の圧縮比と熱交換器の容積比Rとの関係を示すグラフである。 図5は、ヒートポンプ装置にR32を用いた場合の圧縮機の圧縮比と熱交換器の容積比Rとの関係を示すグラフである。 図6は、低圧シェル型圧縮機と高圧シェル型圧縮機の圧縮過程の差異を示すモリエル線図である。 図7は、従来のヒートポンプ装置の概略構成図である。 図8(a)、(b)は、冷媒の蒸発時における冷媒の流量と圧力損失との関係を示すグラフである。
 第1の発明は、圧縮機と、凝縮器と、膨張手段と、蒸発器とを冷媒配管で環状に接続した冷媒回路を備え、前記凝縮器または前記蒸発器は、冷媒と液体とが熱交換するプレート式熱交換器であり、前記冷媒回路に封入される前記冷媒は、R32を主成分とするヒートポンプ装置である。
 同一の能力を発揮させる条件で、冷媒として、R410Aを使用する場合とR32を使用する場合とを比較すると、R32を使用する場合の方が、凝縮過程におけるエンタルピー差hは増加する。よって、R32を使用する場合には、所定の能力を得るために必要な冷媒循環量が減少する。したがって、熱交換器での冷媒流速が低下する。このため、プレート式熱交換器の冷媒入口部に近い流路から遠い流路にかけて生じる冷媒の偏流が改善される。その結果、プレート式熱交換器の全体で効率よく熱交換が行われ、ヒートポンプ装置の省エネルギー性能が向上する。
 また、R32を使用する場合の方が、凝縮過程におけるエンタルピー差hが増加するので、等しい圧力で同一の過冷却度の状態から冷媒を減圧すると、蒸発器の入口での乾き度xが低下する。よって、プレート式熱交換器を蒸発器として用いた場合には、プレート式熱交換器の内部を流動する冷媒は、液冷媒が占める比率が増加する。したがって、プレート式熱交換器の内部を流れる冷媒の流速が低下する。このため、プレート式熱交換器の冷媒入口部に近い流路から遠い流路にかけて生じる冷媒の偏流が改善される。その結果、プレート式熱交換器の全体で効率よく熱交換が行われ、ヒートポンプ装置の省エネルギー性能が向上する。
 第2の発明は、特に第1の発明において、前記凝縮器は前記プレート式熱交換器であり、前記蒸発器は前記冷媒と気体とが熱交換するフィンチューブ式熱交換器であり、前記蒸発器の内容積(Vf)と前記凝縮器の内容積(Vp)との比R(=Vf/Vp)は、0.5≦R≦4.0であるものである。
 これにより、ヒートポンプ装置の省エネルギー性能が向上することに加え、フィンチューブ式熱交換器である蒸発器の小型化を図ることができる。また、圧縮機の信頼性が向上する。また、蒸発器の小型化を実現して熱交換器の内容積を低減させることで、ヒートポンプ装置に必要な冷媒量の削減を図ることができる。
 第3の発明は、特に、第1または第2の発明において、前記圧縮機は、高圧シェル型圧縮機であるものである。
 シェル内が低圧となる低圧シェル型圧縮機では、シェル内にあるモータにより冷媒が加熱された後、圧縮が開始される。一方、高圧シェル型の圧縮機では、圧縮機に吸入される冷媒は、直接、圧縮機内の圧縮室に吸入される。このため、冷媒がモータにより加熱されるよりも前に圧縮が開始される。よって、吐出温度が上昇しやすいR32を用いた場合でも、吐出温度の過度な上昇を抑制でき、圧縮機の信頼性が向上する。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は、本実施の形態のヒートポンプ装置を示す概略構成図である。図2は、R410AとR32のモリエル(p-h)線図である。図3は、プレート式熱交換器の冷媒入口ヘッダー部の流速分布を示すグラフであり、(a)は、冷媒入口部と冷媒出口部とが異なる面に形成された場合のグラフ、(b)は、冷媒入口部と冷媒出口部とが同一面に形成された場合のグラフである。
 また、図4は、ヒートポンプ装置にR410Aを用いた場合の圧縮機の圧縮比と熱交換器の容積比Rとの関係を示すグラフである。図5は、ヒートポンプ装置にR32を用いた場合の圧縮機の圧縮比と熱交換器の容積比Rとの関係を示すグラフである。図6は、低圧シェル型圧縮機と高圧シェル型圧縮機の圧縮過程の差異を示すモリエル(p-h)線図である。
 図1に示すように、本実施の形態のヒートポンプ装置100は、冷媒を圧縮する圧縮機1、冷媒の流れる方向を切り替える四方弁2、第1の熱交換器3、高圧の冷媒を減圧して膨張させる膨張手段4、第2の熱交換器5を、冷媒配管で順に接続した冷媒回路100aを備えている。
 圧縮機1は、外殻であるシェルを備えている。圧縮機1は、シェルの内部に、圧縮機構と電動機とを備えている。圧縮機構は圧縮室を備えている。電動機が回転することで、圧縮室の容積が縮小し、冷媒が圧縮される。圧縮機1は、シェルの内部が高圧となる高圧シェル型圧縮機である。
 第1の熱交換器3は、冷媒と液体(例えば、水)とが熱交換するプレート式熱交換器である。第2の熱交換器は、冷媒と気体(例えば、空気)とが熱交換するフィンチューブ式熱交換器である。
 また、ヒートポンプ装置100は、第1の熱交換器3、循環ポンプ(図示せず)、床暖房パネル等の暖房端末(図示せず)などを液体配管で接続した液体回路100bを備えている。
 膨張手段4には、冷媒の流れる流路断面積が調整できる膨張弁や、流路断面積が一定であるキャピラリーチューブが採用できる。
 ヒートポンプ装置100は、四方弁2により冷媒の流れ方向を切り替えることで、第1の熱交換器3を凝縮器、第2の熱交換器5を蒸発器として用いる場合と、第1の熱交換器3を蒸発器、第2の熱交換器5を凝縮器として用いる場合とを切り替えることができる。凝縮器では、圧縮機1によって圧縮された高圧の冷媒が放熱する。蒸発器では、膨張手段4により減圧されて膨張した気液二相状態の冷媒が蒸発する。
 冷媒回路に封入される冷媒としてはR32(ジフルオロメタン)を主成分とする冷媒が用いられる。冷媒には、R32が70%以上含まれていることが好ましい。また、冷媒のすべてがR32であることがより好ましい。なお、冷媒のすべてがR32である場合でも、若干の不純物は含まれていてもよい。
 フィンチューブ式熱交換器は、当該熱交換器の内部を流れる冷媒と、外部を流れる気体(空気)とを熱交換する。フィンチューブ式熱交換器は、複数の伝熱管と、複数の平板状のフィンとを備えている。複数の伝熱管は、複数のフィンに貫通している。そして、伝熱管の内部を流れる冷媒と、フィンの間を流れる空気とが熱交換するように構成される。フィンチューブ式熱交換器の近傍には、フィンの間に空気を送風するためのファン(図示せず)が設けられる。
 プレート式熱交換器は、当該熱交換器の内部の冷媒流路を流れる冷媒と、当該熱交換器の内部の液体流路を流れる液体(水)とを熱交換する。プレート式熱交換器は、積層された複数枚の凹凸を備えた平板(プレート)を備えている。平板と隣接する平板との間には、冷媒流路、または、液体流路が形成される。プレート式熱交換器には、複数枚の平板を積層することで、冷媒流路と液体流路とが交互に形成される。そして、冷媒流路を流れる冷媒と液体流路を流れる液体(水)とが熱交換するように構成される。
 プレート式熱交換器は、積層方向と垂直な方向の一端に冷媒入口ヘッダー部を備え、他端に冷媒出口ヘッダー部を備えている。冷媒入口ヘッダー部は、一端に外部の冷媒配管に接続される冷媒入口部を備える。冷媒入口ヘッダー部は、冷媒入口部から積層方向に複数の平板を貫通し、冷媒流路と連通している。また、冷媒出口ヘッダー部は、一端に外部の冷媒配管に接続される冷媒出口部を備える。冷媒出口ヘッダー部は、冷媒出口部から積層方向に複数の平板を貫通し、冷媒流路と連通している。
 冷媒入口部と冷媒出口部とは、プレート式熱交換器の異なる面に設けてもよい(図3(a)中の概略構成参照)。または、同じ面に設けてもよい(図3(b)中の概略構成参照)。
 また、プレート式熱交換器は、液体入口ヘッダー部と液体出口ヘッダー部とを備えている。
 本実施の形態のヒートポンプ装置100では、プレート式熱交換器である第1の熱交換器3の冷媒流路は、冷媒回路100aに接続され、第1の熱交換器3の液体流路は、液体回路100bに接続されている。そして、ヒートポンプ装置100は、第1の熱交換器3を凝縮器として用い、液体を加熱する温水生成装置に適用できる。
 より具体的には、加熱された液体(温水)を、床暖房パネル等の暖房端末に循環させて室内の暖房を行う温水暖房装置に適用できる。なお、本実施の形態のヒートポンプ装置100は、四方弁2によって液体の流れる方向を切り替えると、第1の熱交換器3で液体を冷却できるため、冷温水生成装置にも適用できる。
 ヒートポンプ装置100を標準的な運転条件で運転した場合の冷凍サイクルの動作状態について、モリエル(p-h)線図を用いて説明する。図2に示すように、冷媒としてR32を用いた場合のエンタルピー差h2は、R410Aを用いた場合のエンタルピー差h1と比較して、約1.5倍増加する。よって、同一の加熱能力を発揮させるために必要な冷媒循環量は、R410AよりもR32の方が少ない。具体的には、R32では、R410Aの約66%の冷媒循環量でよい。
 また、図2に示すように、冷媒としてR32を用いると、R410Aを用いた場合と比較して、同一の凝縮圧力で同一の過冷却度の状態から冷媒を減圧した場合の、蒸発器の入口での乾き度xが低下する。例えば、図2に示す運転条件では、蒸発器の入口での冷媒の乾き度xは、R410Aを用いた場合には0.24であるのに対し、R32を用いた場合には0.19と低下する。
 ここで、プレート式熱交換器の冷媒入口ヘッダー部の冷媒の流速分布について説明する。流速分布は、プレート式熱交換器が、冷媒入口部と冷媒出口部とを異なる面に備える場合(図3(a))と、冷媒入口部と冷媒出口部とを同一面に備える場合(図3(b))とで異なる。具体的には、図3(a)のように、冷媒入口部と冷媒出口部とを異なる面に備える場合には、冷媒入口部を備えた面側の流速が遅く、冷媒出口部を備えた面側(奥行側)の流速が早くなるように偏流する。図3(b)のように、冷媒入口部と冷媒出口部とを同一面に備える場合には、冷媒入口部と冷媒出口部とを備えた面側の流速が早く、反対側(奥行側)の流速が遅い。
 R32を用いた場合は、R410Aを用いた場合と比較して、冷媒循環量が減少し、冷媒流速が低下する。よって、図3(a)、(b)に示すように、冷媒入口部と冷媒出口部とを、異なる面に備える場合でも、同一面に備える場合でも、冷媒流速の偏りが減少し、冷媒の分流が改善する。
 また、前述のように蒸発器の入口の冷媒の乾き度xが低下するので、蒸発器を流動する冷媒に占める液冷媒の比率が増加して冷媒の流速が低下する。これにより、特に、プレート式熱交換器を蒸発器として用いた場合には、プレート式熱交換器の内部の冷媒の偏流が改善され、冷媒の分流が改善する。したがって、プレート式熱交換器の各冷媒流路で、効率よく熱交換が行われるので、熱交換効率が向上する。その結果、ヒートポンプ装置100の省エネルギー性能が向上する。
 次に、適切な、フィンチューブ式熱交換器の内容積Vfとプレート式熱交換器の内容積Vpとの容積比R(=Vf/Vr)について説明する。
 フィンチューブ式熱交換器の内容積Vfには、膨張手段4や四方弁2と接続するために、熱交換器の入口や出口に接続される冷媒配管の内容積は含まず、熱交換器を構成する伝熱管の内容積と、伝熱管どうしを接続する冷媒配管の内容積は含む。なお、伝熱管どうしを接続する冷媒配管には、複数の伝熱管に冷媒を分配したり、複数の伝熱管からの冷媒を集合させる、分岐管やヘッダー管などを含む。
 プレート式熱交換器の内容積Vrには、膨張手段4や四方弁2と接続するために、熱交換器の入口や出口に接続される冷媒配管の内容積は含まず、冷媒流路の内容積と、冷媒入口ヘッダー部の内容積と、冷媒出口ヘッダー部の内容積は含む。
 一般的に、圧縮機1は、信頼性確保のために、圧縮比を1.5~10の間で使用する必要がある。よって、ヒートポンプ装置100を温水生成装置に適用する場合には、温水生成装置の実際の使用範囲で、圧縮機1の圧縮比が1.5~10の間に収まるように、熱交換器の内容積を設定する必要がある。なお、本実施の形態では、実際の使用範囲として、定格能力が7~16kWであり、外気温度が-15~12℃であり、液体(水)の温度が35~55℃である範囲を採用した。
 図4、図5は、横軸に容積比R、縦軸に圧縮比をとり、それぞれの容積比Rにおいて、実際の使用範囲で必要な圧縮比の最大値と最小値をプロットしたものである。
 R410Aを用いた場合には、図4に示すように、容積比Rが増大すると、圧縮比の最大値及び最小値は減少する傾向がある。これは、以下の理由による。蒸発器として用いるフィンチューブ式熱交換器の内容積が相対的に増大すると、蒸発器の熱交換量が増大して、ヒートポンプ装置100の低圧側の圧力が増大する。その結果、凝縮器として用いるプレート式熱交換器で所定の加熱能力を得るために、必要な圧縮比が減少する。
 このように、容積比R(Vf/Vp)を増減に応じて、圧縮比の最大値及び最小値も増減する傾向がある。よって、冷媒としてR410Aを用い、プレート式熱交換器を凝縮器として用い、フィンチューブ式熱交換器を蒸発器として用いる場合には、圧縮機の信頼性を確保するため、圧縮比を1.5~10とするには、図4に示すように、容積比Rを0.5≦R≦5とする必要がある。
 図5に示すように、R32を用いた場合にも、容積比Rが増大すると、圧縮比の最大値及び最小値は減少する傾向がある。R32を用いた場合にも、R410Aの場合と同様に、ヒートポンプ装置100、特に、圧縮機1の信頼性を維持する観点から、圧縮機1を、圧縮比が1.5~10の範囲で動作させる必要がある。このため、図5に示すように、容積比Rは0.5≦R≦4とする必要がある。
 これは、同一の凝縮器(プレート式熱交換器)を備えるヒートポンプ装置100にR32を用いる場合には、R410Aを用いる場合に比較して、蒸発器(フィンチューブ式熱交換器)を小型にできることを示す。
