WO2000034752A1 - Thermometer mit maximafunktion - Google Patents

Thermometer mit maximafunktion Download PDF

Info

Publication number
WO2000034752A1
WO2000034752A1 PCT/DE1999/003920 DE9903920W WO0034752A1 WO 2000034752 A1 WO2000034752 A1 WO 2000034752A1 DE 9903920 W DE9903920 W DE 9903920W WO 0034752 A1 WO0034752 A1 WO 0034752A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
vessel
liquid
thermometer
sealing element
Prior art date
Application number
PCT/DE1999/003920
Other languages
English (en)
French (fr)
Inventor
Siegbert Kamitz
Original Assignee
Geratherm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geratherm Gmbh filed Critical Geratherm Gmbh
Publication of WO2000034752A1 publication Critical patent/WO2000034752A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/02Measuring temperature based on the expansion or contraction of a material the material being a liquid
    • G01K5/22Measuring temperature based on the expansion or contraction of a material the material being a liquid with provision for expansion indicating over not more than a few degrees
    • G01K5/225Measuring temperature based on the expansion or contraction of a material the material being a liquid with provision for expansion indicating over not more than a few degrees with means for indicating a maximum, e.g. a constriction in the capillary tube

Definitions

  • Thermometers with an indication of the maximum temperature value are usually required for measuring body temperature as well as for special measuring tasks in meteorology, in laboratories, in agriculture and industry. So far, analog glass thermometers with an integrated maximum system or electronic thermometers with storage and display of the maximum measured value have been used.
  • the glass thermometers with maximum function which are particularly common for fever measurement, work with liquids which, apart from a sufficiently large coefficient of thermal expansion, must have the property that they do not wet the capillary. Only with this property does the usual maximum function caused by a narrowing of the capillary work.
  • the selection of liquids that have these properties is limited; Usually liquid metals such as mercury or eutectic alloys of metals, e.g. of potassium, indium and tin.
  • Electronic maximum thermometers are disadvantageous because of their complexity and are therefore limited in their area of application.
  • thermometer with maximum function is known with the features specified in the preamble of claim 1. It is a disposable thermometer, whereby a connection between the container and the display capillary is interrupted by a slide before use. How the slider is operated is not disclosed. The maximum temperature is displayed irreversibly.
  • No. 2,447,888 A describes a mercury thermometer with a constriction, which is produced by a glass fiber inserted into a conical capillary.
  • US 3 915 005 A describes another disposable thermometer in which the measuring liquid flows through a valve into the capillary at an increased pressure in the vessel, but can no longer flow back. Resetting the thermometer is not disclosed.
  • the invention has for its object to provide a reusable thermometer with maximum function, which is not subject to the restrictions described above.
  • the solution to this problem according to the invention is specified in claim 1.
  • the thermometer designed afterwards works with a wetting liquid; since the capillary is usually made of glass, this property has almost any liquid which - insofar as it has a thermal expansion coefficient sufficient for temperature measurement - is suitable for the purposes of the invention.
  • the maximum function is brought about by the closing device specified in claim 1, which ensures that when the liquid contained in the vessel expands, the amount of liquid effective in the capillary increases, so that the upper end of the liquid column in the capillary in the usual way for temperature display can be used, while the liquid column in the capillary remains essentially unchanged when cooling.
  • the amount of liquid effective in the capillary is part of the liquid contained in the vessel, and the closing device is formed by a check valve.
  • the resetting of the thermometer is achieved in that the valve arrangement is opened by manually rotating or moving the component containing the sealing element.
  • the amount of liquid in the capillary is separated from that in the vessel and the closing device is formed by a piston arrangement, the piston delimiting the column of liquid in the capillary being displaced only when the liquid in the vessel expands becomes.
  • the resetting of the thermometer is brought about by the backward throwing that is customary with conventional maximum thermometers.
  • FIG. 1 a shows a longitudinal section through the lower part of a maximum thermometer according to a first exemplary embodiment of the invention in the usual measuring position
  • FIG. 1b shows the same thermometer in the position in which the liquid column contained in the capillary can be reset to the initial value.
  • Figures 2a and 2b representations of a second embodiment in the positions corresponding to Figures la and lb
  • thermometer 3 shows a longitudinal section through the lower part of a thermometer according to a third embodiment.
  • a cylindrical vessel 10 filled with a wetting liquid is closed at the top by a cylindrical hollow body 11, which is connected to the inner wall of the vessel preferably firmly and in a gastight manner by gluing.
  • the bottom wall 12 of the hollow body 11 is provided with a through hole 14 arranged eccentrically to the axis 13 of the vessel 10.
  • the hollow body 11 is closed with a cover 15.
  • a pressure piece 16 In the interior of the hollow body 11 there is a pressure piece 16, at the upper end of which a measuring capillary 17 which passes through the cover 15 attaches.
  • the bore 18 of the measuring capillary 17 passes through the pressure piece 16 and ends in a recess 19 at the bottom of the pressure piece 16, into which a sealing element 20 is glued.
  • the pressure piece 16 is sealed with an O-ring 21 against the inner wall of the hollow body 11 and is pressed against the bottom wall 12 of the hollow body 11 by a compression spring 22 inserted between the cover 15 and a rear annular surface of the pressure piece 16 such that the sealing element 20 in closes the through hole 14 in the position shown in FIG.
  • the resulting pressure causes the pressure piece 16 with the sealing element 20 to be raised against the bias of the compression spring 22, the liquid from the vessel 10 through the through bore 14 in the measuring capillary 17 arrives and can rise in it.
  • the pressure piece 16 is rotated into the position shown in FIG. 1b, in which the Sealing element 20 releases the through hole 14 so that the liquid column is withdrawn from the hole 18 of the measuring capillary 17 by the negative pressure present in the vessel 10.
  • measurements can also be carried out in the position shown in FIG. 1b, the through bore 14 being closed with the sealing element 20 only when the maximum measured value is reached by rotating the pressure element 16.
  • FIG. 2a and 2b differs from that of Figures la and lb in that the bore 18 of the measuring capillary 17 via a transverse bore 23 with the space formed between the pressure piece 16 and the inner wall of the hollow body 11 below the O-ring 21 communicates.
  • the pressure piece 16 When the temperature and pressure increase in the liquid contained in the vessel 10, the pressure piece 16 is raised against the bias of the compression spring 22, so that the sealing element 20 'which completely fills the recess 19 in this case releases the through hole 14 and liquid via the transverse hole 23 into the Measuring capillary 17 arrives.
  • thermometer is not reset by turning, but by manually lifting the pressure piece 16 against the pretension of the compression spring 22.
  • the bottom wall 12 'of the hollow body 11' delimiting the vessel 10 at the top has a cylinder bore 25 in which a piston 27 sealed by means of an O-ring 26 is displaceably arranged.
  • the piston 27 carries a plunger 28 which extends coaxially with the axis 13 and projects upwards and which engages in a coaxial depression 30 provided on the underside of a further piston 29.
  • the piston 29 is in turn sealed by an O-ring 31 against the inner wall of the hollow body 11 '.
  • the tight intermediate chamber 32 thus formed between the two pistons 27, 29 is filled with air or another compressible medium.
  • the space 33 above the piston 29 of the hollow body 11 ' is connected to the bore 18 of the measuring capillary 17, which in this case is firmly connected to the cover 15'.
  • This space is filled with a liquid for temperature display in the measuring capillary, which can be different from the liquid in the vessel 10.
  • the piston 27 is pushed upward, which pushes the piston 29 upward via the plunger 28 and thereby presses the liquid in the space 33 into the measuring capillary 17. If the liquid in the vessel 10 contracts, the lower piston 27 is withdrawn, the piston 29 remaining in its position due to the friction on the O-ring 31. In this way, the liquid column in the measuring capillary 17 also remains at the maximum value.
  • the piston 29 is returned by spinning or by means of a suitable device, thereby eliminating the measurement value last displayed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Bei einem mit einer benetzenden Flüssigkeit arbeitenden Thermometer wird die Maximafunktion durch eine Schliesseinrichtung, beispielsweise in Form eines Rückschlagventils erreicht, das zwischen einem die Flüssigkeit enthaltenden Gefäss und der Messkapillare (17) eingefügt ist. Dabei wird eine das Gefäss (10) mit der Messkapillare (17) verbindende Durchgangsbohrung (14) von einem vorgespannten Dichtungselement (20) verschlossen, das bei Überdruck in dem Gefäss (10) abhebt. Zum Zurücksetzen des Thermometers auf seinen Ausgangswert wird das Dichtungselement (20) manuell so betätigt, dass sich die Durchgangsbohrung (14) öffnet.

Description

Thermometer mit Maximafunktion
Beschreibung
Thermometer mit einer Anzeige des maximalen Temperaturwertes werden üblicherweise zur Messung der Körpertemperatur sowie für spezielle Meßaufgaben in der Meteorologie, in Laboratorien, in der Landwirtschaft und Industrie benötigt. Dabei kommen bisher analoge Glasthermo- meter mit integriertem Maximasystem oder elektronische Thermometer mit Speicherung und Anzeige des maximalen Meßwertes zum Einsatz.
Die insbesondere zur Fiebermessung üblichen Glasthermometer mit Maximafunktion arbeiten mit Flüssigkeiten, die außer einem genügend großen Wärmeausdehnungskoeffizient die Eigenschaft haben müssen, daß sie die Kapillare nicht benetzen. Nur bei dieser Eigenschaft funktioniert die übliche, durch eine Verengung der Kapillare bewirkte Maximafunktion. Die Auswahl an Flüssigkeiten, die diese Eigenschaften aufweisen, ist begrenzt; üblicherweise kommen flüssige Metalle wie Quecksilber oder eutektische Legierungen von Metallen, z.B. von Kalium, Indium und Zinn, zum Einsatz. Elektronische Maximathermometer sind wegen ihres Aufwandes nachteilig und daher in ihrem Anwendungsgebiet beschränkt.
Aus US 3 950 994 A ist ein Thermometer mit Maximafunktion mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen bekannt. Es handelt sich dabei um ein Einmalthermometer, wobei eine Verbindung zwi- sehen Behälter und Anzeigekapillare vor Gebrauch durch einen Schieber unterbrochen ist. Wie der Schieber betätigt wird, ist nicht offenbart. Die Maximaltemperatur wird irreversibel angezeigt.
US 2 447 888 A beschreibt ein Quecksilberthermometer mit einer Verengung, die durch eine in eine konische Kapillare eingefügte Glasfaser er- zeugt wird.
In US 3 915 005 A ist ein weiteres Einmalthermometer beschrieben, bei dem die Meßflüssigkeit bei erhöhtem Druck im Gefäß durch ein Ventil in die Kapillare strömen, aber nicht mehr zurückfließen kann. Eine Rückstellung des Thermometers ist nicht offenbart. Der Erfindung liegt die Aufgabe zugrunde, ein mehrfach verwendbares Thermometer mit Maximafunktion zu schaffen, das den oben beschriebenen Beschränkungen nicht unterliegt. Die erfindungsgemäße Lösung dieser Aufgabe ist in Anspruch 1 angegeben. Das danach gestaltete Thermometer arbeitet mit einer benetzenden Flüssigkeit; da die Kapillare in der Regel aus Glas besteht, hat diese Eigenschaft nahezu jede beliebige Flüssigkeit, die sich - soweit sie einen zur Temperaturmessung ausreichenden Wärmeausdehnungskoeffizient aufweist - für die Zwecke der Erfindung eignet.
Die Maximafunktion wird durch die im Anspruch 1 angegebene Schließeinrichtung bewirkt, die dafür sorgt, daß bei Ausdehnung der in dem Gefäß enthaltenen Flüssigkeit die in der Kapillare wirksame Flüssigkeits- menge zunimmt, so daß das obere Ende der Flüssigkeitssäule in der Kapillare in üblicher Weise zur Temperaturanzeige herangezogen werden kann, während bei Abkühlung die Flüssigkeitssäule in der Kapillare im wesentlichen unverändert bleibt.
In der Weiterbildung der Erfindung nach den Ansprüchen 2 bis 6 ist die in der Kapillare wirksame Flüssigkeitsmenge ein Teil der in dem Gefäß enthaltenen Flüssigkeit, und die Schließeinrichtung wird von einem Rückschlagventil gebildet. Bei diesen Ausführungsformen wird die Rücksetzung des Thermometers dadurch erreicht, daß die Ventilanordnung durch manuelles Drehen oder Verschieben des das Dichtungselement enthaltenen Bau- teils geöffnet wird.
In der Ausführung der Erfindung nach den Ansprüchen 7 und 8 ist die Flüssigkeitsmenge in der Kapillare von der im Gefäß getrennt, und die Schließeinrichtung wird von einer Kolbenanordnung gebildet, wobei der die Flüssigkeitssäule in der Kapillare begrenzende Kolben nur bei Ausdehnung der Flüssigkeit in dem Gefäß verschoben wird. In diesem Fall wird die Rückstellung des Thermometers durch das bei herkömmlichen Maxima- thermometern übliche Zurückschleudern bewirkt. Diese Ausführung hat den Vorteil, daß die in der Meßkapillare wirksame Flüssigkeit einen besonders kleinen Wärmeausdehnungskoeffizient aufweisen und daher die Meß- genauigkeit erhöhen kann.
Bevorzugte Ausführungsbeispiele der Erfindung werden nachstehend anhand der Zeichnungen näher erläutert. Darin zeigt
Figur la einen Längsschnitt durch den unteren Teil eines Maxima- thermometers gemäß einem ersten Ausführungsbeispiel der Erfindung in der üblichen Meßstellung, Figur lb das gleiche Thermometer in der Stellung, in der die in der Kapillare enthaltende Flüssigkeitssäule auf den Ausgangswert rücksetzbar ist,
Figur 2a und 2b Darstellungen eines zweiten Ausführungsbeispiels in den Figuren la und lb entsprechenden Stellungen, und
Figur 3 einen Längsschnitt durch den unteren Teil eines Thermometers gemäß einem dritten Ausführungsbeispiel.
Gemäß Figur 1 ist ein mit einer benetzenden Flüssigkeit gefülltes zylindrisches Gefäß 10 nach oben hin durch einen zylindrischen Hohlkörper 11 verschlossen, der mit der Gefäß-Innenwand vorzugsweise durch Kleben fest und gasdicht verbunden ist. Die Bodenwand 12 des Hohlkörpers 11 ist mit einer zur Achse 13 des Gefäßes 10 exzentrisch angeordneten Durchgangsbohrung 14 versehen. An seinem von der Bodenwand 12 abgewandten Ende ist der Hohlkörper 11 mit einem Deckel 15 verschlossen. Im Innern des Hohlkörpers 11 befindet sich ein Druckstück 16, an dessen oberem Ende eine den Deckel 15 durchsetzende Meßkapillare 17 ansetzt. Die Bohrung 18 der Meßkapillare 17 durchsetzt das Druckstück 16 und endet in einer am Boden des Druckstücks 16 vorhandenen Aussparung 19, in die ein Dichtungselement 20 eingeklebt ist. Das Druckstück 16 ist mit einem O-Ring 21 gegenüber der Innenwand des Hohlkörpers 11 abgedichtet und wird von einer zwischen den Deckel 15 und eine hintere Ringfläche des Druckstücks 16 eingefügte Druckfeder 22 so gegen die Bodenwand 12 des Hohlkörpers 11 gedrückt, daß das Dichtungselement 20 in der in Figur la gezeigten Stellung die Durchgangsboh- rung 14 verschließt.
Dehnt sich die in dem Gefäß 10 enthaltene Flüssigkeit infolge Erwärmung aus, so bewirkt der dadurch ansteigende Druck, daß das Druckstück 16 mit dem Dichtungselement 20 gegen die Vorspannung der Druckfeder 22 angehoben wird, die Flüssigkeit aus dem Gefäß 10 durch die Durchgangs- bohrung 14 in die Meßkapillare 17 gelangt und in dieser ansteigen kann.
Bei Abkühlung zieht sich die in dem Gefäß 10 enthaltene Flüssigkeit wieder zusammen; ein Rückströmen aus der Meßkapillare 17 in das Gefäß 10 hinein wird jedoch von der durch die Druckfeder 22 vorgespannte Dichtungselement 20 verhindert. Daher bleibt die Flüssigkeitssäule in der Meß- kapillare 17 auf ihrem Maximalwert stehen.
Zum Zurücksetzen des Thermometers in die Ausgangsstellung wird das Druckstück 16 in die in Figur lb gezeigte Stellung gedreht, in der das Dichtungselement 20 die Durchgangsbohrung 14 freigibt, so daß die Flüssigkeitssäule durch den in dem Gefäß 10 vorhandenen Unterdruck aus der Bohrung 18 der Meßkapillare 17 zurückgezogen wird.
Anstelle des oben beschriebenen Meßvorgangs kann auch bei der in Figur lb gezeigten Stellung gemessen werden, wobei die Durchgangsbohrung 14 erst bei Erreichen des maximalen Meßwertes durch Drehen des Druckstücks 16 mit dem Dichtungselement 20 verschlossen wird.
Die in Figur 2a und 2b gezeigte Ausführung unterscheidet sich von der nach Figur la und lb dadurch, daß die Bohrung 18 der Meßkapillare 17 über eine Querbohrung 23 mit dem zwischen dem Druckstück 16 und der Innenwand des Hohlkörpers 11 unterhalb des O-Rings 21 gebildeten Raum in Verbindung steht.
Bei Temperaturerhöhung und Druckerhöhung in der in dem Gefäß 10 enthaltenen Flüssigkeit wird das Druckstück 16 gegen die Vorspannung der Druckfeder 22 angehoben, so daß das die Aussparung 19 in diesem Fall vollständig ausfüllende Dichtungselement 20' die Durchgangsbohrung 14 freigibt und Flüssigkeit über die Querbohrung 23 in die Meßkapillare 17 gelangt.
Das Rücksetzen des Thermometers erfolgt in diesem Fall nicht durch Drehen sondern durch manuelles Anheben des Druckstücks 16 gegen die Vorspannung der Druckfeder 22.
Bei der Ausführungsform nach Figur 3 weist die Bodenwand 12' des das Gefäß 10 nach oben begrenzenden Hohlkörpers 11' eine Zylinderbohrung 25 auf, in der ein mittels eines O-Rings 26 abgedichteter Kolben 27 verschiebbar angeordnet ist. Der Kolben 27 trägt einen zur Achse 13 koaxial verlaufenden, nach oben ragenden Stößel 28, der in eine an der Unterseite eines weiteren Kolbens 29 vorhandene koaxiale Vertiefung 30 eingreift. Der Kolben 29 ist wiederum mittels eines O-Rings 31 gegenüber der Innenwand des Hohlkörpers 11' abgedichtet. Die somit zwischen den beiden Kolben 27, 29 gebildete dichte Zwischenkammer 32 ist mit Luft oder einem sonstigen kompressiblen Medium gefüllt.
Der oberhalb des Kolbens 29 vorhandene Raum 33 des Hohlkörpers 11' steht mit der Bohrung 18 der Meßkapillare 17 in Verbindung, die in diesem Fall mit dem Deckel 15' fest verbunden ist. Dieser Raum ist mit einer zur Temperaturanzeige in der Meßkapillare dienenden Flüssigkeit gefüllt, die von der Flüssigkeit in dem Gefäß 10 verschieden sein kann. Bei Temperaturerhöhung und Ausdehnung der in dem Gefäß 10 enthaltenen Flüssigkeit wird der Kolben 27 nach oben gedrückt, der über den Stößel 28 den Kolben 29 nach oben verschiebt und dadurch die in dem Raum 33 befindliche Flüssigkeit in die Meßkapillare 17 drückt. Zieht sich die Flüssigkeit in dem Gefäß 10 zusammen, so wird der untere Kolben 27 zurückgezogen, wobei der Kolben 29 aufgrund der Reibung an dem O-Ring 31 in seiner Stellung stehenbleibt. Auf diese Weise bleibt auch die Flüssigkeitssäule in der Meßkapillare 17 auf dem Maximalwert stehen.
Durch Schleudern oder mittels einer geeigneten Vorrichtung wird der Kolben 29 zurückgeführt und dadurch der zuletzt angezeigte Meßwert eliminiert.
Bezugszeichenliste
10 Gefäß
11, 11' Hohlkörper
12, 12' Bodenwand
13 Achse
14 Durchgangsbohrung 15, 15' Deckel
16 Druckstück
17 Meßkapillare
18 Bohrung
19 Aussparung
20, 20' Dichtungselement
21 O-Ring
22 Druckfeder
23 Querbohrung
25 Zylinderbohrung
26 O-Ring
27 Kolben
28 Stößel
29 Kolben
30 Vertiefung
31 O-Ring
32 Zwischenkammer
33 Raum

Claims

Patentansprüche
1. Thermometer mit Maximafunktion mit einem Gefäß (10), das eine Flüssigkeit mit temperaturabhängigem Volumen enthält, und einer Meßkapillare (17), wobei die in der Kapillare (17) wirksame Flüssigkeit eine gegenüber ihrer Kohäsion höhere Adhäsion bezüglich der Kapillare aufweist, dadurch gekennzeichnet, daß zwischen Gefäß (10) und Kapillare (17) eine zur Rückführung von Flüssigkeit aus der Kapillare (17) in das Gefäß (10) betätigbare Schließeinrichtung angeordnet ist, die bei Volumenvergrößerung der in dem Gefäß enthaltenen Flüssigkeit eine Erhöhung der in der Kapillare wirksamen Flüssigkeitsmenge bewirkt, bei Volumenverkleinerung der in dem Gefäß enthaltenen Flüssigkeit jedoch die in der Kapillare wirksame Flüssigkeitsmenge unverändert hält.
2. Thermometer nach Anspruch 1, wobei die in der Kapillare (17) wirksame Flüssigkeitsmenge ein Teil der in dem Gefäß (10) enthaltenen Flüssigkeit ist und die Schließeinrichtung ein zwischen dem Gefäß und der Kapillare eingefügtes Rückschlagventil (14, 16, 20, 22), enthält.
3. Thermometer nach Anspruch 2, wobei das Rückschlagventil ein Dichtungselement (20) enthält, das eine Durchgangsbohrung (14) zwischen Gefäß (10) und Kapillare (17) verschließt und in Strömungsrichtung von Kapillare zu Gefäß elastisch vorgespannt ist.
4. Thermometer nach Anspruch 3, wobei das Dichtungselement (20) mit einem die Kapillare (17) tragenden Bauteil (16) verbunden und durch Mani- pulation der Kapillare so betätigbar ist, daß es die Durchgangsbohrung (14) freigibt.
5. Thermometer nach Anspruch 4, wobei das Bauteil (16) relativ zu dem Gefäß (10) drehbar ist und die Durchgangsbohrung (14) und das Dichtungselement (20) exzentrisch zur Drehachse (13) angeordnet sind.
6. Thermometer nach Anspruch 4, wobei das Bauteil (16) mit dem Dichtungselement (20') gegen Federvorspannung von der Durchgangsbohrung (14) abhebbar ist.
7. Thermometer nach Anspruch 1, wobei das Gefäß (10) durch einen ersten Kolben (27) und die Kapillare (17) durch einen zweiten Kolben (29) verschlossen ist, und daß der erste Kolben bei Volumenvergrößerung der in dem Gefäß (10) enthaltenen Flüssigkeit den zweiten Kolben mitnimmt.
8. Thermometer nach Anspruch 7, wobei die beiden Kolben (27, 29) über einen in einer Zwischenkammer (32) befindlichen Stößel (28) aneinander liegen.
PCT/DE1999/003920 1998-12-08 1999-12-08 Thermometer mit maximafunktion WO2000034752A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998156570 DE19856570C1 (de) 1998-12-08 1998-12-08 Thermometer mit Maximafunktion
DE19856570.4 1998-12-08

Publications (1)

Publication Number Publication Date
WO2000034752A1 true WO2000034752A1 (de) 2000-06-15

Family

ID=7890372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/003920 WO2000034752A1 (de) 1998-12-08 1999-12-08 Thermometer mit maximafunktion

Country Status (2)

Country Link
DE (1) DE19856570C1 (de)
WO (1) WO2000034752A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008017241A1 (fr) * 2006-08-04 2008-02-14 Xianrong Song Thermomètre clinique jetable et son procédé de fabrication
RU2629718C1 (ru) * 2016-12-02 2017-08-31 Лев Исаакович Головенчиц Термометр жидкостной медицинский
CN108195476A (zh) * 2018-01-14 2018-06-22 谢博 一种医疗诊断用防摔体温计

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915005A (en) * 1974-02-27 1975-10-28 Becton Dickinson Co Thermometer with variable volume bulb
US4099414A (en) * 1977-05-19 1978-07-11 Krahmer Jon L Automatic release hospital thermometer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2447888A (en) * 1944-09-07 1948-08-24 Taylor Instrument Co Thermometer
US3950994A (en) * 1973-10-15 1976-04-20 T. M. Saigh Venture Financial Ltd. Temperature measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915005A (en) * 1974-02-27 1975-10-28 Becton Dickinson Co Thermometer with variable volume bulb
US4099414A (en) * 1977-05-19 1978-07-11 Krahmer Jon L Automatic release hospital thermometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008017241A1 (fr) * 2006-08-04 2008-02-14 Xianrong Song Thermomètre clinique jetable et son procédé de fabrication
RU2629718C1 (ru) * 2016-12-02 2017-08-31 Лев Исаакович Головенчиц Термометр жидкостной медицинский
CN108195476A (zh) * 2018-01-14 2018-06-22 谢博 一种医疗诊断用防摔体温计

Also Published As

Publication number Publication date
DE19856570C1 (de) 2001-03-15

Similar Documents

Publication Publication Date Title
DE2638659B1 (de) Mit der hand zu haltende pumppipette
DE2851532B1 (de) Pipette mit elastischem Balg
DE2648037A1 (de) Feinmess-fluessigkeitspipette
EP0037920A1 (de) Injektionsspritze
WO2000034752A1 (de) Thermometer mit maximafunktion
DE2358649A1 (de) Durch stoerende umgebungstemperaturaenderungen beeinflusste messeinrichtung
EP0995615A1 (de) Handschreib- oder Auftraggerät
DE3736095A1 (de) Auftragsgeraet
DE1964126B2 (de) Verriegelungsvorrichtung zur steuerung der relativbewegung zwischen zwei teilen
DE2709583A1 (de) Am oberen ende einer pipette angeordnete fuellvorrichtung
DE3143341C2 (de) Prüfgefäß zur Anzeige eines definierten Flüssigkeitsvolumens, insbesondere zur Überprüfung von Flüssigkeits-Dosiergeräten im μ1-Bereich
DD283779A5 (de) Gerade pipette
DE1090449B (de) Vorrichtung zum schnellen und exakten Pipettieren kleiner Fluessigkeitsmengen
EP0367907B1 (de) Vorrichtung zum Messen der Blutkörperchensenkungsgeschwindigkeit
DE102004024032B4 (de) Als Stellmotor dienendes thermostatisches Arbeitselement
DE3932386C1 (de)
DE2224272C3 (de) Druckanzeiger
DE3319197A1 (de) Vorrichtung nach art eines markierungsstiftes, insbesondere zum auftragen eines zaehfluessigen klebers
DE10114996A1 (de) Vorrichtung zur Messung von Druck- und/oder Temperatur in einem fluidführenden Mediumkanal
DE2744043B2 (de) Prüfgerät für die Spannung eines Riemens, insbesondere eines Keilriemens eines Kraftfahrzeugmotors
DE652877C (de) Auftragevorrichtung fuer Faerbfluessigkeiten
DE382969C (de) Vorrichtung zum Anzeigen des Fluessigkeitsstandes
EP0328606A1 (de) An einer öffnung eines behälters anzubringende verschraubung
DE2840475C2 (de)
DE2807457C3 (de) Druckdifferenz- und temperaturabhängiger Widerstand

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase