WO1999066052A1 - GENES CODANT POUR DES β-AGARASES ET LEUR UTILISATION POUR LA PRODUCTION D'ENZYMES DE BIODEGRADATION DES AGARS - Google Patents

GENES CODANT POUR DES β-AGARASES ET LEUR UTILISATION POUR LA PRODUCTION D'ENZYMES DE BIODEGRADATION DES AGARS Download PDF

Info

Publication number
WO1999066052A1
WO1999066052A1 PCT/FR1999/001397 FR9901397W WO9966052A1 WO 1999066052 A1 WO1999066052 A1 WO 1999066052A1 FR 9901397 W FR9901397 W FR 9901397W WO 9966052 A1 WO9966052 A1 WO 9966052A1
Authority
WO
WIPO (PCT)
Prior art keywords
fragments
protein
coding
agaa
seq
Prior art date
Application number
PCT/FR1999/001397
Other languages
English (en)
Inventor
Didier Flament
Tristan Barbeyron
Jean-Claude Yvin
Philippe Potin
Bernard Kloareg
Original Assignee
Laboratoires Goemar S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires Goemar S.A. filed Critical Laboratoires Goemar S.A.
Priority to GB0030283A priority Critical patent/GB2354000B/en
Priority to AU41486/99A priority patent/AU4148699A/en
Priority to DE19983297T priority patent/DE19983297B3/de
Priority to US09/719,402 priority patent/US6511838B1/en
Publication of WO1999066052A1 publication Critical patent/WO1999066052A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01081Beta-agarase (3.2.1.81)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to two new genes encoding ⁇ -agarases and their use for the production of biodegradation enzymes for agars.
  • Rhodophyceae such as agars and carrageenans
  • agars and carrageenans represent the major polysaccharides of Rhodophyceae and are very widely used as gelling agents or thickeners in various branches of activity, in particular the food industry.
  • About 6,000 tonnes of agars and 22,000 tonnes of carrageenans are extracted from marine red algae annually for this purpose.
  • Agars are produced industrially from red algae of the genera Gelidium and Gracilaria.
  • Carrageenans are largely extracted from the genera Chondrus, Gigartina and Euchema.
  • Agaro-colloids are polysaccharide complexes consisting mainly of agars and agaroids. Each agaro-colloid has a different content in each of the above compounds so that its gel strength is different.
  • the agar gel comprises a matrix of double helix polymer chains maintained by hydrogen bonds.
  • ⁇ -agarases There are two types of enzyme capable of degrading agars: ⁇ -agarases and ⁇ -agarases.
  • the ⁇ -agarases act on the ⁇ -1,4 bond and the ⁇ -agarases on the ⁇ -1,3 bond.
  • Microorganisms producing enzymes capable of hydrolyzing agars have already been isolated. This ability to digest agar has been attributed to the genera
  • BUTTNER et al. have isolated an agarase from Streptomyces coelicolor and sequenced the corresponding gene (Mol. Gen. Genêt. 209, 101-109, (1987)).
  • SUGANO et al. have clone and sequence two different agarase genes in Vibrio sp. JT0107, which they called agaA (Appl. Environ. Microbiol. 59, 3750-3756, (1993)) and agaB
  • Taxonomic research of this strain shows that it belongs to the genus Cytophaga (bacteria of the CFB group for "CytophagalFlexibacter / Bacteroi ' des"). Indeed, this strain develops by spreading, presents yellow colonies encrusted in the agar which is then liquefied.
  • the bacterium is Gram-negative, has a non-mobile rod form of 0.3-0.4x3.0-8.0 ⁇ mx ⁇ m. When a drop of culture of the strain is inoculated in the center of an agar dish, the colony develops with concentric increase of the edge and this mobility is not inhibited by diethyl ether which is an inhibitor of the flagellar apparatus .
  • the strain is aerobic and has an oxidative metabolism. It produces flexirubin which is a pigment rarely found in marine Cytophaga isolates but which is present in non-marine Cytophaga. It is able to assimilate various carbon sources and to degrade several types of macromolecules, such as agar, carrageenan, starch and gelatin.
  • the Applicant has researched to which species this strain belongs by carrying out an in-depth study. Thus, it determined the percentage values of the guanine and cytosine composition of the DNA of the strain of the invention and found that they were between 43 and 49%. It also carried out the sequencing of its 16S DNA according to the process well known to those skilled in the art for knowing the taxonomic position of a strain (FOX et al., Int. J. Syst. Bacteriol. 22, 44-57, (1977)). The result of the sequencing shows that the strain of the invention is very similar to Cytophaga uliginosa. (The sequence similarities between the 16S DNA of C.
  • the strain of the invention has morphological, biochemical and physiological characteristics similar to those of the strain Pseudomonas drobachiensis nov. Comb. isolated by HUMM (Duke Univ. Mar. Stn. Bull. 3, 43-75, (1946)). It was therefore called Cytophaga drobachiensis.
  • the Applicant has also isolated two genes with ⁇ -agarase activity from Cytophaga drobachiensis DSM 12170.
  • the present invention also relates to the new agaA gene coding for a ⁇ -agarase which has the DNA sequence SEQ ID No. 1.
  • a subject of the present invention is also the nucleic acid sequences, namely the genomic DNA sequences, the DNA or mRNA sequences which comprise or consist of a sequence of nucleotides coding for the AgaA protein or for the AgaB protein or for any of their peptide fragments as defined below.
  • the invention therefore relates to: - All the nucleic acid sequences coding for the entire AgaA protein, or for one or more of its peptide fragments.
  • These sequences are preferably represented by: a) the DNA sequence SEQ ID No. 1 coding for the AgaA protein and its fragments coding for the peptide fragments of said protein; b) DNA sequences hybridizing under specific stringency conditions with the above sequence or one of its fragments; c) DNA sequences which, due to the degeneracy of the genetic code, derive from one of the sequences a) and b) above and encode the AgaA protein or fragments thereof; and d) the corresponding mRNA sequences.
  • nucleic acid sequences coding for the entire AgaB protein, or for one or more of its peptide fragments. These sequences are preferably represented by: a) the DNA sequence SEQ ID No. 3 coding for the AgaB protein and its fragments coding for the peptide fragments of said protein; b) DNA sequences hybridizing under specific stringency conditions with the above sequence or one of its fragments; c) DNA sequences which, due to the degeneracy of the genetic code, derive from one of the sequences a) and b) above and encode the AgaB protein or fragments thereof; and d) the corresponding mRNA sequences.
  • the present invention also relates to the nucleic acid sequence SEQ ID No.
  • the invention therefore also relates to the nucleic acid sequences coding for said peptide fragment AgaA 'and its peptide fragments which are represented by: a) the DNA sequence SEQ ID N ° 5 coding for the peptide fragment AgaA' and its fragments encoding the peptide fragments of said AgaA 'peptide fragment; b) DNA sequences hybridizing under specific stringency conditions with the above sequence or one of its fragments; c) DNA sequences which, due to the degeneracy of the genetic code, derive from one of the sequences a) and b) above and encode the peptide fragment AgaA 'or the fragments thereof; and d) the corresponding mRNA sequences.
  • nucleic acids according to the invention can be prepared by chemical synthesis or genetic engineering using techniques well known to those skilled in the art and described for example in SAMBROOK et al. ("Molecular Cloning: a Laboratory Manual” Ed. Cold Spring Harbor Press, N.Y., 1989).
  • the synthesis of the DNA sequences according to the invention can be carried out by amplification of the Cytophaga drobachiensis genes using the PCR (Polymerase Chain Reaction) method, as described for example by GOBLET et al. (Nucleic Acid Research, 17, 2144, (1989)) using synthetic oligonucleotides as primers, defined from the DNA sequence SEQ ID No. 1 or SEQ ID No. 3.
  • the nucleic acid fragment thus amplified can then be cloned into an expression vector according to the techniques described in MANIATIS et al. (Molecular Cloning. A laboratory manual, NEW YORK (1982)).
  • the invention also relates to prokaryotic cells and eukaryotic cells transformed using an expression vector containing a nucleic acid sequence according to the invention.
  • This expression vector which may for example be in the form of a plasmid, must comprise, in addition to the nucleic acid sequence of the invention, the means necessary for its expression, such as in particular a promoter, a terminator of transcription, an origin of replication and preferably a selection marker. Transformation of prokaryotic cells and eukaryotic cells is a technique well known to those skilled in the art who can easily determine, depending on the microorganism to be transformed, the means necessary for the expression of the DNA sequence according to the invention.
  • the preferred prokaryotic microorganisms for the purposes of the invention are Escherichia coli and Bacillus subtilis.
  • eukaryotic cells which are suitable for the purposes of the invention, there may be mentioned in particular the cells of Aspergillus niger, Trichoderma viridae or Pichia pastoris.
  • the present invention also relates to the new AgaA protein of C. drobachiensis which comprises SEQ ID No. 2.
  • the new AgaA protein is composed of 539 amino acids and has a theoretical molecular mass of 60.001 kDa. After elimination of the signal peptide, this protein has a calculated molecular mass of 57.768 kDa.
  • the new AgaB protein is made up of 353 amino acids. After elimination of the signal peptide, this protein has a calculated molecular mass of 40,680 kDa.
  • the present invention also relates to the peptide fragments of the AgaA and AgaB proteins resulting from the addition, deletion and / or replacement of one or more amino acids, said peptide fragments having retained the ⁇ -agarase activity.
  • the present invention also relates to the peptide fragment AgaA 'which has SEQ ID No. 6.
  • This AgaA 'peptide fragment composed of 276 amino acids, corresponds to amino acids 20-295 of the AgaA protein.
  • the invention also relates to the peptide fragments of AgaA 'which result from the addition, deletion and / or replacement of one or more amino acids, said peptide fragments having retained the ⁇ -agarase activity.
  • the proteins and peptide fragments according to the invention can be obtained by genetic engineering techniques which comprises the steps of:
  • FIGS. 1 to 6 The description below will be better understood with the aid of FIGS. 1 to 6 in which:
  • FIG. 1 is a photograph of an electrophoresis gel on SDS-PAGE of the culture supernatant of C. drobachiensis of the invention
  • FIGS. 2A and 2B represent the physical maps of the genomic clones of Cytophaga drobachiensis exhibiting agarase activity
  • FIG. 3A and 3B give the nucleotide and amino acid sequences deduced from the agarase A (fig. 3A) and agarase B (fig. 3B) genes from C. drobachiensis;
  • FIG. 4 shows the alignment of the proteins AgaA (upper line) and AgaB (lower line) from the strain C. drobachiensis according to the invention
  • HCA analysis hydrophobic Clusters
  • FIGS. 6A to 6C show the elution profiles of neoagarododecaose hydrolysis products by agarases from the C. drobachiensis strain according to the invention.
  • Example 1 Isolation, culture of the Cytophaga drobachiensis DSM 12170 strain and extraction of its DNA
  • the DSM 12170 strain was isolated from living fronds of the red alga Delesseria sanguinea. The isolation was carried out on a Petri dish on Zobell's medium (ZOBELL, J. Mar. Res. 4, 41-75, (1941)) containing 2% of 1-carrageenan. The culture of the strain was carried out at 25 ° C. on Zobell medium
  • the bacteria were centrifuged at 3000 g for 15 min, then washed in sterile sea water. The cells underwent a final centrifugation, identical to the previous one, and were treated immediately or frozen at -20 ° C.
  • the DNA was immediately protected by the addition of 100 mM ethylenediaminetetraacetic acid (final concentration) and the incubation was continued in ice for another 10 min.
  • the lysis was completely completed by the addition of 2% sodium dodecyl sulphate (final concentration) and 25 ml of lysis solution (Tris-HCl, pH 8, 50 mM; ethylenediaminetetraacetic acid 100 mM; sodium chloride 100 mM ).
  • the proteins were fully denatured by a 1 hour incubation at 50 ° C. in the presence of 40 mg of proteinase K. At the end of this incubation, 1 M (final concentration) of sodium perchlorate was added so that the DNA bonds -proteins are broken.
  • the solution was deproteinized with stirring in the presence of 0.5 volumes of saturated phenol for 5 min.
  • the agitation was done manually and had to be sufficiently energetic, without being so energetic as not to tear the DNA, to form an emulsion (without which there could be no extraction).
  • Deproteinization was continued for another 5 min after adding 0.5 volumes of chloroform / isoamyl alcohol (24/1).
  • the proteins were concentrated at the interface between the aqueous phase and the organic phase, by centrifugation for 15 min at 10,000 g at room temperature.
  • the aqueous phase containing the nucleic acids was transferred to a clean tube with a pipette whose tip was enlarged so as not to tear the DNA.
  • the deproteinization was continued and the traces of phenol were extracted from the aqueous phase, by stirring the solution for 5 min in the presence of 1 volume of chloroform / isoamyl alcohol (24/1). After centrifugation for 5 min at 10,000 g at room temperature, the aqueous phase was removed with the same precautions as above, and the nucleic acids were precipitated by gently pouring 0.6 volumes of isopropanol (so as to form two phases ). The high molecular weight DNA was collected with a glass rod, washed in 70% ethanol, dried in absolute ethanol and air dried.
  • the DNA was dissolved in 20 ml of TE buffer (10 mM, Tris-HCl, pH 8; 1 mM, ethylenediaminetetraacetic acid). Dissolution required approximately 12 hours and could be facilitated by heating to 50 ° C.
  • TE buffer 10 mM, Tris-HCl, pH 8; 1 mM, ethylenediaminetetraacetic acid.
  • Dissolution required approximately 12 hours and could be facilitated by heating to 50 ° C.
  • the solution obtained was opalescent, a sign of significant contamination of proteins, the latter were effectively eliminated by passing a fraction of the DNA over a cesium chloride gradient in the presence of ethydium bromide. After this passage on a gradient and elimination of the ethydium bromide, the DNA thus obtained was quantified. It could have been stored at 4 ° C or frozen at -20 ° C.
  • the DNA composition expressed as a molar percentage of guanine + cytosine (mol% G + C), was determined by the spectroscopic method of ULITZUR (Biochem. Biophys. Acta 272, 1-11, (1972)) and the method of cesium chloride gradient in the presence of 2 '- [4-hydroxyphenyl] -5- [4-methyl-1-piperazinylj- 2,5'-bi-1H-benzimidazole (Hoechst 33258 / Sigma) (KARLOVSKY and DE COCK , Anal. Biochem. 194, 192-197, (1991)). In the first case, it is 44 ⁇ 1% (average of 2 manipulations) and in the second case of 48.8%. This G + C molar percentage was calculated using E. coli DNA as standard reference.
  • EXAMPLE 2 Sequencing of the 16S DNA of Cvtophasa drobachiensis
  • the 16S DNA was amplified by PCR using the genomic DNA of the C. drobachiensis strain as the template and the Taq polymerase (Proméga) as the enzyme.
  • the typical PCR reaction mixture 50 ⁇ l in volume, had the following composition: 100 ng of template, 10 ng of each of the two oligonucleotides specific for 16S DNA of the Bacteria kingdom, 200 mM of each of the dNTPs (dNTP being deoxyribonucleoside triphosphate), 1.5 mM MgCl 2 , Taq buffer and 2.5 U of enzyme.
  • the different stages of PCR were as follows:
  • the product obtained by PCR was either previously cloned and then sequenced, or directly sequenced by PCR using Thermosequenase (Amersham) as enzyme, with different oligonucleotides specific for 16S DNA marked in 5 'with Texas red.
  • Thermosequenase Analog DNA polymerase
  • Example 3 Demonstration and purification of agarase activities in the Cytophaga drobachiensis DSM 12170 strain
  • the agarase activity of the strain was induced in a Zobell medium supplemented with 2.5 mg / l of agar.
  • a strain is considered to exhibit agarase activity when it digests the agar on which it grows.
  • the strains with agarase activity were cultivated in the above medium at 20 ° C.
  • the culture was centrifuged at 1000 xg for 20 min.
  • the culture supernatant was recovered and concentrated to 50 ml by tangential ultrafiltration (cutoff threshold: 10 kDa), followed by precipitation with ammonium sulfate.
  • the protein pellet was resuspended in 9 ml of MES buffer (MES being 2- [N-morpholino] ethanesulfonic acid).
  • 2 ml of Sepharose CL6B were then added in order to carry out affinity chromatography. Two fractions were recovered, one of which was fixed on the Sepharose column.
  • the agarase activity was tested by an assay of the reducing sugars according to the technique of KIDBY D.K. & DAVIDSON DJ. (Annal. Biochem., Vol. 55, 321-325 (1973)) in the supernatant before affinity chromatography (which is obviously positive) and in the two fractions obtained after chromatography. Agarase activity was detected in each fraction.
  • Electrophoresis on SDS-PAGE was carried out with the fraction fixed on the column. The latter presented a main band with an average mass of 31 kDa ( Figure 1). This protein has been microsequenced. The sequence of the internal peptide obtained was found in the amino acid sequence deduced from the agaA gene (FIG. 3A).
  • a genomic DNA library of the C. drobachiensis strain was prepared. Fragments of 4 to 10 kb, originating from the partial digestion by Ndell of the chromosomal AD ⁇ , were fractionated on a sucrose gradient. These fragments were inserted into the Barri ⁇ l site of the plasmid pAT153 (TWIGG and SHERRATT, Nature, 283, 216, (1980)). The recombinant clones (about 6000) of the DH5 ⁇ strain of E.
  • coli (SAMBROOK et al., Supra) were independently inoculated on microtiter plates in LBA medium (Luria-Bertani medium (MANIATIS et al., Supra) ampicillin at a concentration of 50 ⁇ g / ml). After incubation overnight at 37 ° C, these clones were spread at 22 ° C on Zd medium (5 mg / 1 of bacterotryptone, 1 mg / 1 of yeast extract, 10 mg / 1 of NaCl, pH 7.2) supplemented with 50 ⁇ g / ml of ampicillin to observe the production of agarase (hole in the agar when there is production of agarase).
  • LBA medium Lia-Bertani medium (MANIATIS et al., Supra) ampicillin at a concentration of 50 ⁇ g / ml). After incubation overnight at 37 ° C, these clones were spread at 22 ° C on Zd medium (5 mg / 1 of bactero
  • FIGS. 2 A and 2B The plasmid maps corresponding to these colonies are represented in FIGS. 2 A and 2B, in which:
  • the thin lines represent the regions of pAT153, the bold segments represent the inserts of C. drobachiensis and the white rectangles represent the agarase genes;
  • B / S BamHI-Sau3A cloning site
  • B BamHI
  • Bg BglII
  • C Clal
  • Ps PstI Pv: PvuII Sa Sali Sp: Sphl X: Xbal.
  • Plasmids pAC 1 and pAC2 share a common 5 kb Sall-Pstl fragment (delimited by the dotted lines in FIG. 2A) and plasmids pAC3 and pAC4 share a common 5 kb Clal-Pstl fragment (delimited by the lines in dotted in Figure 2B).
  • the two fragments were subcloned into the phagemid pBluescript (Stratagene) and are called pASP5 and pACP5, as indicated in FIGS. 2A and 2B.
  • Example 5 Analysis of the nucleotide sequence of the agarase genes The plasmids pASP5 and pACP5 were used to determine, on the two strands, the nucleotide sequences of the agarase structure genes.
  • the nucleic acid sequence obtained is illustrated in Figure 3A.
  • the insert pACP5 was sequenced on 2440 bp between the two EcoRI sites
  • the nucleic acid sequence obtained is illustrated in Figure 3B.
  • Two hexamers, TTGAgA and TATtcT, compatible with the consensus promoters "-35" and "-10" of E. coli and separated by 17 nucleotides, are found 43 nucleotides upstream from the putative initiator codon of the agaB gene.
  • a transcription stop loop is found downstream of the TAA stop codon, followed by four thymidine residues.
  • the second, partial ORF is found downstream of the agaB gene.
  • Two hexamers, TTGACc and TtaAtT, separated by 17 nucleotides, are also found 39 nucleotides upstream from the putative initiator codon of the second ORF.
  • the Chargaff coefficient (GC%) of each of the agarase A and B genes is between 41 and 45%, which is in agreement with that of the genus Cytophaga found by REICHENBACH et al. (30-45%; Genus Cytophaga, in Bergey's Manual of systematic bacteriology, 2015-2050, (1989)).
  • Example 6 Analysis of the amino acid sequence deduced from the agarase genes
  • the agaA gene translation product is a protein of 539 amino acids with a theoretical molecular mass of 60.001 kDa.
  • the deduced amino acid sequence, SEQ ID No. 2 comprises the internal peptide determined from the microsequencing of purified agarase A (underlined in FIG. 3A).
  • the N-terminal part of the protein corresponds to a very hydrophobic domain, which suggests that this domain is the signal peptide (VON HEIJNE, Eur. J. Biochem. 133, 17-21, (1983); J. Mol. Biol. 184, 99-105, (1985)).
  • Von Heijne's "(-3, -1)" rule the most likely signal-peptidase cleavage site is assigned between Alal9 and Ala20.
  • the molecular mass of the AgaA protein calculated after elimination of the signal peptide is greater than the molecular mass initially determined by electrophoresis on SDS-PAGE, which is 31 kDa (see FIG. 1) . This difference indicates a possible transformation after translation which would eliminate a large part of the C-terminal end of the protein.
  • the translation product of the agaB gene is a protein of 353 amino acids having a calculated molecular mass of 40.680 kDa and having the deduced amino acid sequence SED ID No. 4.
  • Analysis of the hydropathy profile shows an N- segment very hydrophobic terminal on a domain of about 20 amino acids. However, there is no cleavage site according to the "(-3, -1)" rule of Von Heijne (supra). This segment therefore seems to be non-cleavable.
  • the sequence similarities between the AgaA and AgaB proteins are illustrated in Figure 4.
  • the AgaA protein has an identity of 44.5% and a similarity of 65.7% with the AgaB protein.
  • Many domains are quite similar in the primary sequences, from Ile 110 to Val287 (numbering on the sequence of agarase A).
  • two glutamic acid residues are present and separated by 4 amino acids (Glul47 and Glul52 in the sequence of AgaA, and Glu 184 and Glu 189 in the sequence of AgaB, in bold in Figure 4).
  • This organization is characteristic of the catalytic site of the family 16 of glycoside hydrolases (HENRISSAT, Biochem. J. 280, 309-316, (1991)).
  • FIG. 5 illustrates the HCA comparison between the AgaA and AgaB agarases, respectively Agar A Cd and Agar B Cd in the figure, and other enzymes of the family 16 of glycoside hydrolases, namely the ⁇ -agarase of Alteromonas atlantica ( Agar Aa), Streptomyces coecicolor ⁇ -agarase (Agar Se), C.
  • K-carrageenase K-carrageenase
  • Rhodothermus marinus laminarinase Li Rm
  • Bacillus macerans lichenase Lich Bm
  • xyloglucan- endotransglycosylase from Arabidopsis thaliana
  • the two catalytic residues Glu present in the lichenase of Bacillus macerans, were taken as anchor points for the comparison HCA and the segmented sequences taking as reference the known three-dimensional structure of this lichenase.
  • segment VI is specific for agarases in this family of glycoside-hydrolases and that the catalytic site is in the structural segment
  • the substrate specificities of the agarases of the invention were studied by analyzing the degradation products of neoagarododecosis by the recombinant agarases AgaA and AgaB.
  • the neoagarododecosis was prepared in the following way: agarose was hydrolyzed by agarase, using 0.32 U / mg of polymer. The resistant fraction was precipitated in isopropanol and the soluble oligosaccharides were fractionated by preparative exclusion chromatography on Bio-gel P2 (95 cm x 4.4 cm; 25 ° C; eluent: distilled water). The detection was carried out with a device for recording the differential refractive index (ROCHAS & HEYRAUD, Polymer Bull. 5, 81-86, (1981)). The oligomer fraction corresponding to neoagardodecaosis was concentrated on a rotary evaporator and lyophilized. Was grown for 12 hours in 1 liter of LB medium at 37 ° C (medium
  • FIGS. 6A to 6C The results obtained by HPAE chromatography (high performance anion exchange chromatography) are illustrated in FIGS. 6A to 6C in which the different abbreviations have the following meanings: nC: manocoulomb DPI: neoagarobiosis
  • DP4 neoagarooctaose
  • DP5 neoagarodecaosis
  • FIG. 6B The final products of hydrolysis of neoagarododecosis by agarase A are represented in FIG. 6B and those by agarase B in FIG. 6C.
  • Figure 6A the elution profile after 18 hours of digestion presents in both cases (AgaA and AgaB) neoagarotetraosis (DP2) as the majority product and neoagarohexaose (DP3) as the minority product.
  • DP2 neoagarotetraosis
  • DP3 neoagarohexaose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

L'invention concerne la nouvelle souche Cytophaga drobachiensis déposée à la Collection DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) le 8 mai 1998 sous le numéro DSM 12170, le gène agaA codant pour une β-agarase et ayant la SEQ ID NO:1, le gène agaB codant pour une β-agarase et ayant la SEQ ID NO:3, lesdits gènes codant pour une β-agarase de Cytophaga drobachiensis DSM 12170, et la séquence d'acides nucléiques particulière du gène agaA codant pour un fragment peptidique particulier AgaA' qui a conservé l'activité β-agarase, et ayant la SEQ ID NO:5, ainsi que la protéine AgaA de C. drobachiensis DSM 12170 ayant la SEQ ID NO:2, la protéine AgaB de C. drobachiensis DSM 12170 ayant la SEQ ID NO:4 et ledit fragment peptidique AgaA' de C. drobachiensis DSM 12170 ayant la SEQ ID NO:6.

Description

Gènes codant pour des β-agarases et leur utilisation pour la production d'enzymes de biodégradation des agars
La présente invention concerne deux nouveaux gènes codant pour des β-agarases et leur utilisation pour la production d'enzymes de biodégradation des agars.
Elle concerne également la souche Cytophaga drobachiensis à partir de laquelle ces gènes ont été isolés.
Les galactanes sulfatés des Rhodophycées, tels que les agars et les carraghénanes, représentent les polysaccharides majeurs des Rhodophycées et sont très largement utilisés en tant qu'agents gélifiants ou épaississants dans diverses branches d'activité, notamment l' agro-alimentaire. Environ 6000 tonnes d'agars et 22 000 tonnes de carraghénanes sont extraits annuellement des algues rouges marines à cet effet. Les agars sont produits industriellement à partir des algues rouges des genres Gelidium et Gracilaria. Les carraghénanes sont quant à eux largement extraits des genres Chondrus, Gigartina et Euchema.
Les agaro-colloïdes sont des complexes polysaccharidiques constitués principalement des agars et des agaroïdes. Chaque agaro-colloïde présente une teneur différente en chacun des composés ci-dessus de sorte que sa force de gel est différente. Le gel d'agar comprend une matrice de chaînes polymères à double hélice maintenues par des liaisons hydrogène.
Il existe deux types d'enzyme capables de dégrader les agars : les α-agarases et les β-agarases. Les β-agarases agissent sur la liaison β-1,4 et les α-agarases sur la liaison α-1,3.
Des microorganismes produisant des enzymes capables d'hydrolyser les agars ont déjà été isolés. Cette capacité à digérer l'agar a été attribuée aux genres
Pseudomonas, (MORRICE et al., Eur. J. Biochem. 137, 149-154, (1983)),
Streptomyces (HODGSON et CHATER, J. Gen. Microbiol. 124, 339-348, (1981)),
Cytophaga (VAN DER MEULEN et HARDER, J. Microbiol. 41, 431-447, (1975)) et Vibrio (SUGANO et al., Appl. Environ. Microbiol. 59, 1549-1554, (1993)). Plusieurs gènes de β-agarase ont déjà été isolés. Ainsi, BELAS et al. ont isolé le gène d'une agarase chez Pseudomonas atlantica (Appl. Environ. Microbiol. 54, 30-37,
(1988)). BUTTNER et al. ont isolé une agarase chez Streptomyces coelicolor et séquence le gène correspondant (Mol. Gen. Genêt. 209, 101-109, (1987)). SUGANO et al. ont clone et séquence deux gènes différents d'agarase chez Vibrio sp. JT0107, qu'ils ont appelé agaA (Appl. Environ. Microbiol. 59, 3750-3756, (1993)) et agaB
(Biochimica et Biophysica Acta 1 218. 105-108, (1994)). La demanderesse a maintenant isolé une souche bactérienne à partir de l'algue rouge Delesseήa sanguinea, laquelle présente une activité agarase.
Cette souche a été déposée à la Collection DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) le 8 mai 1998 sous le numéro DSM 12170. Elle constitue le premier objet de la présente invention.
La recherche taxonomique de cette souche, réalisée par des techniques bien connues de l'homme du métier, montre qu'elle appartient au genre Cytophaga (bactéries du groupe CFB pour "CytophagalFlexibacter/Bacteroi'des"). En effet, cette souche se développe en s'étalant, présente des colonies jaunes incrustées dans l'agar qui est ensuite liquéfié. La bactérie est à Gram-négatif, a une forme de bâtonnet non mobile de 0,3-0,4x3,0-8,0 μmxμm. Lorsqu'une goutte de culture de la souche est inoculée au centre d'une boîte d'agar, la colonie se développe avec accroissement concentrique du bord et cette mobilité n'est pas inhibée par du diéthyléther qui est un inhibiteur de l'appareil flagellaire. La souche est aérobie et possède un métabolisme oxydatif. Elle produit la flexirubine qui est un pigment rarement trouvé dans les isolats de Cytophaga marines mais qui est présent chez les Cytophaga non marines. Elle est capable d'assimiler diverses sources carbonées et de dégrader plusieurs types de macromolécules, tels que l'agar, le carraghénane, l'amidon et la gélatine.
La Demanderesse a recherché à quelle espèce appartenait cette souche en réalisant une étude approfondie. Ainsi, elle a déterminé les valeurs en pourcentage de la composition en guanine et cytosine de l'ADN de la souche de l'invention et elle a trouvé qu'elles étaient comprises entre 43 et 49%. Elle a également réalisé le séquençage de son ADN 16S selon le procédé bien connu de l'homme du métier pour connaître la position taxonomique d'une souche (FOX et al., Int. J. Syst. Bacteriol. 22, 44-57, (1977)). Le résultat du séquençage montre que la souche de l'invention est très similaire à Cytophaga uliginosa. (Les similitudes de séquence entre l'ADN 16S de C. uliginosa et celui de la souche de l'invention est de 99%.) Toutefois, l'hybridation ADN/ADN entre les deux souches (45%) montre qu'il s'agit de deux espèces différentes. De plus, la souche de l'invention présente des caractéristiques morphologiques, biochimiques et physiologiques similaires à celles de la souche Pseudomonas drobachiensis nov. comb. isolée par HUMM (Duke Univ. Mar. Stn. Bull. 3, 43-75, (1946)). Elle a donc été appelée Cytophaga drobachiensis.
La Demanderesse a également isolé deux gènes à activité β-agarase à partir de Cytophaga drobachiensis DSM 12170. Ainsi, la présente invention a également pour objet le nouveau gène agaA codant pour une β-agarase qui a la séquence d'ADN SEQ ID N° 1.
Elle a également pour objet le nouveau gène agaB codant pour une β-agarase qui a la séquence d'ADN SEQ ID N° 3. Ces deux gènes codent pour deux β-agarases différentes produites par C. drobachiensis DSM 12170, à savoir les β-agarases dénommées protéines AgaA et AgaB.
La présente invention a également pour objet les séquences d'acides nucléiques, à savoir les séquences d'ADN génomique, les séquences d'ADN ou d'ARNm qui comprennent ou sont constituées par un enchaînement de nucléotides codant pour la protéine AgaA ou pour la protéine AgaB ou pour l'un quelconque de leurs fragments peptidiques tels que définis ci-après.
L'invention concerne donc : - Toutes les séquences d'acides nucléiques codant pour la protéine AgaA dans son entier, ou pour un ou plusieurs de ses fragments peptidiques. Ces séquences sont représentées de préférence par : a) la séquence d'ADN SEQ ID N°l codant pour la protéine AgaA et ses fragments codant pour les fragments peptidiques de ladite protéine ; b) les séquences d'ADN hybridant en conditions de stringence spécifiques avec la séquence ci-dessus ou un de ses fragments ; c) les séquences d'ADN qui, en raison de la dégénérescence du code génétique, dérivent de l'une des séquences a) et b) ci-dessus et codent pour la protéine AgaA ou les fragments de celle-ci ; et d) les séquences d'ARNm correspondantes. - Toutes les séquences d'acides nucléiques codant pour la protéine AgaB dans son entier, ou pour un ou plusieurs de ses fragments peptidiques. Ces séquences sont représentées de préférence par : a) la séquence d'ADN SEQ ID N°3 codant pour la protéine AgaB et ses fragments codant pour les fragments peptidiques de ladite protéine ; b) les séquences d'ADN hybridant en conditions de stringence spécifiques avec la séquence ci-dessus ou un de ses fragments ; c) les séquences d'ADN qui, en raison de la dégénérescence du code génétique, dérivent de l'une des séquences a) et b) ci-dessus et codent pour la protéine AgaB ou les fragments de celle-ci ; et d) les séquences d'ARNm correspondantes. La présente invention concerne également la séquence d'acides nucléiques SEQ ID N°5 qui code pour le fragment peptidique particulier AgaA' qui va être décrit ci-après. Cette séquence correspond aux acides nucléiques 223-1050 de la SEQ ID N°1. L'invention concerne donc également les séquences d'acides nucléiques codant pour ledit fragment peptidique AgaA' et ses fragments peptidiques qui sont représentés par : a) la séquence d'ADN SEQ ID N°5 codant pour le fragment peptidique AgaA' et ses fragments codant pour les fragments peptidiques dudit fragment peptidique AgaA' ; b) les séquences d'ADN hybridant en conditions de stringence spécifiques avec la séquence ci-dessus ou un de ses fragments ; c) les séquences d'ADN qui, en raison de la dégénérescence du code génétique, dérivent de l'une des séquences a) et b) ci-dessus et codent pour le fragment peptidique AgaA' ou les fragments de celui-ci ; et d) les séquences d'ARNm correspondantes.
Les acides nucléiques selon l'invention peuvent être préparés par synthèse chimique ou génie génétique en utilisant les techniques bien connues de l'homme du métier et décrites par exemple dans SAMBROOK et al. ("Molecular Cloning : a Laboratory Manual" Ed. Cold Spring Harbor Press, N.Y., 1989).
Par exemple, la synthèse des séquences d'ADN selon l'invention peut être effectuée par amplification des gènes de Cytophaga drobachiensis à l'aide de la méthode PCR (Polymerase Chain Reaction), comme décrit par exemple par GOBLET et al. (Nucleic Acid Research, 17, 2144, (1989)) en utilisant des oligonucléotides synthétiques comme amorces, définis à partir de la séquence d'ADN SEQ ID N° 1 ou SEQ ID N°3.
Le fragment d'acides nucléiques ainsi amplifié peut ensuite être clone dans un vecteur d'expression selon les techniques décrites dans MANIATIS et al. (Molecular Cloning. A laboratory manual, NEW YORK (1982)). L'invention a également pour objet les cellules procaryotes et les cellules eucaryotes transformés à l'aide d'un vecteur d'expression contenant une séquence d'acides nucléiques selon l'invention. Ce vecteur d'expression, qui peut être par exemple sous la forme d'un plasmide, doit comporter, outre la séquence d'acides nucléiques de l'invention, les moyens nécessaires à son expression, tels que notamment un promoteur, un terminateur de transcription, une origine de replication et de préférence un marqueur de sélection. La transformation des cellules procaryotes et des cellules eucaryotes est une technique bien connue de l'homme du métier qui pourra aisément déterminer, en fonction du microorganisme à transformer, les moyens nécessaires à l'expression de la séquence d'ADN selon l'invention.
Les microorganismes procaryotes préférés aux fins de l'invention sont Escherichia coli et Bacillus subtilis.
A titre d'exemples de cellules eucaryotes qui conviennent aux fins de l'invention, on peut citer notamment les cellules de Aspergillus niger, Trichoderma viridae ou Pichia pastoris.
La présente invention a également pour objet la nouvelle protéine AgaA de C. drobachiensis qui comprend la SEQ ID N° 2.
Elle a également pour objet la nouvelle protéine AgaB de C. drobachiensis qui comprend la SEQ ID N° 4.
La nouvelle protéine AgaA est composée de 539 acides aminés et a une masse moléculaire théorique de 60,001 kDa. Après élimination du peptide signal, cette protéine a une masse moléculaire calculée de 57,768 kDa.
La nouvelle protéine AgaB est composée de 353 acides aminés. Après élimination du peptide signal, cette protéine a une masse moléculaire calculée de 40,680 kDa.
La présente invention concerne également les fragments peptidiques des protéines AgaA et AgaB résultant de l'addition, la suppression et/ou le remplacement d'un ou plusieurs acides aminés, lesdits fragments peptidiques ayant conservé l'activité β-agarase.
La présente invention concerne également le fragment peptidique AgaA' qui a la SEQ ID N°6. Ce fragment peptidique AgaA', composé de 276 acides aminés, correspond aux acides aminés 20-295 de la protéine AgaA.
L'invention concerne également les fragments peptidiques de AgaA' qui résultent de l'addition, la suppression et/ou le remplacement d'un ou plusieurs acides aminés, lesdits fragments peptidiques ayant conservé l'activité β-agarase. Les protéines et fragments peptidiques selon l'invention peuvent être obtenus par les techniques de génie génétique qui comprend les étapes de :
- culture de cellules procaryotes ou de cellules eucaryotes transformées par un vecteur d'expression possédant une séquence d'acides nucléiques selon l'invention et - récupération de la protéine ou du fragment peptidique produit lesdites cellules. Ces techniques sont bien connues de l'homme du métier. Pour plus de détails les concernant, on pourra se référer à l'ouvrage ci-après : Recombinant DNA Technology I, Editors Aies Prokop, Raskesh K Bajpai ; Annals of the New- York Academy of Sciences, volume 646, 1991. Les fragments peptidiques peuvent également être préparés par synthèse peptidique chimique classique bien connue de l'homme du métier.
L'invention va maintenant être décrite en détail à l'aide de l'exposé expérimental ci-après.
Une grande partie des techniques décrites dans ces exemples, bien connues de l'homme du métier, est exposée en détail dans l'ouvrage de SAMBROOK et al. (supra) ou dans l'ouvrage de MANIATIS et al. (supra).
La description ci-après sera mieux comprise à l'aide des figures 1 à 6 sur lesquelles :
- la figure 1 est la photographie d'un gel d'électrophorèse sur SDS-PAGE du surnageant de culture de C. drobachiensis de l'invention ;
- les figures 2A et 2B représentent les cartes physiques des clones génomiques de Cytophaga drobachiensis présentant une activité agarase ;
- les figures 3A et 3B donnent les séquences nucléotidiques et d'acides aminés déduites des gènes d'agarase A (fig. 3A) et d'agarase B (fig. 3B) provenant de C. drobachiensis ;
- la figure 4 montre l'alignement des protéines AgaA (ligne supérieure) et AgaB (ligne inférieure) provenant de la souche C. drobachiensis selon l'invention ;
- la figure 5 est une représentation de l'analyse des amas hydrophobes (analyse HCA) connue sous la dénomination anglaise "Hydrophobic Cluster Analysis" des gènes d'agarase et d'autres gènes de glycoside hydrolases ;
- les figures 6A à 6C représentent les profils d'élution des produits d'hydrolyse du néoagarododécaose par les agarases provenant de la souche C. drobachiensis selon l'invention.
Exemple 1 : Isolement, culture de la souche Cytophaga drobachiensis DSM 12170 et extraction de son ADN
La souche DSM 12170 a été isolée à partir de frondes vivantes de l'algue rouge Delesseria sanguinea. L'isolement a été réalisé sur une boîte de Pétri sur le milieu de Zobell (ZOBELL, J. Mar. Res. 4, 41-75, (1941)) contenant 2% de l-carraghénane. La culture de la souche a été réalisée à 25°C sur le milieu de Zobell
(ZOBELL, J. Mar. Res. 4, 41-75, (1941)). Le protocole employé pour extraire l'ADN de la souche Cytophaga drobachiensis DSM 12170 est dérivé de celui de Marmur (MARMUR, J. Mol. Biol. 3, 208-218, (1961)) et est décrit en détail ci-après.
Après culture, les bactéries ont été centrifugées à 3000 g durant 15 min, puis lavées dans de l'eau de mer stérile. Les cellules ont subi une dernière centrifugation, identique à la précédente, et ont été traitées immédiatement ou congelées à -20°C.
5 à 10 g de cellules selon la concentration cellulaire (poids humide après centrifugation) ont été repris dans 25 ml de tampon Sph (Tris-HCl, pH 8, 50 mM ; saccharose 25%), puis par 5 ml de tampon TES (Tris-HCl, pH 8, 50 mM ; acide éthylenediaminetetraacétique 5 mM ; chlorure de sodium 50 mM), et 50 mg de lysosyme ont été ajoutés. Des sphéroplastes sont apparus après une incubation de 15 min à température ambiante.
L'ADN a été aussitôt protégé par l'ajout de 100 mM d'acide éthylenediaminetetraacétique (concentration finale) et l'incubation a été poursuivie dans la glace pendant encore 10 min.
La lyse a été totalement achevée par l'addition de 2% de dodécylsulfate de sodium (concentration finale) et de 25 ml de solution de lyse (Tris-HCl, pH 8, 50 mM ; acide éthylenediaminetetraacétique 100 mM ; chlorure de sodium 100 mM). Les protéines ont été pleinement dénaturées par une incubation de 1 heure à 50°C en présence de 40 mg de protéinase K. A la fin de cette incubation, 1 M (concentration finale) de perchlorate de sodium a été ajouté pour que les liaisons ADN-protéines soient rompues.
La solution a été déprotéinisée en l'agitant en présence de 0,5 volume de phénol saturé pendant 5 min. L'agitation a été faite manuellement et a dû être suffisamment énergique, sans l'être trop pour ne pas déchirer l'ADN, pour former une émulsion (sans laquelle il ne pourrait y avoir d'extraction). La déprotéinisation a été poursuivie encore pendant 5 min après ajout de 0,5 volume de chloroforme/alcool isoamylique (24/1). Les protéines ont été concentrées à l'interface entre la phase aqueuse et la phase organique, par une centrifugation de 15 min à 10000 g à température ambiante.
La phase aqueuse contenant les acides nucléiques a été transvasée dans un tube propre avec une pipette dont l'embout a été agrandi pour ne pas déchirer l'ADN. La déprotéinisation a été poursuivie et les traces de phénol ont été extraites de la phase aqueuse, par agitation de la solution pendant 5 min en présence de 1 volume de chloroforme/alcool isoamylique (24/1). Après une centrifugation de 5 min à 10000 g à température ambiante, la phase aqueuse a été prélevée avec les mêmes précautions que précédemment, et les acides nucléiques ont été précipités en versant délicatement 0,6 volume d'isopropanol (de façon à former deux phases). L'ADN de haut poids moléculaire a été récupéré avec une baguette de verre, lavé dans de l'éthanol à 70%, déshydraté dans de l'éthanol absolu et séché à l'air.
Après séchage, l'ADN a été dissous dans 20 ml de tampon TE (10 mM, Tris- HCl, pH 8 ; 1 mM, acide éthylenediaminetetraacétique). La dissolution a nécessité environ 12 heures et elle a pu être facilitée par un chauffage à 50°C. Lorsque la solution obtenue a été opalescente, signe d'une contamination importante en protéines, ces dernières ont été efficacement éliminées en passant une fraction de l'ADN sur un gradient de chlorure de césium en présence de bromure d'éthydium. Après ce passage sur gradient et élimination du bromure d'éthydium, l'ADN ainsi obtenu a été quantifié. Il a pu être conservé à 4°C ou congelé à -20°C. La composition d'ADN, exprimée en pourcentage molaire de guanine + cytosine (mol% G+C), a été déterminée par la méthode spectroscopique de ULITZUR (Biochem. Biophys. Acta 272, 1-11, (1972)) et le procédé de gradient en chlorure de césium en présence de 2'-[4-hydroxyphényl]-5-[4-méthyl-l-pipérazinylj- 2,5'-bi-lH-benzimidazole (Hoechst 33258/Sigma) (KARLOVSKY et DE COCK, Anal. Biochem. 194, 192-197, (1991)). Dans le premier cas, il est de 44 ± 1% (moyenne de 2 manipulations) et dans le deuxième cas de 48,8%. Ce pourcentage molaire G+C a été calculé en utilisant l'ADN de E. coli comme référence standard. Exemple 2 : Séquençage de l'ADN 16S de Cvtophasa drobachiensis
L'ADN 16S a été amplifié par PCR en utilisant l'ADN génomique de la souche C. drobachiensis comme matrice et la polymerase Taq (Proméga) comme enzyme. Le mélange réactionnel typique de PCR, de 50 μl de volume, avait la composition suivante : 100 ng de matrice, 10 ng de chacun des deux oligonucléotides spécifiques de l'ADN 16S du règne des Bacteria, 200 mM de chacun des dNTP (dNTP étant le déoxyribonucléoside triphosphate), 1,5 mM de MgCl2, du tampon Taq et 2,5 U d'enzyme. Les différentes étapes de PCR étaient les suivantes :
• 6 min à 95°C (l fois),
• 1,5 min à 95°C ; 1,5 min à 54°C ; 2,5 min à 72°C (25 fois),
• 8,5 min à 72°C (étape de polymérisation).
Le produit obtenu par PCR a été soit au préalable clone puis séquence, soit directement séquence par PCR en utilisant la Thermoséquenase (Amersham) comme enzyme, avec différents oligonucléotides spécifiques pour l'ADN 16S marqués en 5' au rouge Texas. Les différentes étapes de PCR étaient les suivantes :
• 5 min à 97°C (l fois),
• 1 min à 97°C ; 1 min à 54°C ; 1 min à 61°C (25 fois). Ce séquençage, qui permet de connaître la position taxonomique de la souche, a montré que la souche selon l'invention était phylogénétiquement très proche de Cytophaga uliginosa.
Exemple 3 : Mise en évidence et purification des activités agarase dans la souche Cytophaga drobachiensis DSM 12170 L'activité agarase de la souche a été induite dans un milieu de Zobell supplémenté par 2,5 mg/1 d'agar. On considère qu'une souche présente une activité agarase lorsqu'elle digère l'agar sur lequel elle se développe.
On a cultivé les souches à activité agarase dans le milieu ci-dessus à 20°C. On a centrifugé la culture à 1000 g pendant 20 min. On a récupéré le surnageant de culture et on l'a concentré jusqu'à 50 ml par ultrafiltration tangentielle (seuil de coupure : 10 kDa), opération suivie d'une précipitation au sulfate d'ammonium. Le culot de protéines a été remis en suspension dans 9 ml de tampon MES (MES étant l'acide 2-[N-morpholino]éthanesulfonique). On a ensuite ajouté 2 ml de Sépharose CL6B afin de réaliser une chromatographie par affinité. On a récupéré deux fractions dont l'une s'est fixée sur la colonne de Sépharose.
On a testé l'activité agarase par un dosage des sucres réducteurs selon la technique de KIDBY D.K. & DAVIDSON DJ. (Annal. Biochem., Vol. 55, 321-325 (1973)) dans le surnageant avant la chromatographie par affinité (qui est bien évidemment positif) et dans les deux fractions obtenues après la chromatographie. On a détecté une activité agarase dans chaque fraction.
On a mis en œuvre une électrophorèse sur SDS-PAGE avec la fraction fixée sur la colonne. Celle-ci a présenté une bande principale avec une masse moyenne de 31 kDa (figure 1). Cette protéine a été microséquencée. La séquence du peptide interne obtenu a été trouvée dans la séquence d'acides aminés déduite du gène agaA (figure 3A).
Exemple 4 : Clonage des gènes d'agarase
On a préparé une banque d'ADN génomique de la souche de C. drobachiensis. Des fragments de 4 à 10 kb, provenant de la digestion partielle par Ndell de l'ADΝ chromosomique, ont été fractionnés sur un gradient de saccharose. Ces fragments ont été insérés dans le site BarriΑl du plasmide pAT153 (TWIGG et SHERRATT, Nature, 283, 216, (1980)). Les clones recombinants (environ 6000) de la souche DH5α de E. coli (SAMBROOK et al., supra) ont été inoculés indépendamment sur des plaques de microtitration dans le milieu LBA (milieu Luria-Bertani (MANIATIS et al., supra) supplémenté en ampicilline à une concentration de 50 μg/ml). Après incubation, toute la nuit à 37°C, ces clones ont été étalés à 22°C sur du milieu Zd (5 mg/1 de bactotryptone, 1 mg/1 d'extrait de levure, 10 mg/1 de NaCl, pH 7,2) supplémenté à 50 μg/ml d'ampicilline pour observer la production d'agarase (trou dans la gélose lorsqu'il y a production d'agarase).
En deux mois de culture à 22°C, 4 colonies indépendantes, appelées pACl à pAC4, ont fait un trou dans le substrat.
Les cartes des plasmides correspondant à ces colonies sont représentées sur les figures 2 A et 2B, sur lesquelles :
- les lignes fines représentent les régions de pAT153, les segments en gras représentent les inserts de C. drobachiensis et les rectangles blancs représentent les gènes agarase;
- les différentes abréviations ont les significations ci-après :
B/S : site de clonage BamHI-Sau3A B : BamHI Bg : BglII C : Clal
E : EcoRI H : HindIII K : Knpl Ne : Ncol Nd : Ndel
Ps : PstI Pv : PvuII Sa Sali Sp : Sphl X : Xbal.
La cartographie de ces plasmides montre donc la présence de deux fragments communs différents, ce qui suggère la présence d'au moins deux gènes agarase dans le génome de C. drobachiensis. Les plasmides pAC 1 et pAC2 partagent un fragment commun Sall-Pstl de 5 kb (délimité par les lignes en pointillés sur la figure 2A) et les plasmides pAC3 et pAC4 partagent un fragment commun Clal-Pstl de 5 kb (délimité par les lignes en pointillés sur la figure 2B). Les deux fragments ont été sous-clonés dans le phagemide pBluescript (Stratagène) et sont appelés pASP5 et pACP5, comme indiqué sur les figure 2A et 2B. Ces deux sous-clones présentent un phénotype agarase +. Exemple 5 : Analyse de la séquence nucléotidique des gènes d'agarase Les plasmides pASP5 et pACP5 ont été utilisés pour déterminer, sur les deux brins, les séquences nucléotidiques des gènes de structure d'agarases.
Ce séquençage a été réalisé par une technique bien connue de l'homme du métier, à savoir la méthode de Sanger (SANGER et al., Proc. Natl. Acad. Sci. 74, 5463-5467, (1977)) également appelée méthode aux didéoxy nucléotides. L'insert pASP5 a été séquence sur 2980 pb du site .BαmHI au site HindHl
(délimité par les lettres B/S et H sur la figure 2A). Il contient un unique cadre ouvert de lecture (ORF) de 1617 pb appelé gène agaA. Ce gène a la SEQ ID N° 1.
La séquence d'acides nucléiques obtenue est illustrée sur la figure 3A. Deux hexamères, TaGAaA et TATAtT, compatibles avec les promoteurs consensus "-35" et "-10" de E. coli, les majuscules correspondant au promoteur consensus de E. coli (ROSENBERG, M. & COURT, D., Ann. Rev. 13, 319-353, (1979)), et séparés par 15 nucléotides, sont trouvés à 62 nucléotides en amont du codon initiateur putatif du gène agaA. Dans la région 3' non traduite, une boucle d'arrêt de transcription est trouvée en aval du codon stop TAA, suivi de trois résidus thymidine. L'insert pACP5 a été séquence sur 2440 pb entre les deux sites EcoRI
(délimité par les deux lettres Ε sur la figure 2B). Il contient un unique ORF complet de 1059 pb appelé gène agaB, ainsi qu'un ORF partiel. Ce gène agaB a la SΕQ ID N° 3.
La séquence d'acides nucléiques obtenue est illustrée sur la figure 3B. Deux hexamères, TTGAgA et TATtcT, compatibles avec les promoteurs consensus "-35" et "-10" de E. coli et séparés par 17 nucléotides, sont trouvés à 43 nucléotides en amont du codon initiateur putatif du gène agaB. Dans la région 3' non traduite, une boucle d'arrêt de transcription est trouvée en aval du codon stop TAA, suivi de quatre résidus thymidine. Le deuxième ORF, partiel, est trouvé en aval du gène agaB. Deux hexamères, TTGACc et TtaAtT, séparés par 17 nucléotides, sont également trouvés à 39 nucléotides en amont du codon initiateur putatif du deuxième ORF.
Le coefficient de Chargaff (GC%) de chacun des gènes d'agarase A et B est compris entre 41 et 45 %, ce qui est en accord avec celui du genre Cytophaga trouvé par REICHENBACH et al. (30-45 % ; Genus Cytophaga, in Bergey's Manual of systematic bacteriology, 2015-2050, (1989)). Exemple 6 : Analyse de la séquence d'acides aminés déduite des gènes d'agarase
Le produit de traduction du gène agaA est une protéine de 539 acides aminés présentant une masse moléculaire théorique de 60,001 kDa. La séquence d'acides aminés déduite, SEQ ID N° 2, comprend le peptide interne déterminé à partir du microséquençage de l'agarase A purifiée (soulignée sur la figure 3A). Comme indiqué par l'analyse du profil d'hydropathie (KYTE et DOOLITLE, J. Mol. Biol., 157, 105-132, (1982)) la partie N-terminale de la protéine correspond à un domaine très hydrophobe, ce qui suggère que ce domaine est le peptide signal (VON HEIJNE, Eur. J. Biochem. 133, 17-21, (1983) ; J. Mol. Biol. 184, 99-105, (1985)). Selon la règle "(-3,-1)" de Von Heijne, le site de coupure le plus probable de la signal-peptidase est attribué entre Alal9 et Ala20.
Il est à noter que la masse moléculaire de la protéine AgaA calculée après élimination du peptide signal, égale à environ 57,768 kDa, est supérieure à la masse moléculaire déterminée initialement par électrophorèse sur SDS-PAGE, qui est de 31 kDa (voir figure 1). Cette différence indique une possible transformation après la traduction qui éliminerait une grande partie de l'extrémité C-terminale de la protéine.
Le produit de traduction du gène agaB est une protéine de 353 acides aminés présentant une masse moléculaire calculée de 40,680 kDa et ayant la séquence d'acides aminés déduite SED ID N° 4. L'analyse du profil d'hydropathie montre un segment N-terminal très hydrophobe sur un domaine d'environ 20 acides aminés. Cependant, il n'existe pas de site de coupure selon la règle "(-3, -1)" de Von Heijne (supra). Ce segment semble donc être non clivable. Les résultats obtenus à partir du logiciel PSORT (Nakai's expert System PSORT) (NAKAI & KANEHISA, Proteins, Structure, Function and Genetics 11, 95-110, (1991)) concernant la recherche de peptides signaux, laissent à penser que la protéine présente une séquence signal N-terminale non clivable qui jouerait le rôle d'ancre transmembranaire. Il est à noter de plus, que la séquence LVFCCALLLGCGD est en parfait accord avec la signature de l'extrémité N-terminale des lipoprotéines procaryotiques (Prosite PS00013 ; BAIROCH et al., Nucl. Acids Res. 24, 189-196, (1995)). Dans ce cas un site de coupure serait possible entre les résidus G 17 et Cl 8. Ces résultats suggèrent que AgaB pourrait être une lipoprotéine localisée dans la membrane interne de la cellule.
L'ORF qui suit le gène agaB code pour une protéine qui présente une homologie significative avec la famille des protéines DnaJ (OHKI et al., J. Biol. Chem. 261, 1778-1781, (1986)) (figure 3B). Exemple 7 : Similitudes de séquence entre les protéines AgaA et AgaB de C. drobachiensis et avec d'autres β-glycanases
Les similitudes de séquence entre les protéines AgaA et AgaB sont illustrées sur la figure 4. La protéine AgaA présente une identité de 44,5% et une similitude de 65,7% avec la protéine AgaB. De nombreux domaines sont assez similaires dans les séquences primaires, de Ile 110 à Val287 (numérotation sur la séquence de l'agarase A). En particulier, dans l'un des motifs les mieux conservés, deux résidus acide glutamique sont présents et séparés par 4 acides aminés (Glul47 et Glul52 dans la séquence d'AgaA, et Glu 184 et Glu 189 dans la séquence d'AgaB, en gras sur la figure 4). Cette organisation est caractéristique du site cataly tique de la famille 16 des glycoside-hydrolases (HENRISSAT, Biochem. J. 280, 309-316, (1991)).
Aucune similitude de séquence n'a été trouvée avec les agarases de la souche Vibrio sp. HO 107 (SUGANO et al., Appl. Environ. Microbiol. 59, 3750-3756, (1993) ; Biochim. Biophys. Acta 1218, 105-108, (1994)). Néanmoins, les agarases (AgaA et AgaB) partagent des identités de séquence significatives avec les β-agarases de Alteromonas atlantica GenBank M73783 (BELAS et al., J. Bacteriol. 54, 30-37, (1988)) (53,5% et 48% avec AgaA et AgaB, respectivement) et de Streptomyces coelicolor (BUTTNER et al., Mol. Gen. Genêt. 209, 101-109, (1987) (33% avec AgaA et avec AgaB). Ces similitudes sont également mises en évidence grâce à la méthode HCA
(hydrophobic cluster analysis ; LEMESLE-VARLOOT et al., Biochimie 72, 555-574, (1990)). La figure 5 illustre la comparaison HCA entre les agarases AgaA et AgaB, respectivement Agar A Cd et Agar B Cd sur la figure, et d'autres enzymes de la famille 16 des glycoside-hydrolases, à savoir la β-agarase de Alteromonas atlantica (Agar Aa), la β-agarase de Streptomyces coecicolor (Agar Se), la K- carrageenase de C. drobachiensis (Kap Cd), la laminarinase de Rhodothermus marinus (Lam Rm), la lichenase de Bacillus macerans (Lich Bm), et la xyloglucane- endotransglycosylase de Arabidopsis thaliana (XET At).
Les deux résidus catalytiques Glu, présents dans la lichenase de Bacillus macerans, ont été pris comme points d'ancrage pour la comparaison HCA et les séquences segmentées en prenant comme référence la structure tridimensionnelle connue de cette lichenase.
Treize segments de structure distincte (I-XIII) sont mis en évidence sur la figure 5, les segments I, II, IX, X, XI et XITI apparaissant les mieux conservés. On peut noter que le segment VI est spécifique des agarases dans cette famille de glycoside-hydrolases et que le site catalytique se trouve dans le segment de structure
III.
Exemple 8 : Spécificités de substrat des agarases recombinées AgaA et AgaB
Les spécificités de substrat des agarases de l'invention ont été étudiées en analysant les produits de dégradation du néoagarododécaose par les agarases recombinantes AgaA et AgaB.
Le néoagarododécaose a été préparé de la façon suivante : de l'agarose a été hydrolyse par de l'agarase, en utilisant 0,32 U/mg de polymère. La fraction résistante a été précipitée dans de l'isopropanol et les oligosaccharides solubles ont été fractionnés par chromatographie d'exclusion préparatoire sur Bio-gel P2 ( 95 cm x 4,4 cm ; 25°C ; éluant : eau distillée). La détection a été réalisée avec un appareil d'enregistrement de l'indice de réfraction différentiel (ROCHAS & HEYRAUD, Polymer Bull. 5, 81-86, (1981)). La fraction oligomère correspondant au néoagardodécaose a été concentrée sur un évaporateur rotatif et lyophilisé. On a cultivé pendant 12 heures dans 1 litre de milieu LB à 37°C (milieu
Luria-Bertani), les clones recombinants de E. coli contenant les plasmides pACl et pAC4 ( à activité agarase A et agarase B, respectivement). On a centrifugé les cellules à 2000 g pendant 20 minutes, on les a mises en suspension dans 30 ml de tampon MES et on les a fait éclater à l'aide d'une presse de French à 20000 p.s.i. On a réalisé une centrifugation à 20000 g pendant 1 heure. On a rejeté les fragments cellulaires et on a réduit le volume du surnageant à 5 ml en utilisant une cellule d'ultrafiltration (Amicon, seuil de coupure de 10 kDa).
On a ajouté 500 μl de chaque extrait ainsi obtenu à 1 ml de néoagarododécaose dans du tampon MES (50 mg/ml) et on a incubé à 37°C pendant 18 heures. On a déterminé le degré de polymérisation des produits finaux par chromatographie HPAE en utilisant un détecteur électrochimique puisé et une colonne échangeuse d'anions (Carbo-PAC PA100, Dionex) dans les conditions suivantes: débit 1 ml/min ; tampon A 150mM NaOH ; tampon B 500 mM d'acétate de sodium dans 150 mM de NaOH ; gradient • 0 à 5 min 70% de A, 30% de B ;
• 5 à 16 min 40% de A, 60% de B ;
• 16 à 20 min 100% de B.
Les résultats obtenus par chromatographie HPAE (chromatographie échangeuse d'anions haute performance) sont illustrés sur les figure 6A à 6C sur lesquelles les différentes abréviations ont les significations ci-après : nC : manocoulomb DPI : néoagarobiose
DP2 : neoagarotetraose
DP3 : néoagarohexaose
DP4 : néoagarooctaose DP5 : néoagarodécaose
DP6 : néoagarododécaose
DP7 : néoagarotétradécaose
DP8 : néoagarohexadécaose
Les produits finaux d'hydrolyse du néoagarododécaose par l'agarase A sont représentés sur la figure 6B et ceux par l'agarase B sur la figure 6C. Par comparaison avec le néoagarododécaose sans enzyme (figure 6A), le profil d'élution après 18 heures de digestion présente dans les deux cas (AgaA et AgaB) le neoagarotetraose (DP2) comme produit majoritaire et le néoagarohexaose (DP3) comme produit minoritaire.

Claims

REVENDICATIONS
1. Souche Cytophaga drobachiensis déposée à la Collection DSMZ (Deutsche Sammlung von Mikroorganismen un Zellkulturen GmbH) le 8 mai 1998 sous le numéro DSM 12170.
2. Gène agaA codant pour une β-agarase, caractérisé en ce qu'il a la SEQ ID N° 1.
3. Gène agaB codant pour une β-agarase, caractérisé en ce qu'il a la SEQ ID N° 3.
4. Gène selon l'une des revendications 2 ou 3, caractérisé en ce qu'il code pour une β-agarase de Cytophaga drobachiensis DSM 12170 selon la revendication 1.
5. Protéine AgaA de C. drobachiensis DSM 12170 caractérisée en ce qu'elle a la SEQ ID N° 2.
6. Protéine AgaB de C. drobachiensis DSM 12170 caractérisée en ce qu'elle a la SEQ ID N° 4.
7. Fragments peptidiques de la protéine selon la revendication 5 résultant de l'addition, la suppression et/ou le remplacement d'un ou plusieurs acides aminés, lesdits fragments peptidiques ayant conservé l'activité β-agarase.
8. Fragments peptidiques de la protéine selon la revendication 6 résultant de l'addition, la suppression et/ou le remplacement d'un ou plusieurs acides aminés, lesdits fragments peptidiques ayant conservé l'activité β-agarase.
9. Fragment peptidique AgaA' de la protéine selon la revendication 5, caractérisé en ce qu'il a la SEQ ID N°6 et l'activité β-agarase.
10. Fragments peptidiques du fragment peptidique selon la revendication 9 résultant de l'addition, la suppression et/ou le remplacement d'un ou plusieurs acides aminés, lesdits fragments peptidiques ayant conservé l'activité β-agarase.
11. Séquence d'acides nucléiques codant pour la protéine selon la revendication 5 et les fragments peptidiques selon la revendication 7.
12. Séquence d'acides nucléiques selon la revendication 11, caractérisée en ce qu'elle est constituée par : a) la séquence d'ADN SEQ ID N°l codant pour la protéine AgaA et ses fragments codant pour les fragments peptidiques de ladite protéine ; b) les séquences d'ADN hybridant dans des conditions de stringence spécifiques avec la séquence ci-dessus ou un de ses fragments ; c) les séquences d'ADN qui, en raison de la dégénérescence du code génétique, dérivent de l'une des séquences a) et b) ci-dessus et codent pour la protéine AgaA ou les fragments de celle-ci ; et d) les séquences d'ARNm correspondantes.
13. Séquence d'acides nucléiques codant pour la protéine selon la revendication 6 et les fragments peptidiques selon la revendication 8.
14. Séquence d'acides nucléiques selon la revendication 13, caractérisée en ce qu'elle est constituée par : a) la séquence d'ADN SEQ ID N°3 codant pour la protéine AgaB et ses fragments codant pour les fragments peptidiques de ladite protéine ; b) les séquences d'ADN hybridant dans des conditions de stringence spécifiques avec la séquence ci-dessus ou un de ses fragments ; c) les séquences d'ADN qui, en raison de la dégénérescence du code génétique, dérivent de l'une des séquences a) et b) ci-dessus et codent pour la protéine AgaB ou les fragments de celle-ci ; et d) les séquences d'ARNm correspondantes.
15. Séquence d'acides nucléiques codant pour le fragment peptidique selon la revendication 9 et les fragments peptidiques selon la revendication 10.
16. Séquence d'acides nucléiques selon la revendication 15, caractérisée en ce qu'elle est constituée par : a) la séquence d'ADN SEQ ID N°5 codant pour le fragment peptidique AgaA' et ses fragments codant pour les fragments peptidiques dudit fragment peptidique AgaA' ; b) les séquences d'ADN hybridant en conditions de stringence spécifiques avec la séquence ci-dessus ou un de ses fragments ; c) les séquences d'ADN qui, en raison de la dégénérescence du code génétique, dérivent de l'une des séquences a) et b) ci-dessus et codent pour le fragment peptidique AgaA' ou les fragments de celui-ci ; et d) les séquences d'ARNm correspondantes.
17. Vecteur d'expression caractérisé en ce qu'il comprend une séquence d'acides nucléiques selon l'une quelconque des revendications 11 à 16 et les moyens nécessaires à son expression.
18. Microorganismes ou cellules hôtes transformés par un vecteur d'expression selon la revendication 17. REVENDICATIONS MODIFIEES
[reçues par le Bureau International le 18 novembre 1999 (18.11.99); revendication 1 supprimée: revendications 1 1-16 modifiées; revendications 2-18 renumérotées 1-17 (2pages)]
I. Gène agaA codant pour une β-agarase, caractérisé en ce qu'il a la SEQ LD N° 1.
5 2. Gène agaB codant pour une β-agarase, caractérisé en ce qu'il a la
SEQ LD N° 3.
3. Gène selon l'une des revendications 1 ou 2, caractérisé en ce qu'il code pour une β-agarase de Cytophaga drobachiensis déposée à la Collection DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) le 8 mai 19980 sous le numéro DSM 12170.
4. Protéine AgaA de C. drobachiensis DSM 12170 caractérisée en ce qu'elle a la SEQ LD N° 2.
5. Protéine AgaB de C. drobachiensis DSM 12170 caractérisée en ce qu'elle a la SEQ LD N° 4. 5 6. Fragments peptidiques de la protéine selon la revendication 4 résultant de l'addition, la suppression et/ou le remplacement d'un ou plusieurs acides aminés, lesdits fragments peptidiques ayant conservé l'activité β-agarase.
7. Fragments peptidiques de la protéine selon la revendication 5 résultant de l'addition, la suppression et/ou le remplacement d'un ou plusieurs acides aminés,0 lesdits fragments peptidiques ayant conservé l'activité β-agarase.
8. Fragment peptidique AgaA' de la protéine selon la revendication 4, caractérisé en ce qu'il a la SEQ ID N°6 et l'activité β-agarase.
9. Fragments peptidiques du fragment peptidique selon la revendication 8 résultant de l'addition, la suppression et/ou le remplacement d'un ou plusieurs acides5 aminés, lesdits fragments peptidiques ayant conservé l'activité β-agarase.
10. Séquence d'acide nucléique codant pour la protéine selon la revendication 4 et les fragments peptidiques selon la revendication 6.
I I. Séquence d'acide nucléique selon la revendication 10, caractérisée en ce qu'elle est constituée par : 0 a) la séquence d'ADN SEQ LD N°l codant pour la protéine AgaA et ses fragments codant pour les fragments peptidiques de ladite protéine ; b) les séquences d'ADN hybridant dans des conditions de stringence spécifiques avec la séquence ci-dessus ou un de ses fragments ; c) les séquences d'ADN qui, en raison de la dégénérescence du code 5 génétique, dérivent de l'une des séquences a) et b) ci-dessus et codent pour la protéine AgaA ou les fragments de celle-ci ; ou d) les séquences d'ARNm correspondantes.
12. Séquence d'acide nucléique codant pour la protéine selon la revendication 5 et les fragments peptidiques selon la revendication 7.
13. Séquence d'acides nucléiques selon la revendication 12, caractérisée en ce qu'elle est constituée par : a) la séquence d'ADN SEQ LD N°3 codant pour la protéine AgaB et ses fragments codant pour les fragments peptidiques de ladite protéine ; b) les séquences d'ADN hybridant dans des conditions de stringence spécifiques avec la séquence ci-dessus ou un de ses fragments ; c) les séquences d'ADN qui, en raison de la dégénérescence du code génétique, dérivent de l'une des séquences a) et b) ci-dessus et codent pour la protéine AgaB ou les fragments de celle-ci ; ou d) les séquences d'ARNm correspondantes.
14. Séquence d'acide nucléique codant pour le fragment peptidique selon la revendication 8 et les fragments peptidiques selon la revendication 9.
15. Séquence d'acide nucléique selon la revendication 14, caractérisée en ce qu'elle est constituée par : a) la séquence d'ADN SEQ LD N°5 codant pour le fragment peptidique AgaA' et ses fragments codant pour les fragments peptidiques dudit fragment peptidique AgaA' ; b) les séquences d'ADN hybridant en conditions de stringence spécifiques avec la séquence ci-dessus ou un de ses fragments ; c) les séquences d'ADN qui, en raison de la dégénérescence du code génétique, dérivent de l'une des séquences a) et b) ci-dessus et codent pour le fragment peptidique AgaA' ou les fragments de celui-ci ; ou d) les séquences d'ARNm correspondantes.
16. Vecteur d'expression caractérisé en ce qu'il comprend une séquence d'acides nucléiques selon l'une quelconque des revendications 10 à 15 et les moyens nécessaires à son expression. 17. Microorganismes ou cellules hôtes transformés par un vecteur d'expression selon la revendication 16.
PCT/FR1999/001397 1998-06-12 1999-06-11 GENES CODANT POUR DES β-AGARASES ET LEUR UTILISATION POUR LA PRODUCTION D'ENZYMES DE BIODEGRADATION DES AGARS WO1999066052A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB0030283A GB2354000B (en) 1998-06-12 1999-06-11 Genes coding for ß-agarases and their use for producing agar biodegradation enzymes
AU41486/99A AU4148699A (en) 1998-06-12 1999-06-11 Genes coding for beta-agarases and their use for producing agar biodegradation enzymes
DE19983297T DE19983297B3 (de) 1998-06-12 1999-06-11 Gene, die für β-Agarasen kodieren, und ihre Verwendung zur Herstellung von Enzymen für den biologischen Abbau von Agar
US09/719,402 US6511838B1 (en) 1998-06-12 1999-06-11 Genes coding for β-agarases and their use for producing agar biodegradation enzymes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9807419A FR2779736B1 (fr) 1998-06-12 1998-06-12 Genes codant pour des beta-agarases et leur utilisation pour la production d'enzymes de biodegradation des agars
FR98/07419 1998-06-12

Publications (1)

Publication Number Publication Date
WO1999066052A1 true WO1999066052A1 (fr) 1999-12-23

Family

ID=9527318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/001397 WO1999066052A1 (fr) 1998-06-12 1999-06-11 GENES CODANT POUR DES β-AGARASES ET LEUR UTILISATION POUR LA PRODUCTION D'ENZYMES DE BIODEGRADATION DES AGARS

Country Status (7)

Country Link
US (1) US6511838B1 (fr)
AU (1) AU4148699A (fr)
DE (1) DE19983297B3 (fr)
ES (2) ES2179760B1 (fr)
FR (1) FR2779736B1 (fr)
GB (1) GB2354000B (fr)
WO (1) WO1999066052A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068659A1 (fr) * 2001-02-27 2002-09-06 Takara Bio Inc. Agarose et gene correspondant
CN114934033A (zh) * 2022-03-04 2022-08-23 青岛海洋生物医药研究院股份有限公司 一种琼胶酶突变体及其编码基因和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2977457B1 (fr) * 2008-07-17 2021-09-01 Medigen, Inc. Vaccins idna et procédés d'utilisation de ceux-ci
CN110066779A (zh) * 2019-04-17 2019-07-30 武汉轻工大学 琼脂糖酶基因、重组质粒、重组菌株、琼脂糖酶及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418156A (en) * 1991-04-15 1995-05-23 University Of Maryland Agarase enzyme system from alteromonas strain 2-40

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARBEYRON ET AL: "The Kappa-Carrageenase of the Marine Bacterium Cytophaga drobachiensis. Structural and Phylogenetic Relationships Within Family-16 Glycoside Hydrolases", MOLECULAR BIOLOGY AND EVOLUTION, vol. 15, no. 5, May 1998 (1998-05-01), pages 528 - 537, XP002093711 *
DUCKWORTH AND TURVEY: "The Action of a Bacterial Agarase on Agarose, Porphyran and Alkali-Treated Porphyran", BIOCHEMICAL JOURNAL, vol. 113, 1969, pages 687 - 692, XP002094771 *
POTIN ET AL: "Purification and Characterisation of a new Kappa-Carrageenase from a Marine Cytophaga-like Bacterium", EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 201, no. 1, 1 October 1991 (1991-10-01), pages 241 - 247, XP000645683 *
VAN DER MEULEN AND HARDER: "Production and characterisation of the agarase of Cytophaga flevensis", ANTONIE VAN LEEUWENHOEK, vol. 41, 1975, pages 431 - 447, XP002095423 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068659A1 (fr) * 2001-02-27 2002-09-06 Takara Bio Inc. Agarose et gene correspondant
CN114934033A (zh) * 2022-03-04 2022-08-23 青岛海洋生物医药研究院股份有限公司 一种琼胶酶突变体及其编码基因和应用
CN114934033B (zh) * 2022-03-04 2023-08-04 青岛海洋生物医药研究院股份有限公司 一种琼胶酶突变体及其编码基因和应用

Also Published As

Publication number Publication date
FR2779736A1 (fr) 1999-12-17
ES2179760A1 (es) 2003-01-16
GB2354000B (en) 2004-01-07
DE19983297B3 (de) 2013-07-04
FR2779736B1 (fr) 2002-12-13
AU4148699A (en) 2000-01-05
DE19983297T1 (de) 2001-05-10
US6511838B1 (en) 2003-01-28
ES2214936A1 (es) 2004-09-16
GB2354000A (en) 2001-03-14
GB0030283D0 (en) 2001-01-24
ES2214936B1 (es) 2005-12-16
ES2179760B1 (es) 2004-03-16

Similar Documents

Publication Publication Date Title
CA2112028C (fr) Pullulanase, microorganismes la produisant, procedes de preparation de cette pullulanase et utilisations de celle-ci
Monchois et al. Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity
Jeon et al. 4‐α‐Glucanotransferase from the Hyperthermophilic Archaeon Thermococcus Litoralis: Enzyme Purification and Characterization, and Gene Cloning, Sequencing and Expression in Escherichia Coli
Kuriki et al. Analysis of the active center of Bacillus stearothermophilus neopullulanase
KR100601331B1 (ko) 아가레이즈 및 그의 유전자
US5786140A (en) DNA's encoding sucrose isomerase and palatinase
AU2000228416B2 (en) Bacterial isolates of the genus klebsiella, and an isomaltulose synthase gene isolated therefrom
JP4259169B2 (ja) 新規α−1,2−マンノシダーゼおよびその遺伝子、ならびに該酵素を用いたα−マンノシル糖化合物の製造方法
JP4815219B2 (ja) 好アルカリ性サイクロデキストラン合成酵素遺伝子を含有するdna、組み換え体dna、および好アルカリ性サイクロデキストラン合成酵素の製造法
WO1999066052A1 (fr) GENES CODANT POUR DES β-AGARASES ET LEUR UTILISATION POUR LA PRODUCTION D'ENZYMES DE BIODEGRADATION DES AGARS
AU708538B2 (en) Sucrose metabolism mutants
FR2779738A1 (fr) Gene codant pour la beta agarase agab de cytophaga drobachiensis souche dsij et son utilisation pour la production d'enzymes de biodegradation des agars
FR2807764A1 (fr) Mutants de bacteries lactiques surproducteurs d'exopolysaccharides
EP2456866B1 (fr) Porphyranases et leur utilisation pour hydrolyser des polysaccharides
WO2000031276A1 (fr) GENE CODANT POUR UNE α-AGARASE ET SON UTILISATION POUR LA PRODUCTION D'ENZYMES DE BIODEGRADATION DES AGARS
KR102588044B1 (ko) 폴리비닐알코올 분해효소와 그 제조방법
JP2003111590A (ja) 改変デキストランスクラーゼ、その遺伝子組み換え体、グルカンの製造法
AU784278B2 (en) Enzyme or cell preparation with inulinase activity
JP3062595B2 (ja) マルトペンタオース高生産性α−アミラーゼ遺伝子、該遺伝子を含むベクターおよび形質転換体
JPH07143880A (ja) 超耐熱性α−アミラーゼ遺伝子
CN114717213A (zh) 一种葡聚糖蔗糖酶的n端截短突变酶及其制备方法
BE1007723A6 (fr) Pullulanase, microorganismes la produisant, procedes de preparation de cette pullulanase et utilisations de celle-ci.
BE1007313A3 (fr) Pullulanase, microorganismes la produisant, procedes de preparation de cette pullulanase et utilisations de celle-ci.
KR20020025201A (ko) 폴리펩티드
JPH09173074A (ja) 新規遺伝子、および該遺伝子を保有する形質転換体細胞

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 200050080

Country of ref document: ES

Kind code of ref document: A

Ref document number: 200030283

Country of ref document: GB

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P200050080

Country of ref document: ES

Ref document number: 09719402

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19983297

Country of ref document: DE

Date of ref document: 20010510

WWE Wipo information: entry into national phase

Ref document number: 19983297

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 200050080

Country of ref document: ES

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 200050080

Country of ref document: ES

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607