 また、同一の凝縮器(プレート式熱交換器)と、同一の長さLの伝熱管を有する蒸発器(フィンチューブ式熱交換器)とを備えたヒートポンプ装置100に、R410Aを用いる場合と、R32を用いる場合とを比較すると、R32を用いた場合には、蒸発器の伝熱管の断面積Sを小さくすることができる。なお、伝熱管の断面積Sは、フィンチューブ式熱交換器の内容積Vfをフィンチューブ式熱交換器の伝熱管の長さLで割ったもの(Vf/L)である。
 より具体的には、フィンチューブ式熱交換器の伝熱管の断面積Sは、R32を用いた場合には、R410Aを用いた場合に比較して、0.8倍~1.0倍となる。ここで、0.8は、R32を用いた場合の最大の容積比である4を、R410Aを用いた場合の最大の容積比である5で割ることで算出できる。また、1.0は、R32を用いた場合の最小の容積比である0.5を、R410Aを用いた場合の最小の容積比である0.5で割ることで算出できる。
 フィンチューブ式熱交換器の伝熱管内の冷媒流速は、R32を用いた場合には、R410Aを用いた場合に比較して、1.0倍~1.25倍になる。ここで、1.0は、断面積Sの最大値である1.0の逆数である。また、1.25は、断面積Sの最小値である0.8の逆数である。
 さらに、R32を用いた場合には、R410Aを用いた場合と比較して、エンタルピー差hが約1,5倍に増加するので、冷媒流量を約66%に減少させても、同一の能力を確保することができる。従来技術である図8(a)、(b)に示すように、冷媒の蒸発時における圧力損失dPcは、冷媒の流量の2乗に比例することが知られている。上述のように、R32の冷媒流速は、R410Aに比較して1.0倍~1.25倍となるから、R32の圧力損失は、R410Aに比較して、0.44倍~0.68倍となる。ここで、0.44は、R32を用いた場合の冷媒流量の比率である0.66に、R32を用いた場合の流速の最小の比率である1.0をかけた値を2乗することで算出できる。また、0.68は、R32を用いた場合の冷媒流量の比率である0.66に、R32を用いた場合の流速の最大の比率である1.25をかけた値を2乗することで算出できる。
 以上のように、同一の加熱能力を発揮させるための凝縮器を流れる冷媒流量は、R32を用いた場合の方がR410Aを用いた場合よりも少ない。したがって、圧縮機1の運転回転数を低下でき、圧縮機1の動力が低下する。さらに、R32を用いた場合には、R410Aを用いた場合と比較して、圧力損失が低減するので、蒸発器の出口での冷媒の圧力、すなわち、圧縮機1に吸入される冷媒の圧力が上昇する。したがって、圧縮機1に吸入される冷媒の比体積が減少して、圧縮機1に吸入される冷媒量が増大する。その結果、圧縮機1の動力を低下させた場合でも、十分な冷媒循環量を確保することができる。これにより、凝縮能力、蒸発能力を向上させることができる。
 このように、R32を用い、プレート式熱交換器を凝縮器として用い、フィンチューブ式熱交換器を蒸発器として用いると、R410Aを用いた場合と比較して、蒸発器の小型化、及び、蒸発器の内容積の低減によって必要冷媒量が削減できるとともに、ヒートポンプ装置の省エネルギー性能が向上する。
 また、圧縮機1としては、高圧シェル型圧縮機を用いることが好ましい。シェルの内部が低圧となる低圧シェル型圧縮機では、圧縮機に吸入される冷媒が、一旦、シェルの内部に流入し、高温のモータにより加熱された状態で圧縮機内の圧縮室へ吸入される。よって、図6に示すように、圧縮過程で、圧縮機に吸入されたときよりも冷媒の温度が上昇した状態で圧縮が開始される。このため、圧縮が完了した後の冷媒の温度(吐出温度)が過大となる虞がある。
 これに対し、シェルの内部が高圧となる高圧シェル型圧縮機では、圧縮機に吸入される冷媒は、直接、圧縮室に吸入される。よって、冷媒の温度が過度に上昇する前に圧縮が開始される。このため、吐出温度の過度な上昇を抑制できる。これにより、R410Aと比較して吐出温度が上昇しやすいR32を用いた場合でも、吐出温度の過度な上昇を抑制でき、圧縮機の信頼性が向上する。
 なお、本実施の形態では、ヒートポンプ装置は、凝縮器と蒸発器を、それぞれ1つずつ備えるものとして説明したが、凝縮器、または、蒸発器を複数、備えるものでもよい。この場合には、凝縮器として用いられる熱交換器のすべてが、プレート式熱交換器であり、蒸発器として用いられる熱交換器のすべてが、フィンチューブ式熱交換器であることが望ましい。また、この場合には、フィンチューブ式熱交換器の内容積Vfは、すべてのフィンチューブ式熱交換器の内容積の和である。プレート式熱交換器の内容積Vrは、すべてのプレート式熱交換器の内容積の和である。
 本発明によれば、省エネルギー性に優れたヒートポンプ装置を提供できるので、温水生成装置、温水暖房装置等の用途に適用することができる。
 1 圧縮機
 2 四方弁
 3 第1の熱交換器
 4 膨張手段
 5 第2の熱交換器
 

Claims (3)

  1. 圧縮機と、凝縮器と、膨張手段と、蒸発器とを冷媒配管で環状に接続した冷媒回路を備え、
    前記凝縮器または前記蒸発器は、冷媒と液体とが熱交換するプレート式熱交換器であり、
    前記冷媒回路に封入される前記冷媒は、R32を主成分とすることを特徴とするヒートポンプ装置。
  2. 前記凝縮器は前記プレート式熱交換器であり、
    前記蒸発器は前記冷媒と気体とが熱交換するフィンチューブ式熱交換器であり、
    前記蒸発器の内容積の前記凝縮器の内容積に対する比Rは、0.5≦R≦4.0であることを特徴とする請求項1に記載のヒートポンプ装置。
  3. 前記圧縮機は、高圧シェル型圧縮機であることを特徴とする請求項1または2に記載のヒートポンプ装置。
PCT/JP2015/004163 2014-11-12 2015-08-20 ヒートポンプ装置 WO2016075851A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580054540.0A CN106796060A (zh) 2014-11-12 2015-08-20 热泵装置
EP15858912.7A EP3220075A4 (en) 2014-11-12 2015-08-20 Heat pump apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014229387A JP2016095039A (ja) 2014-11-12 2014-11-12 冷凍サイクル装置
JP2014-229387 2014-11-12

Publications (1)

Publication Number Publication Date
WO2016075851A1 true WO2016075851A1 (ja) 2016-05-19

Family

ID=55953959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004163 WO2016075851A1 (ja) 2014-11-12 2015-08-20 ヒートポンプ装置

Country Status (4)

Country Link
EP (1) EP3220075A4 (ja)
JP (1) JP2016095039A (ja)
CN (1) CN106796060A (ja)
WO (1) WO2016075851A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3617390T3 (pl) * 2018-08-30 2022-07-11 Electrolux Appliances Aktiebolag Suszarka do prania zawierająca układ pompy ciepła
PL3617392T3 (pl) * 2018-08-30 2022-09-26 Electrolux Appliances Aktiebolag Suszarka do prania zawierająca system pompy ciepła

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248922A (ja) * 1999-12-28 2001-09-14 Daikin Ind Ltd 冷凍装置
JP2008082653A (ja) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp 給湯、冷温水空気調和装置
JP2010002111A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 蒸気圧縮式ヒートポンプ装置
WO2013051059A1 (ja) * 2011-10-04 2013-04-11 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614441B2 (ja) * 2005-06-10 2011-01-19 日立アプライアンス株式会社 スクロール圧縮機
JP2012117717A (ja) * 2010-11-30 2012-06-21 Nishiyama Corp 追い焚き可能なヒートポンプ式蓄熱給湯機およびチラー
CN102032700A (zh) * 2010-12-29 2011-04-27 广东美的电器股份有限公司 制冷设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248922A (ja) * 1999-12-28 2001-09-14 Daikin Ind Ltd 冷凍装置
JP2008082653A (ja) * 2006-09-28 2008-04-10 Mitsubishi Electric Corp 給湯、冷温水空気調和装置
JP2010002111A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 蒸気圧縮式ヒートポンプ装置
WO2013051059A1 (ja) * 2011-10-04 2013-04-11 三菱電機株式会社 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3220075A4 *

Also Published As

Publication number Publication date
EP3220075A4 (en) 2017-11-08
EP3220075A1 (en) 2017-09-20
CN106796060A (zh) 2017-05-31
JP2016095039A (ja) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2011086881A1 (ja) 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
WO2010016516A1 (ja) 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
US9879921B2 (en) Heat exchanger and refrigeration cycle device including the heat exchanger
US9482445B2 (en) Heat pump water heater with heat utilization balance processor and heat utilization balance processor thereof
JP6042026B2 (ja) 冷凍サイクル装置
WO2021065913A1 (ja) 蒸発器、およびそれを備えた冷凍サイクル装置
WO2016075851A1 (ja) ヒートポンプ装置
JP6293557B2 (ja) 冷凍サイクル装置
US9506700B2 (en) Air-conditioning apparatus
JP5646257B2 (ja) 冷凍サイクル装置
JP7118247B2 (ja) 空気調和機
WO2019198175A1 (ja) 冷凍サイクル装置
WO2014203500A1 (ja) 空気調和機
WO2021176651A1 (ja) 熱交換器及び空気調和機
KR101497813B1 (ko) 증기분사 히트펌프 시스템 및 그 작동방법
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
KR20050043089A (ko) 히트 펌프
JP2019190760A (ja) 空気調和装置
JP7469583B2 (ja) 空調機
JP2010078256A (ja) フィンチューブ型熱交換器、これを用いた冷凍サイクル装置及び空気調和機
WO2000052398A1 (fr) Dispositif frigorifique
WO2017138052A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858912

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015858912

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015858912

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE