WO1999065273A1 - Plattenlautsprecher - Google Patents

Plattenlautsprecher Download PDF

Info

Publication number
WO1999065273A1
WO1999065273A1 PCT/EP1999/003307 EP9903307W WO9965273A1 WO 1999065273 A1 WO1999065273 A1 WO 1999065273A1 EP 9903307 W EP9903307 W EP 9903307W WO 9965273 A1 WO9965273 A1 WO 9965273A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
edges
width
distance
driver
Prior art date
Application number
PCT/EP1999/003307
Other languages
English (en)
French (fr)
Inventor
Wolfgang Bachmann
Gerhard Krump
Hans-Jürgen Regl
Original Assignee
Harman Audio Electronic Systems Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7870481&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999065273(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Harman Audio Electronic Systems Gmbh filed Critical Harman Audio Electronic Systems Gmbh
Priority to EP99924965A priority Critical patent/EP1086606B1/de
Priority to JP2000554166A priority patent/JP2002518910A/ja
Priority to US09/719,279 priority patent/US6836552B1/en
Priority to DE59901200T priority patent/DE59901200D1/de
Publication of WO1999065273A1 publication Critical patent/WO1999065273A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/045Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers

Definitions

  • the invention relates to so-called plate loudspeakers that work according to the bending wave principle, in particular to the positioning of the drivers on the plate loudspeaker.
  • plate loudspeakers which operate according to the bending wave principle.
  • Such arrangements are essentially formed by a panel and at least one drive system, the panel being set in vibration when electrical audio frequency signals are supplied to the drive system (s). It is characteristic of such sound reproduction arrangements that "bending wave radiation” becomes possible from a lower limit frequency, the so-called critical frequency, the bending waves in the plane of the respective panel leading to sound radiation with a frequency-dependent direction.
  • a section through a directional diagram that has been created shows a main lobe, the direction of which is frequency-dependent.
  • These ratios are fully valid for infinitely extended plates and absorber plates, while the ratios for the multi-resonance plates (also known as distributed mode loudspeakers) dealt with in this application are then significantly more complex because of the strong edge reflections Multiresonance plates therefore rulters that the above-mentioned main lobe with frequency-dependent direction is overlaid by a Melir number of further such main lobes, so that a strongly diversified directional diagram arises, which is also seli r is frequency dependent.
  • a typical characteristic of the multi-resonance plates dealt with here is that their directional diagrams on average tend to point away from the perpendicular. This behavior means that the room is more involved in the projection of the sound waves.
  • the panel of the panel loudspeaker is constructed according to the sandwich principle, in that preferably two opposing surfaces of a very light core layer are each connected to a cover layer that is thin compared to the core layer, for example by gluing.
  • the material for the cover layer must have a particularly high expansion wave speed.
  • Suitable cover layer materials are, for example, thin metal foils or also fiber-reinforced plastic films. Special requirements are also placed on the core layer, since this layer must above all have a particularly low density (for example 20 to 30 kg / m " ").
  • the core layer should be able to absorb high shear stresses normal to the cover layers in the direction of no ⁇ nal to the cover layers, while parallel to the cover layers, even a low modulus of elasticity does not interfere.
  • the core layer can exhibit anisotropic or isotropic behavior fiber-reinforced papers (anisotropic) and rigid foams (isotropic) have proven their worth.
  • the panels are driven by drivers that
  • the drivers for example in the form of electrodynamic shakers or piezoelectric flexural vibrating disks, are installed as drive elements predominantly in the center or close to the edge, although other locations could appear more sensible from the consideration of individual, undisturbed vibration modes of rectangular plates.
  • the difficulty lies in the optimization of the excitation position taking into account the driver feedback, taking into account many, but above all the low-frequency modes and taking into account the acoustic contributions of each vibration mode at each modal frequency under consideration.
  • One solution would be modeling using the finite element method combined with a numerical solution of the acoustic field equations and with a stochastic variation of the boundary conditions and exact positions in the range of realistic tolerances.
  • Another solution would be to try out ready-made record speakers with random driver positions. Both conceivable solution methods are very complex.
  • the invention is therefore based on the object of specifying positioning areas for drivers to which drivers can be placed without great effort and with high efficiency, based on the area of the panel.
  • the positioning area extends between an edge zone which immediately adjoins the edges of the panel in the direction of the center of gravity of the panel and a center of gravity which extends around the center of gravity of the panel, a high yield in the available vibration modes is achieved and at the same time unfavorable point impedances are avoided.
  • the width B of the edge zone should be at least 5% of the diagonals of the panel in order to reduce the point impedances.
  • a particularly sustainable reduction occurs with the fixed clamping when the width B of the edge zone assumes values of approximately 10% of the diagonals of the panel.
  • the center of gravity should have a diameter D of at least 20% of the diagonal of the panel. Smaller diameter values lead to a disproportionate exclusion of vibration modes for the drive of the panel.
  • the center of gravity should be cross-shaped because the areas that directly adjoin the lateral axial ends running through the center of the edges and the center of gravity of the panel are not intended for the positioning of Have proven suitable drivers.
  • the width B1 should be at least 10% and B2 at least 5% of the diagonals of the panel.
  • an optimal positioning range for drivers is given if the drivers are at a distance AI from the center line M 'running parallel to the long edges of the panel and at a distance A2 from the center line M "running parallel to the short edges of the panel .
  • the distance AI should be approximately 7% and the distance A2 approximately 14% of the diagonals of the panel.
  • Figure 1 is a plan view of a plate speaker.
  • FIG. 2 shows a further illustration according to FIG. 2.
  • FIG. 1 shows a plan view, not to scale, of a plate loudspeaker 10.
  • This plate loudspeaker 10 is essentially formed by a panel 11 in sandwich construction, two drivers 12 and a frame 13. Since the panel 11 in the present embodiment is elongated, there are edges 14 of different lengths, namely the long edges 14.1 and the short edges 14.k.
  • the panel 1 1 is rigidly connected to the frame 13 at its edges 14.
  • the drivers 12 are integrated in the panel 11 and are therefore only indicated in FIG. 1.
  • Positioning area for drivers is identified by reference numeral 15.
  • This positioning area 15, which is dotted for better illustration, extends between an edge zone 16, which directly adjoins the edges 14 and has a width B, and a focal point zone 17 with a diameter D1.
  • the welding point zone 17 in connection with this application is understood to mean the area of the panel 11 which surrounds the welding point S of the panel 11.
  • the edge zone 16 which in the present exemplary embodiment has a uniform width B of 10% of the diagonal D of the panel 11, can also be of different width for the differently long edges 14.1, 14.k in another exemplary embodiment (not shown). But also in this case it applies that the edge zone 16 has the greatest possible width B in order to exclude point impedances.
  • the welding point zone 17 has a diameter Dl of 25% of the diagonals D of the panel 11. In order to use as many vibration modes as possible for driving the panel 11, the welding point zone 17 should also be chosen as large as possible.
  • the panel 11 is connected to the frame 13 at its edges 14.1, 14.k by means of elastic elements 18.
  • the type of connection between frame 13 and panel 11 does not have a great influence on the optimal positioning of drivers 12 on panel 11, so that the conditions shown in the exemplary embodiment according to FIG. 1 largely also for Record loudspeaker 10 according to Figure 2 and vice versa.
  • the edge zone 16 does not have a uniform width B. Rather, " the edge zones 16 with the width B1 running parallel to the long edges 14.1 are wider than the edge zones 16 with the width B2 running parallel to the short edges 14.k.
  • Dependency of the different widths B1, B2 on the size of the panel 11 is given by the fact that the width B1 is approximately 16% and the width B2 is approximately 6.3% of the diagonals D of the panel 11.
  • the welding point zone 17 has a cross-shaped design in that two surface strips 17 '; 17 ", which each run parallel to the edges 14 and intersect in the welding point S of the panel 11.
  • the width B3 (B3 .1, B3.2) of the two surface strips 17 ', 17 " is of different sizes in order to obtain a reasonably large processing area 15 for the drivers 12.
  • the width B3.2 of the surface strip 17 ' is parallel to the long edge 14.1 runs 2.9% and the width B3.1 of the other area strip 17 "17.4% of the diagonals D of the panel 11.
  • each positioning area 15.1 -15.4 is provided with a triangular reduction 20 In each case two sides of each reduction 20 are formed by the inner edges 21 of the edge zone 16. The third sides of the triangular-shaped reductions 20 lie on a line 22 which, as shown in Fig.
  • the distance Al between driver 12 and center line M ' is 6.9% and the distance A2 between driver 12 and center line M "is 14% of the diagonals D of panel 11.
  • all drivers 12 are the distance conditions to the center lines M ', M ", the conditions need not be fulfilled for all drivers 12 in another embodiment (not shown). For example, it may be sufficient if only two of the drivers 12 meet the distance conditions and the other drivers 12 are arranged within the dotted positioning areas 15.1-15.4. It is also not necessary for all drivers 12 to be aligned symmetrically to one another within the positioning areas 15.1-15.4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

Die Erfindung befaßt sich mit der Ausbildung von sogenannten Plattenlautsprechern, die nach dem Biegewellenprinzip arbeiten. Derartige Lautsprecher werden allgemein von einem Paneel (11), mindestens einem Treiber (12) und einem Rahmen (13) gebildet. Dabei ist das Paneel (11) mit dem Rahmen (13) verbunden. Um eine sachgerechte Einprägung von Biegewellen in das Paneel (11) zu erhalten, müssen sehr aufwendige Untersuchungen vorgenommen werden, um den jeweiligen Positionierbereich (15) zu ermitteln, in welchem die Treiber (12) das Paneel (11) antreiben bzw. mit diesem verbunden werden sollen. Hinzu kommt außerdem, daß die Größe der Paneele (11) je nach Anwendung auch erheblichen Größenveränderungen unterliegen kann, so daß für nur leicht modifizierte Paneele (11) immer wieder die Untersuchungen vorgenommen werden müssen. Daher liegt der Erfindung die Aufgabe zugrunde, allgemeingültige Positionierbereiche (15) für Treiber (12) an oder auf Paneelen (11) anzugeben, welche keine weiteren Untersuchungen bezüglich des Positionierbereichs (15) erforderlich machen. Hierzu wird im ersten Ansatz angegeben, eine Randzone (16), welche unmittelbar an die Ränder (13) des Paneels (11) anschließt, sowie eine Schwerpunktzone (17), welche sich um den Schwerpunkt S des Paneels (11) erstreckt, nicht als Positionierbereiche (15) vorzusehen. Außerdem werden Angaben zur Breite bzw. Ausdehung der verschiedenen Zonen (16, 17) bezogen auf die Größe des Paneels (11) gemacht.

Description

Besclireibung
Plattenlautsprecher
Technisches Gebiet
Die Erfindung bezieht sich auf sogenannte Plattenlautsprecher, die nach de Biegewellenprinzip arbeiten, insbesondere auf die Positionierung der Treiber am Plattenlautsprecher.
Stand der Technik
Gemäß dem Stand der Technik sind Plattenlautsprecher bekannt, die nach de Biegewellenprinzip arbeiten. Derartige Anordnungen werden im wesentlichen von einem Paneel und wenigstens einem Antriebssystem gebildet, wobei das Paneel in Schwingungen versetzt wird, wenn dem oder den Antriebssystem(en) elektrische Tonfrequenzsignale zugeführt werden. Charakteristisch für solche Schallwiedergabeanordnungen ist, daß ab einer unteren Grenzfrequenz, der sogenannten kritischen Frequenz eine „Biegewellenabstrahlung" möglich wird, wobei die Biegewellen in der Ebene des jeweiligen Paneels zu einer Schallabstrahlung mit frequenzabhängiger Richtung führen. Mit anderen Worten, ein Schnitt durch ein erstelltes Richtdiagramm zeigt eine Hauptkeule, deren Richtung frequenzabhängig ist. Diese Verhältnisse sind für unendlich ausgedehnte Platten und Absorberplatten vollständig gültig, während die Verhältnisse für die in dieser Anmeldung behandelten Multiresonanzplatten (auch Distributed Mode Loudspeaker genannt) wegen der starken Randreflexe dann deutlich komplexer sind. Diese Komplexität bei Multiresonanzplatten rülirt daher, daß die genannte Hauptkeule mit frequenzabhängiger Richtung von einer Melirzahl weiterer solcher Hauptkeulen überlagert wird, so daß ein stark aufgefächertes Richtdiagramm entsteht, welches außerdem selir frequenzabhängig ist. Typisches Kennzeichen der hier behandelten Multiresonanzplatten ist, daß ihre Richtdiagramme im Mittel eher von der Mittelsenkrechten wegweisen. Dieses Verhalten bewirkt, daß der Raum stärker in die Projektion der Schallwellen einbezogen wird.
Das Paneel des Plattenlautsprechers ist nach dem Sandwich-Prinzip aufgebaut, indem vorzugsweise zwei einander gegenüberliegende Oberflächen einer sehr leichten Kernschicht mit jeweils einer im Vergleich zur Kemschicht dünnen Deckschicht beispielsweise durch Verklebung verbunden sind. Damit der Plattenlautsprecher gute Schallwiedergabeeigenschaften aufweist, muß das Material für die Deckschicht eine besonders hohe Dehnwellengeschwindigkeit haben. Geeignete Deckschichtmaterialien sind beispielsweise dünne Metallfolien oder auch faserverstärkte Kunststoffolien. Auch an die Kernschicht werden besondere Anforderungen gestellt, denn diese Schicht muß vor allem eine besonders geringe Dichte (z.B. 20 bis 30 kg/m' '' aufweisen. Weiterhin soll die Kernschicht hohe Schubspannungen noπnal zu den Deckschichten aufnehmen können. Dazu muß letztlich der Elastizitätsmodul in Richtung noπnal zu den Deckschichten ausreichend groß sein, während parallel zu den Deckschichten auch ein selir geringer E-Modul nicht stört. Insofern kann die Kernschicht anisotropes oder auch isotropes Verhalten zeige. Als ultraleichte Kernschi chtstmkturen haben sich beispielsweise Waben aus Leichtmetall- Legierungen oder harzgetränkte faserverstärkte Papiere (anisotrop) und Hartschäume (isotrop) bewährt.
Außerdem ist es aus DE-A-197 57 098 bekannt, daß Paneel mit einem Rahmen zu verbinden, welcher das Paneel aufnimmt und die Verbindung mit anderen Bauteilen ermöglicht. Je nach Ausbildung kann dieser Rahmen auch von einer Einbauwand, in welcher das Paneel integriert werden soll, gebildet sein. Die Verbindung zwischen dem Paneel und dem Rahmen ist in der Regel als elastische Verbindung ausgelegt, welche auf das schwingenden Paneel keinen oder nur einen selir geringen Widerstand ausübt. Auch sind harte Verbindungen bekannt, bei welchen die Paneel starr mit den Rahmen verbunden sind.
Der Antrieb der Paneele erfolgt mittels Treibern, die
-wie in DE-A-197 57 097 gezeigt- entweder am jeweilige Paneel aufgesetzt oder in diesem integriert sind.
Außerdem ist es bekannt, daß die Treiber etwa in der Foπn von elektrodynamischen Shakern oder piezoelektrischen Biegeschwingerscheiben als Antriebselemente vorwiegend im Zentrum oder aber in enger Randnähe angebracht werden, obwohl aus der Betrachtung einzelner, ungestörter Schwingungsmoden von Rechteckplatten andere Orte sinnvoller erscheinen könnten. Die Schwierigkeit besteht in der Optimierung der Anregungsposition unter Berücksichtigung der Treiberrückwirkung, unter Berücksichtigung vieler, aber vor allem der tieffrequenten Moden und unter Berücksichtigung der akustischen Beiträge jedes Schwingungsmodes bei jeder betrachteten Modalfrequenz. Eine Lösung bestünde in der Modellierung nach der Finite- Elemente-Methodik kombiniert mit einer numerischen Lösung der akustischen Feldgleichungen und mit einer stochastischen Variation der Randbedingungen und exakten Positionen im Bereich realistischer Toleranzen. Eine andere Lösung bestünde im praktischen Erproben fertig gebauter Plattenlautsprecher mit zufälligen Treiberpositionen. Beide denkbare Lösungsverfahren sind sehr aufwendig. Daher liegt der Erfindung die Aufgabe zugrunde, Positionierbereiche für Treiber anzugeben, an welchen Treiber bezogen auf die Fläche des Paneels ohne großen Aufwand und aber mit hoher Effizienz plazierbar sind.
Darstellung der Erfindung
Diese Aufgabe wird mit den in den Anspmch 1 angegeben Merkmalen gelöst. Vorteilhafte Aus- und Weiterbildungen der Erfindung sind den Ansprüchen 2 bis 12 entnehmbar.
Erstreckt sich gemäß Anspruch 1 der Positionierbereich zwischen einer Randzone, die sich unmittelbar an die Ränder des Paneel in Richtung des Schwerpunkt Paneels anschließt, und einer Schwerpunktzone, welche sich um den Schwerpunkt des Paneels erstreckt, wird eine hohe Ausbeute bei den verfügbaren Schwingungsmoden erreicht und gleichzeitig werden ungünstige Punktimpedanzen vermieden.
Ist gemäß Anspruch 2 das Paneel fest in einem Rahmen eingespannt, sollte die Breite B der Randzone mindestens 5% der Diagonalen des Paneels betragen, um die Punktimpedanzen zu mindern. Eine besonders nachhaltige Mindemng tritt bei der festen Einspannung dann ein, wenn die Breite B der Randzone Werte von etwa 10% der Diagonalen des Paneels annimmt. Zur Erhöhung der Ausbeute der Schwingungsmoden, sollte die Schwerpunktzone einen Durchmesser D von mindestens 20% der Diagonalen des Paneels haben. Kleinere Durchmesserwerte führen zu einem überproportionalen Ausschluß von Schwingungsmoden für den Antrieb des Paneels.
Ist gemäß Anspmch 3 das Paneel über nachgiebige Elemente mit dem Rahmen verbunden, sollte die Schweφunktzone kreuzföπnig ausgebildet sein, weil sich die Bereiche, welche unmittelbar an die durch die Mitten der Ränder und den Schwerpunkt des Paneels verlaufenden Seitenlialbierenden anschließen, als nicht für die Positionierung von Treibern geeignet erwiesen haben.
Wird gemäß Anspmch 3 die Schweφunktzone kreuzföπnig ausgebildet, ergeben sich vier Positionierbereiche. Um den Einfluß der Ränder des Paneels auf diese Positionierbereiche zu verringern, sollte gemäß Anspmch 4 diese in den Bereichen, in welchen jeweils zwei Ränder des Paneels eine Ecke bilden, eine Verkleinerung aufweisen.
Um dem Einfluß der Ecken des Paneels vollständig auszuschließen, sollten die Verkleinerungen so wie in Anspmch 5 angegeben ausgestaltet sein. Hat gemäß Anspmch 6 das Paneel keine quadratische, sondern eine längliche ' = Foπn, sollte die Breite für unterschiedliche lange Ränder des Paneels unterschiedlich sein.
Dies bedeutet gemäß Anspmch 7, daß die Breite Bl der Randzone, welche entlang der langen Ränder des Paneels verläuft, größer ist als die Breite B2 der Randzone, welche entlang der kurzen Ränder verläuft.
Dabei sollte gemäß Anspmch 8 die Breite B l mindestens 10% und B2 mindestens 5% der Diagonalen des Paneels betragen.
Um die schon beschriebenen Nachteile auszuschließen bzw. um dennoch einen relativ großen Positionierbereich zu erhalten, ist es gemäß Anspmch 9 nicht notwendig, daß die Flächenbereiche, welche die kreuzföπnige Schweφunktzone bilden, die gleiche Breite haben.
Vielmehr ist es gemäß Anspmch 10 ausreichend, wenn die parallel zu den langen Rändern des Paneels verlaufenden Flächenbereiche eine Breite 3.1 von größer/gleich 2,5% und die parallel zu den kurzen Rändern der Paneels verlaufenden Flächenbereiche eine Breite 3.2 von größer/gleich 17% der Diagonalen des Paneels haben.
Ein optimaler Positionierbereich für Treiber ist gemäß Anspmch 1 1 dann gegeben, wenn die Treiber zu der parallel zu den langen Ränder des Paneels verlaufenden Mittellinie M' einen Abstand AI und zu der parallel zu den kurzen Ränder des Paneels verlaufenden Mittellinie M" einen Abstand A2 haben.
Bezogen auf die Größe des Paneels sollte gemäß Anspmch 1 der Abstand AI etwa 7% und der Abstand A2 etwa 14% der Diagonalen des Paneels betragen.
Kurze Darstellung der Figuren
Es zeigen:
Fig. 1 eine Draufsicht auf einen Plattenlautsprecher; und
Fig. 2 eine weitere Darstellung gemäß Fig. 2.
Wege zum Ausfuhren der Erfindung Die Erfindung soll nun anhand der Figuren näher erläutert werden.
In Figur 1 ist eine nicht maßstabsgerechte Draufsicht auf einen Plattenlautsprecher 10 gezeigt. Dieser Plattenlautsprecher 10 wird im wesentlichen von einem Paneel 11 in Sandwich-Bauweise, zwei Treibern 12 und einem Rahmen 13 gebildet. Da das Paneel 1 1 im vorliegenden Ausfülirungsbeispiel länglich ausgebildet ist, sind unterschiedlich lange Ränder 14 vorhanden, und zwar die langen Ränder 14.1 und die kurzen Ränder 14.k. Das Paneel 1 1 ist an seinen Rändern 14 mit dem Rahmen 13 starr verbunden. Die Treiber 12 sind im Paneels 1 1 integriert und daher in Fig. 1 nur angedeutet.
Mit dem Bezugszeichen 15 ist Positionierbereich für Treiber gekennzeichnet. Dieser Positionierbereich 15, welcher zur besseren Darstellung punktiert ist, erstreckt sich zwischen einer Randzone 16, welche unmittelbar an die Ränder 14 anschließt und eine Breite B hat, und einer Schweφunktzone 17 mit einem Durchmesser Dl . Unter der Schweφunktzone 17 wird im Zusammenhang mit dieser Anmeldung der Bereich des Paneels 1 1 verstanden, der den Schweφunkt S des Paneels 1 1 umgibt.
Die Randzone 16, welche im vorliegen Ausfühmngsbeispiel eine einheitliche Breite B von 10% der Diagonalen D des Paneels 1 1 hat, kann in einem anderen -nicht dargestellten- Ausfühmngsbeispiel auch für die verschieden langen Ränder 14.1, 14.k unterschiedlich breit sein. Aber auch in diesem Falle gilt, daß die Randzone 16 eine möglichst große Breite B aufweist, um Punktimpedanzen auszuschließen.
Die Schweφunktzone 17 hat vorliegend emen Durchmesser Dl von 25% der Diagonalen D des Paneels 1 1. Um möglichst viele Schwingungsmoden für den Antrieb des Paneels 1 1 zu nutzen, sollte die Schweφunktzone 17 ebenfalls möglichst groß gewählt werden.
In Fig. 2 ist ein weiteres Ausfühmngsbeispiel für einen optimalen Positionierbereich 15 (15.1 bis 15.4) gezeigt. In diesem Ausfühmngsbeispiel ist das Paneel 11 an seine Rändern 14.1, 14. k mittels von elastischen Elementen 18 mit dem Rahmen 13 verbunden. Nur der Vollständigkeit halber sei darauf hingewiesen, daß die Art der Verbindung zwischen Rahmen 13 und Paneel 1 1 keinen großen Einfluß für die optimale Positionierung der Treiber 12 auf dem Paneel 11 hat, so daß die im Ausfülirungsbeispiel gemäß Fig. 1 gezeigten Verhältnisse weitgehend auch für Plattenlautsprecher 10 gemäß Fig.2 und umgekehrt gelten. Gemäß Fig. 2 hat die Randzone 16 keine einheitliche Breite B. Vielmehr sind "die parallel zu den langen Rändern 14.1 verlaufenden Randzonen 16 mit der Breite Bl breiter als die parallel zu den kurzen Rändern 14.k verlaufende Randzonen 16 mit der Breite B2. Die Abhängigkeit der verschiedenen Breiten Bl , B2 zur Größe des Paneels 1 1 ist dadurch gegeben, daß die Breite B l etwa 16% und die Breite B2 etwa 6,3% der Diagonalen D des Paneels 1 1 beträgt.
Der Darstellung gemäß Fig. 2 ist entnehmbar, daß die Schweφunktzone 17 kreuzföπnig ausgebildet ist, indem zwei Flächenstreifen 17';17", welche jeweils parallel zu den Rändern 14 verlaufen und sich im Schweφunkt S des Paneels 1 1 überkreuzen. Die Breite B3 (B3.1, B3.2) beider Flächenstreifen 17', 17" ist unterschiedlich groß, um noch einen vertretbar großen Prositionierbereich 15 für die Treiber 12 zu erhalten. Bezogen auf die Abmessungen des Paneels 1 1 bzw. mit Rücksicht auf die durch die längliche Ausgestaltung des Paneels 1 1 und der damit verbunden unterschiedlich langen Ränder 14.1, 14. k beträgt die Breite B3.2 des Flächenstreifens 17', welcher parallel zum langen Rand 14.1 verläuft, 2,9% und die Breite B3.1 des anderen Flächenstreifens 17" 17,4% der Diagonalen D des Paneels 1 1.
Durch die sich kreuzenden Flächenstreifen 17', 17" werden zusammen mit der Randzone 16 vier Positionierbereiche 15.1 -15.4 geschaffen, in denen Treiber 12 mit guten Resultaten plaziert werden können. Werden jedoch die Bereiche der grundsätzlichen Positionierbereiche 15.1 - 15.4 nahe den Ecken 19, in denen jeweils ein kurzer Rand 14.k mit einem langen Rand 14.1 zusammentrifft, mit Treibern 12 versehen, wird die Biegewelleneinprägung in das Paneel 1 1 wegen der Nähe zur Ecke 19 erheblich verschlechtert. Deshalb ist jeder Positionierbereich 15.1 -15.4 mit einer dreieckföπnigen Verkleinerung 20 versehen. Jeweils zwei Seiten einer jeden Verkleinerung 20 werden von den Innenrändem 21 der Randzone 16 gebildet. Die dritten Seiten der dreieckföπnigen Verkleinemngen 20 liegen auf einen Linienzug 22, welcher -wie in Fig. 2 gezeigt- die Mitten M sämtlicher Ränder 14 miteinander verbindet. Um diese Verhältnisse besser darzustellen, sind die um die Verkleinemngen 20 reduzierten Positiohierbereiche 15.1 -15.4 in Fig. 2 ebenfalls punktiert dargestellt. Auch wenn die Positionierung von Treibern 12 in den punktierten Positionierbereichen schon als optimal angesehen werden kann, hat sich herausgestellt, daß die Anordnung von Treibern 12 in Bereichen der Positionierbereiche 15.1 -15.4, welche nahe den dem Schweφunkt zugewandten Ecken 23 innerhalb der Positionierbereiche 15.1 -15.4 liegen, eine nicht mehr übertrefϊbare Optimierung erreicht werden kann. Bezogen auf die Geometrie des Paneels 11 bedeutet dies, daß die Bereiche innerhalb der Positionierbereiche 15.1 - 15.2 zu den sich im Schweφunkt S schneidenden und i.ü. parallel zu den langen und kurzen Rändern 14.1, 14.k verlaufenden Mittellinien M\ M" einen verschieden großen Abstand AI , A2 einhalten. Im in Fig. 2 gezeigten Ausfülirungsbeispiel beträgt der Abstand AI zwischen Treiber 12 und Mittellinie M' 6.9% und der Abstand A2 zwischen Treiber 12 und Mittellinie M" 14% der Diagonalen D des Paneels 1 1 . Auch wenn im Ausfühmngsbeispiel sämtliche Treiber 12 die Abstandsbedingungen zu den Mittellinien M', M" erfüllen, müssen die Bedingungen in einem anderen -nicht gezeigten- Ausführungsbeispiel nicht für alle Treiber 12 erfüllt sein. So kann es beispielsweise ausreichend sein, wenn nur zwei der Treiber 12 die Abstandsbedingungen erfüllen und die anderen Treiber 12 innerhalb der punktierten Positionierbereiche 15.1 - 15.4 angeordnet sind. Auch ist es nicht notwendig, daß sämtliche Treiber 12 symmetrisch zueinander innerhalb der Positionierbereiche 15.1 - 15.4 ausgerichtet sind.

Claims

Ansprüche
1. Plattenlautsprecher
mit einen Paneel 1 1 , welches Ränder 14, 14.1, 14. k und eine Schweφunktzone 17 aufweist,
mit wenigstens einem Treiber 12 und
mit einen Rahmen 13, welcher mit dem Paneel 1 1 verbunden ist
dadurch gekennzeichnet,
daß das Paneel 1 1 eine unmittelbar an seine Ränder 14 anschließende und sich zum Schweφunkt S des Paneels 1 1 erstreckende Randzone 16 aufweist,
daß sich die Schweφunktzone 17 um den Schweφunkt S des Paneels 1 1 erstreckt,
daß ein Positionierbereich 15, 15. 1 -15.4 vorhanden ist, welche sich zwischen der Randzone 16 und der Schweφunktzone 1 7 ausdehnt, und
daß der oder die Treiber 12 ausschließlich innerhalb des Positionierbereichs 15, 15.1 -15.4 mit dem Paneel 1 1 verbunden sind.
2. Plattenlautsprecher nach Anspmch 1
dadurch gekennzeichnet,
daß bei einem fest im Rahmen 13 eingespannten Paneel 1 1 die Randzone 16 eine Breite B hat, wobei die Breite B mindestens 5%> der Diagonalen D des Paneels 1 1 entspricht, und
daß die Schweφunktzone 17 einen Durclimesser D 1 von mindestens 20% der Diagonalen D des Paneels 1 1 hat.
3. Plattenlautsprecher nach Anspmch 1
dadurch gekennzeichnet,
daß bei einem Paneel 1 1 , welches über nachgiebige Elemente 18 mit dem Rahmen 13 verbunden ist, die Schweφunktzone 17 ein kreuzförmiger Flächenbereich ist und von zwei durch den Schweφunkt S des Paneels 1 1 verlaufenden, rechtwinklig zueinander verlaufenden und die jeweiligen Randzone 16 auf kürzestem Weg verbindenden Flächenstreifen 17' 17" gebildet ist.
4. Plattenlautsprecher nach Anspmch 3
dadurch gekennzeichnet,
daß die sich durch die kreuzföπnige Ausbildung der Schweφunktzone 17 (17', 17") ergebenden vier Positionierbereiche 15.1 -15.4 nahe den Bereichen, an denen jeweils zwei Ränder 14.1, 14 k des Paneels 1 1 eine Ecke 19 bilden, eine Verkleinemng 20 aufweisen.
5. Plattenlautsprecher nach Anspmch 4
dadurch gekennzeichnet,
daß die Verkleinemngen 20 der Positionierbereiche 15.1 -15.4 dreieckföπnig ausgebildet sind, wobei zwei Seiten einer jeden dreieckföπnigen Verkleinemng 20 von den Innenrändem 21 der Randzone 16 und die verbleibenden Seiten der dreieckföπnigen Verkleinemngen 20 auf einem geschlossenen Linienzug 22 liegen, der die Mitten M der Ränder 14, 14.1, 14. k verbindet.
6. Plattenlautsprecher nach Anspmch nach einem der Ansprüche 2 bis 5
dadurch gekennzeichnet,
daß das Paneel 1 1 rechteckig ausgebildet ist, wobei jeweils zwei eine Ecke 19 bildende Ränder 14.1, 14. k des Paneels 1 1 eine unterschiedliche Läge haben, und
daß die Breite B der Randzonen 16 für unterschiedlich lange Ränder 14.1, 14. k des Paneels 1 1 unterschiedlich breit ist.
7. Plattenlautsprecher nach Anspmch 6
dadurch gekennzeichnet,
daß die Breite Bl der Randzone 16, welche an die langen Ränder 14.1 des Paneels 1 1 anschließt, größer ist als die Breite B2 der Randzone 16, welche an die kurzen Ränder 14.k des Paneels 1 1 anschließt.
8. Plattenlautsprecher nach Anspmch 7
dadurch gekennzeichnet,
daß die Breite Bl mindestens 10% und B2 mindestens 5% der Diagonalen D des Paneels 1 1 entspricht.
9. Plattenlautsprecher nach einem der Ansprüche 3 bis 8
dadurch gekennzeichnet,
daß die beiden sich kreuzenden Flächenbereiche 1 7', 17 "eine unterschiedlich große Breite B3 haben.
10. Plattenlautsprecher nach einem der Ansprüche 6 bis 8
dadurch gekennzeichnet,
daß die beiden sich kreuzenden Flächenbereiche 17', 17"eine unterschiedlich große Breite B3 haben, wobei der parallel zu den langen Rändern 14.1 des Paneels 1 1 verlaufende Flächenbereich 17' eine Breite 3.1 von größer/gleich 2,5% und der Flächenbereich 17", welcher parallel zu den kurzen Rändern 14.k des Paneels 1 1 verläuft, eine Breite 3.2 von größer/gleich 17% der Diagonalen D des Paneels 1 1 hat.
1 1. Plattenlautsprecher nach einem der Ansprüche 6 bis 10
dadurch gekennzeichnet,
daß die Treiber 12 zu den sich im Schweφunkt S schneidenden und i.ü. parallel zu den langen und kurzen Rändern 14.1, 14.k verlaufenden Mittellinien M', M" jeweils einen Abstand einlialten, wobei der Abstand AI den Abstand der Treiber 12 zu der parallel zum langen Rand 14.1 verlaufenden Mittellinie M' und der Abstand A2 den Abstand der Treiber 12 zu der parallel zum kurzen Rand 14.k verlaufenden Mittellinie M" angibt, und
daß der Abstand AI kleiner ist als der Abstand A2.
12. Plattenlautsprecher nach Anspmch 11 dadurch gekennzeiclinet,
daß AI etwa 7% und A2 etwa 14% der Diagonalen D des Paneels 1 1 beträgt.
PCT/EP1999/003307 1998-06-10 1999-05-14 Plattenlautsprecher WO1999065273A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99924965A EP1086606B1 (de) 1998-06-10 1999-05-14 Plattenlautsprecher
JP2000554166A JP2002518910A (ja) 1998-06-10 1999-05-14 パネルスピーカ
US09/719,279 US6836552B1 (en) 1998-06-10 1999-05-14 Panel loudspeakers
DE59901200T DE59901200D1 (de) 1998-06-10 1999-05-14 Plattenlautsprecher

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19825866.6 1998-06-10
DE19825866A DE19825866A1 (de) 1998-06-10 1998-06-10 Plattenlautsprecher

Publications (1)

Publication Number Publication Date
WO1999065273A1 true WO1999065273A1 (de) 1999-12-16

Family

ID=7870481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/003307 WO1999065273A1 (de) 1998-06-10 1999-05-14 Plattenlautsprecher

Country Status (5)

Country Link
US (1) US6836552B1 (de)
EP (1) EP1086606B1 (de)
JP (1) JP2002518910A (de)
DE (2) DE19825866A1 (de)
WO (1) WO1999065273A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19825866A1 (de) 1998-06-10 1999-12-16 Nokia Deutschland Gmbh Plattenlautsprecher
DE10001410C2 (de) * 2000-01-14 2001-12-06 Harman Audio Electronic Sys Flachlautsprecheranordnung
DE10058102C2 (de) * 2000-11-23 2003-07-03 Harman Audio Electronic Sys Elektrodynamischer Biegemomententreiber
GB0123932D0 (en) * 2001-10-05 2001-11-28 New Transducers Ltd Loudspeakers
DE10154915B4 (de) * 2001-11-08 2005-02-03 Harman/Becker Automotive Systems Gmbh (Harman Division) Flachlautsprecheranordnung
US20040038722A1 (en) * 2002-08-22 2004-02-26 Michael Gauselmann Gaming machine having a distributed mode acoustic radiator
EP1952667A1 (de) * 2005-11-14 2008-08-06 Nxp B.V. Asymmetrisches bewegungssystem für einen piezoelektrischen sprecher und asymmetrischer sprecher
JP4524700B2 (ja) * 2007-11-26 2010-08-18 ソニー株式会社 スピーカ装置およびスピーカ駆動方法
US9769572B2 (en) * 2013-05-08 2017-09-19 Goertek Inc. Tablet woofer and electronic device using same
KR101707085B1 (ko) * 2013-05-08 2017-02-15 고어텍 인크 평판형 저음 스피커
KR101707083B1 (ko) * 2013-05-08 2017-02-15 고어텍 인크 평판형 저음 스피커
DE102015217778B4 (de) * 2015-09-17 2019-05-29 Robert Bosch Gmbh Akustischer Sensor mit einer Membran und einem elektroakustischen Wandler
KR102370183B1 (ko) * 2017-07-12 2022-03-03 엘지디스플레이 주식회사 표시장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247925A (en) * 1962-03-08 1966-04-26 Lord Corp Loudspeaker
US3347335A (en) * 1965-04-05 1967-10-17 Bolt Beranek & Newman Acoustic-wave apparatus
WO1992003024A1 (en) * 1990-08-04 1992-02-20 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Panel-form loudspeaker
WO1997009842A2 (en) * 1995-09-02 1997-03-13 New Transducers Limited Acoustic device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474417A (en) * 1977-11-26 1979-06-14 Sony Corp Multi-point driving type speaker
JPS5525285A (en) * 1978-08-14 1980-02-22 Sony Corp Speaker
US4426556A (en) 1980-07-08 1984-01-17 Matsushita Electric Industrial Co., Ltd. Electrodynamic loudspeaker
US4969197A (en) * 1988-06-10 1990-11-06 Murata Manufacturing Piezoelectric speaker
JP3148520B2 (ja) * 1994-06-06 2001-03-19 株式会社ケンウッド スピーカ構造
KR19990044030A (ko) * 1995-09-02 1999-06-25 에이지마. 헨리 라우드스피커를 구비하는 악기
US6031926A (en) * 1996-09-02 2000-02-29 New Transducers Limited Panel-form loudspeakers
DE19757099A1 (de) 1997-12-20 1999-06-24 Nokia Deutschland Gmbh Kontaktierung für eine Schallwiedergabeanordnung nach dem Biegewellenprinzip
DE19757098C2 (de) 1997-12-20 2003-01-09 Harman Audio Electronic Sys Aufhängung für Schallwiedergabeanordnungen nach dem Biegewellenprinzip
DE19757097B4 (de) 1997-12-20 2004-04-15 Harman Audio Electronic Systems Gmbh Schallwiedergabeanordnung
DE19821861A1 (de) 1998-05-15 1999-11-18 Nokia Deutschland Gmbh Vorrichtung zur dynamischen Anregung von Plattenlautsprechern
DE19821860A1 (de) 1998-05-15 1999-11-18 Nokia Deutschland Gmbh Treiber für flaches Klangpaneel
DE19821862A1 (de) 1998-05-15 1999-11-18 Nokia Deutschland Gmbh Schallwiedergabeanordnung
DE19821624A1 (de) 1998-05-15 1999-11-18 Nokia Deutschland Gmbh Projektionswand
DE19825866A1 (de) 1998-06-10 1999-12-16 Nokia Deutschland Gmbh Plattenlautsprecher
DE19840375C2 (de) 1998-09-04 2003-08-28 Harman Audio Electronic Sys Schallwand
DE10001410C2 (de) 2000-01-14 2001-12-06 Harman Audio Electronic Sys Flachlautsprecheranordnung
DE10025460B4 (de) 2000-05-23 2004-03-18 Harman Audio Electronic Systems Gmbh Hochtonlautsprecher
US20030147541A1 (en) 2001-01-26 2003-08-07 Wolfgang Bachmann Flat-panel loudspeaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247925A (en) * 1962-03-08 1966-04-26 Lord Corp Loudspeaker
US3347335A (en) * 1965-04-05 1967-10-17 Bolt Beranek & Newman Acoustic-wave apparatus
WO1992003024A1 (en) * 1990-08-04 1992-02-20 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Panel-form loudspeaker
WO1997009842A2 (en) * 1995-09-02 1997-03-13 New Transducers Limited Acoustic device

Also Published As

Publication number Publication date
JP2002518910A (ja) 2002-06-25
EP1086606B1 (de) 2002-04-10
DE19825866A1 (de) 1999-12-16
US6836552B1 (en) 2004-12-28
EP1086606A1 (de) 2001-03-28
DE59901200D1 (de) 2002-05-16

Similar Documents

Publication Publication Date Title
DE19757098C2 (de) Aufhängung für Schallwiedergabeanordnungen nach dem Biegewellenprinzip
DE69635308T2 (de) Piezoelektrischer wandler
EP1078552B1 (de) Vorrichtung zur dynamischen anregung von plattenlautsprechern
DE10042185B4 (de) Piezoelektrischer elektroakustischer Wandler
EP1086606A1 (de) Plattenlautsprecher
DE3147169A1 (de) Dynamischer lautsprecher
DE19654156C2 (de) Lautsprechereinheit und die Lautsprechereinheit verwendendes Lautsprechersystem
DE3525724A1 (de) Piezoelektrischer elektroakustischer wandler
EP1077014A1 (de) Treiber für flaches klangpaneel
DE19757097B4 (de) Schallwiedergabeanordnung
DE2924204A1 (de) Lautsprecher und verfahren zu dessen herstellung
DE2920802A1 (de) Elektroakustischer wandler
DE2400625A1 (de) Elektroakustischer wandler
EP1078551B1 (de) Plattenlautsprecher
EP1078553B1 (de) Schallwiedergabeanordnung nach dem biegewellenprinzip
EP0924957B1 (de) Anschlusskontaktierung
DE60004678T2 (de) Biegewellen-plattenlautsprecher und verfahren zum betreiben desselben
EP0984659B1 (de) Schallwand
EP0222276A2 (de) Ultraschallprüfkopf
DE1195356B (de) Schwingsystem fuer einen elektrodynamischen Wandler
DE112006001232T5 (de) Lautsprecherbox und Lautsprechervorrichtung
WO2003049493A1 (de) Displayfenster zur schallabstrahlung in kommunikations- und multimediageräten
DE10025826B4 (de) Schallabsorptionsvorrichtung für eine Motorraumabdeckung eines Fahrzeugs
DE3024733A1 (de) Schwingspulenanordnung
DE1299723B (de) Elektrostatischer, elektroakustischer Wandler

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999924965

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09719279

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999924965

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999924965

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999924965

Country of ref document: EP