WO2000006893A1 - Elektromagnetisch betätigbares ventil - Google Patents

Elektromagnetisch betätigbares ventil Download PDF

Info

Publication number
WO2000006893A1
WO2000006893A1 PCT/DE1999/001286 DE9901286W WO0006893A1 WO 2000006893 A1 WO2000006893 A1 WO 2000006893A1 DE 9901286 W DE9901286 W DE 9901286W WO 0006893 A1 WO0006893 A1 WO 0006893A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
face
armature
core
valve according
Prior art date
Application number
PCT/DE1999/001286
Other languages
English (en)
French (fr)
Inventor
Ferdinand Reiter
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP99929071A priority Critical patent/EP1042606B1/de
Priority to KR1020007002635A priority patent/KR20010023935A/ko
Priority to BR9906617-3A priority patent/BR9906617A/pt
Priority to US09/509,162 priority patent/US6302371B1/en
Priority to DE59910132T priority patent/DE59910132D1/de
Priority to JP2000562653A priority patent/JP2002521614A/ja
Publication of WO2000006893A1 publication Critical patent/WO2000006893A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow

Definitions

  • the invention relates to an electromagnetically actuated valve according to the preamble of the main claim.
  • DE-OS 38 10 826 describes a fuel injector in which at least one stop surface is designed in the shape of a spherical cap in order to achieve an extremely precise air gap, with an additional round body insert made of non-magnetic, high-strength material being inserted in the center of the stop surface.
  • the two spherical cap-shaped abutment surfaces touch exactly in the center of the valve longitudinal axis.
  • an electromagnetically actuated valve is already known, which has a special stop area.
  • the valve has at least one component, the armature and / or the core, which, prior to the application of a wear-resistant layer, has a wedge-shaped surface which can be variably produced in accordance with a magnetic and hydraulic optimum.
  • An annular stop section formed by the wedge shape has a defined stop surface width or contact width which remains constant over the entire service life, since wear of the stop surface does not lead to an increase in the contact width during continuous operation.
  • the abutment surface is not undesirably increased by wear, so that the pulling and falling times of the movable component remain almost constant. This is achieved in that one of the abutting components already has a spherically curved surface before the wear resistance is generated.
  • the components designed in this way have the advantage of improved durability, since the stop is in the area of an annular line of contact in the center of the surface and not on the edges at risk of damage.
  • FIG. 1 shows an electromagnetically actuated valve in the form of a fuel injection valve
  • FIG. 2 shows an enlarged stop of the injection valve in the area of the core and armature according to FIG. 1 with a geometric illustration
  • FIG. 3 shows a second example of a device according to the invention trained stop area
  • Figure 4 shows a third example of a stop area.
  • the electromagnetically actuated valve in the form of an injection valve for fuel injection systems of mixture-compressing, spark-ignited internal combustion engines, which is shown by way of example in FIG. 1, has a valve surrounded by a magnet coil 1 as
  • Fuel inlet connector serving core 2 which is tubular, for example, here.
  • a coil body 3 receives a winding of the magnet coil 1 and, in conjunction with the core 2, enables a particularly compact structure of the injection valve in the region of the magnet coil 1.
  • a tubular metal valve seat support 12 is tightly connected, for example by welding, concentrically to a longitudinal valve axis 10 and partially surrounds the core end 9.
  • Valve seat carrier 12 runs a longitudinal bore 17, which is formed concentrically with the valve longitudinal axis 10.
  • a e.g. Tubular valve needle 19 is arranged, which is connected at its downstream end 20 to a spherical valve closing body 21, on the periphery of which, for example, five flats 22 are provided for the fuel to flow past, for example by welding.
  • the injection valve is actuated electromagnetically in a known manner.
  • the electromagnetic circuit is used, inter alia, with the magnet coil 1, the core 2 and an armature 27.
  • the armature 27 is at the end facing away from the valve closing body 21 the valve needle 19 firmly connected and aligned to the core 2.
  • a cylindrical valve seat body 29 which has a fixed valve seat, is tightly mounted in the longitudinal bore 17 by welding.
  • a guide opening 32 of the valve seat body 29 serves to guide the valve closing body 21 during its axial movement along the longitudinal valve axis 10.
  • the armature 27 is guided as part of the axially movable valve needle 19 in the region of a thin-walled magnetic throttle point 42 in the longitudinal bore 17 of the valve seat carrier 12.
  • the spherical valve closing body 21 interacts with the valve seat of the valve seat body 29 which tapers in the shape of a truncated cone in the direction of flow.
  • the valve seat body 29 is connected concentrically and firmly to an injection-orifice disk 34, for example in the form of a pot, which e.g. has four spray openings 39 formed by eroding or stamping.
  • the insertion depth of the valve seat body 29 with the cup-shaped spray orifice plate 34 determines the setting of the stroke of the valve needle 19.
  • the one end position of the valve needle 19 when the solenoid coil 1 is not energized is determined by the valve closing body 21 resting on the valve seat of the valve seat body 29, while the other end position is fixed the valve needle 19 results when the solenoid coil 1 is excited by the contact of the armature 27 at the core end 9.
  • This stop area according to the invention is identified in more detail by a circle and is shown again in FIG.
  • a flow hole 46 of the core 2 which is inserted into a flow bore 46 which runs concentrically to the longitudinal valve axis 10
  • Adjustment sleeve 48 is used to adjust the spring preload the restoring spring 25 resting on the adjusting sleeve 48, which in turn is supported with its opposite side on the valve needle 19.
  • the injection valve is largely with a
  • Plastic encapsulation 50 enclosed, which extends from the core 2 in the axial direction over the solenoid 1 to the valve seat support 12.
  • This plastic encapsulation 50 includes, for example, an injection-molded electrical connector 52.
  • a fuel filter 61 protrudes into the flow bore 46 of the core 2 at its inlet end and filters out those fuel components which, because of their size, could cause blockages or damage in the injection valve.
  • one of the two opposing end faces of the core 2 or of the armature 27 is spherically curved in the stop region, in particular spherically, spherically section-shaped or spherical cap section-shaped, with an end face ultimately forming an annular spherical section due to the annular design of core 2 and armature 27.
  • a dash-dot line 70 a radius is shown as a circular section in FIG. 1 in order to illustrate this convex curvature.
  • the center point 71 of an (imaginary) ball provided with the radius R (FIG. 2) ideally lies in the center of the spherical valve closing body 21, that is to say at the point at which the valve longitudinal axis 10 pierces the plane of the ball equator of the valve closing body 21.
  • FIG. 2 the stop area marked with a circle in FIG. 1 is shown again enlarged.
  • the upper end face 73 of the armature 27 facing the core 2 has a constant radius spherical, convex.
  • the lower end face 74 of the core 2 facing the armature 27 is flat and inclined to the longitudinal axis 10 of the valve. The inclination of the end face 74 is chosen so that the end face 74 at a desired point of contact 75 of the
  • Armature 27 (viewed only the plane of the drawing) or at a desired annular contact line 75 of the anchor 27 (viewed as a real three-dimensional component) extends tangentially to the spherical surface.
  • the center point 71 of an (imaginary) ball provided with the radius R for the end face 73 of the armature 27 which is in the form of a spherical segment advantageously lies in the center of the spherical valve closing body 21.
  • the center 71 for the (imaginary) ball it is also possible to move the center 71 for the (imaginary) ball to achieve the spherical section-shaped end face 73 of the armature 27 on the valve longitudinal axis 10 in both directions, so that the spherical section-shaped end face 73 a smaller or has a larger radius than the radius R according to FIG. 2.
  • the center of rotation should advantageously lie on the valve longitudinal axis 10 in order to achieve a uniform curvature of the end face 73 over its entire ring extension.
  • FIGS. 3 and 4 show two further examples of stop areas designed according to the invention.
  • the exemplary embodiment according to FIG. 3 only the end faces 73, 74 are reversed compared to the arrangement according to FIG.
  • the lower end face 74 of the core 2 is thus curved in the shape of a spherical segment, while the upper end face 73 of the armature 27 runs flat and inclined at an angle to the longitudinal axis 10 of the valve.
  • the center 71 of the (imaginary) ball lies far above the core end 9 on the longitudinal valve axis 10.
  • FIG. 4 shows an example that is more difficult to manufacture in terms of production technology, in which there is not only a center 71 of an (imaginary) ball for producing the curved end face 73 of the armature 27 in the form of a spherical segment. Rather, there are a large number of pivot points apart from the valve longitudinal axis 10 and even outside the circumference of the armature 27 in order to achieve a uniform curvature over the entire end face 73 in the circumferential direction.
  • All of the exemplary embodiments have the advantage of improved endurance resistance since the stop (contact line 75) is in the center of the surface and not on the edges at risk of damage.
  • Thin metallic layers e.g. Chrome or nickel layers, applied by electroplating. These layers are particularly wear-resistant and reduce hydraulic sticking of the striking surfaces.
  • end faces 73, 74 can be made at least partially wear-resistant in the central region by treating the surface by means of a hardening process.
  • a hardening process e.g. the well-known
  • Nitriding processes such as plasma nitriding or gas nitriding, or carburizing are suitable.
  • hardening processes by means of which the surface structure on the armature 27 and / or core 2 is changed, processes for immediate coating can even be dispensed with entirely.

Abstract

Die Erfindung betrifft ein elektromagnetisch betätigbares Ventil, das einen speziell ausgebildeten Anschlagbereich Kern/Anker (2/27) aufweist. Das Ventil besitzt ein Bauteil, z.B. den Anker (27), das vor dem Aufbringen einer verschleissfesten Schicht eine sphärisch gewölbte Kontur im Bereich seiner dem anderen Bauteil (2) gegenüberliegenden Stirnseite (73) besitzt, die sich ringförmig konstant in Umfangsrichtung erstreckt. Das Ventil eignet sich besonders für den Einsatz in Brennstoffeinspritzanlagen von gemischverdichtenden fremdgezündeten Brennkraftmaschinen.

Description

Elektromagnetisch betätigbares Ventil
Stand der Technik
Die Erfindung geht aus von einem elektromagnetisch betätigbaren Ventil nach der Gattung des Hauptanspruchs.
Es sind bereits verschiedene elektromagnetisch betätigbare Ventile, insbesondere Brennstoffeinspritzventile bekannt, bei denen verschleißbeanspruchte Bauteile mit verschleißfesten Schichten versehen sind. So ist beispielsweise aus der DE-OS 32 30 844 bekannt, Anker und Anschlagfläche eines Brennstoffeinspritzventils mit verschleißfesten Oberflächen zu versehen. Diese Oberflächen können vernickelt, also mit einer zusätzlichen Schicht versehen sein, oder nitriert, also durch Einlagerung von Stickstoff gehärtet sein.
In der DE-OS 38 10 826 ist ein Brennstoffeinspritzventil beschrieben, bei dem wenigstens eine Anschlagfläche kugelkalottenförmig ausgeführt ist, um einen äußerst exakten Luftspalt zu erreichen, wobei mittig an der Anschlagfläche ein zusätzlicher Rundkörpereinsatz aus nichtmagnetischem, hochfestem Werkstoff eingesetzt ist. Die beiden kugelkalottenförmigen Anschlagflächen berühren sich genau mittig im Bereich der Ventillängsachse. Aus der DE-OS 44 21 935 ist schon ein elektromagnetisch betätigbares Ventil bekannt, das einen speziellen Anschlagbereich aufweist. Das Ventil besitzt wenigstens ein Bauteil, den Anker und/oder den Kern, das vor dem Aufbringen einer verschleißfesten Schicht eine keilige Oberfläche hat, die entsprechend einem magnetischen und hydraulischen Optimum jeweils variabel herstellbar ist. Ein durch die Keiligkeit gebildeter ringförmiger Anschlagabschnitt besitzt eine definierte Anschlagflächenbreite bzw. Kontaktbreite, die über die gesamte Lebensdauer konstant bleibt, da ein Anschlagflächenverschleiß bei Dauerbetrieb nicht zu einer Vergrößerung der Kontaktbreite führt.
Vorteile der Erfindung
Das erfindungsgemäße elektromagnetisch betätigbare Ventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, daß eines der aneinander anschlagenden Bauteile Anker und Kern so gestaltet ist, daß nach dem Erzeugen einer verschleißfesten Oberfläche gewährleistet ist, daß die
Anschlagfläche auch nach längerer Betriebszeit nicht durch Verschleiß in unerwünschter Weise vergrößert wird, so daß die Anzugs- und Abfallzeiten des beweglichen Bauteils nahezu konstant bleiben. Das wird dadurch erreicht, daß eines der aneinander anschlagenden Bauteile bereits vor dem Erzeugen der Verschleißfestigkeit eine sphärisch gewölbte Oberfläche besitzt .
Die derart ausgebildeten Bauteile besitzen den Vorteil einer verbesserten Dauerlaufbeständigkeit , da der Anschlag im Bereich einer ringförmigen Berührungslinie in der Flächenmitte ist und nicht an den beschädigungsgefährdeten Kanten.
Die einfache Geometrie der sphärisch gewölbten Stirnfläche ist gut herstellbar und überprüfbar. Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen elektromagnetisch betätigbaren Ventils möglich.
Besonders vorteilhaft ist es, aufgrund des geringsten Fertigungsaufwandes die sphärische Wölbung der Stirnfläche als Kugelabschnitt bzw. Kugelkalottenabschnitt auszubilden.
Von Vorteil ist es, den Anker mit einer entlang der Ventillängsachse axial bewegbaren Ventilnadel fest zu verbinden, an dem gegenüberliegenden Ende einen Ventilschließkörper anzuordnen, wobei der Ventilschließkörper kugelförmig ausgeformt ist, und den
Mittelpunkt zur Bildung der kugelabschnittförmigen Kontur der Stirnfläche am Anker mit dem Abstand des gewünschten Radius in den Mittelpunkt des Ventilschließkörpers zu legen. Auch bei großer sogenannter Rundlaufabweichung des Ventilschließkörpers zum Anker liegt eine recht hohe
Toleranzunempfindlichkeit der Anschlagverhältnisse vor.
Mit dieser Ausbildung des Anschlagbereichs wird eine gute hydraulische Anschlagdämpfung erzielt, da durch den relativ großen Radius enge Quetschspalte von < 10 μm gebildet sind.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden
Beschreibung näher erläutert. Es zeigen Figur 1 ein elektromagnetisch betätigbares Ventil in Form eines Brennstoffeinspritzventils, Figur 2 einen vergrößerten Anschlag des Einspritzventils im Bereich von Kern und Anker gemäß Figur 1 mit einer geometrischen Veranschaulichung, Figur 3 ein zweites Beispiel eines erfindungsgemäß ausgebildeten Anschlagbereichs und Figur 4 ein drittes Beispiel eines Anschlagbereichs.
Beschreibung der Ausführungsbeispiele
Das in der Figur 1 beispielhaft dargestellte elektromagnetisch betätigbare Ventil in der Form eines Einspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen hat einen von einer Magnetspule 1 umgebenen, als
Brennstoffeinlaßstutzen dienenden Kern 2, der beispielsweise hier rohrförmig ausgebildet ist. Ein Spulenkörper 3 nimmt eine Bewicklung der Magnetspule 1 auf und ermöglicht in Verbindung mit dem Kern 2 einen besonders kompakten Aufbau des Einspritzventils im Bereich der Magnetspule 1.
Mit einem unteren Kernende 9 des Kerns 2 ist konzentrisch zu einer Ventillängsachse 10 dicht ein rohrförmiger metallener Ventilsitzträger 12 beispielsweise durch Schweißen verbunden und umgibt dabei das Kernende 9 teilweise. In dem
Ventilsitzträger 12 verläuft eine Längsbohrung 17, die konzentrisch zu der Ventillängsachse 10 ausgebildet ist. In der Längsbohrung 17 ist eine z.B. rohrförmige Ventilnadel 19 angeordnet, die an ihrem stromabwärtigen Ende 20 mit einem kugelförmigen Ventilschließkörper 21, an dessen Umfang beispielsweise fünf Abflachungen 22 zum Vorbeiströmen des Brennstoffs vorgesehen sind, beispielsweise durch Schweißen verbunden ist.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise elektromagnetisch. Zur axialen Bewegung der Ventilnadel 19 und damit zum Öffnen entgegen der Federkraft einer Rückstellfeder 25 bzw. Schließen des Einspritzventils dient der elektromagnetische Kreis u.a. mit der Magnetspule 1, dem Kern 2 und einem Anker 27. Der Anker 27 ist mit dem dem Ventilschließkörper 21 abgewandten Ende der Ventilnadel 19 fest verbunden und auf den Kern 2 ausgerichtet. In das stromabwärts liegende, dem Kern 2 abgewandte Ende des Ventilsitzträgers 12 ist in der Längsbohrung 17 ein zylinderförmiger Ventilsitzkörper 29, der einen festen Ventilsitz aufweist, durch Schweißen dicht montiert.
Zur Führung des Ventilschließkörpers 21 während seiner Axialbewegung entlang der Ventillängsachse 10 dient eine Führungsöffnung 32 des Ventilsitzkörpers 29. Andererseits wird der Anker 27 als Teil der axial beweglichen Ventilnadel 19 im Bereich einer dünnwandigen magnetischen Drosselstelle 42 in der Längsbohrung 17 des Ventilsitzträgers 12 geführt. Der kugelförmige Ventilschließkörper 21 wirkt mit dem sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitz des Ventilsitzkörpers 29 zusammen. An seiner dem Ventilschließkörper 21 abgewandten Stirnseite ist der Ventilsitzkörper 29 mit einer beispielsweise topfförmig ausgebildeten Spritzlochscheibe 34 konzentrisch und fest, verbunden, die z.B. vier durch Erodieren oder Stanzen ausgeformte Abspritzöffnungen 39 aufweist.
Die Einschubtiefe des Ventilsitzkörpers 29 mit der topfförmigen Spritzlochscheibe 34 bestimmt die Einstellung des Hubs der Ventilnadel 19. Dabei ist die eine Endstellung der Ventilnadel 19 bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließkörpers 21 am Ventilsitz des Ventilsitzkörpers 29 festgelegt, während sich die andere Endstellung der Ventilnadel 19 bei erregter Magnetspule 1 durch die Anlage des Ankers 27 am Kernende 9 ergibt. Dieser erfindungsgemäße Anschlagbereich ist mit einem Kreis näher gekennzeichnet und in Figur 2 mit geändertem Maßstab nochmals dargestellt.
Eine in eine konzentrisch zur Ventillängsachse 10 verlaufende Strömungsbohrung 46 des Kerns 2 eingeschobene
Einstellhülse 48 dient zur Einstellung der Federvorspannung der an der Einstellhülse 48 anliegenden Rückstellfeder 25, die sich wiederum mit ihrer gegenüberliegenden Seite an der Ventilnadel 19 abstützt.
Das Einspritzventil ist weitgehend mit einer
Kunststoffumspritzung 50 umschlossen, die sich vom Kern 2 ausgehend in axialer Richtung über die Magnetspule 1 bis zum Ventilsitzträger 12 erstreckt. Zu dieser Kunststoffumspritzung 50 gehört beispielsweise ein mitangespritzter elektrischer Anschlußstecker 52.
Ein Brennstoffilter 61 ragt in die Strömungsbohrung 46 des Kerns 2 an dessen Zulaufseitigem Ende hinein und sorgt für die Herausfiltrierung solcher Brennstoffbestandteile, die aufgrund ihrer Größe im Einspritzventil Verstopfungen oder Beschädigungen verursachen könnten.
Erfindungsgemäß ist eine der beiden sich gegenüberliegenden Stirnflächen des Kerns 2 bzw. des Ankers 27 im Anschlagbereich sphärisch, insbesondere kuglig, kugelabschnittför ig bzw. kugelkalottenabschnittförmig gewölbt, wobei durch die ringförmige Ausbildung von Kern 2 und Anker 27 letztlich eine Stirnfläche einen ringförmigen Kugelabschnitt bildet. Mit einer Strich-Punkt -Linie 70 ist in Figur 1 ein Radius als Kreisabschnitt dargestellt, um diese konvexe Wölbung zu verdeutlichen. In idealer Weise liegt der Mittelpunkt 71 einer mit dem Radius R (Figur 2) versehenen (gedachten) Kugel im Mittelpunkt des kugelförmigen Ventilschließkörpers 21, also an der Stelle, an der die Ventillängsachse 10 die Ebene des Kugeläquators des Ventilschließkörpers 21 durchstößt.
In der Figur 2 ist der in Figur 1 mit einem Kreis gekennzeichnete Anschlagbereich nochmals vergrößert dargestellt. Die dem Kern 2 zugewandte obere Stirnfläche 73 des Ankers 27 ist dabei mit einem konstanten Radius kugelförmig, konvex gewölbt ausgeformt. Hingegen ist die dem Anker 27 zugewandte untere Stirnfläche 74 des Kerns 2 eben und schräg geneigt zur Ventillängsachse 10 ausgeführt. Die Neigung der Stirnfläche 74 ist dabei so gewählt, daß die Stirnfläche 74 an einem gewünschten Berührungspunkt 75 des
Ankers 27 (nur die Zeichnungsebene betrachtet) bzw. an einer gewünschten ringförmigen Berührungslinie 75 des Ankers 27 (als reales dreidimensionales Bauteil betrachtet) tangential zur Kugeloberfläche verläuft . Wie bereits vorhergehend beschrieben, liegt der Mittelpunkt 71 einer mit dem Radius R versehenen (gedachten) Kugel für die zu bildende kugelabschnittförmige Stirnfläche 73 des Ankers 27 in vorteilhafter Weise im Mittelpunkt des kugelförmigen Ventilschließkörpers 21. Mit dieser erfindungsgemäßen Ausbildung des Anschlagbereichs wird eine gute hydraulische Anschlagdämpfung erzielt, da durch den relativ großen Radius R (für das in Figur 1 dargestellte Ventil beträgt R ca. 24 mm) enge Quetschspalte von < 10 μm gebildet sind.
Neben dem in Figur 2 dargestellten Ausführungsbeispiel ist es jedoch auch möglich, den Mittelpunkt 71 für die (gedachte) Kugel zur Erzielung der kugelabschnittförmigen Stirnfläche 73 des Ankers 27 auf der Ventillängsachse 10 in beide Richtungen zu verschieben, so daß die kugelabschnittförmige Stirnfläche 73 einen kleineren oder größeren Radius aufweist als den Radius R gemäß Figur 2. In vorteilhafter Weise sollte der Drehmittelpunkt aber auf der Ventillängsachse 10 liegen, um eine einheitliche Wölbung der Stirnfläche 73 über ihre gesamte Ringerstreckung zu erreichen.
In den Figuren 3 und 4 sind zwei weitere Beispiele von erfindungsgemäß ausgebildeten Anschlagbereichen dargestellt. Dabei sind bei dem Ausführungsbeispiel gemäß Figur 3 nur die Stirnflächen 73, 74 vertauscht gegenüber der Anordnung nach Figur 2 ausgeführt. Die untere Stirnfläche 74 des Kerns 2 ist also kugelabschnittförmig gewölbt ausgebildet, während die obere Stirnfläche 73 des Ankers 27 eben und schräg geneigt zur Ventillängsachse 10 verläuft. Der Mittelpunkt 71 der (gedachten) Kugel liegt hierbei weit oberhalb des Kernendes 9 auf der Ventillängsachse 10.
Figur 4 zeigt ein fertigungstechnisch eher schwieriger herzustellendes Beispiel, bei dem nicht nur ein Mittelpunkt 71 einer (gedachten) Kugel zur Herstellung der gewölbten kugelabschnittförmigen Stirnfläche 73 des Ankers 27 existiert. Vielmehr liegt eine Vielzahl von Drehpunkten abseits der Ventillängsachse 10 und sogar außerhalb des Umfangs des Ankers 27, um eine gleichmäßige Wölbung über die gesamte Stirnfläche 73 in Umfangsrichtung zu erzielen.
Alle Ausführungsbeispiele besitzen den Vorteil einer verbesserten Dauerlaufbeständigkeit , da der Anschlag (Berührungslinie 75) in der Flächenmitte ist und nicht an den beschädigungsgefährdeten Kanten.
Auf die Stirnflächen 73, 74 werden beispielsweise noch dünne metallische Schichten, z.B. Chrom- oder Nickelschichten, mittels Galvanisieren aufgebracht. Diese Schichten sind besonders verschleißfest und reduzieren ein hydraulisches Kleben der anschlagenden Flächen.
Außerdem können die Stirnflächen 73, 74 zumindest teilweise im mittleren Bereich durch eine Behandlung der Oberfläche mittels eines Härteverfahrens verschleißfest gemacht werden. Als Härteverfahren sind hierzu z.B. die bekannten
Nitrierverfahren, wie Plasmanitrieren oder Gasnitrieren, oder Carburieren geeignet. Durch den Einsatz von Härteverfahren, durch die die Oberflächenstruktur am Anker 27 und/oder Kern 2 verändert wird, kann sogar ganz auf Verfahren zur unmittelbaren Beschichtung verzichtet werden.

Claims

Ansprüche
1. Elektromagnetisch betätigbares Ventil, insbesondere Brennstoffeinspritzventil für Brennstoffeinspritzanlagen von Brennkraftmaschinen, mit einer Ventillängsachse, mit einem eine Stirnfläche aufweisenden Kern aus ferromagnetischem Material, mit einer Magnetspule und mit einem eine Stirnfläche aufweisenden Anker, der ein mit einem festen Ventilsitz zusammenwirkenden Ventilschließkörper betätigt und bei erregter Magnetspule gegen die als Anschlag dienende Stirnfläche des Kerns gezogen wird, dadurch gekennzeichnet, daß eine der beiden Stirnflächen (73, 74) der Bauteile Anker (27) und Kern (2) , die jeweils zu dem anderen gegenüberliegenden Bauteil gerichtet sind, eine sphärisch gewölbte Kontur besitzt, die sich ringförmig konstant in Umfangsrichtung erstreckt .
2. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß die dem Kern (2) zugewandte Stirnfläche (73) des Ankers (27) kugelabschnittförmig ausgeformt ist und die gegenüberliegende Stirnfläche (74) des Kerns (2) eben und schräg geneigt zur Ventillängsachse (10) verläuft.
3. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß die dem Anker (27) zugewandte Stirnfläche (74) des Kerns (2) kugelabschnittförmig ausgeformt ist und die gegenüberliegende Stirnfläche (73) des Ankers (27) eben und schräg geneigt zur Ventillängsachse (10) verläuft.
4. Ventil nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die kugelabschnittförmig ausgeformte Stirnfläche (73, 74) eine ringförmige Berührungslinie (75) aufweist und die gegenüberliegende Stirnfläche (73, 74) im Berührungszustand tangential zu dieser Berührungslinie (75) verläuf .
5. Ventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die kugelabschnittförmige Kontur der Stirnfläche (73, 74) einen konstanten Radius R hat.
6. Ventil nach Anspruch 5, dadurch gekennzeichnet, daß ein Mittelpunkt (71) zur Bildung der kugelabschnittförmigen
Kontur der Stirnfläche (73, 74) mit dem Abstand des Radius R auf der Ventillängsachse (10) liegt.
7. Ventil nach Anspruch 6, dadurch gekennzeichnet, daß der Anker (27) mit einer entlang der Ventillängsachse (10) axial bewegbaren Ventilnadel (19) fest verbunden ist, an deren gegenüberliegenden Ende der Ventilschließkörper (21) angeordnet ist, wobei der Ventilschließkörper (21) kugelförmig ausgeformt ist, und der Mittelpunkt (71) zur Bildung der kugelabschnittförmigen Kontur der Stirnfläche (73) mit dem Abstand des Radius R im Mittelpunkt des Ventilschließkörpers (21) liegt.
8. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß Kern (2) und/oder Anker (27) im Bereich der Stirnfläche (73, 74) beschichtet sind.
9. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß Kern (2) und/oder Anker (27) im Bereich der Stirnfläche (73, 74) mittels eines Härteverfahrens behandelt sind.
PCT/DE1999/001286 1998-07-24 1999-05-03 Elektromagnetisch betätigbares ventil WO2000006893A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP99929071A EP1042606B1 (de) 1998-07-24 1999-05-03 Elektromagnetisch betätigbares ventil
KR1020007002635A KR20010023935A (ko) 1998-07-24 1999-05-03 전자기 밸브
BR9906617-3A BR9906617A (pt) 1998-07-24 1999-05-03 Válvula manobrável eletromagneticamente
US09/509,162 US6302371B1 (en) 1998-07-24 1999-05-03 Electromagnetically actuatable valve
DE59910132T DE59910132D1 (de) 1998-07-24 1999-05-03 Elektromagnetisch betätigbares ventil
JP2000562653A JP2002521614A (ja) 1998-07-24 1999-05-03 電磁操作式の弁

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833461.3 1998-07-24
DE19833461A DE19833461A1 (de) 1998-07-24 1998-07-24 Elektromagnetisch betätigbares Ventil

Publications (1)

Publication Number Publication Date
WO2000006893A1 true WO2000006893A1 (de) 2000-02-10

Family

ID=7875262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1999/001286 WO2000006893A1 (de) 1998-07-24 1999-05-03 Elektromagnetisch betätigbares ventil

Country Status (9)

Country Link
US (1) US6302371B1 (de)
EP (1) EP1042606B1 (de)
JP (1) JP2002521614A (de)
KR (1) KR20010023935A (de)
BR (1) BR9906617A (de)
DE (2) DE19833461A1 (de)
ES (1) ES2226401T3 (de)
RU (1) RU2226615C2 (de)
WO (1) WO2000006893A1 (de)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6481646B1 (en) 2000-09-18 2002-11-19 Siemens Automotive Corporation Solenoid actuated fuel injector
US6499668B2 (en) 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6499677B2 (en) 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6502770B2 (en) 2000-12-29 2003-01-07 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6508417B2 (en) 2000-12-29 2003-01-21 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a lift set sleeve
US6511003B2 (en) 2000-12-29 2003-01-28 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6520421B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having an integral filter and o-ring retainer
US6520422B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6523760B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6523761B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a lift set sleeve
US6523756B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a lift set sleeve
US6533188B1 (en) 2000-12-29 2003-03-18 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and dynamic adjustment assembly
US6536681B2 (en) 2000-12-29 2003-03-25 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and O-ring retainer assembly
US6543707B2 (en) 2000-12-29 2003-04-08 Siemens Automotive Corporation Modular fuel injector having a lift set sleeve
US6547154B2 (en) 2000-12-29 2003-04-15 Siemens Automotive Corporation Modular fuel injector having a terminal connector interconnecting an electromagnetic actuator with a pre-bent electrical terminal
US6550690B2 (en) 2000-12-29 2003-04-22 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having an integral filter and dynamic adjustment assembly
US6565019B2 (en) 2000-12-29 2003-05-20 Seimens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and O-ring retainer assembly
US6568609B2 (en) 2000-12-29 2003-05-27 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and o-ring retainer assembly
US6607143B2 (en) 2000-12-29 2003-08-19 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a lift set sleeve
US6655609B2 (en) 2000-12-29 2003-12-02 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and o-ring retainer assembly
US6676043B2 (en) 2001-03-30 2004-01-13 Siemens Automotive Corporation Methods of setting armature lift in a modular fuel injector
US6676044B2 (en) 2000-04-07 2004-01-13 Siemens Automotive Corporation Modular fuel injector and method of assembling the modular fuel injector
US6685112B1 (en) 1997-12-23 2004-02-03 Siemens Automotive Corporation Fuel injector armature with a spherical valve seat
US6687997B2 (en) 2001-03-30 2004-02-10 Siemens Automotive Corporation Method of fabricating and testing a modular fuel injector
US6695232B2 (en) 2000-12-29 2004-02-24 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a lift set sleeve
US6698664B2 (en) 2000-12-29 2004-03-02 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and dynamic adjustment assembly
US6708906B2 (en) 2000-12-29 2004-03-23 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6811091B2 (en) 2000-12-29 2004-11-02 Siemens Automotive Corporation Modular fuel injector having an integral filter and dynamic adjustment assembly
US6904668B2 (en) 2001-03-30 2005-06-14 Siemens Vdo Automotive Corp. Method of manufacturing a modular fuel injector
US7093362B2 (en) 2001-03-30 2006-08-22 Siemens Vdo Automotive Corporation Method of connecting components of a modular fuel injector

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3734702B2 (ja) * 2000-10-17 2006-01-11 株式会社日立製作所 電磁式燃料噴射弁
DE10124743A1 (de) * 2001-05-21 2002-11-28 Bosch Gmbh Robert Brennstoffeinspritzventil
US20050156057A1 (en) * 2002-09-12 2005-07-21 Volkswagen Mechatronic Gmbh & Co. Kg Pump-nozzle unit and method for setting the hardness of bearing regions of a control valve
DE10242376A1 (de) * 2002-09-12 2004-03-25 Siemens Ag Pumpe-Düse-Einheit und Verfahren zur Einstellung der Härte von Anlagebereichen eines Steuerventils
DE10332348A1 (de) * 2003-07-16 2005-02-03 Robert Bosch Gmbh Brennstoffeinspritzventil
JP4064934B2 (ja) * 2004-02-27 2008-03-19 三菱重工業株式会社 電磁弁装置
JP4167995B2 (ja) * 2004-03-17 2008-10-22 株式会社ケーヒン 電磁弁
US7389952B2 (en) * 2004-08-04 2008-06-24 Continental Automotive Systems Us, Inc. Deep pocket seat assembly in modular fuel injector with unitary filter and O-ring retainer assembly and methods
DE102004058677A1 (de) * 2004-12-06 2006-06-14 Robert Bosch Gmbh Einspritzventil
JP2006233887A (ja) * 2005-02-25 2006-09-07 Denso Corp 燃料噴射弁
DE102005052255B4 (de) * 2005-11-02 2020-12-17 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102005061409A1 (de) * 2005-12-22 2007-06-28 Robert Bosch Gmbh Elektromagnetisch betätigbares Ventil
DE102006021736A1 (de) * 2006-05-10 2007-11-15 Robert Bosch Gmbh Kraftstoffinjektor mit druckausgeglichenem Steuerventil
US20100025500A1 (en) * 2008-07-31 2010-02-04 Caterpillar Inc. Materials for fuel injector components
US8585014B2 (en) * 2009-05-13 2013-11-19 Keihin Corporation Linear solenoid and valve device using the same
DE102010062077A1 (de) 2010-11-26 2012-05-31 Robert Bosch Gmbh Ventileinrichtung mit einem wenigstens abschnittsweise zylindrischen Bewegungselement
DE102013209672A1 (de) 2013-05-24 2014-11-27 Robert Bosch Gmbh Elektromagnetisch betätigbares Ventil
KR101554243B1 (ko) * 2014-02-04 2015-09-18 김영희 가스차량 엔진용 연료가스 인젝터
DK178427B1 (en) * 2015-04-29 2016-02-22 Hans Jensen Lubricators As Lubricant injector for large slow-running two-stroke engine and production method
DE102016203083A1 (de) * 2016-02-26 2017-08-31 Robert Bosch Gmbh Magnetventil
JP2019210901A (ja) * 2018-06-07 2019-12-12 愛三工業株式会社 燃料噴射弁
DE102020215169A1 (de) * 2020-12-02 2022-06-02 Robert Bosch Gesellschaft mit beschränkter Haftung Gasdosierventil für gasförmigen Brennstoff

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0009388A1 (de) * 1978-09-18 1980-04-02 Ledex, Inc. Röhrenförmiger Solenoid
US4264040A (en) * 1978-07-06 1981-04-28 Nissan Motor Company, Limited Fuel injector valve
US4423843A (en) * 1982-01-28 1984-01-03 General Motors Corporation Electromagnetic fuel injector with armature stop and adjustable armature spring
US4666087A (en) * 1983-08-06 1987-05-19 Robert Bosch Gmbh Electromagnetically actuatable valve
GB2196181A (en) * 1984-03-05 1988-04-20 Gerhard Mesenich Electromagnetic injection valve
US4786030A (en) * 1986-12-04 1988-11-22 Robert Bosch Gmbh Electromagnetically actuatable fuel injection valve
DE4421935A1 (de) * 1993-12-09 1995-06-14 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582039A (en) * 1969-11-26 1971-06-01 Sahlin Eng Co Inc Industrial air valve with electrically operable pilot valve having minimal solenoid loading
US4423841A (en) * 1982-01-28 1984-01-03 General Motors Corporation Electromagnetic fuel injector with pivotable armature stop
DE3230844A1 (de) 1982-08-19 1984-02-23 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betaetigbares ventil
EP0571003B1 (de) * 1987-12-02 1997-07-16 Ganser-Hydromag Ag Elektromagnetisch betätigbare Vorrichtung zum schnellen Umschalten eines elektro-hydraulisch betätigten Kraftstoffeinspritzventils
DE3810826A1 (de) 1988-03-30 1989-10-12 Pierburg Gmbh Elektromagnetisches einspritzventil fuer brennkraftmaschinen
DE4420176A1 (de) * 1994-06-09 1995-12-14 Bosch Gmbh Robert Ventilnadel für ein elektromagnetisch betätigbares Ventil
DE19532865A1 (de) * 1995-09-06 1997-03-13 Bosch Gmbh Robert Brennstoffeinspritzventil
JP3245035B2 (ja) * 1996-01-19 2002-01-07 三菱電機株式会社 空気制御バルブ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264040A (en) * 1978-07-06 1981-04-28 Nissan Motor Company, Limited Fuel injector valve
EP0009388A1 (de) * 1978-09-18 1980-04-02 Ledex, Inc. Röhrenförmiger Solenoid
US4423843A (en) * 1982-01-28 1984-01-03 General Motors Corporation Electromagnetic fuel injector with armature stop and adjustable armature spring
US4666087A (en) * 1983-08-06 1987-05-19 Robert Bosch Gmbh Electromagnetically actuatable valve
GB2196181A (en) * 1984-03-05 1988-04-20 Gerhard Mesenich Electromagnetic injection valve
US4786030A (en) * 1986-12-04 1988-11-22 Robert Bosch Gmbh Electromagnetically actuatable fuel injection valve
DE4421935A1 (de) * 1993-12-09 1995-06-14 Bosch Gmbh Robert Elektromagnetisch betätigbares Ventil

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6685112B1 (en) 1997-12-23 2004-02-03 Siemens Automotive Corporation Fuel injector armature with a spherical valve seat
US6676044B2 (en) 2000-04-07 2004-01-13 Siemens Automotive Corporation Modular fuel injector and method of assembling the modular fuel injector
US6481646B1 (en) 2000-09-18 2002-11-19 Siemens Automotive Corporation Solenoid actuated fuel injector
US6769176B2 (en) 2000-09-18 2004-08-03 Siemens Automotive Corporation Method of manufacturing a fuel injector
US6565019B2 (en) 2000-12-29 2003-05-20 Seimens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and O-ring retainer assembly
US6655609B2 (en) 2000-12-29 2003-12-02 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and o-ring retainer assembly
US6520421B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having an integral filter and o-ring retainer
US6520422B2 (en) 2000-12-29 2003-02-18 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6523760B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6523761B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a lift set sleeve
US6523756B2 (en) 2000-12-29 2003-02-25 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having a lift set sleeve
US6533188B1 (en) 2000-12-29 2003-03-18 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having an integral filter and dynamic adjustment assembly
US6536681B2 (en) 2000-12-29 2003-03-25 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and O-ring retainer assembly
US6543707B2 (en) 2000-12-29 2003-04-08 Siemens Automotive Corporation Modular fuel injector having a lift set sleeve
US6547154B2 (en) 2000-12-29 2003-04-15 Siemens Automotive Corporation Modular fuel injector having a terminal connector interconnecting an electromagnetic actuator with a pre-bent electrical terminal
US6550690B2 (en) 2000-12-29 2003-04-22 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having an integral filter and dynamic adjustment assembly
US6508417B2 (en) 2000-12-29 2003-01-21 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a lift set sleeve
US6568609B2 (en) 2000-12-29 2003-05-27 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and o-ring retainer assembly
US6607143B2 (en) 2000-12-29 2003-08-19 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a lift set sleeve
US6511003B2 (en) 2000-12-29 2003-01-28 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6851631B2 (en) 2000-12-29 2005-02-08 Siemens Vdo Automotive Corp. Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and O-ring retainer assembly
US6502770B2 (en) 2000-12-29 2003-01-07 Siemens Automotive Corporation Modular fuel injector having a snap-on orifice disk retainer and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6499677B2 (en) 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a low mass, high efficiency electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6840500B2 (en) 2000-12-29 2005-01-11 Siemens Vdo Automotovie Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6695232B2 (en) 2000-12-29 2004-02-24 Siemens Automotive Corporation Modular fuel injector having interchangeable armature assemblies and having a lift set sleeve
US6698664B2 (en) 2000-12-29 2004-03-02 Siemens Automotive Corporation Modular fuel injector having an integral or interchangeable inlet tube and having an integral filter and dynamic adjustment assembly
US6708906B2 (en) 2000-12-29 2004-03-23 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having an integral filter and dynamic adjustment assembly
US6499668B2 (en) 2000-12-29 2002-12-31 Siemens Automotive Corporation Modular fuel injector having a surface treatment on an impact surface of an electromagnetic actuator and having a terminal connector interconnecting an electromagnetic actuator with an electrical terminal
US6811091B2 (en) 2000-12-29 2004-11-02 Siemens Automotive Corporation Modular fuel injector having an integral filter and dynamic adjustment assembly
US6687997B2 (en) 2001-03-30 2004-02-10 Siemens Automotive Corporation Method of fabricating and testing a modular fuel injector
US6676043B2 (en) 2001-03-30 2004-01-13 Siemens Automotive Corporation Methods of setting armature lift in a modular fuel injector
US6904668B2 (en) 2001-03-30 2005-06-14 Siemens Vdo Automotive Corp. Method of manufacturing a modular fuel injector
US7093362B2 (en) 2001-03-30 2006-08-22 Siemens Vdo Automotive Corporation Method of connecting components of a modular fuel injector

Also Published As

Publication number Publication date
BR9906617A (pt) 2000-09-19
ES2226401T3 (es) 2005-03-16
EP1042606A1 (de) 2000-10-11
KR20010023935A (ko) 2001-03-26
US6302371B1 (en) 2001-10-16
DE19833461A1 (de) 2000-01-27
DE59910132D1 (de) 2004-09-09
RU2226615C2 (ru) 2004-04-10
JP2002521614A (ja) 2002-07-16
EP1042606B1 (de) 2004-08-04

Similar Documents

Publication Publication Date Title
EP1042606B1 (de) Elektromagnetisch betätigbares ventil
EP0683862B1 (de) Elektromagnetisch betätigbares ventil
DE19654322C2 (de) Elektromagnetisch betätigbares Ventil
EP0683861B1 (de) Elektromagnetisch betätigbares ventil
EP0558715B1 (de) Elektromagnetisch betätigbares einspritzventil
WO1996003579A1 (de) Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung
WO1997013977A1 (de) Elektromagnetisch betätigbares ventil, insbesondere brennstoffeinspritzventil
EP0479958B1 (de) Elektromagnetisch betätigbares brennstoffeinspritzventil
DE4408875A1 (de) Brennstoffeinspritzventil
DE4125155C1 (de)
DE4421935A1 (de) Elektromagnetisch betätigbares Ventil
DE4411554A1 (de) Einspritzventil
EP1399669A1 (de) Brennstoffeinspritzventil
EP0455758B1 (de) Elektromagnetisch betätigbares kraftstoffeinspritzventil
WO2001044652A1 (de) Brennstoffeinspritzventil
DE4108665C2 (de) Einstellbuchse für ein elektromagnetisch betätigbares Ventil
EP0917623A1 (de) Brennstoffeinspritzventil
DE3716073A1 (de) Elektromagnetisch betaetigbares ventil
EP1034369B1 (de) Brennstoffeinspritzventil
DE4018317C1 (de)
WO2003027489A1 (de) Brennstoffeinspritzventil
WO2000079123A1 (de) Brennstoffeinspritzventil
DE102005037742A1 (de) Elektromagnetisch betätigbares Ventil
DE10050753A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1999929071

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): BR IN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020007002635

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2000/50/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 09509162

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999929071

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007002635

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999929071

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007002635

Country of ref document: KR