WO2000036346A1 - Conditionneur d'air - Google Patents

Conditionneur d'air Download PDF

Info

Publication number
WO2000036346A1
WO2000036346A1 PCT/JP1999/006934 JP9906934W WO0036346A1 WO 2000036346 A1 WO2000036346 A1 WO 2000036346A1 JP 9906934 W JP9906934 W JP 9906934W WO 0036346 A1 WO0036346 A1 WO 0036346A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
water
conditioning
room
compressed air
Prior art date
Application number
PCT/JP1999/006934
Other languages
English (en)
French (fr)
Inventor
Chun-Cheng Piao
Manabu Yoshimi
Ryuichi Sakamoto
Kazuo Yonemoto
Shotaro Mishina
Akira Kamino
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US09/868,246 priority Critical patent/US6484528B1/en
Priority to EP99959743A priority patent/EP1170559A4/en
Publication of WO2000036346A1 publication Critical patent/WO2000036346A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0085Systems using a compressed air circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only

Definitions

  • the present invention relates to an air conditioner that performs heating using an air cycle that uses air as a refrigerant, and particularly to a measure for improving heating capacity.
  • an air cycle type refrigerator using air as a refrigerant has been known.
  • it is disclosed in the Refrigeration and Air Conditioning Handbook, 4th Edition, Basic Edition, pp.45 to ⁇ .48, published by the Japan Refrigeration Association.
  • a heating device that uses an air cycle refrigerator as a heat source for heating is a product of The Australian institute oi Remgeranon / r Conditioning and Heating. ⁇ “AIRAH JOURNAL” June 1997 issue ⁇ .16 to p.21.
  • this heating device will be described.
  • the heating device includes a heat source side system (a) and a waste heat side system (f).
  • This heat source side system (a) is configured by connecting a compressor (b), a first heat exchanger (c), a second heat exchanger (d), and an expander (e) in this order, It is configured to perform a refrigeration cycle.
  • the exhaust heat side system (f) is configured by sequentially connecting the second heat exchanger (, the humidifier (g), and the first heat exchanger (c).
  • the exhaust air for ventilation is compressed by the compressor (b).
  • the compressed air flows through the first heat exchanger (c) and the second heat exchanger (d) in order, is expanded by the expander (e), and is discharged outside the room.
  • the exhaust heat side system (f) the supply air for ventilation from the outside flows through the second heat exchanger (d), humidifier (g), and first heat exchanger (c) in this order.
  • the supply air is warmed by heat exchange with the compressed air of the heat source side system (a) in both heat exchangers (d, c) and humidified in the humidifier (g). And supply the heated and humidified air supply to the room, To do.
  • the above-described heating device has a problem that the heating capacity is insufficient and the indoor heating cannot be sufficiently performed.
  • the heating device only the exhaust air for ventilation is allowed to flow through the heat source side system (a).
  • This ventilation volume is determined by the number of occupants (eg, 4 m 3 / hr per lm 2 of floor space) and is determined independently of the heating load.
  • exhaust air for ventilation alone is not enough to achieve the heating capacity that matches the heating load.
  • the above heating system could not increase the air flow in the heat source side system (a), resulting in insufficient heating capacity.
  • the present invention has been made in view of such a point, and an object of the present invention is to secure a sufficient heating capacity in an air conditioner that performs heating using an air cycle. Disclosure of the invention
  • outdoor air flows together with exhaust air for ventilation to a heat source side system that generates heat using an air cycle, thereby increasing the air flow rate in the heat source side system.
  • a first solution means taken by the present invention is directed to an air conditioner that heats and heats room air by an air cycle using air as a refrigerant.
  • a compressor (21) that draws in air from outside and indoors to compress the air, and heats at least conditioning air consisting of indoor air by heat exchange with the compressed air compressed by the compressor (21).
  • Means (30), and an expander (23) for expanding the compressed air after heat exchange by the heating means (30), and the low-temperature air expanded to a low temperature by the expander (23) is discharged outdoors. And the conditioning air heated by the heating means (30) is supplied indoors.
  • the second solution taken by the present invention is the first solution described above, wherein The air taken into the compressor (21) is used as exhaust air discharged from the room for ventilation.
  • a third solution taken by the present invention is the same as the first or second solution, wherein the conditioning air comprises room air and supply air supplied from outside to the room.
  • the water vapor in the air is configured to be able to permeate from a side having a higher partial pressure of water vapor to a lower side.
  • a water removing means (22) having a separation membrane and separating water vapor contained in the compressed air from the compressed air without condensing the water is provided.
  • a fifth solution taken by the present invention is the fourth solution, wherein the separation membrane is formed of a polymer membrane, and is configured such that water vapor is transmitted through internal diffusion of water molecules. It is assumed that.
  • a sixth solution taken by the present invention is the solution according to the fourth solution, wherein the separation membrane has a large number of pores of the same size as the molecular free path, and performs capillary condensation and diffusion of water molecules. Therefore, it is configured such that water vapor is transmitted.
  • a seventh solution taken by the present invention is the solution according to any one of the fourth to sixth claims, wherein the difference in partial pressure of water vapor on both sides of the separation membrane in the water removing means (22) is secured.
  • a pressure reducing means (36) for reducing the pressure on one side of the separation membrane is provided.
  • An eighth solution of the present invention is the seventh solution, wherein a part or all of the water separated from the compressed air by the water removing means (22) is transferred from the expander (23). It supplies to low temperature air.
  • a ninth solution according to the present invention is the twelfth solution, wherein the water separated from the compressed air by the water removing means (22) is supplied to the conditioning air of the heating means (30).
  • Supply means (42) is provided.
  • the tenth solution taken by the present invention is the solution according to any one of the fourth to seventh aspects, wherein a part or the whole of the water separated from the compressed air by the water removing means (22). Is supplied indoors together with the conditioning air.
  • the eleventh solution taken by the present invention is the solution according to any one of the fourth to sixth aspects, wherein the water removing means (22) is brought into contact with one surface of the separation membrane and the compressed air. At the same time, the other surface is brought into contact with the conditioning air, so that the water vapor contained in the compressed air moves to the conditioning air.
  • the 12th solution taken by the present invention is the water supply means (42) for supplying moisture to the conditioning air of the heating means (30) in any one of the first to eighth solutions. ).
  • the water supply means (42) is used for conditioning through a moisture permeable membrane through which moisture can pass. It supplies moisture to the air.
  • the compressor (21) sucks air from inside and outside the room and compresses the air to produce high-temperature, high-pressure compressed air.
  • This compressed air exchanges heat with the conditioning air in the heating means (30).
  • the conditioning air warmed by the heating means (30) is supplied to the room to perform heating.
  • the compressed air after the heat exchange expands in the expander (23) to become low-temperature air, and then is discharged outside the room.
  • the exhaust air for ventilation is sucked into the compressor (21). That is, the heating operation is performed using the discharged air.
  • the supply air is heated together with the room air by the heating means (30), and then supplied indoors.
  • the moisture is removed from the compressed air compressed by the compressor (21) by the moisture removing means (22).
  • the water removing means (22) since the water removing means (22) has a predetermined separation membrane, the water in the compressed air is separated from the compressed air while maintaining the state of steam.
  • the separation membrane is configured to allow water vapor to pass through a predetermined process.
  • the separation pressure is reduced by the pressure reducing means (36).
  • the difference in partial pressure of water vapor on both sides of is secured. That is, one surface of the separation membrane comes into contact with the compressed air, and the other surface is depressurized by the decompression means (36). Therefore, the partial pressure of water vapor on the other surface side of the separation membrane is maintained lower than the partial pressure of water vapor of the compressed air.
  • the water separated from the compressed air by the water removing means (22) is discharged outside the room together with the low-temperature air.
  • the water separated from the compressed air by the water removing means (22) is supplied to the conditioning air by the water supply means (42).
  • the water supply means (4 2) is provided supplying moisture to conditioning air which is being heated in the heating means (30).
  • the moisture separated from the compressed air by the moisture removing means (22) is supplied to the conditioning air, and supplied to the room together with the conditioning air to humidify the room. .
  • one surface of the separation membrane comes into contact with the compressed air, and the other surface comes into contact with the conditioning air. Therefore, in the operating state where the steam partial pressure of the conditioning air is lower than the steam partial pressure of the compressed air, the moisture in the compressed air moves to the discharge air without any external action.
  • the water is supplied to the conditioning air by the water supply means (42).
  • the water supply means (42) supplies water to the conditioning air being heated by the heating means (30).
  • the water supply means (42) gradually supplies water to the discharged air through a predetermined moisture permeable membrane.
  • the compressor (21) sucks air not only from indoors but also from the outdoors, so that a sufficient flow rate of the compressed air can be secured. That is, the flow rate of the high-temperature compressed air that exchanges heat with the conditioning air can be secured by the heating means (30). Therefore, the amount of heat given to the conditioning air in the heating means (30) can be secured, and the heating capacity can be sufficiently exhibited.
  • the heat of the exhaust air for ventilation can be recovered, and the recovered heat can be used for heating the conditioning air. For this reason, an increase in the heating load due to ventilation can be prevented.
  • the cold supply air from the outside can be warmed before being supplied to the room.
  • the comfort of the room can be improved.
  • the temperature of the conditioning air is lower than when the room air is used as the conditioning air.
  • the temperature of the compressed air is further reduced by the heat exchange with the conditioning air in the heating means (30), whereby the drive input of the compressor (21) can be reduced, and the equipment efficiency, that is, COP (performance) Coefficient) can be improved.
  • water can be separated from the compressed air and then sent to the expander (23).
  • the temperature of the low-temperature air from the expander (23) is considerably low (for example, about minus 15 ° C). Therefore, if the low-temperature air contains a large amount of water, the water freezes in the low-temperature air. If the water freezes in the low-temperature air, it becomes snow-like and is blown out together with the low-temperature air to the outside, or accumulates in the blowing passage to block the passage.
  • the present solution since the compressed air is expanded after removing water, the operation can be performed without causing the above-mentioned adverse effects.
  • a separation membrane having a predetermined function can be reliably formed.
  • the partial pressure difference of steam on both sides of the separation membrane can be ensured by the pressure reducing means (36), and the water vapor removing means (22) constantly removes steam from the compressed air. Can be separated. For this reason, it is possible to reliably prevent the above-mentioned adverse effects caused by freezing of water in low-temperature air.
  • the water vapor separated from the compressed air can be discharged outside the room together with the cooling air. Therefore, a configuration for treating the separated steam is not required, and the configuration can be simplified.
  • the ninth or the twelfth solution means, it is possible to humidify the room by supplying moisture to the conditioning air. In this case, when the supplied moisture evaporates, the latent heat is removed from the conditioning air. Therefore, if no measures are taken, the temperature of the conditioning air will drop.
  • moisture is supplied to the conditioning air of the heating means (30). Therefore, the amount of latent heat of evaporation of the supplied water can be given to the conditioning air by heat exchange with the compressed air.
  • the ninth solution means the water separated from the compressed air by the water removing means (22) can be used for indoor humidification.
  • the water separated from the compressed air by the water removing means (22) can be used for indoor humidification.
  • the steam separated from the compressed air can be supplied to the conditioning air in a state of the steam. That is, when the conditioning air is humidified, the water supplied in the conditioning air does not evaporate. Therefore, according to the present solution, the heating means (30) does not need to supply the amount of latent heat of evaporation of moisture from the compressed air to the conditioning air. Therefore, even if the amount of heat exchanged between the compressed air and the conditioning air in the heating means (30) is the same, the conditioning air can be heated to a higher temperature. As a result, the room can be humidified while maintaining a high heating capacity.
  • the moisture is gradually supplied to the conditioning air, the supplied moisture can be surely evaporated in the conditioning air. For this reason, it is possible to prevent a situation in which water that cannot be evaporated is blown into the room together with the conditioning air in the form of droplets.
  • FIG. 1 is a schematic configuration diagram illustrating a configuration of the air-conditioning apparatus according to the embodiment.
  • FIG. 2 is an air state diagram showing the operation of the air-conditioning apparatus according to the embodiment.
  • FIG. 3 is a schematic configuration diagram showing a configuration of a heating device using a conventional air cycle refrigerator as a heat source. BEST MODE FOR CARRYING OUT THE INVENTION
  • the air conditioner (10) of the present embodiment includes a heat source side system (2Q) and a use side system (40).
  • the heat source side system (20) is configured by duct-connecting a compressor (21), a heat exchanger (30), a moisture remover (22), and an expander (23) in that order. It is configured to perform
  • the heat source side system (20) includes a suction duct (24) connected to the inlet side of the compressor (21) and an outlet duct (25) connected to the outlet side of the expander (23). ing.
  • the suction duct (24) is branched into two at the start end side, and is configured to send air to the compressor (21) from inside and outside the room. At that time, the exhaust air discharged from the room for ventilation is sent from the room to the compressor (21).
  • the outlet duct (25) is configured to guide the low-temperature air from the expander (23) to the outside of the room.
  • the utilization side system (40) includes the heat exchanger (30), and an inlet duct (43) and an outlet duct (44) respectively connected to the heat exchanger (30). .
  • This inlet duct (43) branches off at the start end into a first inlet duct and a second inlet duct.
  • One end of the first inlet duct opens into the room, and one end of the second inlet duct opens outside the room.
  • a branch duct (45) having one end connected to the outlet duct (25) is connected.
  • This second duct guides a part of the outdoor air flowing through the duct to the heat exchanger (30) as supply air that is supplied to the room for ventilation, and sends the remainder into the outlet duct (25). It is configured as follows.
  • the inlet duct (43) is configured to send room air from the first inlet duct and supply air from the second inlet duct to the heat exchanger (30) as conditioning air.
  • the outlet duct (44) has one end open to the room, and is configured to supply conditioning air from the heat exchanger (30) to the room.
  • a compressor (35) is connected to the compressor (21).
  • the compressor (21) is connected to the expander (23).
  • the compressor (21) is configured to be driven by the driving force of the motor (35) and the expansion work when air is expanded by the expander (23).
  • the heat exchanger (30) is formed with a compressed air passage (31) through which compressed air flows and a conditioning air passage (32) through which conditioning air flows.
  • One end of the compressed air passage (31) is connected to the compressor (21), and the other end is connected to the moisture remover (22).
  • the conditioning air passage (32) has one end connected to the inlet duct (43) and the other end connected to the outlet duct (44).
  • the heat exchanger (30) is configured to exchange heat between the compressed air in the compressed air passage (31) and the conditioning air in the conditioning air passage (32). That is, the heat exchanger (30) constitutes heating means for heating the conditioning air by heat exchange with the compressed air.
  • the heat exchanger (30) is provided with a humidifying section (42).
  • the humidifying section (42) has a moisture permeable membrane.
  • the conditioning air passage (32) is formed of a moisture-permeable membrane, and a water-side space is formed on the opposite side across the moisture-permeable membrane.
  • the moisture permeable membrane is configured to allow moisture to pass therethrough, and the moisture in the water side space is supplied to the conditioning air in the conditioning air passage (32) through the moisture permeable membrane.
  • the humidifying section (42) constitutes a moisture supply means for supplying moisture to the conditioning air being heated in the heat exchanger (30).
  • the water remover (22) has a separation membrane, and includes a high-pressure space and a low-pressure space separated by the separation membrane.
  • the inlet side is connected to the compressed air passageway (31) of the heat exchanger (30), and the outlet side is connected to the expander (23). Therefore, the compressed air from the heat exchanger (30) flows through the high-pressure space.
  • the moisture remover (22) is configured to move the water vapor from the high-pressure space side to the low-pressure space side when the water vapor in the compressed air passes through the separation membrane. That is, the moisture remover (22) constitutes a moisture removing means for removing moisture from the compressed air.
  • the separation membrane is formed of a polymer membrane such as a fluororesin.
  • the separation membrane is configured such that water vapor permeates by diffusion of water molecules into the membrane.
  • the separation membrane may be formed by a gas separation porous membrane made of xerogel or the like. In this case, the water vapor in the compressed air permeates the separation membrane by capillary condensation and diffusion of water molecules.
  • a vacuum pump (36) is connected to the low-pressure space of the water remover (22).
  • the vacuum pump (36) is for reducing the pressure in the low-pressure space, and constitutes a pressure reducing means for securing a difference in partial pressure of steam between the low-pressure space and the high-pressure space.
  • a first water pipe (51) and a second water pipe (52) are connected to the outlet side of the vacuum pump (36).
  • the first water pipe (51) is connected to the water side space of the humidifying part (42) of the heat exchanger (30), and supplies the water separated from the compressed air by the water remover (22) to the water side space. It is configured to be.
  • the second water pipe (52) is connected to the branch duct (45) and supplies the moisture separated from the compressed air by the moisture remover (22) to the low-temperature air in the blow-off duct (25) together with the outdoor air. It is configured to be.
  • the compressor (21) when the compressor (21) is driven by the motor (35), the exhaust air and the outdoor air are supplied to the compressor (21) through the suction duct (24). Specifically, the discharge air at the flow rate: M0 and the outdoor air at the flow rate: M are mixed and supplied to the compressor (21).
  • the supplied air is compressed from point 1 to point 2 to generate compressed air having a flow rate of M0 + M. This compressed air is compressed to a high temperature, and is sent to the compressed air passage (31) of the heat exchanger (30).
  • the heat exchanger (30) exchanges heat with the conditioning air in the conditioning air passage (32) while the high-temperature compressed air flows through the compressed air passage (31).
  • the compressed air exchanges heat with the conditioning air from point 2 to point 3, and its temperature decreases.
  • moisture from compressed air dm from point 3 to point 3 Is removed.
  • the low-pressure space is depressurized by the vacuum pump (36), and the partial pressure of steam in the low-pressure space is always kept lower than the partial pressure of steam in the high-pressure space.
  • water vapor in the compressed air permeates through the separation membrane due to the difference in the partial pressure of water vapor in both spaces, and moisture is removed from the compressed air.
  • the water vapor in the compressed air is separated from the compressed air in a state of water vapor without condensing.
  • the compressed air from which water has been removed is sent to the expander (23).
  • the compressed air expands from point 3 to point 4 to become low-temperature air.
  • the low-temperature air is discharged outside through the blow-out duct (25).
  • outdoor air is sent into the outlet duct (25) through the branch duct (45). Therefore, the low-temperature air is discharged outside after being mixed with a predetermined amount of outdoor air.
  • the supply air at the flow rate: M0 and the room air at the flow rate: Ml are passed through the inlet duct (43) to the conditioning air passage (32) in the heat exchanger (30). ). That is, supply air at the same flow rate as the exhaust air is sent to the heat exchanger (30) together with room air at a predetermined flow rate.
  • the conditioning air passage (32) of the heat exchanger (30) the conditioning air exchanges heat with the compressed air in the compressed air passage (31) from point 6 to point 7 to heat the conditioning air.
  • the humidifying section (42) of the heat exchanger (30) supplies moisture: d ml to the conditioning air in the conditioning air passage (32). That is, in the humidifying section (42), moisture is supplied to the conditioning air being heated. Therefore, the conditioning air is given the heat of the latent heat of evaporation of the supplied water by heat exchange with the compressed air. In this way, the conditioning air is heated and humidified.
  • the water supplied to the conditioning air in the humidifying section (42): dml is a part of the water: dm separated from the compressed air in the water remover (22). 1 is supplied to the humidifying section (42) through the first water pipe (51).
  • the conditioned air heated and humidified is supplied to the room through the outlet duct (44). As a result, indoor heating and humidification are performed.
  • the compressor (21) sucks in the outdoor air together with the air discharged from the room, a sufficient flow rate of the compressed air can be secured. That is, the flow rate of the high-temperature compressed air that exchanges heat with the conditioning air in the heat exchanger (30) can be secured. For this reason, the amount of heat given to the conditioning air in the heat exchanger (30) can be secured, and the heating capacity can be sufficiently exhibited.
  • the heat of the exhaust air for ventilation can be recovered and the recovered heat can be used for heating the conditioning air. Therefore, an increase in the heating load due to the ventilation can be prevented.
  • the temperature of the conditioning air is lower than when the room air is used as the conditioning air.
  • the temperature of the compressed air is further reduced by the heat exchange with the conditioning air in the heat exchanger (30), which can reduce the drive input of the compressor (21) and reduce the equipment efficiency, that is, the COP ( Performance coefficient) can be improved.
  • the water is separated from the compressed air in the water remover (22) and then sent to the expander (23).
  • the water freezes in the low-temperature air. If the water freezes in this way, it accumulates in the air passages and causes blockages of the passages.
  • expansion is performed after removing water from the compressed air, so that the operation can be performed without causing the above-described adverse effects.
  • the difference in partial pressure of water vapor on both sides of the separation membrane can be secured by the vacuum pump (36), and the water vapor can be always separated from the compressed air by the water remover (22). For this reason, it is possible to reliably prevent the above-described adverse effects caused by freezing of water in low-temperature air.
  • low-temperature air is mixed with a predetermined amount of outdoor air and then discharged outside the room. I am trying to do it. For this reason, the temperature of the air blown out of the room can be made higher than the temperature of the low-temperature air immediately after leaving the expander (23). Therefore, according to this, it is possible to reliably prevent the above-mentioned adverse effects caused by freezing of moisture in low-temperature air.
  • the water separated from the compressed air by the water remover (22) can be used for indoor humidification.
  • water is supplied to the conditioning air in the humidifying section (42) of the heat exchanger (30). Therefore, the amount of latent heat of evaporation of the supplied water can be given to the conditioning air by heat exchange with the compressed air. As a result, it is possible to humidify the conditioning air while maintaining the temperature of the conditioning air sent into the room from the heat exchanger (30) at a predetermined value.
  • the humidifying section (42) since the moisture is gradually supplied to the conditioning air via the moisture permeable membrane, the supplied moisture can be surely evaporated in the conditioning air. For this reason, it is possible to prevent a situation in which water that cannot be evaporated is blown into the room together with the conditioning air in the form of droplets.
  • the water separated from the compressed air by the water remover (22) is supplied to the conditioning air through the first water pipe (51) and to the low-temperature air through the second water pipe (52). .
  • the humidifying section (42) of the heat exchanger (30) is supplied with water through the first water pipe (51).
  • tap water or the like may be supplied to the humidifying section (42) and supplied to the conditioning air.
  • the water separated from the compressed air by the water remover (22) is supplied to the humidifying section (42).
  • one end of the first water pipe (51) is connected to the inlet duct (43), and the separated water is added to the conditioning air in the inlet duct (43). A minute may be supplied.
  • one end of the first water pipe (51) may be connected to the outlet duct (44), and the separated water may be supplied to the conditioning air heated in the heat exchanger (30).
  • the water remover (22) is provided between the heat exchanger (30) and the expander (23) in the heat source side system (20).
  • a moisture remover (22) is installed between the compressor (21) and the heat exchanger (30) to separate moisture from the compressed air before heat exchange with the conditioning air in the heat exchanger (30). You may make it.
  • the moisture separated from the compressed air may be supplied to the conditioning air in the inlet duct (43) or the outlet duct (44). ) May be supplied to the conditioning air.
  • the pressure in the low-pressure space of the moisture remover (22) is reduced by the vacuum pump (36), whereby the moisture is separated from the compressed air by the moisture remover (22).
  • the vacuum pump (36) is not provided, and the configuration of the moisture remover (22) is changed so that the moisture remover (22) passes through the separation membrane when the water vapor in the compressed air passes through the separation membrane. It may be configured to move to.
  • the water remover is provided with a heat source side space and a use side space separated by the separation membrane. Compressed air from the heat exchanger (30) is led into this heat source side space.
  • an entrance duct (43) of the user side system (40) is connected to the user side space, and the user side space is arranged in the middle of the entrance duct (43). The difference in the partial pressure of water vapor between the heat source side space and the use side space causes the water vapor in the compressed air to pass through the separation membrane and move to the conditioning air, and the separated water vapor is supplied to the room together with the conditioning air and Used for humidification.
  • the steam separated from the compressed air can be supplied to the conditioning air in a state of the steam. That is, when the conditioning air is humidified, the water supplied in the conditioning air does not evaporate. Therefore, in the heat exchanger (30), the compression There is no need to supply heat from the air to the conditioning air for the latent heat of evaporation of moisture. For this reason, even if the amount of heat exchanged between the compressed air and the conditioning air in the heat exchanger (30) is the same, the conditioning air can be heated to a higher temperature. As a result, it is possible to humidify the room while maintaining a high heating capacity. Industrial applicability
  • the air conditioner according to the present invention is useful as a device for heating a room, and is particularly suitable for a device that performs a heating operation using an air cycle.

Description

明 細
技術分野
本発明は、 空気を冷媒とする空気サイクルを利用して暖房を行う空気調和装置に 関し、 特に、 暖房能力の向上策に係るものである。 背景技術
従来より、 空気を冷媒とする空気サイクル式の冷凍機が知られている。 例えば、 日本冷凍協会発行 「新版 冷凍空調便覧 第 4版 基礎編」 ρ.45〜ρ.48 に開示され ている。 また、 空気サイクル式の冷凍機を熱源として暖房を行う暖房装置が、 The Australian institute oi Remgeranon / r Conditioning and Heating発 ίτ 「エイァ ィアールエイエッチ ジャーナル (AIRAH JOURNAL) 1 9 9 7年 6月号」 ρ.16〜 p.21に開示されている。 以下、 この暖房装置について説明する。
図 3に示すように、 上記暖房装置は、 熱源側系統 (a) と、 排熱側系統 (f) とを 備えている。 この熱源側系統 (a) は、 圧縮機 (b) と、 第 1熱交換器 (c) と、 第 2 熱交換器 (d) と、 膨張機 (e) とを順に接続して成り、 空気冷凍サイクルを行うよ うに構成されている。 一方、 排熱側系統 (f) は、 第 2熱交換器 ( と、 加湿器 (g) と、 第 1熱交換器 (c) とを順に接続して構成されている。
そして、 熱源側系統 (a) では、 圧縮機 (b) を駆動すると、 この圧縮機 (b) で 換気用の排出空気が圧縮される。 圧縮された空気は、 第 1熱交換器 (c)、 第 2熱交換 器 (d) と順に流れ、 膨張機 (e) で膨張した後に、 室外に排出される。 一方、 排熱 側系統 (f) では、 室外からの換気用の供給空気は、 第 2熱交換器 (d)、 加湿器 (g)、 第 1熱交換器 (c) と順に流れる。 その間に、 この供給空気は、 両熱交換器 (d,c) に おいて熱源側系統(a)の圧縮空気との熱交換によって暖められると共に、 加湿器(g) において加湿される。 そして、 暖められて加湿された供給空気を室内に供給し、 暖房 を行うようにしている。
一解決課題一
しかしながら、 上述の暖房装置では、 暖房能力が不足して室内暖房が充分に行え ないという問題があった。 この点について説明すると、 上記暖房装置では、 熱源側系 統 (a) に換気用の排出空気のみを流すようにしている。 この換気量は、 在室者の人 数等によって定まるものであって (例えば、 床面積 l m2あたり 4 m3/hr)、 暖房負荷 とは無関係に定められる。 そして、 暖房負荷に見合った暖房能力を発揮させるには、 換気用の排出空気だけでは不足となる場合がほとんどである。 それにも拘わらず、 上 記暖房装置では熱源側系統 (a) の空気流量を増やすことができず、 暖房能力の不足 を招いていた。
本発明は、 かかる点に鑑みてなされたものであり、 その目的とするところは、 空 気サイクルを利用して暖房を行う空気調和装置において、 充分な暖房能力を確保する ことにある。 発明の開示
本発明は、 空気サイクルを利用して温熱を生成する熱源側系統に、 換気用の排出 空気と共に室外空気を流し、 該熱源側系統での空気流量を増大させるようにしたもの である。
具体的に、 本発明が講じた第 1の解決手段は、 空気を冷媒とする空気サイクルに よって室内空気を加熱して暖房を行う空気調和装置を対象としている。 そして、 室外 及び室内から空気を吸入して圧縮する圧縮機 (21 ) と、 少なくとも室内空気から成 る調和用空気を上記圧縮機 (21 ) で圧縮された圧縮空気との熱交換により加熱する 加熱手段 (30) と、 該加熱手段 (30) で熱交換した後の圧縮空気を膨張させる膨張 機 (23) とを備え、 該膨張機 (23 ) で膨張して低温となった低温空気を室外へ排出 すると共に、 上記加熱手段 (30 ) で加熱された調和用空気を室内に供給するもので ある。
また、 本発明が講じた第 2の解決手段は、 上記第 1の解決手段において、 室内か ら圧縮機 (21) へ吸入される空気を、 換気のために室内から排出される排出空気と するものである。
また、本発明が講じた第 3の解決手段は、上記第 1又は第 2の解決手段において、 調和用空気を、 室内空気と室外から室内へ供給される供給空気とより構成するもので める o
また、 本発明が講じた第 4の解決手段は、 上記第 1〜第 3の何れか 1の解決手段 において、 空気中の水蒸気が水蒸気分圧の高い側から低い側へ透過可能に構成された 分離膜を有し、 圧縮空気に含まれる水蒸気を凝縮させずに該圧縮空気から分離する水 分除去手段 (22) を設けるものである。
また、 本発明が講じた第 5の解決手段は、 上記第 4の解決手段において、 分離膜 は、 高分子膜から成り、 水分子の膜内部拡散によって水蒸気が透過するように構成さ れたものとするものである。
また、 本発明が講じた第 6の解決手段は、 上記第 4の解決手段において、 分離膜 は、 分子自由行程と同程度の大きさの孔を多数有し、 水分子の毛管凝縮と拡散とによ つて水蒸気が透過するように構成されたものとするものである。
また、 本発明が講じた第 7の解決手段は、 上記第 4〜第 6の何れか 1の解決手段 において、 水分除去手段 (22) における分離膜の両側での水蒸気分圧差を確保する ために該分離膜の一方側を減圧する減圧手段 (36) を設けるものである。
また、 本発明が講じた第 8の解決手段は、 上記第 7の解決手段において、 水分除 去手段 (22) によって圧縮空気から分離した水分の一部又は全部を、 膨張機 (23) からの低温空気に供給するものである。
また、 本発明が講じた第 9の解決手段は、 上記第 7の解決手段において、 水分除 去手段 (22) によって圧縮空気から分離した水分を加熱手段 (30) の調和用空気に 供給する水分供給手段 (42) を設けるものである。
また、 本発明が講じた第 1 0の解決手段は、 上記第 4〜第 7の何れか 1の解決手 段において、 水分除去手段 (22) によって圧縮空気から分離した水分の一部又は全 部を、 調和用空気と共に室内に供給するものである。 また、 本発明が講じた第 1 1の解決手段は、 上記第 4〜第 6の何れか 1の解決手 段において、 水分除去手段 (22) を、 分離膜の一方の表面と圧縮空気と接触させる と共に他方の表面と調和用空気とを接触させ、 該圧縮空気に含まれる水蒸気が該調和 用空気へ移動するように構成するものである。
また、 本発明が講じた第 1 2の解決手段は、 上記第 1〜第 8の何れか 1の解決手 段において、 加熱手段 (30) の調和用空気に水分を供給する水分供給手段 (42) を 設けるものである。
また、 本発明が講じた第 1 3の解決手段は、 上記第 9又は第 1 2の解決手段にお いて、 水分供給手段 (42) が、 水分が透過可能な透湿膜を介して調和用空気に水分 を供給するものである。
—作用一
上記第 1の解決手段では、 圧縮機 (21) が室内及び室外から空気を吸入し、 圧 縮して高温高圧の圧縮空気とする。 この圧縮空気は、 加熱手段 (30) において調和 用空気と熱交換する。 そして、 加熱手段 (30) で暖められた調和用空気を室内に供 給し、 暖房を行う。 一方、 熱交換後の圧縮空気は、 膨張機 (23) で膨張して低温空 気となり、 その後、 室外へ排出される。
また、 上記第 2の解決手段では、 換気用の排出空気が圧縮機 (21) に吸入され る。 つまり、 この排出空気を利用して暖房運転が行われる。
また、 上記第 3の解決手段では、 供給空気は室内空気と共に加熱手段 (30) に よって暖められ、 その後、 室内に供給される。
また、 上記第 4の解決手段では、 水分除去手段 (22) によって、 圧縮機 (21) で圧縮された圧縮空気から水分が除去される。 その際、 水分除去手段 (22) は所定 の分離膜を有するため、 上記圧縮空気中の水分は、 水蒸気の状態を維持したまま該圧 縮空気から分離される。
また、 上記第 5又は第 6の解決手段では、 分離膜が、 所定の過程によって水蒸気 を透過させるように構成される。
また、 上記第 7の解決手段では、 減圧手段 (36) による減圧によって、 分離膜 の両側における水蒸気分圧差が確保される。 つまり、 分離膜の一方の表面が圧縮空気 と接触し、 他方の表面側が減圧手段 (36) によって減圧される。 従って、 分離膜の 他方の表面側の水蒸気分圧は、 圧縮空気の水蒸気分圧よりも低く維持される。
また、 上記第 8の解決手段では、 水分除去手段 (22) で圧縮空気から分離され た水分が低温空気と共に室外へ排出される。
また、 上記第 9の解決手段では、 水分除去手段 (22) で圧縮空気から分離され た水分が、 水分供給手段 (42) によって調和用空気に供給される。 その際、 水分供 給手段 (42) は、 加熱手段 (30) において加熱されつつある調和用空気に水分を供 給する。
また、 上記第 1 0の解決手段では、 水分除去手段 (22 ) で圧縮空気から分離さ れた水分が調和用空気に供給され、 この調和用空気と共に室内に供給されて室内が加 湿される。
また、 上記第 1 1の解決手段では、 分離膜の一方の表面と圧縮空気とが、 他方の 表面と調和用空気とがそれそれ接触する。 従って、 調和用空気の水蒸気分圧が圧縮空 気の水蒸気分圧よりも低い運転状態においては、 外部から何らの作用を加えなくても 圧縮空気中の水分が排出空気へと移動する。
また、 上記第 1 2の解決手段では、 水分が水分供給手段 (42 ) によって調和用 空気に供給される。 その際、 水分供給手段 (42) は、 加熱手段 (30) において加熱 されつつある調和用空気に水分を供給する。
また、 上記第 1 3の解決手段では、 水分供給手段 (42) によって、 所定の透湿 膜を介して水分が排出空気へ徐々に供給される。
一効果—
従って、 上記の解決手段によれば、 圧縮機 (21) が室内からだけでなく室外か らも空気を吸入するため、 圧縮空気の流量を充分に確保することができる。 つまり、 加熱手段 (30) で調和用空気と熱交換する高温の圧縮空気の流量を確保することが できる。 このため、 加熱手段 (30) において調和用空気に与えられる熱量を確保す ることができ、 暖房能力を充分に発揮させることができる。 また、 上記第 2の解決手段によれば、 換気用の排出空気がもつ熱を回収し、 回収 した熱を調和用空気の加熱に利用することができる。 このため、 換気による暖房負荷 の増大を防ぐことができる。
また、 上記第 3の解決手段によれば、 室内空気と供給空気とを混合して調和用空 気としているため、 室外からの冷たい供給空気を暖めてから室内に供給することがで き、 在室者の快適性を向上させることができる。 更に、 本解決手段では、 室内空気を 調和用空気とする場合に比して調和用空気の温度が低下する。 このため、 加熱手段 (30) における調和用空気との熱交換によって圧縮空気は一層低温となり、 これに よって圧縮機 (21) の駆動入力を削減することができ、 機器効率、 即ち C O P (成 績係数) の向上を図ることができる。
また、 上記第 4の解決手段によれば、 圧縮空気から水分を分離した後に膨張機 (23) へ送ることができる。 ここで、 膨張機 (23) からの低温空気の温度は、 かな りの低温 (例えばマイナス 1 5 °C程度) となる。 このため、 低温空気中に水分が多く 含まれていると、 低温空気中で水分が凍ってしまう。 そして、 低温空気中で水分が凍 ると、 雪状になって低温空気と共に室外に吹き出されたり、 吹出用の通路に溜まって 通路が閉塞するなどの弊害が生じる。 これに対し、 本解決手段では圧縮空気から水分 を除去した後に膨張させるため、 上述のような弊害を生ずることなく運転を行うこと ができる。
また、 上記第 5又は第 6の解決手段によれば、 所定の機能を有する分離膜を確実 に構成することができる。
また、 上記第 7の解決手段によれば、 いかなる運転状態においても、 減圧手段 (36) によって分離膜の両側での水蒸気分圧差を確保でき、 水分除去手段 (22) に よって圧縮空気から常に水蒸気を分離することができる。 このため、 上述のような低 温空気中で水分が凍ることによる弊害を確実に防止することができる。
また、 上記第 8の解決手段によれば、 圧縮空気から分離された水蒸気を冷却空気 と共に室外へ排出することができる。 このため、 分離した水蒸気を処理するための構 成を必要とせず、 構成の簡略化を図ることができる。 また、 上記第 9又は第 1 2の解決手段によれば、 調和用空気に水分を供給するこ とによって、 室内の加湿を行うことができる。 この場合、 供給された水分が蒸発する 際に調和用空気から潜熱分の熱を奪う。 このため、 何らの手段も施さなければ、 調和 用空気の温度が低下する。 これに対し、 本解決手段では、 加熱手段 (30) の調和用 空気に水分を供給している。 従って、 調和用空気に対し、 圧縮空気との熱交換によつ て、 供給された水分の蒸発潜熱分の熱量を与えることができる。 この結果、 加熱手段 ( 30) から室内に送られる調和用空気の温度を所定値に維持しつつ、 調和用空気の 加湿を行うことができる。 特に、 上記第 9の解決手段によれば、 水分除去手段 (22) で圧縮空気から分離された水分を、 室内の加湿に利用することができる。
また、 上記第 1 0の解決手段によれば、 水分除去手段 (22 ) で圧縮空気から分 離された水分を、 室内の加湿に利用することができる。
また、 上記第 1 1の解決手段によれば、 圧縮空気から分離された水蒸気を水蒸気 の状態のままで調和用空気に供給することができる。 つまり、 調和用空気を加湿する 際に、 調和用空気中で供給された水分が蒸発することはない。 従って、 本解決手段に よれば、 加熱手段 (30 ) において、 圧縮空気から調和用空気に対して、 水分の蒸発 潜熱分の熱量を供給する必要がなくなる。 このため、 加熱手段 (30) における圧縮 空気と調和用空気との交換熱量が同一であっても、 調和用空気を一層高温にまで暖め ることができる。 この結果、 暖房能力を高く維持しつつ、 室内を加湿することができ る。
また、上記第 1 3の解決手段によれば、調和用空気に水分を徐々に供給するため、 供給した水分を調和用空気中で確実に蒸発させることができる。 このため、 蒸発でき ない水分が液滴の状態で調和用空気と共に室内に吹き出される事態を防止することが できる。 図面の簡単な説明
図 1は、 実施形態に係る空気調和装置の構成を示す概略構成図である。
図 2は、 実施形態に係る空気調和装置の動作を示す空気の状態図である。 図 3は、 従来の空気サイクル冷凍機を熱源とする暖房装置の構成を示す概略構成 図である。 発明を実施するための最良の形態
以下、 本発明の実施形態を図面に基づいて詳細に説明する。
図 1に示すように、 本実施形態の空気調和装置 (10) は、 熱源側系統 (2Q) と、 利用側系統 (40) とによって構成されている。
上記熱源側系統(20) は、 圧縮機 (21) と、 熱交換器(30) と、 水分除去器(22) と、 膨張機 (23) とを順にダク ト接続して成り、 空気冷凍サイクルを行うように構 成されている。 また、 熱源側系統 (20) は、 圧縮機 (21) の入口側に接続される吸 込ダクト (24) と、 膨張機 (23) の出口側に接続される吹出ダクト (25) とを備え ている。 この吸込ダク 卜 (24) は、 始端側で 2つに分岐され、 上記圧縮機 (21) に 室内及び室外から空気を送るように構成されている。 その際、 換気のために室内から 排出される排出空気が、 室内から圧縮機(21)へと送られる。 また、 吹出ダクト (25) は、 膨張機 (23) からの低温空気を室外へ導くように構成されている。
上記利用側系統 (40) は、 上記熱交換器 (30) と、 該熱交換器 (30) にそれそ れ接続される入口ダク ト (43) 及び出口ダクト (44) とによって構成されている。 この入口ダクト (43) は、 始端側で第 1入口ダクトと第 2入口ダク トとに分岐して いる。 第 1入口ダクトの一端は室内に開口し、 第 2入口ダクトの一端は室外に開口し ている。 また、 第 2入口ダク トの途中には、 一端で上記吹出ダク ト (25) に接続す る分岐ダクト (45) が接続されている。 この第 2ダクトは、 ダク ト内を流れる室外 空気のうち、 一部を換気のために室内に供給される供給空気として熱交換器 (30) へ導き、 残りを吹出ダクト (25) 内へ送るように構成されている。 そして、 上記入 口ダクト (43) は、 第 1入口ダクトからの室内空気と第 2入口ダク トからの供給空 気とを、 調和用空気として熱交換器 (30) へ送るように構成されている。 また、 出 口ダクト (44) は、 一端が室内に開口し、 熱交換器 (30) からの調和用空気を室内 へ供給するように構成されている。 上記圧縮機 (21 ) には、 モ一夕 (35) が連結されている。 また、 該圧縮機 (21) は、 上記膨張機 (23) と連結されている。 そして、 圧縮機 (21 ) は、 モ一夕 (35) の駆動力と、 膨張機 (23) で空気が膨張する際の膨張仕事とによって駆動されるよ うに構成されている。
上記熱交換器 (30) には、 圧縮空気が流れる圧縮空気通路 (31) と、 調和用空 気が流れる調和用空気通路 (32 ) とが区画形成されている。 この圧縮空気通路 (31 ) は、 一端が上記圧縮機 (21) と、 他端が上記水分除去器 (22) とそれそれダクト接 続されている。 また、 上記調和用空気通路 (32) は、 一端には上記入口ダクト (43) が、 他端には上記出口ダク ト (44) がそれそれ接続されている。 そして、 この熱交 換器 (30) は、 圧縮空気通路 (31 ) の圧縮空気と、 調和用空気通路 (32) の調和用 空気とを熱交換させるように構成されている。 つまり、 上記熱交換器 (30 ) は、 圧 縮空気との熱交換によつて調和用空気を加熱する加熱手段を構成している。
また、 上記熱交換器 (30) には、 加湿部 (42 ) が設けられている。 この加湿部 (42 ) は、 透湿膜を備えている。 この加湿部 (42 ) では、 調和用空気通路 (32) が 透湿膜で形成され、 該透湿膜を隔てて反対側に水側空間が形成されている。 上記透湿 膜は水分が透過可能に構成され、 この透湿膜を透過させて水側空間の水分を調和用空 気通路 (32) の調和用空気へ供給するようにしている。 そして、 上記加湿部 (42 ) は、 熱交換器 (30) において加熱されつつある調和用空気に水分を供給する水分供 給手段を構成している。
上記水分除去器 (22 ) は、 分離膜を有し、 この分離膜によって隔てられた高圧 空間と低圧空間とを備えている。 この高圧空間は、 入口側が上記熱交換器 (30) の 圧縮空気通路 (31 ) と、 出口側が上記膨張機 (23) とそれそれダクト接続されてい る。 従って、 この高圧空間には、 上記熱交換器 (30 ) からの圧縮空気が流れる。 そ して、 この水分除去器 (22 ) は、 該圧縮空気中の水蒸気が上記分離膜を透過するこ とによって、 該水蒸気を高圧空間側から低圧空間側へ移動させるように構成されてい る。 つまり、 水分除去器 (22 ) は、 上記圧縮空気から水分を除去する水分除去手段 を構成している。 上記分離膜は、 フッ素樹脂等の高分子膜によって形成されている。 そして、 該分 離膜は、 水分子の膜内部拡散によって水蒸気が透過するように構成されている。 尚、 この分離膜を、 キセロゲル等から成るガス分離用多孔膜によって形成してもよい。 こ の場合、 圧縮空気中の水蒸気は、 水分子の毛管凝縮と拡散とによって分離膜を透過す る。
上記水分除去器 (22) の低圧空間には、 真空ポンプ (36) が接続されている。 この真空ポンプ (36) は、 該低圧空間を減圧するためのものであって、 低圧空間と 高圧空間との水蒸気分圧差を確保する減圧手段を構成している。
また、 上記真空ポンプ(36) の出口側には、 第 1水配管 (51) と第 2水配管(52) とが接続されている。 第 1水配管 (51) は、 上記熱交換器 (30) の加湿部 (42) の 水側空間に接続し、 水分除去器 (22) で圧縮空気から分離した水分を該水側空間へ 供給するように構成されている。 一方、 第 2水配管 (52) は、 上記分岐ダクト (45) に接続し、 水分除去器 (22) で圧縮空気から分離した水分を、 室外空気と共に吹出 ダクト (25) 内の低温空気へ供給するように構成されている。
一運転動作—
次に、 上記空気調和装置 (10) の運転動作について、 図 2を参照しながら説明 する。
上記熱源側系統 (20) において、 モータ (35) で圧縮機 (21) を駆動すると、 吸込ダクト (24) を通じて排出空気と室外空気とが圧縮機 (21) に供給される。 具 体的に、 流量: M0の排出空気と流量: Mの室外空気とが混合され、 圧縮機 (21) へ 供給される。 圧縮機 (21) では、 供給された空気が点 1から点 2に亘つて圧縮され、 流量: M0 + Mの圧縮空気が生成する。 この圧縮空気は、 圧縮されて高温となってお り、 上記熱交換器 (30) の圧縮空気通路 (31) へと送られる。
上記熱交換器 (30) では、 高温の圧縮空気が圧縮空気通路 (31) を流れる間に 調和用空気通路 (32) の調和用空気と熱交換を行う。 つまり、 圧縮空気は、 点 2か ら点 3に亘つて調和用空気と熱交換を行い、 その温度が低下する。
上記水分除去器 (22) では、 点 3から点 3, に亘つて圧縮空気から水分: d m が除去される。 具体的に、 水分除去器 (22) では、 低圧空間が真空ポンプ (36) で 減圧され、 低圧空間の水蒸気分圧が高圧空間の水蒸気分圧よりも常に低く維持されて いる。 このため、 両空間の水蒸気分圧差によって圧縮空気中の水蒸気が分離膜を透過 し、 圧縮空気から水分が除去される。 その際、 圧縮空気中の水蒸気は、 凝縮すること なく水蒸気の状態ままで圧縮空気から分離される。
その後、 水分が除去された圧縮空気は、 膨張機 (23) へと送られる。 この膨張 機 (23) では、 圧縮空気が点 3, から点 4に亘つて膨張し、 低温空気となる。 そし て、 この低温空気が吹出ダク ト (25) を通じて室外へ排出される。 その際、 吹出ダ ク ト (25) 内には、 分岐ダクト (45) を通じて室外空気が送られる。 従って、 低温 空気は、 所定量の室外空気と混合された後に室外に排出される。
一方、 上記利用側系統 (40) では、 入口ダクト (43) を通じて、 流量: M0の供 給空気と、 流量: M lの室内空気とが上記熱交換器 (30) の調和用空気通路 (32) へ 送られる。 つまり、 排出空気と同流量の供給空気が、 所定流量の室内空気と共に熱交 換器 (30) へ送られる。
上記熱交換器 (30) の調和用空気通路 (32) では、 調和用空気が点 6から点 7 に亘つて圧縮空気通路 (31) の圧縮空気と熱交換を行い、 調和用空気が加熱される。 その間、 上記熱交換器 (30) の加湿部 (42) では、 調和用空気通路 (32) の調和用 空気へ水分: d mlが供給される。 つまり、 加湿部 (42) において、 加熱されつつあ る調和用空気に水分が供給される。 従って、 調和用空気には、 圧縮空気との熱交換に よって、 供給された水分の蒸発潜熱分の熱量が与えられる。 この様にして、 調和用空 気の加熱と加湿とが行われる。
尚、加湿部(42)で調和用空気に供給される水分: d mlは、上記水分除去器(22) において圧縮空気から分離された水分: d mの一部である、 そして、 この水分: d m 1は、 上記第 1水配管 (51) を通じて加湿部 (42) へ供給される。
上記熱交換器 (30) において、 加熱及び加湿された調和用空気は、 上記出口ダ クト (44) を通じて室内に供給される。 これによつて、 室内の暖房と加湿とが行わ れる。 一実施形態の効果一
本実施形態によれば、 圧縮機 (21) が室内からの排出空気と共に室外空気を吸 入するため、 圧縮空気の流量を充分に確保することができる。つまり、 熱交換器(30) で調和用空気と熱交換する高温の圧縮空気の流量を確保することができる。このため、 熱交換器 (30) において調和用空気に与えられる熱量を確保することができ、 暖房 能力を充分に発揮させることができる。
また、 圧縮機 (21) に排出空気を送ることによって、 換気用の排出空気がもつ 熱を回収し、 回収した熱を調和用空気の加熱に利用することができる。 このため、 換 気による暖房負荷の増大を防ぐことができる。
また、 室内空気と供給空気とを混合して調和用空気としているため、 室外からの 冷たい供給空気を暖めてから室内に供給することができ、 在室者の快適性を向上させ ることができる。 更に、 本実施形態では、 室内空気を調和用空気とする場合に比して 調和用空気の温度が低下する。 このため、 熱交換器 (30) における調和用空気との 熱交換によって圧縮空気は一層低温となり、 これによつて圧縮機 (21) の駆動入力 を削減することができ、 機器効率、 即ち C O P (成績係数) の向上を図ることができ る。
また、 水分除去器 (22) において圧縮空気から水分を分離し、 その後に膨張機 (23) へ送るようにしている。 ここで、 膨張後の低温空気に水分が多く含まれてい ると、 低温空気中で水分が凍ってしまう。 そして、 この様に水分が凍ると、 空気の通 路に溜まって通路の閉塞を招くなどの弊害を生じる。 これに対し、 本実施形態では圧 縮空気から水分を除去した後に膨張させるため、 上述のような弊害を生ずることなく 運転を行うことができる。
また、 真空ポンプ (36) によって分離膜の両側での水蒸気分圧差を確保でき、 水分除去器 (22) によって圧縮空気から常に水蒸気を分離することができる。 この ため、 上述のような低温空気中で水分が凍ることによる弊害を確実に防止することが できる。
更に、 本実施形態では、 低温空気を所定量の室外空気と混合してから室外へ排出 するようにしている。 このため、 室外に吹き出される空気の温度を、 膨張機 (23) から出た直後の低温空気の温度よりも高くすることができる。 従って、 これによつて も、 上述のような低温空気中で水分が凍ることによる弊害を確実に防止することがで きる。
また、 水分除去器 (22) によって圧縮空気から分離した水分を、 室内の加湿に 利用することができる。 その際、 上記熱交換器 (30) の加湿部 (42 ) において、 水 分を調和用空気に供給するようにしている。 従って、 調和用空気に対し、 圧縮空気と の熱交換によって、 供給された水分の蒸発潜熱分の熱量を与えることができる。 この 結果、 熱交換器 (30) から室内に送られる調和用空気の温度を所定値に維持しつつ、 調和用空気の加湿を行うことができる。
また、 上記加湿部 (42 ) では、 透湿膜を介して調和用空気に水分を徐々に供給 するため、供給した水分を調和用空気中で確実に蒸発させることができる。このため、 蒸発できない水分が液滴の状態で調和用空気と共に室内に吹き出される事態を防止す ることができる。
—第 1の変形例一
上記実施形態では、 水分除去器 (22 ) で圧縮空気から分離した水分を、 第 1水 配管 (51 ) を通じて調和用空気に、 第 2水配管 (52 ) を通じて低温空気にそれそれ 供給している。 しかしながら、 必ずしも両方に供給しなくてもよく、 排出空気と低温 空気の何れか一方に供給してもよい。
—第 2の変形例一
また、 上記実施形態では、 熱交換器(30) の加湿部 (42) には、 第 1水配管 (51) を通じて水分を供給するようにしている。 これに対して、 上記加湿部 (42 ) に水道 水等を供給し、 これを調和用空気に供給するようにしてもよい。
一第 3の変形例一
また、 上記実施形態では、 水分除去器 (22 ) で圧縮空気から分離した水分を、 加湿部 (42) に供給するようにしている。 これに対し、 第 1水配管 (51 ) の一端を 入口ダクト (43) に接続し、 該入口ダクト (43) 内の調和用空気に上記分離した水 分を供給するようにしてもよい。 また、 第 1水配管 (51) の一端を出口ダクト (44) に接続し、 熱交換器 (30) において加熱された後の調和用空気に上記分離した水分 を供給するようにしてもよい。
一第 4の変形例—
また、 上記実施形態では、 水分除去器 (22 ) を、 熱源側系統 (20) における熱 交換器(30) と膨張機(23) の間に設けるようにしている。 これに対し、 圧縮機(21) と熱交換器 (30) の間に水分除去器 (22) を設け、 熱交換器 (30) で調和用空気と 熱交換する前の圧縮空気から水分を分離するようにしてもよい。 また、 本変形例にお いても、 上記第 3の変形例と同様に、 圧縮空気から分離した水分を入口ダクト (43) 内の調和用空気に供給してもよいし、 出口ダク ト (44) 内の調和用空気に供給する ようにしてもよい。
—第 5の変形例—
また、 上記実施形態では、 水分除去器 (22 ) の低圧空間を真空ポンプ (36) で 減圧し、 これによつて水分除去器 (22 ) で圧縮空気から水分を分離するようにして いる。 これに対し、 真空ポンプ (36) を設けず、 水分除去器 (22 ) の構成を変更し て、 該水分除去器 (22 ) を、 圧縮空気中の水蒸気が分離膜を透過して調和用空気へ 移動するように構成してもよい。
つまり、 水分除去器には、 分離膜によって隔てられた熱源側空間と利用側空間と を設ける。 この熱源側空間には、 上記熱交換器 (30) からの圧縮空気を導くように する。 一方、 利用側空間には、 利用側系統 (40) の入口ダクト (43) を接続、 し該 入口ダク ト (43 ) の途中に利用側空間を配置する。 そして、 熱源側空間と利用側空 間の水蒸気分圧差によって圧縮空気中の水蒸気が分離膜を透過して調和用空気へ移動 し、 この分離された水蒸気が調和用空気と共に室内に供給されて室内の加湿に利用さ れる。
本変形例によれば、 圧縮空気から分離された水蒸気を水蒸気の状態のままで調和 用空気に供給することができる。 つまり、 調和用空気を加湿する際に、 調和用空気中 で供給された水分が蒸発することはない。 従って、 熱交換器 (30) において、 圧縮 空気から調和用空気に対して、 水分の蒸発潜熱分の熱量を供給する必要がなくなる。 このため、 熱交換器 (30) における圧縮空気と調和用空気との交換熱量が同一であ つても、 調和用空気を一層高温にまで暖めることができる。 この結果、 暖房能力を高 く維持しつつ、 室内を加湿することができる。 産業上の利用可能性
以上のように、 本発明に係る空気調和装置は、 室内を暖房するものとして有用で あり、 特に、 空気サイクルによる暖房運転を行うものに適している。

Claims

請 求 の 範 囲
1 . 空気を冷媒とする空気サイクルによって室内空気を加熱して暖房を行う空気調 和装置であって、
室外及び室内から空気を吸入して圧縮する圧縮機 (21) と、
少なくとも室内空気から成る調和用空気を上記圧縮機 (21) で圧縮された圧縮空 気との熱交換により加熱する加熱手段 (30) と、
該加熱手段 (30) で熱交換した後の圧縮空気を膨張させる膨張機 (23) とを備え、 該膨張機 (23) で膨張して低温となった低温空気を室外へ排出すると共に、 上記 加熱手段 (30) で加熱された調和用空気を室内に供給する空気調和装置。
2 . 室内から圧縮機 (21) へ吸入される空気は、 換気のために室内から排出され る排出空気である請求の範囲第 1項に記載の空気調和装置。
3 . 調和用空気は、 室内空気と室外から室内へ供給される供給空気とより成る請求 の範囲第 1項又は第 2項に記載の空気調和装置。
4 . 空気中の水蒸気が水蒸気分圧の高い側から低い側へ透過可能に構成された分離 膜を有し、 圧縮空気に含まれる水蒸気を凝縮させずに該圧縮空気から分離する水分除 去手段 (22) を備えている請求の範囲第 1項から第 3項の何れか 1つに記載の空気 調和装置。
5 . 分離膜は、 高分子膜から成り、 水分子の膜内部拡散によって水蒸気が透過する ように構成される請求の範囲第 4項に記載の空気調和装置。
6 . 分離膜は、 分子自由行程と同程度の大きさの孔を多数有し、 水分子の毛管凝縮 と拡散とによって水蒸気が透過するように構成される請求の範囲第 4項に記載の空気 調和装置。
7 . 水分除去手段 (22) における分離膜の両側での水蒸気分圧差を確保するため に該分離膜の一方側を減圧する減圧手段 (36) を備えている請求の範囲第 4項から 第 6項の何れか 1つに記載の空気調和装置。
8 . 水分除去手段 (22) によって圧縮空気から分離した水分の一部又は全部を、 膨張機 (23) からの低温空気に供給する請求の範囲第 7項に記載の空気調和装置。
9 . 水分除去手段 (22) によって圧縮空気から分離した水分を加熱手段 (30) の 調和用空気に供給する水分供給手段 (42) を備えている請求の範囲第 7項に記載の 空気調和装置。
1 0 . 水分除去手段 (22) によって圧縮空気から分離した水分の一部又は全部を、 調和用空気と共に室内に供給する請求の範囲第 4項から第 7項の何れか 1つに記載の 空気調和装置。
1 1 . 水分除去手段 (22) は、 分離膜の一方の表面と圧縮空気と接触させると共に 他方の表面と調和用空気とを接触させ、 該圧縮空気に含まれる水蒸気が該調和用空気 へ移動するように構成される請求の範囲第 4項から第 6項の何れか 1つに記載の空気
1 2 . 加熱手段 (30) の調和用空気に水分を供給する水分供給手段 (42) を備えて いる請求の範囲第 1項から第 8項の何れか 1つに記載の空気調和装置。
1 3 . 水分供給手段 (42) は、 水分が透過可能な透湿膜を介して調和用空気に水 分を供給する請求の範囲第 9項又は第 1 2項に記載の空気調和装置。
PCT/JP1999/006934 1998-12-16 1999-12-09 Conditionneur d'air WO2000036346A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/868,246 US6484528B1 (en) 1998-12-16 1999-12-09 Air-conditioner
EP99959743A EP1170559A4 (en) 1998-12-16 1999-12-09 AIR CONDITIONING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/357373 1998-12-16
JP10357373A JP2000179962A (ja) 1998-12-16 1998-12-16 空気調和装置

Publications (1)

Publication Number Publication Date
WO2000036346A1 true WO2000036346A1 (fr) 2000-06-22

Family

ID=18453806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006934 WO2000036346A1 (fr) 1998-12-16 1999-12-09 Conditionneur d'air

Country Status (5)

Country Link
US (1) US6484528B1 (ja)
EP (1) EP1170559A4 (ja)
JP (1) JP2000179962A (ja)
CN (1) CN1122799C (ja)
WO (1) WO2000036346A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6705092B1 (en) * 2001-11-14 2004-03-16 Honeywell International Inc. Vapor membrane dehumidification for air cycle environment control system
CN101158486B (zh) * 2007-03-28 2012-03-14 宋学让 高能效采暖机
JP2009192168A (ja) * 2008-02-15 2009-08-27 Taisei Corp 空気調和システムおよび空調方法
US8959944B2 (en) 2009-08-19 2015-02-24 George Samuel Levy Centrifugal Air Cycle Air Conditioner
EP2574865A1 (de) * 2011-09-29 2013-04-03 Siemens Aktiengesellschaft Energiespeichervorrichtung sowie Verfahren zur Speicherung von Energie
CN104676780B (zh) * 2015-03-17 2018-07-27 殷洪生 一种集中空调新风机组结构及其工作方法
CN105222443B (zh) * 2015-09-17 2017-11-10 广东美的制冷设备有限公司 空调系统
WO2018070893A1 (ru) 2016-10-10 2018-04-19 Общество с ограниченной ответственностью "ДЕТА Инжиниринг" Приточно-вытяжное устройство
CN110864470A (zh) * 2019-11-28 2020-03-06 广东美的制冷设备有限公司 压缩空气换热系统
CN110715479A (zh) * 2019-11-28 2020-01-21 广东美的制冷设备有限公司 压缩空气换热系统
CN112413760B (zh) * 2020-11-11 2021-10-26 太仓联科工业设计有限公司 车间温湿度监测自动调节设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0045144A2 (en) * 1980-07-25 1982-02-03 The Garrett Corporation Heat pump systems for residential use
JPS62223573A (ja) * 1986-03-25 1987-10-01 松下電工株式会社 空気サイクルヒ−トポンプ
GB2237372A (en) * 1989-10-10 1991-05-01 Aisin Seiki Air conditioning systems
JPH06213521A (ja) * 1992-10-14 1994-08-02 Hagenuk Fahrzeugklima Gmbh 部屋の空調のための冷房プロセスと暖房プロセスの結合方法とその装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB223732A (en) 1923-10-17 1924-10-30 Frank Buswell Improvements in or relating to hub-drawing devices for motor vehicles
US2990696A (en) * 1957-09-13 1961-07-04 Stewart Warner Corp Evaporative heat exchanger
US3097504A (en) * 1959-10-30 1963-07-16 Normalair Ltd Cooling systems for aircraft
US4295518A (en) * 1979-06-01 1981-10-20 United Technologies Corporation Combined air cycle heat pump and refrigeration system
US4265397A (en) * 1979-06-28 1981-05-05 United Technologies Corporation Combined fresh air regenerator and air cycle heat pump
US4444018A (en) * 1980-07-25 1984-04-24 The Garrett Corporation Heat pump systems for residential use
US4444021A (en) * 1980-07-25 1984-04-24 The Garrett Corporation Heat pump systems for residential use
US4445639A (en) * 1980-07-25 1984-05-01 The Garrett Corporation Heat pump systems for residential use
US4539816A (en) * 1981-04-03 1985-09-10 Minnesota Mining And Manufacturing Company Heat and liquid recovery using open cycle heat pump system
JPS6380829A (ja) * 1986-09-25 1988-04-11 Matsushita Electric Works Ltd 除湿システム
US4921642A (en) * 1987-12-03 1990-05-01 Puritan-Bennett Corporation Humidifier module for use in a gas humidification assembly
JPH03129267A (ja) * 1989-10-10 1991-06-03 Aisin Seiki Co Ltd 空調機
WO1994005846A1 (en) * 1992-08-27 1994-03-17 Fisher & Paykel Limited Heat pump cycle clothes drier
US5348691A (en) * 1993-06-11 1994-09-20 United Technologies Corporation Atmosphere membrane humidifier and method and system for producing humidified air
GB9418668D0 (en) * 1994-09-16 1994-11-02 Normalair Garrett Ltd Air conditioning systems
SE508282C2 (sv) * 1995-02-20 1998-09-21 Svenska Rotor Maskiner Ab Kylsystem för luft och sätt att driva ett sådant system
JPH10235135A (ja) * 1997-02-25 1998-09-08 Toshiba Eng & Constr Co Ltd 気体除湿装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0045144A2 (en) * 1980-07-25 1982-02-03 The Garrett Corporation Heat pump systems for residential use
JPS62223573A (ja) * 1986-03-25 1987-10-01 松下電工株式会社 空気サイクルヒ−トポンプ
GB2237372A (en) * 1989-10-10 1991-05-01 Aisin Seiki Air conditioning systems
JPH06213521A (ja) * 1992-10-14 1994-08-02 Hagenuk Fahrzeugklima Gmbh 部屋の空調のための冷房プロセスと暖房プロセスの結合方法とその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1170559A4 *

Also Published As

Publication number Publication date
JP2000179962A (ja) 2000-06-30
US6484528B1 (en) 2002-11-26
CN1330757A (zh) 2002-01-09
EP1170559A1 (en) 2002-01-09
CN1122799C (zh) 2003-10-01
EP1170559A4 (en) 2003-06-04

Similar Documents

Publication Publication Date Title
WO2000036345A1 (fr) Conditionneur d'air
US6484525B1 (en) Air conditioner
JP3585308B2 (ja) デシカント空調装置
EP1022521B1 (en) Air cycling type air-conditioner
US10920760B2 (en) Air compressor having an oil separator, an oil cooler, first and second evaporators, and wherein intake air and the oil are simultaneously cooled in the first and second evaporators
US20160281999A1 (en) Water collecting system, humidification system, and air conditioning system
WO2000036346A1 (fr) Conditionneur d'air
JP2002081688A (ja) 換気装置
JP3606854B2 (ja) 高湿度燃料ガスの圧縮供給装置
JP2008111643A (ja) エンジン廃熱利用液体デシカント装置
JP2006317012A (ja) エアコン
WO2019155614A1 (ja) 空気調和装置、空調システム及び熱交換ユニット
JP2010078246A (ja) 空調システム
JP3253021B1 (ja) ヒートポンプ及び除湿空調装置
JP2010071497A (ja) 空気調和機
JP2004286262A (ja) 除湿システム
JP4474710B2 (ja) 空気調和装置
JP2007024467A (ja) ドレンレス空調システム
JP3832569B2 (ja) 冷却装置
JP4547831B2 (ja) 空気調和装置
JPH0375423A (ja) 酸素富化機付空気調和装置
KR20050112959A (ko) 공기 조화기
JP2022052743A (ja) 冷暖房換気マルチ空気調和機
KR100833858B1 (ko) 공기조화시스템
WO2011040831A1 (ru) Установка кондиционирования воздуха (варианты)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99814522.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09868246

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999959743

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999959743

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999959743

Country of ref document: EP