WO2000046843A1 - Mikroelektronische struktur - Google Patents

Mikroelektronische struktur Download PDF

Info

Publication number
WO2000046843A1
WO2000046843A1 PCT/DE2000/000331 DE0000331W WO0046843A1 WO 2000046843 A1 WO2000046843 A1 WO 2000046843A1 DE 0000331 W DE0000331 W DE 0000331W WO 0046843 A1 WO0046843 A1 WO 0046843A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
silicon nitride
passivation layer
silicon
Prior art date
Application number
PCT/DE2000/000331
Other languages
English (en)
French (fr)
Inventor
Gerhard Beitel
Nicolas Nagel
Zvonimir Gabric
Oswald Spindler
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2000046843A1 publication Critical patent/WO2000046843A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention is in the field of semiconductor technology and relates to a microelectronic structure.
  • a single memory cell comprises at least one storage capacitor, which has a lower electrode and an upper electrode and a capacitor dielectric located between the electrodes.
  • the capacitor dielectric can have a high dielectric constant or ferroelectric properties.
  • these electrical properties are typically only achieved after a thermal annealing step in which the capacitor dielectric crystallizes as completely as possible.
  • capacitor dielectrics with the above-mentioned electrical properties are sensitive to conditioning steps in the presence of forming gas (N 2 : H 2 - 95: 5), which can result in a degradation of the electrical parameters and possibly an undesirable increase in leakage currents through the capacitor dielectric .
  • healing processes are in the presence of forming gas for the conditioning of metallic conductors within the
  • this object is achieved by a microelectronic structure with a base substrate; - a metal-containing layer; a silicon nitride layer suitable as a hydrogen diffusion barrier; and a passivation layer arranged between the silicon nitride layer and the metal-containing layer.
  • the hydrogen barrier is formed by the silicon nitride layer.
  • Silicon nitride layers have proven to be sufficiently dense in particular to prevent hydrogen diffusion if they are applied by means of a CVD process. It is advantageous that the silicon nitride layer, which can be present, for example, as a stoichiometric Si 3 N 4 layer, is deposited from hydrogen-containing silicon compounds and ammonia. Since CVD silicon nitride layers can be applied in a highly conformal manner, all structures on the surface of a base substrate can be covered evenly and thus protected evenly and safely against hydrogen diffusion. This is particularly advantageous in the case of so-called stack capacitors.
  • the metal-containing layer which preferably consists of platinum can come, according to the invention.
  • a passivation layer completely covered by a passivation layer. This prevents the ammonia from coming into direct contact with the metal-containing layer and thus prevents its catalytic cleavage, so that no atomic hydrogen is produced which can diffuse through the metal-containing layer into underlying structures, in particular into a capacitor dielectric.
  • the passivation layer is therefore preferably produced in an ammonia-free atmosphere.
  • the passivation layer is furthermore favorable to produce the passivation layer from a material that is largely non-catalytic, at least to ammonia, i.e. that ammonia is not catalytically decomposed by the passivation layer.
  • the passivation layer should also be non-catalytic to other hydrogen-containing compounds, so that in particular no atomic hydrogen is formed during the deposition of the silicon nitride layer.
  • Suitable passivation layers consist of silicon oxide, silicon nitride, silicon oxynitride or a combination of layers of the aforementioned materials. Although some of these materials are deposited in the presence of hydrogen-containing compounds, undesired hydrogen diffusion through the metal-containing layer is not observed, in particular if the deposition is also carried out in the presence of oxygen. This immediately binds any free hydrogen that may have formed.
  • the passivation layer in a material thickness between 5 and 100 nm, preferably between 10 and 50 nm. It is also preferred to use the metal-containing one Layer, which often forms the upper electrode of a storage capacitor, a layer containing metal oxide and another metal layer.
  • the metal oxide-containing layer represents the capacitor dielectric, the other metal-containing layer the lower electrode.
  • the layer containing metal oxide serves in particular in semiconductor memories as a high- ⁇ dielectric or as a ferroelectric dielectric.
  • dielectric material is also used for both purely dielectric and ferroelectric materials.
  • Metal oxides of the general form ABO x or DO x are used in particular for the dielectric metal oxide-containing layer, A being for at least one metal from the group barium (Ba), strontium (Sr), bismuth (Bi), lead (Pb), zirconium (Zr ), Lanthanum (La), niobium (Nb), potassium (K) or calcium (Ca), B for titanium (Ti), tantalum (Ta), niobium (Nb) or ruthenium (Ru), D for titanium (Ti) and tantalum (Ta) and 0 represents oxygen (0).
  • X lies in particular between 2 and 12, whereby the exact stoichiometric composition can vary.
  • barium strontium titanate BST, BaySr ⁇ -yTi0 3
  • niobium-doped strontium bismuth tantalate SBTN, SrBi 2 Ta 2 -yNb y 0 9
  • the metal oxides of the above material classes have dielectric properties, a high dielectric constant ( ⁇ > 20) or a high remanent polarization (in the case of ferroelectrics) possibly being achieved only after a high-temperature step for the crystallization of the metal oxides.
  • Dielectric materials of the above material classes are, for example, barium Strontium titanate (BST, BaySri-yTiOa), strontiu titanate (STO,
  • Strontium bismuth tantalate SBT, Sr y Bi ⁇ -. Y Ta 2 ⁇ 9
  • lead zirconate SBT, Sr y Bi ⁇ -. Y Ta 2 ⁇ 9
  • Titanate PZT, Pb (Zr, Ti) 0 3
  • SBTN niobium-doped SBT
  • Niobates are also used, for example in the form of KNb0 3 .
  • the second part of the invention is achieved by a method for producing a microelectronic structure which has a base substrate, a metal-containing layer, a silicon nitride layer suitable as a hydrogen diffusion barrier and a passivation layer arranged between the silicon nitride layer and the metal-containing layer, with the following steps: the base substrate with the metal-containing layer is provided; the passivation layer is applied to the metal-containing layer in an ammonia-free atmosphere; and the silicon nitride layer is deposited on the passivation layer.
  • the silicon nitride layer can be applied both in an ammonia-containing atmosphere and in an ammonia-free atmosphere in the presence of another nitrogen compound (for example N 2 ), provided that such a deposited silicon nitride layer has the desired properties with regard to its use as a hydrogen diffusion barrier due to its dense material structure.
  • N 2 another nitrogen compound
  • FIG. 1 to 3 individual process steps for producing a microelectronic structure according to the invention
  • a lower electrode 10 of a storage capacitor 15 is arranged on a base substrate 5.
  • the lower electrode 10 comprises a platinum base body 20 and a barrier layer 25 arranged between the platinum base body and the base substrate 5.
  • the bottom electrode 10 is provided with a selection transistor (not shown here) connected.
  • platinum for the platinum base body 20 other metals, in particular ruthenium, iridium, palladium, rhodium or rhenium as well as the conductive oxides ruthenium oxide, iridium oxide or strontium ruthenium oxide (SrRu0 3 ) can also be used.
  • the lower electrode 10, which in this exemplary embodiment represents the further metal-containing layer 10, is completely covered by a metal oxide-containing layer 35.
  • a further platinum layer 40 sits on this, which here represents the metal-containing layer 40 and serves as the upper electrode.
  • the platinum layer 40 is preferably structured together with the metal oxide-containing layer 35.
  • ruthenium, iridum, palladium, rhodium, rhenium, ruthenium oxide, iridium oxide or strontium-ruthenium oxide can also be used here.
  • a passivation layer 45 preferably made of silicon oxide, is subsequently applied to the structure shown in FIG.
  • the use of a double-layer system made of silicon oxide and silicon oxynitride is also possible.
  • a hydrogen diffusion barrier layer 50 in the form of a silicon nitride layer 50 is applied to the passivation layer 45. In the present exemplary embodiment, this has no direct contact with the upper electrode 40.
  • PE-CVD Plasma deposition
  • the silicon oxide layer 45 is advantageously deposited by means of plasma deposition in an oxygen-containing atmosphere at a pressure of approximately 0.5 to 10 torr.
  • the deposition takes place under high-frequency excitation (eg RF excitation) with a coupled power between 50 and 1000 watts and preferably at a temperature between 350 and 600 ° C.
  • silicon hydrogen compounds eg silane
  • silicon halogen compounds eg dichlorosilane or trichlorosilane
  • organosilicon compounds TEOS
  • Plasma deposition can be used to produce highly conformal silicon oxide layers with a thickness of preferably 5 to 50 nm and above.
  • organosilicon compounds are deposited at a temperature between 350 and 600 ° C and a pressure between 50 and 760 Torr in the presence of ozone.
  • the preferred material thickness here is also between 5 and 50 nm.
  • the silicon oxide layer is deposited at higher temperatures, preferably between 600 and 850 ° C., using the same starting materials as in the plasma deposition. Due to the higher temperatures, there is no need for microwave or RF activation.
  • the silicon oxide layers produced using these three processes are outstandingly suitable as a passivation layer for preventing catalytic cleavage of ammonia in particular during the deposition of the silicon nitride layer.
  • a rinsing step in ammonia follows after the deposition of the silicon oxide layer in order to obtain defined conditions for the deposition of the silicon nitride layer.
  • the latter can either like the silicon oxide layer by means of thermally activated deposition or which are applied by means of a plasma deposition, preference being given to silane or dichlorosilane in each case in combination with ammonia.
  • the individual layers, i.e. passivation layer 45 and hydrogen diffusion barrier layer 50 can either be in situ one after the other, i.e. without vacuum interruption, or deposited ex situ.
  • the two layers are deposited in particular in the same system, although not necessarily in the same deposition chamber. Between the individual deposition steps, the microelectronic structure with the layers already applied is not exposed to atmospheric conditions.
  • temperature treatment in an oxygen-containing or nitrogen-containing atmosphere at temperatures between 400 ° C. and 800 ° C. can also be carried out, among other things, between the deposition of the passivation layer and the silicon nitride layer, the intended treatment time being between 1 minute and 1 hour .
  • the silicon oxide can be additionally compacted or possible mechanical stresses can be cured.
  • the platinum layer 40 can be treated in an oxygen-containing atmosphere for conditioning before the silicon oxide layer 45 and the silicon nitride layer 50 are deposited.
  • FIG. 4 The starting point here is a figure according to FIG. 4, in which, as in FIG. 1, a lower electrode 10 sits on a base substrate 5.
  • the lower electrode which is formed by a platinum base body 20 and a barrier layer 25, is completely covered by a metal oxide-containing layer 35 and a metal-containing layer 40.
  • a passivation layer 45 made of silicon oxide and a silicon nitride layer 50 are first deposited on the metal-containing layer 40.
  • the structure obtained is shown in FIG. 5.
  • the metal oxide-containing layer 35, the metal-containing layer 40, the passivation layer 45 and the silicon nitride layer 50 are subsequently structured together by means of an anisotropic etching process.
  • Layer 40 is no longer completely covered by the passivation layer 45 and the silicon nitride layer 50 as a result of the common etching process, but the metal oxide-containing layer 35 is largely protected from hydrogen diffusion during a subsequent forming gas treatment. Any hydrogen which diffuses laterally at the edge regions 55 of the metal oxide-containing layer 35 only penetrates into the metal oxide-containing layer to a certain depth, so that regions 60 of the metal oxide-containing layer 35 located in the vicinity of the lower electrode 10 are protected against hydrogen diffusion.
  • the passivation layer and silicon nitride layer produced with the method according to the invention have an excellent conformal covering and are free from bubbles or other disturbances. These layers, which are preferably in the form of a double or multilayer system (for example three layers), are therefore also suitable for protecting very fine structures.
  • the thickness of the silicon nitride layer, which is preferably deposited using a low-pressure CVD method, is preferably in a range between 10 and 100 nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

Es wird eine mikroelektronische Struktur mit einem Grundsubstrat (5), einer metallhaltigen Schicht (20), einer als Wasserstoffdiffusionsbarriere dienenden Siliziumnitridschicht (50) sowie einer zwischen der Siliziumnitridschicht (50) und der metallhaltigen Schicht (20) angeordneten Passivierungsschicht (45) vorgeschlagen. Die Passivierungsschicht (45) besteht bevorzugt aus Siliziumoxid, Siliziumnitrid, Siliziumoxynitrid oder aus eine Schichtenkombination vorgenannter Materialien und verhindert insbesondere bei der Abscheidung der als Wasserstoffdiffusionsbarriere dienenden Siliziumnitridschicht (50) die katalytische Spaltung von Ammoniak durch die metallhaltige Schicht (20).

Description

Beschreibung
Mikroelektronische Struktur
Die Erfindung liegt auf dem Gebiet der Halbleitertechnik und betrifft eine mikroelektronische Struktur.
Bei der Entwicklung neuer dynamischer Halbleiterspeicher (DRAM) mit einer erhöhten Speicherkapazität wird die Verwen- düng von Materialien mit einer hohen Dielektrizitätskonstante angestrebt. Dadurch ist es möglich, die Strukturgröße der einzelnen Speicherzellen bei gleichbleibender Speicherkapazität zu verringern. Zunehmende Bedeutung gewinnen auch sogenannte nichtflüchtige Speicher, bei denen Kondensatordie- lektrika mit ferroelektrischen Eigenschaften verwendet werden (FeRAM) . Üblicherweise umfaßt eine einzelne Speicherzelle zumindest einen Speicherkondensator, der eine untere Elektrode und eine obere Elektrode sowie ein zwischen den Elektroden befindliches Kondensatordielektrikum aufweist. Das Kondensa- tordielektrikum kann je nach verwendetem Materialtyp eine hohe Dielektrizitätskonstante bzw. ferroelektrische Eigenschaften aufweisen. Diese elektrischen Eigenschaften werden jedoch typischerweise erst nach einem thermischen Ausheilschritt, bei dem das Kondensatordielektrikum möglichst vollständig kristallisiert, erreicht.
Ungünstigerweise sind Kondensatordielektrika mit den vorstehend genannten elektrischen Eigenschaften empfindlich gegenüber Konditionierungsschritten in Anwesenheit von Formiergas (N2:H2 - 95:5), was sich in einer Degradation der elektrischen Parameter und unter Umständen zu einer unerwünschten Erhöhung der Leckströme durch das Kondensatordielektrikum äußern kann. Ausheilprozesse in Anwesenheit von Formiergas sind zur Konditionierung von metallischen Leitern innerhalb der
Metallisierungsebenen in Halbleiterspeichern zwingend nötig.
Die negativen Auswirkungen einer Wasserstoffdiffusion in das Kondensatordielektrikum werden unter anderem in den Fachartikeln von Ikarashi, Applied Physics Letters, 73 (1998), Seite 1955 bis 1957 sowie Aggarwal et al . , Applied Physics Letters, 73 (1998), Seite 1973 bis 1975 behandelt.
Um das Kondensatordielektrikum vor einem Eindringen von Wasserstoff zu schützen, wurde unter anderem eine die obere E- lektrode vollständig bedeckende Wasserstoffbarriere vorgeschlagen. Diese Funktion erfüllt gemäß US 5,523,595 ein Doppelschichtsystem aus einer gesputterter Siliziumnitridschicht und einer sauerstoffhaltiger Titannitridschicht. Diese
Schichten werden gemäß US 5,523,595 ausschließlich durch Sputterverfahren aufgebracht, da hierbei keine wasserstoff- haltigen Atmosphären verwendet werden. Die Anwesenheit von Wasserstoff bei der Abscheidung des Doppelschichtsystems könnte nämlich bereits zu einer Diffusion von Wasserstoff durch die obere Elektrode in das Kondensatordielektrikum führen. Als Diffusionsbarriere dient bei dem in der US 5,523,595 genannten Doppelschichtsystem nur die sauerstoffhaltige Titannitridschicht. Deren Barrierenwirkung wird insbesondere durch den Sauerstoffanteil erreicht. Im Gegensatz dazu ist die gesputterte Siliziumnitridschicht für Wasserstoff durchlässig, da mittels Sputtern hergestellte Schichten kein ausreichend dichtes Gefüge aufweisen. Ungünstigerweise lassen sich mit Sputterverfahren keine ausreichend konformen Schich- ten herstellen, so daß die aufzubringenden Schichten für eine vollständige Bedeckung aller Bereiche des Speicherkondensators relativ dick sein müssen. Dies ist insbesondere bei sehr kleinen Strukturen im sub-μm Bereich ungünstig. Es ist daher Aufgabe der Erfindung, eine mikroelektronische Struktur vorzuschlagen, die eine einfache und gut beherrschbare Wasserstoffbarriere aufweist, sowie ein Verfahren zu de- ren Herstellung zu benennen.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine mikroelektronische Struktur mit einem Grundsubstrat; - einer metallhaltigen Schicht; einer als Wasserstoffdiffusionsbarriere geeigneten Siliziumnitridschicht; und einer zwischen der Siliziumnitridschicht und der metallhaltigen Schicht angeordneten Passivierungsschicht.
Erfindungsgemäß wird die Wasserstoffbarriere von der Silizi- u nitridschicht gebildet. Siliziumnitridschichten haben sich insbesondere dann als ausreichend dicht zur Verhinderung einer Wasserstoffdiffusion erwiesen, sofern sie mittels eines CVD-Verfahrens aufgebracht werden. Dabei ist es günstig, daß die Siliziumnitridschicht, die beispielsweise stöchiometrisch als Si3N4-Schicht vorliegen kann, aus wasserstoffhaltigen Siliziumverbindungen und Ammoniak abgeschieden wird. Da CVD Siliziumnitridschichten hochkonform aufgetragen werden können, lassen sich alle auf der Oberfläche eines Grundsubstrats befindlichen Strukturen gleichmäßig bedecken und somit gleichmäßig und sicher vor einer Wasserstoffdiffusion schützen. Dies ist insbesondere bei sogenannten Stapel-Kondensatoren von Vorteil.
Da es auf der metallhaltigen Schicht, die bevorzugt aus Platin besteht, zu einer katalytischen Spaltung des bei der Abscheidung der Siliziumnitridschicht verwendeten Ammoniaks kommen kann, wird gemäß der Erfindung die metallhaltige
Schicht möglichst vollständig von einer Passivierungsschicht bedeckt. Durch diese wird der unmittelbare Kontakt des Ammoniaks mit der metallhaltigen Schicht unterbunden und somit dessen katalytische Spaltung verhindert, so daß kein atomarer Wasserstoff entsteht, der durch die metallhaltige Schicht hindurch in darunterliegende Strukturen, insbesondere in ein Kondensatordielektrikum diffundieren kann. Die Passivierungsschicht wird daher bevorzugt in ammoniakfreier Atmosphäre hergestellt.
Günstig ist weiterhin, die Passivierungsschicht aus einem Material herzustellen, das zumindest gegenüber Ammoniak wei- testgehend nichtkatalytisch ist, d.h., daß Ammoniak kataly- tisch nicht durch die Passivierungsschicht zersetzt wird. Die Passivierungsschicht sollte darüber hinaus auch gegenüber anderen wasserstoffhaltigen Verbindungen nichtkatalytisch sein, so daß insbesondere kein atomarer Wasserstoff bei der Abscheidung der Siliziumnitridschicht entsteht.
Geeignete Passivierungsschichten bestehen aus Siliziumoxid, Siliziumnitrid, Siliziumoxynitrid oder aus einer Schichtenkombination vorgenannter Materialien. Obwohl diese Materialien zum Teil in Anwesenheit von wasserstoffhaltigen Verbin- düngen abgeschieden werden, wird eine unerwünschte Wasserstoffdiffusion durch die metallhaltige Schicht hindurch insbesondere dann nicht beobachtet, wenn die Abscheidung zusätzlich in Anwesenheit von Sauerstoff erfolgt. Dieser bindet nämlich sofort eventuell gebildeten freien Wasserstoff.
Günstig ist, die Passivierungsschicht in einer Materialstärke zwischen 5 und lOOnm, bevorzugt zwischen 10 und 50nm aufzubringen. Weiterhin wird bevorzugt, unter der metallhaltigen Schicht, die häufig die obere Elektrode eines Speicherkondensators bildet, eine etalloxidhaltige Schicht und eine weitere metallhaltige Schicht anzuordnen. Die metalloxidhaltige Schicht stellt hierbei das Kondensatordielektrikum, die wei- tere metallhaltige Schicht die untere Elektrode dar.
Die metalloxidhaltige Schicht dient insbesondere bei Halbleiterspeichern als Hoch - ε - Dielektrikum bzw. als ferroelekt- rische Dielektrikum. Im weiteren wird der Begriff dielektri- sches Material sowohl für rein dielektrische als auch ferro- elektrische Materialien verwendet. Für die dielektrische metalloxidhaltige Schicht werden insbesondere Metalloxide der allgemeinen Form ABOx oder DOx verwendet, wobei A für wenigstens ein Metall aus der Gruppe Barium (Ba) , Strontium (Sr) , Wismut (Bi), Blei (Pb) , Zirkon (Zr) , Lanthan (La), Niob (Nb) , Kalium (K) oder Kalzium (Ca) , B für Titan (Ti) , Tantal (Ta) , Niob (Nb) oder Ruthenium (Ru) , D für Titan (Ti) und Tantal (Ta) und 0 für Sauerstoff (0) steht. X liegt insbesondere zwischen 2 und 12, wobei die genaue stöchiometrische Zusam- mensetzung variieren kann. Als Beispiel für eine mögliche, jedoch nicht einschränkende stöchiometrische Zusammensetzung soll auf Barium-Strontium-Titanat (BST, BaySrι-yTi03) und niobiumdotiertes Strontium-Wismut-Tantalat (SBTN, SrBi2Ta2-yNby09) verwiesen werden. Die Metalloxide vorstehender Materialklas- sen weisen je nach Zusammensetzung dielektrische Eigenschaften auf, wobei eine hohe Dielektrizitätskonstante (ε>20) bzw. eine hohe remanente Polarisation (bei Ferroelektrika) gegebenenfalls erst nach einem Hochtemperaturschritt zur Kristallisation der Metalloxide erreicht wird. Unter Umständen liegen diese Materialien in polykristalliner Form vor, wobei häufig perowskitähnliche Kristallstrukturen, Mischkristalle bzw. Su- pergitter beobachtet werden können. Dielektrische Materialien vorstehender Materialklassen sind beispielsweise Barium- Strontium-Titanat (BST, BaySri-yTiOa) , Strontiu -Titanat (STO,
SrTi03) , Blei-Titanat (PTO, PbTi03) , Tantaloxid (Ta205) ,
Strontium-Wismut-Tantalat (SBT, SryBiι-.yTa2θ9) , Blei-Zirkonat-
Titanat (PZT, Pb(Zr,Ti)03) sowie niobiumdotiertes SBT (SBTN) . Verwendung finden ebenfalls Niobate, z.B. in Form von KNb03.
Der zweite Teil der Erfindung wird gelöst durch ein Verfahren zum Herstellen einer mikroelektronischen Struktur, die ein Grundsubstrat, eine metallhaltige Schicht, eine als Wasser- Stoffdiffusionsbarriere geeignete Siliziumnitridschicht und eine zwischen der Siliziumnitridschicht und der metallhaltigen Schicht angeordneten Passivierungsschicht aufweist, mit folgenden Schritten: das Grundsubstrat mit der metallhaltigen Schicht wird be- reitgestellt; die Passivierungsschicht wird auf die metallhaltige Schicht in ammoniakfreier Atmosphäre aufgebracht; und auf die Passivierungsschicht wird die Siliziumnitridschicht abgeschieden.
Bei der Herstellung der Passivierungsschicht ist darauf zu achten, daß diese möglichst in einer ammoniakfreien Atmosphäre hergestellt wird, da insbesondere der Ammoniak bei dessen Adsorption auf der metallhaltigen Schicht durch diese kataly- tisch gespalten werden kann. Dagegen kann die Siliziumnitridschicht sowohl in ammoniakhaltiger Atmosphäre als auch in ammoniakfreier Atmosphäre in Anwesenheit einer anderen StickstoffVerbindung (z.B. N2) aufgebracht werden, sofern eine derart abgeschiedene Siliziumnitridschicht die gewünschten Eigenschaften hinsichtlich der Verwendung als Wasserstoffdiffusionsbarriere aufgrund ihres dichten Materialgefüges aufweist. Die Erfindung wird im weiteren anhand eines Ausführungsbei- spiels beschrieben und schematisch in Figuren dargestellt.
Es zeigen:
Fig. 1 bis 3 einzelne Verfahrensschritte zur Herstellung einer erfindungsgemäßen mikroelektronischen Struktur sowie
Fig. 4 bis 6 weitere Verfahrensschritte zur Herstellung einer erfindungsgemäßen mikroelektronischen Struktur.
Bei dem nachfolgend beschriebenen Ausführungsbeispiel wird von einer Struktur gemäß Figur 1 ausgegangen. Bei dieser ist auf einem Grundsubstrat 5 eine untere Elektrode 10 eines Speicherkondensators 15 angeordnet. Dabei umfaßt die untere Elektrode 10 einen Platingrundkörper 20 und eine zwischen dem Platingrundkörper und dem Grundsubstrat 5 angeordnete Barrierenschicht 25. Mittels eines im Grundsubstrat 5 befindlichen und mit einem leitfähigen Material befüllten Kontaktlochs 30 ist die untere Elektrode 10 mit einem hier nicht näher darge- stellten Auswahltransistor verbunden.
Anstelle von Platin für den Platingrundkörper 20 können auch andere Metalle, insbesondere Ruthenium, Iridium, Palladium, Rhodium oder Rhenium sowie die leitfähigen Oxide Ruthenium- oxid, Iridiumoxid oder Strontium-Rutheniumoxid (SrRu03) verwendet werden. Die untere Elektrode 10, die bei diesem Ausführungsbeispiel die weitere metallhaltige Schicht 10 darstellt, ist vollständig von einer metalloxidhaltigen Schicht 35 bedeckt. Auf dieser sitzt eine weitere Platinschicht 40, die hier die metallhaltige Schicht 40 darstellt und als obere Elektrode dient. Bevorzugt wird die Platinschicht 40 gemeinsam mit der metalloxidhaltigen Schicht 35 strukturiert. Anstelle der Platinschicht 40 als obere Elektrode kann hier ebenfalls eine Schicht aus Ruthenium, Iridum, Palladium, Rhodium, Rhenium, Rutheniumoxid, Iridiumoxid, oder Strontium- Rutheniumoxid verwendet werden.
Auf die in Figur 1 gezeigte Struktur wird nachfolgend eine Passivierungsschicht 45 bevorzugt aus Siliziumoxid aufgebracht. Alternativ ist auch die Verwendung eines Doppelschichtsystems aus Siliziumoxid und Siliziumoxynitrid mög- lieh.
Abschließend wird gemäß Figur 3 eine Wasserstoffdiffusions- barrierenschicht 50 in Form einer Siliziumnitridschicht 50 auf die Passivierungsschicht 45 aufgebracht. Diese hat im vorliegenden Ausführungsbeispiel keinen unmittelbaren Kontakt zur oberen Elektrode 40.
Zum Aufbringen der Passivierungsschicht 45 aus Siliziumoxid haben sich insbesondere drei Verfahren bewährt.
Plasmaabscheidung (PE-CVD)
Günstig ist beispielsweise die Siliziumoxidschicht 45 mittels einer Plasmaabscheidung in sauerstoffhaltiger Atmosphäre bei einem Druck von etwa 0,5 bis 10 Torr abzuscheiden. Die Abscheidung erfolgt dabei unter hochfrequenter Anregung (z.B. RF-Anregung) mit einer eingekoppelten Leistung zwischen 50 und 1000 Watt und bevorzugt bei einer Temperatur zwischen 350 und 600°C. Als Ausgangstoffe für die Herstellung der Silizi- umoxidschicht werden insbesondere Siliziumwasserstoffverbindungen (z.B. Silan) , Siliziumhalogenverbindungen (z.B. Dich- lorsilan bzw. Trichlorsilan) oder siliziumorganische Verbindungen (TEOS) verwendet. Durch die Anwesenheit des Sauer- Stoffs während der Abscheidung wird eventuell freiwerdender
Wasserstoff sofort gebunden und kann dadurch nicht durch die obere Elektrode 40 hindurch in die metalloxidhaltige Schicht 35 diffundieren. Mittels der Plasmaabscheidung lassen sich hochkonforme Siliziumoxidschichten mit einer Dicke von bevorzugt 5 bis 50nm und darüber herstellen.
Ozonaktivierte Abscheidung
Hierbei werden siliziumorganische Verbindungen (wie bei Plasmaabscheidung) bei einer Temperatur zwischen 350 und 600°C und einem Druck zwischen 50 und 760 Torr in Anwesenheit von Ozon abgeschieden. Die bevorzugte Materialstärke liegt hier ebenfalls zwischen 5 und 50 nm. Bei ozonaktivierter Abschei- düng ist keine Plasma- bzw. Mikrowellenanregung notwendig.
Thermisch aktivierte Abscheidung
Bei diesem Verfahren wird die Siliziumoxidschicht bei höheren Temperaturen, bevorzugt zwischen 600 und 850°C unter Verwendung der gleichen Ausgangsstoffe wie bei der Plasmaabscheidung abgeschieden. Durch die höheren Temperaturen kann auf eine Mikrowellen- oder RF-Aktivierung verzichtet werden.
Die mit diesen drei Verfahren hergestellten Siliziumoxidschichten eignen sich hervorragend als Passivierungsschicht zur Verhinderung einer katalytischen Spaltung von insbesondere Ammoniak während der Abscheidung der Siliziumnitridschicht. Bevorzugt schließt sich nach der Abscheidung der Si- liziumoxidschicht ein Spülschritt in Ammoniak (NH3) an, um definierte Bedingungen für die Abscheidung der Siliziumnitridschicht zu erhalten. Letztere kann entweder wie die Siliziumoxidschicht mittels thermisch aktivierter Abscheidung o- der mittels einer Plasmaabscheidung aufgebracht werden, wobei als Ausgangsmaterialien Silan oder Dichlorsilan jeweils in Verbindung mit Ammoniak bevorzugt werden. Infolge der vollständigen Bedeckung der Platinschicht 40 durch Siliziumoxid- schicht 45 ist die katalytische Spaltung des Ammoniak durch die Platinschicht 40 unterbunden.
Die einzelnen Schichten, d.h. die Passivierungsschicht 45 und die Wasserstoffdiffusionsbarrierenschicht 50, können entweder in situ hintereinander, d.h. ohne Vakuumunterbrechung, oder ex situ abgeschieden werden. Bei einer in situ Prozessabfolge werden die beiden Schichten insbesondere in derselben Anlage, wenngleich nicht notwendigerweise in der gleichen Abscheidekammer, abgeschieden. Zwischen den einzelnen Abscheideschrit- ten wird dabei die mikroelektronische Struktur mit den bereits aufgetragenen Schichten nicht atmosphärischen Bedingungen ausgesetzt.
Bei eine ex situ Prozessabfolge kann unter anderem zusätzlich zwischen der Abscheidung der Passivierungsschicht und der Siliziumnitridschicht eine Temperaturbehandlung in sauerstoff- haltiger oder stickstoffhaltiger Atmosphäre bei Temperaturen zwischen 400°C und 800°C erfolgen, wobei die dafür vorgesehene Behandlungsdauer zwischen 1 Minute und 1 Stunde liegt. Da- durch kann insbesondere das Siliziumoxid zusätzlich verdichtet bzw. mögliche mechanische Spannungen ausgeheilt werden. Gegebenenfalls kann vor Abscheidung der Siliziumoxidschicht 45 und der Siliziumnitridschicht 50 die Platinschicht 40 in sauerstoffhaltiger Atmosphäre zur Konditionierung behandelt werden.
Abschließend wird anhand eines weiteren Ausführungsbeispiels das Aufbringen der Passivierungsschicht 45 und der Silizium- nitridschicht 50 mit nachfolgender Strukturierung beschrieben. Ausgegangen wird hier von einer Figur gemäß 4, bei der ebenfalls wie in Figur 1 eine untere Elektrode 10 auf einem Grundsubstrat 5 sitzt. Die untere Elektrode, die von einem Platingrundkörper 20 und einer Barrierenschicht 25 gebildet wird, ist vollständig von einer metalloxidhaltigen Schicht 35 und einer metallhaltigen Schicht 40 bedeckt. Auf die metallhaltige Schicht 40 wird nachfolgend gemäß Figur 5 zunächst eine Passivierungsschicht 45 aus Siliziumoxid und eine Sili- ziumnitridschicht 50 abgeschieden. Die erhaltene Struktur ist in Figur 5 dargestellt. Nachfolgend werden die metalloxidhaltige Schicht 35, die metallhaltige Schicht 40, die Passivierungsschicht 45 und die Siliziumnitridschicht 50 gemeinsam mittels eines anisotropen Ätzvorgangs strukturiert. Obwohl die metalloxidhaltige Schicht 35 und die metallhaltige
Schicht 40 infolge des gemeinsamen Ätzprozesses nicht mehr vollständig von der Passivierungsschicht 45 und der Siliziumnitridschicht 50 bedeckt sind, ist jedoch die metalloxidhaltige Schicht 35 weitestgehend vor einer Wasserstoffdiffusion während einer später erfolgenden Formiergasbehandlung geschützt. Eventuell an den Randbereichen 55 der metalloxidhaltigen Schicht 35 lateral eindiffundierender Wasserstoff dringt nur bis in eine gewisse Tiefe in die metalloxidhaltige Schicht ein, so daß sich insbesondere in der Nähe der unteren Elektrode 10 befindliche Bereiche 60 der metalloxidhaltigen Schicht 35 vor einer Wasserstoffdiffusion geschützt ist.
Die mit dem erfindungsgemäßen Verfahren hergestellte Passivierungsschicht und Siliziumnitridschicht weisen eine hervor- ragende konforme Bedeckung auf und sind frei von Blasen oder anderen Störungen. Daher eignen sich diese Schichten, die bevorzugt als Doppel- oder Mehrschichtsystem (z.B. drei Schichten) vorliegen, auch zum Schutz von sehr feinen Strukturen. Die Dicke der bevorzugt mit einem low-pressure CVD-Verfahren abgeschiedenen Siliziumnitridschicht liegt dabei bevorzugt in einem Bereich zwischen 10 und lOOnm.

Claims

Patentansprüche
1. Mikroelektronische Struktur mit einem Grundsubstrat (5) ; - einer metallhaltigen Schicht (40) ; einer als Wasserstoffdiffusionsbarriere geeigneten Siliziumnitridschicht (50) ; und einer zwischen der Siliziumnitridschicht (50) und der metallhaltigen Schicht (10) angeordneten Passivierungs- schicht (45) .
2. Mikroelektronische Struktur nach Anspruch 1, dadurch gekennzeichnet, daß die Passivierungsschicht (45) aus einem zumindest gegenüber wasserstoffhaltigen Verbindungen, insbesondere gegenüber Ammoniak, weitestgehend nichtkatalytischen Material besteht.
3. Mikroelektronische Struktur nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Passivierungsschicht (45) aus Siliziumoxid, Siliziumnitrid, Siliziumoxynitrid oder aus einer Schichtenkombination vorgenannter Materialien besteht.
4. Mikroelektronische Struktur nach Anspruch 3, dadurch gekennzeichnet, daß die Passivierungsschicht (45) aus Siliziumoxid besteht.
5. Mikroelektronische Struktur nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Passivierungsschicht (45) eine Materialstärke zwischen 5 bis 100 nm, bevorzugt zwischen 10 und 50 nm aufweist.
6. Mikroelektronische Struktur nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die metallhaltige Schicht (40) aus Platin, Ruthenium, Rheni- um, Palladium, Iridium, Iridiumoxid, Rutheniumoxid oder Strontium-Rutheniumoxid besteht.
7. Mikroelektronische Struktur nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß unter der metallhaltigen Schicht (40) eine metalloxidhaltige Schicht (35) und eine weitere metallhaltige Schicht (10) angeordnet sind.
8. Mikroelektronische Struktur nach Anspruch 7, dadurch gekennzeichnet, daß die metalloxidhaltige Schicht (35) die allgemeine Form ABOx oder DOx aufweist, wobei A für wenigstens ein Metall aus der Gruppe Barium (Ba) , Strontium (Sr) , Wismut (Bi) , Blei (Pb) , Zirkon (Zr) , Lanthan (La) , Niob (Nb) , Kalium (K) oder Kalzium (Ca) , B für Titan (Ti), Tantal (Ta) , Niob (Nb) oder Ruthenium (Ru) , D für Titan (Ti) und Tantal (Ta) und 0 für Sauerstoff (0) steht.
9. Verfahren zum Herstellen einer mikroelektronischen Struktur, die ein Grundsubstrat (5) , eine metallhaltige Schicht (40) , eine als Wasserstoffdiffusionsbarriere geeignete Siliziumnitridschicht (50) und eine zwischen der Siliziumnitridschicht (50) und der metallhaltigen Schicht (40) angeordneten Passivierungsschicht (45) aufweist, mit folgenden Schritten: das Grundsubstrat (5) mit der metallhaltigen Schicht (40) wird bereitgestellt; die Passivierungsschicht (45) wird auf die metallhaltige
Schicht (40) in ammoniakfreier Atmosphäre aufgebracht; und auf die Passivierungsschicht (45) wird die Siliziumnitridschicht (50) abgeschieden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Passivierungsschicht (45) in sauerstoffhaltiger Atmosphäre unter Verwendung von wasserstoffhaltigen Verbindungen auf- gebracht wird.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Siliziumnitridschicht (50) in einer ammoniakhaltigen At- mosphäre abgeschieden wird.
12. Verfahren nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß die Siliziumnitridschicht (50) in einer ammoniakfreien Atmo- Sphäre unter Verwendung von siliziumhaltigen Verbindungen abgeschieden wird.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß die Passivierungsschicht (45) eine Materialstärke zwischen 5 bis 100 nm, bevorzugt zwischen 10 und 50 nm aufweist.
14. Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß die Passivierungsschicht (45) aus Siliziumoxid, Siliziumnitrid, Siliziumoxynitrid oder aus einer Schichtenkombination vorgenannter Materialien besteht.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Passivierungsschicht (45) aus Siliziumoxid besteht.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß das Siliziumoxid in einer Sauerstoff- oder ozonhaltigen Atmosphäre abgeschieden wird.
PCT/DE2000/000331 1999-02-03 2000-01-28 Mikroelektronische struktur WO2000046843A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19904379A DE19904379A1 (de) 1999-02-03 1999-02-03 Mikroelektronische Struktur
DE19904379.5 1999-02-03

Publications (1)

Publication Number Publication Date
WO2000046843A1 true WO2000046843A1 (de) 2000-08-10

Family

ID=7896325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/000331 WO2000046843A1 (de) 1999-02-03 2000-01-28 Mikroelektronische struktur

Country Status (3)

Country Link
DE (1) DE19904379A1 (de)
TW (1) TW490843B (de)
WO (1) WO2000046843A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091432A2 (de) * 2001-05-03 2002-11-14 Infineon Technologies Ag Mikroelektronische struktur mit einer wasserstoffbarrierenschicht

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041685C2 (de) 2000-08-24 2002-06-27 Infineon Technologies Ag Verfahren zur Herstellung eines mikroelektronischen Bauelements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0513894A2 (de) * 1991-05-08 1992-11-19 Koninklijke Philips Electronics N.V. Verfahren zur Herstellung einer Halbleiteranordnung mit einem Kondensator mit einem ferroelektrischen Dieletrikum und Halbleiteranordnung mit einem derartigen Kondensator
JPH0567689A (ja) * 1991-09-09 1993-03-19 Hitachi Ltd 多層配線部材及び半導体装置の製造方法
EP0642167A2 (de) * 1993-08-05 1995-03-08 Matsushita Electronics Corporation Halbleiterbauelement mit Kondensator und Herstellungsverfahren
GB2313232A (en) * 1996-05-14 1997-11-19 Nec Corp A non volatile semiconductor memory device and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196477A (ja) * 1992-12-25 1994-07-15 Nippondenso Co Ltd 半導体装置の製造方法
JP3700298B2 (ja) * 1996-12-10 2005-09-28 ソニー株式会社 半導体装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0513894A2 (de) * 1991-05-08 1992-11-19 Koninklijke Philips Electronics N.V. Verfahren zur Herstellung einer Halbleiteranordnung mit einem Kondensator mit einem ferroelektrischen Dieletrikum und Halbleiteranordnung mit einem derartigen Kondensator
JPH0567689A (ja) * 1991-09-09 1993-03-19 Hitachi Ltd 多層配線部材及び半導体装置の製造方法
EP0642167A2 (de) * 1993-08-05 1995-03-08 Matsushita Electronics Corporation Halbleiterbauelement mit Kondensator und Herstellungsverfahren
GB2313232A (en) * 1996-05-14 1997-11-19 Nec Corp A non volatile semiconductor memory device and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 017, no. 386 (E - 1401) 20 July 1993 (1993-07-20) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091432A2 (de) * 2001-05-03 2002-11-14 Infineon Technologies Ag Mikroelektronische struktur mit einer wasserstoffbarrierenschicht
WO2002091432A3 (de) * 2001-05-03 2003-05-01 Infineon Technologies Ag Mikroelektronische struktur mit einer wasserstoffbarrierenschicht
US7276300B2 (en) 2001-05-03 2007-10-02 Infineon Technologies Ag Microelectronic structure having a hydrogen barrier layer
CN100429762C (zh) * 2001-05-03 2008-10-29 因芬尼昂技术股份公司 具氢阻障层的微电子结构

Also Published As

Publication number Publication date
DE19904379A1 (de) 2000-08-17
TW490843B (en) 2002-06-11

Similar Documents

Publication Publication Date Title
DE69833168T2 (de) Halbleiter-Speicherbauteil mit ferroelektrischem Dünnfilm
DE10000005C1 (de) Verfahren zur Herstellung eines ferroelektrischen Halbleiterspeichers
DE60215571T2 (de) MFOS-Speicher-Transistor und diesbezügliches Herstellungsverfahren
DE69736895T2 (de) Verfahren zur herstellung eines halbleiterspeichers
EP1145279A2 (de) Halbleiterbauelement mit einer wolframoxidschicht und verfahren zu dessen herstellung
DE60035311T2 (de) Ferroelektrische Struktur aus Bleigermanat mit mehrschichtiger Elektrode
DE10064067B4 (de) Verfahren zur Herstellung eines Kondensators einer Halbleitereinrichtung
DE10227346A1 (de) Ferroelektrische Speichervorrichtung, die eine ferroelektrische Planarisationsschicht verwendet, und Herstellungsverfahren
DE10163345A1 (de) Ein Kondensator für Halbleiterelemente und ein Verfahren zur Herstellung
DE10131716B4 (de) Verfahren zur Herstellung eines Kondensators für eine Halbleiterspeichervorrichtung durch eine zweistufige Thermalbehandlung
DE10055431A1 (de) Verfahren zum Herstellen von Kondensatoren eines Halbleiterbauelements
DE10100695A1 (de) Halbleitervorrichtung
DE10228528B4 (de) Diffusionssperrfilm und dessen Herstellungsverfahren, Halbleiterspeicher und dessen Herstellungsverfahren
JP4031552B2 (ja) 半導体装置の膜形成方法
DE19963500C2 (de) Verfahren zum Herstellen einer strukturierten metalloxidhaltigen Schicht, insbesondere einer ferroelektrischen oder paraelektrischen Schicht
DE10064068B4 (de) Verfahren zur Herstellung von Kondensatoren von Halbleitereinrichtungen
EP1182698A2 (de) Barriereschicht für einen Speicherkondensator
EP1307906B1 (de) Strukturierung ferroelektrischer schichten
DE10130936A1 (de) Herstellungsverfahren für ein Halbleiterbauelement
EP1138065A1 (de) Verfahren zum herstellen einer strukturierten metalloxidhaltigen schicht
WO2000046843A1 (de) Mikroelektronische struktur
DE10121657B4 (de) Mikroelektronische Struktur mit Wasserstoffbarrierenschicht
DE10243468A1 (de) Verfahren zum Kristallisieren von Metalloxid-Dielektrikum-Schichten bei niedriger Temperatur
DE10009762B4 (de) Herstellungsverfahren für einen Speicherkondensator mit einem Dielektrikum auf der Basis von Strontium-Wismut-Tantalat
EP1258036A1 (de) Verfahren zur herstellung einer ferroelektrischen schicht

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase