WO2000015885A1 - Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin, et produits obtenus - Google Patents
Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin, et produits obtenus Download PDFInfo
- Publication number
- WO2000015885A1 WO2000015885A1 PCT/FR1999/002154 FR9902154W WO0015885A1 WO 2000015885 A1 WO2000015885 A1 WO 2000015885A1 FR 9902154 W FR9902154 W FR 9902154W WO 0015885 A1 WO0015885 A1 WO 0015885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- germanium
- layer
- predetermined temperature
- temperature
- cvd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/08—Germanium
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/52—Alloys
Definitions
- the present invention relates generally to a process for obtaining a layer of monocrystalline germanium on a substrate of monocrystalline silicon.
- Silicon is the basic compound of microelectronics. It is currently available on the market in slices of 200 mm in diameter. The limits in terms of performance of integrated circuits are therefore ultimately those linked to the intrinsic properties of silicon.
- Germanium (Ge) which is part of column IV of the Periodic Table of the Elements is a semiconductor. It would potentially be more interesting than Si because, (i) it has a higher electronic mobility, (ii) it absorbs well in the field of infrared radiation, (iii) its lattice parameter is greater than that of Si, which authorizes hetero-epitaxy with semiconductor materials from columns III-V of the periodic table.
- germanium does not have a stable oxide and there are no large diameter germanium wafers on the market or at prohibitive prices.
- Si ⁇ . ⁇ Ge ⁇ alloys have already been grown on monocrystalline Si substrates. The alloys obtained rarely exceed 50% germanium levels in the alloy.
- Si ⁇ . ⁇ Ge ⁇ on silicon by exceeding the critical thickness for a given composition but by adjusting the deposition parameters of the layers so that the dislocations emitted do not propagate vertically but bend to propagate in the plane of the layer for then evaporate on the edges of the plate. Growth therefore takes place from layers increasingly enriched in germanium, the germanium gradient being able to be carried out in stages or continuously.
- Each layer is, after deposition, subjected to an in situ annealing in hydrogen at 1095 or 1050 ° C. For comparison, similar sequences of layers were deposited, but without annealing.
- a 300 nm layer of Ge ⁇ Si ⁇ _ ⁇ of the same composition as the upper buffer layer is also deposited thereon.
- Samples which have not been subjected to intermediate annealing have an emerging dislocation density of 10 6 cm “2 , while the annealed sample has an emerging dislocation density of 10 3 - 10 4 cm “ 2 .
- a deposition method has also been proposed making it possible to form on a silicon substrate layers of Si l ⁇ Ge ⁇ (x varying from 0 to 1), which can go up to a layer of pure Ge and having a low density of dislocations. emerging.
- the essential characteristic of this process consists, during chemical vapor deposition, of constantly modifying the flow of active gases (SiH 4 and GeH, for example) at the same time as the deposition temperature is varied.
- active gases SiH 4 and GeH, for example
- the dislocations emitted are quickly rejected and evacuated in order to gradually relax the growing layer.
- the latter process therefore has the advantages of a smaller thickness of intermediate layer to obtain a surface layer of relaxed substrate, a density of defects (emerging dislocations) of
- the present invention therefore relates to a new method of depositing a layer of pure monocrystalline germanium on a substrate of monocrystalline silicon, which does not require the deposition of an intermediate layer with a concentration gradient.
- the present invention also relates to such a deposition process providing low densities of residual emerging dislocations, less than 10 3 defects / cm 2 at the surface.
- the present invention also relates to such a process, making it possible to obtain a layer in a very short time and of small thickness (approximately 10 minutes for a layer of pure Ge of ⁇ m).
- the method of forming on a monocrystalline silicon substrate a layer of pure monocrystalline germanium comprises:
- thermostabilization of the monocrystalline silicon substrate at a first predetermined stabilized temperature (T,) from 400 ° C to 500 ° C, preferably from 430 ° C to 460 ° C;
- the method of forming on a monocrystalline silicon substrate a layer of pure monocrystalline germanium comprises after step (c) and before step (d):
- - (c 2 ) a step of chemical vapor deposition at the third predetermined temperature (T 3 ) of an alloy Si, _ ⁇ Ge ⁇ where x> 0.9, until an intermediate layer of Si alloy, _ ⁇ Ge ⁇ having a predetermined thickness;
- - (c 3 ) a transition step in which, at the third predetermined temperature (T 3 ), one passes from the chemical vapor deposition of the alloy Si ⁇ _ ⁇ Ge ⁇ to a chemical vapor deposition of pure Ge;
- step (c 4 ) a step in which CVD deposition of germanium is continued at said third predetermined temperature (T 3 ) so as to obtain a stack of layers comprising the base layer of germanium, an intermediate layer of alloy Si, _ ⁇ Ge ⁇ and an upper layer of germanium, the thickness of the stack being less than the desired final thickness; and "( c 5) a step in which the temperature of the chemical vapor deposition of germanium is increased from the third predetermined temperature (T 3 ) to a fourth predetermined temperature (T 4 ) from 750 to 850 ° C, preferably 800 to 850 ° C; step (d) being carried out at this fourth predetermined temperature (T 4 ), identical to or different from the second predetermined temperature (T 2 ), but preferably identical.
- any germanium precursor gas such as GeH 4 can be used .
- the germanium precursor gas is diluted with a carrier gas such as hydrogen. Dilution factors can vary from 10 to
- the GeH / H 2 volume ratio is 10%.
- the germanium deposits are preferably made at atmospheric pressure, because when the total pressure is less than 500 hPa, the deposits become rough very quickly and the density of emerging dislocations increases.
