WO2000043751A1 - Adaptateur de pipette, pipette de mesure par absorbance, pointe, et procede et appareil de mesure par absorbance - Google Patents

Adaptateur de pipette, pipette de mesure par absorbance, pointe, et procede et appareil de mesure par absorbance Download PDF

Info

Publication number
WO2000043751A1
WO2000043751A1 PCT/JP2000/000244 JP0000244W WO0043751A1 WO 2000043751 A1 WO2000043751 A1 WO 2000043751A1 JP 0000244 W JP0000244 W JP 0000244W WO 0043751 A1 WO0043751 A1 WO 0043751A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
chip
test light
absorbance
pipette
Prior art date
Application number
PCT/JP2000/000244
Other languages
English (en)
French (fr)
Inventor
Takeshi Taguchi
Mitsuo Hiramatsu
Original Assignee
Laboratory Of Molecular Biophotonics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratory Of Molecular Biophotonics filed Critical Laboratory Of Molecular Biophotonics
Priority to EP00900831A priority Critical patent/EP1054250B1/en
Priority to JP2000582473A priority patent/JP3330929B2/ja
Priority to DE60000386T priority patent/DE60000386T2/de
Priority to US09/536,846 priority patent/US6396584B1/en
Publication of WO2000043751A1 publication Critical patent/WO2000043751A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0429Sample carriers adapted for special purposes
    • G01N2035/0434Sample carriers adapted for special purposes in the form of a syringe or pipette tip

Definitions

  • the present invention relates to a pipe adapter suitably used for measuring the absorbance of a sample in the field of the pharmaceutical industry, an absorbance measurement pipette including the pipe adapter and the pipe, and can be attached to the pipette adapter.
  • the present invention relates to a simple chip, an absorbance measuring device and an absorbance measuring method for measuring the absorbance of a sample using the absorbance measuring pipe. Background art
  • samples are analyzed by measuring absorbance when conducting research and development of new drugs, screening enzymes, and analyzing microorganisms.
  • methods for analyzing biological samples such as nucleic acids and proteins important in the bio-related field include, for example, the following methods.
  • the sample is transferred to a special cell for micro-measurement, and the sample is placed in a cell containing this sample.
  • the test light is irradiated, the intensity of the test light transmitted through the cell and the sample is detected, and the absorbance of the sample is measured based on the detection result.
  • a pipette 10 and a tip 30 as shown in FIG. 11 are used.
  • the tip 30 can be detachably attached to the tip of the pipe 10, and a sample is measured in the tip 30.
  • U.S. Pat. No. 5,844,686 discloses that a chip having a window for introducing test light or a reflecting mirror for reflecting test light is used, and this chip is attached to the tip of the pipe. There is disclosed a method for measuring the absorbance of a sample with the sample mounted on a chip while being mounted. This method is intended to improve the recovery rate of the sample, avoid contamination of the sample due to the recovery, and perform a quick absorbance measurement. Disclosure of the invention
  • the method (2) has the following problems. That is, the chips are usually used only once and discarded without re-use to avoid confinement problems. It is not appropriate to provide the above-mentioned window or reflecting mirror for such a disposable chip because the chip becomes expensive. In addition, in order to reuse the chip without disposing it, it is essential to clean the chip, which also functions as a cell. Furthermore, in the invention disclosed in the above publication, the chip has a window for introducing the test light and a reflecting mirror for reflecting the test light, so that it is difficult to reduce the size of the chip. It is not effective for (trace) samples.
  • the present invention has been made to solve the above-mentioned problems, and can eliminate the step of collecting the sample, avoiding the generation of contamination of the sample due to the collection, and providing a special measuring method. It is an object of the present invention to provide a pipette adapter, an absorbance measurement pipette, an absorbance measurement device, and an absorbance measurement method that do not require a simple cell and can measure the absorbance of a small amount of a sample using an inexpensive chip.
  • the pipette adapter according to the present invention is used together with a pipe for measuring the absorbance of a sample including a subject, and can be mounted between the pipette and a chip capable of accommodating the sample, and When mounted, the pipette and the tip have an internal space that is continuous with the internal space thereof, and test light is introduced into the internal space from the outside and the test light is directed toward the sample suction port of the chip. Test light introducing means.
  • the pipe adapter having such a configuration is used by being mounted between the pipe and the tip. In the mounted state, the internal space of each of the pipette adapter, the pipette and the tip is continuous.
  • the test light is introduced into the internal space of the pipette adapter from the outside by the test light introducing means, and is irradiated toward the sample inlet of the chip.
  • the test light can be transmitted through the sample accommodated in the chip, and the absorbance of the sample can be measured.
  • pipettes and tips that have been conventionally sold and used can be used.
  • chips made of inorganic materials such as glass and stainless steel can be used.
  • the test light introducing means of the pipette adapter comprises: a test light introducing window for introducing test light from the outside into the internal space; and a test sample inlet of the chip for introducing the test light introduced into the internal space by the test light introducing window. And a reflecting mirror for reflecting light toward In this case, the test light is introduced into the internal space of the pipette adapter from the outside via the test light introduction window, reflected by the reflecting mirror, and emitted toward the sample inlet of the chip.
  • the test light introducing means includes an optical fiber for emitting test light guided from the outside toward the sample inlet of the chip from one end provided in the internal space. In this way, the test light is guided from the outside through the optical fiber, and radiated from one end of the optical fiber in the internal space of the pipette to the sample inlet of the chip.
  • the test light introducing means selects only a component in a predetermined wavelength band from the test light introduced from the outside into the internal space, and irradiates the selected light toward the sample suction port of the chip.
  • a pipette for measuring absorbance includes the pipette adapter according to the present invention, and a pipette that can be attached to the pipette adapter.
  • the pipe adapter and the pipe may be detachable from each other, or may be used integrally. When detachable, the pipette adapter can be easily cleaned as needed, while handling is improved if it is integrated.
  • a tip having a substantially cone-shaped insertion section into which the pipette adapter is inserted, and a sample storage section having a cylindrical shape and having a sample suction port formed at an end thereof. If a sample is inhaled using such a chip and the sample is held in the sample storage section of the chip, the reproducibility of the absorbance measurement of the sample is improved. In addition, if the cylindrical sample accommodating section is made thinner and longer, the transmission length of the test light can be increased even if the sample is very small.
  • the absorbance measuring device measures the absorbance of a sample including a subject, and comprises: (1) a light source that outputs test light; and (2) a test light output from the light source.
  • An absorbance measuring pipe of the present invention which is provided with a chip capable of accommodating a sample, and irradiates the test light toward a sample suction port of the chip; and And a detection optical system for detecting test light output from the sample suction port of the tip mounted on the pipette to the outside.
  • the test light output from the light source is introduced into the internal space of the absorbance measurement pipe, and the sample of the chip attached to the absorbance measurement pipe is sampled.
  • the light is emitted toward the suction port, output to the outside from the sample suction port of the chip, and detected by the detection optical system. Then, the absorbance of the sample in the chip is measured using the detection result.
  • the intensity of the test light detected by the detection optical system when the sample is stored in the chip is stored in the chip, the state in which the sample is not stored in the chip, or a blank in which the sample is not included in the chip It is preferable to further include a calculating means for calculating the absorbance of the sample in the chip based on the intensity of the test light detected by the detection optical system in a state where the sample is accommodated.
  • the detection optical system can simultaneously or almost simultaneously detect the intensities of a plurality of components having different wavelengths from the test light output to the outside from the sample suction port of the chip, a plurality of wavelengths may be detected.
  • the absorbance of the sample for each of the components is measured substantially simultaneously.
  • the absorbance measuring device further includes a temperature adjusting means for cooling at least the chip or keeping the temperature of the chip constant.
  • a temperature adjusting means for cooling at least the chip or keeping the temperature of the chip constant. This suppresses a change in the volume of air in the chip, particularly a thermal expansion, due to a rise or change in the temperature of the chip or its surroundings. In this case, it is more preferable to cool the periphery of the chip.
  • a holding means having a pipe adapter having at least a part of a side wall having a weight shape and having a hole into which a predetermined portion of the weight side wall of the pipette adapter can be fitted. It is preferable to provide. This makes it extremely easy to attach and detach the absorbance measurement pit. Moreover, since the absorbance measurement pipette is stably and firmly held, the deviation of the optical axis in the optical path of the test light is reduced.
  • the method for measuring absorbance according to the present invention is a method for suitably measuring the absorbance of a sample using the pipette for measuring absorbance according to the present invention, which is a method for measuring the absorbance of a sample containing an analyte. is there. That is, the absorbance measurement method according to the present invention includes a step of attaching a chip capable of holding a sample to the pipette for absorbance measurement of the present invention, and a step of housing a sample or a blank sample containing no analyte in the chip. A step of introducing test light from the outside into the internal space of the absorbance measurement pipe and detecting the test light output to the outside from the sample suction port of the chip; and a step of storing the sample in the chip. The intensity of the detected test light, the state where the sample is not stored in the chip, and Calculating the absorbance of the sample in the chip based on the intensity of the test light detected in a state where the blank sample is accommodated in the chip, and
  • the step of detecting the test light it is preferable to detect simultaneously or almost simultaneously the intensities of a plurality of components having mutually different wavelengths among the test light output from the sample suction port of the chip to the outside. .
  • the tip according to the present invention can be attached to the pipette adapter of the present invention, accommodates a sample including a subject, has a tubular shape (which may be either a cylinder or a square tube), and extends along a central axis. It is characterized in that it has a sample container in which the inner walls in the cross section are substantially parallel. If such a chip is used for measuring the absorbance of a sample, there is almost no risk that part of the test light irradiated on the sample will pass through the chip and enter the photodetector.
  • the present invention provides a tip formed of a light-shielding member that can be attached to the pipette adapter of the present invention and that can substantially block test light emitted to a sample including a subject.
  • FIG. 1 is a configuration diagram showing a first embodiment of an absorbance measurement pit according to the present invention.
  • FIG. 2 is a sectional view showing the configuration of the first embodiment of the pipe adapter according to the present invention.
  • FIG. 3 is a configuration diagram showing a first embodiment of the absorbance measuring device according to the present invention.
  • FIG. 4 is a sectional view showing a configuration of a second embodiment of the pipe adapter according to the present invention.
  • FIG. 5 shows another embodiment of the detection optical system in the absorbance measurement device according to the present invention.
  • FIG. 6 is a configuration diagram of still another embodiment related to the detection optical system in the absorbance measurement device according to the present invention.
  • FIG. 7 is a configuration diagram showing a second embodiment of the absorbance measuring device according to the present invention.
  • FIG. 8 is a perspective view showing a second embodiment of the absorbance measuring device according to the present invention.
  • FIG. 9 is a cross-sectional view showing a chip provided in another embodiment of the absorbance measurement kit according to the present invention.
  • FIG. 10 is a perspective view showing a third embodiment of the absorbance measuring device according to the present invention.
  • FIG. 11 is a conventional configuration diagram of a pipette and a tip. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a configuration diagram illustrating a first embodiment of an absorbance measurement pipette according to the present invention.
  • FIG. 3 shows an absorbance measurement pipette according to the present embodiment.
  • FIG. 2 is a sectional view showing a configuration of a first embodiment of a pipette adapter according to the present invention.
  • the absorbance measurement pipe 1 is provided with a pipe 10 and a pipe adapter 20.
  • a pipe adapter 20 is provided between the pipette 10 and the tip 30.
  • the port 10 and the port adapter 20 may be separate from each other and detachable, but if they are integrated, the handling is easy.
  • the port adapter 20 has a pipe mounting portion 21 for inserting the tip of the port 10 and a chip mounting portion 22 for mounting the chip 30. It can be mounted between 10 and 30.
  • the port adapter 20 has an internal space 2OA continuous with the internal space of each of the port 10 and the chip 30 when the port adapter 20 is mounted.
  • the joint between the pipe adapter 20 and the pipette 10 and the joint between the pipe adapter 20 and the chip 30 are airtight together to hold and hold the sample inside the chip 30. Since the pipette mounting part 21 and the tip mounting part 22 are required to have high airtightness, it is preferable that the pipette mounting part 21 and the tip mounting part 22 are coated with a material having excellent airtightness, for example, a rubber-like substance or a polymer. is there.
  • the pipette adapter 20 has a test light introduction window 23 for introducing test light from the outside to the internal space 2 OA, and a test light that is transmitted through the test light introduction window 23 and introduced to the internal space 2 OA. And a reflecting mirror 24 for reflecting the light toward the sample inlet 31 of the chip 30 through the opening of the chip mounting section 22.
  • the test light introducing means is formed by the test light introducing window 23 and the reflecting mirror 24. Note that the test light introduction window 23 may be provided inside, instead of outside.
  • the test light introduction window 23 selectively transmits only a component in a predetermined wavelength band required for measuring the absorbance of the sample from the test light introduced from the outside into the internal space 2OA.
  • the reflecting mirror 24 also selects and reflects only a component in a predetermined wavelength band from the test light introduced into the internal space 2OA.
  • FIG. 3 is a configuration diagram showing a first embodiment of the absorbance measuring device according to the present invention.
  • the absorbance measuring device 100 includes a light source 40, lenses 41 and 42, an aperture 43, a lens 44, and a shirt 45 in addition to the above-described pipette 1 for measuring absorbance. Also, The absorbance measuring device 100 includes an aperture 51, a bandpass filter 52, a photodetector 60, an ammeter 70, and a computer 80 (calculation means).
  • the absorbance measurement pit 1 is detachable at a predetermined position.
  • the light source 40 is a test in a predetermined wavelength band for measuring the absorbance of the sample 9 stored in the chip 30, a blank sample (not shown), or the state in which these samples are not stored in the chip 30.
  • a heavy hydrogen lamp that outputs light for example, outputs ultraviolet light, is preferably used.
  • the shirt 45 specifies the irradiation time of the test light, and suppresses the temperature rise of the sample 9 or the blank sample due to the long irradiation of the test light.
  • the aperture 51 defines a light beam cross-sectional area to be detected by the photodetector 60 in the test light output from the sample suction port 31 of the chip 30 to the outside. That is, the test light output to the outside from the sample inlet 31 of the chip 30 is not only output directly after passing through the sample inlet 31 but also reflected and scattered by the inner wall near the sample inlet 31. Some are output.
  • the aperture 51 is for passing the test light output by passing directly directly through the sample inlet 31.
  • the bandpass filter 52 selectively transmits a wavelength component to be detected by the photodetector 60 from the test light passing through the aperture 51.
  • the photodetector 60 receives the test light that has passed through the bandpass filter 52, and outputs a current signal corresponding to the intensity of the test light.
  • a photomultiplier tube or a photodiode is used. It is preferably used.
  • the current signal output from the photodetector 60 is input to the ammeter 70 and the current value A corresponding voltage signal is output.
  • the voltage signal output from the ammeter 70 is input to the computer 80, and the computer 80 responds to the voltage signal by writing the sample 9 in the chip 30, the blank sample or the chip 30 into the same. This is to determine the intensity of the test light in a state where is not stored, and calculate the absorbance of the sample based on these test lights.
  • the analyte is not particularly limited, and may be in the form of a solution, a semi-solid, or a solid, and is determined to have a concentration at which absorbance can be measured using an appropriate solvent.
  • Any material can be used as a sample. Specific examples include urine samples, blood samples, body fluid samples or extracts of biological tissues, nucleic acids, proteins or bases, etc., as biological samples. Lakes, marshes, seawater, tap water, rainwater, incineration ash, waste or environmental samples such as animal and plant samples in the environment, commonly used metals, ceramics, plastics, their extracted or dissolved liquids, gases or gases Or an analytical sample of a synthesized substance or the like.
  • a sample obtained by dissolving or dispersing these analytes in an appropriate solvent as a solute can be used.
  • the term “blank sample” refers to a solvent that does not contain an analyte as a solute (for example, distilled water, high-purity water, or the like) or a solution other than a solvent (for example, a reaction that does not contain a buffer or a substrate). Liquid).
  • the chip 30 is attached to the absorbance measurement pipe 1, and the sample is measured out of the sample container and stored in the chip 30.
  • the absorbance measuring pit 1 is attached to a predetermined position of the absorbance measuring device 100.
  • the shirt 45 is opened, and the test light output from the light source 40 is condensed by the lenses 41 and 42, passes through the aperture 43, is made parallel by the lens 44, and is converted into parallel light by the lens 44.
  • the light enters the test light introduction window 23 of the pipe adapter 20.
  • the test light passes through the test light introduction window 23, is introduced into the internal space 2 OA of the pipette adapter 20, and is reflected by the reflecting mirror 24.
  • the reflected test light is partially absorbed by the sample 9 accommodated in the chip 30 and transmitted, and output to the outside from the sample inlet 31 of the chip 30.
  • sample measured value the test light intensity corresponding to this voltage signal
  • an average optical path length (hereinafter, referred to as a “sample optical path length”) is determined from 9 amounts of the sample accommodated in the chip 30.
  • the specific method of calculating the optical path length is not limited, and it may be measured visually using a separately provided scale or the like, or the scale corresponding to the optical path length may be attached to the chip 30. Alternatively, the optical path length may be displayed at the bit 10.
  • the optical path length can be determined from the type and shape of the chip to be used and the amount of the sample, and by storing the relationship between them in the computer 80 in advance, the optical path length can be easily obtained, which is convenient.
  • a correction factor for the optical path length was calculated in advance, which theoretically or experimentally (empirically) evaluated the influence of scattered light and reflected light within the chip 30 on the sample amount and the type of solvent. Is preferred.
  • the chip 30 is replaced, and a blank sample is stored in the chip 30 in place of the sample 9, or the chip 30 is not filled with anything.
  • Determine the test light intensity hereinafter referred to as the “reference value” in the same manner as for the absorbance measurement of Sample 9.
  • the reference optical path length determines the optical path length (hereinafter referred to as the “reference optical path length”) in the same manner as the sample optical path length.
  • the sample actual measurement value, reference value, sample optical path length and reference optical path length, and If so, the absorbance of the sample 9 is calculated by the computer 80 based on the correction factor of the optical path length.
  • it can be calculated from the above optical path length and the molar extinction coefficient of the analyte.
  • the pipe adapter 20 As described above, the pipe adapter 20 according to the present invention, the absorbance measurement pipe 1 including the pipette adapter 20, and the absorbance measurement apparatus 100 including the absorbance measurement pipe 1 are provided.
  • the sample 9 for which the absorbance measurement has been completed can be easily transferred to, for example, a reaction vessel and subjected to various desired reactions subsequent to the absorbance measurement. Therefore, the step of collecting the sample 9 can be omitted, and the generation of contamination of the sample due to the collection can be avoided.
  • a conventional expensive cell for measuring absorbance is not required, and the absorbance of a small amount of sample can be measured quickly.
  • the chip 30 is inexpensive, and the chip 30 can be miniaturized, which is extremely useful for measurement of a small amount of sample.
  • the chip 30 is inexpensive and small, the cost and the amount of waste can be reduced when it is necessary to discard the used chip 30 depending on the sample 9.
  • the test light can be irradiated toward the sample inlet 31 of the chip 30 by the reflecting mirror 24, the absorbance of the sample 9 stored in the chip 30 as it is can be measured. Therefore, there is an advantage that the device configuration can be simplified. Furthermore, since a wavelength component to be detected by the band-pass filter 52 can be selected and only the component can be detected by the photodetector 60, the background light can be remarkably reduced. Therefore, the measurement sensitivity of the absorbance can be improved.
  • test light introduction window 23 and / or the reflecting mirror 24 transmit or reflect light in a wavelength band component necessary for the absorbance measurement of the sample 9, wavelength components unnecessary for the absorbance measurement are irradiated on the sample. Can be reduced. Therefore, the temperature rise of the sample 9 in the chip 30 can be prevented. As a result, a change in the optical path length and a change in the refractive index due to the volume expansion of the sample 9 are suppressed, and a decrease in the absorbance measurement accuracy can be sufficiently prevented. You. In addition, the thermal expansion of the air in the chip 30 is suppressed, so that the leakage of the sample 9 from the chip 30 can be sufficiently prevented.
  • FIG. 4 is a sectional view showing the configuration of the second embodiment of the pipe adapter according to the present invention.
  • the pipette adapter 120 has a pipette mounting section 122 for inserting the tip of the pipette 10 and a tip mounting section 122 for mounting the tip 30. It can be mounted between chip 30.
  • the port adapter 120 has an internal space 12OA that is continuous with the internal space of each of the port 10 and the chip 30 when the port adapter 120 is mounted.
  • connection between the pipe adapter 120 and the pipette 10 and the connection between the pipe adapter 120 and the tip 30 are to hold and hold the sample in the tip 30. Since both are required to have high airtightness, the pipe mounting portion 121 and the chip mounting portion 122 are made of a material having excellent airtightness, for example, a rubber material or a polymer coating. It is preferable that it is done.
  • the port adapter 120 includes an optical fin 123 (test light introducing means) and a lens 124 (test light focusing means).
  • the optical fiber 123 outputs the test light guided from the outside from one end provided in the internal space 122A.
  • the lens 124 converts the test light output from the one end of the optical fiber 123 into parallel light, and directs the test light to the sample inlet 31 of the chip 30 through the opening of the chip mounting portion 122. And irradiate.
  • the pipette adapter 120 is also suitable for the internal space 12 OA to have a bandpass filter that selectively transmits only a component of a predetermined wavelength band from the test light introduced into the internal space 12 OA. It is. It is also preferable to use an optical fiber 123 whose tip is a spherical lens or a self-focusing lens. In this case, the lens 124 is unnecessary and the optical fiber 123 is not necessary. The tip points the test light focusing means o When such a port adapter 120 is used, the test light output from the light source 40 is input from one end outside the optical fiber 123, guided through the optical fiber 123, and The light is emitted from one end in the internal space 12 OA of the fiber 12. 3.
  • the emitted test light passes through the sample 9 in the chip 30 in the same manner as described above.
  • the pipette adapter 120 configured as described above, by using the optical fiber 123, the pipette adapter 120 is housed in the chip 30 similarly to the pipe adapter 20 having the reflecting mirror 24 shown in FIG.
  • the sample 9 in the state is irradiated with the test light. Therefore, the device configuration can be simplified.
  • the test light focused on the sample 9 is irradiated. Therefore, it is not necessary to use the lenses 41, 42, and 44 shown in FIG. 3, and the device configuration can be further simplified. Further, the light source 40 shown in FIG. 3 can be provided at a position distant from the chip 30. Can be suppressed. As a result, the leakage of the sample 9 from the chip 30 and the volume expansion of the sample 9 can be prevented.
  • FIG. 5 is a configuration diagram of another embodiment of the detection optical system in the absorbance measurement device according to the present invention.
  • This detection optical system is composed of lenses 15 1 and 15 2, aperture 15 3, lens 15 4, dichroic mirrors 15 5 and 15 6, and band pass filter 15 159, equipped with a photomultiplier tube 16 1 to 16 3 (photodetector).
  • the sample 9 to be measured for absorbance in the chip 30 contains nucleic acids or proteins as analytes, and it is assumed that the measurement light components 26 O nm and 280 nm and the reference light component 3 A case where wavelength components are detected simultaneously will be described.
  • the dichroic mirror 1505 selectively reflects components in a wavelength band of 250 to 300 nm and transmits other wavelength components.
  • the dichroic mirror 156 selectively reflects components in the wavelength band of 250 to 270 nm and transmits other wavelength components.
  • the non-pass filters 157, 158, 159 have maximum transmission wavelengths of 280 nm, 260 nm and 320 nm, respectively.
  • the test light partially absorbed and transmitted by the sample in the chip 30 and output to the outside from the sample inlet 31 is first collected by the lenses 15 1 and 15 2 and then collected.
  • the light passes through the aperture 15 3 and is made into parallel light by the lens 15 4.
  • the parallel test light is separated into three wavelength components by dichroic mirrors 155 and 156 and band-pass filters 157 to 159.
  • the wavelength 280 nm component is reflected by the dichroic mirror 155, passes through the dichroic mirror 156, passes through the band-pass filter 157, and passes through the photomultiplier tube 161. Is detected.
  • the wavelength 260 nm component is reflected by the dichroic mirror 155, reflected by the dichroic mirror 156, transmitted through the bandpass filter 158, and detected by the photomultiplier tube 162. Is done.
  • the wavelength of 320 nm component passes through the dichroic mirror 155, passes through the bandpass filter 159, and is detected by the photomultiplier tube 163.
  • test light of a plurality of wavelength components can be detected at the same time.
  • FIG. 6 is a configuration diagram of still another embodiment related to the detection optical system in the absorbance measurement device according to the present invention.
  • This detection optical system is composed of lenses 251, It is provided with an optical fiber 25 3 and a spectral detector 260.
  • the test light partially absorbed by the sample 9 in the chip 30 and output to the outside from the sample inlet 31 is condensed by the lenses 25 1 and 25 2 and The light is input to one end of 53, guided through the optical fiber 253, output from the other end, and input to the spectral detector 260. Then, the spectrum is separated by the spectral detector 260 and the spectrum of the test light is detected. As a result, the spectrum of the test light in the predetermined wavelength band is detected, and the spectrum analysis is performed by the computer 80 by an ordinary method.
  • the intensity of the test light component of an arbitrary wavelength in a predetermined wavelength band can be obtained substantially simultaneously (substantially simultaneously). Further, one detection optical system can cope with each sample 9 including the analytes having various absorption spectra. Therefore, the versatility of the absorbance measurement of the sample 9 is enhanced, and the trouble of changing the bandpass filter and the like can be omitted.
  • the spectral detector 260 by increasing the wavelength resolution of the spectral detector 260, it is possible to detect differences in the molecular structure of the analyte, for example, differences in the absorption spectrum shape resulting from differences in the molecular skeleton and functional groups. At the same time as measuring the absorbance of the sample, the purity of the sample can be determined. In this case, if the spectral detector 260 is equipped with a photodetector having a high quantum efficiency in the wavelength region to be detected and a small wavelength dependence of the spectral characteristics (the spectral sensitivity curve is almost flat), It is suitable.
  • FIG. 7 is a configuration diagram showing a second embodiment of the absorbance measuring device according to the present invention
  • FIG. 8 is a perspective view showing a second embodiment of the absorbance measuring device according to the present invention.
  • the absorbance measuring device 200 is provided with an absorbance measuring pipe 2 composed of a pipe 10 and a pipe adapter 220 having a pyramidal side wall.
  • the absorbance measurement pipe 2 has a pipe adapter 220 fixed to a mounting hole 29 (hole) provided in the housing 5 (holding means).
  • the opening area of the mounting hole 29 is The horizontal cross-sectional area of the port adapter 220 is larger than the minimum value and smaller than the maximum value.
  • the port adapter 220 is fitted in the mounting hole 29, and the absorbance measurement pipe is formed. 2 is firmly fixed.
  • the optical system 4 includes lenses 41 and 42, an aperture 43, a lens 44 and a shutter 45 shown in FIG. 3, and a light source 40 provided outside the housing 5 is an optical fiber 4
  • the optical system is optically coupled to the irradiating optical system via the optics 6.
  • the cooling fan 3 (temperature adjusting means) is for blowing air to the chip 30 attached to the pipette adapter 220 and its surroundings, and is connected to the power supply 73.
  • the filter disk 59 is made up of disks having three types of bandpass filters 59A, 59B and 59C as shown in FIG.
  • the rotating shaft of the motor 53 is fixed coaxially.
  • Each of the bandpass filters 59 A, 59 B, 59 C has a maximum transmission wavelength of, for example, 260 nm, 280 nm, and 320 nm, respectively.
  • the areas are the same.
  • the detection optical system is constituted by the filter disk 59 and the photodetector 60.
  • the chip 30, the filter disk 59, and the photodetector 60 are closer to each other than the absorbance measuring device 100 shown in FIG. 3 and each of the bandpass filters 59A, 9 B, 59 C and the chip 30 are arranged so that the distance between them is the same.
  • the photodetector 60 is connected via a current-voltage converter 71 to a computer 81 (computing means) having both an analog-digital (AD) converter and an interface.
  • the computer 81 calculates the absorbance of the sample 9 using the intensity of the current signal and the like of the test light detected by the photodetector 60, and calculates the rotation speed of the filter disk 59.
  • the controller reads the TTL signal synchronized with the filter, and controls the rotation of the filter disk 59 via the rotation controller 54.
  • the current-voltage converter 71 has a characteristic satisfying an input signal condition that allows the computer 81 to operate normally, and may further include an amplification function in some cases. Note that, depending on the type of the photodetector 60, an ammeter 70 shown in FIG. 3 may be used instead of the current-voltage converter 71.
  • the power switches including the light source 40 and the cooling fan 3 are turned on. Ventilation from the cooling fan 3 suppresses the temperature rise of the chip 30 and the sample 9 due to irradiation of test light, radiation from the heat source, or heat conducted, or cools the chip 30 and the sample 9 Is done. It is even better to warm up well before starting the actual measurement.
  • the tip 30 is attached to the absorbance measurement pipette 2, and a blank measurement solution, which is a solution containing only a solvent not containing a sample, is measured on the tip 30.
  • the absorbance measurement pipe 2 is inserted from above the mounting hole 29 of the housing 5 and fixed to the housing 5.
  • the filter disk is rotated at a predetermined rotation cycle, for example, 10 Hz by the rotation motor 53.
  • a predetermined rotation cycle for example, 10 Hz by the rotation motor 53.
  • the shutter 45 of the optical system 4 is opened, and the test light output from the light source 40 passes through the test light introduction window 23 of the port adapter 220, and the inside of the port adapter 220
  • the sample 9 is radiated through the reflecting mirror 24.
  • the test light that has passed through the blank measurement solution is emitted from the sample inlet 31 of the chip 30 toward the filter disk 59.
  • the filter disk 59 is rotating, and while the bandpass filters 59 A, 59 B, and 59 C pass below the sample inlet 31 of the chip 30, the predetermined wavelength is passed. Is incident on the photodetector 60, and a current signal corresponding to each wavelength component is output.
  • the test light is blocked while the plate portion of the filter disk 59 where the bandpass filters 59 A, 59 B, and 59 C are not placed passes under the sample inlet 31.
  • the light detector 60 The flow is output.
  • the current signal and dark current corresponding to each wavelength component are converted to voltage by the current-to-voltage converter 71, timed by a TTL signal synchronized with the filter disk 59, and their outputs are output by the computer 81.
  • the value is read and stored in computer 81.
  • the rotation period is 1 OHz
  • the fill disk 59 takes only 0.1 second per rotation, and it can be said that the detection of each wavelength component is substantially simultaneous.
  • the above measurement is repeated with the blank measuring solution replaced with the sample 9.
  • the bandpass filters are corrected by subtracting the data values corresponding to dark current from the data values corresponding to 59A, 59B, and 59C, and the resulting current signal of each wavelength component and the computer 81
  • the absorbance of each wavelength component for sample 9 is calculated from the data value of the blank measurement solution stored in 1. If necessary, it is also possible to calculate the absorbance when the above-described correction of the optical path length is performed. Alternatively, the absorbance may be calculated by correcting the measured value obtained through a predetermined non-pass filter that transmits only light having a wavelength not absorbed by the sample 9.
  • the pipe adapter 2 2 According to the absorbance measuring device 200 configured as described above, the pipe adapter 2 2
  • a light absorption measurement pipe 2 is fixed to a housing 5 having a mounting hole 29. Therefore, attachment and detachment is extremely simple. Also, vibration during mounting is suppressed, and leakage of the sample 9 from the chip 30 due to vibration can be prevented.
  • the absorbance measurement pipette 2 is stably and firmly held, reproducibility of the mounting position is high, and deviation of the optical axis in the optical path of the test light is reduced. Therefore, the measurement accuracy of the absorbance can be improved. In this case, if the dimensional accuracy of the pipe adapter 220 side wall and the mounting hole 29 of the housing 5 is increased, the reproducibility of the mounting position is further improved. Further, since the wavelength components of the test light can be detected substantially simultaneously (substantially simultaneously), the absorbance due to the change in the state of the sample 9 is similar to the effect of the detection optical system shown in FIG. 5 described above. The error of the measured value can be reduced. It is also desirable that the pipette adapter be made of a highly airtight material.
  • the temperature of the pipette adapter or the tip rises due to heating, the air inside them expands thermally, and the sample inside the tip is removed. It may be pushed out.
  • the temperature of the measurement environment room temperature
  • the rotating motor 53 may be a heat source.
  • the cooling fan 3 cools the chip 30 and its surroundings. And / or the temperature is kept, so that the expansion of the air inside the chip 30 and the pipe pad 220 is significantly suppressed.
  • leakage of the sample 9 from the chip 30 can be favorably prevented.
  • the sample 9 itself is forcibly cooled, the heating of the sample 9 due to the irradiation of the test light is suppressed, and the leakage from the chip 30 can be further prevented.
  • the temperature rise of the bit adapter 220 and the chip 30 due to the radiant heat of the light source 40 is sufficiently prevented.
  • the housing 5 is heated by the radiant heat of the light source 40 and the temperature of the pipette adapter 220 and the tip 30 rises due to the heat conduction from the housing 5, the temperature of the sample 9 in the tip 30 is increased. Change can be suppressed. Therefore, leakage from the chip 30 can be further prevented.
  • FIG. 9 is a cross-sectional view showing a chip provided in another embodiment of the absorbance measurement pipe according to the present invention.
  • This pipette for absorbance measurement has a tip adapter 20 shown in FIG. 9 detachably attached to a pipe adapter 20 of the pipette 1 for absorbance measurement shown in FIG.
  • This tip 230 is mounted with the tubular end of the pipe adapter 20 inserted inside. It has a conical mounting section 2 3 1 (insertion section) and a cylindrical sample storage section 2 32 formed with a sample suction port 3 1, and has an inner diameter of the sample storage section 2 3 2. d is smaller than the inner diameter of the end of the pipe adapter 20.
  • the sample 9 is accommodated in the sample accommodating section 232, and the absorbance of the sample 9 is measured in a state where the state is maintained.
  • the length (height in the drawing) of the sample accommodating portion 232 is not particularly limited, and it is preferable that the uniformity of the inner diameter d (the parallelism inside) be maintained well.
  • the absorbance measurement pit having such a chip 230 According to the absorbance measurement pit having such a chip 230, the reproducibility of the optical path length of the test light passing through the sample 9 is improved. Therefore, the measurement accuracy of the absorbance can be improved. Further, if the cylindrical sample storage portion 232 is made thinner and longer, the transmission length of the test light can be increased even if the amount of the sample is very small, so that more sensitive absorbance measurement may be possible. Further, it is desired that the inner surface of the chip 230 has high water-phobicity in order to improve the liquid drainage of the sample 9. At this time, it is preferable to make the inner diameter d of the sample accommodating portion 232 smaller, because leakage of the sample 9 can be prevented.
  • the chip 230 is preferably formed of a light-shielding member capable of substantially blocking test light, that is, a light-shielding member that does not substantially transmit test light.
  • Examples of the chip 230 made of such a member include a black polypropylene chip.
  • a chip that does not substantially transmit the test light is very effective. To fix the absorbance measurement pipettes 1 and 2, hold the absorbance measurement pipettes vertically as much as possible, and use the same or almost the same suction force when sucking the sample 9 into the tips 30 and 230.
  • the method is not limited to the above-described method using a magnet and mounting on the housing 5.
  • a jig such as a normal pipette stand may be used.
  • the pipe adapter 220 may have a shape in which at least a part of the side wall has a conical shape, and for example, may have a tapered portion on one surface of the side wall.
  • the side wall of the pipette adapter 220 may not be a quadrangular pyramid, but may be a triangular pyramid or a pyramid having more than five angles, or a conical shape (in this case, the test light is introduced). (Positioning means for the windows 23 is required).
  • the cooling holes such as the Peltier element are mounted on the mounting hole 29 and the side wall of the socket or pipe adapter 220. Device (temperature adjusting means) may be installed.
  • a cooling fan may be provided to a light source such as the light source 40 and the rotary motor 53 that can be a heat source.
  • the light source 40 may be arranged in the housing 5, and when the pipe adapter 220 is made of a material having high thermal conductivity, the pipette adapter 2 It is preferable to actively cool 20.
  • the filter disk 59 may have two types of bandpass filters or four or more types of bandpass filters. Furthermore, if a tunable laser is used as the light source 40, an absorption spectrum can be obtained without using the spectral detector 260.
  • the present invention can also be applied to an automatic pipette such as a high throughput screening apparatus.
  • Automatic pipettes have the characteristics of high reproducibility of the optical system in addition to excellent reproducibility of sample inhalation. Therefore, if the present invention is applied to an automatic pipette, it is possible to construct an apparatus system which is extremely suitable for measuring the absorbance of a small amount of sample.o
  • FIG. 10 is a perspective view showing a third embodiment of the absorbance measuring device according to the present invention.
  • the screening device 300 (absorbance measuring device) is provided with a plurality of pipette adapters 20 juxtaposed on the device main body 114, and a detection optical system 119 is provided below these pipette adapters 20. It was done.
  • This detection optics 1 1 9 is a pipette adapter 2 It has photodetectors corresponding to the number of zeros, and can move in the direction perpendicular to the optical axis of the test light (front and rear in the figure).
  • the pipette adapter 20 may be movable, and in this case, the detection optical system 119 may be fixed or movable.
  • the pipette adapter 20 may be singular.
  • a holding table 110 for placing equipment is installed above the side of the X-stage 103.
  • the chip 230 and the microplate 102 are set at predetermined positions of the holding table 110.
  • microplates 102 a and 102 b containing the sample 9 containing the subject and the standard sample (sample with known absorbance or blank sample) 112 respectively are placed in the X-stage 103. Place in the center.
  • the standard unit 112 is transferred from the microplate 102 to the chip 230 by the injection unit (not shown; connected to the pipe 108) built in the main body 114 of the apparatus. Inhale.
  • the suction speed at this time is a speed preset in a control analysis computer (not shown).
  • test light is introduced from a light source (not shown) incorporated in the apparatus main body 114 into the port adapter 20 via the optical fiber 123.
  • the test light is bent by a reflecting mirror (not shown) in the pipe adapter 20 and is introduced into the chip 230.
  • test light transmitted through the standard sample 112 stored in the chip 230 is detected by the detection optical system 119.
  • the standard sample 112 in the chip 230 is dropped onto the microplate 113 b prepared on the X-stage 103 and completely discharged.
  • the dropping speed at this time is a speed preset in the control analysis computer.
  • a pipette adapter As a pipette adapter, a pipe adapter 20 having a test light introducing window 23 made of synthetic quartz glass and a reflecting mirror 24 having a configuration shown in FIG. 2 is used, and as an absorbance measuring device, an absorbance measuring device 100 having a configuration shown in FIG. 3 is used. Then, the absorbance measurement of the sample was completed.
  • Light source 40 Deuterium lamp manufactured by Hamamatsu Photonics (C 631 1-50)
  • Non-pass filter 52 Select either interference filter of maximum transmission wavelength of 26 Onm manufactured by MellsGriot and interference filter of maximum transmission wavelength of 320 nm manufactured by Asahi Spectroscopy.
  • Photodetector 60 Photomultiplier tube manufactured by Hamamatsu Photonics (Model R 1527 HA, detection wavelength range 185 nm to 650 nm)
  • Ammeter 70 manufactured by Advantest (Model R 8240)
  • the absorbance was measured only for distilled water as a plank sample.
  • the tip 30 was attached to the pipette 1 for measuring absorbance, and 200 ⁇ 1 of distilled water was measured in the tip 30. Then, while maintaining this state, the absorbance measuring pipe 1 was attached to a predetermined position of the absorbance measuring device 100.
  • a bandpass filter having a maximum transmission wavelength of 260 nm was set as the bandpass filter 52, and the shirt 45 was opened.
  • the wavelength 26 O nm component of the test light transmitted through the distilled water in the chip 30 is detected by the photodetector 60, and the current value I w26 is detected by the ammeter 70. o was read and stored in computer 80. He closed his shirt 45. If the absolute amount of light is so small that the dark current of the photodetector 60 cannot be ignored, the dark current is measured with the shutter 45 closed, and the dark current value is subtracted from the current value when measuring the test light. There is a need.
  • a filter having a maximum transmission wavelength of 320 nm was set as the bandpass filter 52, and the shirt 45 was opened.
  • the 32 O nm wavelength component of the test light transmitted through the distilled water in the chip 30 was detected by the photodetector 60, the current value I w 320 was read by the ammeter 70, and this was stored in the computer 80. And I closed my shirt 45.
  • Sample 9 contains nucleic acid as the analyte
  • a bandpass filter having a maximum transmission wavelength of 260 nm was set as the bandpass filter 52, and the shutter 45 was opened.
  • the 260 nm wavelength component of the test light transmitted through the sample in the chip 30 was detected by the photodetector 60, and the current value I d 26 was measured by the ammeter 70. Was read and stored in computer 80. And I closed my shirt 45.
  • a bandpass filter having a maximum transmission wavelength of 320 nm was set as a bandpass filter 52, and a shirt 45 was opened.
  • the wavelength 320 nm component of the test light transmitted through the sample in the chip 30 is detected by the photodetector 60 reads the current value I d32 0 by ammeter 70, and stores it in the computer 80. He closed his shirt 45.
  • K is the following formula (1); K: I W 260 I w320 " ⁇ (1)
  • the absorbance A is calculated by the following formula (2);
  • the absorbance measurement device 200 having the configuration shown in FIGS. 7 and 8 was used in place of the absorbance measurement device 100, and the chip 230 shown in FIG. 9 was used in place of the chip 30.
  • the bandpass filters of the filter disk 59 were the two types of bandpass filters used in the first embodiment.
  • the average value of the absorbance Ac of the sample 9 was 0.182, and the variation rate was ⁇ 4.8% or less with respect to this average value.
  • a pipette adapter is mounted between a pipette and a tip, and test light is introduced into an internal space of the pipette adapter.
  • the absorbance of the sample in the chip is measured. That is, it is possible to measure the absorbance of the sample without transferring the sample to the cell and keeping the sample measured in the chip. Therefore, the step of collecting the sample can be omitted, the generation of contamination of the sample due to the collection is avoided, and the use of a special cell for measuring the absorbance is unnecessary, and the absorbance of a small amount of the sample is reduced. Measurement is performed quickly.
  • a conventional commercially available chip can be used, the cost is low, and the used chip can be discarded.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

明糸田書
ピぺットァダブ夕、 吸光度測定用ピぺット、 チップ、 吸光度測定装置及び吸光 度測定方法 技術分野
本発明は、 医薬品工業等の分野において試料の吸光度を測定するのに好適に用 いられるピぺットアダプタ、 このピぺットアダプタとピぺットとを備える吸光度 測定用ピペット、 このピペットアダプタに装着可能なチップ、 並びに、 この吸光 度測定用ピぺットを用いて試料の吸光度を測定する吸光度測定装置及び吸光度測 定方法に関する。 背景技術
医薬品工業、 食品工業、 化学工業及び農林水産業等の幅広い分野で、 新薬の研 究開発、 酵素のスクリーニング、 微生物の分析等を行うに際して、 吸光度を測定 することにより試料の分析が行われている。 このような分析方法のうち、 バイオ 関連分野で重要な核酸や蛋白質等の生体試料を分析する方法としては、 例えば、 次に示すような方法が挙げられる。
( 1 ) 被検体としての生体試料が微量しかないことが多く、 また、 試料の定量 も重要であることから、 この試料を特別な微量測定用セルに移し替え、 この試料 が容れられたセルに試験光を照射し、 このセル及び試料を透過した試験光の強度 を検出して、 この検出の結果に基づいて試料の吸光度を測定する。 この場合、 試 料をセルに容れるに際しては、 図 1 1に示したようなピペット 1 0及びチップ 3 0が用いられる。 チップ 3 0は、 ピぺット 1 0の先端に着脱自在に装着可能であ り、 このチップ 3 0内に試料が計り取られる。
( 2 ) 米国特許 5, 8 4 4 , 6 8 6号公報には、 試験光を導入する窓或いは試 験光を反射させる反射鏡を有するチップを用い、 このチップをピぺヅ卜の先端に 装着して、 試料をチップ内に容れたまま試料の吸光度を測定する方法が開示され ている。 この方法は、 試料の回収率を向上させ、 回収に伴う試料のコンタミネー シヨンの発生を回避し、 迅速な吸光度測定を行うことを意図したものである。 発明の開示
本発明者らは、 鋭意研究を重ねた結果、 上記従来の吸光度測定方法には次に示 す問題点があることを見出した。 すなわち;
1 )核酸や蛋白質等の試料は、吸光度測定後に次の反応が行われることが多く、 その場合には、 吸光度測定の為にセルに容れられた試料を測定後に回収する必要 がある。 しかし、 上記 ( 1 ) の方法では、 試料の回収率が不充分であり、 回収に 伴う試料のコン夕ミネーシヨンが発生し、 また、 セルの洗浄が困難である等の問 題がある。
2 ) 一方、 上記 (2 ) の方法は、 以下のような問題点を有している。 すなわち、 チップは、 コン夕ミネーシヨンの問題を回避するために、通常一回限り使用され、 再使用されることなく廃棄される。 このような使い捨てのチップに対して上述の 窓や反射鏡を設けることは、 チップが高価なものとなることから適当ではない。 また、 廃棄することなく再利用するためには、 セルの役割をも果たすチップの洗 浄が不可欠である。 さらに、 上記公報に開示された発明では、 試験光を導入する 窓や試験光を反射させる反射鏡をチップが有しているので、 チップの小型化が困 難であり、 それ故、 少量 (特に微量) の試料に対しては有効ではない。
そこで、 本発明は、 上記問題点を解消する為になされたものであり、 試料を回 収するステップを省くことができ、 回収に伴う試料のコンタミネーシヨンの発生 が回避され、 測定用の特別なセルが不要であって、 安価なチップを用いて微量の 試料の吸光度を測定できるピペットアダプタ、 吸光度測定用ピペット、 吸光度測 定装置及び吸光度測定方法を提供することを目的とする。
本発明者らは、 これらの目的を達成するために、 上記知見に基づいて更に研究 を重ね、 本発明を完成するに至った。 すなわち、 本発明に係るピペットアダプタ は、 被検体を含む試料の吸光度測定にピぺットと共に用いられるものであって、 ピペットと、 試料を収容可能なチップとの間に装着可能であり、 且つ、 装着時に ピペット及びチップそれそれの内部の空間と連続する内部空間を有し、 且つ、 外 部より内部空間に試験光が導入されると共に該試験光をチップの試料吸入口に向 けて照射する試験光導入手段を備える、 ことを特徴とする。
このような構成のピぺットアダプタは、 ピぺヅ卜とチップとの間に装着されて 用いられ、 装着された状態では、 ピペットアダプタ、 ピペット及びチップそれぞ れの内部空間は連続している。 また、 試験光導入手段により、 試験光は、 外部か らピペットアダプタの内部空間に導入され、 チップの試料吸入口に向けて照射さ れる。 これにより、 チップ内に収容された試料に試験光を透過させてその試料の 吸光度を測定することができる。 なお、 ピペット及びチップは、 それぞれ従来よ り販売され利用されているものが用いられ得る。 また、 ガラス、 ステンレス等の 無機材料から成るチップも使用可能である。
また、 本発明に係るピペットアダプタの試験光導入手段が、 外部より内部空間 に試験光を導入する試験光導入窓と、 試験光導入窓により内部空間へ導入された 試験光をチップの試料吸入口に向けて反射させる反射鏡と、を備えると好ましい。 この場合には、 試験光は、 外部より試験光導入窓を介してピペットアダプタの内 部空間に導入され、 反射鏡により反射されてチップの試料吸入口に向けて照射さ れる。
さらに、 試験光導入手段は、 外部より導波させた試験光を内部空間に設けられ た一端からチップの試料吸入口に向けて出射する光ファイバを備えると好適であ る。 このようにすれば、 試験光は、 外部より光ファイバを導波して、 ピペットァ ダブ夕の内部空間にある光ファイバの一端からチップの試料吸入口に向けて照射 される。 このとき、 光ファイバのその一端の近傍に設けられ、 且つ、 試験光を集 光する試験光集光手段を更に備えるのが一層好適である。 またさらに、 試験光導入手段が、 外部より内部空間に導入される試験光のうち 所定波長帯域の成分のみを選択してチップの試料吸入口に向けて照射するもので あるとより好ましい。 こうすれば、 吸光度測定にとって不要な波長成分が試料に 照射されるのを低減することができ、 チップ内の試料の温度上昇を防止できる。 また、 本発明に係る吸光度測定用ピペットは、 本発明によるピペットアダプタ と、 該ピペットアダプタに装着可能なピペットとを備えることを特徴とする。 ピ ぺットアダプタとピぺヅトとは互いに着脱自在であっても、 一体のものとされて 用いられてもよい。 着脱自在の場合には、 必要に応じてピペットアダプタを容易 に洗浄でき、 一方、 一体のものとされていれば取扱性を向上できる。
さらに、 略錐状を成してピペットアダプタが挿入される挿入部と、 筒状を成し て端部に試料吸入口が形成されている試料収容部とを有するチップを更に備える と有用である。 このようなチップを用いて試料を吸入し、 チップの試料収容部に 試料を保持すれば、 試料の吸光度測定の再現性が高められる。 また、 筒状の試料 収容部をより細く長くすれば、 試料が微量であっても試験光の透過長を大きくで ぎる。
また、 本発明に係る吸光度測定装置は、 被検体を含む試料の吸光度を測定する ものであって、 ( 1 ) 試験光を出力する光源と、 (2 ) 光源から出力された試験光 が内部空間に導入され、 試料を収容可能なチップが装着され、 且つ、 チップの試 料吸入口に向けて上記試験光を照射する本発明の吸光度測定用ピぺットと、 ( 3 ) その吸光度測定用ピペットに装着されたチップの試料吸入口から外部に出 力された試験光を検出する検出光学系と、 を備えることを特徴とする。
このように構成された吸光度測定装置によれば、光源から出力された試験光は、 吸光度測定用ピぺッ卜の内部空間に導入され、 吸光度測定用ピぺッ卜に装着され たチップの試料吸入口に向けて照射され、 チップの試料吸入口から外部に出力さ れて検出光学系により検出される。 そして、 この検出結果を用いてチップ内にあ る試料の吸光度が測定される。 具体的には、 チップに試料が収容された状態において検出光学系により検出さ れた試験光の強度と、 チップに試料が収容されていない状態、 又は、 チップに被 検体が含まれていないブランク試料が収容された状態において検出光学系により 検出された試験光の強度とに基づいて、 チップ内にある試料の吸光度を算出する 演算手段を更に備えることが望ましい。
さらに、 検出光学系が、 チップの試料吸入口から外部に出力された試験光のう ち互いに異なる波長を有する複数の成分の強度を同時又は略同時に検出すること が可能であると、 複数の波長成分のそれぞれにおける試料の吸光度が実質的に同 時に測定される。
加えて、 本発明による吸光度測定装置は、 少なくともチップを冷却し又はチッ ブの温度を一定に保持する温度調整手段を更に備えると好ましい。 これにより、 チヅプ又はその周辺の温度上昇又は変化に伴ぅチップ内の空気の容積変化、 特に 熱膨張が抑制される。 この場合、 チップの周辺をも冷却すると一層好ましい。 またさらに、 ピぺットアダプタが少なくとも一部が錘状を成す側壁を有してお り、 このピペットアダプタの錘状を成す側壁の所定部分が嵌着可能な孔部を有す る保持手段を更に備えても好ましい。 こうすることにより、 吸光度測定用ピぺッ 卜の着脱が極めて簡易となる。 しかも、 吸光度測定用ピペットが安定に且つ強固 に保持されるので、 試験光の光路における光軸のずれが低減される。
また、 本発明に係る吸光度測定方法は、 本発明による吸光度測定用ピペットを 用いて試料の吸光度測定を好適に実施する方法であって、 被検体を含む試料の吸 光度を測定する吸光度測定方法である。 すなわち、 本発明に係る吸光度測定方法 は、 本発明の吸光度測定用ピペットに、 試料を収容可能なチップを装着する工程 と、 チップに、 試料、 又は、 被検体を含まないブランク試料を収容する工程と、 吸光度測定用ピぺッ卜の内部空間に外部より試験光を導入し、 チップの試料吸入 口から外部に出力された試験光を検出する工程と、 チップに試料が収容された状 態において検出した試験光の強度と、 チップに試料が収容されていない状態、 又 は、 チップにブランク試料が収容された状態において検出した試験光の強度と、 に基づいて前記チップ内にある試料の吸光度を算出する工程と、 を備えることを 特徴とする。
ここで、 試験光を検出する工程においては、 チップの試料吸入口から外部に出 力された前記試験光のうち、 互いに異なる波長を有する複数の成分の強度を同時 又は略同時に検出すると好適である。 また、 試験光を検出する工程においては、 少なくともチッブを冷却し又はチップの温度を一定に保持しながら試験光を検出 することが望ましい。
また、 本発明によるチップは、 本発明のピペットアダプタに装着可能であり、 被検体を含む試料が収容され、 筒状 (円筒及び角筒のいずれでもよい) を成し、 且つ、 中心軸に沿う断面における内壁が略平行である試料収容部を有することを 特徴とする。 このようなチップを試料の吸光度測定に用いれば、 試料に照射され た試験光の一部がチップを透過して光検出器へ入射するおそれが殆どない。 さら に、 本発明は、 本発明のピペットアダプタに装着可能であり、 被検体を含む試料 に照射される試験光を実質的に遮断することが可能な遮光性部材で形成されたチ ップを提供する。 図面の簡単な説明
図 1は、 本発明による吸光度測定用ピぺットの第 1実施形態を示す構成図であ る。
図 2は、 本発明によるピぺットアダプタの第 1実施形態の構成を示す断面図で める。
図 3は、 本発明による吸光度測定装置の第 1実施形態を示す構成図である。 図 4は、 本発明によるピぺットアダプタの第 2実施形態の構成を示す断面図で ある。
図 5は、 本発明による吸光度測定装置における検出光学系に係る他の実施形態 の構成図である。
図 6は、 本発明による吸光度測定装置における検出光学系に係る更に他の実施 形態の構成図である。
図 7は、 本発明による吸光度測定装置の第 2実施形態を示す構成図である。 図 8は、 本発明による吸光度測定装置の第 2実施形態を示す斜視図である。 図 9は、 本発明による吸光度測定用ピぺッ卜の他の実施形態に備わるチップを 示す断面図である。
図 1 0は、 本発明による吸光度測定装置の第 3実施形態を示す斜視図である。 図 1 1は、 ピペット及びチップの従来の構成図である。 発明を実施するための最良の形態
以下、 添付図面を参照して本発明の実施の形態を詳細に説明する。 なお、 図面 の説明において同一の要素には同一の符号を付し、 重複する説明を省略する。 ま た、 上下左右等の位置関係については、 特に規定しない限り、 図面の上下左右等 の位置関係に基づくものとする。
先ず、 本発明に係る吸光度測定用ピぺット及びピぺットアダプタそれぞれの実 施形態について説明する。 図 1は、 本発明による吸光度測定用ピペットの第 1実 施形態を示す構成図である。 同図には、 本実施形態に係る吸光度測定用ピペット
1の他にチップ 3 0も示されている。 また、 図 2は、 本発明によるピペットァダ プ夕の第 1実施形態の構成を示す断面図である。
吸光度測定用ピぺット 1は、 ピぺット 1 0及びピぺットアダプタ 2 0を備えて 構成される。 従来の構成を示した図 1 1と比較すると、 本実施形態ではピペット 1 0とチップ 3 0との間にピぺットアダプタ 2 0が設けられる点で異なっている。 ピぺット 1 0及びチップ 3 0としては、 それぞれ従来より市販され使用されてい るものが利用可能である。 ピぺット 1 0とピぺヅトアダプタ 2 0とは、 互い別体 であって着脱自在でもよいが、一体のものとされていれば取り扱いが容易である。 ピぺヅトアダプタ 2 0は、 ピぺット 1 0の先端を挿入するピぺット装着部 2 1 と、 チップ 3 0を装着するチップ装着部 2 2とを有しており、 ピぺット 1 0とチ ップ 3 0との間に装着可能である。 ピぺヅトアダプタ 2 0は、 その装着時にピぺ ット 1 0及びチップ 3 0それぞれの内部の空間と連続する内部空間 2 O Aを有し ている。 ピぺットアダプタ 2 0とピペット 1 0との間の接合、 及び、 ピぺットァ ダプタ 2 0とチヅプ 3 0との間の接合は、 チップ 3 0内に試料を保持 ·静止させ るために共に気密性が高いことが必要とされることから、 ピペット装着部 2 1及 びチップ装着部 2 2それそれは、 気密性に優れた材質である例えばゴム状物質や 高分子コーティングされているのが好適である。
また、 ピペットアダプタ 2 0は、 外部より内部空間 2 O Aに試験光を導入する 試験光導入窓 2 3と、 その試験光導入窓 2 3を透過して内部空間 2 O Aへ導入さ れた試験光をチップ装着部 2 2の開口を経てチップ 3 0の試料吸入口 3 1に向け て反射させる反射鏡 2 4とを備える。 このように、 試験光導入窓 2 3及び反射鏡 2 4により試験光導入手段が形成されている。 なお、 試験光導入窓 2 3は、 外付 けではなく、 内側に付けてもよい。
試験光導入窓 2 3は、 外部より内部空間 2 O Aに導入する試験光のうち試料の 吸光度測定に必要な所定波長帯域の成分のみを選択して透過するものであるのが 好適である。 同様に、 反射鏡 2 4も、 内部空間 2 O Aに導入された試験光のうち 所定波長帯域の成分のみを選択して反射させるものであるのが好適である。 或い は、 内部空間 2 O Aに導入された試験光のうち所定波長帯域の成分のみを選択し て透過させるバンドパスフィルタをピぺヅトアダプタ 2 0の内部空間 2 O Aに備 えるのも好適である。
次に、 本発明に係る吸光度測定装置の実施形態について説明する。 図 3は、 本 発明による吸光度測定装置の第 1実施形態を示す構成図である。 吸光度測定装置 1 0 0は、 上述した吸光度測定用ピペット 1の他に、 光源 4 0、 レンズ 4 1 , 4 2、 アパーチャ 4 3、 レンズ 4 4及びシャツ夕 4 5を備えるものである。 また、 この吸光度測定装置 1 0 0は、 アパーチャ 5 1、 バンドパスフィル夕 5 2、 光検 出器 6 0、 電流計 7 0及びコンピュータ 8 0 (演算手段) を備える。
なお、 光源 4 0からシャヅ夕 4 5に到るまでの照射光学系と、 アパーチャ 5 1 から光検出器 6 0に到るまでの検出光学系とは、 互いの相対的位置が固定されて おり、 これらに対して吸光度測定用ピぺット 1は所定位置に着脱自在となってい る。 なお、 所定位置に吸光度測定用ピペット 1を着脱自在に装着するには、 例え ば、 固定スタンド筐体に対して磁石を用いて固定するといつた方法が挙げられ、 こうすれば適切な光学的配置を簡易に実現できる利点がある。
光源 4 0は、 チップ 3 0内に収容された試料 9、 ブランク試料 (図示せず)、 又はチップ 3 0内にこれら試料が収容されていない状態の吸光度を測定するため の所定波長帯域の試験光を出力するものであり、 例えば、 紫外光を出力する重水 素ランプが好適に用いられる。 また、 シャツ夕 4 5は、 試験光の照射時間を規定 し、 試料 9又はブランク試料に試験光が長時間照射されてそれら試料の温度が上 昇するのを抑制する。
アパーチャ 5 1は、 チップ 3 0の試料吸入口 3 1から外部に出力された試験光 のうち光検出器 6 0により検出すべき光束断面領域を規定する。 すなわち、 チッ プ 3 0の試料吸入口 3 1から外部に出力される試験光は、 試料吸入口 3 1を直接 通過して出力されるものの他、 試料吸入口 3 1近傍の内壁で反射 ·散乱されて出 力されるものがある。 そして、 アパーチャ 5 1は、 試料吸入口 3 1を主として直 接通過して出力された試験光を通過させるものである。
さらに、バンドパスフィルタ 5 2は、アパーチャ 5 1を通過した試験光のうち、 光検出器 6 0により検出すべき波長成分を選択的に透過させる。光検出器 6 0は、 バンドバスフィルタ 5 2を通過した試験光を受光して、 その試験光の強度に応じ た電流信号を出力するものであり、 例えば、 光電子増倍管やフォトダイオード等 が好適に用いられる。
光検出器 6 0から出力された電流信号は、 電流計 7 0に入力し、 その電流値に 応じた電圧信号が出力される。 コンピュータ 8 0には、 電流計 7 0から出力され た電圧信号が入力され、 コンピュータ 8 0は、 この電圧信号に応じて、 チップ 3 0内の試料 9、 同ブランク試料又はチップ 3 0内にこれらが収容されていない状 態の試験光の強度を求め、 これらの試験光に基づいて試料の吸光度を算出するも のである。
ここで、 上記被検体としては、 特に限定されるものではなく、 溶液状、 半固体 状又は固体状であってもよく、 適当な溶媒を用いて、 吸光度測定を行え得る濃度 とされたものを試料とできるものであればよい。 具体的には、 生体試料としての 尿サンプル、 血液サンプル、 体液サンプル若しくは生体組織、 核酸、 蛋白質若し くは塩基等の抽出物等が挙げられ、 生体試料以外の被検体としては、 河川水、 湖 沼水、 海水、 水道水、 雨水、 焼却灰、 廃棄物若しくは環境中の動植物サンプル等 の環境試料、 一般に使用される金属、 セラミック、 プラスチックス、 それらの抽 出液若しくは溶解液、 ガス若しくはそれらの吸収物等、 又は、 合成された物質等 の分析サンプル等が挙げられる。
そして、 吸光度測定用の試料としては、 これら被検体を溶質として、 適当な溶 媒に溶解又は分散させたものを用いることができる。なお、 本発明において、 「ブ ランク試料」 とは、 溶質としての被検体を含まない溶媒 (例えば、 蒸留水、 高純 水等)又は溶媒以外の溶液(例えば、 緩衝液、 基質を含まない反応液等) を示す。 次に、本実施形態に係る吸光度測定装置 1 0 0の動作について説明すると共に、 本実施形態に係る吸光度測定方法について、 図 3を参照して説明する。 先ず、 吸 光度測定用ピぺット 1にチップ 3 0を装着し、 試料容器からチップ 3 0内に試料 を計り取って収容する。 次いで、 この状態を維持したまま、 吸光度測定用ピぺッ ト 1を吸光度測定装置 1 0 0の所定位置に装着する。 それから、 シャツタ 4 5が 開かれ、 光源 4 0から出力された試験光は、 レンズ 4 1 , 4 2により集光され、 アパーチャ 4 3を通過し、 レンズ 4 4により平行光とされ、 シャツ夕 4 5を通過 して、 ピぺットアダプタ 2 0の試験光導入窓 2 3に入射する。 その試験光は、 試験光導入窓 2 3を透過して、 ピペットアダプタ 2 0の内部空 間 2 O Aに導入され、 反射鏡 2 4により反射される。 反射された試験光は、 チッ プ 3 0内に収容されている試料 9により一部吸収されて透過し、 チップ 3 0の試 料吸入口 3 1から外部へ出力される。
チップ 3 0の試料吸入口 3 1から出力された試験光は、 光束の一部がァパーチ ャ 5 1を通過し、 検出されるべき波長成分がバンドパスフィルタ 5 2を透過して 光検出器 6 0で受光される。 そして、 受光された試験光の光量 (強度) に応じた 電流信号が光検出器 6 0から出力され、 その電流信号は電流計 7 0により電圧信 号に変換され、 その電圧信号はコンピュータ 8 0に入力し、 この電圧信号に応じ た試験光強度 (以下、 これを 「試料実測値」 という) を求める。
このとき、 チップ 3 0に収容された試料 9量から、 平均光路長 (以下、 これを 「試料光路長」 という) を求めておく。 光路長の具体的な算出方法としては、 制 限されず、 別に設けたスケール等を使用して目視で測定してもよく、 光路長に応 じたスケールがチヅプ 3 0に付されていてもよいし、 光路長がピぺヅト 1 0に表 示されるようになつていてもよい。
また、 用いるチップの種類や形状と試料量とから光路長を決定でき、 これらの 間の関係を予めコンピュータ 8 0に記憶しておくことにより光路長を容易に求め ることができ便利である。 このとき、 試料量や溶媒の種類に対し、 チップ 3 0内 での散乱光や反射光の影響を理論的又は実験的 (経験的) に評価した光路長の補 正ファクタを予め算出しておいても好ましい。
一方、 上述した試料 9の吸光度測定に先立ち又はその後に、 チップ 3 0を取り 替え、 試料 9の代わりにブランク試料をチップ 3 0に収容して、 或いは、 チヅプ 3 0に何も収容しないで、 試料 9の吸光度測定と同様にして試験光強度 (以下、 これを 「参照値」 という) を求める。 ブランク試料を用いた場合には、 上記試料 光路長と同様にして、 光路長 (以下、 これを 「参照光路長」 という) を求めてお く。 そして、 上記試料実測値、 参照値、 試料光路長及び参照光路長、 更に必要で あれば、 光路長の補正ファクタに基づき、 コンピュータ 8 0によって試料 9の吸 光度を算出する。 さらに、 吸光度から試料 9中の被検体濃度を定量するには、 上 記光路長及び被検体のモル吸光係数から算出可能である。
以上のような本発明によるピぺヅトアダプタ 2 0、 このピペットアダプタ 2 0 を備える吸光度測定用ピぺット 1、 及び、 この吸光度測定用ピぺット 1を備える 吸光度測定装置 1 0 0によれば、 吸光度測定が終了した試料 9を、 例えば、 反応 容器に移し、 吸光度測定に引き続く目的の諸反応に供することが容易となる。 よ つて、 試料 9を回収するステップを省くことができ、 回収に伴う試料のコンタミ ネ一シヨンの発生を回避できる。
また、 従来の高価な吸光度測定用のセルが不要であって、 微量試料の吸光度測 定を迅速に実施できる。 さらに、 従来の市販のチップ 3 0を用いることができる ので安価であり、 しかも、 チップ 3 0の小型化を実現できるので、 微量試料の測 定に極めて有用である。 加えて、 チップ 3 0が安価且つ小型であるので、 試料 9 によっては使用後のチップ 3 0の廃棄が必要な場合に、 コストを抑え且つ廃棄物 量を低減できる。
さらに、 反射鏡 2 4によって試験光をチップ 3 0の試料吸入口 3 1に向けて照 射できるので、 チップ 3 0に収容されたそのままの状態における試料 9の吸光度 測定を実施できる。 よって、 装置構成を簡略化できる利点がある。 またさらに、 バンドパスフィルタ 5 2によって検出すべき波長成分を選択し、 光検出器 6 0に よりその成分のみを検出できるので、 バックグラウンド光を格段に軽減できる。 よって、 吸光度の測定感度を向上できる。
さらにまた、 試験光導入窓 2 3及び/又は反射鏡 2 4が、 試料 9の吸光度測定 に必要な波長帯域成分の光を透過又は反射するので、 吸光度測定にとって不要な 波長成分が試料に照射されるのを低減することができる。 したがって、 チップ 3 0内の試料 9の温度上昇を防止できる。 その結果、 試料 9の体積膨張による光路 長の変化や屈折率の変化が抑えられ、 吸光度測定の精度の低下を十分に防止でき る。 また、 チヅプ 3 0内空気の熱膨張が抑制され、 これによる試料 9のチップ 3 0からの漏出が十分に防止できる。
次に、 本発明に係るピペットアダプタの他の実施形態について説明する。 図 4 は、 本発明によるピぺットアダプタの第 2実施形態の構成を示す断面図である。 このピペットアダプタ 1 2 0は、 ピペット 1 0の先端を挿入するピペット装着部 1 2 1と、 チップ 3 0を装着するチップ装着部 1 2 2とを有しており、 ピぺット 1 0とチップ 3 0との間に装着可能である。 また、 ピぺヅトアダプタ 1 2 0は、 その装着時にピぺット 1 0及びチップ 3 0それぞれの内部の空間と連続する内部 空間 1 2 O Aを有している。
ピぺットアダプタ 1 2 0とピペット 1 0との間の接合、 及び、 ピぺットァダプ 夕 1 2 0とチップ 3 0との間の接合は、 チップ 3 0内に試料を保持且つ静止させ るために共に気密性が高いことが必要とされることから、 ピぺット装着部 1 2 1 及びチップ装着部 1 2 2は、 気密性に優れた材質、 例えば、 ゴム状物質や高分子 コ一ティングされていると好ましい。
また、 ピぺヅトアダプタ 1 2 0は、 光ファイノ 1 2 3 (試験光導入手段) 及び レンズ 1 2 4 (試験光集光手段) を備える。 光ファイノ 1 2 3は、 外部より導波 させた試験光を内部空間 1 2 O Aに設けられた一端から出力する。 レンズ 1 2 4 は、 光ファイバ 1 2 3の該一端から出力された試験光を平行光とし、 その試験光 をチップ装着部 1 2 2の開口を経てチップ 3 0の試料吸入口 3 1に向けて照射す る。
さらに、 ピペットアダプタ 1 2 0は、 内部空間 1 2 O Aに導入された試験光の うち所定波長帯域の成分のみを選択して透過させるバンドパスフィル夕を内部空 間 1 2 O Aに備えても好適である。 また、 光ファイバ 1 2 3として先端が球状レ ンズ又はセルフォヅクレンズとなっているものを用いても好適であり、 この場合 にはレンズ 1 2 4は不要であり、 光ファイバ 1 2 3の先端部が試験光集光手段を ねる o このようなピぺットアダプタ 1 2 0を用いる場合には、 光源 4 0から出力され た試験光は、 光ファイバ 1 2 3の外部の一端から入力され、 光ファイバ 1 2 3を 導波し、 光ファイバ 1 2 .3の内部空間 1 2 O A内の一端から出射される。 その出 射された試験光は、 先述したのと同様にしてチップ 3 0内の試料 9を透過する。 このように構成されたピペットアダプタ 1 2 0によれば、 光ファイバ 1 2 3を 用いることにより、図 3に示す反射鏡 2 4を有するピぺットアダプタ 2 0同様に、 チップ 3 0に収容された状態における試料 9に試験光が照射される。 よって、 装 置構成の簡略化が図られる。
また、 レンズ 1 2 4又は光ファイノ 1 2 3の先端部にレンズ機能をもたせるこ とにより、 試料 9へ集光された試験光が照射される。 よって、 図 3に示すレンズ 4 1, 4 2 , 4 4を用いなくともよく、 装置構成がより簡略化され得る。 さらに、 図 3に示す光源 4 0をチップ 3 0から離れた位置に設けることができ、 光源 4 0 の輻射熱及びその光源 4 0からの熱伝導によるチップ 3 0内空気及び試料 9の温 度上昇を抑制し得る。 その結果、 試料 9のチップ 3 0からの漏出や、 試料 9の体 積膨張を阻止できる。
次に、 吸光度測定装置における検出光学系の他の実施形態について説明する。 図 5は、 本発明による吸光度測定装置における検出光学系に係る他の実施形態の 構成図である。 この検出光学系は、 チップ 3 0から順に、 レンズ 1 5 1, 1 5 2、 アパーチャ 1 5 3、 レンズ 1 5 4、 ダイクロイツクミラー 1 5 5, 1 5 6、 バン ドパスフィルタ 1 5 7〜 1 5 9、 光電子増倍管 1 6 1〜 1 6 3 (光検出器) を備 える。 以下では、 チップ 3 0内にある吸光度測定対象の試料 9は核酸又は蛋白質 を被検体として含むものであるとして、 測定光成分 2 6 O n m及び 2 8 0 n m並 びに参照光成分 3 2 0 n mの 3波長成分を同時に検出する場合について説明する。 ダイクロイツクミラ一 1 5 5は、 波長帯域 2 5 0〜 3 0 0 n mの成分を選択的 に反射させ、 他の波長成分を透過させる。一方、 ダイクロイツクミラー 1 5 6は、 波長帯域 2 5 0〜2 7 0 n mの成分を選択的に反射させ、 他の波長成分を透過さ せる。 ノ ンドパスフィルタ 1 5 7 , 1 5 8 , 1 5 9は、 最大透過波長がそれそれ 2 8 0 n m , 2 6 0 n m及び 3 2 0 n mのものである。
この検出光学系では、 チップ 3 0内の試料により一部吸収されて透過し試料吸 入口 3 1から外部に出力された試験光は、 レンズ 1 5 1, 1 5 2により一旦集光 された後に、 アパーチャ 1 5 3を通過し、 レンズ 1 5 4により平行光とされる。 この平行光とされた試験光は、 ダイクロイツクミラー 1 5 5及び 1 5 6並びにバ ンドパスフィルタ 1 5 7〜 1 5 9により 3波長成分に分離される。
すなわち、 波長 2 8 0 n m成分は、 ダイクロイツクミラー 1 5 5により反射さ れ、 ダイクロイツクミラー 1 5 6を透過し、 バンドパスフィルタ 1 5 7を透過し て、 光電子增倍管 1 6 1により検出される。 波長 2 6 0 n m成分は、 ダイクロイ ックミラー 1 5 5により反射され、 ダイクロイヅクミラ一 1 5 6でも反射され、 バンドパスフィル夕 1 5 8を透過して、 光電子増倍管 1 6 2により検出される。 また、 波長 3 2 0 n m成分は、 ダイクロイツクミラー 1 5 5を透過し、 バンドパ スフィルタ 1 5 9を透過して、 光電子増倍管 1 6 3により検出される。
このような検出光学系によれば、 試験光の 3波長成分 (波長 2 8 0 n m, 2 6
0 11 111及び3 2 0 11 111 ) を同時に検出することができる。 通常、 チップに吸い上 げられた溶液は、 その粘性にもよるが、 完全な静止状態とはなり難く、 通常はそ の状態が時事刻々と、 時には秒単位で微妙に変化する。 このような変化は、 吸光 度測定に影響を殆ど与えない程度に微小なこともあるし、 測定環境の温度変動、 振動又は空気の流れ等によっては、 光検出器に入射する試験光の強度が有意に変 動する程度の屈折率変化が引き起こされる場合がある。 このような状況下、 上記 検出光学系によれば、 複数の波長成分の試験光を同時に検出できるので、 試料 9 の状態変化による吸光度測定値の誤差を低減できる。
次に、 吸光度測定装置における検出光学系の更に他の実施形態について説明す る。 図 6は、 本発明による吸光度測定装置における検出光学系に係る更に他の実 施形態の構成図である。 この検出光学系は、 チヅプ 3 0から順に、 レンズ 2 5 1, 2 5 2、 光ファイバ 2 5 3及び分光検出器 2 6 0を備える。
この検出光学系では、 チップ 3 0内の試料 9により一部吸収されて試料吸入口 3 1から外部に出力された試験光は、 レンズ 2 5 1 , 2 5 2により集光されて光 ファイノ 2 5 3の一端に入力し、 光ファイバ 2 5 3を導波して他端から出力され 分光検出器 2 6 0に入力する。 そして、 分光検出器 2 6 0により分光されて試験 光のスペクトルが検出される。 これにより、 所定の波長帯域における試験光のス ぺクトルが検出され、 コンピュータ 8 0により通常の方法でスぺクトル解析が行 われる。
このような検出光学系によると、 所定波長帯域における任意波長の試験光成分 の強度を略同時に (実質的に同時に) 求めることができる。 また、 吸光スぺクト ルが種々異なる被検体を含む各試料 9に対してひとつの検出光学系で対応可能と なる。 よって、 試料 9の吸光度測定における汎用性が高められ、 バンドパスフィ ル夕の組み替え等の手間を省くことができる。
また、 分光検出器 2 6 0の波長分解能を高めることにより、 被検体物質の分子 構造の違い、 例えば、 分子骨格や官能基の相違に由来する吸光スペクトル形状の 差異を検知し得るので、 試料 9の吸光度測定と同時に被検体の純度検定を行い得 る。 この場合、 検出対象の波長領域に対して量子効率が高く、 分光特性に波長依 存性が少ない (分光感度曲線が平坦に近い) 光検出器を、 分光検出器 2 6 0が備 えると一層好適である。
次に、本発明に係る吸光度測定装置の他の実施形態について説明する。図 7は、 本発明による吸光度測定装置の第 2実施形態を示す構成図であり、 図 8は、 本発 明による吸光度測定装置の第 2実施形態を示す斜視図である。 吸光度測定装置 2 0 0は、 ピぺット 1 0及び側壁が角錐状を成すピぺットアダプタ 2 2 0から構成 される吸光度測定用ピぺット 2を備えたものである。
この吸光度測定用ピぺット 2は、 ピぺットアダプタ 2 2 0が筐体 5 (保持手段) に設けられた装着孔 2 9 (孔部) に固定されている。 装着孔 2 9の開口面積は、 ピぺットアダプタ 2 2 0の水平断面積の最小値よりは大きく且つ最大値よりは小 さくされており、 ピぺットアダプタ 2 2 0が装着孔 2 9に嵌合されて吸光度測定 用ピぺット 2は強固に固定されている。
また、 筐体 5の内部には、 光学系 4、 冷却用ファン 3、 フィル夕ディスク 5 9、 回転モータ 5 3、 回転モー夕コントローラ 5 4、 フィルタディスク 5 9の回転数 に同期したトランジスタ一トランジスタロジック (T T L ) 信号発生回路 5 5、 光検出器 6 0、 電流電圧変換器 7 1、 及び、 電源 7 2, 7 3が配置されている。 光学系 4は、 図 3に示すレンズ 4 1 , 4 2、 アパーチャ 4 3、 レンズ 4 4及びシ ャッ夕 4 5から成っており、 筐体 5の外部に設けられた光源 4 0が光ファイバ 4 6を介して光学的に結合され、 これらから照射光学系が構成されている。
冷却用ファン 3 (温度調整手段) は、 ピペットアダプタ 2 2 0に装着されたチ ヅプ 3 0及びその周囲に送風するためのものであり、電源 7 3に接続されている。 また、 フィルタディスク 5 9は、 図 8に示すように 3種類のバンドパスフィル夕 5 9 A , 5 9 B , 5 9 Cを有する円板から成っており、 電源 7 2に接続された回 転モー夕 5 3の回転軸が同軸状に固定されている。各バンドパスフィル夕 5 9 A , 5 9 B , 5 9 Cは、 例えば、 それらの最大透過波長がそれそれ 2 6 0 n m, 2 8 0 n m及び 3 2 0 n mのものが用いられ、 形状及び面積は互いに同一とされてい る。 このように、 フィル夕ディスク 5 9と光検出器 6 0により検出光学系が構成 されている。
また、 チップ 3 0、 フィル夕ディスク 5 9及び光検出器 6 0は、 図 3に示す吸 光度測定装置 1 0 0に比して互いに近接して、 且つ、 各バンドパスフィルタ 5 9 A , 5 9 B , 5 9 Cとチップ 3 0との距離が同一となるように配置されている。 光検出器 6 0は、 電流電圧変換器 7 1を介してアナログ—デジタル (A D ) 変換 器及びイン夕一フェイスを兼ね備えたコンピュータ 8 1 (演算手段) に接続され ている。 コンピュータ 8 1は、 光検出器 6 0で検出された試験光の電流信号等の 強度を用いて試料 9の吸光度を算出すると共に、 フィル夕ディスク 5 9の回転数 に同期した T T L信号を読み込み、 さらに、 回転モ一夕コントローラ 5 4を介し てフィルタディスク 5 9の回転をも制御する。
電流電圧変換器 7 1は、 コンピュータ 8 1が正常に作動できる入力信号条件を 満たす特性のものであり、 場合によっては増幅機能を更に備えたものであっても よい。 なお、 光検出器 6 0の種類によっては、 電流電圧変換器 7 1の代わりに図 3に示す電流計 7 0を用いてもよい。
次に、 本実施形態に係る吸光度測定装置 2 0 0の動作について、 図 7及び 8を 参照して説明する。 先ず、 光源 4 0及び冷却用ファン 3を含めた電源のスィッチ を入れる。 冷却用ファン 3からの送風により、 試験光の照射や熱源からの輻射又 は伝導される熱によるチップ 3 0及び試料 9の温度上昇が抑えられ、 或いは、 チ ップ 3 0及び試料 9が冷却される。 また、 実際の測定に入る前に、 十分に暖機す るとなおよい。 次いで、 吸光度測定用ピペット 2にチップ 3 0が装着され、 試料 を含まない溶媒のみの溶液であるブランク測定液をチップ 3 0に計り取る。 この 吸光度測定用ピぺット 2を筐体 5の装着孔 2 9の上方から揷入し、 筐体 5に固定 する。
さらに、 回転モー夕 5 3によりフィルタディスクを所定の回転周期、 例えば 1 0 H zで回転させる。 この状態で、 光学系 4のシャツタ 4 5が開かれ、 光源 4 0 から出力された試験光がピぺットアダプタ 2 2 0の試験光導入窓 2 3を透過して、 ピぺットアダプタ 2 2 0内の反射鏡 2 4を経て試料 9に照射される。
ブランク測定液を通過した試験光は、 チップ 3 0の試料吸入口 3 1からフィル 夕ディスク 5 9に向かって出射される。 上述の如くフィルタディスク 5 9は回転 しており、 チップ 3 0の試料吸入口 3 1下を各バンドパスフィル夕 5 9 A , 5 9 B , 5 9 Cが通過している間は、 所定波長を有する試験光が光検出器 6 0に入射 し、 各波長成分に対応する電流信号が出力される。 また、 フィル夕ディスク 5 9 のバンドパスフィル夕 5 9 A , 5 9 B , 5 9 Cが配置されていない板部分が試料 吸入口 3 1下を通過している間は、 試験光は遮断され、 光検出器 6 0からは暗電 流が出力される。
各波長成分に対応する電流信号及び暗電流は、 電流電圧変換器 7 1で電圧に変 換され、 フィルタディスク 5 9に同期した T T L信号でタイミングを計り、 コン ピュー夕 8 1によって、 それらの出力値が読み込まれ、 コンピュータ 8 1内に記 憶される。 また、 回転周期が 1 O H zの場合には、 フィル夕ディスク 5 9は一回 転にわずか 0 . 1秒を要するので、 各波長成分の検出は実質的に同時と言える。 次いで、 ブランク測定液を試料 9に代えて上述した測定を繰り返す。 バンドパ スフィルタ 5 9 A, 5 9 B , 5 9 Cに対応するデータ値から暗電流に対応するデ 一夕値を差し引く補正を行い、 その結果得られた各波長成分の電流信号及び先に コンピュータ 8 1に記憶させたブランク測定液でのデータ値から、 試料 9に対す る各波長成分の吸光度が算出される。 そして、 必要であれば前述した光路長の補 正を行った場合の吸光度の算出も可能である。 また、 試料 9に吸光されない波長 を有する光のみを透過する所定のノ ンドパスフィルタを介して得られた測定値で 補正して吸光度を算出してもよい。
このように構成された吸光度測定装置 2 0 0によれば、 ピぺットアダプタ 2 2
0の側壁が角錐状を成しており、 この側壁の所定部分が嵌め込まれて装着される (嵌着される) 装着孔 2 9を有する筐体 5に吸光度測定用ピぺット 2が固定され るので、 着脱が極めて簡易である。 また、 装着時の振動が抑えられ、 振動による 試料 9のチップ 3 0からの漏出を防止できる。
さらに、 吸光度測定用ピペット 2が安定に且つ強固に保持されるので、 装着位 置の再現性が高く、 試験光の光路における光軸のずれが低減される。 よって、 吸 光度の測定精度を向上できる。 この場合、 ピぺットアダプタ 2 2 0側壁及び筐体 5の装着孔 2 9の寸法精度を高めれば、 装着位置の再現性が一層向上される。 さ らにまた、 試験光の各波長成分を略同時 (実質的に同時) に検出できるので、 上 述した図 5に示す検出光学系の奏する効果と同様に、 試料 9の状態変化による吸 光度測定値の誤差を低減できる。 また、 ピペットアダプタは気密性の高い材質であることが望まれるが、 それ故 に、 ピペットアダプタやチップが加熱されて温度が上昇すると、 それらの内部の 空気が熱膨張し、 チップ内の試料を押し出すおそれがある。 本実施形態の吸光度 測定装置 2 0 0では、 測定環境温度 (室温) 上昇や回転モータ 5 3が熱源となる おそれがあるが、 これに対し、 冷却用ファン 3によってチップ 3 0及びその周囲 の冷却及び/又は温度保持がなされているので、 チップ 3 0及びピぺットァダブ 夕 2 2 0の内部空気の膨張が有意に抑えられる。 よって、 試料 9のチップ 3 0か らの漏出を良好に防止できる。 また、 試料 9自体が強制的に冷却されるので、 試 験光の照射による試料 9の加熱が抑制され、 チップ 3 0からの漏出を一層防止可 能である。
さらに、 光源 4 0が筐体 5の外部にあるので、 光源 4 0の輻射熱によるピぺッ トアダプタ 2 2 0やチップ 3 0の温度上昇が十分に防止される。 また、 筐体 5が 光源 4 0の輻射熱で加熱され、 筐体 5からの熱伝導により、 ピペットアダプタ 2 2 0及びチップ 3 0の温度が上昇しても、 チップ 3 0内の試料 9の温度変化を抑 制できる。 したがって、 チップ 3 0からの漏出をより一層防止できる。
さらに、 試験光は、 試料 9を透過する際に屈折され、 チップ 3 0の先端 (試料 吸入口 3 1 ) から様々な出射角で出射されるのに対し、 チヅプ 3 0とフィルタデ イスク 5 9、 及び、 フィルタディスク 5 9と光検出器 6 0が、 それぞれ互いに近 接して配置されているので、 チップ 3 0から出射された試験光の略全てを光検出 器 6 0へ入射させることができる。 したがって、 光検出器 6 0による試験光の検 出効率 (幾何学的効率) が高められ、 より高感度な吸光度測定が可能となる。 次に、 吸光度測定用ピペットの他の実施形態について説明する。 図 9は、 本発 明による吸光度測定用ピぺットの他の実施形態に備わるチップを示す断面図であ る。 この吸光度測定用ピペットは、 図 1に示す吸光度測定用ピペット 1のピぺッ トアダプタ 2 0に、図 9に示すチップ 2 3 0が着脱自在に装着されたものである。 このチップ 2 3 0は、 ピぺットアダプタ 2 0の筒状端部が内部に挿入されて装 着され円錐状の装着部 2 3 1 (挿入部) と、 試料吸入口 3 1が形成された筒状を 成す試料収容部 2 3 2とを有するものであり、 試料収容部 2 3 2の内径 dが、 ピ ぺットアダプタ 2 0の端部の内径に比して小さくなつている。 この吸光度測定用 ピペットでは、 試料 9が試料収容部 2 3 2に収容され、 その状態が保持された状 態で試料 9の吸光度測定が行われる。なお、 試料収容部 2 3 2の長さ (図示高さ) は特に限定されず、 内径 dの均一性 (内部の平行度が) 良好に保時されることが 好ましい。
このようなチップ 2 3 0を有する吸光度測定用ピぺットによれば、 試料 9を通 過する試験光の光路長の再現性が高められる。 よって、 吸光度の測定精度を向上 できる。 また、 筒状の試料収容部 2 3 2をより細く長くすれば、 試料が微量であ つても試験光の透過長を大きくできるので、 より高感度な吸光度測定が可能とな り得る。 さらに、 チップ 2 3 0の内面は、 試料 9の液切れをよくするために、 疎 水性が高いことが望まれる。 このとき、 試料収容部 2 3 2の内径 dをより小さく することは、 試料 9の漏出を防止できるので好ましいことである。
また、 チップ 2 3 0は、 試験光を実質的に遮断することが可能な遮光性部材、 つまり、 試験光が実質的に透過しない遮光性部材で形成されることが好ましい。 このような部材から成るチップ 2 3 0としては、 例えば、 黒色のポリプロピレン 製チップが挙げられる。特に、チップ 2 3 0の試料収容部 2 3 2の内径が小さく、 試験光の一部がチップ 2 3 0を透過して光検出器へ入射してしまうおそれがある 場合には、このような実質的に試験光を透過させないチップは非常に有効である。 なお、 吸光度測定用ピペット 1, 2を固定するには、 吸光度測定用ピペットを 極力鉛直に保持し、 且つ、 試料 9をチップ 3 0, 2 3 0に吸入する際に同一又は 略同一の吸入力で吸入できるようにすればよく、 上述した磁石による方法及び筐 体 5に装着することに限られず、 例えば、 通常のピペットスタンド等の治具を用 いてもよい。 また、 試料 9をチップ 3 0, 2 3 0に吸入する際に、 チップ 3 0 , 2 3 0内の減圧速度及び負圧が毎回同一又は略同一となるようにしてもよい。 さらに、 ピぺットアダプタ 2 2 0は、 側壁の少なくとも一部が錘状を成してい ればよく、 例えば、 側壁の一面にテーパ部を有していればよい。 またさらに、 ピ ペットアダプタ 2 2 0の側壁は、 四角錐状でなくともよく、 三角錐状又は五角以 上の角を有する錐状でも構わず、 或いは円錐状 (この場合には、 試験光導入窓 2 3の位置決め手段が必要となる) であってもよい。 また、 吸光度測定装置 2 0 0 では、 冷却用ファン 3に代えて、 又は、 冷却用ファン 3に加えて、 装着孔 2 9及 びノ又はピぺットアダプタ 2 2 0の側壁にペルチェ素子等の冷却用素子 (温度調 整手段) を設置してもよい。
さらに、 光源 4 0、 回転モータ 5 3等の熱源となり得るものに冷却用ファンを 設けてもよい。 この場合、 吸光度測定装置 2 0 0においては、 光源 4 0を筐体 5 内に配置してもよく、 ピぺヅトアダプタ 2 2 0が熱伝導率の高い材質で形成され ているときには、 ピペットアダプタ 2 2 0を積極的に冷却すると好適である。 ま たさらに、 フィルタディスク 5 9は、 2種類のバンドパスフィル夕又は 4種類以 上のバンドパスフィル夕を有してもよい。 またさらに、 光源 4 0として波長可変 レーザを用いれば、分光検出器 2 6 0を用いずとも、吸光スぺクトルが得られる。 また、 以上の実施態様は、 手動式ピペットに係るものであるが、 本発明をハイ スル一プットスクリーニング装置のような自動式ピぺッ卜に適用することも可能 である。 自動式ピペットは、 試料の吸入の再現性が優れることに加えて、 光学系 の再現性も高いという特性を有している。 よって、 本発明を自動式ピペットに適 用すれば、 微量試料の吸光度測定に極めて好適な装置システムの構築が可能とな る o
次に、 このような自動式ピペットを用いた装置の一例について説明する。 図 1 0は、 本発明による吸光度測定装置の第 3実施形態を示す斜視図である。 スクリ 一二ング装置 3 0 0 (吸光度測定装置) は、 装置本体 1 1 4に複数並置されたピ ペットアダプタ 2 0を備え、 これらのピペットアダプタ 2 0の下方に検出光学系 1 1 9が設けられたものである。 この検出光学系 1 1 9は、 ピペットアダプタ 2 0の数に応じた光検出器を有しており、 試験光の光軸に対して垂直方向 (図示前 後方向) に可動する。 なお、 ピペットアダプタ 2 0が可動であってもよく、 この 場合、 検出光学系 1 1 9は固定されていても可動でもよい。 また、 ピペットァダ プ夕 2 0は単数であってもよい。
また、 検出光学系 1 1 9の下方には、 X—, Υ— , Z—ステージ 1 0 3 , 1 0
4, 1 0 5がそれぞれ配置されており、 X—ステージ 1 0 3上に載置されるマイ クロプレート等の備品が 3次元的に移動されるようになっている。 なお、 ピぺッ トアダプタ 2 0が 3次元的に可動するようになっていてもよく、 この場合、 マイ クロピペット等の備品が載置される何れかひとつのステージが設けられていれば よい。 さらに、 X—ステージ 1 0 3の側部上方には、 備品を置くための保持台 1 1 0が設置されている。
このスクリーニング装置 3 0 0による吸光度測定 (スクリーニング) の手順と しては、 以下に示す手順が例示される。
( 1 ) まず、 チヅプ 2 3 0及びマイクロプレート 1 0 2を保持台 1 1 0の所定部 位にセヅ トする。
( 2 )被検体を含む試料 9及び標準試料(吸光度既知の試料或いはブランク試料) 1 1 2がそれぞれ入れられたマイクロプレート 1 0 2 a, 1 0 2 bを X—ステ一 ジ 1 0 3の中央部に配置する。
( 3 ) X— , Υ— , Z—ステージ 1 0 3 , 1 0 4 , 1 0 5を馬区動し、 チップ 2 3 0を保持台 1 1 0上から X—ステージ 1 0 3上へ受け取り、 チップ 2 3 0をピぺ ヅトアダプタ 2 0の直下方へ移動させる。
( 4 ) Z—ステージ 1 0 5を上下駆動し、 複数のピペットアダプタ 2◦にチヅプ 2 3 0を一度に装着させる。
( 5 ) X—及び Y—ステージ 1 0 3 , 1 0 4を駆動し、 標準試料 1 1 2の入った マイクロプレート 1 0 2 bをチップ 2 3 0の直下方へ移動させる。
( 6 ) Z—ステージ 1 0 5を上下駆動し、 チップ 2 3 0の先端部をマイクロプレ —ト 1 0 2 bの標準試料 1 1 2中に挿入する。
( 7 ) 装置本体 1 1 4に内臓された注入ュニット (図示せず;パイプ 1 0 8に接 続されている) により、 マイクロプレート 1 0 2上から標準試料 1 1 2をチヅプ 2 3 0へ吸入する。 このときの吸入速度は、 図示しない制御解析用コンピュータ に予め設定しておいた速度とする。
( 8 )検出光学系 1 1 9を、 装置本体 1 1 4から手前にスライ ドさせる。 そして、 装置本体 1 1 4に内臓された光源 (図示せず) から光ファイバ 1 2 3を介して試 験光をピぺットアダプタ 2 0へ導入する。 試験光は、 ピぺットアダプタ 2 0内の 図示しない反射鏡で曲げられて、 チップ 2 3 0へ導入される。
( 9 ) チップ 2 3 0内に収容された標準試料 1 1 2を透過した試験光を検出光学 系 1 1 9により検出する。
( 1 0 ) 標準試料 1 1 2の測定が終了した後、 検出光学系 1 1 9を後方 (装置本 体 1 1 4側) ヘスライ ドさせて初期位置に戻す。
( 1 1 ) チップ 2 3 0内の標準試料 1 1 2を、 X—ステージ 1 0 3上に用意して おいたマイクロプレート 1 1 3 bへ滴下して完全に排出する。 このときの滴下速 度は、 制御解析用コンピュータに予め設定しておいた速度とする。
( 1 2 ) 次に、 標準試料 1 1 2の場合と同様にして、 マイクロプレート 1 0 2 a 中の試料 9をチップ 2 3 0内に吸入し (吸入速度は標準試料 1 1 2の場合と同じ にする)、 試験光の検出を行う。 測定終了後、 チップ 2 3 0内の標準試料 1 1 2 を、 X—ステージ 1 0 3上に用意しておいたマイクロプレート 1 1 3 aへ滴下し て完全に排出する。このときの滴下速度は、標準試料 1 1 2の場合と同じにする)。 以上の一連の操作は、 制御解析用コンピュータにより所定のシーケンスに従つ て自動で実施され得る。 これにより、 多数の試料を連続式又はバッチ式で迅速に 処理できるので、 吸光度測定の測定効率が格段に高められる。 しかも、 本発明に よるピペットアダプタ 2 0及びチップ 2 3 0を用いるので、 微量試料に対する高 精度及び再現性の高い迅速な測定が可能となる。 〈実施例〉
以下、 実施例に基づき本発明を具体的に説明するが、 本発明はその要旨を超え ない限り以下の実施例に限定されるものではない。
〈実施例 1〉
ピペットアダプタとして、 合成石英ガラスから成る試験光導入窓 23及び反射 鏡 24を有する図 2に示す構成のピぺットアダプタ 20を用い、 吸光度測定装置 として、 図 3に示す構成の吸光度測定装置 100を使用して、 試料の吸光度測定 を了つた。
また、 他の構成部材としては、 以下に示すものを用いた。
1) チップ 30 : 1000 1用の汎用品
2 ) ピペット 10 : G i 1 s o n社製の P i p e t man
3) 光源 40 :浜松ホトニクス社製の重水素ランプ (型番 C 631 1 - 50)
4 ) シャツ夕 45 :コパル社製の電子シャツ夕
5) ノ ンドパスフィルタ 52 : Me l l e sGr i o t社製の最大透過波長 26 Onmの干渉フィル夕、 及び、 朝日分光社製の最大透過波長 320 nmの干渉フ ィル夕の何れか一方を選択
6) 光検出器 60 :浜松ホトニクス社製の光電子増倍管 (型番 R 1527 HA、 検出波長範囲 185 nm〜 650 nm)
7) 電流計 70 :ァドバンテスト社製 (型番 R 8240)
試料の吸光度測定に先立ち、 プランク試料としての蒸留水のみについて吸光度 測定を実施した。 先ず、 吸光度測定用ピペット 1にチップ 30を装着し、 チップ 30内に蒸留水を 200〃1計り取った。 そして、 この状態を維持したまま、 吸 光度測定用ピぺット 1を吸光度測定装置 100の所定位置に装着した。
次に、 バンドパスフィル夕 52として最大透過波長 260 nmのものをセット し、 シャツ夕 45を開いた。 チップ 30内の蒸留水を透過した試験光のうちの波 長 26 O nm成分を光検出器 60により検出し、 電流計 70により電流値 Iw26 oを読み取り、 これをコンピュータ 80に記憶した。 そして、 シャツ夕 45を閉 じた。 なお、 絶対光量が少なく光検出器 60の暗電流が無視できない場合には、 シャッ夕 45を閉じた状態で暗電流を測定して、 試験光測定時の電流値から暗電 流の値を差し引く必要がある。
続いて、 バンドパスフィルタ 52として最大透過波長 320 nmのものをセッ 卜し、 シャツタ 45を開いた。 チップ 30内の蒸留水を透過した試験光のうちの 波長 32 O nm成分を光検出器 60により検出し、 電流計 70により電流値 Iw 320を読み取り、 これをコンピュータ 80に記憶した。 そして、 シャツ夕 45を 閉じた。
次に、 試料 9の吸光度測定を実施した。 試料 9としては、 被検体としての核酸
(塩基配列: AGCGCGCAATTAACCC) を溶質とし、 これを溶媒であ る蒸留水に溶解させた溶液を用いた。 先ず、 吸光度測定用ピペット 1にチップ 3 0を装着し、 試料容器からチップ 30内に試料を 200〃1だけ計り取った。 そ して、 この状態を維持したまま、 吸光度測定用ピペット 1を吸光度測定装置の所 定位置に装着した。
バンドパスフィル夕 52として最大透過波長 260 nmのものをセットし、 シ ャッタ 45を開いた。 チップ 30内の試料を透過した試験光のうちの波長 260 nm成分を光検出器 60により検出し、 電流計 70により電流値 I d 26。を読み 取り、 これをコンピュータ 80に記憶した。 そして、 シャツ夕 45を閉じた。 続いて、 バンドパスフィル夕 52として最大透過波長 320 nmのものをセヅ トし、 シャツ夕 45を開いた。 チップ 30内の試料を透過した試験光のうちの波 長 320 nm成分を光検出器 60により検出し、 電流計 70により電流値 Id32 0を読み取り、 これをコンピュータ 80に記憶した。 そして、 シャツ夕 45を閉 じた。
そして、 試料 9の吸光度を以下の手順で求めた。 溶媒 (蒸留水) での補正係数
Kを下記式 ( 1); K: I W260 I w320 "· ( 1 )
で表される関係で求め、 吸光度 Aを下記式 (2) ;
A =— log10(I d 260/I d 320/K) … (2)
で表される関係で求めた。 その結果、 試料 9の吸光度 Aは 0. 339であった。 また、 チップ 30内の試料における光路長 Lを測定し、 下記式 (3) ;
L= 1. 85 cm … (3)
を得た。 これより、 光路長 1 cm当たりの吸光度 A cは、 下記式 (4) ;
Ac = 0. 339/L= 0. 183 - (4)
で与えられる値であった。
〈実施例 2 >
吸光度測定装置 1 00の代わりに図 7及び 8に示す構成の吸光度測定装置 20 0を用い、 また、 チヅプ 30の代わりに図 9に示すチップ 230を用い、 実施例 1と同様にして同一試料 9の吸光度測定を 1 0回実施した。 なお、 フィル夕ディ スク 59のバンドバスフィルタは、 実施例 1で用いた 2種類のバンドパスフィル 夕とした。 その結果、 試料 9の吸光度 Acの平均値は、 0. 1 82であり、 変動 率はこの平均値に対して ±4. 8%以下であった。
〈参照例 1〉
実施例で得られた試料 9の吸光度のクロスチェックを行うため、 B e ckma n分光光度計 (型番 DU— 7500) により同一試料 9の吸光度を測定したとこ ろ、 光路長 1 cm当たりの吸光度は 0. 1 87であった。 この値と実施例 1で得 られた吸光度との差異は、 0. 004 (約 2%) であり、 これより、 本発明の吸 光度測定装置によれば、 試料の吸光度を精度よく測定できることが確認された。 産業上の利用可能性
以上、 詳細に説明したとおり、 本発明によれば、 ピペットとチップとの間にピ ペットアダプタを装着して、 ピペットアダプタの内部空間に試験光を導入し、 そ の試験光をチップの試料吸入口に向けて照射することにより、 チップ内の試料の 吸光度を測定する。 すなわち、 試料をセルに移し替えることなく、 試料をチップ 内に計り取ったままの状態で、 その試料の吸光度を測定することができる。 した がって、 試料を回収するステップを省くことができ、 回収に伴う試料のコンタミ ネーシヨンの発生が回避され、 また、 吸光度測定用の特別なセルの使用が不要で あって、 微量試料の吸光度測定が迅速に行われる。 また、 従来の市販のチップを 用いることができるので安価であり、 さらに、 使用後のチップを廃棄することも できる。

Claims

言青求の範囲
1 . 被検体を含む試料の吸光度測定にピぺットと共に用いられるピぺットァダ プ夕であって、
前記ピペットと、 前記試料を収容可能なチップとの間に装着可能であり、 装着 時に前記ピぺット及び前記チップそれぞれの内部の空間と連続する内部空間を有 し、 且つ、 外部より該内部空間に試験光が導入されると共に該試験光を前記チッ プの試料吸入口に向けて照射する、 試験光導入手段を備える、
ことを特徴とするピぺットアダプタ。
2 . 前記試験光導入手段は、
外部より前記内部空間に前記試験光を導入する試験光導入窓と、
前記試験光導入窓により前記内部空間へ導入された前記試験光を前記チップの 試料吸入口に向けて反射させる反射鏡と、
を備えることを特徴とする請求の範囲第 1項記載のピぺットアダプタ。
3 . 前記試験光導入手段は、 外部より導波させた前記試験光を前記内部空間に 設けられた一端から前記チップの試料吸入口に向けて出射する光ファイバを備え る、 ことを特徴とする請求の範囲第 1項又は第 2項に記載のピぺットアダプタ。
4 . 前記光ファイバの前記一端の近傍に設けられ、 且つ、 前記試験光を集光す る試験光集光手段を更に備える、 ことを特徴とする請求の範囲第 3項記載のピぺ ットアダプタ。
5 . 前記試験光導入手段は、 外部より前記内部空間に導入される前記試験光の うち所定波長帯域の成分のみを選択して前記チップの試料吸入口に向けて照射す る、 ことを特徴とする請求の範囲第 1項〜第 4項の何れか一項に記載のピぺット アダプタ。
6 . 請求の範囲第 1項〜第 5項の何れか一項に記載のピペットアダプタと、 該 ピぺットアダプタに装着可能なピぺッ卜とを備えることを特徴とする吸光度測定 用ピぺヅ ト。
7 . 略錐状を成して前記ピペットアダプタが挿入される挿入部と、 筒状を成し て端部に試料吸入口が形成されている試料収容部とを有するチップを更に備える、 ことを特徴とする請求の範囲第 6項に記載の吸光度測定用ピペット。
8 . 被検体を含む試料の吸光度を測定する吸光度測定装置であって、
試験光を出力する光源と、
前記光源から出力された前記試験光が内部空間に導入され、 前記試料を収容可 能なチップが装着され、 且つ、 該チップの試料吸入口に向けて前記試験光を照射 する請求の範囲第 6項又は第 7項に記載の吸光度測定用ピぺットと、
前記チップの試料吸入口から外部に出力された前記試験光を検出する検出光学 系と、
を備えることを特徴とする吸光度測定装置。
9 . 前記チップに前記試料が収容された状態において前記検出光学系により検 出された試験光の強度と、前記チップに前記試料が収容されていない状態、又は、 前記チップに前記被検体が含まれていないブランク試料が収容された状態におい て前記検出光学系により検出された試験光の強度と、 に基づいて前記チップ内に ある前記試料の吸光度を算出する演算手段を更に備える、 ことを特徴とする請求 の範囲第 8項に記載の吸光度測定装置。
1 0 . 前記検出光学系は、 前記チップの試料吸入口から外部に出力された前記 試験光のうち、 互いに異なる波長を有する複数の成分の強度を同時又は略同時に 検出可能なものである、 ことを特徴とする請求の範囲第 8項又は第 9項に記載の 吸光度測定装置。
1 1 . 少なくとも前記チップを冷却し又は該チップの温度を一定に保持する温 度調整手段を更に備えることを特徴とする請求の範囲第 8項〜第 1 0項の何れか 一項に記載の吸光度測定装置。
1 2 . 前記ピぺットアダプタは、 少なくとも一部が錘状を成す側壁を有してお
> 、 前記ピぺットアダプタにおける錘状を成す側壁の所定部分が嵌着可能な孔部を 有する保持手段を更に備える、
ことを特徴とする請求の範囲第 8項〜第 1 1項の何れか一項に記載の吸光度測定 1 3 . 被検体を含む試料の吸光度を測定する吸光度測定方法であって、 請求の範囲第 6項又は第 7項に記載の吸光度測定用ピぺッ卜に、 前記試料を収 容可能なチップを装着する工程と、
前記チップに、 前記試料、 又は、 前記被検体を含まないブランク試料を収容す る工程と、
前記吸光度測定用ピペットの内部空間に外部より試験光を導入し、 前記チップ の試料吸入口から外部に出力された前記試験光を検出する工程と、
前記チップに前記試料が収容された状態において検出した試験光の強度と、 前 記チップに前記試料が収容されていない状態、 又は、 前記チップに前記ブランク 試料が収容された状態において検出した試験光の強度と、 に基づいて前記チップ 内にある前記試料の吸光度を算出する工程と、
を備えることを特徴とする吸光度測定方法。
1 4 . 前記試験光を検出する工程においては、 前記チップの試料吸入口から外 部に出力された前記試験光のうち、 互いに異なる波長を有する複数の成分の強度 を同時又は略同時に検出する、 ことを特徴とする請求の範囲第 1 3項記載の吸光 度測定方法。
1 5 . 前記試験光を検出する工程においては、 少なくとも前記チップを冷却し 又は該チップの温度を一定に保持しながら前記試験光を検出する、 ことを特徴と する請求の範囲第 1 3項又は第 1 4項に記載の吸光度測定方法。
1 6 . 請求の範囲第 1項〜第 5項の何れか一項に記載のピぺットアダプタに装 着可能であり、
被検体を含む試料が収容され、 筒状を成し、 且つ、 中心軸に沿う断面における 内壁が略平行である試料収容部を有する、
ことを特徴とするチップ。
1 7 . 請求の範囲第 1項〜第 5項の何れか一項に記載のピぺットアダプタに装 着可能であり、
被検体を含む試料に照射される試験光を実質的に遮断することが可能な遮光性 部材で形成されたものである、
ことを特徴とするチップ。
PCT/JP2000/000244 1999-01-25 2000-01-20 Adaptateur de pipette, pipette de mesure par absorbance, pointe, et procede et appareil de mesure par absorbance WO2000043751A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00900831A EP1054250B1 (en) 1999-01-25 2000-01-20 Pipette adaptor, pipette for absorbance measurement, method and apparatus for absorbance measurement
JP2000582473A JP3330929B2 (ja) 1999-01-25 2000-01-20 ピペットアダプタ、吸光度測定用ピペット、チップ、吸光度測定装置及び吸光度測定方法
DE60000386T DE60000386T2 (de) 1999-01-25 2000-01-20 Adapter für eine pipette, pipette zur absorptionsmessung, verfahren und vorrichtung zur absorptionsmessung
US09/536,846 US6396584B1 (en) 1999-01-25 2000-03-28 Pipette adapter, absorbance measuring pipette, tip, absorbance measuring apparatus, and absorbance measuring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/15971 1999-01-25
JP1597199 1999-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/536,846 Continuation-In-Part US6396584B1 (en) 1999-01-25 2000-03-28 Pipette adapter, absorbance measuring pipette, tip, absorbance measuring apparatus, and absorbance measuring

Publications (1)

Publication Number Publication Date
WO2000043751A1 true WO2000043751A1 (fr) 2000-07-27

Family

ID=11903609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000244 WO2000043751A1 (fr) 1999-01-25 2000-01-20 Adaptateur de pipette, pipette de mesure par absorbance, pointe, et procede et appareil de mesure par absorbance

Country Status (5)

Country Link
US (1) US6396584B1 (ja)
EP (1) EP1054250B1 (ja)
JP (1) JP3330929B2 (ja)
DE (1) DE60000386T2 (ja)
WO (1) WO2000043751A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021593A (ja) * 2002-05-20 2003-01-24 Aloka Co Ltd 検体検査装置
WO2005047868A1 (ja) * 2003-11-14 2005-05-26 Hamamatsu Photonics K.K. 蛍光測定装置
WO2005106433A1 (ja) * 2004-04-30 2005-11-10 Precision System Science Co., Ltd. 光情報読取装置
JP2013224950A (ja) * 2008-12-25 2013-10-31 Universal Bio Research Co Ltd 検体の前処理方法、および生体関連物質の測定方法
JP2014502361A (ja) * 2010-12-08 2014-01-30 キアゲン レイク コンスタンツ ゲゼルシャフト ミット ベシュレンクテル ハフツング 試料中の核酸の定量
US9255878B2 (en) 2009-05-07 2016-02-09 Monsanto Technology Llc Measurement of nitrate-nitrogen concentration in soil based on absorption spectroscopy
JP2016524124A (ja) * 2013-03-15 2016-08-12 ハイコア バイオメディカル インコーポレイテッド サンプルの発光及び蛍光測定を行うための装置及び関連する方法
WO2017104693A1 (ja) * 2015-12-15 2017-06-22 ユニバーサル・バイオ・リサーチ株式会社 吸光度測定装置およびその方法
JP2019203885A (ja) * 2018-05-08 2019-11-28 サートリウス・ビオヒット・リキッド・ハンドリング・オイSartorius Biohit Liquidhandling Oy 液体ハンドリングシステムおよびチップの状態を分析するための方法
US10641756B2 (en) 2012-08-03 2020-05-05 Winfield Solutions, Llc Automated soil measurement

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004522989A (ja) * 2000-12-15 2004-07-29 ザ テクノロジー パートナーシップ パブリック リミテッド カンパニー 光学走査装置機器
US20030022382A1 (en) * 2001-07-26 2003-01-30 Negersmith Kent M. Apparatus for the analysis for blood samples
US6764651B2 (en) * 2001-11-07 2004-07-20 Varian, Inc. Fiber-optic dissolution systems, devices, and methods
AU2003226075B2 (en) * 2002-04-12 2008-09-25 Instrumentation Laboratory Company Immunoassay probe
GB0216934D0 (en) * 2002-07-20 2002-08-28 Council Cent Lab Res Councils Optical apparatus
US7517694B2 (en) * 2002-07-26 2009-04-14 Ortho-Clinical Diagnostics, Inc. Metering tip with internal features to control fluid meniscus and oscillation
US20050101025A1 (en) * 2003-11-12 2005-05-12 Ho Winston Z. Apparatus for proteins and nucleic acids analysis
US7537735B2 (en) * 2004-05-21 2009-05-26 Biomerieux, Inc. Aspirator systems having an aspirator tip optical level detector and methods for using the same
FI20040725A0 (fi) * 2004-05-27 2004-05-27 Thermo Electron Oy Säiliö
US8211386B2 (en) 2004-06-08 2012-07-03 Biokit, S.A. Tapered cuvette and method of collecting magnetic particles
CN101010579A (zh) 2004-07-27 2007-08-01 株式会社三菱化学药得论 被检试样的自动判别方法
US7224448B2 (en) * 2004-11-16 2007-05-29 Agilent Technologies, Inc. Apparatus and methods for evaluating an optical property of a liquid sample
US7277167B2 (en) * 2005-09-13 2007-10-02 Agilent Technologies, Inc. Modular cuvettes and methods for use thereof
US20070081159A1 (en) * 2005-10-11 2007-04-12 Giffin Kristin M Apparatus and methods for evaluating an optical property of a liquid sample
US8072603B2 (en) 2006-02-02 2011-12-06 E I Spectra, LLC Fluorescence-activated cell detector
US20110189714A1 (en) * 2010-02-03 2011-08-04 Ayliffe Harold E Microfluidic cell sorter and method
US9452429B2 (en) 2006-02-02 2016-09-27 E. I. Spectra, Llc Method for mutiplexed microfluidic bead-based immunoassay
US9293311B1 (en) 2006-02-02 2016-03-22 E. I. Spectra, Llc Microfluidic interrogation device
US8616048B2 (en) * 2006-02-02 2013-12-31 E I Spectra, LLC Reusable thin film particle sensor
WO2009045343A1 (en) * 2007-09-29 2009-04-09 El Spectra, Llc Instrumented pipette tip
DK2657699T3 (en) 2007-10-02 2017-07-10 Theranos Inc Modular point-of-care devices and their applications
EP2215452B1 (en) 2007-11-09 2016-09-28 Hach Company Automatic optical measurement system and method
EP2214833A4 (en) * 2007-11-27 2012-11-14 El Spectra Llc PIPETTE INSTRUMENT ON FLUORESCENCE BASIS
US8182635B2 (en) * 2008-04-07 2012-05-22 E I Spectra, LLC Method for manufacturing a microfluidic sensor
US20100167412A1 (en) * 2008-12-31 2010-07-01 Caibin Xiao Sensor system for determining concentration of chemical and biological analytes
US8233146B2 (en) * 2009-01-13 2012-07-31 Becton, Dickinson And Company Cuvette for flow-type particle analyzer
CH700842A1 (de) * 2009-04-21 2010-10-29 Integra Biosciences Ag Handpipettiergerät.
EP2477744A1 (en) * 2009-09-18 2012-07-25 Minifab (Australia) Pty Ltd Instrumented pipette
EP2490814B1 (en) * 2009-10-22 2015-01-14 Brian Page Pipette, apparatus and kit for light measurement and method
US8790592B2 (en) 2010-02-04 2014-07-29 Bio-Rad Laboratories, Inc. Measuring multi-analyte samples using an in-line flow cell
FR2963252A1 (fr) * 2010-08-02 2012-02-03 Biomerieux Sa Embout pour dispositif de pipetage comportant une partie apte a proteger ledit dispositif
CN106290159A (zh) 2011-01-21 2017-01-04 提拉诺斯公司 样品使用最大化的系统和方法
US20140170735A1 (en) 2011-09-25 2014-06-19 Elizabeth A. Holmes Systems and methods for multi-analysis
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US8475739B2 (en) 2011-09-25 2013-07-02 Theranos, Inc. Systems and methods for fluid handling
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US8840838B2 (en) 2011-09-25 2014-09-23 Theranos, Inc. Centrifuge configurations
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US8804105B2 (en) 2012-03-27 2014-08-12 E. I. Spectra, Llc Combined optical imaging and electrical detection to characterize particles carried in a fluid
EP2859325A2 (en) 2012-06-10 2015-04-15 Bio-Rad Laboratories, Inc. Optical detection system for liquid samples
GB2558809B (en) 2013-01-09 2018-11-07 International Moisture Analysers Ltd Optical chemical analyser
EP3922965A3 (en) * 2013-08-07 2022-03-30 Wayne State University Hand-held micro-raman based detection instrument and method of detection
GB2519132A (en) 2013-10-11 2015-04-15 Univ Singapore Disposable photometric measurement tip
GB2537593A (en) * 2015-03-27 2016-10-26 Page Brian Pipette comprising light source and detector
WO2017175871A1 (ja) * 2016-04-08 2017-10-12 ユニバーサル・バイオ・リサーチ株式会社 汎用光測定装置およびその方法
TWI657834B (zh) * 2017-09-21 2019-05-01 緯創資通股份有限公司 自動化移液設備及其移液模組
WO2020045080A1 (ja) * 2018-08-31 2020-03-05 株式会社島津製作所 分析装置、分析方法、微量液体採取装置、および微量液体採取方法
US11698304B2 (en) 2019-02-15 2023-07-11 Wayne State University Apparatuses, systems, and methods for detecting materials based on Raman spectroscopy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163847A (en) * 1981-04-02 1982-10-08 Fuji Kogaku Kikai Kk Measuring instrument of quantity of bilirubin
JPH0424055U (ja) * 1990-06-21 1992-02-27
JPH04259847A (ja) * 1990-10-12 1992-09-16 Tytronics Inc 光学分析装置及びその校正方法
JPH0616852U (ja) * 1992-07-31 1994-03-04 株式会社島津製作所 分光光度計用セル
JPH07218423A (ja) * 1994-02-04 1995-08-18 Bio Sensor Kenkyusho:Kk 液体の光学的測定装置
JPH0824674A (ja) * 1994-07-12 1996-01-30 Bio Sensor Kenkyusho:Kk 溶液吸引器具および吸引式溶液内微量物質測定装置
JPH08338849A (ja) * 1995-04-11 1996-12-24 Precision Syst Sci Kk 液体の吸引判別方法およびこの方法により駆動制御される分注装置
US5844686A (en) * 1995-09-21 1998-12-01 Eppendorf-Netheler-Hinz, Gmbh System for pipetting and photometrically evaluating samples

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4566203A (en) * 1981-09-28 1986-01-28 Miles Laboratories, Inc. Apparatus and method useful for removing liquid from the outer surface of cylindrical pipette tube or the like
US5125748A (en) * 1986-03-26 1992-06-30 Beckman Instruments, Inc. Optical detection module for use in an automated laboratory work station
JP2969935B2 (ja) * 1990-11-30 1999-11-02 東ソー株式会社 液定量取出し装置
US5416879A (en) * 1993-03-29 1995-05-16 World Precision Instruments, Inc. Apparatus and method for measuring light absorption in small aqueous fluid samples
JPH09500280A (ja) 1993-07-20 1997-01-14 ユニバーシテイ・オブ・マサチユセツツ・メデイカル・センター 核酸のインビボハイブリッド形成方法
AU4321497A (en) 1996-09-27 1998-04-17 Laboratory Of Molecular Biophotonics Probes for detecting polynucleotides and detection method
EP0965635A1 (en) 1997-02-03 1999-12-22 Laboratory of Molecular Biophotonics Method for monitoring transcriptional synthesis of rna and apparatus therefor
US6091490A (en) * 1998-07-30 2000-07-18 The United States Of America As Represented By The Secretary Of The Navy Fiber-optic pipette (FOP) for rapid long pathlength capillary spectroscopy
US6104485A (en) * 1998-10-07 2000-08-15 World Precision Instruments, Inc. Method and apparatus for optical measurement of very small fluid samples

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163847A (en) * 1981-04-02 1982-10-08 Fuji Kogaku Kikai Kk Measuring instrument of quantity of bilirubin
JPH0424055U (ja) * 1990-06-21 1992-02-27
JPH04259847A (ja) * 1990-10-12 1992-09-16 Tytronics Inc 光学分析装置及びその校正方法
JPH0616852U (ja) * 1992-07-31 1994-03-04 株式会社島津製作所 分光光度計用セル
JPH07218423A (ja) * 1994-02-04 1995-08-18 Bio Sensor Kenkyusho:Kk 液体の光学的測定装置
JPH0824674A (ja) * 1994-07-12 1996-01-30 Bio Sensor Kenkyusho:Kk 溶液吸引器具および吸引式溶液内微量物質測定装置
JPH08338849A (ja) * 1995-04-11 1996-12-24 Precision Syst Sci Kk 液体の吸引判別方法およびこの方法により駆動制御される分注装置
US5844686A (en) * 1995-09-21 1998-12-01 Eppendorf-Netheler-Hinz, Gmbh System for pipetting and photometrically evaluating samples

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1054250A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021593A (ja) * 2002-05-20 2003-01-24 Aloka Co Ltd 検体検査装置
WO2005047868A1 (ja) * 2003-11-14 2005-05-26 Hamamatsu Photonics K.K. 蛍光測定装置
JP2005147826A (ja) * 2003-11-14 2005-06-09 Hamamatsu Photonics Kk 蛍光測定装置
WO2005106433A1 (ja) * 2004-04-30 2005-11-10 Precision System Science Co., Ltd. 光情報読取装置
US7667184B2 (en) 2004-04-30 2010-02-23 Percision System Science Co., Ltd. Optical information reader
JP2017072603A (ja) * 2008-12-25 2017-04-13 ユニバーサル・バイオ・リサーチ株式会社 生体関連物質測定装置
JP2013224950A (ja) * 2008-12-25 2013-10-31 Universal Bio Research Co Ltd 検体の前処理方法、および生体関連物質の測定方法
US9753032B2 (en) 2008-12-25 2017-09-05 Universal Bio Research Co., Ltd. Method for pretreating specimen and method for assaying biological substance
US9182395B2 (en) 2008-12-25 2015-11-10 Universal Bio Research Co., Ltd. Method for pretreating specimen and method for assaying biological substance
US9255878B2 (en) 2009-05-07 2016-02-09 Monsanto Technology Llc Measurement of nitrate-nitrogen concentration in soil based on absorption spectroscopy
US9714901B2 (en) 2009-05-07 2017-07-25 Monsanto Technology Llc Measurement of nitrate-nitrogen concentration in soil based on absorption spectroscopy
US10488331B2 (en) 2009-05-07 2019-11-26 Winfield Solutions, Llc Measurement of nitrate-nitrogen concentration in soil based on absorption spectroscopy
JP2014502361A (ja) * 2010-12-08 2014-01-30 キアゲン レイク コンスタンツ ゲゼルシャフト ミット ベシュレンクテル ハフツング 試料中の核酸の定量
US10641756B2 (en) 2012-08-03 2020-05-05 Winfield Solutions, Llc Automated soil measurement
JP2016524124A (ja) * 2013-03-15 2016-08-12 ハイコア バイオメディカル インコーポレイテッド サンプルの発光及び蛍光測定を行うための装置及び関連する方法
WO2017104693A1 (ja) * 2015-12-15 2017-06-22 ユニバーサル・バイオ・リサーチ株式会社 吸光度測定装置およびその方法
JPWO2017104693A1 (ja) * 2015-12-15 2018-11-29 ユニバーサル・バイオ・リサーチ株式会社 吸光度測定装置およびその方法
JP2019203885A (ja) * 2018-05-08 2019-11-28 サートリウス・ビオヒット・リキッド・ハンドリング・オイSartorius Biohit Liquidhandling Oy 液体ハンドリングシステムおよびチップの状態を分析するための方法
JP7449046B2 (ja) 2018-05-08 2024-03-13 サートリウス・ビオヒット・リキッド・ハンドリング・オイ 液体ハンドリングシステムおよびチップの状態を分析するための方法

Also Published As

Publication number Publication date
EP1054250A4 (en) 2000-12-27
DE60000386D1 (de) 2002-10-10
US6396584B1 (en) 2002-05-28
DE60000386T2 (de) 2003-01-09
EP1054250A1 (en) 2000-11-22
EP1054250B1 (en) 2002-09-04
JP3330929B2 (ja) 2002-10-07

Similar Documents

Publication Publication Date Title
JP3330929B2 (ja) ピペットアダプタ、吸光度測定用ピペット、チップ、吸光度測定装置及び吸光度測定方法
JP5539367B2 (ja) デュアルサンプルモードの分光光度計
EP2948756B1 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
JP4791625B2 (ja) 分光光度・比濁検出ユニット
US6836332B2 (en) Instrument and method for testing fluid characteristics
JP2691125B2 (ja) 光ファイバアレイの分光光度サンプリングによって細菌の増殖を検出するための方法及び装置
JPS6022649A (ja) 物質の特性を螢光により測定する光学的装置およびその使用方法
ES2534648T3 (es) Pipeta, aparato y conjunto para medición de luz y método
JP2009516188A (ja) 液体測光法の改良
JP2005147826A (ja) 蛍光測定装置
US20160266040A2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
JP5945568B2 (ja) 粒子特性の測定
KR20130123411A (ko) 양자수율 측정장치
JP2020034552A (ja) 検査室用機器内の検出ユニットの検出器によって測定された信号光強度を補正する方法
EP1754045B1 (en) Apparatus for in situ spectroscopic measurements
US20050101025A1 (en) Apparatus for proteins and nucleic acids analysis
US20180024045A1 (en) Pipette Tip, Pipette, Apparatus and Kit for Light Measurement
GB2537593A (en) Pipette comprising light source and detector
EP3908828B1 (en) Device for detection of a bioluminescence reaction of a sample and a hand-held analyzing and measuring apparatus comprising the device
JP6059872B2 (ja) 粒子特性の測定

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2000900831

Country of ref document: EP

Ref document number: 09536846

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000900831

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000900831

Country of ref document: EP