WO2010016516A1 - 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置 - Google Patents

熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置 Download PDF

Info

Publication number
WO2010016516A1
WO2010016516A1 PCT/JP2009/063859 JP2009063859W WO2010016516A1 WO 2010016516 A1 WO2010016516 A1 WO 2010016516A1 JP 2009063859 W JP2009063859 W JP 2009063859W WO 2010016516 A1 WO2010016516 A1 WO 2010016516A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heat transfer
heat
transfer tube
Prior art date
Application number
PCT/JP2009/063859
Other languages
English (en)
French (fr)
Inventor
相武 李
石橋 晃
拓也 松田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/003,719 priority Critical patent/US20110113820A1/en
Priority to ES09804999.2T priority patent/ES2677347T3/es
Priority to CN2009801294620A priority patent/CN102112838B/zh
Priority to EP09804999.2A priority patent/EP2317269B1/en
Publication of WO2010016516A1 publication Critical patent/WO2010016516A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/125Fastening; Joining by methods involving deformation of the elements by bringing elements together and expanding

Definitions

  • the present invention relates to a heat exchanger tube for a heat exchanger having a groove on the inner surface of the tube.
  • heat transfer tubes are formed on the inner surface so as to penetrate through holes provided in each fin with respect to fins arranged in plural at predetermined intervals. Arrange the heat transfer tubes.
  • the heat transfer tube becomes a part of the refrigerant circuit in the refrigeration cycle apparatus, and the refrigerant (fluid) flows inside the tube.
  • the groove on the tube inner surface is processed so that the tube axis direction and the direction in which the groove extends form a certain angle.
  • the inner surface of the tube is uneven by forming the groove
  • the space of the concave portion is defined as the groove portion
  • the convex portion formed by the side wall of the adjacent groove is referred to as the peak portion.
  • the refrigerant flowing through such a heat transfer tube undergoes phase change (condensation or evaporation) by heat exchange with the air outside the heat transfer tube.
  • phase change condensation or evaporation
  • the heat transfer performance of the heat transfer tube is improved by increasing the surface area in the tube, the fluid stirring effect due to the groove, the liquid film holding effect between the grooves due to the capillary action of the groove, etc. (For example, refer to Patent Document 1).
  • the conventional heat transfer tube as described above is generally made of copper or a copper alloy metal. And in manufacture of a heat exchanger, the tube expansion system which pushes a tube expansion ball in a pipe
  • the present invention has been made in order to solve the above-described problems.
  • a heat transfer tube capable of obtaining a predetermined heat transfer performance without increasing the pressure loss in the tube, a heat exchanger using the heat transfer tube, and the heat It aims at providing the refrigerating-cycle apparatus etc. which used the exchanger.
  • the heat exchanger tube for a heat exchanger according to the present invention has a high mountain formed at a predetermined height in the range of 10 to 20 in a spiral shape with respect to the tube axis direction, and a height lower than the high mountain, A low mountain formed in a range of 2 to 6 between a high mountain and a high mountain is provided on the inner surface.
  • the heat transfer tube of the present invention since the ridge portion in the groove on the inner surface of the heat transfer tube is composed of a high ridge and a low ridge, when expanding by the mechanical expansion method, the expanded ball comes into contact with the high ridge, The top of the mountain is crushed to 0.04 mm, flattening and lowering the height of the mountain, but the lower mountain has a height of crushed 0.04 mm or less, so the lower mountain is not deformed, compared to conventional heat transfer tubes In addition, the heat transfer performance in the tube can be enhanced without increasing the pressure loss. Further, when the heat transfer tube is expanded, the outer surface of the heat transfer tube is processed into a polygonal shape, so that the spring back in the heat transfer tube can be suppressed and the adhesion between the heat transfer tube and the fin can be improved.
  • FIG. 1 It is a figure showing the heat exchanger 1 which concerns on Embodiment 1 of this invention. It is a figure showing the shape of the pipe
  • FIG. It is a figure showing the condition of the pipe expansion by a mechanical pipe expansion system. It is a figure which shows the relationship between the number of strips of the high peak 22A, and a heat exchange rate. It is a figure showing the shape of the pipe
  • FIG. It is a figure which shows the relationship between the difference of the groove part 21 and the peak part 22 after a pipe expansion, and a heat exchange rate.
  • FIG. 5 It is a figure showing the shape of the pipe
  • FIG. It is a figure showing the shape of the pipe
  • FIG. It is a diagram which shows the relationship between the apex angle (alpha) of the high peak 22A, and a heat exchange rate. It is a block diagram of the air conditioning apparatus which concerns on Embodiment 5 of this invention.
  • FIG. 1 is a diagram showing a heat exchanger 1 according to Embodiment 1 of the present invention.
  • a heat exchanger 1 is a fin tube type heat exchanger widely used as an evaporator or a condenser such as a refrigeration apparatus or an air conditioner.
  • Fig.1 (a) represents the perspective view when the heat exchanger 1 is cut
  • FIG.1 (b) represents a part of cross section.
  • the heat exchanger 1 includes a plurality of heat exchanger fins 10 and heat transfer tubes 20.
  • Heat transfer tubes 20 are provided so as to penetrate through holes provided in the fins 10 with respect to the fins 10 arranged at a predetermined interval.
  • the heat transfer tube 20 becomes a part of the refrigerant circuit in the refrigeration cycle apparatus, and the refrigerant flows inside the tube.
  • the heat transfer area serving as a contact surface with the air is expanded, and heat exchange between the refrigerant and the air can be performed efficiently. .
  • FIG. 2 is a diagram showing the shape of the inner surface of the heat transfer tube 20 according to the first embodiment.
  • FIG. 2 is an enlarged view of portion A in FIG. FIG. 2A shows a state before the pipe expansion
  • FIG. 2B shows a state after the pipe expansion.
  • the inner surface of the heat transfer tube 20 of the present embodiment has a groove portion 21 and a peak portion 22 by forming a groove.
  • the peak part 21 is comprised by two types of peak parts, the higher peak 22A and the lower peak 22B.
  • the height of the low peak 22B is 0.04 mm or more lower than the height of the high peak 22A.
  • FIG. 3 is a diagram showing the state of pipe expansion by the machine pipe expansion method.
  • the heat exchanger 1 in the present embodiment is first bent into a hairpin shape at a predetermined bending pitch at the central portion in the longitudinal direction, and a plurality of hairpin tubes to be the heat transfer tubes 20 are manufactured. After the hairpin tube is passed through the through hole of the fin 10, the hairpin tube is expanded by a mechanical expansion method, and the heat transfer tube 20 is brought into close contact with the fin 10 and joined.
  • the mechanical tube expansion method is a method in which a rod 31 having a tube ball 30 having a diameter slightly larger than the inner diameter of the heat transfer tube 20 is passed through the tube of the heat transfer tube 20 and the outer diameter of the heat transfer tube 20 is expanded. It is the method of sticking.
  • the expanded ball 30 comes into contact, so that the high mountain 22A is crushed and flattened, and the height of the mountain is lowered.
  • the low mountain 22B has no deformation because the mountain top portion is lower than the crushing height of 0.04 m.
  • the pressure of inserting the expanded ball 30 is not applied to all the crests in the pipe as in the prior art, but the pressure is applied to the portion of the high crest 22A to expand the tube, the outer surface of the heat transfer tube is processed into a polygon. Will be. Therefore, the spring back of the heat transfer tube can be suppressed. Thereby, the adhesiveness of a heat exchanger tube and a fin improves, and the efficiency which concerns on heat exchange can be raised.
  • FIG. 4 is a diagram showing the relationship between the number of high ridges 22A and the heat exchange rate.
  • the high mountain 22A and the low mountain 22B are alternately shown.
  • the high mountain 22A is actually formed on the inner surface of the heat transfer tube 20 from 10 to 20.
  • a high mountain of ridges is continuously formed spirally in the axial direction.
  • a low mountain 22B of 2 to 6 is formed between the high mountain 22A and the high mountain 22A.
  • the high crest 22A of the heat transfer tube 20 is set in the range of 10 to 20 because the expanded ball 30 contacts the high crest 22A when the pipe is expanded, and the summit portion is 0. .04 mm is crushed and flattened, and the height of the mountain is lowered.
  • the peak portion of the low mountain 22B is also crushed and flattened. This is because the performance is degraded.
  • the number of high ridges is 20 or more, the number of low ridges 22B decreases, and the heat transfer performance in the tube decreases.
  • the crest portion 22 on the inner surface of the heat transfer tube 20 is 0.04 mm or more lower than the high crest 22A having a predetermined height and the high crest 22A. It is composed of two types of ridges, the ridge 22B, and a high ridge 22A is provided on the inner surface of the pipe so as to be 10 to 20 ridges, and 2 to 6 ridges between the adjacent high ridges 22A and 22A. Therefore, the heat transfer performance in the heat transfer tube 20 can be improved.
  • the outer surface of the heat transfer tube 20 is processed into a polygonal shape, suppressing the spring back of the heat transfer tube and improving the adhesion between the heat transfer tube and the fin. It is possible to increase the heat exchange rate (the ratio of the amount of heat before and after passing through the heat transfer tube), and to save energy. Further, it is possible to reduce the size of the refrigerant in the refrigerant circuit while maintaining a reduced amount of the refrigerant and high efficiency.
  • FIG. FIG. 5 is a diagram illustrating the shape of the inner surface of the heat transfer tube 20 according to the second embodiment.
  • the configuration of the heat exchanger 1 is the same as that of the first embodiment.
  • parts having the same or equivalent roles as those in the first embodiment are denoted by the same reference numerals (the same applies to the following embodiments).
  • a difference H between the groove portion 21 and the peak portion 22 after the pipe expansion will be described.
  • FIG. 6 is a diagram showing the relationship between the difference between the groove portion 21 and the peak portion 22 after the pipe expansion and the heat exchange rate.
  • the greater the difference H between the groove portion 21 and the peak portion 22 after the tube expansion the higher the heat transfer rate, for example, by increasing the surface area in the tube.
  • the difference H between the groove portion 21 and the peak portion 22 is larger than 0.26 mm, the amount of increase in pressure loss is larger than the amount of increase in heat transfer coefficient, so that the heat exchange rate decreases.
  • the difference H between the groove portion 21 and the peak portion 22 is less than 0.1 mm, the heat transfer coefficient is not improved.
  • the high peak 22A and the low peak 22B are formed so that the difference H between the groove part 21 and the peak part 22 after the pipe expansion is 0.1 mm to 0.26 mm.
  • the high peak 22A and the low peak 22B are set so that the difference H between the groove part 21 and the peak part 22 after the pipe expansion is 0.1 mm to 0.26 mm. Since it formed, the heat transfer performance in the heat exchanger tube 20 can be improved.
  • FIG. 7 is a diagram illustrating the shape of the inner surface of the heat transfer tube 20 according to the third embodiment.
  • the tip width W1 of the peak portion of the high peak 22A is set to 0.035 to 0.05 mm
  • the tip width W2 of the low peak 22B is set to 0.
  • the range is 0.03 to 0.035 mm.
  • the tip width W1 of the high ridge 22A is made to be 0.035 mm or less after the tube expansion, when the tube expansion is performed using the tube expansion ball 30, the top of the mountain top is crushed and the pressure due to insertion is weak. Become. Therefore, the expansion of the heat transfer tube 20 is insufficient, the adhesion between the heat transfer tube 20 and the fins 10 is deteriorated, and the heat exchange rate is significantly reduced. Further, when the tip width W1 is set to 0.05 mm or more, the cross-sectional area is reduced in the groove portion 21, so that the liquid film of the refrigerant becomes thick and the heat transfer rate is remarkably reduced.
  • the tip width W2 of the low peak 22B is set to 0.03 to 0.035 mm
  • the bottom width of the peak is also narrowed.
  • the heat transfer area is increased, and the heat inside the tube is increased. Transmission rate increases.
  • the tip width W1 of the peak portion of the high peak 22A is 0.035 to 0.05 mm
  • the tip width W2 of the low peak 22B is 0.03 to 0.05 mm. Since the high peak 22A and the low peak 22B are formed so as to be in the range of 0.035 mm, the heat transfer performance in the heat transfer tube 20 can be improved.
  • FIG. FIG. 8 is a diagram showing the shape of the inner surface of the heat transfer tube 20 according to the fourth embodiment of the present invention.
  • the apex angle ⁇ of the high peak 22A of the heat transfer tube 20 is 15 degrees to 30 degrees
  • the apex angle ⁇ of the low peak 22B is 5 degrees to 15 degrees.
  • FIG. 9 is a diagram showing the relationship between the apex angle ⁇ of the high mountain 22A and the heat exchange rate.
  • the apex angle at the peak portion 22 is smaller, the heat transfer area of the heat transfer tube 20 as a whole increases, so the heat transfer rate increases.
  • the apex angle ⁇ of the high peak 22A is smaller than 15 degrees, the workability when manufacturing the heat exchanger 1 is significantly reduced, and the heat exchange rate is eventually lowered.
  • the apex angle ⁇ is larger than 30 degrees, the cross-sectional area of the groove portion 21 is reduced, and the liquid film of the refrigerant overflows from the groove portion 21 and is covered with the liquid film up to the summit portion. It will be.
  • the peak width of the peak is also narrowed, and by forming it thin as a whole, the heat transfer area is increased and the heat transfer coefficient in the tube is increased. Will increase.
  • the apex angle ⁇ of the high peak 22A is 15 degrees to 30 degrees
  • the apex angle ⁇ of the low peak 22B is 5 degrees to 15 degrees. Since the high mountain 22A and the low mountain 22B are formed, the heat transfer performance in the heat transfer tube 20 can be improved.
  • FIG. 10 is a configuration diagram of an air-conditioning apparatus according to Embodiment 5 of the present invention.
  • an air conditioner will be described as an example of a refrigeration cycle apparatus.
  • the air conditioning apparatus of FIG. 10 includes a heat source side unit (outdoor unit) 100 and a load side unit (indoor unit) 200, which are connected by a refrigerant pipe to constitute a refrigerant circuit and circulate the refrigerant.
  • a pipe through which a gaseous refrigerant (gas refrigerant) flows is referred to as a gas pipe 300
  • a pipe through which a liquid refrigerant (liquid refrigerant, which may be a gas-liquid two-phase refrigerant) flows is referred to as a liquid pipe 400.
  • the refrigerant for example, HC single refrigerant or a mixed refrigerant containing HC refrigerant, R32, R410A, R407C, tetrafluoropropene (for example, 2,3,3,3-tetrafluoropropene), carbon dioxide, or the like is used.
  • tetrafluoropropene for example, 2,3,3,3-tetrafluoropropene
  • the heat source side unit 100 includes a compressor 101, an oil separator 102, a four-way valve 103, a heat source side heat exchanger 104, a heat source side fan 105, an accumulator 106, a heat source side expansion device (expansion valve) 107, It is comprised with each apparatus (means) of the heat exchanger 108 between refrigerant
  • the compressor 101 has the electric motor 6 described in the above embodiment, sucks in the refrigerant, compresses the refrigerant, puts the refrigerant into a high-temperature / high-pressure gas state, and flows it through the refrigerant pipe.
  • the compressor 101 is provided with the master-side inverter circuit 2, the slave-side inverter circuit 3 and the like described in the above-described embodiment, and the operation frequency is arbitrarily changed. It is assumed that the capacity (the amount of refrigerant sent out per unit time) can be finely changed.
  • the oil separator 102 is for separating the lubricating oil discharged from the compressor 101 mixed with the refrigerant.
  • the separated lubricating oil is returned to the compressor 101.
  • the four-way valve 103 switches the refrigerant flow between the cooling operation and the heating operation based on an instruction from the heat source side control device 111.
  • the heat source side heat exchanger 104 is configured by using the heat exchanger 1 described in the first to fourth embodiments, and performs heat exchange between the refrigerant and air (outdoor air). For example, during the heating operation, it functions as an evaporator, performs heat exchange between the low-pressure refrigerant that has flowed in through the heat source side expansion device 107 and air, and evaporates and vaporizes the refrigerant.
  • the heat source side heat exchanger 104 is provided with a heat source side fan 105 in order to efficiently exchange heat between the refrigerant and the air.
  • the heat source side fan 105 may also have an inverter circuit (not shown), and the fan motor operating frequency may be arbitrarily changed to finely change the rotation speed of the fan.
  • the inter-refrigerant heat exchanger 108 exchanges heat between the refrigerant flowing in the main flow path of the refrigerant circuit and the refrigerant branched from the flow path and adjusted in flow rate by the bypass expansion device 109 (expansion valve). .
  • the bypass expansion device 109 expansion valve
  • the refrigerant is supercooled and supplied to the load side unit 200.
  • the inter-refrigerant heat exchanger 108 is also configured using the heat exchanger 1 described in the first to fourth embodiments.
  • the liquid flowing through the bypass throttle device 109 is returned to the accumulator 106 via the bypass pipe 107.
  • the accumulator 106 is means for storing, for example, liquid excess refrigerant.
  • the heat source side control device 111 is composed of, for example, a microcomputer. It can be wired or wirelessly communicated with the load-side control device 204, for example, based on data relating to detection of various detection means (sensors) in the air conditioner, operation frequency control of the compressor 101 by inverter circuit control, etc.
  • the respective units related to the air conditioner are controlled to control the operation of the entire air conditioner.
  • the load side unit 200 includes a load side heat exchanger 201, a load side expansion device (expansion valve) 202, a load side fan 203, and a load side control device 204.
  • the load-side heat exchanger 201 is also configured using the heat exchanger 1 described in the first to fourth embodiments, and performs heat exchange between the refrigerant and the air in the space to be air-conditioned. For example, during heating operation, it functions as a condenser, performs heat exchange between the refrigerant flowing in from the gas pipe 300 and air, condenses and liquefies the refrigerant (or gas-liquid two-phase), and moves to the liquid pipe 400 side. Spill.
  • the load side unit 200 is provided with a load side fan 203 for adjusting the flow of air for heat exchange.
  • the operating speed of the load-side fan 203 is determined by, for example, user settings.
  • the load side expansion device 202 is provided to adjust the pressure of the refrigerant in the load side heat exchanger 201 by changing the opening degree.
  • the load side control device 204 is also composed of a microcomputer or the like, and can communicate with the heat source side control device 111 by wire or wireless, for example. Based on an instruction from the heat source side control device 111 and an instruction from a resident or the like, for example, each device (means) of the load side unit 200 is controlled so that the room has a predetermined temperature. Further, a signal including data related to detection by the detection means provided in the load side unit 200 is transmitted.
  • the operation of the air conditioner will be described.
  • the high-temperature, high-pressure gas (gas) refrigerant discharged from the compressor 101 is condensed by passing through the heat source side heat exchanger 104 from the four-way valve 103 and becomes a liquid refrigerant.
  • the side unit 100 flows out.
  • the refrigerant flowing into the load side unit 200 through the liquid pipe 400 evaporates as the low temperature and low pressure liquid refrigerant whose pressure is adjusted by adjusting the opening degree of the load side expansion device 202 passes through the load side heat exchanger 201. leak.
  • it flows into the heat source side unit 100 through the gas pipe 300 is sucked into the compressor 101 through the four-way valve 103 and the accumulator 106, and is circulated by being pressurized and discharged again.
  • the high-temperature, high-pressure gas (gas) refrigerant discharged from the compressor 101 flows into the load side unit 200 from the four-way valve 103 through the gas pipe 300.
  • the pressure is adjusted by adjusting the opening degree of the load-side expansion device 202, and condensed by passing through the load-side heat exchanger 201 to become an intermediate-pressure liquid or a gas-liquid two-phase refrigerant. And flows out of the load side unit 200.
  • the refrigerant flowing into the heat source side unit 100 through the liquid pipe 400 is pressure-adjusted by adjusting the opening degree of the heat source side expansion device 107, evaporates by passing through the heat source side heat exchanger 104, and becomes a gas refrigerant. Then, the refrigerant is sucked into the compressor 101 through the four-way valve 103 and the accumulator 106, and circulated by being pressurized and discharged as described above.
  • heat exchange is performed on the heat source side heat exchanger 104 of the heat source side unit 100, the inter-refrigerant heat exchanger 108, and the load side heat exchanger 201 of the load side unit 200. Since the high-efficiency heat exchanger 1 of the first to fourth embodiments is used as an evaporator or a condenser, COP (Coefficient of Performance) can be improved and energy saving can be achieved. Etc. can be achieved.
  • Example 1 a heat exchanger 20 having an outer diameter of 7 mm, a bottom wall thickness of the groove 21 of 0.25 mm, a lead angle of 30 degrees, and a high crest number of 10 and 20 was produced ( Example 1 and Example 2).
  • Example 2 a heat exchanger 20 having an outer diameter of 7 mm, a bottom wall thickness of the groove 21 of 0.25 mm, and high ridges of 5 and 30 was manufactured (Comparative Example 1 and Comparative Example 2).
  • Example 1 As is apparent from Table 1, the heat exchanger 1 of Example 1 and Example 2 has a higher heat exchange rate and improved heat transfer performance in the tube than the heat exchangers of Comparative Examples 1 and 2. Was.
  • the outer diameter is 7 mm
  • the bottom thickness of the groove 21 is 0.25 mm
  • the lead angle is 30 degrees
  • the groove depth after tube expansion is 0.10 mm and 0.26 mm.
  • the heat exchanger 1 was produced (Example 3 and Example 4).
  • the outer diameter is 7 mm
  • the bottom wall thickness of the groove 21 is 0.25 mm
  • the lead angle is 30 degrees
  • the groove depth after tube expansion is 0.05 mm
  • the groove depth after tube expansion is 0.
  • a heat exchanger having a thickness of 3 mm was produced (Comparative Example 3 and Comparative Example 4).
  • Example 3 and Example 4 both have a higher heat exchange rate than the heat exchangers of Comparative Example 3 and Comparative Example 4, and the heat transfer performance in the pipe is improved.
  • Table 2 the heat exchangers 1 of Example 3 and Example 4 both have a higher heat exchange rate than the heat exchangers of Comparative Example 3 and Comparative Example 4, and the heat transfer performance in the pipe is improved.
  • the outer diameter is 7 mm
  • the bottom thickness of the groove 21 is 0.25 mm
  • the lead angle is 30 degrees
  • the peak width at the top of the high peak is 0.035 mm, 0.4 mm
  • the heat exchanger which is 0.5 mm was produced (Example 5, Example 6 and Example 7).
  • a heat exchanger having an outer diameter of 7 mm, a bottom thickness of the groove 21 of 0.25 mm, a lead angle of 30 degrees, and a high mountain peak width of 0.025 mm and 0.6 mm (Comparative Example 5 and Comparative Example 6).
  • Example 6 As is clear from Table 3, the heat exchangers 1 of Example 5, Example 6 and Example 7 all have a higher heat exchange rate than the heat exchangers of Comparative Example 5 and Comparative Example 6, and the pipe transfer Thermal performance was improved.
  • Example 8 an aluminum heat exchanger having an outer diameter of 7 mm, a bottom thickness of the groove 21 of 0.25 mm, a lead angle of 30 degrees, and apex angles of 15 and 30 degrees. 1 was produced (Example 8 and Example 9). Further, as a comparative example, heat exchangers having an outer diameter of 7 mm, a bottom wall thickness of 0.25 mm, a lead angle of 30 degrees, and apex angles of 10 degrees and 40 degrees were manufactured (Comparative Examples 7 and Comparative Examples). 8).
  • the heat exchanger 1 of Example 8 and Example 9 has a higher heat exchange rate than the heat exchangers of Comparative Example 7 and Comparative Example 8, and improved heat transfer performance in the pipe.
  • Table 4 the heat exchanger 1 of Example 8 and Example 9 has a higher heat exchange rate than the heat exchangers of Comparative Example 7 and Comparative Example 8, and improved heat transfer performance in the pipe.
  • an air conditioner has been described with respect to the heat exchanger according to the present invention.
  • the present invention is not limited to these apparatuses, and may be applied to other refrigeration cycle apparatuses having a heat exchanger that constitutes a refrigerant circuit, such as a refrigeration apparatus and a heat pump apparatus, and has an evaporator and a condenser. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 管内圧力損失を増加させずに、所定の伝熱性能を得ることができる熱交換器用の伝熱管等を得る。  管軸方向に対して螺旋状に、10条乃至20条の範囲で所定の高さにより形成する高い山22Aと、高い山22Aよりも低い高さで、高い山22Aと高い山22Aとの間に2条乃至6条の範囲で形成する低い山22Bとを内面に備える。

Description

熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
 本発明は管内面に溝を設けた熱交換器用の伝熱管等に関するものである。
 従来、冷凍装置、空気調和装置、ヒートポンプ等に用いる熱交換器では、一般に、所定の間隔で複数並べたフィンに対して、各フィンに設けた貫通穴を貫通するように、内面に溝を形成した伝熱管を配置する。伝熱管は冷凍サイクル装置における冷媒回路の一部となり、管内部を冷媒(流体)が流れるようにしている。
 管内面の溝は、管軸方向と溝が延びる方向とが一定の角度をなすように加工されている。ここで、溝を形成することにより管内面に凹凸ができるが、凹部の空間を溝部とし、隣り合う溝の側壁によってできる凸部分を山部という。
 そして、このような伝熱管を流れる冷媒は、伝熱管外側の空気等との熱交換により相変化(凝縮又は蒸発)する。そして、この相変化を効率よく行うために、管内の表面積増加、溝部による流体攪拌効果、溝部の毛細管作用による溝部間の液膜保持効果等により、伝熱管の伝熱性能の改善をはかっている(例えば、特許文献1参照)。
特開昭60-142195号公報(第2頁、図1)
 上記のような従来の伝熱管は、一般に、銅又は銅合金の金属を材料としている。そして、熱交換器の製造においては、管内に拡管玉を押し込んで伝熱管を内部から拡管し、フィンと伝熱管を密着させて接合する機械拡管方式を行っていた。しかしながら、このとき、山部が拡管玉に潰されてしまい、管内における圧力損失が大きくなり、管内における伝熱性能が低下するという問題があった。
 本発明は上記の課題を解決するためになされたもので、管内圧力損失を増加させずに、所定の伝熱性能を得ることができる伝熱管、この伝熱管を用いた熱交換器、この熱交換器を用いた冷凍サイクル装置等を提供することを目的とする。
 本発明に係る熱交換器用の伝熱管は、管軸方向に対して螺旋状に、10条乃至20条の範囲で所定の高さにより形成する高い山と、高い山よりも低い高さで、高い山と高い山との間に2条乃至6条の範囲で形成する低い山とを内面に備えるものである。
 本発明の伝熱管によれば、伝熱管の管内面の溝における山部を高い山と低い山で構成しているので、機械拡管方式による拡管を行う際、拡管玉が高い山に接触し、山頂部が0.04mmに潰され、平坦となって山高さが低くなるが、低い山は潰れる高さ0.04mm以下であるため、低い山は変形することなく、従来の伝熱管に比べて、圧力損失を増加させずに、管内伝熱性能を高めることができる。また、伝熱管を拡管すると、伝熱管の外面が多角形に加工され、伝熱管におけるスプリンバックを抑えて、伝熱管とフィンとの密着性を改善することができるため、高効率である。
本発明の実施の形態1に係る熱交換器1を表す図である。 実施の形態1に係る伝熱管20の管内面の形状を表す図である。 機械拡管方式による拡管の状況を表す図である。 高い山22Aの条数と熱交換率との関係を示す図である。 実施の形態2に係る伝熱管20の管内面の形状を表す図である。 拡管後の溝部21と山部22との差と熱交換率との関係を示す図である。 実施の形態3に係る伝熱管20の管内面の形状を表す図である。 実施の形態4に係る伝熱管20の管内面の形状を表す図である。 高い山22Aの頂角αと熱交換率との関係を示す線図である。 本発明の実施の形態5に係る空気調和装置の構成図である。
実施の形態1.
 図1は本発明の実施の形態1に係る熱交換器1を表す図である。図1において、熱交換器1は、冷凍装置、空気調和装置等の蒸発器、凝縮器として広く利用されているフィンチューブ式の熱交換器である。図1(a)は熱交換器1を鉛直方向で切断したときの斜視図を表し、図1(b)は断面の一部を表す。
 熱交換器1は、複数の熱交換器用のフィン10と伝熱管20とで構成している。所定の間隔で複数並べたフィン10に対して、各フィン10に設けた貫通穴を貫通するように、伝熱管20が設けられている。伝熱管20は冷凍サイクル装置における冷媒回路の一部となり、管内部を冷媒が流れる。伝熱管20内部を流れる冷媒と外部を流れる空気との熱をフィン10を介して伝えることで空気との接触面となる伝熱面積が拡がり、冷媒と空気との間の熱交換を効率よく行える。
 図2は実施の形態1に係る伝熱管20の管内面の形状を表す図である。図2は、図1におけるAの部分を拡大している。図2(a)は拡管前の状態を表し、図2(b)は拡管後の状態を表す。本実施の形態の伝熱管20の管内面は、溝形成により溝部21と山部22とを有している。そして、山部21は、さらに高い山22Aと低い山22Bとの2種類の山部により構成している。ここで、低い山22Bの高さは、高い山22Aの高さよりも0.04mm以上低いものとする。ただし、高い山22Aと低い山22Bとの差がありすぎても(低い山22Bが低すぎても)管内の表面積の低下等、伝熱性能を低下させる可能性があるため、本実施の形態では、その差が0.04mmに近くなるようにするものとする。
 図3は機械拡管方式による拡管の状況を表す図である。本実施の形態における熱交換器1は、まず、長手方向の中央部で所定の曲げピッチでヘアピン状に曲げ加工し、伝熱管20となる複数のヘアピン管を製作する。フィン10の貫通穴に、ヘアピン管を通過させた後、機械拡管方式によりヘアピン管を拡管して、伝熱管20をフィン10と密着させ、接合する。機械拡管方式とは、伝熱管20の内径よりやや直径の大きな拡管玉30を先端に有するロッド31を、伝熱管20の管内部に通し、伝熱管20の外径を拡げることで、フィン10と密着させる方法である。
 機械拡管方式により拡管する際、拡管玉30が接触することで、高い山22Aは山頂部分が潰されて、平坦となって山の高さが低くなる。一方、低い山22Bは、潰される高さ0.04mよりも山頂部分が低いため、変形が無い。そして、従来のように、管内のすべての山部に拡管玉30挿入の圧力が加わるのではなく、高い山22Aの部分に圧力が加わって拡管を行うため、伝熱管の外面は多角形に加工されることになる。したがって、伝熱管のスプリンバックを抑えることができる。これにより、伝熱管とフィンとの密着性が改善し、熱交換に係る効率を高めることができる。
 図4は高い山22Aの条数と熱交換率との関係を示す図である。図2では、説明のために、高い山22Aと低い山22Bとを交互に示しているが、本実施の形態では、実際には、伝熱管20の内面において、高い山22Aを10条から20条の高い山を軸方向に螺旋状に連続的に形成するようにする。そして、さらに、高い山22Aと高い山22Aとの間に、2条から6条の低い山22Bを形成する。
 このように、熱交換器1において、伝熱管20の高い山22Aを10条~20条の範囲に設定したのは、拡管する際、拡管玉30が高い山22Aに接触し、山頂部分が0.04mm潰され、平坦となって山の高さが低くなるが、伝熱管20の高い山22Aの条数を10より小さくすると、低い山22Bの山頂部分も潰されて平坦となり、管内伝熱性能が低下するからである。また、高い山の条数を20以上にすると、低い山22Bの条数が減り、管内伝熱性能が低下するからである。
 以上のように、実施の形態1の熱交換器1によれば、伝熱管20の管内面の山部22を、所定の高さを有する高い山22Aと高い山22Aよりも0.04mm以上低い山22Bとの2種類の山部により構成し、管内面において、10条~20条となるように高い山22Aを設け、隣接する高い山22Aと高い山22Aとの間に2条~6条の低い山22Bを設けるようにしたので、伝熱管20における伝熱性能を向上させることができる。また、拡管玉30が高い山22Aのみに接触して拡管するため、伝熱管20の外面が多角形に加工され、伝熱管のスプリンバックを抑えて、伝熱管とフィンとの密着性を改善することができ、熱交換率(伝熱管通過前後の熱量の比率)を高くすることができ、省エネルギ化を図ることができる。また、冷媒回路内の冷媒の減量、高効率を維持しつつ、小型化等を図ることもできる。
実施の形態2.
 図5は実施の形態2に係る伝熱管20の管内面の形状を表す図である。熱交換器1の構成は実施の形態1と同様である。図5において、実施の形態1と同一又は相当の役割を果たす部分には同じ符号を付している(以下の実施の形態でも同じものとする)。本実施の形態では、拡管後の溝部21と山部22との差Hについて説明する。
 図6は拡管後の溝部21と山部22との差と熱交換率との関係を示す図である。伝熱管20において、拡管後の溝部21と山部22との差Hが大きいほど、管内における表面積が増える等して熱伝達率も高くなる。しかしながら、溝部21と山部22との差Hが0.26mmよりも大きくなると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなるため、熱交換率が低下する。一方、溝部21と山部22との差Hが0.1mm未満の場合は、熱伝達率は向上しない。以上より、伝熱管20においては、拡管後の溝部21と山部22との差Hが0.1mm~0.26mmとなるように高い山22A、低い山22Bを形成する。
 以上のように実施の形態2の熱交換器1によれば、拡管後の溝部21と山部22との差Hが0.1mm~0.26mmとなるように高い山22A、低い山22Bを形成するようにしたので、伝熱管20における伝熱性能を向上させることができる。
実施の形態3.
 図7は実施の形態3に係る伝熱管20の管内面の形状を表す図である。本実施の形態3は、熱交換機1において、拡管後の伝熱管20において、高い山22Aの山頂部分の先端幅W1を0.035~0.05mmとし、低い山22Bの先端幅W2を、0.03~0.035mmの範囲としたものである。
 高い山22Aの先端幅W1について、拡管した後の先端幅W1が0.035mm以下になるようにすると、拡管玉30を用いて拡管を行う際、山頂上部が潰れ、また、挿入による圧力が弱くなる。そのため、伝熱管20の拡管が不十分で、伝熱管20とフィン10との密着性が悪化して、熱交換率の低下が顕著になる。また、先端幅W1を0.05mm以上となるようにすると、溝部21において断面積が減少するため、冷媒の液膜が厚くなり、熱伝達率が顕著に低下する。
 一方、低い山22Bの先端幅W2を0.03~0.035mmとすることにより、山の裾幅も狭く形成することとなり、全体として細く形成することで、伝熱面積が高くなり、管内熱伝達率が増加する。
 以上のように実施の形態3の熱交換器1によれば、高い山22Aの山頂部分の先端幅W1を0.035~0.05mmとし、低い山22Bの先端幅W2を、0.03~0.035mmの範囲となるように高い山22A、低い山22Bを形成するようにしたので、伝熱管20における伝熱性能を向上させることができる。
実施の形態4.
 図8は本発明の実施の形態4に係る伝熱管20の管内面の形状を表す図である。実施の形態4は、熱交換機1において、伝熱管20の高い山22Aの頂角αを15度~30度とし、低い山22Bの頂角βを5度~15度としたものである。
 図9は高い山22Aの頂角αと熱交換率との関係を示す線図である。基本的には、山部22における頂角が小さい程、伝熱管20全体として伝熱面積が増加するため、熱伝達率が増加する。しかしながら、高い山22Aの頂角αが15度より小さくなると、熱交換器1を製造する際の加工性が著しく低下するため、最終的には熱交換率が低下することになる。一方、頂角αが30度よりも大きくなると、溝部21の断面積が小さくなり、溝部21から冷媒の液膜が溢れ、山頂部分まで液膜に覆われてしまうため、熱伝達率が低下することになる。
 一方、低い山22Bの頂角βを5度~15度とすることにより、山の裾幅も狭く形成することとなり、全体として細く形成することで、伝熱面積が高くなり、管内熱伝達率が増加する。
 以上のように、実施の形態4の熱交換器1によれば、高い山22Aの頂角αを15度~30度とし、低い山22Bの頂角βを5度~15度となるように高い山22A、低い山22Bを形成するようにしたので、伝熱管20における伝熱性能を向上させることができる。
実施の形態5.
 図10は本発明の実施の形態5に係る空気調和装置の構成図である。本実施の形態では、冷凍サイクル装置の例として空気調和装置について説明する。図10の空気調和装置は、熱源側ユニット(室外機)100と負荷側ユニット(室内機)200とを備え、これらが冷媒配管で連結され、冷媒回路を構成して冷媒を循環させている。冷媒配管のうち、気体の冷媒(ガス冷媒)が流れる配管をガス配管300とし、液体の冷媒(液冷媒。気液二相冷媒の場合もある)が流れる配管を液配管400とする。ここで、冷媒として、例えば、HC単一冷媒若しくはHC冷媒を含む混合冷媒、R32、R410A、R407C、テトラフルオロプロペン(例えば2,3,3,3-テトラフルオロプロペン)、二酸化炭素等を用いるものとする。
 熱源側ユニット100は、本実施の形態においては、圧縮機101、油分離器102、四方弁103、熱源側熱交換機104、熱源側ファン105、アキュムレータ106、熱源側絞り装置(膨張弁)107、冷媒間熱交換器108、バイパス絞り装置109および熱源側制御装置111の各装置(手段)で構成する。
 圧縮機101は、上述の実施の形態で説明した電動機6を有し、冷媒を吸入して、その冷媒を圧縮して高温・高圧のガス状態にして冷媒配管に流す。圧縮機101の運転制御については、例えば上述の実施の形態で説明したマスター側インバータ回路2、スレーブ側インバータ回路3等を圧縮機101に備え、運転周波数を任意に変化させることにより、圧縮機101の容量(単位時間あたりの冷媒を送り出す量)を細かく変化させることができるものとする。
 また、油分離器102は、冷媒に混じって圧縮機101から吐出された潤滑油を分離させるものである。分離された潤滑油は圧縮機101に戻される。四方弁103は、熱源側制御装置111からの指示に基づいて冷房運転時と暖房運転時とによって冷媒の流れを切り換える。また、熱源側熱交換器104は、実施の形態1~4において説明した熱交換器1を用いて構成し、冷媒と空気(室外の空気)との熱交換を行う。例えば、暖房運転時においては蒸発器として機能し、熱源側絞り装置107を介して流入した低圧の冷媒と空気との熱交換を行い、冷媒を蒸発させ、気化させる。また、冷房運転時においては凝縮器として機能し、四方弁103側から流入した圧縮機101において圧縮された冷媒と空気との熱交換を行い、冷媒を凝縮して液化させる。熱源側熱交換器104には、冷媒と空気との熱交換を効率よく行うため、熱源側ファン105が設けられている。熱源側ファン105もインバータ回路(図示せず)を有してファンモータの運転周波数を任意に変化させてファンの回転速度を細かく変化させるようにしてもよい。
 冷媒間熱交換器108は、冷媒回路の主となる流路を流れる冷媒と、その流路から分岐してバイパス絞り装置109(膨張弁)により流量調整された冷媒との間で熱交換を行う。特に冷房運転時において冷媒を過冷却する必要がある場合に、冷媒を過冷却して負荷側ユニット200に供給するものである。冷媒間熱交換器108についても、実施の形態1~4において説明した熱交換器1を用いて構成する。
 バイパス絞り装置109を介して流れる液体は、バイパス配管107を介してアキュムレータ106に戻される。アキュムレータ106は例えば液体の余剰冷媒を溜めておく手段である。熱源側制御装置111は、例えばマイクロコンピュータ等からなる。負荷側制御装置204と有線または無線通信することができ、例えば、空気調和装置内の各種検知手段(センサ)の検知に係るデータに基づいて、インバータ回路制御による圧縮機101の運転周波数制御等、空気調和装置に係る各手段を制御して空気調和装置全体の動作制御を行う。
 一方、負荷側ユニット200は、負荷側熱交換器201、負荷側絞り装置(膨張弁)202、負荷側ファン203および負荷側制御装置204で構成される。負荷側熱交換器201についても、実施の形態1~4において説明した熱交換器1を用いて構成し、冷媒と空気調和の対象となる空間の空気との熱交換を行う。例えば、暖房運転時においては凝縮器として機能し、ガス配管300から流入した冷媒と空気との熱交換を行い、冷媒を凝縮させて液化(または気液二相化)させ、液配管400側に流出させる。一方、冷房運転時においては蒸発器として機能し、負荷側絞り装置202により低圧状態にされた冷媒と空気との熱交換を行い、冷媒に空気の熱を奪わせて蒸発させて気化させ、ガス配管300側に流出させる。また、負荷側ユニット200には、熱交換を行う空気の流れを調整するための負荷側ファン203が設けられている。この負荷側ファン203の運転速度は、例えば利用者の設定により決定される。負荷側絞り装置202は、開度を変化させることで、負荷側熱交換器201内における冷媒の圧力を調整するために設ける。
 また、負荷側制御装置204もマイクロコンピュータ等からなり、例えば熱源側制御装置111と有線または無線通信することができる。熱源側制御装置111からの指示、居住者等からの指示に基づいて、例えば室内が所定の温度となるように、負荷側ユニット200の各装置(手段)を制御する。また、負荷側ユニット200に設けられた検知手段の検知に係るデータを含む信号を送信する。
 次に空気調和装置の動作について説明する。まず、冷房運転時の冷媒回路における基本的な冷媒循環について説明する。圧縮機101の駆動運転により、圧縮機101から吐出した高温、高圧ガス(気体)の冷媒は、四方弁103から熱源側熱交換器104内を通過することで凝縮し、液冷媒となって熱源側ユニット100を流出する。液配管400を通って負荷側ユニット200に流入した冷媒は、負荷側絞り装置202の開度調整により圧力調整された低温低圧の液冷媒が負荷側熱交換器201内を通過して蒸発して流出する。そして、ガス配管300を通って熱源側ユニット100に流入し、四方弁103、アキュムレータ106を介して圧縮機101に吸入され、再度加圧され吐出することで循環する。
 また、暖房運転時の冷媒回路における基本的な冷媒循環について説明する。圧縮機101の駆動運転により、圧縮機101から吐出した高温、高圧ガス(気体)の冷媒は、四方弁103からガス配管300を通って負荷側ユニット200に流入する。負荷側ユニット200においては、負荷側絞り装置202の開度調整により圧力調整され、負荷側熱交換器201内を通過することにより凝縮し、中間圧力の液体または気液二相状態の冷媒となって負荷側ユニット200を流出する。液配管400を通って熱源側ユニット100に流入した冷媒は、熱源側絞り装置107の開度調整により圧力調整され、熱源側熱交換器104内を通過することで蒸発し、ガスの冷媒となって四方弁103、アキュムレータ106を介して圧縮機101に吸入され、前述したように加圧され吐出することで循環する。
 以上のように実施の形態5の空気調和装置によれば、熱源側ユニット100の熱源側熱交換器104、冷媒間熱交換器108、負荷側ユニット200の負荷側熱交換器201について、熱交換率の高い実施の形態1~4の熱交換器1を蒸発器、凝縮器として用いるようにしたので、COP(Coefficient of Performance :エネルギ消費効率、成績係数)等を向上させることができ、省エネルギ等を図ることができる。
 以下、実施例について、本発明の範囲から外れる比較例と比較して説明する。表1に示すように、外径が7mm、溝21の底肉厚が0.25mm、リード角が30度であり、高い山の条数が10及び20である熱交換器20を作製した(実施例1及び実施例2)。また、比較例として、外径が7mm、溝21の底肉厚が0.25mmであり、高い山の条数が5及び30である熱交換器を作製した(比較例1及び比較例2)。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1及び実施例2の熱交換器1は、いずれも比較例1~比較例2の熱交換器と比べて熱交換率が高く、管内伝熱性能が向上していた。
 次に、表2に示すように、外径が7mm、溝21の底肉厚が0.25mm、リード角が30度であり、拡管後の溝深さが0.10mm及び0.26mmである熱交換器1を作製した(実施例3及び実施例4)。また、比較例として、外径が7mm、溝21の底肉厚が0.25mm、リード角が30度であり、拡管後の溝深さが0.05mm、及び拡管後の溝深さが0.3mmである熱交換器を作製した(比較例3及び比較例4)。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例3及び実施例4の熱交換器1は、いずれも比較例3及び比較例4の熱交換器と比べて熱交換率が高く、管内伝熱性能が向上していた。
 次に、表3に示すように、外径が7mm、溝21の底肉厚が0.25mm、リード角が30度であり、高い山の山部先端幅が0.035mm、0.4mm及び0.5mmである熱交換器を作製した(実施例5、実施例6及び実施例7)。また、比較例として、外径が7mm、溝21の底肉厚が0.25mm、リード角が30度であり、高い山の山部先端幅が0.025mm及び0.6mmである熱交換器を作製した(比較例5及び比較例6)。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、実施例5、実施例6及び実施例7の熱交換器1は、いずれも比較例5及び比較例6の熱交換器と比べて熱交換率が高く、管内伝熱性能が向上していた。
 次に、表4に示すように、外径が7mm、溝21の底肉厚が0.25mm、リード角が30度であり、頂角が15度及び30度であるアルミニウム製の熱交換器1を作製した(実施例8及び実施例9)。また、比較例として、外径が7mm、底肉厚が0.25mm、リード角が30度であり、頂角が10度及び40度である熱交換器を作製した(比較例7及び比較例8)。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、実施例8及び実施例9の熱交換器1は、いずれも比較例7及び比較例8の熱交換器と比べて熱交換率が高く、管内伝熱性能が向上していた。
 上述した実施の形態5では、本発明に係る熱交換器に関し、空気調和装置への適用について説明した。本発明は、これらの装置に限定することなく、例えば、冷凍装置、ヒートポンプ装置等、冷媒回路を構成し、蒸発器、凝縮器となる熱交換器を有する他の冷凍サイクル装置にも適用することができる。
 1 熱交換器、10 フィン、20 伝熱管、21 溝部、22 山部、22A 高い山、22B 低い山、30 拡管玉、31 ロッド、100 熱源側ユニット、101 圧縮機、102 油分離器、103 四方弁、104 熱源側熱交換機、105 熱源側ファン、106 アキュムレータ、107 熱源側絞り装置、108 冷媒間熱交換器、109 バイパス絞り装置、110 熱源側制御装置、200 負荷側ユニット、201 負荷側熱交換器、202 負荷側絞り装置、203 負荷側ファン、204 負荷側制御装置、300 ガス配管、400 液配管、α 頂角、H 拡管後の溝部21と山部22との差、W1 高い山22Aの山頂部分の先端幅、W2 低い山22Bの山頂部分の先端幅。

Claims (9)

  1.  管軸方向に対して螺旋状に、10条乃至20条の範囲で所定の高さにより形成する高い山と、
     前記高い山よりも高さが低く、前記高い山と前記高い山との間に2条乃至6条の範囲で形成する低い山と
    を管内面に備えることを特徴とする熱交換器用の伝熱管。
  2.  前記高い山と前記低い山との高さの差が0.04mm以上であることを特徴とする請求項1記載の熱交換器用の伝熱管。
  3.  熱交換を行う面積を拡げるための複数のフィンと、
     請求項1又は2記載の伝熱管とを、前記伝熱管内面側から加圧して拡管して接合することを特徴とする熱交換器。
  4.  前記伝熱管を拡管した後の前記高い山における高さが0.10mm~0.26mmであることを特徴とする請求項3記載の熱交換器。
  5.  前記伝熱管を拡管した後の前記高い山の先端部分の幅が0.035mm~0.05mmであり、前記低い山の先端部分の幅が0.03mm~0.035mmであることを特徴とする請求項3又は4記載の熱交換器。
  6.  前記高い山の頂角が15度~30度となり、前記低い山の頂角が5度~15度となるように形成することを特徴とする請求項3~5のいずれかに記載の熱交換器。
  7.  冷媒を圧縮する圧縮機と、熱交換により前記冷媒を凝縮させる凝縮器と、凝縮された冷媒を減圧させるための膨張手段と、減圧された前記冷媒を熱交換により蒸発させる蒸発器とを配管接続して前記冷媒を循環させる冷媒回路を構成する冷凍サイクル装置であって、
     請求項3~6のいずれかに記載の熱交換器を、前記凝縮器及び/又は蒸発器とする
    ことを特徴とする冷凍サイクル装置。
  8.  前記冷媒として、HC単一冷媒、またはHCを含む混合冷媒、R32、R410A、R407C、テトラフルオロプロペン又は二酸化炭素のいずれかを用いることを特徴とする請求項7記載の冷凍サイクル装置。
  9.  請求項7又は8記載の冷凍サイクル装置により、対象空間の冷暖房を行うことを特徴とする空気調和装置。
PCT/JP2009/063859 2008-08-08 2009-08-05 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置 WO2010016516A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/003,719 US20110113820A1 (en) 2008-08-08 2009-08-05 Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle apparatus, and air conditioner
ES09804999.2T ES2677347T3 (es) 2008-08-08 2009-08-05 Intercambiador de calor, aparato de ciclo de refrigeración y acondicionador de aire
CN2009801294620A CN102112838B (zh) 2008-08-08 2009-08-05 热交换器用的传热管、热交换器、冷冻循环装置及空调装置
EP09804999.2A EP2317269B1 (en) 2008-08-08 2009-08-05 Heat exchanger, refrigerating cycle apparatus, and air conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-205073 2008-08-08
JP2008205073A JP2010038502A (ja) 2008-08-08 2008-08-08 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置

Publications (1)

Publication Number Publication Date
WO2010016516A1 true WO2010016516A1 (ja) 2010-02-11

Family

ID=41663734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063859 WO2010016516A1 (ja) 2008-08-08 2009-08-05 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置

Country Status (6)

Country Link
US (1) US20110113820A1 (ja)
EP (1) EP2317269B1 (ja)
JP (1) JP2010038502A (ja)
CN (1) CN102112838B (ja)
ES (1) ES2677347T3 (ja)
WO (1) WO2010016516A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679790A (zh) * 2012-06-05 2012-09-19 金龙精密铜管集团股份有限公司 强化冷凝传热管
WO2013094084A1 (ja) * 2011-12-19 2013-06-27 三菱電機株式会社 空気調和機
CN106871664A (zh) * 2017-01-09 2017-06-20 青岛海尔空调电子有限公司 一种换热器、空调以及换热器设计方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743683B2 (ja) * 2011-04-27 2015-07-01 日立アプライアンス株式会社 圧縮機及び圧縮機の運転方法並びに冷凍サイクル装置
ES2731748T3 (es) * 2011-09-26 2019-11-18 Mitsubishi Electric Corp Intercambiador de calor y dispositivo de ciclo de refrigeración que incluye el intercambiador de calor
JP5536817B2 (ja) * 2012-03-26 2014-07-02 日立アプライアンス株式会社 冷凍サイクル装置
WO2014147788A1 (ja) * 2013-03-21 2014-09-25 三菱電機株式会社 熱交換器、冷凍サイクル装置、及び熱交換器の製造方法
JP6141514B2 (ja) * 2014-03-07 2017-06-07 三菱電機株式会社 冷凍サイクル装置
US20150323230A1 (en) * 2014-03-11 2015-11-12 Brazeway, Inc. Tube pattern for a refrigerator evaporator
CN105258400B (zh) * 2014-07-18 2018-01-02 上海交通大学 同轴螺纹管漏流式换热器
WO2016009565A1 (ja) * 2014-07-18 2016-01-21 三菱電機株式会社 冷凍サイクル装置
JP6878918B2 (ja) * 2017-01-30 2021-06-02 株式会社富士通ゼネラル 冷凍サイクル装置
JP2019052829A (ja) 2017-09-19 2019-04-04 三星電子株式会社Samsung Electronics Co.,Ltd. 熱交換器及び空気調和機
CN109751750A (zh) * 2017-11-08 2019-05-14 开利公司 用于空调系统的末端产品的换热管及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028573B2 (ja) * 1978-09-25 1985-07-05 ダイキン工業株式会社 クロスフィンコイル形熱交換器の製造方法
JPS60142195A (ja) 1983-12-28 1985-07-27 Hitachi Cable Ltd 内面溝付伝熱管
JPH01170880U (ja) * 1988-05-23 1989-12-04
JP2001133182A (ja) * 1999-11-08 2001-05-18 Sumitomo Light Metal Ind Ltd 内面溝付伝熱管

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028573A (ja) * 1983-07-21 1985-02-13 ワイケイケイ株式会社 染色機への薬剤供給装置
JPH01170880A (ja) * 1987-12-26 1989-07-05 Aisin Seiki Co Ltd 磁気遮蔽装置
FR2706197B1 (fr) * 1993-06-07 1995-07-28 Trefimetaux Tubes rainurés pour échangeurs thermiques d'appareils de conditionnement d'air et de réfrigération, et échangeurs correspondants.
US6089039A (en) * 1998-03-12 2000-07-18 Yamauchi; Noriyuki Air conditioner and condenser used therefor
US6298909B1 (en) * 2000-03-01 2001-10-09 Mitsubishi Shindoh Co. Ltd. Heat exchange tube having a grooved inner surface
EP1438545B1 (en) * 2001-10-22 2010-01-20 Showa Denko K.K. Finned tube for heat exchangers, heat exchanger, process for producing heat exchanger finned tube, and process for fabricating heat exchanger
US7165326B2 (en) * 2001-12-17 2007-01-23 Showa Denko K.K. Heat exchanger and process for fabricating same
FR2837270B1 (fr) * 2002-03-12 2004-10-01 Trefimetaux Tubes rainures a utilisation reversible pour echangeurs thermiques
JP4759226B2 (ja) * 2004-03-31 2011-08-31 株式会社コベルコ マテリアル銅管 拡管用工具およびそれを使用した拡管方法
JP4651366B2 (ja) * 2004-12-02 2011-03-16 住友軽金属工業株式会社 高圧冷媒用内面溝付伝熱管
JP4539425B2 (ja) * 2005-04-28 2010-09-08 日立電線株式会社 ヒートパイプ式ヒートシンク及びその製造方法
JP4665713B2 (ja) * 2005-10-25 2011-04-06 日立電線株式会社 内面溝付伝熱管
JP2011144989A (ja) * 2010-01-13 2011-07-28 Mitsubishi Electric Corp 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028573B2 (ja) * 1978-09-25 1985-07-05 ダイキン工業株式会社 クロスフィンコイル形熱交換器の製造方法
JPS60142195A (ja) 1983-12-28 1985-07-27 Hitachi Cable Ltd 内面溝付伝熱管
JPH01170880U (ja) * 1988-05-23 1989-12-04
JP2001133182A (ja) * 1999-11-08 2001-05-18 Sumitomo Light Metal Ind Ltd 内面溝付伝熱管

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094084A1 (ja) * 2011-12-19 2013-06-27 三菱電機株式会社 空気調和機
JPWO2013094084A1 (ja) * 2011-12-19 2015-04-27 三菱電機株式会社 空気調和機
US9506700B2 (en) 2011-12-19 2016-11-29 Mitsubishi Electric Corporation Air-conditioning apparatus
CN102679790A (zh) * 2012-06-05 2012-09-19 金龙精密铜管集团股份有限公司 强化冷凝传热管
CN106871664A (zh) * 2017-01-09 2017-06-20 青岛海尔空调电子有限公司 一种换热器、空调以及换热器设计方法

Also Published As

Publication number Publication date
EP2317269A1 (en) 2011-05-04
CN102112838A (zh) 2011-06-29
CN102112838B (zh) 2013-04-17
JP2010038502A (ja) 2010-02-18
EP2317269B1 (en) 2018-06-06
US20110113820A1 (en) 2011-05-19
EP2317269A4 (en) 2014-04-02
ES2677347T3 (es) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2010016516A1 (ja) 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
WO2011086881A1 (ja) 熱交換器用の伝熱管、熱交換器、冷凍サイクル装置及び空気調和装置
JP4738401B2 (ja) 空気調和機
JP5800909B2 (ja) 熱交換器及びその熱交換器を用いた冷凍サイクル装置
EP1645818A2 (en) Air-conditioner with a dual-refrigerant circuit
WO2014147788A1 (ja) 熱交換器、冷凍サイクル装置、及び熱交換器の製造方法
US9506700B2 (en) Air-conditioning apparatus
WO2017208419A1 (ja) フィンチューブ型熱交換器、このフィンチューブ型熱交換器を備えたヒートポンプ装置、および、フィンチューブ型熱交換器の製造方法
EP1843109A2 (en) Cooling System
WO2015125525A1 (ja) 熱交換器及び冷凍サイクル装置
JP7118247B2 (ja) 空気調和機
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
JP2010249484A (ja) 熱交換器および冷凍サイクル装置
EP3770535A1 (en) Heat exchanger, refrigeration cycle device, and air conditioning device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129462.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 158/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13003719

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009804999

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE