WO2000015885A1 - Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin, et produits obtenus - Google Patents

Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin, et produits obtenus Download PDF

Info

Publication number
WO2000015885A1
WO2000015885A1 PCT/FR1999/002154 FR9902154W WO0015885A1 WO 2000015885 A1 WO2000015885 A1 WO 2000015885A1 FR 9902154 W FR9902154 W FR 9902154W WO 0015885 A1 WO0015885 A1 WO 0015885A1
Authority
WO
WIPO (PCT)
Prior art keywords
germanium
layer
predetermined temperature
temperature
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/FR1999/002154
Other languages
English (en)
French (fr)
Inventor
Caroline Hernandez
Yves Campidelli
Daniel Bensahel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Priority to DE69905179T priority Critical patent/DE69905179D1/de
Priority to EP99941731A priority patent/EP1115920B1/fr
Priority to JP2000570400A priority patent/JP4486753B2/ja
Priority to US09/786,996 priority patent/US6537370B1/en
Publication of WO2000015885A1 publication Critical patent/WO2000015885A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Definitions

  • the present invention relates generally to a process for obtaining a layer of monocrystalline germanium on a substrate of monocrystalline silicon.
  • Silicon is the basic compound of microelectronics. It is currently available on the market in slices of 200 mm in diameter. The limits in terms of performance of integrated circuits are therefore ultimately those linked to the intrinsic properties of silicon.
  • Germanium (Ge) which is part of column IV of the Periodic Table of the Elements is a semiconductor. It would potentially be more interesting than Si because, (i) it has a higher electronic mobility, (ii) it absorbs well in the field of infrared radiation, (iii) its lattice parameter is greater than that of Si, which authorizes hetero-epitaxy with semiconductor materials from columns III-V of the periodic table.
  • germanium does not have a stable oxide and there are no large diameter germanium wafers on the market or at prohibitive prices.
  • Si ⁇ . ⁇ Ge ⁇ alloys have already been grown on monocrystalline Si substrates. The alloys obtained rarely exceed 50% germanium levels in the alloy.
  • Si ⁇ . ⁇ Ge ⁇ on silicon by exceeding the critical thickness for a given composition but by adjusting the deposition parameters of the layers so that the dislocations emitted do not propagate vertically but bend to propagate in the plane of the layer for then evaporate on the edges of the plate. Growth therefore takes place from layers increasingly enriched in germanium, the germanium gradient being able to be carried out in stages or continuously.
  • Each layer is, after deposition, subjected to an in situ annealing in hydrogen at 1095 or 1050 ° C. For comparison, similar sequences of layers were deposited, but without annealing.
  • a 300 nm layer of Ge ⁇ Si ⁇ _ ⁇ of the same composition as the upper buffer layer is also deposited thereon.
  • Samples which have not been subjected to intermediate annealing have an emerging dislocation density of 10 6 cm “2 , while the annealed sample has an emerging dislocation density of 10 3 - 10 4 cm “ 2 .
  • a deposition method has also been proposed making it possible to form on a silicon substrate layers of Si l ⁇ Ge ⁇ (x varying from 0 to 1), which can go up to a layer of pure Ge and having a low density of dislocations. emerging.
  • the essential characteristic of this process consists, during chemical vapor deposition, of constantly modifying the flow of active gases (SiH 4 and GeH, for example) at the same time as the deposition temperature is varied.
  • active gases SiH 4 and GeH, for example
  • the dislocations emitted are quickly rejected and evacuated in order to gradually relax the growing layer.
  • the latter process therefore has the advantages of a smaller thickness of intermediate layer to obtain a surface layer of relaxed substrate, a density of defects (emerging dislocations) of
  • the present invention therefore relates to a new method of depositing a layer of pure monocrystalline germanium on a substrate of monocrystalline silicon, which does not require the deposition of an intermediate layer with a concentration gradient.
  • the present invention also relates to such a deposition process providing low densities of residual emerging dislocations, less than 10 3 defects / cm 2 at the surface.
  • the present invention also relates to such a process, making it possible to obtain a layer in a very short time and of small thickness (approximately 10 minutes for a layer of pure Ge of ⁇ m).
  • the method of forming on a monocrystalline silicon substrate a layer of pure monocrystalline germanium comprises:
  • thermostabilization of the monocrystalline silicon substrate at a first predetermined stabilized temperature (T,) from 400 ° C to 500 ° C, preferably from 430 ° C to 460 ° C;
  • the method of forming on a monocrystalline silicon substrate a layer of pure monocrystalline germanium comprises after step (c) and before step (d):
  • - (c 2 ) a step of chemical vapor deposition at the third predetermined temperature (T 3 ) of an alloy Si, _ ⁇ Ge ⁇ where x> 0.9, until an intermediate layer of Si alloy, _ ⁇ Ge ⁇ having a predetermined thickness;
  • - (c 3 ) a transition step in which, at the third predetermined temperature (T 3 ), one passes from the chemical vapor deposition of the alloy Si ⁇ _ ⁇ Ge ⁇ to a chemical vapor deposition of pure Ge;
  • step (c 4 ) a step in which CVD deposition of germanium is continued at said third predetermined temperature (T 3 ) so as to obtain a stack of layers comprising the base layer of germanium, an intermediate layer of alloy Si, _ ⁇ Ge ⁇ and an upper layer of germanium, the thickness of the stack being less than the desired final thickness; and "( c 5) a step in which the temperature of the chemical vapor deposition of germanium is increased from the third predetermined temperature (T 3 ) to a fourth predetermined temperature (T 4 ) from 750 to 850 ° C, preferably 800 to 850 ° C; step (d) being carried out at this fourth predetermined temperature (T 4 ), identical to or different from the second predetermined temperature (T 2 ), but preferably identical.
  • any germanium precursor gas such as GeH 4 can be used .
  • the germanium precursor gas is diluted with a carrier gas such as hydrogen. Dilution factors can vary from 10 to
  • the GeH / H 2 volume ratio is 10%.
  • the germanium deposits are preferably made at atmospheric pressure, because when the total pressure is less than 500 hPa, the deposits become rough very quickly and the density of emerging dislocations increases.
  • the stage of stabilization of the temperature of the silicon substrate (a) is carried out in the absence of any reactive gas, but in the presence of the carrier gas, generally H 2 .
  • H 2 carrier gas is preferably used with a flow rate of approximately 20 l / minute (purified or not).
  • the precursor gas is preferably GeH 4 and the flux is generally between 30 and 400 cm 3 / minute under standard conditions, the optimal value being 300 cm 3 / minute (it is obviously acts of nominal flux values of
  • durations of the CVD germanium deposition steps are obviously determined as a function of the thickness desired for the final germanium layer.
  • a duration of 10 minutes from step (b), 60 seconds from step (c) and 120 seconds from l 'step (d) a final layer of pure monocrystalline germanium of approximately 1 ⁇ m is obtained having an extremely low density of emerging dislocations, which may be less than 10 defects / cm 2 .
  • all the steps are also carried out in the presence of a carrier gas, preferably hydrogen and also preferably at atmospheric pressure.
  • a carrier gas preferably hydrogen and also preferably at atmospheric pressure.
  • the step of lowering the temperature (c,) is carried out in the absence of reactive precursor gases, but in the presence of carrier gas, for example hydrogen.
  • CVD germanium deposits are carried out under the same conditions as above.
  • CVD deposition of the Si, ⁇ Ge ⁇ alloy layer is carried out using a mixture of germanium and silicon precursor gases in the desired proportions to obtain a deposition of Si, _ ⁇ Ge ⁇ alloy comprising at least 90 % germanium atoms.
  • the recommended germanium precursor gas is GeH 4 .
  • the recommended silicon precursor gases are SiH 4 , Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 and Si (CH 3 ) 4 , SiH 4 being preferred.
  • the intermediate layer of SiGe alloy will generally have a thickness of between 5 and 10 nm, preferably of the order of 10 nm, and obviously the CVD deposition conditions of this layer will be chosen to satisfy the requirements of thickness and germanium content of the layer. In particular, if the germanium content of this intermediate layer of SiGe alloy is less than 90 atom%, the density of emerging dislocations increases.
  • the method according to the invention may comprise, prior to step (a) of stabilizing the temperature of the substrate, a step of impregnating the surface of the substrate by CVD deposition in the vapor phase of a layer of silicon at a temperature from 500 to 600 ° C, preferably from 550 ° C.
  • This CVD deposition step is also preferably carried out at atmospheric pressure.
  • the preferred precursor gas is SiH 4 and, as is well known, the deposition takes place in the presence of a carrier gas, preferably hydrogen.
  • the thickness of the impregnation silicon layer is generally from 1 to 5 nm, preferably of the order of 3 nm.
  • the surface of the substrate is subjected to a preparation step prior to the implementation of the method according to the invention.
  • This preparation step can conventionally be a surface cleaning step, for example any liquid or gas phase process which cleans the silicon surface of metallic and organic residues, such as conventional SCI solutions (NH 4 OH + H 2 0 2 ) and SC 2 (HC1 + H 2 0 2 ) or H 2 S0 4 + H 2 0 2 .
  • SCI solutions NH 4 OH + H 2 0 2
  • SC 2 HC1 + H 2 0 2
  • H 2 S0 4 + H 2 0 2 H 2 S0 4 + H 2 0 2
  • the products obtained by the process according to the invention generally have a density of emerging dislocations ⁇ 10 3 / cm 2 and may even be less than 10 defects / cm 2 .
  • the method described above limits the appearance of surface roughness, it is still desirable to reduce the surface roughness of the germanium deposit.
  • Polishing control is done either in-situ by controlling polishing data like motor current, or ex-situ qualitatively by optical or microscopic observation, and / or quantitatively by atomic force microscopy technique [ measurement of average roughness (rms) or summit / valley].
  • heteroepitaxy III-V such as GaAs.
  • the layers of Ge obtained can present a slight stress (mesh parameter slightly lower than that of massive Ge) harmful for a subsequent resumption of heteroepitaxy, for example of GaAs on Ge.
  • the Ge layer could release this constraint during a subsequent rise in temperature, which will have the unfortunate effect of making the surface rough again and therefore of hampering the resumption of III-V heteroepitaxy, for example by creating defects.
  • the particularly preferred methods according to the invention comprise a step of stabilizing the germanium layer.
  • This stabilization step introduced at the end of growth of the germanium layer (before mechanical-chemical polishing) will have the effect of (1) relaxing the stresses and finding the theoretical mesh parameter of germanium, and (2) stabilizing therefore the structure during subsequent annealing.
  • this stabilization step consists of annealing under a hydrogen atmosphere at a temperature ranging from 650 ° C to less than 900 ° C for a sufficient time, generally about 10 minutes or more, to remove the residual stress.
  • the duration of the annealing obviously depends on the annealing temperature and the thickness of the germanium layer.
  • the annealing temperature is less than 900 ° C because, above 900 ° C, the germanium which makes at 937 ° C, becomes very unstable.
  • This stabilization step can be carried out in a conventional multi-plate oven, however it will preferably be carried out in situ (after the growth of the germanium layer) in order to avoid any contamination of carbonaceous and oxygenated species in a single-plate reactor.
  • the germanium layer can be polished mechanical-chemical as described previously.
  • Figure 1 - a graph of deposition temperatures as a function of time (curve A), as well as graphs of the flow rates of the precursor gases SiH 4 and GeH 4 as a function of time (curves B and C) for the first embodiment of the process according to the invention;
  • Figure 2 graphs of the flow rates of the precursor gases SiH 4 (curves B and D) and GeH 4 (curves C and E) as a function of time, as well as a graph of the deposition temperatures as a function of time (curve A); and
  • Figure 3 a photomicrograph of a section of a monocrystalline silicon substrate coated, according to the first embodiment of the method of the invention, with a deposit of pure monocrystalline germanium (area observed by electron microscopy on the wafer) y;
  • Figure 4 - a microphotograph of a surface of a monocrystalline silicon substrate coated, according to the first embodiment of the method of the invention, with a deposit of pure monocrystalline germanium (area observed by electron microscopy in plan view);
  • Figure 5 a profile by atomic force microscopy (AFM) of a layer of Ge re-epitaxied on a layer of germanium obtained according to the method of the invention, but not stabilized; and Figure 6 - an AFM profile of a Ge layer, re-epitaxied on a germanium layer obtained according to the method of the invention, but stabilized.
  • AFM atomic force microscopy
  • the surface of the wafer is impregnated by chemical vapor deposition of silicon under the following conditions shown diagrammatically in FIG. 1 by curve B and the corresponding part of curve A.
  • Total pressure atmospheric pressure
  • Deposition temperature 550 ° C
  • Precursor gas SiH 4 350 cm 3 / minute
  • Carrier gas H 2 20 1 / minute
  • Duration of deposition 30 seconds.
  • a deposit of a silicon layer of approximately 3 nm is obtained.
  • a layer of Ge with a thickness slightly less than 1 ⁇ m is obtained.
  • the germanium deposit is maintained at 850 ° C (T 2 ) for 120 seconds to obtain a layer of pure monocrystalline germanium having a thickness of 1 ⁇ m.
  • FIG. 3 is a scanning electron micrograph of a section of the deposit obtained and FIG. 4 a plan view of the deposit. These views show the absence of emerging dislocations in the germanium deposit.
  • step (c j ) At the end of step (c), the arrival of GeH 4 is suppressed while maintaining the flow of H 2 and the temperature is lowered from 850 ° C to 550 ° C in about one minute.
  • SiH flux 10 cm 3 / minute H 2 flux: 20 1 / minute
  • Deposition time 120 seconds.
  • Si 0 j Ge Q 9 of about 15 nm.
  • step (d) This process is repeated by varying the temperature (T 2 ) of step (b) and the final temperature (T 4 ) of step (d).
  • the re-epitaxy germanium (II) layer has a thickness of 500 nm.
  • the re-epitaxy of the germanium (II) layer can also be done at atmospheric pressure and at a temperature above 670 ° C.
  • a layer of germanium (II) was re-epitaxied under the same conditions on a plate obtained in an identical manner but without the annealing step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
PCT/FR1999/002154 1998-09-10 1999-09-10 Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin, et produits obtenus Ceased WO2000015885A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69905179T DE69905179D1 (de) 1998-09-10 1999-09-10 Verfahren zur herstellung einer einkristallinen schicht aus germanium auf einem einkristallinen siliziumsubstrat und dadurch hergestellte produkte
EP99941731A EP1115920B1 (fr) 1998-09-10 1999-09-10 Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin, et produits obtenus
JP2000570400A JP4486753B2 (ja) 1998-09-10 1999-09-10 単結晶シリコン基板上に単結晶ゲルマニウム層を得る方法およびそれにより得られた生成物
US09/786,996 US6537370B1 (en) 1998-09-10 1999-09-10 Process for obtaining a layer of single-crystal germanium on a substrate of single-crystal silicon, and products obtained

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9811313A FR2783254B1 (fr) 1998-09-10 1998-09-10 Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin,et produits obtenus
FR98/11313 1998-09-10

Publications (1)

Publication Number Publication Date
WO2000015885A1 true WO2000015885A1 (fr) 2000-03-23

Family

ID=9530304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002154 Ceased WO2000015885A1 (fr) 1998-09-10 1999-09-10 Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin, et produits obtenus

Country Status (6)

Country Link
US (1) US6537370B1 (enExample)
EP (1) EP1115920B1 (enExample)
JP (1) JP4486753B2 (enExample)
DE (1) DE69905179D1 (enExample)
FR (1) FR2783254B1 (enExample)
WO (1) WO2000015885A1 (enExample)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2848334A1 (fr) * 2002-12-06 2004-06-11 Soitec Silicon On Insulator Procede de fabrication d'une structure multicouche
WO2004061943A1 (en) * 2003-01-07 2004-07-22 S.O.I.Tec Silicon On Insulator Technologies Recycling by mechanical means of a wafer comprising a taking-off structure after taking-off a thin layer thereof
WO2004084268A3 (en) * 2003-03-13 2005-06-16 Asm Inc Epitaxial semiconductor deposition methods and structures
US7115521B2 (en) 2003-03-13 2006-10-03 Asm America, Inc. Epitaxial semiconductor deposition methods and structures
US7202166B2 (en) 2003-08-04 2007-04-10 Asm America, Inc. Surface preparation prior to deposition on germanium
US7208354B2 (en) 2003-07-23 2007-04-24 Asm America, Inc. Deposition of silicon germanium on silicon-on-insulator structures and bulk substrates
US7285308B2 (en) 2004-02-23 2007-10-23 Advanced Technology Materials, Inc. Chemical vapor deposition of high conductivity, adherent thin films of ruthenium
US7329593B2 (en) 2004-02-27 2008-02-12 Asm America, Inc. Germanium deposition
US7427556B2 (en) 2003-03-12 2008-09-23 Asm America, Inc. Method to planarize and reduce defect density of silicon germanium
US7510949B2 (en) 2002-07-09 2009-03-31 S.O.I.Tec Silicon On Insulator Technologies Methods for producing a multilayer semiconductor structure
US7514372B2 (en) 2003-07-30 2009-04-07 Asm America, Inc. Epitaxial growth of relaxed silicon germanium layers
US7534701B2 (en) 2002-07-09 2009-05-19 S.O.I. Tec Silicon On Insulator Technologies Process for transferring a layer of strained semiconductor material
CN100580903C (zh) * 2003-01-07 2010-01-13 S.O.I.Tec绝缘体上硅技术公司 剥离有用层及重复利用施主晶片的方法、应用和相应晶片
US7648853B2 (en) 2006-07-11 2010-01-19 Asm America, Inc. Dual channel heterostructure
US7682947B2 (en) 2003-03-13 2010-03-23 Asm America, Inc. Epitaxial semiconductor deposition methods and structures
US7704896B2 (en) 2005-01-21 2010-04-27 Asm International, N.V. Atomic layer deposition of thin films on germanium
US7901968B2 (en) 2006-03-23 2011-03-08 Asm America, Inc. Heteroepitaxial deposition over an oxidized surface
US8188512B2 (en) 2008-12-03 2012-05-29 Electronics And Telecommunications Research Institute Growth of germanium epitaxial thin film with negative photoconductance characteristics and photodiode using the same
US8951809B2 (en) 2008-04-07 2015-02-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transfer by means of a ferroelectric substrate
US9127345B2 (en) 2012-03-06 2015-09-08 Asm America, Inc. Methods for depositing an epitaxial silicon germanium layer having a germanium to silicon ratio greater than 1:1 using silylgermane and a diluent
US9218963B2 (en) 2013-12-19 2015-12-22 Asm Ip Holding B.V. Cyclical deposition of germanium
US10553423B2 (en) 2012-09-05 2020-02-04 Asm Ip Holding B.V. Atomic layer deposition of GeO2

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60125952T2 (de) * 2000-08-16 2007-08-02 Massachusetts Institute Of Technology, Cambridge Verfahren für die herstellung eines halbleiterartikels mittels graduellem epitaktischen wachsen
GB0111207D0 (en) 2001-05-08 2001-06-27 Btg Int Ltd A method to produce germanium layers
US6995430B2 (en) * 2002-06-07 2006-02-07 Amberwave Systems Corporation Strained-semiconductor-on-insulator device structures
US7074623B2 (en) * 2002-06-07 2006-07-11 Amberwave Systems Corporation Methods of forming strained-semiconductor-on-insulator finFET device structures
US20030227057A1 (en) * 2002-06-07 2003-12-11 Lochtefeld Anthony J. Strained-semiconductor-on-insulator device structures
US7335545B2 (en) * 2002-06-07 2008-02-26 Amberwave Systems Corporation Control of strain in device layers by prevention of relaxation
US20090325362A1 (en) * 2003-01-07 2009-12-31 Nabil Chhaimi Method of recycling an epitaxied donor wafer
WO2004061944A1 (en) * 2003-01-07 2004-07-22 S.O.I.Tec Silicon On Insulator Technologies Recycling of a wafer comprising a multi-layer structure after taking-off a thin layer
JP4714422B2 (ja) * 2003-04-05 2011-06-29 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. ゲルマニウムを含有するフィルムを堆積させる方法、及び蒸気送達装置
JP4954448B2 (ja) * 2003-04-05 2012-06-13 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. 有機金属化合物
FR2858460B1 (fr) * 2003-07-30 2005-10-14 Soitec Silicon On Insulator Structure semiconducteur-sur-isolant contrainte ayant une tenue des contraintes aux hautes temperatures
US8882909B2 (en) * 2004-04-30 2014-11-11 Dichroic Cell S.R.L. Method for producing virtual Ge substrates for III/V-integration on Si(001)
US7495313B2 (en) * 2004-07-22 2009-02-24 Board Of Trustees Of The Leland Stanford Junior University Germanium substrate-type materials and approach therefor
US7320931B2 (en) * 2004-07-30 2008-01-22 Freescale Semiconductor Inc. Interfacial layer for use with high k dielectric materials
US7247545B2 (en) * 2004-11-10 2007-07-24 Sharp Laboratories Of America, Inc. Fabrication of a low defect germanium film by direct wafer bonding
US7037856B1 (en) 2005-06-10 2006-05-02 Sharp Laboratories Of America, Inc. Method of fabricating a low-defect strained epitaxial germanium film on silicon
US7678420B2 (en) * 2005-06-22 2010-03-16 Sandisk 3D Llc Method of depositing germanium films
US7305157B2 (en) * 2005-11-08 2007-12-04 Massachusetts Institute Of Technology Vertically-integrated waveguide photodetector apparatus and related coupling methods
US7266263B2 (en) * 2005-11-08 2007-09-04 Massachusetts Institute Of Technology Integrated waveguide photodetector apparatus with matching propagation constants and related coupling methods
US20070104441A1 (en) * 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Laterally-integrated waveguide photodetector apparatus and related coupling methods
JP2007173354A (ja) * 2005-12-20 2007-07-05 Shin Etsu Chem Co Ltd Soi基板およびsoi基板の製造方法
FR2896338B1 (fr) 2006-01-17 2008-04-18 St Microelectronics Crolles 2 Procede de realisation d'une couche monocristalline sur une couche dielectrique
FR2896337A1 (fr) * 2006-01-17 2007-07-20 St Microelectronics Crolles 2 Procede de realisation d'une couche monocristalline sur une couche dielectrique
US7785995B2 (en) * 2006-05-09 2010-08-31 Asm America, Inc. Semiconductor buffer structures
US20070262296A1 (en) * 2006-05-11 2007-11-15 Matthias Bauer Photodetectors employing germanium layers
US20080076236A1 (en) * 2006-09-21 2008-03-27 Jih-Shun Chiang Method for forming silicon-germanium epitaxial layer
US7651880B2 (en) * 2006-11-04 2010-01-26 Sharp Laboratories Of America, Inc. Ge short wavelength infrared imager
US8157914B1 (en) 2007-02-07 2012-04-17 Chien-Min Sung Substrate surface modifications for compositional gradation of crystalline materials and associated products
US7799600B2 (en) * 2007-05-31 2010-09-21 Chien-Min Sung Doped diamond LED devices and associated methods
WO2009024533A1 (en) * 2007-08-17 2009-02-26 Epispeed Sa Apparatus and method for producing epitaxial layers
US8237126B2 (en) 2007-08-17 2012-08-07 Csem Centre Suisse D'electronique Et De Mictrotechnique Sa X-ray imaging device and method for the manufacturing thereof
US7851378B2 (en) * 2007-09-11 2010-12-14 National Applied Research Laboratories Method for growing Ge expitaxial layer on patterned structure with cyclic annealing
KR20110081803A (ko) * 2008-10-02 2011-07-14 스미또모 가가꾸 가부시키가이샤 반도체 기판, 전자 디바이스 및 반도체 기판의 제조 방법
TWI471910B (zh) 2008-10-02 2015-02-01 Sumitomo Chemical Co 半導體晶圓、電子裝置及半導體晶圓之製造方法
WO2010038460A1 (ja) * 2008-10-02 2010-04-08 住友化学株式会社 半導体基板、電子デバイス、および半導体基板の製造方法
KR20100064742A (ko) * 2008-12-05 2010-06-15 한국전자통신연구원 낮은 침투전위 밀도를 갖는 순수 게르마늄 박막 성장법
US8663735B2 (en) * 2009-02-13 2014-03-04 Advanced Technology Materials, Inc. In situ generation of RuO4 for ALD of Ru and Ru related materials
TWI562195B (en) 2010-04-27 2016-12-11 Pilegrowth Tech S R L Dislocation and stress management by mask-less processes using substrate patterning and methods for device fabrication
US8466502B2 (en) 2011-03-24 2013-06-18 United Microelectronics Corp. Metal-gate CMOS device
US8445363B2 (en) 2011-04-21 2013-05-21 United Microelectronics Corp. Method of fabricating an epitaxial layer
US8324059B2 (en) 2011-04-25 2012-12-04 United Microelectronics Corp. Method of fabricating a semiconductor structure
US8426284B2 (en) 2011-05-11 2013-04-23 United Microelectronics Corp. Manufacturing method for semiconductor structure
US8481391B2 (en) 2011-05-18 2013-07-09 United Microelectronics Corp. Process for manufacturing stress-providing structure and semiconductor device with such stress-providing structure
US8431460B2 (en) 2011-05-27 2013-04-30 United Microelectronics Corp. Method for fabricating semiconductor device
US8716750B2 (en) 2011-07-25 2014-05-06 United Microelectronics Corp. Semiconductor device having epitaxial structures
US8575043B2 (en) 2011-07-26 2013-11-05 United Microelectronics Corp. Semiconductor device and manufacturing method thereof
US8647941B2 (en) 2011-08-17 2014-02-11 United Microelectronics Corp. Method of forming semiconductor device
US8674433B2 (en) 2011-08-24 2014-03-18 United Microelectronics Corp. Semiconductor process
US8455292B2 (en) 2011-09-09 2013-06-04 International Business Machines Corporation Deposition of germanium film
US8476169B2 (en) 2011-10-17 2013-07-02 United Microelectronics Corp. Method of making strained silicon channel semiconductor structure
US8691659B2 (en) 2011-10-26 2014-04-08 United Microelectronics Corp. Method for forming void-free dielectric layer
US8754448B2 (en) 2011-11-01 2014-06-17 United Microelectronics Corp. Semiconductor device having epitaxial layer
US8647953B2 (en) 2011-11-17 2014-02-11 United Microelectronics Corp. Method for fabricating first and second epitaxial cap layers
US8709930B2 (en) 2011-11-25 2014-04-29 United Microelectronics Corp. Semiconductor process
US9093269B2 (en) 2011-12-20 2015-07-28 Asm America, Inc. In-situ pre-clean prior to epitaxy
US9653639B2 (en) * 2012-02-07 2017-05-16 Apic Corporation Laser using locally strained germanium on silicon for opto-electronic applications
US20130224899A1 (en) * 2012-02-28 2013-08-29 International Business Machines Corporation Enhancing efficiency in solar cells by adjusting deposition power
US9214577B2 (en) 2012-02-28 2015-12-15 International Business Machines Corporation Reduced light degradation due to low power deposition of buffer layer
US9136348B2 (en) 2012-03-12 2015-09-15 United Microelectronics Corp. Semiconductor structure and fabrication method thereof
US9202914B2 (en) 2012-03-14 2015-12-01 United Microelectronics Corporation Semiconductor device and method for fabricating the same
US8664069B2 (en) 2012-04-05 2014-03-04 United Microelectronics Corp. Semiconductor structure and process thereof
US8866230B2 (en) 2012-04-26 2014-10-21 United Microelectronics Corp. Semiconductor devices
US8835243B2 (en) 2012-05-04 2014-09-16 United Microelectronics Corp. Semiconductor process
US8951876B2 (en) 2012-06-20 2015-02-10 United Microelectronics Corp. Semiconductor device and manufacturing method thereof
US8796695B2 (en) 2012-06-22 2014-08-05 United Microelectronics Corp. Multi-gate field-effect transistor and process thereof
US8710632B2 (en) 2012-09-07 2014-04-29 United Microelectronics Corp. Compound semiconductor epitaxial structure and method for fabricating the same
US9330899B2 (en) 2012-11-01 2016-05-03 Asm Ip Holding B.V. Method of depositing thin film
US9117925B2 (en) 2013-01-31 2015-08-25 United Microelectronics Corp. Epitaxial process
US8753902B1 (en) 2013-03-13 2014-06-17 United Microelectronics Corp. Method of controlling etching process for forming epitaxial structure
US9034705B2 (en) 2013-03-26 2015-05-19 United Microelectronics Corp. Method of forming semiconductor device
US9064893B2 (en) 2013-05-13 2015-06-23 United Microelectronics Corp. Gradient dopant of strained substrate manufacturing method of semiconductor device
US9076652B2 (en) 2013-05-27 2015-07-07 United Microelectronics Corp. Semiconductor process for modifying shape of recess
US8853060B1 (en) 2013-05-27 2014-10-07 United Microelectronics Corp. Epitaxial process
US8765546B1 (en) 2013-06-24 2014-07-01 United Microelectronics Corp. Method for fabricating fin-shaped field-effect transistor
US8895396B1 (en) 2013-07-11 2014-11-25 United Microelectronics Corp. Epitaxial Process of forming stress inducing epitaxial layers in source and drain regions of PMOS and NMOS structures
US8981487B2 (en) 2013-07-31 2015-03-17 United Microelectronics Corp. Fin-shaped field-effect transistor (FinFET)
FR3028094B1 (fr) * 2014-11-05 2018-02-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de determination de parametres de depot preferentiels pour une couche mince en materiau iii-v
CN116504828A (zh) 2022-01-19 2023-07-28 联华电子股份有限公司 半导体元件
WO2024005276A1 (ko) * 2022-07-01 2024-01-04 주식회사 비아트론 에피택시 공정을 이용한 반도체 소자 제조 방법 및 이를 위한 제조 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518800A2 (en) * 1991-06-12 1992-12-16 International Business Machines Corporation Heteroepitaxial growth of germanium on silicon by UHV/CVD
EP0524114A1 (fr) * 1991-07-05 1993-01-20 INSTITUT MAX VON LAUE - PAUL LANGEVIN (Etablissement publique) Procédé de fabrication d'un cristal à gradient de maille

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650058A1 (de) * 1996-12-03 1998-06-04 Deere & Co Häckseltrommel
US6180480B1 (en) * 1998-09-28 2001-01-30 International Business Machines Corporation Germanium or silicon-germanium deep trench fill by melt-flow process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518800A2 (en) * 1991-06-12 1992-12-16 International Business Machines Corporation Heteroepitaxial growth of germanium on silicon by UHV/CVD
EP0524114A1 (fr) * 1991-07-05 1993-01-20 INSTITUT MAX VON LAUE - PAUL LANGEVIN (Etablissement publique) Procédé de fabrication d'un cristal à gradient de maille

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FITZGERALD E A ET AL: "Line, point and surface defect morphology of graded, relaxed GeSi alloys on Si substrates", THIN SOLID FILMS, vol. 294, no. 1-2, 15 February 1997 (1997-02-15), pages 3-10, XP004073025 *
JUNG K H ET AL: "GROWTH OF GEXSI1-X LAYERS BY RAPID THERMAL PROCESSING CHEMICAL VAPOR DEPOSITION", EXTENDED ABSTRACTS, vol. 89/1, no. 22, 1989, pages 216/217, XP000133701 *
KAMINS T I ET AL: "KINETICS OF SILICON-GERMANIUM DEPOSITION BY ATMOSPHERIC-PRESSURE CHEMICAL VAPOR DEPOSITION", APPLIED PHYSICS LETTERS, vol. 59, no. 2, 8 July 1991 (1991-07-08), pages 178 - 180, XP000230517 *
KOBAYASHI S ET AL: "Initial growth characteristics of germanium on silicon in LPCVD using germane gas", JOURNAL OF CRYSTAL GROWTH, vol. 174, no. 1-4, 1 April 1997 (1997-04-01), pages 686-690, XP004083870 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7510949B2 (en) 2002-07-09 2009-03-31 S.O.I.Tec Silicon On Insulator Technologies Methods for producing a multilayer semiconductor structure
US8049224B2 (en) 2002-07-09 2011-11-01 S.O.I.Tec Silicon On Insulator Technologies Process for transferring a layer of strained semiconductor material
US7803694B2 (en) 2002-07-09 2010-09-28 S.O.I.Tec Silicon On Insulator Technologies Process for transferring a layer of strained semiconductor material
US7534701B2 (en) 2002-07-09 2009-05-19 S.O.I. Tec Silicon On Insulator Technologies Process for transferring a layer of strained semiconductor material
WO2004053961A1 (en) * 2002-12-06 2004-06-24 S.O.I.Tec Silicon On Insulator Technologies Manufacturing process for a multilayer structure
FR2848334A1 (fr) * 2002-12-06 2004-06-11 Soitec Silicon On Insulator Procede de fabrication d'une structure multicouche
CN100580903C (zh) * 2003-01-07 2010-01-13 S.O.I.Tec绝缘体上硅技术公司 剥离有用层及重复利用施主晶片的方法、应用和相应晶片
WO2004061943A1 (en) * 2003-01-07 2004-07-22 S.O.I.Tec Silicon On Insulator Technologies Recycling by mechanical means of a wafer comprising a taking-off structure after taking-off a thin layer thereof
US7427556B2 (en) 2003-03-12 2008-09-23 Asm America, Inc. Method to planarize and reduce defect density of silicon germanium
US8530340B2 (en) 2003-03-13 2013-09-10 Asm America, Inc. Epitaxial semiconductor deposition methods and structures
US7402504B2 (en) 2003-03-13 2008-07-22 Asm America, Inc. Epitaxial semiconductor deposition methods and structures
WO2004084268A3 (en) * 2003-03-13 2005-06-16 Asm Inc Epitaxial semiconductor deposition methods and structures
US7238595B2 (en) 2003-03-13 2007-07-03 Asm America, Inc. Epitaxial semiconductor deposition methods and structures
US7115521B2 (en) 2003-03-13 2006-10-03 Asm America, Inc. Epitaxial semiconductor deposition methods and structures
US7682947B2 (en) 2003-03-13 2010-03-23 Asm America, Inc. Epitaxial semiconductor deposition methods and structures
US7208354B2 (en) 2003-07-23 2007-04-24 Asm America, Inc. Deposition of silicon germanium on silicon-on-insulator structures and bulk substrates
US7666799B2 (en) 2003-07-30 2010-02-23 Asm America, Inc. Epitaxial growth of relaxed silicon germanium layers
US7514372B2 (en) 2003-07-30 2009-04-07 Asm America, Inc. Epitaxial growth of relaxed silicon germanium layers
US7799680B2 (en) 2003-08-04 2010-09-21 Asm America, Inc. Surface preparation prior to deposition on germanium
US7202166B2 (en) 2003-08-04 2007-04-10 Asm America, Inc. Surface preparation prior to deposition on germanium
US7285308B2 (en) 2004-02-23 2007-10-23 Advanced Technology Materials, Inc. Chemical vapor deposition of high conductivity, adherent thin films of ruthenium
US7479443B2 (en) 2004-02-27 2009-01-20 Asm America Inc. Germanium deposition
US7329593B2 (en) 2004-02-27 2008-02-12 Asm America, Inc. Germanium deposition
US7704896B2 (en) 2005-01-21 2010-04-27 Asm International, N.V. Atomic layer deposition of thin films on germanium
US7901968B2 (en) 2006-03-23 2011-03-08 Asm America, Inc. Heteroepitaxial deposition over an oxidized surface
US7648853B2 (en) 2006-07-11 2010-01-19 Asm America, Inc. Dual channel heterostructure
US8951809B2 (en) 2008-04-07 2015-02-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transfer by means of a ferroelectric substrate
US8188512B2 (en) 2008-12-03 2012-05-29 Electronics And Telecommunications Research Institute Growth of germanium epitaxial thin film with negative photoconductance characteristics and photodiode using the same
US9127345B2 (en) 2012-03-06 2015-09-08 Asm America, Inc. Methods for depositing an epitaxial silicon germanium layer having a germanium to silicon ratio greater than 1:1 using silylgermane and a diluent
US10553423B2 (en) 2012-09-05 2020-02-04 Asm Ip Holding B.V. Atomic layer deposition of GeO2
US10811249B2 (en) 2012-09-05 2020-10-20 Asm Ip Holding B.V. Atomic layer deposition of GeO2
US9218963B2 (en) 2013-12-19 2015-12-22 Asm Ip Holding B.V. Cyclical deposition of germanium
US9576794B2 (en) 2013-12-19 2017-02-21 Asm Ip Holding B.V. Cyclical deposition of germanium
US9929009B2 (en) 2013-12-19 2018-03-27 Asm Ip Holding B.V. Cyclical deposition of germanium
US10741388B2 (en) 2013-12-19 2020-08-11 Asm Ip Holding B.V. Cyclical deposition of germanium

Also Published As

Publication number Publication date
EP1115920B1 (fr) 2003-01-29
US6537370B1 (en) 2003-03-25
FR2783254B1 (fr) 2000-11-10
JP4486753B2 (ja) 2010-06-23
FR2783254A1 (fr) 2000-03-17
JP2002525255A (ja) 2002-08-13
EP1115920A1 (fr) 2001-07-18
DE69905179D1 (de) 2003-03-06

Similar Documents

Publication Publication Date Title
EP1115920B1 (fr) Procede d'obtention d'une couche de germanium monocristallin sur un substrat de silicium monocristallin, et produits obtenus
EP0930382B1 (fr) Procédé d'obtention d'une couche de germanium ou de silicium monocristallin sur respectivement, un substrat de silicium ou germanium monocristallin, et produits multicouches obtenus
FR2534068A1 (fr) Procede de fabrication d'une heterostructure comprenant une matiere heteroepitaxiale a constituants multiples
JP2006520096A (ja) 構造均一性を有する半導体構造
EP4128328B1 (fr) Procede de fabrication d'une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic
FR2931013A1 (fr) Procede de production de tranches collees.
EP3670709B1 (fr) Procede de fabrication d'une structure monocristalline
FR2880988A1 (fr) TRAITEMENT D'UNE COUCHE EN SI1-yGEy PRELEVEE
FR2881573A1 (fr) Procede de transfert d'une couche mince formee dans un substrat presentant des amas de lacunes
FR2921200A1 (fr) Heterostructures semi-conductrices monolithiques epitaxiees et leur procede de fabrication
FR2893446A1 (fr) TRAITEMENT DE COUCHE DE SiGe POUR GRAVURE SELECTIVE
EP1186024B1 (fr) Procede de fabrication d'un substrat de silicium comportant une mince couche d'oxyde de silicium ensevelie
FR2851847A1 (fr) Relaxation d'une couche mince apres transfert
EP4055214A1 (fr) Plaquette de nitrure d'élément 13 de variation d'angle de troncature réduite
FR2851848A1 (fr) Relaxation a haute temperature d'une couche mince apres transfert
EP1900014A2 (fr) Substrat, notamment en carbure de silicium, recouvert par une couche mince de nitrure de silicium stoechiometrique, pour la fabrication de composants electroniques, et procede d'obtention d'une telle couche
Aoyama et al. Surface cleaning for Si epitaxy using photoexcited fluorine gas
WO2020127603A1 (fr) Substrat semi-conducteur avec couche intermediaire dopee n
FR2794891A1 (fr) Preparation de substrats aux techniques de collage direct
WO2025196157A1 (fr) Procede de traitement d'un substrat presentant une surface en un materiau semiconducteur
FR3137490A1 (fr) Procede de fabrication d’une structure comportant une couche barriere a la diffusion d’especes atomiques
EP1818976A1 (fr) Procédé de transfert d'une couche mince formée dans un substrat présentant des amas de lacunes
FR2647957A1 (fr) Procede de realisation de dispositifs semi-conducteurs du groupe iii-v sur un substrat en silicium
FR3034108A1 (fr) Methode de reduction de defauts et fabrication de substrat
FR3091020A1 (fr) SUBSTRAT SEMI-CONDUCTEUR CO-DOPE n

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999941731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09786996

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 570400

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1999941731

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999941731

Country of ref document: EP