- the stage of stabilization of the temperature of the silicon substrate (a) is carried out in the absence of any reactive gas, but in the presence of the carrier gas, generally H 2 .
- H 2 carrier gas is preferably used with a flow rate of approximately 20 l / minute (purified or not).
- the precursor gas is preferably GeH 4 and the flux is generally between 30 and 400 cm 3 / minute under standard conditions, the optimal value being 300 cm 3 / minute (it is obviously acts of nominal flux values of
- durations of the CVD germanium deposition steps are obviously determined as a function of the thickness desired for the final germanium layer.
- a duration of 10 minutes from step (b), 60 seconds from step (c) and 120 seconds from l 'step (d) a final layer of pure monocrystalline germanium of approximately 1 ⁇ m is obtained having an extremely low density of emerging dislocations, which may be less than 10 defects / cm 2 .
- all the steps are also carried out in the presence of a carrier gas, preferably hydrogen and also preferably at atmospheric pressure.
- a carrier gas preferably hydrogen and also preferably at atmospheric pressure.
- the step of lowering the temperature (c,) is carried out in the absence of reactive precursor gases, but in the presence of carrier gas, for example hydrogen.
- CVD germanium deposits are carried out under the same conditions as above.
- CVD deposition of the Si, ⁇ Ge ⁇ alloy layer is carried out using a mixture of germanium and silicon precursor gases in the desired proportions to obtain a deposition of Si, _ ⁇ Ge ⁇ alloy comprising at least 90 % germanium atoms.
- the recommended germanium precursor gas is GeH 4 .
- the recommended silicon precursor gases are SiH 4 , Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 and Si (CH 3 ) 4 , SiH 4 being preferred.
- the intermediate layer of SiGe alloy will generally have a thickness of between 5 and 10 nm, preferably of the order of 10 nm, and obviously the CVD deposition conditions of this layer will be chosen to satisfy the requirements of thickness and germanium content of the layer. In particular, if the germanium content of this intermediate layer of SiGe alloy is less than 90 atom%, the density of emerging dislocations increases.
- the method according to the invention may comprise, prior to step (a) of stabilizing the temperature of the substrate, a step of impregnating the surface of the substrate by CVD deposition in the vapor phase of a layer of silicon at a temperature from 500 to 600 ° C, preferably from 550 ° C.
- This CVD deposition step is also preferably carried out at atmospheric pressure.
- the preferred precursor gas is SiH 4 and, as is well known, the deposition takes place in the presence of a carrier gas, preferably hydrogen.
- the thickness of the impregnation silicon layer is generally from 1 to 5 nm, preferably of the order of 3 nm.
- the surface of the substrate is subjected to a preparation step prior to the implementation of the method according to the invention.
- This preparation step can conventionally be a surface cleaning step, for example any liquid or gas phase process which cleans the silicon surface of metallic and organic residues, such as conventional SCI solutions (NH 4 OH + H 2 0 2 ) and SC 2 (HC1 + H 2 0 2 ) or H 2 S0 4 + H 2 0 2 .
- SCI solutions NH 4 OH + H 2 0 2
- SC 2 HC1 + H 2 0 2
- H 2 S0 4 + H 2 0 2 H 2 S0 4 + H 2 0 2
- the products obtained by the process according to the invention generally have a density of emerging dislocations ⁇ 10 3 / cm 2 and may even be less than 10 defects / cm 2 .
- the method described above limits the appearance of surface roughness, it is still desirable to reduce the surface roughness of the germanium deposit.
- Polishing control is done either in-situ by controlling polishing data like motor current, or ex-situ qualitatively by optical or microscopic observation, and / or quantitatively by atomic force microscopy technique [ measurement of average roughness (rms) or summit / valley].
- heteroepitaxy III-V such as GaAs.
- the layers of Ge obtained can present a slight stress (mesh parameter slightly lower than that of massive Ge) harmful for a subsequent resumption of heteroepitaxy, for example of GaAs on Ge.
- the Ge layer could release this constraint during a subsequent rise in temperature, which will have the unfortunate effect of making the surface rough again and therefore of hampering the resumption of III-V heteroepitaxy, for example by creating defects.
- the particularly preferred methods according to the invention comprise a step of stabilizing the germanium layer.
- This stabilization step introduced at the end of growth of the germanium layer (before mechanical-chemical polishing) will have the effect of (1) relaxing the stresses and finding the theoretical mesh parameter of germanium, and (2) stabilizing therefore the structure during subsequent annealing.
- this stabilization step consists of annealing under a hydrogen atmosphere at a temperature ranging from 650 ° C to less than 900 ° C for a sufficient time, generally about 10 minutes or more, to remove the residual stress.
- the duration of the annealing obviously depends on the annealing temperature and the thickness of the germanium layer.
- the annealing temperature is less than 900 ° C because, above 900 ° C, the germanium which makes at 937 ° C, becomes very unstable.
- This stabilization step can be carried out in a conventional multi-plate oven, however it will preferably be carried out in situ (after the growth of the germanium layer) in order to avoid any contamination of carbonaceous and oxygenated species in a single-plate reactor.
- the germanium layer can be polished mechanical-chemical as described previously.
- Figure 1 - a graph of deposition temperatures as a function of time (curve A), as well as graphs of the flow rates of the precursor gases SiH 4 and GeH 4 as a function of time (curves B and C) for the first embodiment of the process according to the invention;
- Figure 2 graphs of the flow rates of the precursor gases SiH 4 (curves B and D) and GeH 4 (curves C and E) as a function of time, as well as a graph of the deposition temperatures as a function of time (curve A); and
- Figure 3 a photomicrograph of a section of a monocrystalline silicon substrate coated, according to the first embodiment of the method of the invention, with a deposit of pure monocrystalline germanium (area observed by electron microscopy on the wafer) y;
- Figure 4 - a microphotograph of a surface of a monocrystalline silicon substrate coated, according to the first embodiment of the method of the invention, with a deposit of pure monocrystalline germanium (area observed by electron microscopy in plan view);
- Figure 5 a profile by atomic force microscopy (AFM) of a layer of Ge re-epitaxied on a layer of germanium obtained according to the method of the invention, but not stabilized; and Figure 6 - an AFM profile of a Ge layer, re-epitaxied on a germanium layer obtained according to the method of the invention, but stabilized.
- AFM atomic force microscopy
- the surface of the wafer is impregnated by chemical vapor deposition of silicon under the following conditions shown diagrammatically in FIG. 1 by curve B and the corresponding part of curve A.
- Total pressure atmospheric pressure
- Deposition temperature 550 ° C
- Precursor gas SiH 4 350 cm 3 / minute
- Carrier gas H 2 20 1 / minute
- Duration of deposition 30 seconds.
- a deposit of a silicon layer of approximately 3 nm is obtained.
- a layer of Ge with a thickness slightly less than 1 ⁇ m is obtained.
- the germanium deposit is maintained at 850 ° C (T 2 ) for 120 seconds to obtain a layer of pure monocrystalline germanium having a thickness of 1 ⁇ m.
- FIG. 3 is a scanning electron micrograph of a section of the deposit obtained and FIG. 4 a plan view of the deposit. These views show the absence of emerging dislocations in the germanium deposit.
- step (c j ) At the end of step (c), the arrival of GeH 4 is suppressed while maintaining the flow of H 2 and the temperature is lowered from 850 ° C to 550 ° C in about one minute.
- SiH flux 10 cm 3 / minute H 2 flux: 20 1 / minute
- Deposition time 120 seconds.
- Si 0 j Ge Q 9 of about 15 nm.
- step (d) This process is repeated by varying the temperature (T 2 ) of step (b) and the final temperature (T 4 ) of step (d).
- the re-epitaxy germanium (II) layer has a thickness of 500 nm.
- the re-epitaxy of the germanium (II) layer can also be done at atmospheric pressure and at a temperature above 670 ° C.
- a layer of germanium (II) was re-epitaxied under the same conditions on a plate obtained in an identical manner but without the annealing step.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE69905179T DE69905179D1 (de) | 1998-09-10 | 1999-09-10 | Verfahren zur herstellung einer einkristallinen schicht aus germanium auf einem einkristallinen siliziumsubstrat und dadurch hergestellte produkte |
| EP99941731A EP1115920B1 (fr) | 1998-09-10 | 1999-09-10 | Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin, et produits obtenus |
| JP2000570400A JP4486753B2 (ja) | 1998-09-10 | 1999-09-10 | 単結晶シリコン基板上に単結晶ゲルマニウム層を得る方法およびそれにより得られた生成物 |
| US09/786,996 US6537370B1 (en) | 1998-09-10 | 1999-09-10 | Process for obtaining a layer of single-crystal germanium on a substrate of single-crystal silicon, and products obtained |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR9811313A FR2783254B1 (fr) | 1998-09-10 | 1998-09-10 | Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin,et produits obtenus |
| FR98/11313 | 1998-09-10 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2000015885A1 true WO2000015885A1 (fr) | 2000-03-23 |
Family
ID=9530304
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/FR1999/002154 Ceased WO2000015885A1 (fr) | 1998-09-10 | 1999-09-10 | Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin, et produits obtenus |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US6537370B1 (enExample) |
| EP (1) | EP1115920B1 (enExample) |
| JP (1) | JP4486753B2 (enExample) |
| DE (1) | DE69905179D1 (enExample) |
| FR (1) | FR2783254B1 (enExample) |
| WO (1) | WO2000015885A1 (enExample) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2848334A1 (fr) * | 2002-12-06 | 2004-06-11 | Soitec Silicon On Insulator | Procede de fabrication d'une structure multicouche |
| WO2004061943A1 (en) * | 2003-01-07 | 2004-07-22 | S.O.I.Tec Silicon On Insulator Technologies | Recycling by mechanical means of a wafer comprising a taking-off structure after taking-off a thin layer thereof |
| WO2004084268A3 (en) * | 2003-03-13 | 2005-06-16 | Asm Inc | Epitaxial semiconductor deposition methods and structures |
| US7115521B2 (en) | 2003-03-13 | 2006-10-03 | Asm America, Inc. | Epitaxial semiconductor deposition methods and structures |
| US7202166B2 (en) | 2003-08-04 | 2007-04-10 | Asm America, Inc. | Surface preparation prior to deposition on germanium |
| US7208354B2 (en) | 2003-07-23 | 2007-04-24 | Asm America, Inc. | Deposition of silicon germanium on silicon-on-insulator structures and bulk substrates |
| US7285308B2 (en) | 2004-02-23 | 2007-10-23 | Advanced Technology Materials, Inc. | Chemical vapor deposition of high conductivity, adherent thin films of ruthenium |
| US7329593B2 (en) | 2004-02-27 | 2008-02-12 | Asm America, Inc. | Germanium deposition |
| US7427556B2 (en) | 2003-03-12 | 2008-09-23 | Asm America, Inc. | Method to planarize and reduce defect density of silicon germanium |
| US7510949B2 (en) | 2002-07-09 | 2009-03-31 | S.O.I.Tec Silicon On Insulator Technologies | Methods for producing a multilayer semiconductor structure |
| US7514372B2 (en) | 2003-07-30 | 2009-04-07 | Asm America, Inc. | Epitaxial growth of relaxed silicon germanium layers |
| US7534701B2 (en) | 2002-07-09 | 2009-05-19 | S.O.I. Tec Silicon On Insulator Technologies | Process for transferring a layer of strained semiconductor material |
| CN100580903C (zh) * | 2003-01-07 | 2010-01-13 | S.O.I.Tec绝缘体上硅技术公司 | 剥离有用层及重复利用施主晶片的方法、应用和相应晶片 |
| US7648853B2 (en) | 2006-07-11 | 2010-01-19 | Asm America, Inc. | Dual channel heterostructure |
| US7682947B2 (en) | 2003-03-13 | 2010-03-23 | Asm America, Inc. | Epitaxial semiconductor deposition methods and structures |
| US7704896B2 (en) | 2005-01-21 | 2010-04-27 | Asm International, N.V. | Atomic layer deposition of thin films on germanium |
| US7901968B2 (en) | 2006-03-23 | 2011-03-08 | Asm America, Inc. | Heteroepitaxial deposition over an oxidized surface |
| US8188512B2 (en) | 2008-12-03 | 2012-05-29 | Electronics And Telecommunications Research Institute | Growth of germanium epitaxial thin film with negative photoconductance characteristics and photodiode using the same |
| US8951809B2 (en) | 2008-04-07 | 2015-02-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method of transfer by means of a ferroelectric substrate |
| US9127345B2 (en) | 2012-03-06 | 2015-09-08 | Asm America, Inc. | Methods for depositing an epitaxial silicon germanium layer having a germanium to silicon ratio greater than 1:1 using silylgermane and a diluent |
| US9218963B2 (en) | 2013-12-19 | 2015-12-22 | Asm Ip Holding B.V. | Cyclical deposition of germanium |
| US10553423B2 (en) | 2012-09-05 | 2020-02-04 | Asm Ip Holding B.V. | Atomic layer deposition of GeO2 |
Families Citing this family (79)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE60125952T2 (de) * | 2000-08-16 | 2007-08-02 | Massachusetts Institute Of Technology, Cambridge | Verfahren für die herstellung eines halbleiterartikels mittels graduellem epitaktischen wachsen |
| GB0111207D0 (en) | 2001-05-08 | 2001-06-27 | Btg Int Ltd | A method to produce germanium layers |
| US6995430B2 (en) * | 2002-06-07 | 2006-02-07 | Amberwave Systems Corporation | Strained-semiconductor-on-insulator device structures |
| US7074623B2 (en) * | 2002-06-07 | 2006-07-11 | Amberwave Systems Corporation | Methods of forming strained-semiconductor-on-insulator finFET device structures |
| US20030227057A1 (en) * | 2002-06-07 | 2003-12-11 | Lochtefeld Anthony J. | Strained-semiconductor-on-insulator device structures |
| US7335545B2 (en) * | 2002-06-07 | 2008-02-26 | Amberwave Systems Corporation | Control of strain in device layers by prevention of relaxation |
| US20090325362A1 (en) * | 2003-01-07 | 2009-12-31 | Nabil Chhaimi | Method of recycling an epitaxied donor wafer |
| WO2004061944A1 (en) * | 2003-01-07 | 2004-07-22 | S.O.I.Tec Silicon On Insulator Technologies | Recycling of a wafer comprising a multi-layer structure after taking-off a thin layer |
| JP4714422B2 (ja) * | 2003-04-05 | 2011-06-29 | ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. | ゲルマニウムを含有するフィルムを堆積させる方法、及び蒸気送達装置 |
| JP4954448B2 (ja) * | 2003-04-05 | 2012-06-13 | ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. | 有機金属化合物 |
| FR2858460B1 (fr) * | 2003-07-30 | 2005-10-14 | Soitec Silicon On Insulator | Structure semiconducteur-sur-isolant contrainte ayant une tenue des contraintes aux hautes temperatures |
| US8882909B2 (en) * | 2004-04-30 | 2014-11-11 | Dichroic Cell S.R.L. | Method for producing virtual Ge substrates for III/V-integration on Si(001) |
| US7495313B2 (en) * | 2004-07-22 | 2009-02-24 | Board Of Trustees Of The Leland Stanford Junior University | Germanium substrate-type materials and approach therefor |
| US7320931B2 (en) * | 2004-07-30 | 2008-01-22 | Freescale Semiconductor Inc. | Interfacial layer for use with high k dielectric materials |
| US7247545B2 (en) * | 2004-11-10 | 2007-07-24 | Sharp Laboratories Of America, Inc. | Fabrication of a low defect germanium film by direct wafer bonding |
| US7037856B1 (en) | 2005-06-10 | 2006-05-02 | Sharp Laboratories Of America, Inc. | Method of fabricating a low-defect strained epitaxial germanium film on silicon |
| US7678420B2 (en) * | 2005-06-22 | 2010-03-16 | Sandisk 3D Llc | Method of depositing germanium films |
| US7305157B2 (en) * | 2005-11-08 | 2007-12-04 | Massachusetts Institute Of Technology | Vertically-integrated waveguide photodetector apparatus and related coupling methods |
| US7266263B2 (en) * | 2005-11-08 | 2007-09-04 | Massachusetts Institute Of Technology | Integrated waveguide photodetector apparatus with matching propagation constants and related coupling methods |
| US20070104441A1 (en) * | 2005-11-08 | 2007-05-10 | Massachusetts Institute Of Technology | Laterally-integrated waveguide photodetector apparatus and related coupling methods |
| JP2007173354A (ja) * | 2005-12-20 | 2007-07-05 | Shin Etsu Chem Co Ltd | Soi基板およびsoi基板の製造方法 |
| FR2896338B1 (fr) | 2006-01-17 | 2008-04-18 | St Microelectronics Crolles 2 | Procede de realisation d'une couche monocristalline sur une couche dielectrique |
| FR2896337A1 (fr) * | 2006-01-17 | 2007-07-20 | St Microelectronics Crolles 2 | Procede de realisation d'une couche monocristalline sur une couche dielectrique |
| US7785995B2 (en) * | 2006-05-09 | 2010-08-31 | Asm America, Inc. | Semiconductor buffer structures |
| US20070262296A1 (en) * | 2006-05-11 | 2007-11-15 | Matthias Bauer | Photodetectors employing germanium layers |
| US20080076236A1 (en) * | 2006-09-21 | 2008-03-27 | Jih-Shun Chiang | Method for forming silicon-germanium epitaxial layer |
| US7651880B2 (en) * | 2006-11-04 | 2010-01-26 | Sharp Laboratories Of America, Inc. | Ge short wavelength infrared imager |
| US8157914B1 (en) | 2007-02-07 | 2012-04-17 | Chien-Min Sung | Substrate surface modifications for compositional gradation of crystalline materials and associated products |
| US7799600B2 (en) * | 2007-05-31 | 2010-09-21 | Chien-Min Sung | Doped diamond LED devices and associated methods |
| WO2009024533A1 (en) * | 2007-08-17 | 2009-02-26 | Epispeed Sa | Apparatus and method for producing epitaxial layers |
| US8237126B2 (en) | 2007-08-17 | 2012-08-07 | Csem Centre Suisse D'electronique Et De Mictrotechnique Sa | X-ray imaging device and method for the manufacturing thereof |
| US7851378B2 (en) * | 2007-09-11 | 2010-12-14 | National Applied Research Laboratories | Method for growing Ge expitaxial layer on patterned structure with cyclic annealing |
| KR20110081803A (ko) * | 2008-10-02 | 2011-07-14 | 스미또모 가가꾸 가부시키가이샤 | 반도체 기판, 전자 디바이스 및 반도체 기판의 제조 방법 |
| TWI471910B (zh) | 2008-10-02 | 2015-02-01 | Sumitomo Chemical Co | 半導體晶圓、電子裝置及半導體晶圓之製造方法 |
| WO2010038460A1 (ja) * | 2008-10-02 | 2010-04-08 | 住友化学株式会社 | 半導体基板、電子デバイス、および半導体基板の製造方法 |
| KR20100064742A (ko) * | 2008-12-05 | 2010-06-15 | 한국전자통신연구원 | 낮은 침투전위 밀도를 갖는 순수 게르마늄 박막 성장법 |
| US8663735B2 (en) * | 2009-02-13 | 2014-03-04 | Advanced Technology Materials, Inc. | In situ generation of RuO4 for ALD of Ru and Ru related materials |
| TWI562195B (en) | 2010-04-27 | 2016-12-11 | Pilegrowth Tech S R L | Dislocation and stress management by mask-less processes using substrate patterning and methods for device fabrication |
| US8466502B2 (en) | 2011-03-24 | 2013-06-18 | United Microelectronics Corp. | Metal-gate CMOS device |
| US8445363B2 (en) | 2011-04-21 | 2013-05-21 | United Microelectronics Corp. | Method of fabricating an epitaxial layer |
| US8324059B2 (en) | 2011-04-25 | 2012-12-04 | United Microelectronics Corp. | Method of fabricating a semiconductor structure |
| US8426284B2 (en) | 2011-05-11 | 2013-04-23 | United Microelectronics Corp. | Manufacturing method for semiconductor structure |
| US8481391B2 (en) | 2011-05-18 | 2013-07-09 | United Microelectronics Corp. | Process for manufacturing stress-providing structure and semiconductor device with such stress-providing structure |
| US8431460B2 (en) | 2011-05-27 | 2013-04-30 | United Microelectronics Corp. | Method for fabricating semiconductor device |
| US8716750B2 (en) | 2011-07-25 | 2014-05-06 | United Microelectronics Corp. | Semiconductor device having epitaxial structures |
| US8575043B2 (en) | 2011-07-26 | 2013-11-05 | United Microelectronics Corp. | Semiconductor device and manufacturing method thereof |
| US8647941B2 (en) | 2011-08-17 | 2014-02-11 | United Microelectronics Corp. | Method of forming semiconductor device |
| US8674433B2 (en) | 2011-08-24 | 2014-03-18 | United Microelectronics Corp. | Semiconductor process |
| US8455292B2 (en) | 2011-09-09 | 2013-06-04 | International Business Machines Corporation | Deposition of germanium film |
| US8476169B2 (en) | 2011-10-17 | 2013-07-02 | United Microelectronics Corp. | Method of making strained silicon channel semiconductor structure |
| US8691659B2 (en) | 2011-10-26 | 2014-04-08 | United Microelectronics Corp. | Method for forming void-free dielectric layer |
| US8754448B2 (en) | 2011-11-01 | 2014-06-17 | United Microelectronics Corp. | Semiconductor device having epitaxial layer |
| US8647953B2 (en) | 2011-11-17 | 2014-02-11 | United Microelectronics Corp. | Method for fabricating first and second epitaxial cap layers |
| US8709930B2 (en) | 2011-11-25 | 2014-04-29 | United Microelectronics Corp. | Semiconductor process |
| US9093269B2 (en) | 2011-12-20 | 2015-07-28 | Asm America, Inc. | In-situ pre-clean prior to epitaxy |
| US9653639B2 (en) * | 2012-02-07 | 2017-05-16 | Apic Corporation | Laser using locally strained germanium on silicon for opto-electronic applications |
| US20130224899A1 (en) * | 2012-02-28 | 2013-08-29 | International Business Machines Corporation | Enhancing efficiency in solar cells by adjusting deposition power |
| US9214577B2 (en) | 2012-02-28 | 2015-12-15 | International Business Machines Corporation | Reduced light degradation due to low power deposition of buffer layer |
| US9136348B2 (en) | 2012-03-12 | 2015-09-15 | United Microelectronics Corp. | Semiconductor structure and fabrication method thereof |
| US9202914B2 (en) | 2012-03-14 | 2015-12-01 | United Microelectronics Corporation | Semiconductor device and method for fabricating the same |
| US8664069B2 (en) | 2012-04-05 | 2014-03-04 | United Microelectronics Corp. | Semiconductor structure and process thereof |
| US8866230B2 (en) | 2012-04-26 | 2014-10-21 | United Microelectronics Corp. | Semiconductor devices |
| US8835243B2 (en) | 2012-05-04 | 2014-09-16 | United Microelectronics Corp. | Semiconductor process |
| US8951876B2 (en) | 2012-06-20 | 2015-02-10 | United Microelectronics Corp. | Semiconductor device and manufacturing method thereof |
| US8796695B2 (en) | 2012-06-22 | 2014-08-05 | United Microelectronics Corp. | Multi-gate field-effect transistor and process thereof |
| US8710632B2 (en) | 2012-09-07 | 2014-04-29 | United Microelectronics Corp. | Compound semiconductor epitaxial structure and method for fabricating the same |
| US9330899B2 (en) | 2012-11-01 | 2016-05-03 | Asm Ip Holding B.V. | Method of depositing thin film |
| US9117925B2 (en) | 2013-01-31 | 2015-08-25 | United Microelectronics Corp. | Epitaxial process |
| US8753902B1 (en) | 2013-03-13 | 2014-06-17 | United Microelectronics Corp. | Method of controlling etching process for forming epitaxial structure |
| US9034705B2 (en) | 2013-03-26 | 2015-05-19 | United Microelectronics Corp. | Method of forming semiconductor device |
| US9064893B2 (en) | 2013-05-13 | 2015-06-23 | United Microelectronics Corp. | Gradient dopant of strained substrate manufacturing method of semiconductor device |
| US9076652B2 (en) | 2013-05-27 | 2015-07-07 | United Microelectronics Corp. | Semiconductor process for modifying shape of recess |
| US8853060B1 (en) | 2013-05-27 | 2014-10-07 | United Microelectronics Corp. | Epitaxial process |
| US8765546B1 (en) | 2013-06-24 | 2014-07-01 | United Microelectronics Corp. | Method for fabricating fin-shaped field-effect transistor |
| US8895396B1 (en) | 2013-07-11 | 2014-11-25 | United Microelectronics Corp. | Epitaxial Process of forming stress inducing epitaxial layers in source and drain regions of PMOS and NMOS structures |
| US8981487B2 (en) | 2013-07-31 | 2015-03-17 | United Microelectronics Corp. | Fin-shaped field-effect transistor (FinFET) |
| FR3028094B1 (fr) * | 2014-11-05 | 2018-02-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de determination de parametres de depot preferentiels pour une couche mince en materiau iii-v |
| CN116504828A (zh) | 2022-01-19 | 2023-07-28 | 联华电子股份有限公司 | 半导体元件 |
| WO2024005276A1 (ko) * | 2022-07-01 | 2024-01-04 | 주식회사 비아트론 | 에피택시 공정을 이용한 반도체 소자 제조 방법 및 이를 위한 제조 장치 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0518800A2 (en) * | 1991-06-12 | 1992-12-16 | International Business Machines Corporation | Heteroepitaxial growth of germanium on silicon by UHV/CVD |
| EP0524114A1 (fr) * | 1991-07-05 | 1993-01-20 | INSTITUT MAX VON LAUE - PAUL LANGEVIN (Etablissement publique) | Procédé de fabrication d'un cristal à gradient de maille |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19650058A1 (de) * | 1996-12-03 | 1998-06-04 | Deere & Co | Häckseltrommel |
| US6180480B1 (en) * | 1998-09-28 | 2001-01-30 | International Business Machines Corporation | Germanium or silicon-germanium deep trench fill by melt-flow process |
-
1998
- 1998-09-10 FR FR9811313A patent/FR2783254B1/fr not_active Expired - Fee Related
-
1999
- 1999-09-10 WO PCT/FR1999/002154 patent/WO2000015885A1/fr not_active Ceased
- 1999-09-10 DE DE69905179T patent/DE69905179D1/de not_active Expired - Lifetime
- 1999-09-10 US US09/786,996 patent/US6537370B1/en not_active Expired - Fee Related
- 1999-09-10 EP EP99941731A patent/EP1115920B1/fr not_active Expired - Lifetime
- 1999-09-10 JP JP2000570400A patent/JP4486753B2/ja not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0518800A2 (en) * | 1991-06-12 | 1992-12-16 | International Business Machines Corporation | Heteroepitaxial growth of germanium on silicon by UHV/CVD |
| EP0524114A1 (fr) * | 1991-07-05 | 1993-01-20 | INSTITUT MAX VON LAUE - PAUL LANGEVIN (Etablissement publique) | Procédé de fabrication d'un cristal à gradient de maille |
Non-Patent Citations (4)
| Title |
|---|
| FITZGERALD E A ET AL: "Line, point and surface defect morphology of graded, relaxed GeSi alloys on Si substrates", THIN SOLID FILMS, vol. 294, no. 1-2, 15 February 1997 (1997-02-15), pages 3-10, XP004073025 * |
| JUNG K H ET AL: "GROWTH OF GEXSI1-X LAYERS BY RAPID THERMAL PROCESSING CHEMICAL VAPOR DEPOSITION", EXTENDED ABSTRACTS, vol. 89/1, no. 22, 1989, pages 216/217, XP000133701 * |
| KAMINS T I ET AL: "KINETICS OF SILICON-GERMANIUM DEPOSITION BY ATMOSPHERIC-PRESSURE CHEMICAL VAPOR DEPOSITION", APPLIED PHYSICS LETTERS, vol. 59, no. 2, 8 July 1991 (1991-07-08), pages 178 - 180, XP000230517 * |
| KOBAYASHI S ET AL: "Initial growth characteristics of germanium on silicon in LPCVD using germane gas", JOURNAL OF CRYSTAL GROWTH, vol. 174, no. 1-4, 1 April 1997 (1997-04-01), pages 686-690, XP004083870 * |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7510949B2 (en) | 2002-07-09 | 2009-03-31 | S.O.I.Tec Silicon On Insulator Technologies | Methods for producing a multilayer semiconductor structure |
| US8049224B2 (en) | 2002-07-09 | 2011-11-01 | S.O.I.Tec Silicon On Insulator Technologies | Process for transferring a layer of strained semiconductor material |
| US7803694B2 (en) | 2002-07-09 | 2010-09-28 | S.O.I.Tec Silicon On Insulator Technologies | Process for transferring a layer of strained semiconductor material |
| US7534701B2 (en) | 2002-07-09 | 2009-05-19 | S.O.I. Tec Silicon On Insulator Technologies | Process for transferring a layer of strained semiconductor material |
| WO2004053961A1 (en) * | 2002-12-06 | 2004-06-24 | S.O.I.Tec Silicon On Insulator Technologies | Manufacturing process for a multilayer structure |
| FR2848334A1 (fr) * | 2002-12-06 | 2004-06-11 | Soitec Silicon On Insulator | Procede de fabrication d'une structure multicouche |
| CN100580903C (zh) * | 2003-01-07 | 2010-01-13 | S.O.I.Tec绝缘体上硅技术公司 | 剥离有用层及重复利用施主晶片的方法、应用和相应晶片 |
| WO2004061943A1 (en) * | 2003-01-07 | 2004-07-22 | S.O.I.Tec Silicon On Insulator Technologies | Recycling by mechanical means of a wafer comprising a taking-off structure after taking-off a thin layer thereof |
| US7427556B2 (en) | 2003-03-12 | 2008-09-23 | Asm America, Inc. | Method to planarize and reduce defect density of silicon germanium |
| US8530340B2 (en) | 2003-03-13 | 2013-09-10 | Asm America, Inc. | Epitaxial semiconductor deposition methods and structures |
| US7402504B2 (en) | 2003-03-13 | 2008-07-22 | Asm America, Inc. | Epitaxial semiconductor deposition methods and structures |
| WO2004084268A3 (en) * | 2003-03-13 | 2005-06-16 | Asm Inc | Epitaxial semiconductor deposition methods and structures |
| US7238595B2 (en) | 2003-03-13 | 2007-07-03 | Asm America, Inc. | Epitaxial semiconductor deposition methods and structures |
| US7115521B2 (en) | 2003-03-13 | 2006-10-03 | Asm America, Inc. | Epitaxial semiconductor deposition methods and structures |
| US7682947B2 (en) | 2003-03-13 | 2010-03-23 | Asm America, Inc. | Epitaxial semiconductor deposition methods and structures |
| US7208354B2 (en) | 2003-07-23 | 2007-04-24 | Asm America, Inc. | Deposition of silicon germanium on silicon-on-insulator structures and bulk substrates |
| US7666799B2 (en) | 2003-07-30 | 2010-02-23 | Asm America, Inc. | Epitaxial growth of relaxed silicon germanium layers |
| US7514372B2 (en) | 2003-07-30 | 2009-04-07 | Asm America, Inc. | Epitaxial growth of relaxed silicon germanium layers |
| US7799680B2 (en) | 2003-08-04 | 2010-09-21 | Asm America, Inc. | Surface preparation prior to deposition on germanium |
| US7202166B2 (en) | 2003-08-04 | 2007-04-10 | Asm America, Inc. | Surface preparation prior to deposition on germanium |
| US7285308B2 (en) | 2004-02-23 | 2007-10-23 | Advanced Technology Materials, Inc. | Chemical vapor deposition of high conductivity, adherent thin films of ruthenium |
| US7479443B2 (en) | 2004-02-27 | 2009-01-20 | Asm America Inc. | Germanium deposition |
| US7329593B2 (en) | 2004-02-27 | 2008-02-12 | Asm America, Inc. | Germanium deposition |
| US7704896B2 (en) | 2005-01-21 | 2010-04-27 | Asm International, N.V. | Atomic layer deposition of thin films on germanium |
| US7901968B2 (en) | 2006-03-23 | 2011-03-08 | Asm America, Inc. | Heteroepitaxial deposition over an oxidized surface |
| US7648853B2 (en) | 2006-07-11 | 2010-01-19 | Asm America, Inc. | Dual channel heterostructure |
| US8951809B2 (en) | 2008-04-07 | 2015-02-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method of transfer by means of a ferroelectric substrate |
| US8188512B2 (en) | 2008-12-03 | 2012-05-29 | Electronics And Telecommunications Research Institute | Growth of germanium epitaxial thin film with negative photoconductance characteristics and photodiode using the same |
| US9127345B2 (en) | 2012-03-06 | 2015-09-08 | Asm America, Inc. | Methods for depositing an epitaxial silicon germanium layer having a germanium to silicon ratio greater than 1:1 using silylgermane and a diluent |
| US10553423B2 (en) | 2012-09-05 | 2020-02-04 | Asm Ip Holding B.V. | Atomic layer deposition of GeO2 |
| US10811249B2 (en) | 2012-09-05 | 2020-10-20 | Asm Ip Holding B.V. | Atomic layer deposition of GeO2 |
| US9218963B2 (en) | 2013-12-19 | 2015-12-22 | Asm Ip Holding B.V. | Cyclical deposition of germanium |
| US9576794B2 (en) | 2013-12-19 | 2017-02-21 | Asm Ip Holding B.V. | Cyclical deposition of germanium |
| US9929009B2 (en) | 2013-12-19 | 2018-03-27 | Asm Ip Holding B.V. | Cyclical deposition of germanium |
| US10741388B2 (en) | 2013-12-19 | 2020-08-11 | Asm Ip Holding B.V. | Cyclical deposition of germanium |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1115920B1 (fr) | 2003-01-29 |
| US6537370B1 (en) | 2003-03-25 |
| FR2783254B1 (fr) | 2000-11-10 |
| JP4486753B2 (ja) | 2010-06-23 |
| FR2783254A1 (fr) | 2000-03-17 |
| JP2002525255A (ja) | 2002-08-13 |
| EP1115920A1 (fr) | 2001-07-18 |
| DE69905179D1 (de) | 2003-03-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1115920B1 (fr) | Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin, et produits obtenus | |
| EP0930382B1 (fr) | Procédé d'obtention d'une couche de germanium ou de silicium monocristallin sur respectivement, un substrat de silicium ou germanium monocristallin, et produits multicouches obtenus | |
| FR2534068A1 (fr) | Procede de fabrication d'une heterostructure comprenant une matiere heteroepitaxiale a constituants multiples | |
| JP2006520096A (ja) | 構造均一性を有する半導体構造 | |
| EP4128328B1 (fr) | Procede de fabrication d'une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic | |
| FR2931013A1 (fr) | Procede de production de tranches collees. | |
| EP3670709B1 (fr) | Procede de fabrication d'une structure monocristalline | |
| FR2880988A1 (fr) | TRAITEMENT D'UNE COUCHE EN SI1-yGEy PRELEVEE | |
| FR2881573A1 (fr) | Procede de transfert d'une couche mince formee dans un substrat presentant des amas de lacunes | |
| FR2921200A1 (fr) | Heterostructures semi-conductrices monolithiques epitaxiees et leur procede de fabrication | |
| FR2893446A1 (fr) | TRAITEMENT DE COUCHE DE SiGe POUR GRAVURE SELECTIVE | |
| EP1186024B1 (fr) | Procede de fabrication d'un substrat de silicium comportant une mince couche d'oxyde de silicium ensevelie | |
| FR2851847A1 (fr) | Relaxation d'une couche mince apres transfert | |
| EP4055214A1 (fr) | Plaquette de nitrure d'élément 13 de variation d'angle de troncature réduite | |
| FR2851848A1 (fr) | Relaxation a haute temperature d'une couche mince apres transfert | |
| EP1900014A2 (fr) | Substrat, notamment en carbure de silicium, recouvert par une couche mince de nitrure de silicium stoechiometrique, pour la fabrication de composants electroniques, et procede d'obtention d'une telle couche | |
| Aoyama et al. | Surface cleaning for Si epitaxy using photoexcited fluorine gas | |
| WO2020127603A1 (fr) | Substrat semi-conducteur avec couche intermediaire dopee n | |
| FR2794891A1 (fr) | Preparation de substrats aux techniques de collage direct | |
| WO2025196157A1 (fr) | Procede de traitement d'un substrat presentant une surface en un materiau semiconducteur | |
| FR3137490A1 (fr) | Procede de fabrication d’une structure comportant une couche barriere a la diffusion d’especes atomiques | |
| EP1818976A1 (fr) | Procédé de transfert d'une couche mince formée dans un substrat présentant des amas de lacunes | |
| FR2647957A1 (fr) | Procede de realisation de dispositifs semi-conducteurs du groupe iii-v sur un substrat en silicium | |
| FR3034108A1 (fr) | Methode de reduction de defauts et fabrication de substrat | |
| FR3091020A1 (fr) | SUBSTRAT SEMI-CONDUCTEUR CO-DOPE n |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 1999941731 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 09786996 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 570400 Kind code of ref document: A Format of ref document f/p: F |
|
| WWP | Wipo information: published in national office |
Ref document number: 1999941731 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1999941731 Country of ref document: EP |