WO2011086881A1 - 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置 - Google Patents

熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置 Download PDF

Info

Publication number
WO2011086881A1
WO2011086881A1 PCT/JP2011/000048 JP2011000048W WO2011086881A1 WO 2011086881 A1 WO2011086881 A1 WO 2011086881A1 JP 2011000048 W JP2011000048 W JP 2011000048W WO 2011086881 A1 WO2011086881 A1 WO 2011086881A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
heat exchanger
heat transfer
tube
Prior art date
Application number
PCT/JP2011/000048
Other languages
English (en)
French (fr)
Inventor
相武 李
小野田 徹
拓也 松田
石橋 晃
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN2011800059762A priority Critical patent/CN102713487A/zh
Priority to EP11732756.9A priority patent/EP2525181A4/en
Priority to US13/519,371 priority patent/US20120285190A1/en
Publication of WO2011086881A1 publication Critical patent/WO2011086881A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/125Fastening; Joining by methods involving deformation of the elements by bringing elements together and expanding

Definitions

  • the present invention relates to a heat exchanger tube for a heat exchanger having a groove on the inner surface of the tube, a heat exchanger, a refrigeration cycle apparatus, and an air conditioner.
  • a heat exchanger used for a refrigeration apparatus an air conditioner, a heat pump, or the like
  • a plurality of fins arranged at predetermined intervals are provided with through holes, and heat transfer tubes in which grooves are formed on the inner surface of the through holes are arranged.
  • the heat transfer tube becomes a part of the refrigerant circuit in the refrigeration cycle apparatus, and the refrigerant (fluid) flows inside the tube.
  • the groove on the tube inner surface is processed so that the tube axis direction and the direction in which the groove extends form a certain angle.
  • the inner surface of the tube is uneven by forming the groove
  • the space of the concave portion is defined as a groove portion
  • the convex portion formed by the side wall of the adjacent groove is referred to as a peak portion.
  • the refrigerant flowing through such a heat transfer tube undergoes a phase change (condensation or evaporation) by heat exchange with air or the like outside the heat transfer tube.
  • a phase change condensation or evaporation
  • the heat transfer performance of the heat transfer tube is improved by increasing the surface area in the tube, the fluid stirring effect due to the groove, the liquid film holding effect between the grooves due to the capillary action of the groove, etc.
  • the heat transfer tube of Patent Document 1 as described above is generally made of copper or a copper alloy metal. And in manufacture of a heat exchanger, the tube expansion system which pushes a tube expansion ball in a pipe
  • the pipe is expanded, there is a problem that the peak portion falls down due to the expanded pipe ball, the adhesion between the heat transfer pipe and the fin is lowered, the pressure loss in the pipe is increased, and the heat transfer performance is lowered.
  • An object of the present invention is to provide a heat transfer tube, a heat exchanger using the heat transfer tube, a refrigeration cycle apparatus using the heat exchanger, and an air conditioner using the refrigeration cycle apparatus.
  • a high peak spirally and a lower peak are provided at a predetermined height in the direction of the pipe axis on the inner surface of the pipe, and the high peak is formed from eleven to nineteen.
  • the low mountain is formed between 3 and 6 between the high mountains.
  • the high mountain has a flat cross-sectional trapezoidal shape before expansion, and the tip width of the peak after expansion and the outer diameter of the heat transfer tube The ratio is 0.011 to 0.040.
  • a heat exchanger includes a plurality of fins for performing heat exchange and the heat transfer tube according to any one of the above that penetrates the fins, and pressurizes and expands the tube from the inner surface side of the heat transfer tube.
  • the fin is joined to the heat transfer tube.
  • the refrigeration cycle apparatus includes a compressor that compresses the refrigerant, a condenser that condenses the refrigerant by heat exchange, expansion means for depressurizing the condensed refrigerant, and heat exchange of the reduced refrigerant.
  • a refrigerating cycle device that constitutes a refrigerant circuit that circulates a refrigerant by connecting a pipe to an evaporator that evaporates by using the heat exchanger according to any one of the above, and either or both of the condenser and the evaporator Is provided.
  • the air conditioner according to the present invention is such that the target space is cooled and heated by the above-described refrigeration cycle apparatus.
  • the heat transfer tube for a heat exchanger when the heat transfer tube is expanded by a mechanical tube expansion method, the expanded ball comes into contact with a high mountain and the peak portion is crushed and flattened, but the peak portion falls down.
  • the heat transfer performance in the tube can be improved without increasing the pressure loss.
  • the outer surface of the heat transfer tube is processed into a polygonal shape, so that the spring back in the heat transfer tube can be suppressed and the adhesion between the heat transfer tube and the fin can be improved. And using this heat exchanger tube, a highly efficient heat exchanger, a refrigerating cycle device, and an air harmony device can be provided.
  • a heat exchanger 1 is a fin tube type heat exchanger that is widely used as an evaporator or condenser such as a refrigeration apparatus or an air conditioner.
  • the heat exchanger 1 includes a plurality of heat exchanger fins 10 and heat transfer tubes 20.
  • a plurality of through holes 11 are provided in each of the fins 10 arranged at a predetermined interval, and the heat transfer tubes 20 pass through the through holes 11.
  • the heat transfer tube 20 becomes a part of the refrigerant circuit in the refrigeration cycle apparatus, and the heat transfer area is expanded by transferring heat of the refrigerant flowing inside the heat transfer tube 20 and the air flowing outside through the fins 10, and the refrigerant and air The heat exchange is efficiently performed.
  • the inner surface of the heat transfer tube 20 is provided with a groove portion 21 and a ridge portion 22 by groove formation.
  • the ridge portion 22 is further divided into a high mountain 22 a and a low mountain as shown in FIG. 2. It consists of two types of peaks with 22b.
  • a plurality of low peaks 22b are formed between the high peaks 22a, and the high peaks 22a have a trapezoidal cross-sectional shape in which the top of the peak is formed in a planar shape before the pipe expansion (FIG. 2B).
  • the ratio, W1 / D, of the tip width W1 of the summit portion of FIG. 2 (a) and the outer diameter D of the heat transfer tube 20 is 0.011 to 0.040.
  • the height t1 of the low peak 22b before the pipe expansion is lower than the height t2 of the high peak 22a by t3, that is, 0.04 mm or more.
  • the thermal performance may be reduced due to a decrease in the surface area in the pipe. The difference is close to 0.04 mm.
  • the heat exchanger 1 is first bent into a hairpin shape at a predetermined bending pitch at the center in the longitudinal direction, and a plurality of hairpin tubes to be the heat transfer tubes 20 are manufactured.
  • the hairpin tube is expanded by a mechanical tube expansion method to form the heat transfer tube 20, and the heat transfer tube 20 is brought into close contact with the fin 10 and joined.
  • the mechanical tube expansion system is a method in which a rod 31 having a tube ball 30 having a diameter slightly larger than the inner diameter of the heat transfer tube 20 is passed through the tube of the heat transfer tube 20 and the outer diameter of the heat transfer tube 20 is expanded. It is the method of making it adhere.
  • the expanded ball 30 comes into contact with each other, so that the high mountain 22a is flattened, and the height of the mountain is lowered.
  • the low mountain 22b is not deformed because the mountain top portion is lower than the collapsed height of 0.04 m (see FIG. 2).
  • the pressure of tube expansion ball 30 insertion is not applied to all the crest parts in a pipe like the past, pressure is applied only to the part of high crest 22a, and the outer surface of heat exchanger tube 20 is polygonal.
  • the springback of the heat transfer tube 20 can be suppressed. Thereby, the adhesiveness of the heat exchanger tube 20 and the fin 10 improves, and the efficiency which concerns on heat exchange can be improved.
  • FIG. 4 shows the relationship between the number of the high ridges 22a and the heat exchange rate.
  • the 11 to 19 high ridges 22a are continuously formed in a spiral shape in the axial direction.
  • a low mountain 22b of 3 to 6 is formed between the high mountain 22a and the high mountain 22a.
  • the high crest 22a of the heat transfer tube 20 is set in the range of 11 to 19 because the expanded ball 30 contacts the high crest 22a when the pipe is expanded, and the summit portion is 0. .04 mm is crushed and flattened to lower the height of the mountain.
  • the number of the high ridges 22 a of the heat transfer tube 20 is less than 11, the peak portion of the low ridge 22 b is also crushed and flattened. It is because thermal performance falls.
  • the number of high ridges is larger than 19, the number of low ridges 22b decreases, and the heat transfer performance in the pipe deteriorates.
  • the ratio W1 / D between the tip width W1 of the peak portion of the high peak 22a and the outer diameter D of the heat transfer tube 20 is set to 0.011 to 0.040 ( (See FIG. 2).
  • FIG. 5 shows the relationship between the ratio W1 / D of the tip width W1 of the high crest 22a after expansion and the outer diameter D of the heat transfer tube 20 and the heat exchange rate.
  • the tip width W1 after expansion and the heat transfer tube When the ratio W1 / D with the outer diameter D of 20 is 0.011 or less, when expanding the tube using the expanded ball 30, the top of the peak is crushed and the pressure due to insertion is weakened. Therefore, the expansion of the heat transfer tube 20 is insufficient, the adhesion between the heat transfer tube 20 and the fins 10 is deteriorated, and the heat exchange rate is significantly reduced.
  • the ratio W1 / D between the tip width W1 and the outer diameter D of the heat transfer tube 20 is set to 0.040 or more, the cross-sectional area of the groove portion 21 is reduced, so that the liquid film of the refrigerant becomes thick and heat transfer. The rate drops significantly.
  • the radius of curvature R1 of the tip portion (peak portion) of the low peak 22b is 0.03 mm to 0.035 mm, the skirt width of the peak is narrowed and formed thin as a whole, which increases the heat transfer area.
  • the heat transfer coefficient in the tube is improved (see FIG. 2).
  • the high mountain 22a By forming the high mountain 22a into a trapezoidal cross section in which the peak is formed in a plane before the expansion, the pressure at the peak is reduced and the amount of collapse of the peak is reduced.
  • the curvature radii of the top surface of the mountain peak and both side surfaces are set to 0.01 mm or less, the manufacturing cost of the heat transfer tube 20 may increase. Therefore, it is desirable that the radius of curvature between the flat surface of the peak and both side surfaces is 0.01 to 0.03 mm.
  • the peak part 22 which consists of the high peak 22a and the low peak 22b on the pipe inner surface of the heat exchanger tube 20 is formed helically with respect to the pipe axis direction.
  • the ridges 22a having a predetermined height in the range of 11 to 19 are trapezoidal in cross section in which the peak is formed in a plane before the expansion, and the tip width W1 of the peak after expansion and the outside of the heat transfer tube 20
  • the ratio W1 / D with respect to the diameter D was 0.011 to 0.040, the height was lower than the high peak 22a, and it was formed in the range of 3 to 6 between the high peak 22a and the high peak 22a.
  • the heat transfer performance in the heat transfer tube 20 can be improved. Further, since the expanded ball 30 is in contact with only the high mountain 22a to expand the tube, the outer surface of the heat transfer tube 20 is processed into a polygonal shape, suppressing the spring back of the heat transfer tube 20, and the adhesion between the heat transfer tube 20 and the fin 10
  • the heat exchange rate (the ratio of the amount of heat before and after passing through the heat transfer tube) can be increased to save energy. Further, it is possible to reduce the size of the refrigerant in the refrigerant circuit while maintaining a reduced amount of the refrigerant and high efficiency.
  • FIG. FIG. 6 shows the shape of the inner surface of the heat transfer tube 20 according to the second embodiment of the present invention, and the configuration of the heat exchanger 1 is the same as that of the first embodiment.
  • symbol is attached
  • a difference H between the groove portion 21 and the peak portion 22 after the pipe expansion will be described.
  • FIG. 7 shows the relationship between the difference between the groove portion 21 and the ridge portion 22 after expansion (the high ridge 22a after expansion) and the heat exchange rate.
  • the groove portion 21 and the ridge portion 22 after expansion The greater the difference H, the higher the heat transfer rate, for example, by increasing the surface area in the tube.
  • the difference H between the groove portion 21 and the peak portion 22 is greater than 0.26 mm, the amount of increase in pressure loss is greater than the amount of increase in heat transfer coefficient, and thus the heat exchange rate is reduced.
  • the difference H between the groove portion 21 and the peak portion 22 is less than 0.1 mm, the heat transfer coefficient is not improved.
  • the high peak 22a and the low peak 22b are formed so that the difference H between the groove part 21 and the peak part 22 after the pipe expansion is 0.1 mm to 0.26 mm.
  • the high peak 22a and the low peak 22b are set so that the difference H between the groove part 21 and the peak part 22 after tube expansion is 0.1 mm to 0.26 mm. Since it formed, the heat transfer performance in the heat exchanger tube 20 can be improved.
  • FIG. 8 shows the shape of the inner surface of the heat transfer tube 20 according to the third embodiment of the present invention.
  • the straight line and the groove (spiral groove) 21 (mountain 22) parallel to the tube axis direction on the inner surface of the heat transfer tube 20 are shown.
  • the angle (lead angle or torsion angle) ⁇ formed by the direction in which) extends is 10 degrees to 50 degrees.
  • FIG. 9 shows the relationship between the lead angle ⁇ of the groove (spiral groove) 21 of the heat transfer tube 20 and the heat exchange rate.
  • the lead angle ⁇ of the groove (spiral groove) 21 of the heat transfer tube 20 is set to 10.
  • the reason why the temperature is set in the range of 50 degrees to 50 degrees is that when the lower limit of the lead angle ⁇ of the groove (spiral groove) 21 is 10 degrees or less, the heat exchange rate decreases significantly, and the groove (spiral groove) This is because if the upper limit of the lead angle ⁇ of 21 is 50 degrees or more, the pressure loss in the tube increases. As a result, a flow that flows over the groove portion (spiral groove) 21 is less likely to occur, the pressure loss in the pipe does not increase, the heat exchange rate can be improved, and a highly efficient air conditioner is obtained. .
  • the mountain is formed so that the lead angle ⁇ of the groove portion (spiral groove) 21 of the heat transfer tube 20 is 10 degrees to 50 degrees.
  • the heat transfer performance at 20 can be improved.
  • FIG. 10 shows the shape of the inner surface of the heat transfer tube 20 according to Embodiment 4 of the present invention.
  • the apex angle ⁇ of the high peak 22a of the heat transfer tube 20 is set to 15 degrees to 30 degrees.
  • the apex angle ⁇ of the low peak 22b is 5 degrees to 15 degrees.
  • the smaller the apex angle at the mountain the larger the heat transfer area of the heat transfer tube 20 as a whole, so the heat transfer rate increases.
  • the apex angle ⁇ of the high ridge 22a is smaller than 15 degrees, the workability in manufacturing the heat exchanger 1 is remarkably deteriorated, so that the heat exchange rate is finally lowered. It will be.
  • the apex angle ⁇ is larger than 30 degrees, the cross-sectional area of the groove portion 21 is reduced, and the liquid film of the refrigerant overflows from the groove portion 21 and is covered with the liquid film up to the summit portion. It will be.
  • the peak width of the peak is also narrowed. By forming it narrow as a whole, the heat transfer area is increased and the heat transfer in the pipe is increased. The rate increases.
  • the high peak 22a has the apex angle ⁇ of 15 degrees to 30 degrees and the low peak 22b has the apex angle ⁇ of 5 degrees to 15 degrees. Since the low mountain 22b is formed, the heat transfer performance in the heat transfer tube 20 can be improved.
  • FIG. FIG. 12 shows an air conditioner that is a refrigeration cycle apparatus according to Embodiment 5 of the present invention, and this air conditioner includes a heat source side unit (outdoor unit) 100 and a load side unit (indoor unit) 200, These are connected by refrigerant piping, constitute a refrigerant circuit, and circulate the refrigerant.
  • refrigerant pipes a pipe through which a gaseous refrigerant (gas refrigerant) flows is referred to as a gas pipe 300, and a pipe through which a liquid refrigerant (in some cases, a liquid refrigerant or a gas-liquid two-phase refrigerant) flows is referred to as a liquid pipe 400.
  • the refrigerant for example, HC single refrigerant or a mixed refrigerant containing HC refrigerant, R32, R410A, R407C, tetrafluoropropene (for example, 2,3,3,3-tetrafluoropropene), and more than this tetrafluoropropene
  • HC single refrigerant or a mixed refrigerant containing HC refrigerant, R32, R410A, R407C tetrafluoropropene (for example, 2,3,3,3-tetrafluoropropene), and more than this tetrafluoropropene
  • tetrafluoropropene for example, 2,3,3,3-tetrafluoropropene
  • a non-azeotropic refrigerant mixture composed of an HFC refrigerant having a low boiling point, carbon dioxide, or the like is used.
  • the heat source side unit 100 includes a compressor 101, an oil separator 102, a four-way valve 103, a heat source side heat exchanger 104, a heat source side fan 105, an accumulator 106, and a heat source side expansion device (expansion valve) 107.
  • the refrigerant heat exchanger 108, the bypass expansion device 109, and the heat source side control device 110 are configured by each device (means).
  • Compressor 101 has an electric motor, sucks the refrigerant, compresses the refrigerant, puts the refrigerant into a high-temperature / high-pressure gas state, and flows the refrigerant through the piping.
  • a master-side inverter circuit, a slave-side inverter circuit, and the like are provided in the compressor 101, and the capacity of the compressor 101 (refrigerant per unit time is sent out by arbitrarily changing the operation frequency. (Amount) can be changed finely.
  • the oil separator 102 is for separating the lubricating oil discharged from the compressor 101 mixed with the refrigerant.
  • the separated lubricating oil is returned to the compressor 101.
  • the four-way valve 103 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from the heat source side control device 110.
  • the heat source side heat exchanger 104 is configured by using the heat exchanger 1 described in the first to fourth embodiments, and performs heat exchange between the refrigerant and air (outdoor air). For example, during the heating operation, it functions as an evaporator, performs heat exchange between the low-pressure refrigerant that has flowed in through the heat source side expansion device 107 and air, and evaporates and vaporizes the refrigerant.
  • the heat source side heat exchanger 104 is provided with a heat source side fan 105 in order to efficiently exchange heat between the refrigerant and the air.
  • the heat source side fan 105 may also have an inverter circuit (not shown) to arbitrarily change the operation frequency of the fan motor to finely change the rotation speed of the fan.
  • the inter-refrigerant heat exchanger 108 exchanges heat between the refrigerant flowing in the main flow path of the refrigerant circuit and the refrigerant branched from the flow path and adjusted in flow rate by the bypass expansion device 109 (expansion valve). .
  • the bypass expansion device 109 expansion valve
  • the refrigerant is supercooled and supplied to the load side unit 200.
  • the inter-refrigerant heat exchanger 108 is also configured using the heat exchanger 1 described in the first to fourth embodiments.
  • the liquid flowing through the bypass throttle device 109 is returned to the accumulator (liquid separator) 106 via the bypass pipe.
  • the accumulator 106 is means for storing, for example, liquid excess refrigerant.
  • the heat source side control device 110 is composed of, for example, a microcomputer and can communicate with the load side control device 204 by wire or wirelessly. For example, based on data relating to detection by various detection means (sensors) in the air conditioner. The operation of the entire air conditioner is controlled by controlling each means related to the air conditioner, such as the operation frequency control of the compressor 101 by inverter circuit control.
  • the load side unit 200 includes a load side heat exchanger 201, a load side expansion device (expansion valve) 202, a load side fan 203, and a load side control device 204.
  • the load-side heat exchanger 201 is also configured using the heat exchanger 1 described in the first to fourth embodiments, and performs heat exchange between the refrigerant and the air in the space to be air-conditioned. For example, during heating operation, it functions as a condenser, performs heat exchange between the refrigerant flowing in from the gas pipe 300 and air, condenses and liquefies the refrigerant (or gas-liquid two-phase), and moves to the liquid pipe 400 side. Spill.
  • the load side unit 200 is provided with a load side fan 203 for adjusting the flow of air for heat exchange.
  • the operating speed of the load-side fan 203 is determined by, for example, user settings.
  • the load side expansion device 202 adjusts the pressure of the refrigerant in the load side heat exchanger 201 by changing the opening degree.
  • the load side control device 204 is also composed of a microcomputer or the like, and can communicate with the heat source side control device 110 by wire or wireless, for example. Based on an instruction from the heat source side control device 110 and an instruction from a resident or the like, for example, each device (means) of the load side unit 200 is controlled such that the room has a predetermined temperature. Further, a signal including data related to detection by the detection means provided in the load side unit 200 is transmitted.
  • the operation of the air conditioner will be described.
  • the high-temperature, high-pressure gas (gas) refrigerant discharged from the compressor 101 is condensed by passing through the heat source side heat exchanger 104 from the four-way valve 103 and becomes a liquid refrigerant.
  • the side unit 100 flows out.
  • the refrigerant flowing into the load side unit 200 through the liquid pipe 400 evaporates as the low temperature and low pressure liquid refrigerant whose pressure is adjusted by adjusting the opening degree of the load side expansion device 202 passes through the load side heat exchanger 201. leak.
  • it flows into the heat source side unit 100 through the gas pipe 300 is sucked into the compressor 101 through the four-way valve 103 and the accumulator 106, and is circulated by being pressurized and discharged again.
  • the high-temperature, high-pressure gas (gas) refrigerant discharged from the compressor 101 flows into the load side unit 200 from the four-way valve 103 through the gas pipe 300.
  • the pressure is adjusted by adjusting the opening degree of the load-side expansion device 202, and condensed by passing through the load-side heat exchanger 201 to become an intermediate-pressure liquid or a gas-liquid two-phase refrigerant. And flows out of the load side unit 200.
  • the refrigerant flowing into the heat source side unit 100 through the liquid pipe 400 is pressure-adjusted by adjusting the opening degree of the heat source side expansion device 107, evaporates by passing through the heat source side heat exchanger 104, and becomes a gas refrigerant. Then, the refrigerant is sucked into the compressor 101 through the four-way valve 103 and the accumulator 106, and circulated by being pressurized and discharged as described above.
  • heat exchange is performed on the heat source side heat exchanger 104 of the heat source side unit 100, the inter-refrigerant heat exchanger 108, and the load side heat exchanger 201 of the load side unit 200. Since the high-efficiency heat exchanger 1 according to the first to fourth embodiments is used as an evaporator and a condenser, COP (Coefficient of Performance) can be improved and energy saving can be achieved. Etc. can be achieved.
  • Embodiment 5 mentioned above demonstrated application to an air conditioning apparatus regarding the heat exchanger which concerns on this invention,
  • this invention is not limited to these apparatuses,
  • coolants such as a refrigeration apparatus, a heat pump apparatus, etc.
  • the present invention can also be applied to other refrigeration cycle apparatuses that constitute a circuit and have a heat exchanger that serves as an evaporator and a condenser.
  • the heat exchange rates of the heat exchangers 1 of Example 1 and Example 2 are 101.3% and 101%, and the heat exchange rates of the heat exchangers of Comparative Example 1 and Comparative Example 2 99% and 99.5%, and the heat exchangers 1 of Example 1 and Example 2 both have higher heat exchange rates than the heat exchangers of Comparative Example 1 and Comparative Example 2, and the pipe transfer Thermal performance was improved.
  • the outer diameter is 7 mm
  • the bottom thickness of the groove 21 is 0.25 mm
  • the lead angle is 30 degrees
  • the tip width W1 of the high peak 22a and the outer diameter D of the heat transfer tube 20 A heat exchanger 1 having a ratio W1 / D of 0.011, 0.020, and 0.040 was produced (Example 3, Example 4, and Example 5).
  • the outer diameter is 7 mm
  • the bottom thickness of the groove is 0.25 mm
  • the lead angle is 30 degrees
  • the ratio W1 / D between the high peak width and the outer diameter of the heat transfer tube is 0.005.
  • the heat exchanger which is 0.050 was produced (Comparative Example 3 and Comparative Example 4).
  • the heat exchange rates of the heat exchangers 1 of Example 3, Example 4 and Example 5 are 101.2%, 101.8% and 101%, and Comparative Example 3 and Comparative Example
  • the heat exchange rates of the heat exchanger No. 4 are 99.2% and 98%, and the heat exchangers 1 of Example 3, Example 4 and Example 5 are all the heat of Comparative Example 3 and Comparative Example 4.
  • the heat exchange rate was high, and the heat transfer performance in the tube was improved.
  • the outer diameter is 7 mm
  • the bottom thickness of the groove 21 is 0.25 mm
  • the lead angle is 30 degrees
  • the groove depth after tube expansion is 0.1 mm and 0.26 mm.
  • the heat exchanger 1 was produced (Example 6 and Example 7).
  • the outer diameter is 7 mm
  • the bottom wall thickness of the groove is 0.25 mm
  • the lead angle is 30 degrees
  • the groove depth after tube expansion is 0.05 mm
  • the groove depth after tube expansion is 0.00.
  • a heat exchanger of 3 mm was produced (Comparative Example 5 and Comparative Example 6).
  • the heat exchange rates of the heat exchangers 1 of Example 6 and Example 7 are 101.5% and 101.2%, and the heat exchangers of Comparative Example 5 and Comparative Example 6 The heat exchange rates are 99% and 99.4%, and the heat exchangers 1 of Example 6 and Example 7 both have a heat exchange rate as compared with the heat exchangers of Comparative Example 5 and Comparative Example 6. High heat transfer performance in the pipe.
  • the outer diameter is 7 mm
  • the bottom wall thickness of the groove 21 is 0.25 mm
  • the apex angle is 30 degrees
  • the lead angle ⁇ is 10 degrees, 30 degrees, and 50 degrees.
  • the exchanger 1 was produced (Example 8, Example 9 and Example 10).
  • a heat exchanger having an outer diameter of 7 mm, a groove bottom thickness of 0.25 mm, an apex angle of 30 degrees, and lead angles of 5 degrees and 60 degrees was manufactured (Comparative Example 7). And Comparative Example 8).
  • the heat exchangers 1 of Example 8, Example 9 and Example 10 have heat exchange rates of 100.9%, 101.5% and 101.8%, and Comparative Example 7 and The heat exchange rates of the heat exchanger of Comparative Example 8 are 99.2% and 99.5%, and the heat exchangers 1 of Example 8, Example 9 and Example 10 are both Comparative Example 7 and Compared with the heat exchanger of Comparative Example 8, the heat exchange rate was high, and the heat transfer performance in the tube was improved.
  • the heat exchanger 1 having an outer diameter of 7 mm, a bottom thickness of the groove 21 of 0.25 mm, a lead angle of 30 degrees, and an apex angle ⁇ of 15 degrees and 30 degrees. It produced (Example 11 and Example 12).
  • a heat exchanger having an outer diameter of 7 mm, a bottom wall thickness of 0.25 mm, a lead angle of 30 degrees, and a vertex angle of 10 degrees and 40 degrees was manufactured (Comparative Example 9 and Comparative Example). 10).
  • the heat exchangers 1 of Example 11 and Example 12 have heat exchange rates of 101% and 101.3%, and the heat exchange of the heat exchangers of Comparative Example 9 and Comparative Example 10 The rates are 99% and 99.3%, and the heat exchangers 1 of Example 11 and Example 12 both have higher heat exchange rates than the heat exchangers of Comparative Example 9 and Comparative Example 10, The heat transfer performance in the pipe was improved.

Abstract

 管20内面の管軸方向に螺旋状に高い山22aとこれよりも低い山22bが所定の高さで設けられ、高い山22aは11条~19条形成され、低い山22bは高い山22aの間に3条から6条形成され、高い山22aは、拡管前に山頂部が平面状の断面台形状をなし、拡管後の山頂部分の先端幅W1と伝熱管20の外径Dとの比W1/Dが0.011~0.040である。そして、拡管前の高い山22aは、低い山22bよりも0.04mm以上高く形成されている。

Description

熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
 本発明は、管内面に溝を設けた熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置に関するものである。
 従来、冷凍装置、空気調和装置、ヒートポンプ等に用いる熱交換器では、一般に、所定の間隔で複数並べたフィンに貫通穴を設け、この貫通穴に内面に溝を形成した伝熱管を配置する。伝熱管は冷凍サイクル装置における冷媒回路の一部となり、管内部を冷媒(流体)が流れるようにしてある。
 管内面の溝は、管軸方向と溝が延びる方向とが一定の角度をなすように加工されている。ここで、溝を形成することにより管内面に凹凸ができるが、凹部の空間を溝部とし、隣り合う溝の側壁によって形成される凸部分を山部という。
 そして、このような伝熱管を流れる冷媒は、伝熱管外側の空気等との熱交換によって相変化(凝縮又は蒸発)する。そして、この相変化を効率よく行うために、管内の表面積増加、溝部による流体攪拌効果、溝部の毛細管作用による溝部間の液膜保持効果等により、伝熱管の伝熱性能の改善をはかっている(例えば、特許文献1参照)。
特開昭60-142195号公報(第2頁、図1)
 上記のような特許文献1の伝熱管は、一般に、銅又は銅合金の金属を材料としている。そして、熱交換器の製造においては、管内に拡管玉を押し込んで伝熱管を内部から拡管し、フィンと伝熱管を密着させて接合する機械拡管方式を行っていた。しかしながら、拡管時に、山部が拡管玉によって倒れてしまい、伝熱管とフィンとの密着性が低下する、また、管内における圧力損失が大きくなり、伝熱性能が低下するという問題があった。
 本発明は上記の課題を解決するためになされたもので、伝熱管とフィンとの密着性が向上し、管内圧力損失を増加させずに、所定の伝熱性能を得ることができる熱交換器用の伝熱管、この伝熱管を用いた熱交換器、この熱交換器を用いた冷凍サイクル装置、及びこの冷凍サイクル装置を用いた空気調和装置を提供することを目的とする。
 本発明に係る熱交換器用の伝熱管は、管内面の管軸方向に螺旋状に高い山とこれよりも低い山が所定の高さで設けられ、高い山は11条~19条形成され、低い山は高い山の間に3条~6条形成され、高い山は、拡管前に山頂部が平面状の断面台形状をなし、拡管後の山頂部分の先端幅と伝熱管の外径との比が0.011~0.040となるようにしたものである。
 また、本発明に係る熱交換器は、熱交換を行うための複数のフィンと、フィンを貫通する上記のいずれかに記載の伝熱管とを備え、伝熱管の内面側から加圧し拡管して、フィンを伝熱管に接合するようにしたものである。
 また、本発明に係る冷凍サイクル装置は、冷媒を圧縮する圧縮機と、熱交換により冷媒を凝縮させる凝縮器と、凝縮された冷媒を減圧させるための膨張手段と、減圧された冷媒を熱交換により蒸発させる蒸発器とを配管接続して冷媒を循環させる冷媒回路を構成する冷凍サイクル装置であって、上記のいずれかに記載の熱交換器を、凝縮器及び蒸発器の両者またはいずれか一方に設けたものである。
 また、本発明に係る空気調和機は、上記の冷凍サイクル装置により、対象空間の冷暖房を行うようにしたものである。
 本発明に係る熱交換器用の伝熱管によれば、機械拡管方式によって伝熱管を拡管する際、拡管玉が高い山に接触し、山頂部が潰されて平坦となるが、山頂部は倒れることなく、従来の伝熱管に比べて、圧力損失を増加させずに、管内伝熱性能を高めることができる。また、伝熱管の外面が多角形に加工され、伝熱管におけるスプリンバックを抑えて、伝熱管とフィンとの密着性を改善することができる。
 そして、この伝熱管を用いて、高効率の熱交換器、冷凍サイクル装置及び空気調和装置を提供することができる。
本発明の実施の形態1に係る熱交換器の斜視図、及び熱交換器をフィン面に平行に切断した側面断面図である。 図1のA部を拡大した伝熱管の拡管前及び拡管後の断面図である。 図1の伝熱管の機械拡管方式による拡管状態を示す説明図である。 実施の形態1に係る伝熱管の高い山の条数と熱交換率との関係を示す線図である。 実施の形態1に係る伝熱管を拡管した後の高い山の先端幅と伝熱管の外径との比と熱交換率との関係を示す線図である 本発明の実施の形態2に係る伝熱管を拡管した後の管内面形状を示す断面図である。 実施の形態2に係る伝熱管を拡管した後の溝部と山部との差と熱交換率との関係を示す線図である。 本発明の実施の形態3に係る伝熱管の管内面の正面断面図である。 実施の形態3に係る伝熱管の螺旋溝のリード角と熱交換率との関係を示す線図である。 本発明の実施の形態4に係る伝熱管の管内面形状を示す断面図である。 実施の形態4に係る伝熱管の高い山の頂角と熱交換率との関係を示す線図である。 本発明の実施の形態5に係る空気調和装置のシステム回路図である。
実施の形態1.
 図1において、熱交換器1は、冷凍装置、空気調和装置等の蒸発器、凝縮器として広く利用されているフィンチューブ式の熱交換器である。
 熱交換器1は、複数の熱交換器用のフィン10と伝熱管20とからなっている。所定の間隔で複数並べた各フィン10に貫通穴11が設けられており、この貫通穴11に伝熱管20が貫通している。伝熱管20は冷凍サイクル装置における冷媒回路の一部となり、伝熱管20内部を流れる冷媒と外部を流れる空気との熱をフィン10を介して伝達することで伝熱面積が拡がり、冷媒と空気との熱交換が効率よく行われる。
 図2に示すように、伝熱管20の管内面は、溝形成により溝部21と山部22とが設けられており、山部22はさらに、図2に示すように、高い山22aと低い山22bとの2種類の山部からなっている。高い山22aの間には複数の低い山22bが形成されており、高い山22aは、拡管前(図2(b))に山頂部が平面状に形成された断面台形状であり、拡管後(図2(a))の山頂部分の先端幅W1と伝熱管20の外径Dとの比、W1/Dが0.011~0.040である。また、拡管前の低い山22bの高さt1は、高い山22aの高さt2よりもt3、すなわち0.04mm以上低いものとする。ただし、高い山22aと低い山22bとの差がありすぎても(低い山22bが低すぎても)管内の表面積の低下等により熱性能を低下させるおそれがあるため、本実施の形態では、その差が0.04mmに近くなるようにしてある。
 図3において、熱交換器1は、まず、長手方向の中央部で所定の曲げピッチでヘアピン状に曲げ加工し、伝熱管20となる複数のヘアピン管を製作する。次に、フィン10の貫通穴11に、ヘアピン管を挿通した後、機械拡管方式によりヘアピン管を拡管して伝熱管20とし、伝熱管20をフィン10と密着させ、接合する。機械拡管方式とは、伝熱管20の内径よりもやや直径の大きな拡管玉30を先端に有するロッド31を、伝熱管20の管内部に通し、伝熱管20の外径を拡げることで、フィン10と密着させる方法である。
 機械拡管方式により拡管する際、拡管玉30が接触するので、高い山22aは山頂部分が潰されて、平坦となって山の高さが低くなる。一方、低い山22bは、潰される高さ0.04mよりも山頂部分が低いため、変形することが無い(図2参照)。そして、従来のように、管内のすべての山部に拡管玉30挿入の圧力が加わるのではなく、高い山22aの部分にのみ圧力が加わって拡管を行うため、伝熱管20の外面は多角形に加工されることになり、伝熱管20のスプリンバックを抑えることができる。これにより、伝熱管20とフィン10との密着性が向上し、熱交換に係る効率を高めることができる。
 図4は高い山22aの条数と熱交換率との関係を示すもので、伝熱管20の内面において、11条~19条の高い山22aを軸方向に螺旋状に連続的に形成し、さらに、高い山22aと高い山22aとの間に、3条~6条の低い山22bを形成する。
 このように、熱交換器1において、伝熱管20の高い山22aを11条~19条の範囲に設定したのは、拡管する際、拡管玉30が高い山22aに接触し、山頂部分が0.04mm程度潰され、平坦となって山の高さが低くなるが、伝熱管20の高い山22aの条数を11より少なくすると、低い山22bの山頂部分も潰されて平坦となり、管内伝熱性能が低下するからである。また、高い山の条数を19より大きくすると、低い山22bの条数が減り、管内伝熱性能が低下する。
 また、拡管後の伝熱管20において、高い山22aの山頂部分の先端幅W1と伝熱管20の外径Dとの比、W1/Dを、0.011~0.040としたものである(図2参照)。
 図5は拡管した後の高い山22aの先端幅W1と伝熱管20の外径Dとの比W1/Dと熱交換率との関係を示すもので、拡管した後の先端幅W1と伝熱管20の外径Dとの比W1/Dが0.011以下になるようにすると、拡管玉30を用いて拡管を行う際、山頂上部が潰れ、また、挿入による圧力が弱くなる。そのため、伝熱管20の拡管が不十分で、伝熱管20とフィン10との密着性が悪化して、熱交換率の低下が顕著になる。また、先端幅W1と伝熱管20の外径Dとの比W1/Dが0.040以上となるようにすると、溝部21の断面積が減少するため、冷媒の液膜が厚くなり、熱伝達率が顕著に低下する。
 一方、低い山22bの先端部分(山頂部)の曲率半径R1を0.03mm~0.035mmとすると、山の裾幅が狭くなり、全体として細く形成されるので、伝熱面積が増加して管内熱伝達率が向上する(図2参照)。
 高い山22aは、拡管前に山頂部が平面で形成された断面台形状にすることで、山頂部の圧力が小さくなり、山頂部の潰れ量が低減される。しかしながら、山頂部の平面と両方の側面との各曲率半径を0.01mm以下にすると、伝熱管20の製造コストが高くなるおそれがある。そのため、山頂部の平面と両方の側面との曲率半径を0.01~0.03mmとすることが望ましい。
 以上のように、実施の形態1の熱交換器1によれば、伝熱管20の管内面に高い山22aと低い山22bからなる山部22を、管軸方向に対して螺旋状に形成し、11条~19条の範囲で所定の高さにより高い山22aは、拡管前に山頂部が平面で形成された断面台形状で、拡管後の山頂部分の先端幅W1と伝熱管20の外径Dとの比W1/Dを0.011~0.040とし、高い山22aよりも高さが低く、高い山22aと高い山22aとの間に3条~6条の範囲で形成された低い山22bは、山頂部の曲率半径R1が0.03mm~0.045mmとなるようにしたので、伝熱管20における伝熱性能を向上させることができる。また、拡管玉30が高い山22aのみに接触して拡管するため、伝熱管20の外面が多角形に加工され、伝熱管20のスプリンバックを抑えて、伝熱管20とフィン10との密着性を向上することができ、熱交換率(伝熱管通過前後の熱量の比率)を高くして、省エネルギ化を図ることができる。また、冷媒回路内の冷媒の減量、高効率を維持しつつ、小型化等を図ることもできる。
実施の形態2.
 図6は本発明の実施の形態2に係る伝熱管20の管内面の形状を示すもので、熱交換器1の構成は実施の形態1と同様である。なお、実施の形態1と同一又は相当の役割を果たす部分には同じ符号を付している(以下の実施の形態でも同様)。本実施の形態では、拡管後の溝部21と山部22との差Hについて説明する。
 図7は拡管後の溝部21と山部22(拡管した後の高い山22a)との差と熱交換率との関係を示すもので、伝熱管20において、拡管後の溝部21と山部22との差Hが大きいほど、管内における表面積が増える等して熱伝達率も高くなる。しかしながら、溝部21と山部22との差Hが0.26mmよりも大きくなると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなるため、熱交換率が低下する。一方、溝部21と山部22との差Hが0.1mm未満の場合は、熱伝達率は向上しない。従って、伝熱管20においては、拡管後の溝部21と山部22との差Hが0.1mm~0.26mmとなるように高い山22a、低い山22bを形成する。
 以上のように実施の形態2の熱交換器1によれば、拡管後の溝部21と山部22との差Hが0.1mm~0.26mmとなるように高い山22a、低い山22bを形成したので、伝熱管20における伝熱性能を向上させることができる。
実施の形態3.
 図8は本発明の実施の形態3に係る伝熱管20の管内面の形状を示すもので、伝熱管20管の内面における管軸方向に平行な直線と溝部(螺旋溝)21(山部22)が延びる方向とがなす角度(リード角またはねじれ角)γを10度~50度としたものである。
 図9は伝熱管20の溝部(螺旋溝)21のリード角γと熱交換率との関係を示すもので、基本的には、伝熱管20の溝部(螺旋溝)21のリード角γを10度~50度の範囲に設定したのは、溝部(螺旋溝)21のリード角γの下限を10度以下にすると、熱交換率の低下が顕著になるからであり、また溝部(螺旋溝)21のリード角γの上限を50度以上にすると、管内圧力損失が増加するからである。これにより、溝部(螺旋溝)21を乗り越えて流れるような流れが発生し難くなり、管内圧力損失が増加せずに、熱交換率を向上させることができ、高効率の空気調和機が得られる。
 以上のように、実施の形態3の熱交換器1によれば、伝熱管20の溝部(螺旋溝)21のリード角γを10度~50度となるように山を形成したので、伝熱管20における伝熱性能を向上させることができる。
実施の形態4.
 図10は本発明の実施の形態4に係る伝熱管20の管内面の形状を示すもので、熱交換器1において、伝熱管20の高い山22aの頂角αを15度~30度とし、低い山22bの頂角βを5度~15度としたものである。
 基本的には、山部における頂角が小さい程、伝熱管20全体として伝熱面積が増加するため、熱伝達率が増加する。しかしながら、図11に示すように、高い山22aの頂角αが15度より小さくなると、熱交換器1を製造する際の加工性が著しく低下するため、最終的には熱交換率が低下することになる。一方、頂角αが30度よりも大きくなると、溝部21の断面積が小さくなり、溝部21から冷媒の液膜が溢れ、山頂部分まで液膜に覆われてしまうため、熱伝達率が低下することになる。
 一方、低い山22bの頂角βを5度~15度とすることにより、山の裾幅も狭く形成されることとなり、全体として細く形成することで、伝熱面積が高くなり、管内熱伝達率が増加する。
 以上のように、実施の形態4の伝熱管20によれば、高い山22aの頂角αを15度~30度とし、低い山22bの頂角βを5度~15度として、高い山22a、低い山22bを形成するようにしたので、伝熱管20における伝熱性能を向上させることができる。
実施の形態5.
 図12は本発明の実施の形態5に係る冷凍サイクル装置である空気調和装置を示し、この空気調和装置は、熱源側ユニット(室外機)100と負荷側ユニット(室内機)200とを備え、これらが冷媒配管で連結され、冷媒回路を構成して冷媒を循環させている。冷媒配管のうち、気体の冷媒(ガス冷媒)が流れる配管をガス配管300とし、液体の冷媒(液冷媒、気液二相冷媒の場合もある)が流れる配管を液配管400とする。ここで、冷媒として、例えば、HC単一冷媒若しくはHC冷媒を含む混合冷媒、R32、R410A、R407C、テトラフルオロプロペン(例えば2,3,3,3-テトラフルオロプロペン)、このテトラフルオロプロペンよりも沸点の低いHFC系冷媒とからなる非共沸混合冷媒、二酸化炭素等を用いるものとする。
 熱源側ユニット100は、本実施の形態においては、圧縮機101、油分離器102、四方弁103、熱源側熱交換器104、熱源側ファン105、アキュムレータ106、熱源側絞り装置(膨張弁)107、冷媒間熱交換器108、バイパス絞り装置109および熱源側制御装置110の各装置(手段)によって構成されている。
 圧縮機101は電動機を有し、冷媒を吸入してその冷媒を圧縮し、高温・高圧のガス状態にして冷媒配管に流す。圧縮機101の運転制御については、例えばマスター側インバータ回路、スレーブ側インバータ回路等を圧縮機101に備え、運転周波数を任意に変化させることにより、圧縮機101の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができるようにしてある。
 また、油分離器102は、冷媒に混じって圧縮機101から吐出された潤滑油を分離させるものである。分離された潤滑油は圧縮機101に戻される。四方弁103は、熱源側制御装置110からの指示に基づいて、冷房運転時と暖房運転時とによって冷媒の流れを切り換える。また、熱源側熱交換器104は、実施の形態1~4において説明した熱交換器1を用いて構成し、冷媒と空気(室外の空気)との熱交換を行う。例えば、暖房運転時においては蒸発器として機能し、熱源側絞り装置107を介して流入した低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、四方弁103側から流入した圧縮機101において圧縮された冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。熱源側熱交換器104には、冷媒と空気との熱交換を効率よく行うため、熱源側ファン105が設けられている。熱源側ファン105もインバータ回路(図示せず)を有してファンモータの運転周波数を任意に変化させてファンの回転速度を細かく変化させるようにしてもよい。
 冷媒間熱交換器108は、冷媒回路の主となる流路を流れる冷媒と、その流路から分岐してバイパス絞り装置109(膨張弁)により流量調整された冷媒との間で熱交換を行う。特に冷房運転時において冷媒を過冷却する必要がある場合に、冷媒を過冷却して負荷側ユニット200に供給するものである。冷媒間熱交換器108についても、実施の形態1~4において説明した熱交換器1を用いて構成する。
 バイパス絞り装置109を介して流れる液体は、バイパス配管を介してアキュムレータ(液分離器)106に戻される。アキュムレータ106は例えば液体の余剰冷媒を溜めておく手段である。熱源側制御装置110は、例えばマイクロコンピュータ等からなり、負荷側制御装置204と有線または無線通信することができ、例えば、空気調和装置内の各種検知手段(センサ)の検知に係るデータに基づいて、インバータ回路制御による圧縮機101の運転周波数制御等、空気調和装置に係る各手段を制御して空気調和装置全体の動作制御を行う。
 一方、負荷側ユニット200は、負荷側熱交換器201、負荷側絞り装置(膨張弁)202、負荷側ファン203および負荷側制御装置204によって構成されている。負荷側熱交換器201も、実施の形態1~4において説明した熱交換器1を用いて構成され、冷媒と空気調和の対象となる空間の空気との熱交換を行う。例えば、暖房運転時においては凝縮器として機能し、ガス配管300から流入した冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(または気液二相化)させ、液配管400側に流出させる。一方、冷房運転時においては蒸発器として機能し、負荷側絞り装置202により低圧状態にされた冷媒と空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、ガス配管300側に流出させる。また、負荷側ユニット200には、熱交換を行う空気の流れを調整するための負荷側ファン203が設けられている。この負荷側ファン203の運転速度は、例えば利用者の設定により決定される。負荷側絞り装置202は、開度を変化させることで、負荷側熱交換器201内における冷媒の圧力を調整する。
 また、負荷側制御装置204もマイクロコンピュータ等からなり、例えば熱源側制御装置110と有線または無線通信することができる。熱源側制御装置110からの指示、居住者等からの指示に基づいて、例えば室内が所定の温度となるように、負荷側ユニット200の各装置(手段)を制御する。また、負荷側ユニット200に設けられた検知手段の検知に係るデータを含む信号を送信する。
 次に、空気調和装置の動作について説明する。まず、冷房運転時の冷媒回路における基本的な冷媒循環について説明する。圧縮機101の駆動運転により、圧縮機101から吐出した高温、高圧ガス(気体)の冷媒は、四方弁103から熱源側熱交換器104内を通過することで凝縮し、液冷媒となって熱源側ユニット100を流出する。液配管400を通って負荷側ユニット200に流入した冷媒は、負荷側絞り装置202の開度調整により圧力調整された低温低圧の液冷媒が負荷側熱交換器201内を通過して蒸発して流出する。そして、ガス配管300を通って熱源側ユニット100に流入し、四方弁103、アキュムレータ106を介して圧縮機101に吸入され、再度加圧され吐出することで循環する。
 また、暖房運転時の冷媒回路における基本的な冷媒循環について説明する。圧縮機101の駆動運転により、圧縮機101から吐出した高温、高圧ガス(気体)の冷媒は、四方弁103からガス配管300を通って負荷側ユニット200に流入する。負荷側ユニット200においては、負荷側絞り装置202の開度調整により圧力調整され、負荷側熱交換器201内を通過することにより凝縮し、中間圧力の液体または気液二相状態の冷媒となって負荷側ユニット200を流出する。液配管400を通って熱源側ユニット100に流入した冷媒は、熱源側絞り装置107の開度調整により圧力調整され、熱源側熱交換器104内を通過することで蒸発し、ガスの冷媒となって四方弁103、アキュムレータ106を介して圧縮機101に吸入され、前述したように加圧され吐出することで循環する。
 以上のように実施の形態5の空気調和装置によれば、熱源側ユニット100の熱源側熱交換器104、冷媒間熱交換器108、負荷側ユニット200の負荷側熱交換器201について、熱交換率の高い実施の形態1~4の熱交換器1を蒸発器、凝縮器として用いるようにしたので、COP(Coefficient of Performance :エネルギ消費効率、成績係数)等を向上させることができ、省エネルギ等を図ることができる。
 上述した実施の形態5では、本発明に係る熱交換器に関し、空気調和装置への適用について説明したが、本発明はこれらの装置に限定することなく、例えば、冷凍装置、ヒートポンプ装置等、冷媒回路を構成し、蒸発器、凝縮器となる熱交換器を有する他の冷凍サイクル装置にも適用することができる。
 以下、本発明の実施例について、本発明の範囲から外れる比較例と比較して説明する。表1に示すように、外径が7mm、溝21の底肉厚が0.25mm、リード角が30度であり、高い山22aの条数が11及び19である熱交換器1を作製した(実施例1及び実施例2)。また、比較例として、外径が7mm、溝の底肉厚が0.25mmであり、高い山の条数が6及び30である熱交換器を作製した(比較例1及び比較例2)。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1及び実施例2の熱交換器1の熱交換率は101.3%及び101%であり、比較例1及び比較例2の熱交換器の熱交換率は99%及び99.5%であって、実施例1及び実施例2の熱交換器1は、いずれも比較例1及び比較例2の熱交換器と比べて熱交換率が高く、管内伝熱性能が向上していた。
 次に、表2に示すように、外径が7mm、溝21の底肉厚が0.25mm、リード角が30度であり、高い山22aの先端幅W1と伝熱管20の外径Dとの比W1/Dが0.011、0.020及び0.040である熱交換器1を作製した(実施例3、実施例4及び実施例5)。また、比較例として、外径が7mm、溝の底肉厚が0.25mm、リード角が30度であり、高い山の先端幅と伝熱管の外径との比W1/Dが0.005及び0.050である熱交換器を作製した(比較例3及び比較例4)。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例3、実施例4及び実施例5の熱交換器1の熱交換率は101.2%、101.8%及び101%であり、比較例3及び比較例4の熱交換器の熱交換率は99.2%及び98%であって、実施例3、実施例4及び実施例5の熱交換器1は、いずれも比較例3及び比較例4の熱交換器と比べて熱交換率が高く、管内伝熱性能が向上していた。
 次に、表3に示すように、外径が7mm、溝21の底肉厚が0.25mm、リード角が30度であり、拡管後の溝深さが0.1mm及び0.26mmである熱交換器1を作製した(実施例6及び実施例7)。また、比較例として、外径が7mm、溝の底肉厚が0.25mm、リード角が30度であり、拡管後の溝深さが0.05mm、及び拡管後の溝深さが0.3mmである熱交換器を作製した(比較例5及び比較例6)。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、実施例6及び実施例7の熱交換器1の熱交換率は101.5%、及び101.2%であり、比較例5及び比較例6の熱交換器の熱交換率は99%、及び99.4%であって、実施例6及び実施例7の熱交換器1は、いずれも比較例5及び比較例6の熱交換器と比べて熱交換率が高く、管内伝熱性能が向上していた。
 次に、表4に示すように、外径が7mm、溝21の底肉厚が0.25mm、頂角が30度であり、リード角γが10度、30度、及び50度である熱交換器1を作製した(実施例8、実施例9及び実施例10)。また、比較例として、外径が7mm、溝の底肉厚が0.25mm、頂角が30度であり、リード角が5度、及び60度である熱交換器を作製した(比較例7及び比較例8)。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、実施例8、実施例9及び実施例10の熱交換器1は熱交換率が100.9%、101.5%及び101.8%であり、比較例7及び比較例8の熱交換器の熱交換率は99.2%、及び99.5%であって、実施例8、実施例9及び実施例10の熱交換器1は、いずれも比較例7及び比較例8の熱交換器と比べて熱交換率が高く、管内伝熱性能が向上していた。
 次に、表5に示すように、外径が7mm、溝21の底肉厚が0.25mm、リード角が30度であり、頂角αが15度及び30度である熱交換器1を作製した(実施例11及び実施例12)。また、比較例として、外径が7mm、底肉厚が0.25mm、リード角が30度であり、頂角が10度及び40度である熱交換器を作製した(比較例9及び比較例10)。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、実施例11及び実施例12の熱交換器1は熱交換率が101%、及び101.3%であり、比較例9及び比較例10の熱交換器の熱交換率は99%、及び99.3%であって、実施例11び実施例12の熱交換器1は、いずれも比較例9及び比較例10の熱交換器と比べて熱交換率が高く、管内伝熱性能が向上していた。
 1 熱交換器、10 フィン、11 貫通穴、20 伝熱管、21 溝部、22 山部、22a 高い山(山部)、22b 低い山(山部)、30 拡管玉、31 ロッド、100 熱源側ユニット、101 圧縮機、102 油分離器、103 四方弁、104 熱源側熱交換器、105 熱源側ファン、106 アキュムレータ、107 熱源側絞り装置、108 冷媒間熱交換器、109 バイパス絞り装置、110 熱源側制御装置、200 負荷側ユニット、201 負荷側熱交換器、202 負荷側絞り装置、203 負荷側ファン、204 負荷側制御装置、300 ガス配管、400 液配管、α 高い山の頂角、β 低い山の頂角、γ 管軸方向に対して山部が延びる方向(リード角)、D 伝熱管の外径、H 拡管後の高い山の高さ、R1 低い山の山頂部の曲率半径、W1 拡管後の高い山の山頂部分の先端幅。

Claims (11)

  1.  管内面の管軸方向に螺旋状に高い山とこれよりも低い山が所定の高さで設けられ、
     前記高い山は11条~19条形成され、前記低い山は前記高い山の間に3条~6条形成され、
     前記高い山は、拡管前に山頂部が平面状の断面台形状をなし、拡管後の山頂部分の先端幅と伝熱管の外径との比が0.011~0.040であることを特徴とする熱交換器用の伝熱管。
  2.  拡管前の前記高い山は、前記低い山よりも0.04mm以上高いことを特徴とする請求項1記載の熱交換器用の伝熱管。
  3.  拡管前の前記高い山は、山頂部の平面と両側面との各曲率半径が0.01mm~0.03mmであることを特徴とする請求項1または2記載の熱交換器用の伝熱管。
  4.  拡管前の前記高い山の頂角が15度~30度であり、前記低い山の頂角が5度~15度であることを特徴とする請求項1~3のいずれかに記載の熱交換器用の伝熱管。
  5.  前記低い山の山頂部の曲率半径が0.03mm~0.045mmであることを特徴とする請求項1~4のいずれかに記載の熱交換器用の伝熱管。
  6.  管軸方向に対して前記山部が延びる方向が10度~50度であることを特徴とする請求項1~5のいずれかに記載の熱交換器用の伝熱管。
  7.  熱交換を行うための複数のフィンと、
     前記フィンを貫通する請求項1~6のいずれかに記載の伝熱管とを備え、
     前記伝熱管を内面側から加圧して拡管し、該伝熱管を前記フィンに接合することを特徴とする熱交換器。
  8.  拡管後の前記高い山の高さが0.10mm~0.26mmであることを特徴とする請求項7記載の熱交換器。
  9.  冷媒を圧縮する圧縮機と、熱交換により前記冷媒を凝縮させる凝縮器と、凝縮された冷媒を減圧させるための膨張手段と、減圧された前記冷媒を熱交換により蒸発させる蒸発器とを配管接続して前記冷媒を循環させる冷媒回路を構成する冷凍サイクル装置であって、
     請求項7または8記載の熱交換器を、前記凝縮器及び蒸発器の両者またはいずれか一方に設けたことを特徴とする冷凍サイクル装置。
  10.  前記冷媒として、HC単一冷媒、またはHCを含む混合冷媒、R32、R410A、R407C、テトラフルオロプロペンと、このテトラフルオロプロペンよりも沸点の低いHFC系冷媒とからなる非共沸混合冷媒又は二酸化炭素のいずれかを用いることを特徴とする請求項9記載の冷凍サイクル装置。
  11.  請求項9又は10記載の冷凍サイクル装置により、対象空間の冷暖房を行うことを特徴とする空気調和装置。
PCT/JP2011/000048 2010-01-13 2011-01-07 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置 WO2011086881A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800059762A CN102713487A (zh) 2010-01-13 2011-01-07 热交换器用的传热管、热交换器、冷冻循环装置及空调装置
EP11732756.9A EP2525181A4 (en) 2010-01-13 2011-01-07 HEAT TRANSFER TUBE FOR A HEAT EXCHANGER, HEAT EXCHANGER, COOLING CIRCUIT AND AIR CONDITIONING DEVICE
US13/519,371 US20120285190A1 (en) 2010-01-13 2011-01-07 Heat transfer pipe for heat exchanger, heat exchanger, refrigeration cycle apparatus, and air-conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010005355A JP2011144989A (ja) 2010-01-13 2010-01-13 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
JP2010-005355 2010-01-13

Publications (1)

Publication Number Publication Date
WO2011086881A1 true WO2011086881A1 (ja) 2011-07-21

Family

ID=44304159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000048 WO2011086881A1 (ja) 2010-01-13 2011-01-07 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置

Country Status (5)

Country Link
US (1) US20120285190A1 (ja)
EP (1) EP2525181A4 (ja)
JP (1) JP2011144989A (ja)
CN (1) CN102713487A (ja)
WO (1) WO2011086881A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038502A (ja) * 2008-08-08 2010-02-18 Mitsubishi Electric Corp 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
WO2013094084A1 (ja) * 2011-12-19 2013-06-27 三菱電機株式会社 空気調和機
US9719733B2 (en) * 2012-09-27 2017-08-01 Tai-Her Yang Tri-piece thermal energy body heat exchanger having multi-layer pipeline and transferring heat to exterior through outer periphery of pipeline
CN105026869B (zh) * 2013-02-21 2017-09-12 开利公司 用于热交换器的管道结构
ITMI20131684A1 (it) * 2013-10-11 2015-04-12 Frimont Spa Condensatore per macchina di fabbricazione del ghiaccio, metodo per la sua realizzazione, e macchina di fabbricazione del ghiaccio che incorpora tale condensatore
US20150323230A1 (en) * 2014-03-11 2015-11-12 Brazeway, Inc. Tube pattern for a refrigerator evaporator
CN106595370A (zh) * 2016-11-17 2017-04-26 浙江耐乐铜业有限公司 一种胀管形变定向诱导型内螺纹传热管
CN106595371A (zh) * 2016-11-17 2017-04-26 浙江耐乐铜业有限公司 一种内螺纹铜管结构
CN106643259A (zh) * 2016-11-17 2017-05-10 浙江耐乐铜业有限公司 一种组合齿形内螺纹铜管结构
CN106643260A (zh) * 2016-11-17 2017-05-10 浙江耐乐铜业有限公司 一种可定向控制螺纹挤压形变的内螺纹铜管
JP7000027B2 (ja) * 2017-02-20 2022-02-04 三星電子株式会社 熱交換器及び空気調和機
EP3702713A4 (en) * 2017-10-27 2021-11-24 China Petroleum & Chemical Corporation IMPROVED HEAT TRANSFER PIPE AND PYROLYSIS FURNACE AND ATMOSPHERIC AND VACUUM HEATING FURNACE WITH IT
JP7134250B2 (ja) * 2018-11-22 2022-09-09 三菱電機株式会社 熱交換器および冷凍サイクル装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028573B2 (ja) * 1978-09-25 1985-07-05 ダイキン工業株式会社 クロスフィンコイル形熱交換器の製造方法
JPS60142195A (ja) 1983-12-28 1985-07-27 Hitachi Cable Ltd 内面溝付伝熱管
JP2001133182A (ja) * 1999-11-08 2001-05-18 Sumitomo Light Metal Ind Ltd 内面溝付伝熱管
JP2005526945A (ja) * 2002-03-12 2005-09-08 トレフィメトー 熱交換器のための可逆に使用可能な溝付チューブ
JP2009186130A (ja) * 2008-02-08 2009-08-20 Furukawa Electric Co Ltd:The 内面フィン付放熱器用伝熱管
WO2009131072A1 (ja) * 2008-04-24 2009-10-29 三菱電機株式会社 熱交換器、及びこの熱交換器を用いた空気調和機

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930405A (en) * 1955-05-31 1960-03-29 Brown Fintube Co Tube with internal fins and method of making same
US3267564A (en) * 1964-04-23 1966-08-23 Calumet & Hecla Method of producing duplex internally finned tube unit
US4921042A (en) * 1987-10-21 1990-05-01 Carrier Corporation High performance heat transfer tube and method of making same
US4938282A (en) * 1988-09-15 1990-07-03 Zohler Steven R High performance heat transfer tube for heat exchanger
JP2730824B2 (ja) * 1991-07-09 1998-03-25 三菱伸銅株式会社 内面溝付伝熱管およびその製造方法
FR2706197B1 (fr) * 1993-06-07 1995-07-28 Trefimetaux Tubes rainurés pour échangeurs thermiques d'appareils de conditionnement d'air et de réfrigération, et échangeurs correspondants.
JPH08128793A (ja) * 1994-10-28 1996-05-21 Toshiba Corp 内部フィン付伝熱管とその製造方法
US5704424A (en) * 1995-10-19 1998-01-06 Mitsubishi Shindowh Co., Ltd. Heat transfer tube having grooved inner surface and production method therefor
DE10041919C1 (de) * 2000-08-25 2001-10-31 Wieland Werke Ag Innenberipptes Wärmeaustauschrohr mit versetzt angeordneten Rippen unterschiedlicher Höhe
US6883597B2 (en) * 2001-04-17 2005-04-26 Wolverine Tube, Inc. Heat transfer tube with grooved inner surface
JP2004003733A (ja) * 2002-05-31 2004-01-08 Mitsubishi Heavy Ind Ltd 伝熱管及び熱交換器、伝熱管の製造方法
US7181929B2 (en) * 2002-12-10 2007-02-27 Showa Denko K.K. Finned tube for heat exchangers, heat exchanger, apparatus for fabricating heat exchanger finned tube and process for fabricating heat exchanger finned tube
AU2004241397B2 (en) * 2003-05-23 2007-11-08 Mitsubishi Denki Kabushiki Kaisha Plate fin tube-type heat exchanger
FR2855601B1 (fr) * 2003-05-26 2005-06-24 Trefimetaux Tubes rainures pour echangeurs thermiques a fluide monophasique, typiquement aqueux
JP4550451B2 (ja) * 2004-03-11 2010-09-22 古河電気工業株式会社 内面溝付伝熱管及び内面溝付伝熱管を用いた熱交換器
JP4665713B2 (ja) * 2005-10-25 2011-04-06 日立電線株式会社 内面溝付伝熱管
CN101004336A (zh) * 2007-01-19 2007-07-25 金龙精密铜管集团股份有限公司 内螺纹传热管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028573B2 (ja) * 1978-09-25 1985-07-05 ダイキン工業株式会社 クロスフィンコイル形熱交換器の製造方法
JPS60142195A (ja) 1983-12-28 1985-07-27 Hitachi Cable Ltd 内面溝付伝熱管
JP2001133182A (ja) * 1999-11-08 2001-05-18 Sumitomo Light Metal Ind Ltd 内面溝付伝熱管
JP2005526945A (ja) * 2002-03-12 2005-09-08 トレフィメトー 熱交換器のための可逆に使用可能な溝付チューブ
JP2009186130A (ja) * 2008-02-08 2009-08-20 Furukawa Electric Co Ltd:The 内面フィン付放熱器用伝熱管
WO2009131072A1 (ja) * 2008-04-24 2009-10-29 三菱電機株式会社 熱交換器、及びこの熱交換器を用いた空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2525181A4

Also Published As

Publication number Publication date
JP2011144989A (ja) 2011-07-28
EP2525181A1 (en) 2012-11-21
CN102713487A (zh) 2012-10-03
EP2525181A4 (en) 2014-09-17
US20120285190A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
WO2011086881A1 (ja) 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
WO2010016516A1 (ja) 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
JP5800909B2 (ja) 熱交換器及びその熱交換器を用いた冷凍サイクル装置
JP4738401B2 (ja) 空気調和機
EP1645818A2 (en) Air-conditioner with a dual-refrigerant circuit
JP2011153823A (ja) 熱交換器、及びこの熱交換器を用いた空気調和機
WO2014147788A1 (ja) 熱交換器、冷凍サイクル装置、及び熱交換器の製造方法
US9506700B2 (en) Air-conditioning apparatus
WO2017208419A1 (ja) フィンチューブ型熱交換器、このフィンチューブ型熱交換器を備えたヒートポンプ装置、および、フィンチューブ型熱交換器の製造方法
WO2015125525A1 (ja) 熱交換器及び冷凍サイクル装置
WO2016075851A1 (ja) ヒートポンプ装置
WO2021176651A1 (ja) 熱交換器及び空気調和機
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
JP7118247B2 (ja) 空気調和機
JP2010249484A (ja) 熱交換器および冷凍サイクル装置
EP3770535A1 (en) Heat exchanger, refrigeration cycle device, and air conditioning device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005976.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13519371

Country of ref document: US

Ref document number: 2011732756

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201003500

Country of ref document: TH