WO1999062663A1 - Machine de coupe a scie circulaire - Google Patents

Machine de coupe a scie circulaire Download PDF

Info

Publication number
WO1999062663A1
WO1999062663A1 PCT/JP1999/002781 JP9902781W WO9962663A1 WO 1999062663 A1 WO1999062663 A1 WO 1999062663A1 JP 9902781 W JP9902781 W JP 9902781W WO 9962663 A1 WO9962663 A1 WO 9962663A1
Authority
WO
WIPO (PCT)
Prior art keywords
circular saw
cutting
main shaft
spindle
kgf
Prior art date
Application number
PCT/JP1999/002781
Other languages
English (en)
French (fr)
Inventor
Satoru Nishio
Kunio Ohno
Original Assignee
Kanefusa Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP16603898A external-priority patent/JPH11333624A/ja
Priority claimed from JP06823899A external-priority patent/JP3373166B2/ja
Application filed by Kanefusa Kabushiki Kaisha filed Critical Kanefusa Kabushiki Kaisha
Priority to EP99922505A priority Critical patent/EP1008410A4/en
Priority to US09/463,584 priority patent/US6330848B1/en
Publication of WO1999062663A1 publication Critical patent/WO1999062663A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/005Vibration-damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/12Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts of drives for circular saw blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/081With randomly actuated stopping means
    • Y10T83/088Responsive to tool detector or work-feed-means detector
    • Y10T83/089Responsive to tool characteristic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/141With means to monitor and control operation [e.g., self-regulating means]
    • Y10T83/148Including means to correct the sensed operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/141With means to monitor and control operation [e.g., self-regulating means]
    • Y10T83/159Including means to compensate tool speed for work-feed variations

Definitions

  • the present invention relates to a circular saw cutting machine, and more particularly to a circular saw cutting machine for preventing chatter vibration generated when cutting a metal work material.
  • this type of circular saw cutting machine reduces the rotation of the electric motor via the pulley and the gear mechanism provided in the gear box and transmits it to the spindle.
  • a circular saw is attached to one end of the main shaft protruding from the gear box, and the main shaft is rotated at low speed and high torque to cut the metal work material.
  • This circular saw cutting machine has a gear backlash because it uses a gear for the rotation transmitting part as described above. Therefore, when the number of teeth involved in cutting Zi is in the range of 0 to 1.0 at the start of cutting and the end of cutting for each cut by the circular saw, when the saw teeth bite into and out of the work material, Rotational fluctuations occur due to gear backlash.
  • a circular saw cutting machine for preventing such fluctuations in the rotation of gears
  • holding pieces are provided on both sides of a circular saw, and hydraulic pressure is applied to one holding piece.
  • the cutting operation is started by removing the backlash of the power system by applying the force, and the frictional force is released by a timer in the middle of the cutting.
  • another circular saw cutting machine directly connects a control shaft via a gear to a main shaft on which a circular saw is mounted, and a braking device is connected to the control shaft. Is provided.
  • This circular saw cutting machine controls the backlash of the drive system gears while electrically controlling the braking force by a solenoid proportional valve from the start of cutting by the circular saw to the end of cutting. The vibration of the inside circular saw is removed.
  • the present invention is intended to solve the above-mentioned problem, and can eliminate chatter vibration of a circular saw during cutting, improve cutting accuracy, prolong the life of the circular saw, and suppress generation of noise at low cost. It is an object to provide a circular saw cutting machine. Disclosure of the invention
  • a first aspect of the present invention is a circular saw cutting machine that transmits rotation of an electric motor to a main shaft and performs cutting by a circular saw attached to one end of a raw shaft.
  • I (kgf) where D (mm) is the outer diameter of the circular saw, N (rpm) is the rotational speed, and F (kgf) is the cutting force per tooth, which is the tangential component.
  • ⁇ Ra ⁇ sec 2 is set as I ⁇ F x (D / 2) Z [100 0 x 25 0 x (N / 60) 2 ].
  • the flywheel shall be mounted directly on the main shaft or on a shaft that extends the main shaft, and the outside of the circular saw Inertia moment of the entire spindle including the flywheel when the diameter is D (band), the number of revolutions is N (rpm), and the cutting force per tooth, which is the tangential component, is F (kgf).
  • I (kgf ⁇ ⁇ ⁇ sec 2 ) is defined as I ⁇ FX (D / 2) / [10000 x 25 0x (N / 60) 2 ].
  • a third aspect of the present invention is a circular saw cutting machine that transmits rotation of an electric motor to a main shaft and performs cutting by a circular saw attached to one end of a raw shaft.
  • Is D (ram) the rotation speed is N (rpm)
  • the interlocking is performed with the backlash removed from the spindle.
  • N is the rotation speed of the rotating shaft
  • N i is the rotating speed of each rotating shaft
  • J i is the moment of inertia of each rotating shaft.
  • the power for rotating the main shaft is supplied from the pulley of the output shaft of the electric motor to the pulley of the main shaft to which the circular saw is attached, by the V-bell.
  • the force that is transmitted by being decelerated by a power transmission means (reduction mechanism) such as a motor, etc., should be large for the pulley on the spindle side, or coaxial with the pulley if the mass is small.
  • Ri by the mounting the large mass hula Ihoiru, inertia of the spindle Mome down bets 1 (kgf. m. sec 2 ) the F x (D / 2) Z [1 0 0 0 X 2 5 0 X (N / 6 0) 2 ].
  • the flywheel can be mounted directly on the spindle or on an extended spindle.
  • the sum J of the spindle converted inertia moments may be larger than Fx (D / 2) / [100x0250x (N / 60) 2 ].
  • the smaller sum J of the reduced inertia moments may be larger than F x (D / 2) / [1000x25Ox (N / 60) 2 ]. .
  • chatter vibrations The occurrence of chatter vibrations is suppressed, and the accuracy of the cut surface and the life of the blade can be greatly improved. Also, by increasing the moment of inertia, occurrence of regenerative chatter vibration or coupled chatter vibration that occurs when the number of teeth Z i involved in cutting is large can be suppressed.
  • a structural feature of the fourth invention is that in a circular saw cutting machine that transmits rotation of an electric motor to a main shaft and performs cutting by a circular saw attached to one end of the main shaft, a main shaft gear fixed to the main shaft is provided.
  • a constrained mating gear train is formed by arranging three or more odd number of intermediate gears that inject and rotate simultaneously while forming a ring, and the input of the rotation of the electric motor is transmitted to one of the intermediate gears At the same time, at least one of the intermediate gears is movable, and a load is applied to at least one of the movable intermediate gears to eliminate the backlash of the restraining gear train.
  • the outer diameter of the circular saw is D (mra), the rotation speed is N (rpm), Assuming that the cutting force per tooth, which is the component force in the linear direction, is F (kgf), the spindle-converted inertia moment including the spindles of the spindles that work together with the backlash removed from the spindle.
  • the sum J (kgf ⁇ m ⁇ sec 2 ) is defined as J ⁇ F x (D / 2) Z [100 0 x 25 0 x (N / 60) 2 ].
  • a flywheel having a necessary and sufficient inertia moment is attached to at least one of the shafts of the intermediate gears constituting the restraining gear train,
  • the backlash of each gear constituting the constrained matching gear train is removed, and the spindle-converted inertia module including the spindle of each rotary shaft is removed.
  • the occurrence of regenerative chatter vibration or coupled chatter vibration that occurs when the number of teeth Z i involved in cutting is large can be suppressed by increasing the inertia moment.
  • a backlash of the drive system can be completely eliminated by forming a restraining gear train and applying a load to the movable intermediate gear, thereby enabling the main shaft to rotate.
  • the same vibration suppression effect as when a flywheel is directly connected can be obtained, and vibration and noise can be reduced at low cost.
  • the work environment can be prevented from deteriorating due to the reduction in vibration and noise.
  • the flywheel diameter can be made smaller than in the system directly connected to the main shaft, and since the flywheel is not on the main shaft, interference between the wheel and the work material can be avoided. Also, the effect of reducing the machine weight can be obtained.
  • the pressure can be easily adjusted with a pressure adjustment valve provided in the hydraulic cylinder circuit.
  • the pressure is applied only during cutting with the switching valve, and the pressure is stopped during idling.
  • unnecessary power consumption and gear wear can be suppressed.
  • the backlash can be maintained at zero even if the gears are worn over a long period of use.
  • the gear has an eccentric gear error, it is absorbed by the expansion and contraction of the hydraulic cylinder, so that an excessive load does not act on the tooth surface and the bearing.
  • the cutting machine can be manufactured at low cost.
  • the backlash in the present specification refers to not only the backlash between the gears but also the play of the rotation of each rotating shaft in the transmission mechanism that causes the rotation fluctuation which is a problem in the present invention. Also means.
  • T (kgf ⁇ m) Tonorek
  • 2 ⁇ ( ⁇ / 60) (rad / sec) is the angular velocity of rotation
  • ( ⁇ ⁇ / dt (rad / sec 2 ) is the angular acceleration
  • F the maximum force per blade when the saw blade cuts the work material
  • K FX (D / 2) / [1000XIX (N / 60) 2 ] where K is a constant.
  • Equation 4 I ⁇ FX (D / 2) / [1000XKX (N / 60) 2 ] That is, by determining an appropriate value as the constant K, the inertia moment I 4 can be satisfied, in which case there is no gear rotation fluctuation due to the cutting force.
  • the vibration damping of the machine body is larger, so that chatter vibration during cutting is suppressed, and the accuracy of the cut surface and the life of the cutting tool can be greatly improved.
  • the above relationship also applies to the axis-converted inertia moment J. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a front view schematically showing a circular saw cutting machine A according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing the circular saw cutting machine A.
  • FIG. 3 is a front view schematically showing a circular saw cutting machine B according to the first embodiment.
  • FIG. 4 is a cross-sectional view taken along the line 1-I of FIG. 3 showing the circular saw cutting machine B.
  • FIG. 5 is a graph showing the relationship between the rotational speed of the spindle and the maximum acceleration of the saw blade when cutting a workpiece when the flywheel is not attached to the circular saw cutting machine A.
  • Fig. 6 shows the results when the flywheel is attached to the circular saw cutting machine A (condition 1).
  • FIG. 4 is a graph showing the relationship between the rotation speed of a spindle and the maximum acceleration of a saw blade in cutting a work material.
  • FIG. 7 is a graph showing the relationship between the rotational speed of the main spindle and the maximum acceleration of the saw blade when cutting the work material when the flywheel is not mounted on the circular saw cutting machine B.
  • FIG. 8 is a graph showing the relationship between the rotational speed of the main shaft and the maximum acceleration of the saw blade when cutting the work material when the flywheel is attached to the circular saw cutter B (condition 6).
  • FIG. 9 is a graph showing the relationship between the rotational speed of the main shaft and the maximum acceleration of the saw blade in the cutting of a workpiece having a large cutting force variation by the circular saw cutting machine B.
  • FIG. 10 is an explanatory diagram illustrating a configuration in which a flywheel is attached to a driven shaft of a circular saw cutting machine A.
  • FIG. 11 is an explanatory diagram illustrating another example of attaching a flywheel to a driven shaft of the circular saw cutting machine A.
  • FIG. 12 is a partially broken front view showing a swing type circular saw cutting machine according to a second embodiment.
  • FIG. 13 is a cross-sectional view in the X-X line direction shown in FIG.
  • FIG. 14 is a cross-sectional view taken along the line Y-Y shown in FIG. Fig. 15 shows the rotation speed N of the circular saw and the maximum acceleration of vibration of the machine body when no load is applied by the hydraulic cylinder to the intermediate gear of the circular saw cutting machine (Puri P3).
  • FIG. 16 shows the rotation speed N of the circular saw and the maximum acceleration (G of vibration of the machine body) when the load by the hydraulic cylinder is applied to the intermediate gear of the circular saw cutting machine (pulley P3). -rms).
  • Circular saw cutting machine A is a machine that has a horizontally long three-dimensional shape 1 1 Is provided.
  • the horizontal direction is the direction viewed from the front of the machine 11
  • a horizontally long three-dimensional bed 12 occupies approximately 2/3 of the horizontal direction.
  • a pair of front and rear rails 13 extending in the left-right direction are provided on the upper surface of the bed 12.
  • a horizontally long three-dimensional movable base 14 4 is placed so that a groove (not shown) provided on the bottom surface is fitted to the rail 13 so that it can slide left and right.
  • a drive support portion 15 protrudes from the upper end of the bead 12 and is fixed to the movable base 14 so as to protrude from a substantially intermediate position between the front and rear sides of the right side surface of the bead 12.
  • the drive support 15 includes a bottom plate 15a and a pair of parallel side plates 15b, 15c erected on both left and right ends of the bottom plate 15a. It is fixed to levers 1 and 2.
  • a servomotor 16 is fixed to the right side of the right side plate 15 c with the rotation axis directed to the left, and a ball screw 17 is fixed horizontally to the left side plate 15 b through the plate.
  • the motor 16 and the ball screw 17 are connected by interposing a V-belt 18 on each pulley (not shown). As a result, the till of the servomotor 16 is converted into linear motion by the ball screw 17, and the movable base 14 is moved laterally by the linear force of the ball screw 17.
  • An electric motor 21 with a speed reducer is mounted and fixed on the right side of the upper surface of the movable base 14 with the rotating shaft facing rearward, and a drive pulley 22 is attached to the rotating shaft.
  • a main shaft 23 is provided in the upper and lower middle position on the left end side of the movable base 14 so as to penetrate in the front-rear direction. It is supported by.
  • a driven pulley 25 is fixed to a position where the main shaft 23 projects from the rear surface of the movable base 14.
  • the driven pulley 25 has a large mass and a large moment of inertia.
  • a V-belt 26 is interposed between the driving pulley 22 and the driven pulley 25, whereby the torque of the electric motor 21 is transmitted to the main shaft 23.
  • a carbide blade circular saw (hereinafter referred to as a circular saw) 28 is fixed. It is fixed by 27c.
  • an acceleration sensor 37 is attached to the front left end position of the upper surface of the carriage 14 so that the acceleration in the feed direction of the carriage 14 near the circular saw 28 can be detected. I'm sorry.
  • a vice base 31 for fixing the work material M is placed in contact with the left side of the bed 12 ing.
  • the vise table 3 1 is provided with a fixed table 3 2 on the right side and a movable table 3 3 on the left, and the fixed table 3 2 and the movable table 3 3 have a circular saw 28 in the traveling direction of the circular saw 28.
  • a passage groove is formed.
  • a hydraulic cylinder 34 for moving the movable base 33 is placed on the machine base 11 to the left of the movable base 33.
  • a supply table 35 having a roller for supplying the work material M is provided as shown in FIG.
  • the supply table 35 is provided with a sizing device 36 for cutting the work material in a fixed size in close contact with the fixed base 32 and the movable base 33, and feeds the work material M to a predetermined size. It is used as a material.
  • the flywheel 29 is attached to the main shaft 23 in parallel with the driven pulley 25, as shown by the dotted line in FIG. Can be fixed.
  • the circular saw cutting machine B is provided with a box-shaped machine base 4 1.
  • the machine base 41 is rotatably supported by a support base 42 at the lower right position.
  • a box-shaped gear box 50 is mounted and fixed on the upper part of the machine base 41.
  • the gearbox 50 has a hollow shape surrounded by a front wall 51a, a rear wall 51b, a right wall 51; a left wall 51d, a top wall 51e, and a bottom wall 51f. (Hereinafter, the left-right direction is the direction viewed from the front of the machine base 41).
  • Gear box 5 A partition wall 52 is provided at the intermediate position between the front and rear of the gear box 50, and the inside of the gear box 50 is divided into a front room R1 and a rear room R2.
  • a rotating shaft 53 is supported by the through holes 52a and 51b1 via a bearing so as to be rotatable and immovable in the axial direction.
  • One end of the rotating shaft 53 protrudes from the rear side wall 51b to the outside, a pulley 54 is fixed to the protruding end, and a pinion 53a is provided in a portion inside the rear chamber R2. It is fixed.
  • a through-hole 52b is formed in the gearbox 50 at an upper and lower intermediate position substantially above the mounting position of the rotating shaft 53, and the front and rear walls 51a penetrate the partition wall 52 in the front and rear directions.
  • support concave portions 51a1 and 51b2 are provided on the rear wall 51b.
  • the rotating shaft 55 is supported by the through-hole 52b and the supporting concave portions 51a1 and 51b2 so that it can rotate and cannot move in the axial direction by bearings.
  • a gear 56 is provided at a position of the rotating shaft 55 corresponding to the pinion 53a of the rotating shaft 53, and is engaged with the pinion 53a.
  • a pinion 55a is provided on the front chamber R1 side of the rotating shaft 55.
  • a main shaft 57 is supported by a bearing so as to be rotatable and immovable in the axial direction.
  • One end of the main shaft 57 protrudes forward from the front wall 51a, and a circular saw 58 is fixed between flanges at a position near the front wall 51a at the protruding portion.
  • a disc-shaped flywheel 59 is attached to the protruding tip position of the main shaft 57 by screwing.
  • a gear 57a is provided at a position corresponding to the pinion 55a of the rotary shaft 55 on the main shaft 57, and is engaged with the pinion 55a. I have.
  • a large number of through holes are formed in the partition wall 52 so that the front and rear chambers R 1 and R 2 communicate with each other.
  • a mounting portion 61 is provided on the upper surface 51e of the gearbox 50.
  • the mounting portion 61 is rotatably mounted on a pair of front and rear support portions 61a and the support portion 61a.
  • a rotating shaft 61b and a cylindrical shaft 61c attached to the rotating shaft 61b are provided.
  • the tip of a rod 63 of a hydraulic cylinder 62 fixed to another place on the right side of the circular saw cutting machine is fixedly attached to the cylindrical shaft 61c.
  • the gear box 50 is pushed by the expansion and contraction of the rod 63 of the hydraulic cylinder 62, so that the gear box 50 rotates about the support base 42.
  • an acceleration sensor 65 is attached to the front end of the upper surface 51e of the gearbox 50 so as to detect the acceleration in the feed direction of the gearbox 50 near the circular saw 58. Has become.
  • An electric motor 71 is mounted on the left side of the machine base 41.
  • a pulley 73 is fixed to a shaft 72 protruding from the rear side of the electric motor 71, and a V-belt 4 is wound around the pulley 3 and the pulley 54.
  • the gear box 50 is filled with lubricating oil, and circulates in the front and rear chambers R i and R 2.
  • Inertia moment of the main shaft 23 in the forward rotation direction when the circular saw cutter A has no flywheel 29 and the driven pulley 25 is removed and replaced with a pulley with less flywheel effect I is 0.01 (kgf ⁇ ⁇ ⁇ sec 2 ).
  • the inertia moment I of the main shaft 57 in the forward rotation direction is 0.0000 (kgf ⁇ m ⁇ sec 2 ).
  • the main shaft inertia converted Mome down bets dynamic system driving the back class Tsu sheet is removed between the main shaft is a 0. 0 3 0 5 kgf ⁇ ra ⁇ sec 2.
  • the output shaft is not included in the spindle conversion moment.
  • FIG. 11 (b) shows an example in which a flywheel 89 is also attached to a drive shaft 88 on the main shaft 23 side.
  • the maximum value is used. Also, when designing, Therefore, the value of the cutting force F is considered based on the life of the saw blade. Further, when the saw diameter changes, the maximum saw diameter is used as the value of D.
  • the moment of inertia is as shown in Expression 5, and the larger the moment of inertia is, the larger the moment of inertia that is more effective in preventing chatter vibration is. If the flywheel is heavier than before, the rigidity of the cutting machine needs to be increased, and the weight of the cutting machine may become too large. Therefore, in order not to make the moment of inertia too large, it is desirable to add the condition of the following expression 6 in addition to the expression 5 above. In calculating the moment of inertia of each rotating shaft, the shaft itself, pulleys, gears, electric motors, etc. are naturally taken into account.
  • the present invention can be applied to the cases of 1 to 5 in the above embodiment even if a brake device is attached to the driven shaft. Further, the specific configuration of the circular saw cutting machine is not limited to those shown in A and B above.
  • FIGS. 12 to 14 are partially cutaway views of the swing type circular saw cutting machine according to the embodiment.
  • FIG. 12 is a front view, a cross-sectional view (in the direction of line XX in FIG. (YY line direction in the figure).
  • This circular saw cutting machine is provided with a box-shaped machine base 111, and the machine base 111 is rotatably supported by a support stand 112 at a lower right position.
  • a box-shaped gear box 120 is mounted and fixed on the upper part of the machine base 1 1 1.
  • the gearbox 120 has a front wall 120a, a rear wall 120b, a right wall 120c, a left wall 120d, a top wall 120e and a bottom wall 120f.
  • Surrounded hollow shape with lubricating oil inside (Hereinafter, the left and right direction is the direction viewed from the front of the machine base 111).
  • the rear side wall 120b has a space S inside the space extending from the left end to substantially the middle position.
  • the front wall is 120b1 and the rear wall is 120b2.
  • a through hole i2 1a, 1 that passes through the front wall 1 2 0b1 and the rear wall 1 2 0b2 of the rear wall 1 20b in the front-rear direction.
  • 21 a is formed, and a mounting hole 121 c is provided on the rear surface of the front wall 120 a at an extension position of the through holes 121 a and 121 b.
  • the drive shaft 122 is passed through the through-holes 121a, 122b and the mounting hole 122c, and the through-hole 122a and the mounting hole 122c. It is rotatably supported via a bearing and cannot move in the axial direction.
  • the drive shaft 122 has one end protruding from the rear wall 120b to the outside, a pulley 124 fixed to the protruding portion, and a drive shaft gear in a portion inside the working chamber R. 1 2 3 is fixed.
  • a main shaft 126 is supported by the through-hole 125a and the mounting hole 125b so as to be rotatable and immovable in the axial direction via a bearing.
  • One end of the main shaft 126 protrudes slightly forward from the front wall 120a, and a circular saw 127 is fixed to the protruding portion by being sandwiched between flanges 128.
  • a main shaft gear 129 is fixed to a portion of the main shaft 126 inside the working chamber R.
  • a through hole 1 3 1 a is formed through the front wall 1 2 0 b 1 of b.
  • an intermediate shaft 132 is supported by a bearing so as to be rotatable and immovable in the axial direction.
  • An intermediate gear 13 is fixed to the intermediate shaft 13.
  • the intermediate gear 13 3 is engaged with the driving shaft gear 12 3 and the main shaft gear 12 9, respectively, and is used for transmitting power from the driving shaft 12 2 to the main shaft 12 6.
  • a front-to-rear direction as shown in FIG. 14, a through-hole 133 a passing through the front wall 120 a and a rear wall A through hole 1 3 4 b is formed through the front wall 1 2 0 b 1 of the 1 2 0 b.
  • a support shaft 135 is rotatably supported by the through-holes 134a and 134b by a bearing so that the support shaft 135 cannot move in the axial direction.
  • a swing arm 136 is fixed to the support shaft 135 as shown in FIG.
  • the swing arm 136 has a substantially L-shape when viewed from the front, and the intersection of the L-shaped vertical portion 136 a and horizontal portion 136 b is fixed to the support shaft 135.
  • the upper end of the vertical portion 1336a of the swing arm 1336 is connected to the tip of a hydraulic cylinder 1337, which is provided at a position approximately midway between the upper and lower sides of the left side wall 120d, and a hydraulic cylinder is provided.
  • the drive shaft 135 can rotate about the support shaft 135.
  • the horizontal part 1 36 b of the swing arm 1 36 has a concave part 1 36 c cut out from the right end side in the middle part in the front-rear direction.
  • the support shaft 1 3 8 is supported at the right end of 1 36 b so that it can rotate and cannot move in the axial direction.
  • An intermediate gear 13 9 is fixed to the support shaft 13 8 at the position of the recess 1 36 c, and is arranged so as to be aligned with the drive shaft gear 12 3 and the main shaft gear 12 9. .
  • the drive shaft gear 1 2 3 is one of the intermediate gears, and the intermediate gear 1 3 9 and the drive shaft gear 1 2 3, the main shaft gear 1 2 9 and the intermediate gear 1 3 3 It forms a rotating restraining gear train.
  • this intermediate tooth Car 13 9 is used to remove the backlash of the constraint mating gear train. That is, the drive shaft gear 1 2 of the intermediate gear 13 9 depends on the angle of the swing arm 13 6 that rotates about the support shaft 13 5 by the drive of the hydraulic cylinder 13 7. The depth of engagement with 3 and the spindle gears 12 9 is controlled.
  • the rotation of the swing worm 1336 shifts the axis of the intermediate gear 13 9 away from the other gears, thereby causing the teeth to move together.
  • Forced contact was made to reduce the backlash of the entire gear train to zero and to apply the necessary pressurizing force to the gear wheel to suppress chatter vibration.
  • pressure adjustment can be easily performed by a pressure adjustment valve (not shown) provided in the hydraulic circuit, and a switching valve is activated only when necessary. As a result, unnecessary power consumption and gear wear can be suppressed, and the backlash can be maintained at zero even if the gears wear due to long-term use of the machine. it can.
  • the gears have eccentricity or a gear shape error, they are absorbed by the expansion and contraction of the hydraulic cylinder 13 7, so that an excessive load is not applied to the tooth surface and the bearing. Furthermore, since it is not necessary to use high-precision gears, a cutting machine can be manufactured at low cost. In the case where the rotation direction is opposite, the backlash of the entire gear train can be made zero by shifting the moving direction of the intermediate gear 1339 in a direction approaching the other gears.
  • a mounting portion 141 is provided on the upper wall 120e of the gearbox 120, and a hydraulic cylinder (not shown) fixed to another place on the right side of the circular saw cutting machine is provided. The tip of the head is fixed.
  • the gear box 120 is pushed by the expansion and contraction of the rod of the hydraulic cylinder, so that the gear box 120 rotates about the support stand 112.
  • a cutting table 144 for attaching the work material 144 is arranged near the lower end of the right side wall 120 of the gear box 120.
  • An acceleration sensor 144 is mounted on the right side of the front end of the upper surface wall 122 of the gear box 120, and the acceleration in the feed direction of the gear box 120 near the circular saw 127 is mounted. It is designed to detect.
  • An electric motor 1 45 is attached to the lower left portion of the machine base 1 1 1.
  • a pulley 146 is fixed to a shaft protruding from the rear side of the electric motor 145, and a belt 147 is wound around the pulley 146 and the pulley 224. .
  • the gear box 120 is filled with lubricating oil, and circulates through the working chamber R.
  • Table 3 shows the spindle-equivalent moment of inertia of the common parts other than the pool 124. [Table 3]
  • Table 4 shows the total spindle inertia moment J s obtained from the combination of each pulley (P1 to P3) and common parts.
  • the outer diameter D of the circular saw is 0 280 mm
  • the thickness is T 2 .Omra
  • the thickness of the base is t 7 mm
  • the spindle is a flange with a diameter of 0 106 mm.
  • the speed f was fixed at 62 mm / min.
  • the amplitude of the chatter was Since it was not large, whether or not chatter vibration occurred at the start of cutting was determined from the slope of the rise in the effective value of acceleration recorded on the pen recorder.
  • chatter vibration accompanied by rotation fluctuation of the gear backlash other than vibration such as impact vibration when the saw blade cuts into the work material (without rotation fluctuation of the backlash) Mechanical vibrations are constantly generated during saw rotation.
  • the diameter of the flywheel attached to the pulley 124 can be smaller than that of the system directly connected to the main shaft 126, and the flywheel can be used. Since it is not located on the main shaft 126, interference between the wheel and the work material can be avoided and the effect of reducing the machine weight can be obtained.
  • any of the intermediate gears may be a drive shaft gear, and a flywheel may be mounted on any of the intermediate gear shafts. Further, a restraining gear train having five or more intermediate gears may be used. However, it is not practical to use more than seven due to problems such as installation space and cost.
  • the spindle converted inertia moment J is as shown in Expression 5 (replace I with J), and the larger the inertia moment is, the more effective it is in preventing chatter vibration.
  • the weight of the flywheel is increased to increase the moment of inertia, the rigidity of the cutting machine must be increased, and the weight of the cutting machine may become too large. Therefore, In order not to make the moment of inertia too large, it is desirable to add the condition of Equation 6 while following Equation 5 above.
  • the shaft itself, pulleys, gears, electric motors, etc. are naturally taken into account.
  • the form in which the power from the motor shaft to the drive shaft is transmitted by a belt is considered to have substantially a backlash because the belt is elastic.
  • the specific configuration of the circular saw cutting machine is not limited to the above-described one, and the present invention is not limited to the above-mentioned swing type but also applies to a slide type circular saw cutting machine. Applicable to
  • the circular saw cutting machine according to the present invention is particularly useful for preventing chatter vibration generated during cutting of a metal work material, and removes chatter vibration of a circular saw during cutting, thereby improving cutting accuracy and circular cutting. It is suitable for prolonging the life of the saw and suppressing the generation of noise at a low price.

Description

明 細 書 丸鋸切断機 技術分野
本発明は、 丸鋸切断機に係り、 特に金属被削材の切断において発生す るびびり振動を防止する丸鋸切断機に関する。 背景技術
この種の丸鋸切断機は、 低速度、 高 トルクで丸鋸を回転させるために、 電動モータの回転を、 プー リ及び、 ギアボッ クス内に設けた歯車機構を 介して減速させて主軸に伝達し、 主軸のギアボッ クスから突出 した一端 に丸鋸を取り付け、 主軸を低速高 トルクで回転させて金属被削材の切断 を行っている。 この丸鋸切断機は、 上記のよ う に回転伝達部分に歯車を 用いているため、 歯車のバックラ ッ シがある。 そのため、 丸鋸による 1 カ ツ ト毎の切り始め時と、 切り終り時において、 切削関与歯数 Z i が 0 〜 1 . 0の範囲では、 鋸歯が被削材に食い込むときと抜き出るときに、 歯車のバックラ ッ シ分の回転変動が起きる。 また、 Z i が大きい場合に も、 歯車の回転変動を伴った本体送り方向の自励振動である再生びびり が発生する場合がある。 このような歯車の回転変動により、 丸鋸にびび り振動が発生し、 切削精度を悪くすると共に、 刃先の損傷、 欠損等によ り丸鋸の寿命を低下させ、 さ らに振動騒音により作業環境を悪化させて いた。
かかる歯車の回転変動を防止する丸鋸切断機と して、 例えば実公昭 6 2 — 2 8 3 3 4号公報に示すように、 丸鋸の両側に押え片を設け、 一方 の押え片に油圧シ リ ンダを作動させて、 切削を開始する前から摩擦力を 作用させるこ とによ り、 動力系のバックラ ッ シを除去しながら切削を開 始して、途中からタイマにより摩擦力を解除させるものが知られている。 また、 他の丸鋸切断機は、 実公平 7 — 4 8 3 3 9号公報に示すよう に、 丸鋸を取り付ける主軸に、 歯車を介して制御軸を直結し、 制御軸にブレ ーキ装置を設けている。 この丸鋸切断機は、 丸鋸による切削開始から切 削終了までの間、 ブレーキ力を電磁比例弁によって電気的に制御しなが ら、 駆動系の歯車のバックラ ッ シを抑制して、 切削中の丸鋸のびびり振 動を除去するようにしている。
しかし、 上記丸鋸切断機の場合、 いずれも切断の始めと終わりに、 駆 動系へブレーキ力を作用させて、 歯車のバッ クラ ッ シを強制的に除去し よう とするものであり、 切削動力をロスさせながら切削を行う ようにな つている。 そのため、 機械構造が複雑になると共に、 電気制御構成も必 要であるため、 機械が高価になると共に、 保守の手間が煩雑になるとい う問題がある。
本発明は、 上記問題を解決しょう とする もので、 切削中の丸鋸のびび り振動を除去して、 切削精度を高めると共に丸鋸の寿命を高め、 かつ騒 音の発生を安価に抑制できる丸鋸切断機を提供することを目的とする。 発明の開示
上記目的を達成するために第 1 の発明の構成上の特徴は、 電動モータ の回転を主軸に伝達し、 生軸の一端に取り付けられた丸鋸によ り切削を 行う丸鋸切断機において、 丸鋸の外径を D (mm) 、 回転数を N ( rpm) 、 接線方向の分力である一刃当りの切削力を F (kgf) と したときの主軸の 慣性モーメ ン ト I (kgf · ra · sec2 ) を、 I ≥ F x ( D/ 2 ) Z [ 1 0 0 0 x 2 5 0 x ( N / 6 0 ) 2 ] としたことにある。
また、 第 2の発明の構成上の特徴は、 電動モータの回転を主軸に伝達 し、 主軸の一端に取り付けられた丸鋸によ り切削を行う丸鋸切断機にお いて、 主軸に直接にまたは主軸を延長した軸にフライホイールを取り付 けることと し、 丸鋸の外径を D (匪) 、 回転数を N (rpm) 、 接線方向の 分力である一刃当りの切削力を F (kgf) と したときのフライホイールを 含む主軸全体の慣性モ一メ ン ト I (kgf · πι · sec2 ) を、 I ≥ F X ( D / 2 ) / [ 1 0 0 0 x 2 5 0 x ( N / 6 0 ) 2 ] と したことにある。
また、 第 3の発明の構成上の特徴は、 電動モータの回転を主軸に伝達 し、 生軸の一端に取り付けられた丸鋸により切削を行う丸鋸切断機にお いて、 丸鋸の外径を D (ram) 、 回転数を N (rpm) 、 接線方向の分力であ る一刃当りの切削力を F (kgf) と したとき、 主軸からバックラ ッ シを除 去した状態で連動する各軸の主軸を含めた主軸換算慣性モーメ ン トの和 J (kgf · m · sec2 ) を、 J ≥ F x ( D Z 2 ) Z [ 1 0 0 0 x 2 5 0 x ( N ノ 6 0 ) 2 ] としたこ とにある。 主軸換算慣性モーメ ン ト J は、 J = ∑ ( N i / N ) J i である。 こ こで、 Nはま軸の回転数、 N i は各回転軸 の回転数、 J i は各回転軸の慣性モーメ ン トである。
上記のように構成した第 1 〜第 3の発明においては、 主軸を回転させ るための動力は、 電動モータの出力軸のプー リから、 丸鋸を装着する主 軸のプー リ に、 Vベル ト等の動力伝達手段 (減速機構) により減速され て伝達される力、'、 この主軸側のプー リについては、 質量の大きいものに するか、 または質量が小さい場合にはプー リ と同軸に質量の大きいフラ ィホイールを装着することによ り、 主軸の慣性モーメ ン ト 1 (kgf . m . sec2 ) を F x ( D / 2 ) Z [ 1 0 0 0 X 2 5 0 X ( N / 6 0 ) 2 ] よ り 大き くすることができる。 フライホイールの装着は、 主軸に直接行う他 に、 延長した主軸に行う ことができる。
また、 主軸の慣性モーメ ン トのみではな く 、 駆動系内で生軸との間に バッ クラ ッ シがない状態で減速機構を介して連動する各軸の主軸を含め た主軸換算慣性モーメ ン トの和 J を F x ( D / 2 ) / [ 1 0 0 0 x 2 5 0 X ( N / 6 0 ) 2 ] よ り大き く してもよい。 さ らに、 駆動系内の主軸 慣性モーメ ン トの和と、 従動系内で主軸との間にバッ クラ ッ シがない状 態で増減速機構を介して連動する各軸の主軸を含む主軸換算慣性モーメ ン トの和の何れか小さい方の和 J を F x ( D / 2 ) / [ 1 0 0 0 x 2 5 O x ( N / 6 0 ) 2 ] よ り大き く してもよい。
上記のように、 主軸の慣性モーメ ン ト、 主軸換算慣性モーメ ン トの和 を大き く することによ り、 回転変動が発生し易い丸鋸切断機による被削 材の切削始めと終わり部分の切削関与歯数 Z i 力 1 . 0以下の領域にお いて、 回転変動を抑えることができる。 すなわち、 断続的な切削抵抗に より主軸に掛かる切削力 Fに対して、 主軸の慣性モーメ ン ト I あるいは 主軸換算慣性モーメ ン トの和 J を、 F x ( D / 2 ) / [ 1 0 0 0 x 2 5 O x ( NZ 6 0 ) 2 ] よ り大き く することによ り、 主軸の回転変動は微 小となり、 それに対して機械本体の振動減衰の方が大き く なるので、 切 削中のびびり振動の発生が抑制され、 切断面の精度と刃物寿命を大幅に 向上させることができる。 また、 切削関与歯数 Z i が大きいときに発生 する再生びびり振動または連成びびり振動に対しても、 慣性モーメ ン ト を大き く することによ り、 その発生を抑制するこ とができる。
また、 第 4の発明の構成上の特徴は、 電動モータの回転を主軸に伝達 し、 主軸の一端に取り付けられた丸鋸により切削を行う丸鋸切断機にお いて、 主軸に固定した主軸歯車と輪を組んで噴み合って同時に回転する 3個以上奇数個の中間歯車を配設することにより拘束嚙合い歯車列を構 成し、 中間歯車の 1 つに電動モータの回転を入力伝達すると共に、 中間 歯車の少なく とも 1個を移動可能と し、 移動可能な中間歯車の少な く と も 1 つに荷重を作用させることによ り拘束嚙合い歯車列のバッ クラ ッ シ を除去するものであり、 丸鋸の外径を D (mra) 、 回転数を N (rpm) 、 接 線方向の分力である一刃当りの切削力を F (kgf) と したとき、 主軸から バッ クラ ッ シを除去した状態で連動する各軸の主軸を含めた主軸換算慣 性モーメ ン トの和 J (kgf · m · sec2 ) を、 J ≥ F x ( D/ 2 ) Z [ 1 0 0 0 x 2 5 0 x ( N / 6 0 ) 2 ] と したことにある。
上記のように構成した第 4の発明においては、 拘束嚙合い歯車列を構 成する中間歯車の少な く とも 1つの歯車の軸に必要かつ十分な慣性モー メ ン 卜を有するフライホイールを取り付け、 移動可能な中間歯車に荷重 を作用させることによ り、 拘束嚙合い歯車列を構成する各歯車のバッ ク ラ ッ シが除去され、 各回転軸の主軸を含めた主軸換算慣性モ一メ ン トの 和 J (kgf · m · sec2 ) 力、' F x ( D / 2 ) Z [ 1 0 0 0 x 2 5 0 x ( N / 6 0 ) 2 ] 以上にされる。
上記のように、 丸鋸駆動系のバックラ ッ シをな く し、 主軸換算慣性モ ーメ ン 卜の和 J を大き くすることにより、 回転変動が発生し易い丸鋸切 断機による被削材の切り始めと切り終わり部分の切削関与歯数 Z i が 1 . 0以下の領域において、 回転変動を抑えることができる。 すなわち、 断 続的な切削抵抗によ り生軸に掛かる切削力 Fに対して主軸の回転変動は 微小となり、 それに対して切断機の機械本体の振動減衰の方が大き く な るので、 切削中のびびり振動の発生が抑制され、 切断面の精度と刃物寿 命を大幅に向上させることができる。 また、 切削関与歯数 Z i が大きい ときに発生する再生びびり振動または連成びびり振動に対しても、 慣性 モーメ ン トを大き くすることにより、その発生を抑制することができる。 第 4の発明においては、 拘束嚙合い歯車列を構成し、 移動可能な中間 歯車に荷重を作用させることによ り、 駆動系のバッ ク ラ ッ シを完全にな くすことができ、 主軸にフライホイールを直結した場合と同等の振動抑 制効果が得られ、 振動や騒音を安価に低減することができる。 かかる振 動や騒音の低下により、 作業環境の悪化を防止できる。 また、 回転数の 高い中間軸にフライホイールを装着することで、 主軸に直結する方式よ りフライホイールの直径を小さ く でき、 かつフライホイールは主軸上に ないので、 ホイールと被削材との干渉が回避できるほか、 機械重量を低 減できる効果も得られる。
また、 油圧シリ ンダ回路に設けた圧力調整弁等で簡単に与圧力を調整 することができ、 さ らに、 切替え弁で切削時のみ与圧力を与え、 空転時 には与圧力を止めるこ とで、 無駄な動力消費や歯車の磨耗を抑えること ができる。 さ らに、 長時間の使用によ り、 歯車の磨耗が進行した場合で もバックラ ッ シをゼロに維持するこ とができる。 また、 歯車に偏心ゃ齒 車形状誤差があっても、 油圧シ リ ンダの伸縮で吸収されるので、 歯面や 軸受に過大な荷重が作用することがない。 また、 高精度な歯車を使用す るこ とも不要なので、 切断機を安価に製造するこ とができる。
なお、 本明細書でのバッ クラ ッ シとは、 歯車間のバッ ク ラ ッ シのみな らず、 本発明で問題となる回転変動を生じる伝達機構内の各回転軸の回 転の遊びをも意味する。
こ こで、 上記慣性モーメ ン ト I ( J ) の根拠について説明する。
主軸の慣性モーメ ン ト I (kgf · m · sec2 ) については、 よ く知られて いるよう に下記数式 1 が成り立つ。
[数式 1 ] T = I X d ω Z d t
ただし、 T ( kgf · m) は トノレクであり、 ω = 2 π ( Ν / 6 0 ) ( rad/sec) は回転の角速度であり、 (Ι ω/ d t (rad/sec2 ) は角加速度である。 鋸刃が、 被削材を切削するときの一刃当りの最大の力を F (kgf) とす ると、 変動 トルク Tは、 数式 2のようになる。
[数式 2 ] T = F x ( D / 2 ) / 1 0 0 0
ただし、 D (mm) は鋸の外直径である。 この トルク変動によって主軸 の回転数が上記角加速度 d w / d t で変動する。 上記数式 1 、 数式 2を用いて関係要因を無次元化すると下記数式 3 の ようになる。
[数式 3 ] K = F X ( D / 2 ) / [ 1 0 0 0 X I X ( N / 6 0 ) 2 ] ただし、 Kは定数である。
上記数式 3 において、 定数 Kを適正な値とすることによ り、 下記数式 4が得られる。
[数式 4 ] I ≥ F X ( D / 2 ) / [ 1 0 0 0 X K X ( N / 6 0 ) 2 ] すなわち、 定数 Kと して適正な値を決定することにより、 慣性モーメ ン ト I が数式 4を満たすようにさせることができ、 その場合には、 切削 力による歯車の回転変動が生じない。 こ こで、 種々の切断試験を行った 結果、 K = 2 5 0以上でありかつ慣性モ一メ ン 卜が数式 4 の関係にあれ ば、 切削による歯車の回転変動は無く なることが明らかになつている。 本願では、 限界値と して Κ = 2 5 0を採用する。 その結果、 上記したよ うに、 機械本体の振動減衰の方が大き く なるので、 切削中のびびり振動 の発生が抑制され、 切断面の精度と刃物寿命を大幅に向上させるこ とが できる。 なお、 上記の関係については、 ま軸換算慣性モーメ ン ト J につ いても同様に適用される。 図面の簡単な説明
第 1 図は、 本発明の第 1 実施例である丸鋸切断機 Aを概略的に示す正 面図である。 第 2図は、 丸鋸切断機 Aを示す平面図である。 第 3図は、 第 1 実施例である丸鋸切断機 Bを概略的に示す正面図である。第 4図は、 丸鋸切断機 Bを示す第 3図の 1 ― I 線方向の断面図である。 第 5図は、 丸鋸切断機 Aにフライホイールを取り付けない場合の、 被削材切断にお ける主軸の回転数と鋸刃の最大加速度との関係を示すグラフである。 第 6図は、 丸鋸切断機 Aにフライホイールを取り付けた場合 (条件 1 ) の、 被削材切断における主軸の回転数と鋸刃の最大加速度との関係を示すグ ラフである。 第 7 図は、 丸鋸切断機 Bにフライホイールを取り付けない 場合の、 被削材切断における主軸の回転数と鋸刃の最大加速度との関係 を示すグラフである。 第 8図は、 丸鋸切断機 Bにフライホイールを取り 付けた場合 (条件 6 ) の、 被削材切断における主軸の回転数と鋸刃の最 大加速度との関係を示すグラフである。 第 9図は、 丸鋸切断機 Bによる 切断力変動の大きい被削材切断における主軸の回転数と鋸刃の最大加速 度との関係を示すグラフである。 第 1 0図は、 丸鋸切断機 Aの従動軸に フライホイールを取り付けた構成を説明する説明図である。第 1 1 図は、 丸鋸切断機 Aの従動軸にフライホイールを取り付ける他の例を説明する 説明図である。 第 1 2図は、 第 2実施例であるスイ ング式丸鋸切断機を 示す一部破断正面図である。 第 1 3図は、 第 1 2図に示す X - X線方向の 断面図である。第 1 4図は、第 1 2図に示す Y - Y線方向の断面図である。 第 1 5図は、 同丸鋸切断機 (プー リ P 3 ) の中間歯車に油圧シ リ ンダに よる荷重を作用させない場合の、 丸鋸の回転数 Nと機械本体の振動の最 大加速度 (G - rras ) との関係を示すグラフである。 第 1 6 図は、 同丸鋸切 断機 (プーリ P 3 ) の中間歯車に油圧シ リ ンダによる荷重を作用させた 場合の、 丸鋸の回転数 Nと機械本体の振動の最大加速度 (G - rms ) との関 係を示すグラフである。 発明を実施するための最良の形態
I . 第 1 実施例
以下、 本発明の第 1 実施例と して、 スライ ド式及びスィ ング式の 2種 類の丸鋸切断機により、 定数 Kを決定する例を図面を用いて説明する。 第 1 図及び第 2図は、 スライ ド式の丸鋸切断機 Aを正面図及び平面図 によ り示したものである。 丸鋸切断機 Aは、 横長の立体形状の機台 1 1 を設けている。 機台 1 1 上面右側 (以後、 左右方向については、 機台 1 1 の正面から視た方向とする) には、 横長の立体形状のベッ ド 1 2が、 左右方向の略 2 / 3を占めて載置されており、 べッ ド 1 2の上面には前 後一対の左右方向に延びたレール 1 3が設けられている。 べッ ド 1 2上 には、 横長の立体形状の移動台 1 4力 底面に設けた溝 (図示しない) をレール 1 3 に嵌合させることによ り左右に摺動可能に載置されている , べッ ド 1 2の右側面の前後略中間位置から前方側には、 駆動支持部 1 5 がべッ ド 1 2の上端から突出し移動台 1 4 に対向して固定されている。 駆動支持部 1 5 は、 底板 1 5 a と、 底板 1 5 a の左右両端に立設され た一対の平行な側板 1 5 b , 1 5 c とを備えており、 左側板 1 5 b によ りべッ ド 1 2に固定されている。 右側板 1 5 cの右側にはサ一ボモータ 1 6が回転軸を左方向に向けて固定され、 左側板 1 5 bにはボールネジ 1 7が板を貫通して水平に固定されており、 サーボモータ 1 6 とボール ネジ 1 7 とがそれぞれのプー リ (図示しない) に Vベル ト 1 8を介装す ることにより連結されている。 これによ り、 サ一ボモータ 1 6の回耘が ボールネジ 1 7において直線運動に変換されて、 ボールネジ 1 7の直進 力により移動台 1 4が横方向移動するようになっている。
移動台 1 4の上面右側位置には、 減速機付きの電動モータ 2 1 が回転 軸を後方向に向けて載置固定されており、 回転軸には駆動プー リ 2 2が 取り付けられている。 移動台 1 4の左端側の上下中間位置には、 主軸 2 3が前後方向に貫通して設けられており、 その後端は、 移動台 1 4 の後 端に設けた軸受け 2 4 に回動可能に支持されている。 主軸 2 3 の移動台 1 4後面からの突出位置には、 従動プー リ 2 5が固定されている。 従動 プー リ 2 5は、 質量が大き く て慣性モーメ ン トが大き く されている。 駆 動プーリ 2 2 と従動プー リ 2 5 には、 Vベル ト 2 6が介装されており、 これによ り電動モータ 2 1 の回転力が主軸 2 3に伝達される。 主軸 2 3 は、 移動台 1 4前面からわずかに突出しており、 突出端にはフラ ンジ 2 7 a , 2 7 b に挟持されて超硬刃丸鋸 (以下、 丸鋸と記す) 2 8が固定 ボル ト 2 7 c によ り固定されている。 さ らに、 移動台 1 4 の上側面の前 側左端位置には、 加速度センサ 3 7が取り付けられており、 丸鋸 2 8付 近の移動台 1 4の送り方向の加速度を検出できるようになつている。 機台 1 1上面の左前端位置には、 第 2図に示すように、 被削材 Mを固 定するためのバイス台 3 1 カ 、 べッ ド 1 2の左側面に接して載置されて いる。 バイス台 3 1 は、 右側の固定台 3 2 と左側の可動台 3 3 とを設け ており、 固定台 3 2及び可動台 3 3 には丸鋸 2 8 の進行方向に、 丸鋸 2 8が通過する溝が形成されている。 可動台 3 3 の左方向には、 可動台 3 3を移動させる油圧シ リ ンダ 3 4が機台 1 1 に載置されている。
バイス台 3 1 の前方には、 第 2図に示すように、 被削材 Mを供給する ローラを有する供給台 3 5が設けられている。 供給台 3 5 には、 固定台 3 2及び可動台 3 3 に密接して、 被削材を定寸切断するための定寸装置 3 6が設けられており、被削材 Mを所定寸法送材するよう になつている。 なお、 丸鋸切断機 Aにおいて、従動プー リ 2 5の質量が小さいときは、 第 2図に点線で示すように、 フライホイール 2 9を従動プ一 リ 2 5 と並 列に主軸 2 3 に固定するこ とができる。
つぎに、 スイ ング式の丸鋸切断機 Bを、 第 3図、 第 4図の正面図及び 一部破断面図 (第 3図の I 一 1 線方向) によ り説明する。
丸鋸切断機 Bは、 箱状の機台 4 1 を設けている。 機台 4 1 は、 右下位 置にて支持台 4 2 によ り回動可能に支持されている。 機台 4 1 の上部に は箱形のギアボックス 5 0が載置固定されている。ギアボックス 5 0 は、 前側壁 5 1 a、 後側壁 5 1 b , 右側壁 5 1 ;、 左側壁 5 1 d、 上面壁 5 1 e及び底面壁 5 1 f によつて囲まれた中空形状である (以後、 左右方 向については、 機台 4 1 の正面から視た方向とする) 。 ギアボッ クス 5 0の前後中間位置には、 仕切壁 5 2がー体で設けられており、 ギアボッ クス 5 0内を前側室 R 1 と、 後側室 R 2 に区分している。
後側室 R 2 の下端近傍の前面側から視た中央位置には、 仕切壁 5 2 と 後側壁 5 1 bを前後に貫通した貫通孔 5 2 a , 5 1 b 1 が形成されてお り、 貫通孔 5 2 a , 5 1 b 1 には回転軸 5 3がべァリ ングを介して回転 可能かつ軸方向に移動不能に支持されている。 回転軸 5 3 は、 一端が後 側壁 5 1 bから外部に突出 しており、 突出端にはプー リ 5 4が固定され ており、 また後側室 R 2 内の部分にはピニオン 5 3 aが固着されている。 ギアボックス 5 0の上記回転軸 5 3取付位置の略上部の上下中間位置 には、 仕切壁 5 2を前後に貫通した貫通孔 5 2 bが設けられており、 さ らに前側壁 5 1 a及び後側壁 5 1 bには支持凹部 5 1 a 1 , 5 1 b 2 が 設けられている。 貫通孔 5 2 b及び支持凹部 5 1 a 1 , 5 1 b 2 には、 回転軸 5 5がべァリ ングによって回転可能かつ軸方向に移動不能に支持 されている。 回転軸 5 5の、 上記回転軸 5 3のピニオン 5 3 a との対応 位置には歯車 5 6が設けられており、 ピニオン 5 3 a に嚙み合わされて いる。 また、 回転軸 5 5の前側室 R 1 側には、 ピニォン 5 5 aが設けら れている。
ギアボックス 5 0の上記回転軸 5 5の略右側位置には、 前側壁 5 1 a と仕切壁 5 2を前後に貫通した貫通孔 5 1 a 2 , 5 2 cが形成されてお り、 貫通孔 5 1 a 2 , 5 2 c には主軸 5 7がベアリ ングによって回転可 能かつ軸方向に移動不能に支持されている。 主軸 5 7 は、 一端が前側壁 5 1 aから前方に突出 しており、 突出部分の前側壁 5 1 a近傍位置には フラ ンジに挟まれて丸鋸 5 8が固定されている。 主軸 5 7の突出先端位 置には、 円盤形のフライホイール 5 9がねじ止めによ り取り付けられて いる。 また、 主軸 5 7の、 上記回転軸 5 5のピニオン 5 5 a との対応位 置には、 歯車 5 7 aが設けられており ピニオン 5 5 a に嚙み合わされて いる。 なお、 仕切壁 5 2には、 上記各貫通孔の他に、 図示しない多数の 貫通孔が形成されており、 前後側室 R l , R 2 間が連通するようになつ ている。
ギアボックス 5 0の上側面 5 1 e には、取付部 6 1 が設けられており、 取付部 6 1 は、 前後一対の支持部 6 1 a と、 支持部 6 1 a に回転可能に 取り付けられ回転軸 6 1 b と、 回転軸 6 1 b に取り付けられた円筒軸 6 1 c とを設けている。 そして、 円筒軸 6 1 c には、 丸鋸切断機の右方に て他所に固定された油圧シ リ ンダ 6 2のロ ッ ド 6 3の先端が揷着固定さ れている。 油圧シ リ ンダ 6 2のロ ッ ド 6 3の伸縮によ りギアボックス 5 0が押されて、 支持台 4 2を中心と して回動するよう にされている。 ま た、 ギアボックス 5 0の上側面 5 1 e前端には、 加速度センサ 6 5が取 り付けられており、 丸鋸 5 8付近のギアボッ クス 5 0の送り方向の加速 度を検出するよう になっている。
機台 4 1 の左側部には、 電動モータ 7 1 が取り付けられている。 電動 モータ 7 1 の背面側に突出 した軸 7 2にはプーリ 7 3が固定されており、 プー リ Ί 3及び上記プーリ 5 4 には Vベル ト Ί 4が卷装されている。 こ れにより、 電動モータ 7 1 の回転が、 回転軸 5 3、 回転軸 5 5を経て主 軸 5 7 に伝達され、 丸鋸 5 8を回転させるようになつている。 そ して、 ギアボッ クス 5 0 内には、 潤滑油が充填されており、 前後側室 R i , R 2 内を循環するよう になっている。
試験結果
上記丸鋸切断機 A , Bを用い、 鋸刃と して以下に示す C , C 1 , C 2 , D , Eの 5種類を用い、 かつ主軸にフライホイールを取り付けた場合と 取り付けない場合において、 切断条件 S Z = 0 . 0 8 關 刃によって、 被削材 S 4 5 C , φ 5 O mraを切断した試験結果について説明する。
鋸刃 C ·■· D 3 6 0 mm x T 2 . 5 關 x Z 6 0刃、 溝付刃型、 新品刃 鋸刃 C I ■■■ φ D 3 6 0 mm x Τ 2. 5 mmX Z 6 0刃、 溝付刃型、 摩耗刃 鋸刃 C 2— 0 D 3 6 0 mmx T 2. 5 mm x Z 6 0刃、 溝付刃型、 別の摩耗 刃
鋸刃 D ··· 0 D 2 0 0 mmx T 1 . 6 x Z 4 7刃、 特殊刃型、 新品刃 鋸刃 E ·■· ø D 2 8 0 mmx T 2. O mmx Z S O刃、 溝付刃型、 新品刃
1. フライホイールを取り付けない場合の切断試験結果
丸鋸切断機 Aにおいて、 フライホイール 2 9がなく 、 かつ従動プー リ 2 5を外してフライホイール効果の少ないプー リ に取り替えた場合の、 主軸 2 3の正回転方向の慣性モ一メ ン ト I は、 0. 0 0 1 (kgf ·πι· sec2 ) である。 また、 丸鋸切断機 Bにおいて、 延長軸と共にフライホイール 5 9を外した場合の、 主軸 5 7の正回転方向の慣性モーメ ン ト I は、 0. 0 0 0 1 (kgf · m · sec2 ) である。 その結果、 主軸と他の軸との間にバ ックラ ッ シがある状態では、 上記全ての場合に、 全ての回転領域におい て、 切断初期と終端部においてびびり振動が発生した。 また、 Z i の大 きな領域においても、 振動が大き く 、 場合によって再生びびり振動や連 成びびり振動が発生した。
2. 主軸にフライホイールを取り付けた場合の切断試験結果
丸鋸切断機 Α, Βの主軸にフライホイールを取り付けた場合あるいは、 フライホイールと同様の効果のあるプー リを取り付けた場合である。 こ の条件で、 切断初期や切断の終端時、 あるいはこれらの中間位置の切断 時に、 びびり振動が発生しない最低の回転数を Ncrとすると、 下記表 1 に示す結果となつた。 表 1 において、 Kは数式 3 に示す定数であり、 I は主軸の慣性モーメ ン トである。 [表 1 ]
Figure imgf000016_0001
Kの値は、 主軸の回転粘性 (主軸とハウジングとの間の締め付けや、 油膜等による粘性作用) にも影響されて変動したと考えられる。 以上の 結果も含めて、種々の切断試験を行った結果、定数 K = 2 5 0であって、 かつ主軸の慣性モーメ ン ト I が上記数式 4に基づく下記数式 5の関係に あれば、 切削による歯車の回転変動はな く なるこ とが明らかにされた。
[数式 5 ] I ≥ F X ( D / 2 ) / [ 1 0 0 0 X 2 5 0 X ( Ν / 6 0 ) 2 ] 3. 丸鋸切断機 Αによる試験
丸鋸切断機 Aにおいて、 表 1 の条件 2に示すようなフライホイールの 効果が小さい場合 (フライホイールがない場合) 、 及び主軸 2 3にフラ ィ,ホイール 2 9を取り付けて効果を大き く した場合の切断結果を第 5図 及び第 6図にそれぞれ示す。 こ こでは、 主軸 2 3の回転数 N ( rpm) と最 大加速度 G — r m sの関係について示す。
第 5図から明らかなように、 フライホイールの効果が小さい場合は、 N = 3 5 rpm 以下で、 切り始めのバッ クラ ッ シによるびびり振動が発生 している。 一方、 フライホイールの効果が大きい場合は、 第 6図に示す ように、 N == 1 5 rpm 以下でないと、 切り始めのバックラ ッ シによるび びり振動は発生しない。
4 . 丸鋸切断機 Bによる試験
丸鋸切断機 Bにおいて、 フライホイールのない状態 (主軸の延長部も 無い) での切断結果、 及び表 1 の条件 6 に示すような、 主軸 5 7を延長 してその先端にフライホイール 5 9を取り付けた場合の切断結果を第 7 図及び第 8図にそれぞれ示す。 こ こでは主軸の回転数と最大加速度の関 係について示す。
第 7図に示すように、 フライホイールの効果がない場合は、 切断初期 や切り終わりはもとよ り、 これらの中間位置でも切断振動が大き く なつ ている。 一方、 フライホイールの効果が大きい条件 6の場合は、 第 8図 に示すように、 N = 6 0 rpra 以下では、 切断初期に歯車のバックラ ッ シ によるびびり振動が発生するが、 7 5 rpm 以上の回転数領域では、 切断 初期はもとよ り、 切断の中央でも切断振動が非常に小さ く なつた。 この ときの、 定数 Kの値は、 1 9 8であった。
5 . 切断力変動の大きいパイプ材の丸鋸切断機 Bによる切断試験 丸鋸切断機 Bを用い、 鋸刃と して上記 Dを用い、 かつ主軸 5 7にフラ ィホイール 5 9を取り付けた上記条件 6 の場合と取り付けない場合にお いて、 切断条件 S Z = 0 . 0 8 匪/刃によって、 切断変動の大きい被削 材 S T K M 1 3 A , 0 4 5 匪 x t 5 mmのパイプ材を切断した試験結果に ついて説明する。 第 9図に示すように、 フライホイールを取り付けた場 合 (図示実線) 、 フライホイールが無い場合 (図示点線) に比べて、 切 断振動が極端に小さ く なつている。 また、 条件 7 によって同様の試験を 行った結果、 図示しないが、 フライホイールの効果が確認された。
6 . 丸鋸切断機 Aの従動軸にフライホイールを取り付けた場合の切断試 丸鋸切断機 Aにおいて、 第 1 0図に示すように、 主軸 2 3に歯車 8 1 a , 8 l bを介して連結された従動軸 8 2を設け、 さ らに従動軸 8 2 に 歯車 8 3 a , 8 3 b , 8 3 cを介して連結された最終の従動軸 8 4 にフ ライホイール 8 5 とブレーキ装置 8 6が取り付けられている。 これによ り、 主軸 2 3 と従動軸 8 2及び従動軸 8 4 との間には歯車のバックラ ッ シが取り除かれている。 この従動軸系の主軸換算慣性モーメ ン トは、 0. 0 3 2 0 kgf · m · sec2であり、 主軸間にバッ クラ ッ シが除かれている駆 動系の主軸換算慣性モーメ ン トは、 0. 0 3 0 5 kgf · ra · sec2である。 本例では、 Vベル トは剛体ではないので、 出力軸については主軸換算モ —メ ン トには含めていない。
この丸鋸切断機 Aを用い、 鋸刃と して Dを用い、 切断条件 S Z = 0. 0 7圆 刃によって、 被削材 S 4 5 C , ?5 7 0 mmを切断した試験を行つ た。 その結果、 N = 5 5 rpm 以下で、 切り始めと切り終わりに、 バッ ク ラ ッ シによるびびり振動が発生する力 <、 N = 6 0 rpra 以上では、 バッ ク ラ ッ シによるびびり振動は発生しなかった。
上記 2つの慣性モーメ ン トの内の小さい方 ( 0. 0 3 2 0 ) について Kを算出すると、 K = 2 1 3 となり、 上記数式 5の関係を満足し、 実験 結果と一致した。
従動軸にフライホイールを取り付ける例と しては、 第 1 0図に示した 他に、 第 1 1 図に示すように、 従動軸 8 2上にフライホイール 8 7を取 り付けるようにすることもできる。 また、 第 1 1 図 ( b ) では、 主軸 2 3側の駆動軸 8 8 にもフライホイール 8 9が取り付けられた例を示して いる。
なお、 上記実施例において、 鋸刃の歯形が特殊であり刃によって切削 力 Fが変動する場合は、 その最大値を用いる。 また、 実際の設計時にお いては、 切削力 Fの値を鋸刃の寿命時で考えている。 さ らに、 鋸径が変 化する場合には、 Dの値と して最大鋸径を用いる。
なお、 本発明においては、 慣性モーメ ン トについては、 数式 5に示す とおりであり、 慣性モーメ ン トは大きいほどびびり振動防止には効果的 である力 慣性モ一メ ン トを大き く するためにフライホイールを重く す る等を行う と、 切断機の剛性を上げる必要が生じ、 切断機の重量が大き く なりすぎる場合がある。 従って、 慣性モーメ ン トを大き く し過ぎない ためには、 上記数式 5 に従う と共に下記数式 6の条件を付加するこ とが 望ま しい。 各回転軸の慣性モ一メ ン トの計算には、 軸自体をはじめ、 プ —リ、 歯車、 電動モータ等をも当然考慮する。
[数式 6 ] I ≤ 3 { F x ( DZ 2 ) / [ 1 0 0 0 x 2 5 0 x ( N / 6 0 ) 2] }
なお、 上記実施例の 1 〜 5の場合においても、 従動軸にブレーキ装置 をつけても、 本発明を適用できる。 また、 丸鋸切断機の具体的構成につ いては、 上記 A, Bで示したものに限るものではない。
I I . 第 2実施例
つぎに、 本発明の第 2実施例について図面に基づいて説明する。 第 1 2図〜第 1 4図は、 同実施例に係るスイ ング式の丸鋸切断機を一部破断 正面図、 断面図(第 1 2図の X-X線方向)及び断面図(第 1 2図の Y-Y線 方向) により示したものである。 この丸鋸切断機は、 箱状の機台 1 1 1 を設けており、 機台 1 1 1 は、 右下位置にて支持台 1 1 2 によ り回動可 能に支持されている。 機台 1 1 1 の上部には箱形のギアボックス 1 2 0 が載置固定されている。 ギアボックス 1 2 0 は、 前側壁 1 2 0 a、 後側 壁 1 2 0 b, 右側壁 1 2 0 c、 左側壁 1 2 0 d、 上面壁 1 2 0 e及び底 面壁 1 2 0 f によって囲まれた中空形状であり、 内部は潤滑油が充填さ れた作動室 Rになっている (以後、 左右方向については、 機台 1 1 1 の 正面から視た方向とする) 。 後側壁 1 2 0 b は、 第 1 3図に示すように、 その内部に、 左端から略中間位置間に延びた空間部 Sを設けており、 こ の部分は、 空間部 Sを挟んで、 前壁部 1 2 0 b 1 と後壁部 1 2 0 b 2 に なっている。
ギアボックス 1 2 0の中央左寄り位置には、 後側壁 1 2 0 bの前壁部 1 2 0 b 1 と後壁部 1 2 0 b 2を前後方向に貫通した貫通孔 i 2 1 a , 1 2 1 b が形成されており、 また、前側壁 1 2 0 aの背面部には貫通孔 1 2 1 a , 1 2 1 bの延長位置に取付孔 1 21 c が設けられている。 そ し て、 貫通孔 1 2 1 a , 1 2 1 b及び取付孔 1 2 1 c には、 駆動軸 1 2 2 が揷通されており、 貫通孔 1 2 1 a及び取付孔 1 2 1 c にベアリ ングを 介して回転可能かつ軸方向に移動不能に支持されている。 駆動軸 1 2 2 は、 一端が後側壁 1 2 0 bから外部に突出しており、 突出部分にはプ一 リ 1 2 4が固定されており、また作動室 R 内の部分には駆動軸歯車 1 2 3が固定されている。
ギアボックス 1 2 0の右側壁 1 2 0 c近傍位置には、 前後方向に前側 壁 1 2 0 aを貫通する貫通孔 1 2 5 a と、 後側壁 1 2 0 bの前面側に取 付孔 1 2 5 bが形成されている。 貫通孔 1 2 5 a及び取付孔 1 2 5 b に は、 主軸 1 2 6がベア リ ングを介して回転可能かつ軸方向に移動不能に 支持されている。 主軸 1 2 6は、 一端が前側壁 1 2 0 aから前方にわず かに突出しており、 突出部分にはフラ ンジ 1 2 8 に挟まれて丸鋸 1 2 7 が固定されている。 また、 主軸 1 2 6の、 作動室 R内の部分には、 主軸 歯車 1 2 9が固定されている。
ギアボックス 1 2 0内における上記駆動軸 1 2 2及び主軸 1 2 6の中 間位置には前後方向に、 前側壁 1 2 0 aを貫通する貫通孔 1 3 1 a と、 後側壁 1 2 0 bの前壁部 1 2 0 b 1 を貫通する貫通孔 1 3 1 bが形成さ れている。 貫通孔 1 3 1 a , 1 3 1 bには、 中間軸 1 3 2がベアリ ング によって回転可能かつ軸方向に移動不能に支持されている。 中間軸 1 3 2には、 中間歯車 1 3 3が固定されている。 中間歯車 1 3 3は、 上記駆 動軸歯車 1 2 3及び主軸歯車 1 2 9 にそれぞれ嚙み合わされており、 駆 動軸 1 2 2から主軸 1 2 6への動力伝達に用いられる。
ギアボックス 1 2 0 における上記駆動軸 1 2 2の左下位置には前後方 向に、 第 1 4図に示すように、 前側壁 1 2 0 aを貫通する貫通孔 1 3 4 a と、 後側壁 1 2 0 b の前壁部 1 2 0 b 1 を貫通する貫通孔 1 3 4 bが 形成されている。 貫通孔 1 3 4 a , 1 3 4 b には、 支持軸 1 3 5がベア リ ングによって回転可能かつ軸方向に移動不能に支持されている。 そ し て、 支持軸 1 3 5 には、 第 1 2図に示すように、 スイ ングアーム 1 3 6 が固定されている。 スイ ングアーム 1 3 6は、 正面視で略 L字形状であ り、 L字の垂直部 1 3 6 a と水平部 1 3 6 bの交叉部分が支持軸 1 3 5 に固定されている。
スイ ングアーム 1 3 6の垂直部 1 3 6 a上端は、 左側壁 1 2 0 dの上 下略中間位置に貫通して設けた油圧シリ ンダ 1 3 7の先端に連結されて おり、 油圧シ リ ンダ 1 3 7の駆動により支持軸 1 3 5を中心と して回動 可能にされている。 スイ ングアーム 1 3 6の水平部 1 3 6 bは、 第 1 4 図に示すよう に、 その前後方向の中間部分が右端側から切り欠かれた凹 部 1 3 6 c になっており、 水平部 1 3 6 bの右端位置に支持軸 1 3 8力 回転可能にかつ軸方向に移動不能に支持されている。 この支持軸 1 3 8 には、 凹部 1 3 6 c位置に中間歯車 1 3 9が固定されており、 上記駆動 軸歯車 1 2 3及び主軸歯車 1 2 9に嚙合わせ可能に配設されている。 該 駆動軸歯車 1 2 3 は、 中間歯車の 1 つであり、 中間歯車 1 3 9 と、 駆動 軸歯車 1 2 3、 主軸歯車 1 2 9及び中間歯車 1 3 3が輪を組んで同時に 嚙合い回転する拘束嚙合い歯車列を構成している。 そ して、 この中間歯 車 1 3 9 は、 拘束嚙合い歯車列のバックラ ッ シを除去するために使用さ れる。 すなわち、 油圧シ リ ンダ 1 3 7の駆動によ り支持軸 1 3 5を中心 と して回動するスイ ングアーム 1 3 6の角度によ り、 中間歯車 1 3 9の 駆動軸齒車 1 2 3及び主軸齒車 1 2 9への嚙み合い深さがコ ン ト ロール されるようになつている。
本実施形態に示した回転方向 (図示、 矢印方向) では、 スイ ングァー ム 1 3 6の回動により、 中間歯車 1 3 9の軸心を他の歯車から離れる方 向にずらすことで歯同士を強制的に接触させ、 歯車列全体のバックラ ッ シをゼロにすると共に、 びびり振動を抑制するために必要な与圧力を歯 車に作用させるようにした。 さ らに、油圧回路中に設けた圧力調整弁(図 示しない) により与圧力の調整が容易にでき、 また、 切り替え弁によ り 与圧力を必要時のみ作動させるようにした。 これによ り、 無駄な動力消 費や歯車の磨耗を抑えることができ、 また、 機械の長期の使用によ り歯 車の磨耗が進行した場合でもバックラ ッ シをゼロに維持するこ とができ る。 また、 歯車に偏心や歯車形状誤差があつても、 油圧シ リ ンダ 1 3 7 の伸縮で吸収されるので、 歯面や軸受に過大な荷重が作用する ことがな い。 さ らに、 高精度な歯車を使用することも不要なので、 切断機を安価 に製造することができる。 なお、 回転方向が逆の場合は、 中間歯車 1 3 9の移動方向は、 他の歯車により接近する方向にずらすことによ り、 歯 車列全体のバックラ ッ シをゼロにすることもできる。
ギアボックス 1 2 0の上面壁 1 2 0 e には、 取付部 1 4 1 が設けられ ており、 丸鋸切断機の右方にて他所に固定された油圧シリ ンダ (図示し ない) のロ ッ ドの先端が固定される。 この油圧シ リ ンダのロ ッ ドの伸縮 によ りギアボックス 1 2 0が押されて、 支持台 1 1 2を中心と して回動 するようにされている。 また、 ギアボッ クス 1 2 0の右側壁 1 2 0 じ の 下端近傍位置には、 被削材 1 4 3を取り付けるための切断台 1 4 2が配 設されている。 また、 ギアボッ クス 1 2 0の上面壁 1 2 ϋ eの前端右側 には、 加速度センサ 1 4 4が取り付けられており、 丸鋸 1 2 7付近のギ ァボッ クス 1 2 0の送り方向の加速度を検出するようになっている。 機台 1 1 1 の左側下部には、電動モータ 1 4 5が取り付けられている。 電動モータ 1 4 5の背面側に突出した軸にはプー リ 1 4 6が固定されて おり、 プー リ 1 4 6及び上記プー リ 1 2 4 にはベル 卜 1 4 7が巻装され ている。 これによ り、 電動モータ 1 4 5の回転が、 駆動軸 1 2 2、 中間 軸 1 3 2を経て主軸 1 2 6 に減速して伝達され、 丸鋸 i 2 7を回転させ るようになっている。 そして、 ギアボッ クス 1 2 0内には、 潤滑油が充 填されており、 作動室 R内を循環するようになっている。
( 1 ) 切断試験
つぎに、 駆動軸 1 2 2に取り付けたプー リ 1 2 4の慣性モーメ ン トを 3種類に変化 (プー リ にフライホイ ールを追加することにより行う ) さ せて、 丸鋸 1 2 7で被削材 1 4 3を切断する際の、 切り始めのびびり振 動抑制効果について試験した。 こ こで、 油圧シ リ ンダ 1 3 7によって中 間歯車 1 3 9 に作用させる荷重は 1 5 O kgf と した。 変化させたプー リ 1 2 4 ( P 1 〜 P 3 ) の慣性モーメ ン トを下記表 2 に示す。
[表 2 ]
駆動軸に取付けたプーリ Pの惯性モ一メン卜
Figure imgf000023_0001
また、 プー リ 1 2 4以外の部分である共通部品の主軸換算慣性モーメ ン トを下記表 3 に示す。 [表 3 ]
共通部品の主軸換算慣性モ一メン卜
Figure imgf000024_0001
上記各プー リ ( P 1 〜 P 3 ) と共通部品の組み合わせから求められる 全主軸換算慣性モーメ ン ト J sは、 下記表 4のようになる。
[表 4 ]
プ一リ Pと共通部品とを組合せた全主軸換算慣性モーメン卜
Figure imgf000024_0002
( 2 ) 試験方法
丸鋸の外径 Dは 0 2 8 0 mm、 厚さ T 2 . O mra、 台金の厚さ t 7 mm, 刃数 6 0の丸鋸を、径 0 1 0 6 mmのフラ ンジで主軸 1 2 6 に固定した。 被削材は、径 ø 6 () mmのク ロムモリ ブデン鋼 SCM440Hで、硬さ力く HRC = 30 である。 また、 切断条件と しては、 回転数 N ≤ 1 3 0 rpra では、 一刃当 りの送りを S z = 0 . 0 8匪/刃一定と し、 それ以上の回転数では、 丸 鋸送り速度 f = 6 2 4 mm/min一定と した。 本発明を実施した際の叨始め にびびり振動が発生しない最低の回転数 N crを実測すると共に、 上記数 式 4 ( K = 2 5 0 ) によ り算出 した計算 N c rについて、 下記表 5 に示す, ただし、 実測では、 回転数 1 0 rpm 飛びにびびり振動の有無を観測した が、 びびりの振幅は大き く なかったので、 切始めにびびり振動が発生し たか否かは、 ペン レコーダに記録した加速度の実効値の立ち上がりの勾 配から判断した。 なお、 歯車のバッ クラ ッ シ分の回転変動を伴ったびび り振動以外に、 鋸刃が被削材に食い込む時の打撃振動 (バッ ク ラ ッ シ分 の回転変動を伴わない) 等の他の機械的な振動は、 鋸回転中に常に発生 している。
[表 5 ]
切始めにびびり振動が発生しな 、最低の回転数 Ncr
Figure imgf000025_0001
( 3 ) 試験結果
上記結果から、 実測値 N c r は、 慣性モーメ ン トが小さいときは計算値 N c rに対してわずかに小さい値になつたが、慣性モーメ ン トが大き く な ると計算値 N c r とほぼ同等になり、数式 4 による解析結果がおおむね正 しいこ とが確認された。 さ らに、 丸鋸の回転数 N と振動の最大加速度
( G - rms ) との関係について、 プー リ P 3の例を第 1 5図、 第 1 6図に示 す。 加速度が大きいほど、 機械本体の振動レベルが大きいことを示すも のである。 第 1 5図は、 中間歯車 1 3 9 に油圧シ リ ンダ 1 3 7 による荷 重 F G を作用させない場合を示すものである ( F c = 0 ) 。 ただし、 中間 歯車 1 3 9 とスイ ングアーム 1 3 6の自重による荷重は作用 している。 また、 第 1 6図は、 中間歯車 1 3 9 に油圧シ リ ンダ 1 3 7 による荷重 F c = 1 5 O kg f を作用させた場合を示すものである。
第 1 6図から明らかなように、 中間歯車 1 3 9 に荷重を作用させてバ ックラ ッ シを除去した場合、 慣性モーメ ン トの増加による効果とあいま つて、 最低回転数以上の回転数で切始め時のびびり振動を除去すると共 に切始め以外 (切削関与刃数 Z i が 1 を越える切断の中間) での、 特に 低周波数域での再生や連成といったびびり振動の除去にも非常に効果が あることがわかる。 ただし、 第 1 2図からもわかるように、 中間歯車 1 3 9は、 荷重を作用させな く ても、 重力の影響で多少荷重が作用してい るこ とと、 ギアボックス 1 2 0の作用室 Rに満たした潤滑油の粘性作用 によって、 第 1 5図に示すように切始めの振動抑制効果が生じている。 また、 駆動軸 1 2 2は主軸 1 2 6 よ り回転数が高いので、 主軸 1 2 6 に 直結する方式よりプー リ 1 2 4 に取り付けるフライホイールの直径を小 さ く でき、 かつフライホイールは主軸 1 2 6上にないので、 ホイールと 被削材との干渉が回避できるほか、 機械重量を低減できる効果も得られ る。
なお、 上記実施形態において、 鋸刃の歯形が特殊であり刃によって切 削力 Fが変動する場合は、 その最大値を用いる。 また、 実際の設計時に おいては、 切削力 Fの値を鋸刃の寿命時で考えている。 さ らに、 鋸径が 変化する場合には、 外径 Dの値と して最大鋸径を用いる。 また、 中間歯 車のいずれが駆動軸歯車となってもよ く 、 いずれの中間歯車軸にフライ ホイールを装着してもよい。 また、 中間歯車が 5個以上を有する拘束嚙 合い歯車列であってもよい。 但し、 7個以上では、 取付けスペース、 コ ス ト等の問題で実際的ではない。
なお、 本発明においては、 主軸換算慣性モーメ ン ト J については、 数 式 5 ( I を J に置き換える) に示すとおりであり、 慣性モーメ ン トは大 きいほどびびり振動防止には効果的であるが、 慣性モーメ ン トを大き く するためにフ ライ ホイ ールを重くする等を行う と、 切断機の剛性を上げ る必要が生じ、 切断機の重量が大き く なりすぎる場合がある。 従って、 慣性モーメ ン トを大き く し過ぎないためには、 上記数式 5に従う と共に 数式 6の条件を付加するこ とが望ま しい。 各軸の主軸換算慣性乇ーメ ン トの計算には、 軸自体をはじめ、 プーリ、 歯車、 電動モー夕等をも当然 考慮する。
なお、 モータ軸から駆動軸への動力をベル トで伝える形式は、 ベルト が弾性的であることから実質的にバックラ ッ シを有する状態と考えられ る。 また、 丸鋸切断機の具体的構成については、 上記したものに限る も のではな く 、 さらに本発明は上記スィ ング式のものに限らずスライ ド式 の丸鋸切断機に対しても同様に適用できる。
産業上の利用可能性
本発明に係る丸鋸切断機は、 特に金属被削材の切断において発生する びびり振動を防止することに有用であり、 切削中の丸鋸のびびり振動を 除去して、 切削精度を高めると共に丸鋸の寿命を高め、 騒音の発生を安 価に抑制するのに適している。

Claims

請 求 の 範 囲
1. 電動モータの回転を主軸に伝達し、 該主軸の一端に取り付けられた 丸鋸により切削を行う丸鋸切断機において、
前記丸鋸の外径を D (mm) 、 回転数を N (rpm) 、 接線方向の分力であ る一刃当りの切削力を F (kgf) と したときの前記主軸の慣性モーメ ン ト
1 (kgf · m · sec2 ) を、 I ≥ F x ( D// 2 ) / [ 1 0 0 0 x 2 5 0 x ( N / 6 0 ) 2 ] と したことを特徴とする丸鋸切断機。
2. 電動モータの回転を主軸に伝達し、 該主軸の一端に取り付けられた 丸鋸によ り切削を行う丸鋸切断機において、
前記主軸に直接にまたは該主軸を延長した軸にフライホイールを取り 付けることと し、
前記丸鋸の外径を D (mm) 、 回転数を N (rpm) 、 接線方向の分力であ る一刃当りの切削力を F ( kgf) と したときの前記フライホイールを含む 前記主軸全体の慣性モーメ ン ト I (kgf · πι · sec2 ) を、 I ≥ F X ( D / 2 ) / [ 1 0 0 0 x 2 5 0 x ( NZ 6 0 ) 2 ] と したこ とを特徴とする 丸鋸切断機。
3. 電動モータの回転を主軸に伝達し、 該主軸の一端に取り付けられた 丸鋸によ り切削を行う丸鋸切断機において、
前記丸鋸の外径を D (關) 、 回転数を N (rpm) 、 接線方向の分力であ る一刃当りの切削力を F (kgf) と したとき、
前記主軸からバックラ ッ シを除去した状態で連動する各軸の該主軸を 含めた主軸換算慣性モーメ ン トの和 J (kgf · m · sec2 ) を、 J ≥ F x ( D / 2 ) / [ 1 0 0 0 X 2 5 0 X ( N / 6 0 ) 2 ] と したことを特徴とす る丸鋸切断機。
4. 電動モータの回転を主軸に伝達し、 該主軸の一端に取り付けられた 丸鋸によ り切削を行う丸鋸切断機において、 前記主軸に固定した主軸歯車と輪を組んで嚙み合って同時に回転する 3個以上奇数個の中間歯車を配設することによ り拘束嚙合い歯車列を構 成し、 該中間歯車の 1つに電動モータの回転を入力伝達すると共に、 該 中間歯車の少なく とも 1個を移動可能と し、 該移動可能な中間歯車の少 なく とも 1つに荷重を作用させることによ り該拘束嚙合い歯車列のバッ クラ ッ シを除去するものであり、
前記丸鋸の外径を D (mm) 、 回転数を N (rprn) 、 接線方向の分力であ る一刃当りの切削力を F (kgf) と したとき、 前記主軸からバックラ ッ シ を除去した状態で連動する各軸の該主軸を含めた主軸換算慣性モーメ ン トの和 J (kgf ' m ' sec2 ) を、 J ≥ F x ( D Z 2 ) / [ 1 0 0 0 x 2 5 0 x (N/ 6 0 ) 2 ] と したことを特徴とする丸鋸切断機。
PCT/JP1999/002781 1998-05-30 1999-05-26 Machine de coupe a scie circulaire WO1999062663A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP99922505A EP1008410A4 (en) 1998-05-30 1999-05-26 CUTTING MACHINE
US09/463,584 US6330848B1 (en) 1998-05-30 1999-05-26 Circular saw cutting machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP16603898A JPH11333624A (ja) 1998-05-30 1998-05-30 丸鋸切断機
JP10/166038 1998-05-30
JP06823899A JP3373166B2 (ja) 1999-03-15 1999-03-15 丸鋸切断機
JP11/68238 1999-03-15

Publications (1)

Publication Number Publication Date
WO1999062663A1 true WO1999062663A1 (fr) 1999-12-09

Family

ID=26409460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002781 WO1999062663A1 (fr) 1998-05-30 1999-05-26 Machine de coupe a scie circulaire

Country Status (3)

Country Link
US (1) US6330848B1 (ja)
EP (1) EP1008410A4 (ja)
WO (1) WO1999062663A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7536238B2 (en) 2003-12-31 2009-05-19 Sd3, Llc Detection systems for power equipment
US7827890B2 (en) 2004-01-29 2010-11-09 Sd3, Llc Table saws with safety systems and systems to mount and index attachments
US7836804B2 (en) 2003-08-20 2010-11-23 Sd3, Llc Woodworking machines with overmolded arbors
US7707920B2 (en) 2003-12-31 2010-05-04 Sd3, Llc Table saws with safety systems
US7600455B2 (en) 2000-08-14 2009-10-13 Sd3, Llc Logic control for fast-acting safety system
US7024975B2 (en) 2000-08-14 2006-04-11 Sd3, Llc Brake mechanism for power equipment
US7210383B2 (en) 2000-08-14 2007-05-01 Sd3, Llc Detection system for power equipment
US9927796B2 (en) 2001-05-17 2018-03-27 Sawstop Holding Llc Band saw with improved safety system
US8061245B2 (en) 2000-09-29 2011-11-22 Sd3, Llc Safety methods for use in power equipment
US7231856B2 (en) * 2001-06-13 2007-06-19 Sd3, Llc Apparatus and method for detecting dangerous conditions in power equipment
US6857345B2 (en) 2000-08-14 2005-02-22 Sd3, Llc Brake positioning system
US8459157B2 (en) 2003-12-31 2013-06-11 Sd3, Llc Brake cartridges and mounting systems for brake cartridges
US7225712B2 (en) 2000-08-14 2007-06-05 Sd3, Llc Motion detecting system for use in a safety system for power equipment
US20030056853A1 (en) 2001-09-21 2003-03-27 Gass Stephen F. Router with improved safety system
US8065943B2 (en) 2000-09-18 2011-11-29 Sd3, Llc Translation stop for use in power equipment
US20030140749A1 (en) * 2002-01-25 2003-07-31 Gass Stephen F. Brake Pawls for power equipment
IT1317794B1 (it) * 2000-06-01 2003-07-15 Giovanni Gambini Testa troncatrice di piu' rotoli di carta asciugatutto e/o igienica
US7252027B2 (en) * 2001-02-08 2007-08-07 Black & Decker Inc. Miter saw
JP3867554B2 (ja) * 2001-11-14 2007-01-10 日立工機株式会社 左右傾斜式卓上切断機
US6928913B2 (en) * 2003-09-25 2005-08-16 Plastipak Packaging, Inc. Method and apparatus for trimming containers
AT501939B1 (de) * 2005-03-15 2009-05-15 Linsinger Maschb Gmbh Zahnradgetriebe
US20080194187A1 (en) * 2007-02-08 2008-08-14 Alto U.S. Inc. Elastic drive belt assembly
JP5184035B2 (ja) * 2007-10-05 2013-04-17 株式会社マキタ 電動工具の減速機構
US8752301B2 (en) 2009-04-08 2014-06-17 Rex George Chainsaw incorporating a safety device system
GB2504271A (en) * 2012-07-23 2014-01-29 Black & Decker Inc Saw with Elastically Deformable Drive Belt
US9352403B2 (en) * 2012-12-11 2016-05-31 Robert Bosch Gmbh Dual stage drive for power equipment
KR102191166B1 (ko) * 2013-06-10 2020-12-16 두산공작기계 주식회사 회전 절삭공구의 실시간 회전수 설정방법 및 제어장치
CN103785895B (zh) * 2014-01-28 2016-10-05 武汉伊科工贸有限公司 数控高速锯切设备
CN104889483A (zh) * 2014-03-05 2015-09-09 宁波德美锯业有限公司 一种泛用型高速精密金属圆锯机
CN104942367A (zh) * 2014-03-30 2015-09-30 宁波德美锯业有限公司 一种新型锯切机头
CN113369563A (zh) * 2020-02-25 2021-09-10 辽宁工程技术大学 一种机械加工用原材料切割设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU548415A1 (ru) 1975-05-23 1977-02-28 Сибирский научно-исследовательский институт лесной промышленности Пильное устройство
JPS573525U (ja) * 1980-06-09 1982-01-09
JPS6228334Y2 (ja) * 1983-04-14 1987-07-21
JPH0748339Y2 (ja) * 1987-09-10 1995-11-08 兼房株式会社 丸鋸切断機のびびり振動防止装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1450459A (en) * 1921-05-17 1923-04-03 Curtis E Smith Portable rotary saw
FR867781A (fr) * 1939-10-21 1941-11-27 Wagner Maschf Gustav Transmission à engrenages avec répartition des charges
US3776046A (en) * 1971-09-27 1973-12-04 Niagara Machine & Tool Works Inertia balancing means for power presses
US3776079A (en) * 1972-01-17 1973-12-04 M Steinberg Guillotine chopper arrangement
US4024780A (en) * 1975-06-17 1977-05-24 Aetna-Standard Engineering Company Flying rotary saw
US4091315A (en) * 1975-07-31 1978-05-23 Nusco Kabushiki Kaisha Servomechanism for rotary type flying cutting apparatus
DE2829856A1 (de) * 1978-07-07 1980-01-17 Dieter Kaltenbach Verfahren zum ausschalten des spieles innerhalb mechanischer vorschubmittel fuer eine kaltkreissaege
JPS5548517A (en) * 1978-10-04 1980-04-07 Nasuko Kk Cutting controller
DE3021062A1 (de) * 1980-06-04 1981-12-24 Maschinenfabrik Esterer AG, 8262 Altötting Verfahren zum betreiben von elektromotorisch angetriebenen holzbearbeitungsmaschinen und antriebsvorrichtung zum durchfuehrung des verfahrens
SU935267A1 (ru) * 1980-11-04 1982-06-15 Ордена Трудового Красного Знамени Уральский Лесотехнический Институт Им.Ленинского Комсомола Механизм резани деревообрабатывающего станка
US4376401A (en) * 1980-12-05 1983-03-15 Borzym John J Bevel gear drive with means to control backlash for flying ram cutoff machine
JPH0634898Y2 (ja) * 1987-02-18 1994-09-14 株式会社アマダ 帯鋸刃案内装置
US5325751A (en) * 1993-02-17 1994-07-05 Mereen-Johnson Machine Company Gang rip saw assembly
DE4343484C2 (de) 1993-12-20 1998-10-08 Linsinger Maschinenbau Gmbh Zahnradgetriebe
JP2963053B2 (ja) * 1996-07-12 1999-10-12 津根精機株式会社 丸鋸切断機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU548415A1 (ru) 1975-05-23 1977-02-28 Сибирский научно-исследовательский институт лесной промышленности Пильное устройство
JPS573525U (ja) * 1980-06-09 1982-01-09
JPS6228334Y2 (ja) * 1983-04-14 1987-07-21
JPH0748339Y2 (ja) * 1987-09-10 1995-11-08 兼房株式会社 丸鋸切断機のびびり振動防止装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1008410A4 *

Also Published As

Publication number Publication date
EP1008410A4 (en) 2007-05-02
EP1008410A1 (en) 2000-06-14
US6330848B1 (en) 2001-12-18

Similar Documents

Publication Publication Date Title
WO1999062663A1 (fr) Machine de coupe a scie circulaire
KR102107609B1 (ko) 파워 시트 길이 조절 시스템 및 제조 방법
US6533508B1 (en) Machining apparatus and machining method
JP2008106894A (ja) バックラッシュ除去装置
KR20070050929A (ko) 공작물의 절단 방법 및 띠톱 기계
KR101842918B1 (ko) 공작기계의 로터리 테이블 구동장치
CN103671705A (zh) 发动机平衡装置
US6481508B2 (en) Spindle for machine tool
JPH11333624A (ja) 丸鋸切断機
KR100655919B1 (ko) 벨트타입의 터렛공구대
CN202726068U (zh) 力矩电机直驱铣齿主轴箱
US6979253B2 (en) Work drive for continuous generation gear grinding machine
JP2007303487A (ja) ウォーム減速機および電動パワーステアリング装置
EP1948389B1 (en) Magnetic spindle for machine tool
JP2000263321A (ja) 丸鋸切断機
KR20150121656A (ko) 헬리컬 기어의 백래시 제로화 장치
JP2521320B2 (ja) 歯車仕上機
CN101007361A (zh) 飞剪线上的双曲轴滑轨同步飞剪机
JP4362469B2 (ja) 帯鋸盤
CN201098839Y (zh) 数控中高装置
JP2004314295A (ja) 少なくとも一つの内部の円形フライス工具を備え、工作物、特にクランクシャフトやカムシャフトを加工するための機械
CN102717100A (zh) 力矩电机直驱铣齿主轴箱
KR20140046699A (ko) 공작기계의 틸팅축 기어 구동 장치
JPS5928734Y2 (ja) 鋸盤
KR101620733B1 (ko) 동력전달장치 및 이를 포함하는 절단기

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09463584

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999922505

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999922505

Country of ref document: EP