WO1997013977A1 - Elektromagnetisch betätigbares ventil, insbesondere brennstoffeinspritzventil - Google Patents

Elektromagnetisch betätigbares ventil, insbesondere brennstoffeinspritzventil Download PDF

Info

Publication number
WO1997013977A1
WO1997013977A1 PCT/DE1996/001136 DE9601136W WO9713977A1 WO 1997013977 A1 WO1997013977 A1 WO 1997013977A1 DE 9601136 W DE9601136 W DE 9601136W WO 9713977 A1 WO9713977 A1 WO 9713977A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve member
stop element
valve according
core
Prior art date
Application number
PCT/DE1996/001136
Other languages
English (en)
French (fr)
Inventor
Ferdinand Reiter
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to BR9606667A priority Critical patent/BR9606667A/pt
Priority to DE59607084T priority patent/DE59607084D1/de
Priority to JP51460197A priority patent/JP3737119B2/ja
Priority to EP96920711A priority patent/EP0796393B1/de
Priority to US08/817,457 priority patent/US5820032A/en
Publication of WO1997013977A1 publication Critical patent/WO1997013977A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0632Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a spherically or partly spherically shaped armature, e.g. acting as valve body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/08Injectors peculiar thereto with means directly operating the valve needle specially for low-pressure fuel-injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S239/00Fluid sprinkling, spraying, and diffusing
    • Y10S239/90Electromagnetically actuated fuel injector having ball and seat type valve

Definitions

  • Electromagnetically actuated valve in particular fuel injection valve
  • the invention is based on an electromagnetically actuated valve, in particular a fuel injector according to the preamble of the main claim.
  • a fuel injector which has a spherical valve member which can move axially in the valve and also serves as a valve closing body.
  • the spherical valve member interacts with a fixed, non-magnetic valve seat, the one end position of the valve member when the solenoid is not energized is determined by the contact of the valve member with the valve seat.
  • a magnetic inner pole lies exactly opposite the valve seat.
  • the spherical valve member is attracted toward the inner pole, abutting directly on a contact surface of the inner pole.
  • the valve is now open.
  • the valve member is surrounded by a magnetic side pole, which is a magnetic disc with a cylindrical opening.
  • the magnetic field lines run from the side pole to the inner pole via the valve member, a large radial air gap occurring between the side pole and the valve member, which results from the geometry of the cylindrical opening.
  • Another disadvantage is the difficult handling of the inner pole when designing the stop surface. In the shaping and surface treatment (coating) of these
  • the electromagnetically actuated valve according to the invention in particular fuel injection valve, with the characterizing features of the main claim has the advantage that a high effectiveness of the magnetic circuit is achieved in a simple and inexpensive manner, since the losses of the magnetic field can be kept very low due to simple design measures.
  • An inventive, soft magnetic guide body surrounding a spherical valve member ensures, due to its partially spherical design in the area of an inner guide opening, both good guidance of the valve member and an optimal transition of the magnetic field lines to the valve member, since a radial air gap formed between the two can be kept to a minimum.
  • the measures listed in the subclaims allow advantageous developments and improvements of the electromagnetically actuated valve specified in the main claim.
  • a stop element arranged between a core serving as the inner pole and the spherical valve member can be shaped very well as a separate insert, can easily be subjected to a surface treatment (e.g. coating) and is also easy to assemble. It is advantageous to have the stop element in the form of a disk and to have it pressed against the core by means of a compression spring, the stop element being guided by a non-magnetic intermediate part.
  • a particular advantage is that the stop element is designed as a large-pored sintered body.
  • the stop element is then sintered from balls that have diameters in the tenths of a millimeter range. A fluid can still flow well between the sintered balls, so that no additional flow channels are required.
  • the stop element also acts as a filter that keeps coarse dirt away from the seating area.
  • the spherical stop surface of the stop element does not exactly match the surface contour or the radius of the spherical valve member 97/13977 PC17DE96 / 01136
  • FIG. 1 shows a partially illustrated electromagnetically actuated valve according to the invention
  • FIG. 2 shows a section along the line II-II through a stop element
  • FIG. 3 shows the striking of a valve member on the stop element on an outer region
  • FIG. 4 shows the striking of a valve member on the stop element on an inner region
  • 5 shows the striking of a valve member on the stop element in a central region.
  • the electromagnetically actuated valve in the form of an injection valve for fuel injection systems of mixture-compressing, spark-ignited internal combustion engines, for example and only partially shown in FIG. 1, has an electromagnetic circuit including a magnet coil 1, a stepped, tubular magnet housing 3 and a core serving as an inner pole and fuel inlet connector 5, which has a constant diameter over its entire length, for example.
  • the magnet coil 1 is embedded in a certain way with its coil former 6 in the stepped magnet housing 3, that is, it is completely surrounded by the magnet housing 3 in the circumferential direction and at least partially downward.
  • a cover element not shown, which can be inserted into the magnet housing 3, covers the magnet coil 1 upwards and serves to close the magnetic circuit. The cover element thus connects the core 5 to the magnet housing 3 above the magnet coil 1.
  • a step 7 in the magnet housing 3 directly below the coil body 6 results in a reduction in the diameter of the magnet housing 3 seen in the downstream direction, which, among other things, with its downstream end region 9 also acts as a valve seat bracket.
  • the coil former 6 lies, for example, on the step 7 of the magnet housing 3.
  • the tubular magnet housing 3 extends concentrically to a longitudinal valve axis 10.
  • a longitudinal bore 12 runs in the magnet housing 3, which is also designed concentrically to the longitudinal valve axis 10.
  • a spherical valve member 13 is arranged in the longitudinal bore 12 and represents both the armature and the valve closing body of the injection valve. With a lower core end
  • the coil former 6 lies e.g. on an upper end face 16 of the intermediate part 15.
  • the injection valve is actuated electromagnetically in a known manner.
  • the electromagnetic circuit with the magnet coil 1 serves to Magnet housing 3 and the core 5.
  • a cylindrical valve seat body 20 which has a fixed valve seat 21, is tightly mounted in the longitudinal bore 12, for example by welding.
  • a disk-shaped guide member 25 is used to guide the valve member 13 during its axial movement along the valve longitudinal axis 10.
  • the spherical valve member 13 interacts with the valve seat 21 of the valve seat body 20 which tapers in the direction of the truncated cone in the direction of flow.
  • the circumference of the valve seat body 20 has a slightly smaller diameter than the longitudinal bore 12 of the magnet housing 3.
  • the valve seat body 20 is concentric and firm with an, for example, cup-shaped injection orifice plate 27, for example by a circumferential, dense and medium a weld seam formed by a laser.
  • the cup-shaped spray perforated disk 27 has a circumferential, downstream one
  • Holding edge 30 A direct flow of the fluid, in particular the fuel, into an intake line of the internal combustion engine outside the spray openings 29 is avoided by a weld seam 31 between the spray hole disc 27 and the magnet housing 3.
  • the insertion depth of the valve seat body 20 with the cup-shaped spray perforated disk 27 or the arrangement of a disk-shaped stop element 33 upstream of the valve member 13 determine the size of the
  • the one end position of the Valve member 13 is fixed when the solenoid 1 is not excited by the contact of the valve member 13 on the valve seat 21 of the valve seat body 20, while the other end position of the valve member 13 results when the solenoid 1 is excited by its contact with the stop element 33.
  • An adjusting sleeve 36 which is inserted into a flow bore 35 of the core 5 concentrically to the longitudinal axis 10 of the valve and is formed, for example, from rolled spring steel sheet, serves to adjust the
  • the return spring 17 also projects through the stop element 33 in a continuous inner opening 38 which, for example, has a diameter which corresponds exactly to the diameter of the flow bore 35 of the core 5.
  • the opening 38 thus represents a continuation of the flow bore 35.
  • the stop element 33 bears against the core end 14 of the core 5.
  • the end face 40 is machined, for example, so that the stop element 33 only contacts the core 5 and not the intermediate part 15.
  • a circumferential bevel 41 is provided, for example, on the outer circumference of the stop element 33. Otherwise, the stop element 33 is guided in the circumferential direction by the intermediate part 15.
  • the opposite lower stop face 43 facing the valve member 13 is dome-shaped in order to make the magnetic circuit as effective as possible through small air gaps.
  • FIGS. 3 to 5 show various possibilities for forming the spherical geometry on the stop element 33, which will be explained in more detail later.
  • the dome-shaped stop surface 43 is interrupted by at least one, for example four, radial and at the same time also downstream fluid passages, in particular fuel passages 44.
  • the at least one fuel passage 44 is introduced in a groove-like manner in the stop element 33.
  • the stop element 33 has a stepped outer contour, an upper region having a larger outer diameter than a lower region containing the fuel passages 44. This results in a shoulder 46 on the stop element 33 against which a compression spring 47 presses. While the compression spring 47 abutting the stop element 33 presses the stop element 33 against the core end 14 of the core 5, its opposite side is supported on the guide body 25, which in turn rests on the valve seat body 20.
  • the stop element 33 is made of soft magnetic material and is surface-treated at least on the lower spherical stop surface 43 for reasons of wear protection, e.g. chrome-plated.
  • the spherical valve member 13 has a spherical equator 48 which lies in a spherical plane which divides the sphere into two spherical halves of equal size.
  • the disk-shaped extends in the area of this spherical equator 48
  • the guide body 25 which has a guide opening 49 through which the valve member 13 moves.
  • the guide body 25 is made of a soft magnetic material and, at least from the axial height of the ball equator 48 with the valve member 13 resting on the valve seat 21, is dome-shaped in the downstream direction in accordance with the contour of the valve member 13.
  • the magnetic flux passes through the magnet housing 3, the guide body 25, the valve member 13 and the stop element 33 to the core 5. Due to the dome-shaped design of the guide opening 49 on the guide body 25, the magnetic flux can be minimized Exceed radial air gap on valve member 13.
  • the upper part of the guide opening 49 is, for example, cylindrical.
  • the Fuhrungskorper 25 can also be installed rotated by 180 ° so that the dome-shaped section of the guide opening 49 is above the ball equator 48.
  • axially extending, groove-like depressions can be provided on the guide opening 49 of the guide body 25.
  • the guide body 25 is produced, for example, by stamping, sintering or MIM technology (metal injection molding).
  • the stop element 33 can also be produced by embossing, sintering or MIM technology.
  • the stop element 33 can be sintered from balls that have diameters in the tenth of a millimeter range. In such a coarse-pored sintered body, the fluid passages, in particular fuel passages 44, are then no longer necessary, since the fuel can flow through between the sintered balls. Hydraulic gluing can be effectively prevented by the large-pore surface of the stop element 33.
  • the stop element 33 also acts as a filter that keeps dirt away from the seating area.
  • a holding ring 52 made of sheet metal is mounted on the end region 9 of the magnet housing 3.
  • This circumferential, hook-shaped retaining ring 52 has tabs 53 at three or four points on the circumference, which prevent the retaining ring 52 from being stripped off by self-locking when the injection valve is dismantled.
  • an annular groove is formed on the outer circumference of the magnet housing 3, in which a sealing ring 55 is arranged.
  • Figure 2 is a sectional view of the stop element 33 along the line II-II in Figure 1.
  • four groove-shaped fuel passages 44 are provided, which run radially outward from the inner opening 38. Another number of fuel passages 44 is also conceivable.
  • Fuel passages 44 can be dispensed with entirely if the stop element 33 is designed as a coarse-pored sintered body.
  • the geometry of the spherical stop surface 43 of the stop element 33 should not correspond exactly to the surface contour or the radius of the spherical valve member 13.
  • Figures 3, 4 and 5 show possible contours to avoid hydraulic gluing.
  • the valve member 13 can strike only on an outer region (FIG. 3), only on an inner region (FIG. 4) or only on a central region (FIG. 5) of the stop surface 43 of the stop element 33, while the respective other regions of the stop surface 43 coexist very close to

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Catching Or Destruction (AREA)

Abstract

Die Erfindung betrifft ein elektromagnetisch betätigbares Ventil, das einen elektromagnetischen Kreis besitzt, der unter anderem von einer Magnetspule (1), einem Magnetgehäuse (3) und einem als Innenpol dienenden Kern (5) gebildet ist. Ein als Anker und Ventilschließkörper dienendes Ventilglied (13) ist kugelförmig ausgeführt und bewegt sich axial innerhalb des Magnetgehäuses (3). Zwischen dem Kern (5) und dem Ventilglied (13) ist ein Anschlagelment (33) angeordnet, das eine dem Ventilglied (13) zugewandte, kalottenförmige Anschlagfläche (43) aufweist. Das Ventilglied (13) wird zumindest teilweise in Umfangsrichtung von einem Führungskörper (25) umgeben, der eine Führungsöffnung (49) aufweist, die zumindest teilweise ebenfalls kalottenförmig ist. Das Ventil eignet sich in Form eines Brennstoffeinspritzventils besonders für den Einsatz in Brennstoffeinspritzanlagen von gemischverdichtenden fremdgezündeten Brennkraftmaschinen.

Description

Elektromagnetisch betätigbares Ventil, insbesondere Brennstoffeinspritzventil
Stand der Technik
Die Erfindung geht aus von einem elektromagnetisch betätigbaren Ventil, insbesondere Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs. Aus der EP-OS 0 007 724 ist bereits ein Brennstoffeinspritzventil bekannt, daß ein kugelförmiges Ventilglied aufweist, welches sich im Ventil axial bewegen kann und als Ventilschließkörper ebenso dient. Das kugelförmige Ventilglied wirkt mit einem festen, nichtmagnetischen Ventilsitz zusammen, wobei die eine Endstellung des Ventilgliedes bei nicht erregter Magnetspule durch die Anlage des Ventilgliedes am Ventilsitz festgelegt ist. Ein magnetischer Innenpol liegt, bezogen auf das Ventilglied, dem Ventilsitz genau gegenüber. Erfolgt eine Erregung des elektromagnetischen Kreises, so wird das kugelförmige Ventilglied zum Innenpol hin angezogen, wobei es unmittelbar an einer Kontaktfläche des Innenpols anschlägt. Das Ventil ist nun geöffnet. Das Ventilglied wird von einem magnetischen Seitenpol umgeben, der eine Magnetscheibe mit einer zylindrischen Öffnung darstellt. Die Magnetfeldlinien verlaufen vom Seitenpol zum Innenpol über das Ventilglied, wobei ein großer Radialluftspalt zwischen dem Seitenpol und dem Ventilglied auftritt, der sich aus der Geometrie der zylindrischen Öffnung ergibt. Ein weiterer Nachteil besteht in der schwierigen Handhabung des Innenpols bei der Ausgestaltung der Anschlagfläche. Bei der Ausformung und Oberflächenbehandlung (Beschichtung) dieser
Anschlagfläche muß stets der gesamte Innenpol gehandhabt werden. Aus der US-PS 4,308,890 ist ein ähnliches elektromagnetisch betätigbares Einspritzventil bekannt, das ebenfalls ein kugelförmiges Ventilglied besitzt. Die beiden Endstellungen der axialen Bewegung des Ventilgliedes sind wiederum durch eine Anschlagfläche an einem magnetischen Innenpol und einen festen Ventilsitz festgelegt. Eine Führung des Ventilgliedes während seiner Axialbewegung zwischen den beiden Endstellungen ist nicht vorhanden. Von einem Magnetgehäuse aus ragt ein Ringbereich im Bereich der axialen Erstreckung des Ventilgliedes bis in die Nähe des Ventilgliedes. Durch den Ringbereich ist ein innerer zylindrischer Öffnungsbereich vorgegeben, durch den sich das Ventilglied bewegt. Auch hier ist ein großer Radialluftspalt zwischen dem Ventilglied und dem als Seitenpol dienenden Ringbereich vorhanden. Dieselben, bereits genannten Nachteile ergeben sich auch bei dem aus der EP-PS 0 063 952 bekannten elektromagnetisch betätigbaren Fluideinspritzventil .
Vorteile der Erfindung
Das erfindungsgemäße elektromagnetisch betätigbare Ventil, insbesondere Brennstoffeinspritzventil, mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den Vorteil, daß in einfacher und kostengünstiger Weise eine hohe Effektivität des Magnetkreises erreicht wird, da die Verluste des Magnetfeldes aufgrund einfacher konstruktiver Maßnahmen sehr gering gehalten werden können.
Ein erfindungsgemäßer, ein kugelförmiges Ventilglied umgebender weichmagnetischer Führungskörper sorgt durch seine teilweise kalottenförmige Ausbildung im Bereich einer inneren Führungsöffnung sowohl für eine gute Führung des Ventilgliedes als auch für einen optimalen Übergang der Magnetfeldlinien auf das Ventilglied, da ein zwischen beiden gebildeter Radialluftspalt minimal gehalten werden kann. Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen elektromagnetisch betätigbaren Ventils möglich.
Von Vorteil ist es außerdem, daß die Handhabung einiger Bauteile des Ventils bei bestimmten Fertigungsprozessen, wie zum Beispiel Oberflächenbehandlungen, deutlich vereinfacht ist. Ein zwischen einem als Innenpol dienenden Kern und dem kugelförmigen Ventilglied angeordnetes Anεchlagelement ist als separates Einlegeteil sehr gut formbar, leicht einer Oberflächenbehandlung (z.B. Beschichten) zu unterziehen und außerdem einfach montierbar. Von Vorteil ist es, das Anschlagelement scheibenförmig auszuführen und mittels einer Druckfeder gegen den Kern drücken zu lassen, wobei die Führung des Anschlagelements durch ein unmagnetisches Zwischenteil erfolgt.
Ein besonderer Vorteil besteht darin, das Anschlagelement als grobporigen Sinterkδrper auszuführen. Das
Anschlagelement ist dann aus Kugeln gesintert, die Durchmesser im Zehntel-Millimeter-Bereich aufweisen. Zwischen den zusammengesinterten Kugeln kann ein Fluid noch gut durchströmen, so daß keine zusätzlichen Strömungskanäle erforderlich sind. Neben der einfachen Geometrie und
Herstellbarkeit ergibt sich durch die Grobporigkeit der Vorteil, daß ein hydraulisches Kleben im Bereich der Anschlagfläche unterbunden ist. Das Anschlagelement wirkt zugleich als Filter, der Grobschmutz vom Sitzbereich fernhält.
Außerdem ist es von Vorteil, wenn zur Vermeidung des hydraulischen Klebens die kalottenförmige Anschlagfläche des Anschlagelements nicht genau der Oberflächenkontur beziehungsweise dem Radius des kugelförmigen Ventilglieds 97/13977 PC17DE96/01136
entspricht. Beim Anschlagen liegt dann weitgehend nur noch eine ringförmige Linienberührung vor.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 ein teilweise dargestelltes erfindungsgemäßes elektromagnetisch betätigbares Ventil, Figur 2 einen Schnitt entlang der Linie II-II durch ein Anschlagelement, Figur 3 das Anschlagen eines Ventilgliedes am Anschlagelement an einem Außenbereich, Figur 4 das Anschlagen eines Ventilgliedes am Anschlagelement an einem Innenbereich und Figur 5 das Anschlagen eines Ventilgliedes am Anschlagelement an einem mittleren Bereich.
Beschreibung der Ausführungsbeispiele
Das in der Figur 1 beispielsweise und nur teilweise dargestellte elektromagnetisch betätigbare Ventil in der Form eines Einspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen hat einen elektromagnetischen Kreis unter anderem mit einer Magnetspule 1, einem gestuften, rohrförmigen Magnetgehäuse 3 und einem als Innenpol und Brennstoffeinlaßstutzen dienenden Kern 5, der beispielsweise über seine gesamte Länge einen konstanten Durchmesser aufweist. Ein zum Beispiel gestufter Spulenkörper 6 nimmt eine Bewicklung der Magnetspule 1 auf und ermöglicht in
Verbindung mit der gestuften Bauweise des Magnetgehäuses 3 einen besonders kompakten Aufbau des Einspritzventils im Bereich der Magnetspule 1.
Die Magnetspule 1 ist mit ihrem Spulenkörper 6 in dem gestuften Magnetgehäuse 3 in gewisser Weise eingebettet, d.h. sie ist von dem Magnetgehause 3 in Umfangsrichtung vollständig und nach unten zumindest teilweise umgeben. Ein in das Magnetgehause 3 einsetzbares, nicht dargestelltes Deckelelement sorgt für eine Abdeckung der Magnetspule 1 nach oben und dient dem Schließen des magnetischen Kreises. Das Deckelelement verbindet also den Kern 5 mit dem Magnetgehause 3 oberhalb der Magnetspule 1. Durch eine Stufe 7 im Magnetgehause 3 unmittelbar unterhalb des Spulenkörpers 6 ergibt sich in stromabwärtiger Richtung gesehen eine Verringerung des Durchmessers des Magnetgehäuses 3, das mit seinem stromabwärtigen Endbereich 9 unter anderem auch als Ventilsitzträger fungiert. Der Spulenkörper 6 liegt zum Beispiel auf der Stufe 7 des Magnetgehäuses 3 auf.
Das rohrförmige Magnetgehause 3 erstreckt sich dabei konzentrisch zu einer Ventillängsachse 10. In dem Magnetgehause 3 verläuft eine Längsbohrung 12, die ebenso konzentrisch zu der Ventillängsachse 10 ausgebildet ist. In der Längsbohrung 12 ist ein kugelförmiges Ventilglied 13 angeordnet, das sowohl Anker als auch Ventilschließkörper des Einspritzventils darstellt. Mit einem unteren Kernende
14 des Kerns 5 ist dicht ein rohrförmiges, metallenes, nichtmagnetisches Zwischenteil 15 beispielsweise durch Löten verbunden und umgibt dabei das Kernende 14 teilweise axial. Da durch eine dichte und feste Verbindung des Zwischenteils
15 mit dem Magnetgehause 3 auch die Dichtheit zwischen Kern 5 und Magnetgehause 3 gewährleistet ist, liegt die Magnetspule 1 trocken vor. Der Spulenkörper 6 liegt dabei z.B. an einer oberen Stirnfläche 16 des Zwischenteils 15 an.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise elektromagnetisch. Zur axialen Bewegung des Ventilglieds 13 und damit zum Öffnen entgegen der Federkraft einer an dem Ventilglied 13 anliegenden Rückstellfeder 17 beziehungsweise Schließen des Einspritzventils dient der elektromagnetische Kreis mit der Magnetspule 1, dem Magnetgehause 3 und dem Kern 5. In dem stromabwärts liegenden, der Magnetspule 1 abgewandten Endbereich 9 des Magnetgehäuses 3 ist in der Längsbohrung 12 ein zylinderförmiger Ventilsitzkδrper 20, der einen festen Ventilsitz 21 aufweist, zum Beispiel durch Schweißen dicht montiert.
Zur Führung des Ventilglieds 13 während seiner Axialbewegung entlang der Ventillängsachse 10 dient ein scheibenförmiger Fuhrungskorper 25. Das kugelförmige Ventilglied 13 wirkt mit dem sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitz 21 des Ventilsitzkörpers 20 zusammen. Der Umfang des Ventilsitzkörpers 20 weist einen geringfügig kleineren Durchmesser auf als die Längsbohrung 12 des Magnetgehäuses 3. An seiner dem Ventilglied 13 abgewandten Stirnseite 26 ist der Ventilsitzkörper 20 mit einer beispielsweise topfförmig ausgebildeten Spritzlochscheibe 27 konzentrisch und fest, beispielsweise durch eine umlaufende, dichte und mittels eines Lasers ausgebildete Schweißnaht verbunden.
Die topfförmige Spritzlochscheibe 27 besitzt neben einem Bodenteil 28, an dem der Ventilsitzkörper 20 befestigt ist und in dem wenigstens eine, beispielsweise vier durch Erodieren oder Stanzen ausgeformte Abspritzöffnungen 29 verlaufen, einen umlaufenden stromabwärts gerichteten
Halterand 30. Ein unmittelbares Durchströmen des Fluids, insbesondere des Brennstoffs in eine Ansaugleitung der Brennkraftmaschine außerhalb der Abspritzöffnungen 29 wird durch eine Schweißnaht 31 zwischen Spritzlochscheibe 27 und Magnetgehause 3 vermieden.
Die Einschubtiefe des Ventilsitzkörpers 20 mit der topfförmigen Spritzlochscheibe 27 beziehungsweise die Anordnung eines scheibenförmigen Anschlagelements 33 stromaufwärts des Ventilglieds 13 bestimmen die Größe des
Hubs des Ventilglieds 13. Dabei ist die eine Endstellung des Ventilglieds 13 bei nicht erregter Magnetspule 1 durch die Anlage des Ventilglieds 13 am Ventilsitz 21 des Ventilsitzkörpers 20 festgelegt, während sich die andere Endstellung des Ventilglieds 13 bei erregter Magnetspule 1 durch dessen Anlage am Anschlagelement 33 ergibt.
Eine in eine konzentrisch zur Ventillängsachse 10 verlaufende Strömungsbohrung 35 des Kerns 5 eingeschobene Einstellhülse 36, die beispielsweise aus gerolltem Federstahlblech ausgeformt ist, dient zur Einstellung der
Federvorspannung der in der Strömungsbohrung 35 verlaufenden und an der Einstellhülse 36 anliegenden Rückstellfeder 17, die sich wiederum mit ihrer gegenüberliegenden Seite an der Oberfläche des kugelförmigen Ventilglieds 13 abstützt. Die Rückstellfeder 17 durchragt dabei auch das Anschlagelement 33 in einer durchgehenden inneren Öffnung 38, die beispielsweise einen Durchmesser aufweist, der dem Durchmesser der Strömungsbohrung 35 des Kerns 5 genau entspricht. Somit stellt die Öffnung 38 eine Fortsetzung der Strömungsbohrung 35 dar.
Mit einer oberen Stirnfläche 40 liegt das Anschlagelement 33 am Kernende 14 des Kerns 5 an. Dabei ist die Stirnfläche 40 zum Beispiel so bearbeitet, daß das Anschlagelement 33 ausschließlich den Kern 5 berührt und nicht das Zwischenteil 15. Um dies zu erreichen, ist beispielsweise am äußeren Umfang des Anschlagelements 33 eine umlaufende Abschrägung 41 vorgesehen. In Umfangsrichtung wird das Anschlagelement 33 ansonsten vom Zwischenteil 15 geführt. Während die obere Stirnfläche 40 des Anschlagelements 33 eben ausgeführt ist, ist die ihr gegenüberliegende, dem Ventilglied 13 zugewandte untere Anschlagfläche 43 kalottenförmig ausgebildet, um den Magnetkreis durch kleine Luftspalte möglichst effektiv zu machen. Verschiedene Möglichkeiten der Ausbildung der Kalottengeometrie am Anschlagelement 33 zeigen die Figuren 3 bis 5, die später näher erläutert werden. Die kalottenförmige Anschlagfläche 43 ist unterbrochen durch wenigstens einen, beispielsweise vier radial und zugleich auch stromabwärts verlaufende Fluiddurchlässe, insbesondere Brennstoffdurchlasse 44. Der wenigstens eine Brennstoffdurchlaß 44 ist dabei nutförmig im Anschlagelement 33 eingebracht.
Das Anschlagelement 33 besitzt eine gestufte Außenkontur, wobei ein oberer Bereich einen größeren Außendurchmesser aufweist als ein die Brennstoffdurchlasse 44 beinhaltender unterer Bereich. Damit ergibt sich ein Absatz 46 am Anschlagelement 33, gegen den eine Druckfeder 47 drückt. Während die am Anschlagelement 33 anliegende Druckfeder 47 das Anschlagelement 33 gegen das Kernende 14 des Kerns 5 drückt, stützt sie sich mit ihrer gegenüberliegenden Seite am Führungskörper 25 ab, der wiederum auf dem Ventilsitzkörper 20 aufliegt. Das Anschlagelement 33 besteht aus weichmagnetischem Material und ist zumindest an der unteren kalottenförmigen Anschlagfläche 43 aus Gründen des Verschleißschutzes oberflächenbehandelt, z.B. verchromt.
Das kugelförmige Ventilglied 13 besitzt einen Kugeläquator 48, der in einer Kugelebene liegt, die die Kugel in zwei gleich große Kugelhälften aufteilt. Im Bereich dieses Kugeläquators 48 erstreckt sich der scheibenförmige
Führungskörper 25, der eine Führungsöffnung 49 aufweist, durch die sich das Ventilglied 13 bewegt. Der Führungskörper 25 ist aus einem weichmagnetischen Werkstoff hergestellt und zumindest von der axialen Höhe des Kugeläquators 48 bei am Ventilsitz 21 anliegenden Ventilglied 13 ausgehend in stromabwärtiger Richtung entsprechend der Kontur des Ventilglieds 13 kalottenförmig ausgebildet. Der Magnetfluß geht über das Magnetgehause 3, den Führungskörper 25, das Ventilglied 13 und das Anschlagelement 33 zum Kern 5. Durch die kalottenförmige Ausbildung der Führungsöffnung 49 am Führungskörper 25 kann der Magnetfluß mit minimalem Radialluftspalt auf das Ventilglied 13 übertreten. Der obere Teil der Fuhrungsoffnung 49 ist zum Beispiel zylindrisch ausgeführt. Der Fuhrungskorper 25 kann auch um 180° gedreht so eingebaut sein, daß der kalottenförmig ausgebildete Abschnitt der Fuhrungsoffnung 49 oberhalb des Kugeläquators 48 liegt. Zur Fluidzuführung in Richtung des Ventilsitzes 21 können axial verlaufende, nutähnliche Vertiefungen an der Führungsöffnung 49 des Führungskörpers 25 vorgesehen sein. Der Führungskörper 25 ist zum Beispiel durch Prägen, Sintern oder MIM-Technik (Metal-Injection-Moulding) hergestellt.
Auch das Anschlagelement 33 kann durch Prägen, Sintern oder MIM-Technik hergestellt sein. Alternativ kann das Anschlagelement 33 aus Kugeln gesintert sein, die Durchmesser im Zehntel-Millimeter-Bereich aufweisen. Bei einem solchen grobporigen Sinterkδrper sind dann die Fluiddurchlässe, insbesondere Brennstoffdurchlasse 44 nicht mehr erforderlich, da zwischen den zusammengesinterten Kugeln der Brennstoff durchströmen kann. Durch die großporige Oberfläche des Anschlagelements 33 kann ein hydraulisches Kleben wirksam unterbunden werden. Das Anschlagelement 33 wirkt auch als Filter, der Schmutz vom Sitzbereich fernhält.
Auf den Endbereich 9 des Magnetgehäuses 3 ist zum Beispiel ein Haltering 52 aus Blech montiert. Dieser umlaufende, im Profil hakenförmige Haltering 52 besitzt an drei oder vier Stellen des Umfangs ausgestellte Laschen 53, die bei der Demontage des Einspritzventils ein Abstreifen des Halterings 52 durch Selbsthemmung verhindern. Durch die Stufe 7 des
Magnetgehäuses 3 und den Haltering 52 wird am äußeren Umfang des Magnetgehäuses 3 eine Ringnut gebildet, in der ein Dichtring 55 angeordnet ist.
Die Figur 2 ist eine Schnittdarstellung des Anschlagelements 33 entlang der Linie II-II in Figur 1. Bei diesem Ausführungsbeispiel sind vier nutförmige, jeweils im Abstand von 90° zueinander angeordnete Brennstoffdurchlasse 44 vorgesehen, die von der inneren Öffnung 38 aus radial nach außen verlaufen. Eine andere Anzahl von Brennstoffdurchlassen 44 ist ebenso denkbar. Auf die
Brennstoffdurchlässe 44 kann ganz verzichtet werden, wenn das Anschlagelement 33 als grobporiger Sinterkörper ausgebildet ist.
Um ein hydraulisches Kleben zu verhindern, sollte die Geometrie der kalottenförmigen Anschlagfläche 43 des Anschlagelements 33 nicht genau der Oberflächenkontur beziehungsweise dem Radius des kugelförmigen Ventilglieds 13 entsprechen. Die Figuren 3, 4 und 5 zeigen mögliche Konturen zur Vermeidung des hydraulischen Klebens . So kann das Ventilglied 13 nur an einem Außenbereich (Figur 3) , nur an einem Innenbereich (Figur 4) oder nur an einem mittleren Bereich (Figur 5) der Anschlagfläche 43 des Anschlagelements 33 anschlagen, während sich die jeweiligen anderen Bereiche der Anschlagfläche 43 mit sehr geringem Abstand vom
Ventilglied 13 erstrecken. Es liegt also jeweils weitgehend nur noch eine ringförmige Linienberührung vor.

Claims

Patentansprüche
1. Elektromagnetisch betätigbares Ventil, insbesondere Brennstoffeinspritzventil für Brennstoffeinspritzanlagen für Brennkraftmaschinen, mit einer Ventillängsachse, mit einem axial entlang der Ventillängsachse bewegbaren, kugelförmigen Ventilglied, das mit einem Ventilsitz zusammenwirkt, an dem das Ventilglied in einer Endstellung der axialen Bewegung anliegt, mit wenigstens einer Abspritzöffnung stromabwärts des Ventilsitzes, mit einem einen Innenpol des elektromagnetischen Kreises darstellenden Kern, der dem Ventilsitz, bezogen auf das Ventilglied, gegenüberliegt, wobei das Ventilglied einen Kugeläquator hat, der senkrecht zur Ventillängsachse verläuft und in dessen Ebene sich ein Führungskörper mit einer Führungsöffnung erstreckt, dadurch gekennzeichnet, daß die FührungsÖffnung (49) des Führungskörpers (25) , in der das Ventilglied (13) axial bewegbar ist, zumindest teilweise kalottenförmig ausgebildet ist.
2. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß die Führungsöffnung (49) des Führungskörpers (25) über ihre axiale Erstreckung gesehen mit einem zylindrischen Abschnitt ausgebildet ist, an den sich ein verengender Abschnitt mit einer kalottenförmigen Kontur anschließt.
3. Ventil nach Anspruch 2, dadurch gekennzeichnet, daß sich der Abschnitt mit der kalottenförmigen Kontur dem Ventilsitz (21) zugewandt an den zylindrischen Abschnitt der Führungsöffnung (49) anschließt. 97/13977 PC17DE96/01136
- 12 -
4. Ventil nach Anspruch 2, dadurch gekennzeichnet, daß sich der Abschnitt mit der kalottenförmigen Kontur dem Kern (5) zugewandt an den zylindrischen Abschnitt der Führungsöffnung (49) anschließt.
5. Ventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß wenigstens eine nutähnliche Vertiefung an der Führungsöffnung (49) vorgesehen ist.
6. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß der Ventilsitz (21) an einem Ventilsitzkörper (20) ausgebildet ist, auf dem der Führungskörper (25) aufliegt.
7. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß zwischen dem Kern (5) und dem Ventilglied (13) ein
Anschlagelement (33) angeordnet ist, das eine dem Ventilglied (13) zugewandte, kalottenförmige Anschlagfläche (43) aufweist, an der das Ventilglied (13) in seiner anderen Endstellung der axialen Bewegung anliegt.
8. Ventil nach Anspruch 7, dadurch gekennzeichnet, daß das Anschlagelement (33) scheibenförmig ausgeführt ist und eine axial verlaufende innere Öffnung (38) besitzt.
9. Ventil nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß das Anschlagelement (33) an seiner Außenkontur einen Absatz (46) aufweist, durch den sich in stromabwärtiger Richtung der Außendurchmesser verringert, und an dem Absatz
(46) eine Druckfeder (47) anliegt, die das Anschlagelement (33) gegen den Kern (5) drückt, wobei sich die Druckfeder
(47) mit ihrer gegenüberliegenden Seite an dem Führungskörper (25) abstützt.
10. Ventil nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß das Anschlagelement (33) wenigstens einen Fluiddurchlaß (44) aufweist, der eine Fluidströmung von der inneren Öffnung (38) ausgehend in Richtung des Ventilsitzes (21) gewährleistet.
11. Ventil nach Anspruch 10, dadurch gekennzeichnet, daß der wenigstens eine Fluiddurchlaß (44) radial verlaufend und nutförmig an der dem Ventilglied (13) zugewandten Anschlagfläche (43) des Anschlagelements (33) ausgebildet ist .
12. Ventil nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß das Anschlagelement (33) ein grobporiger Sinterkörper ist, durch dessen Materialgefüge das Fluid durchströmen kann.
13. Ventil nach Anspruch 7, dadurch gekennzeichnet, daß das Ventilglied (13) in seiner einen Endstellung nur an einem sehr kleinen Bereich der Anschlagfläche (43) des Anschlagelements (33) anliegt, so daß weitgehend nur eine ringförmige Linienberührung vorliegt.
PCT/DE1996/001136 1995-10-07 1996-06-27 Elektromagnetisch betätigbares ventil, insbesondere brennstoffeinspritzventil WO1997013977A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR9606667A BR9606667A (pt) 1995-10-07 1996-06-27 Válvula acionável eletromagneticamente especialmente válvula injetora de combustível
DE59607084T DE59607084D1 (de) 1995-10-07 1996-06-27 Elektromagnetisch betätigbares ventil, insbesondere brennstoffeinspritzventil
JP51460197A JP3737119B2 (ja) 1995-10-07 1996-06-27 電磁式に作動可能な弁、殊に燃料噴射弁
EP96920711A EP0796393B1 (de) 1995-10-07 1996-06-27 Elektromagnetisch betätigbares ventil, insbesondere brennstoffeinspritzventil
US08/817,457 US5820032A (en) 1995-10-07 1996-06-27 Electromagnetically activated valve, particularly a fuel injection valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19537382A DE19537382A1 (de) 1995-10-07 1995-10-07 Elektromagnetisch betätigbares Ventil, insbesondere Brennstoffeinspritzventil
DE19537382.0 1995-10-07

Publications (1)

Publication Number Publication Date
WO1997013977A1 true WO1997013977A1 (de) 1997-04-17

Family

ID=7774265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001136 WO1997013977A1 (de) 1995-10-07 1996-06-27 Elektromagnetisch betätigbares ventil, insbesondere brennstoffeinspritzventil

Country Status (9)

Country Link
US (1) US5820032A (de)
EP (1) EP0796393B1 (de)
JP (1) JP3737119B2 (de)
KR (1) KR100420746B1 (de)
CN (1) CN1067463C (de)
BR (1) BR9606667A (de)
DE (2) DE19537382A1 (de)
RU (1) RU2160378C2 (de)
WO (1) WO1997013977A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19705431A1 (de) * 1997-02-13 1998-08-20 Bosch Gmbh Robert Rückhaltesystem
DE19712589C1 (de) * 1997-03-26 1998-06-04 Bosch Gmbh Robert Brennstoffeinspritzventil und Verfahren zur Herstellung einer Ventilnadel eines Brennstoffeinspritzventils
DE19712591A1 (de) * 1997-03-26 1998-10-01 Bosch Gmbh Robert Brennstoffeinspritzventil und Verfahren zur Herstellung sowie Verwendung eines Brennstoffeinspritzventils
DE19744739A1 (de) 1997-10-10 1999-04-15 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19757117A1 (de) 1997-12-20 1999-06-24 Bosch Gmbh Robert Verfahren zur Herstellung eines Ventilsitzkörpers für ein Brennstoffeinspritzventil und Brennstoffeinspritzventil
DE19810330A1 (de) * 1998-03-11 1999-09-16 Mannesmann Rexroth Ag Magnetventil
DE19856920A1 (de) * 1998-12-10 2000-06-15 Bosch Gmbh Robert Brennstoffeinspritzventil
US6142394A (en) * 1999-06-30 2000-11-07 Caterpillar Inc. Valve seat for a ball and pin valve member in a hydraulically actuated fuel injector
JP2001082283A (ja) * 1999-09-20 2001-03-27 Hitachi Ltd 電磁式燃料噴射弁
US6554591B1 (en) * 2001-11-26 2003-04-29 Motorola, Inc. Micropump including ball check valve utilizing ceramic technology and method of fabrication
US6924965B2 (en) * 2001-12-29 2005-08-02 Magnasource, Llc Electro magnetically-operated device, and a method of operating the same
DE10351207A1 (de) * 2003-11-03 2005-06-02 Robert Bosch Gmbh Ventil zum Steuern eines Fluids
DE102005006228A1 (de) * 2005-02-10 2006-08-17 Continental Teves Ag & Co. Ohg Elektromagnetventil
DE102005061409A1 (de) * 2005-12-22 2007-06-28 Robert Bosch Gmbh Elektromagnetisch betätigbares Ventil
DE102007061862A1 (de) * 2007-12-19 2009-06-25 Thomas Magnete Gmbh Schaltbare Magnetanordnung als Betätigungselement für ein Ventil oder andere Funktionselemente
CN101551036B (zh) * 2008-03-31 2011-06-29 台达电子工业股份有限公司 电磁阀
CN102251896B (zh) * 2011-06-14 2012-07-11 常州博瑞油泵油嘴有限公司 柴油机高压共轨喷油器的平面启闭结构
CN102230435B (zh) * 2011-06-14 2012-07-11 常州博瑞油泵油嘴有限公司 平面启闭型柴油机高压共轨喷油器
DE102012207986A1 (de) * 2012-05-14 2013-11-14 Continental Teves Ag & Co. Ohg Elektromagnetventil, insbesondere für schlupfgeregelte Kraftfahrzeugbremsanlagen
FR3002003A1 (fr) * 2013-02-11 2014-08-15 Bosch Gmbh Robert Procede de realisation d'une soupape a commande electromagnetique
CN104074656B (zh) * 2014-06-20 2016-08-24 东风悦达起亚汽车有限公司 一种喷油嘴
US11462960B2 (en) * 2019-12-02 2022-10-04 Hiwin Mikrosystem Corp. Rotor with first and second permanent magnets having support members and slots
RU205532U1 (ru) * 2021-04-19 2021-07-19 Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" Дозатор шариков

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0007724A1 (de) * 1978-07-06 1980-02-06 Nissan Motor Co., Ltd. Einspritzventil
JPS5675955A (en) * 1979-11-21 1981-06-23 Nippon Denso Co Ltd Solenoid type fuel injection valve
US4308890A (en) * 1979-03-08 1982-01-05 Nissan Motor Co., Ltd. Electromagnetic valve for fluid flow control

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603425Y2 (ja) * 1978-07-05 1985-01-30 日産自動車株式会社 流量制御用電磁弁
JPS5546576U (de) * 1978-09-22 1980-03-26
ATE17883T1 (de) * 1981-04-29 1986-02-15 Solex Uk Ltd Eine elektromagnetische f luessigkeitseinspritzvorrichtung und ein einzelpunktkraftstoffeinspritzsystem fuer eine verbrennungskraftmaschine.
US4434765A (en) * 1981-10-30 1984-03-06 Colt Industries Operating Corp. Fuel injection apparatus and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0007724A1 (de) * 1978-07-06 1980-02-06 Nissan Motor Co., Ltd. Einspritzventil
US4308890A (en) * 1979-03-08 1982-01-05 Nissan Motor Co., Ltd. Electromagnetic valve for fluid flow control
JPS5675955A (en) * 1979-11-21 1981-06-23 Nippon Denso Co Ltd Solenoid type fuel injection valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 5, no. 143 (M - 087) 9 September 1981 (1981-09-09) *

Also Published As

Publication number Publication date
JPH10510609A (ja) 1998-10-13
KR100420746B1 (ko) 2004-05-20
DE59607084D1 (de) 2001-07-19
CN1067463C (zh) 2001-06-20
DE19537382A1 (de) 1997-04-10
RU2160378C2 (ru) 2000-12-10
EP0796393B1 (de) 2001-06-13
US5820032A (en) 1998-10-13
EP0796393A1 (de) 1997-09-24
BR9606667A (pt) 1997-09-30
JP3737119B2 (ja) 2006-01-18
KR980700516A (ko) 1998-03-30
CN1166196A (zh) 1997-11-26

Similar Documents

Publication Publication Date Title
EP0796393B1 (de) Elektromagnetisch betätigbares ventil, insbesondere brennstoffeinspritzventil
EP0904488B1 (de) Brennstoffeinspritzventil und verfahren zur herstellung einer ventilnadel eines brennstoffeinspritzventils
WO1991019090A1 (de) Elektromagnetisch betätigbares brennstoffeinspritzventil
EP0865574A1 (de) Brennstoffeinspritzventil und verfahren zur herstellung
DE19744739A1 (de) Brennstoffeinspritzventil
EP1114249B1 (de) Brennstoffeinspritzventil
DE19638201A1 (de) Brennstoffeinspritzventil
WO1999010648A1 (de) Brennstoffeinspritzventil
EP1062421B1 (de) Brennstoffeinspritzventil
WO2000050765A1 (de) Brennstoffeinspritzventil
WO1994000686A1 (de) Spritzlochscheibe fur ein ventil und verfahren zur herstellung
DE4408875A1 (de) Brennstoffeinspritzventil
EP0675283B1 (de) Einspritzventil
DE10049033B4 (de) Brennstoffeinspritzventil
WO2002079637A1 (de) Brennstoffeinspritzventil
WO2000032926A1 (de) Brennstoffeinspritzventil
WO2000012892A1 (de) Brennstoffeinspritzventil
DE10046306A1 (de) Brennstoffeinspritzventil
EP0917623A1 (de) Brennstoffeinspritzventil
EP0925441B1 (de) Elektromagnetisch betätigbares ventil
EP1066468B1 (de) Brennstoffeinspritzventil
EP1034369B1 (de) Brennstoffeinspritzventil
WO2003027489A1 (de) Brennstoffeinspritzventil
WO2000079123A1 (de) Brennstoffeinspritzventil
WO2002031351A2 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191164.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1996920711

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08817457

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019970703755

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996920711

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970703755

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996920711

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970703755

Country of ref document: KR