WO1999058820A1 - Generateur d'energie - Google Patents

Generateur d'energie Download PDF

Info

Publication number
WO1999058820A1
WO1999058820A1 PCT/JP1999/002473 JP9902473W WO9958820A1 WO 1999058820 A1 WO1999058820 A1 WO 1999058820A1 JP 9902473 W JP9902473 W JP 9902473W WO 9958820 A1 WO9958820 A1 WO 9958820A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
steam
thermoelectric conversion
water
conversion element
Prior art date
Application number
PCT/JP1999/002473
Other languages
English (en)
French (fr)
Inventor
Satarou Yamaguchi
Original Assignee
Yyl Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yyl Corporation filed Critical Yyl Corporation
Priority to EP99919558A priority Critical patent/EP0997613B1/en
Priority to US09/462,940 priority patent/US6269645B1/en
Priority to DE69932989T priority patent/DE69932989T2/de
Publication of WO1999058820A1 publication Critical patent/WO1999058820A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a power generator, and more particularly, to a power generator that converts heat energy into electric energy.
  • thermoelectric effect has not been sufficiently used in major energy conversion systems such as thermal power generation and nuclear power generation. It is a fact.
  • FIG. 1 is a diagram schematically showing an energy flow in a thermoelectric conversion element. This figure was published in a paper entitled “What is the problem with thermoelectric conversion technology?" (The Institute of Energy Resources, July 1995, p. 43). The width in the figure is drawn in proportion to the magnitude of the energy flux.
  • TH 1300 ° C
  • the maximum efficiency is 13.7%, and the material has dramatically improved.
  • z-T Mais ⁇ 2 the maximum efficiency is about 22.0% It just becomes. This point is the biggest problem in thermoelectric power generation, and it cannot be expected that thermoelectric power generation alone can compete with other power generation facilities such as gas turbines and fuel cells. I have.
  • FIG. 2 is a diagram showing performance index characteristics of various thermoelectric materials.
  • the vertical axis represents the figure of merit and the horizontal axis represents the temperature. From Fig. 2, it can be seen that the energy conversion efficiency of the thermoelectric material is at most about 10%. Therefore, further research and development period will be required in the development of thermoelectric element materials.
  • FIG. 3 is a diagram showing the temperature dependence of the thermal conductivity of a filled skutterudite alloy. As shown in Fig. 3, the filled skutterudite alloy having the composition of LaFe 3 CoSb 12 or CeFe 3 CoS bi 2 has a better electrical property than the binary skutterudite alloy CoSb 3, which has excellent electrical properties. The thermal conductivity has decreased by an order of magnitude, and at room temperature, the glassy silica (SiO 2)
  • FIG. 4 is a diagram showing the temperature dependence of the dimensionless figure of merit ZT in a nearly optimized sample of a filled skutterudite alloy.
  • the black circles in Fig. 4 are calculated based on the measured room-temperature carrier concentration, assuming a single parabolic band and acoustic phonon scattering. The calculations also reflect measured thermal conductivity at high temperatures.
  • FIGS. 3 and 4 above are listed in “Parity” Vol. 12 No. 10 997-10.
  • the shaft configuration of the combined cycle power generation system (also referred to simply as “combined system”) is a single shaft type in which one gas turbine and one steam turbine are directly connected to the same shaft in the exhaust heat recovery cycle.
  • Fig. 5 is a diagram for explaining the conventional exhaust heat recovery type combined cycle power generation system.
  • this conventional waste heat recovery combined cycle power generation system uses a gas exhaust bin 19, an exhaust heat recovery boiler 21 connected to a gas turbine 19, and an exhaust heat recovery boiler 21.
  • Steam turbine 23 connected to recovery boiler 21, condenser 25 connected to steam turbine 23, and water supply connected between condenser 25 and waste heat recovery poiler 21 And a pump 27.
  • the gas turbine 19 is turned by using the energy of the high-temperature gas of about 150 ° C, and the steam is generated by using the exhaust gas. Since the turbine can also be operated, the power generation efficiency will increase overall.
  • the high-temperature and high-pressure water steam generated in the boiler 29 is heated again by the reheater after turning the high-pressure turbine 31 and guided to the medium-pressure turbine 33. At the turbine blades, some steam is turned into water due to the work done outside. Then, these water vapor and water are cooled by the condenser 35 and returned to low-temperature and low-pressure water, and guided to the feedwater heater 37. In the feed water heater 37, the water supplied from the condenser 35 is heated, compressed again by the feed water pump 39, and supplied to the boiler 29. At present, the power generation efficiency of thermal power plants is about 39%.
  • thermoelectric conversion technology used for energy conversion systems in thermal power generation.
  • FIG. 7 is a diagram illustrating a conventional thermoelectric conversion element.
  • carbon 3 as an N-type semiconductor element and B 4 C (boron carbide) 5 as a P-type semiconductor element both form W or Mo as a PN junction electrode.
  • Electrodes 7 are provided at the other ends of the carbon 3 and the boron force hydride 5 facing the heat collecting metal plate 1, respectively. Then, an output voltage is obtained by a potential difference generated between the two electrodes 7.
  • a through hole is formed in each of the two electrodes 7, and a water pipe 9 is passed through the through hole.
  • thermoelectric conversion element for example, when the temperature of the heat collecting metal plate 1 is 150 and the temperature of the electrode 7 is 30 ° C., a maximum of 8% thermal efficiency can be obtained. When the temperature of 1 is 1500 and the temperature of the electrode 7 is 600 ° C., a maximum of 4% thermal efficiency can be obtained.
  • FIG. 8 is a diagram showing a configuration of a conventional thermal power generator incorporating the thermoelectric conversion element shown in FIG.
  • the thermoelectric device shown in FIG. 7 surrounds the combustion chamber of the boiler 11.
  • the conversion elements 13 are provided in a column.
  • the thermoelectric conversion elements 13 are arranged so that the heat collecting metal plate 1 faces the combustion chamber, and the water supplied to the boiler 11 via the water supply pipe 17 is shown in FIG. Water vapor is generated through the water pipe 9. This steam is supplied to the steam turbine from the outlet 15 of the boiler 11. The combustion gas generated by the boiler 11 is discharged from the chimney 12.
  • An object of the present invention is to provide a power generation device having a higher conversion efficiency from heat energy to electric energy than before.
  • An object of the present invention is to provide a power generation device that generates power using thermal energy of combustion gas or steam, and that includes a thermoelectric conversion element in at least two portions having different temperatures. Is achieved by
  • an object of the present invention is to provide a boiler for heating pressurized water in a combustion chamber to generate steam, a turbine connected to the boiler for generating power by the work of steam, a turbine connected to the turbine, and Condenser that condenses steam by condensing the steam by condensing the steam that flows out, and feedwater heating that uses part of the steam that is working in the turbine to preheat the water supplied from the condenser to the boiler
  • a first unit that generates electric power by utilizing the difference between the temperature inside the combustion chamber and the temperature of the water discharged from the feedwater heater or the condenser.
  • a second type which is attached to a thermoelectric conversion element and a feedwater heater, generates electricity using the difference between the temperature of a part of the steam supplied from the turbine and the temperature of the water supplied from the condenser.
  • a power generation device including a thermoelectric conversion element.
  • an object of the present invention is to provide a preheating means provided between a feed water heater and a boiler, for preheating pressurized water supplied to the boiler; The temperature of the combustion gas supplied from the combustion chamber to preheat the water and the pressure of the pressurized water supplied to the preheating means This is attained by providing a power generation device further provided with a third thermoelectric conversion element that generates electric power by utilizing a difference with temperature.
  • an object of the present invention is to provide an air preheater for preheating air supplied into a combustion chamber, and a temperature of the air supplied to the air preheater, which is provided to the air preheater, and to preheat the air. This is attained by providing a power generation device further provided with a fourth thermoelectric conversion element that generates electric power by utilizing the difference between the temperature of the combustion gas supplied from the combustion chamber and the temperature of the combustion gas.
  • Another object of the present invention is to generate electric power by utilizing the difference between the temperature of fuel supplied to a combustion chamber and the temperature of air preheated by an air preheater or water discharged from a feedwater heater. This is achieved by providing a power generation device further provided with five thermoelectric conversion elements.
  • an object of the present invention is to provide a first thermoelectric conversion element, wherein the first thermoelectric conversion element is provided with a first electrode facing the inside of the combustion chamber, an N-type semiconductor having one end joined to the first electrode, A P-type semiconductor having one end joined to the first electrode; a second electrode provided at the other end of the N-type semiconductor and the P-type semiconductor; and a feed water heater erected to the turbine so as to penetrate the second electrode.
  • a power generation device including a water pipe that is provided and a heat insulator that is narrowly provided between the water pipe and the second electrode.
  • Another object of the present invention is to provide a vaporizer for vaporizing liquid LNG and supplying it to a boiler, a temperature of the LNG and a temperature of water guided to the vaporizer for vaporizing the LNG. And a third thermoelectric conversion element that generates electric power using the difference between the two.
  • an object of the present invention is a power generator having a plurality of steam turbines having different operating pressure ranges, wherein the boiler heats compressed water in a combustion chamber to generate steam, and is provided so as to surround the combustion chamber of the boiler. And a first thermoelectric conversion element that generates electric power using the difference between the temperature inside the combustion chamber and the temperature of water or steam discharged from any one of the steam bins. This is achieved by providing an improved power plant. Further, an object of the present invention is to provide a condenser connected to a steam turbine and condensing and condensing water vapor by cooling steam discharged from the steam turbine, and a part of the water vapor that is working in the steam turbine.
  • an object of the present invention is to provide a power generator in which water or steam discharged from any one of the steam turbines and deprived of heat from the first thermoelectric conversion element is again led to the feedwater heater. Achieved.
  • the object of the present invention is achieved by providing a power generator in which steam that has given heat to the second thermoelectric conversion element is guided to a condenser. Further, the object of the present invention is achieved by providing a power generation device in which the second thermoelectric conversion element is made of a PbTe or C0Sb-based material.
  • an object of the present invention is to provide a power generator further comprising a second thermoelectric conversion element that generates electric power by utilizing a difference between the temperature of steam discharged from a steam turbine and the temperature of water existing in a natural environment. Achieved by providing.
  • an object of the present invention is a power generation device in which a gas turbine and a steam turbine are combined, and utilizes a difference between a temperature of gas supplied to the gas turbine and a temperature of water discharged from the steam turbine. This is attained by providing a power generation device having a thermoelectric conversion element that generates electric power.
  • the main advantage of the present invention is that, by providing a thermoelectric conversion element that generates electric power by utilizing a temperature difference generated between each part of the conventional power generation device, the power generation efficiency of the entire device can be increased as compared with the conventional device. That is to say. This is because it is a process that does not originally involve energy loss.
  • Another advantage of the present invention is that it has a moving part such as a gas bottle. With no thermoelectric conversion elements, the operating power generation efficiency of the entire system can be increased without increasing the maintenance burden.
  • FIG. 1 is a diagram schematically showing the energy flow in the thermoelectric conversion element
  • FIG. 2 is a diagram showing the performance index characteristics of various thermoelectric materials
  • Figure 3 shows the temperature dependence of the thermal conductivity of a filled skutterudite alloy.
  • Figure 4 shows the temperature dependence of the dimensionless figure of merit ZT for a nearly optimized sample of a filled skutterudite alloy.
  • Fig. 5 is a diagram illustrating the conventional exhaust heat recovery combined cycle power generation system.
  • Figure 6 is a thermal equilibrium diagram of an actual thermal power plant system using a reheating cycle, etc.
  • FIG. 7 is a diagram illustrating a conventional thermoelectric conversion element
  • FIG. 8 is a diagram showing a configuration of a conventional thermal power generator incorporating the thermoelectric conversion element shown in FIG. 7,
  • FIG. 9 is a diagram showing the overall configuration of the power generator according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram showing the configuration of the boiler shown in FIG. 9,
  • FIG. 11 is a diagram showing the configuration of the thermoelectric conversion element shown in FIG. 10
  • FIG. 12 is a diagram showing the principle of tobbing from the viewpoint of heat flux and temperature
  • FIG. 13 is a diagram showing the structure of the water pipe shown in FIG. 11,
  • FIG. 14 is a diagram showing the structure of the feed water heater shown in FIG. 9,
  • FIG. 15 is a diagram showing the entire configuration of the preheating device shown in FIG. 9, and
  • FIG. 16 is a thermoelectric conversion element
  • FIG. 17 is a diagram showing a configuration of a carburetor in which is incorporated.
  • FIG. 18 is a diagram for explaining energy conversion in a power generation device employing the combined cycle power generation system according to Embodiment 2 of the present invention.
  • FIG. 19 is an overall view of a power generation device according to Embodiment 3 of the present invention.
  • FIG. 3 is a diagram showing a configuration.
  • Exergy in thermodynamics, also called “effective energy”, is a representation of available energy incorporating the concept of entropy.
  • the heat engine has a heat source and works by making a heat cycle based on the temperature difference from the environment. At that time, the exergy W is defined as follows.
  • thermoelectric conversion technology Since the maximum efficiency of the heat engine is determined by the efficiency of the Carnot cycle, exergy gives the maximum work of the heat engine. Therefore, it has great power in the analysis of thermoelectric conversion technology. This is because the electric output E of the thermoelectric element is written as follows.
  • thermoelectric conversion element the output of the thermoelectric element is obtained by multiplying the energy by the figure of merit of the element and the efficiency determined by the external circuit. Therefore, in order to effectively use the thermoelectric conversion element, it is essential to use it in a large part of the exergy energy flux, and it is not always the same as the part in which the energy (heat) flux is large. It should be noted. Hereinafter, an embodiment based on such a principle will be described.
  • a power generator includes a boiler 39, a superheater 40 connected to the boiler 39, and a bin 4 connected to the superheater 40.
  • a condenser 3 5 connected to the turbine 4
  • a feed water pump 3 4 connected to the condenser 35
  • a feed water heater 4 3 connected to the turbine 41 and the feed pump 34.
  • a feed water pump 3 6 connected to the feed water heater 43; a feed water heater 45 connected to the turbine 41 and the feed pump 36; and a feed pump 38 connected to the feed water heater 45.
  • Preheater 4 7 connected to feedwater pump 3 8
  • pure water heated by feed water heaters 43, 45 and pre-heater 47 by feed water pumps 34, 36, 38 enters a water pipe in boiler 39.
  • the high-temperature, high-pressure superheated steam is sent to the turbine 41 and collides with the blades of the turbine 41 to rotate a turbine shaft directly connected to a generator (not shown).
  • the steam exiting the turbine 41 enters the condenser 35, is cooled by the cooling water, condenses and condenses, is pumped up by the condenser pump 34, and is sent again to the feed water heater 43.
  • the power generation device is characterized in that a thermoelectric conversion element is incorporated in each of the boiler 39, the feedwater heaters 43, 45, and the preheating device 47 in FIG.
  • a thermoelectric conversion element is incorporated in each of the boiler 39, the feedwater heaters 43, 45, and the preheating device 47 in FIG.
  • FIG. 10 is a diagram showing a configuration of the boiler 39 shown in FIG. As shown in FIG. 9, the boiler 39 burns fuel 14 in its combustion chamber to generate a large amount of heat, and a thermoelectric conversion element 49 is provided so as to surround this combustion chamber. Is done.
  • FIG. 11 is a diagram showing a configuration of the thermoelectric conversion element 49 shown in FIG.
  • the thermoelectric conversion element 49 has a heat collecting metal plate 1 made of an armor material such as SiC, and one end is joined to the heat collecting metal plate 1 and an electrode 7 is attached to the other end.
  • a semiconductor that can be used for the thermoelectric conversion element 49 a polon-based material can be considered in addition to SiGe.
  • a through hole is provided in the electrode 7, and a water pipe 9 is passed through the through hole.
  • thermoelectric conversion element is arranged such that the heat collecting metal plate 1 faces the inside of the combustion chamber of the boiler 39.
  • the temperature of the heat collecting metal plate 1 becomes about 125 ° C. due to the heat generated in the boiler 39.
  • the water supplied from the preheating device 47 flows through the water pipe 9 penetrating the inside of the electrode 7, and receives the heat generated in the boiler 39, causing steam 16 at 566 ° C and 250 atm.
  • the temperature of the electrode 7 is about 65 ° C.
  • the turbine 41 is operated by using the steam 16 generated in the boiler 39 in this way, and electric power is generated by the rotary generator 42.
  • thermoelectric conversion elements 49 are arranged in series along the flow path of the combustion gas.
  • the arrangement is not limited to this, and any arrangement is possible as long as it is provided around the combustion chamber.
  • the hatched portion of the thermoelectric conversion element 49 in FIG. 10 indicates an N-type thermoelectric material 50.
  • thermoelectric conversion system In the power generation device having the above-described structure, the heat flux not deposited in the power generation is transmitted to the low-temperature electrode 7 of the thermoelectric conversion element 49 by heat conduction. Moreover, since the turbine 41 obtains steam having the same temperature and pressure, the efficiency of the rotary generator 42 does not decrease. Therefore, it is possible to recover part of the exergy loss in this temperature range that occurred in the conventional system.
  • Fig. 12 shows the principle from the viewpoint of heat flux and temperature.
  • the temperature of the flame and the combustion gas in the boiler 39 is, for example, 130 ° C. or more.
  • the temperature of water vapor is 5666 even when pressurized at 250 atmospheres or more. It is about C.
  • turbine 41 forms a thermal cycle from 566 ° C to approximately 50 ° C or less of water.
  • energy is not lost from the flame temperature of 130 ° C to the high end steam temperature of 566 ° C, but the entropy increases and the exergy decreases, and eventually the entire system Efficiency will be reduced. Therefore, the energy not deposited in the power generation generates water vapor and the energy is converted by the rotary generator 42.
  • ⁇ e f r ⁇ ⁇ + ⁇ 2 (1 - ⁇ ⁇
  • is the thermoelectric conversion efficiency
  • e 2 is the efficiency of the turbine generator. Since this is higher than each conversion efficiency as an identity, it is possible in principle to improve the efficiency of the entire system. That is, the efficiency is improved by 3 to 5% by topping.
  • thermoelectric conversion effect of the thermoelectric conversion element shown in FIG. The rate e is about 0.056 for optimal operation. Also, for example, when the temperature of the heat source is 110 ° C. and the temperature of the electrode 7 of the thermoelectric conversion element is 600, the thermoelectric conversion efficiency is 0.0796, and the temperature of the electrode 7 is reduced. By further lowering the thermoelectric conversion efficiency S! Can be effectively improved.
  • the exergy efficiency of the boiler 39 can be improved by increasing the temperature in the boiler 39.
  • the water pipe 9 is made of carbon steel and has an outer diameter of about 80 mm, a thickness of about 9 mm, and a thermal conductivity of about 35 W / m ZK.
  • a heat transfer tube 52 outside the water tube 9, in order, a heat transfer tube 52, an electric insulating material 54, a low-temperature electrode 56, a semiconductor made of P-type and N-type thermoelectric materials. 58, high-temperature electrode 60, electrical insulation 54, armor 62 are wound.
  • a structure in which an inner casing 57a, a heat insulating material 55, and an outer casing 57b are sequentially wound outside the water pipe 9 is also considered.
  • a structure in which a refractory brick 53, a high-temperature insulating material 59, a heat insulating material 55, and a casing 57 are wound in order to the outside of the water pipe 9 is also conceivable.
  • a plurality of water pipes 9 are separated by fins 61, and the surroundings are wrapped around a heat insulating material 55 and a casing 57. Structure is also possible.
  • thermoelectric conversion technology as described above is currently being considered for use in power generation using garbage or in the drainage section of thermal power generation.
  • FIG. 14 is a diagram showing the structure of the feed water heater 43, and the feed water heater 45 has the same structure.
  • a partition plate 63 is provided inside the feed water heater 43, and a thermoelectric conversion element 49 is provided in the partition plate 63.
  • the feed water heater 4 3 may contain low-temperature, low-pressure (normal temperature, about 0.03 atm) water from the condenser 35 and high-temperature, high-pressure water (turbine from the boiler 39) from the turbine 41. This is a device that heat exchanges and finally mixes to recover energy. Therefore, the feed water heaters 43 and 45 are good energy recovery devices, and there is no energy loss in principle. However, mixing media having different temperatures and pressures will produce an enthalpy during the process, resulting in exergy loss and reduced efficiency.
  • thermoelectric conversion element 49 in the feedwater heaters 43 and 45 as described above.
  • a structure is used to generate electricity using the temperature difference.
  • heat is supplied to the heat collecting metal plate 1 of the thermoelectric conversion element shown in FIG.
  • the heat is removed from the water by the normal temperature water supplied from the condenser 35.
  • the amount of heat generated by water is reduced by the amount of power generated.However, since electric energy is generated, the overall conversion efficiency of the entire power generation unit is further improved by 1 to 2%. Is done.
  • thermoelectric semiconductor used is B 1 6 ⁇ ? Medium-temperature materials such as 13 and 6 are desirable.
  • FIG. 15 is a diagram showing the overall configuration of the preheating device 47.
  • the preheating device 47 includes a mixing chamber 67 in which heavy oil and preheated air are mixed, a heavy oil combustion chamber 69 connected to the mixing chamber 67, A superheater 71 to which the combustion gas discharged from the heavy oil combustion chamber 69 is led, a reheater 73 to which the combustion gas passed through the superheater 71 is introduced, and a water supply pump 3 shown in Fig.
  • the economizer 75 that supplies the supplied 15 ° C water supplied from 8 to the boiler 39 by preheating it to a temperature below the saturated steam temperature and supplies the supplied 15 ° C air to 250 ° C Air preheater 77 that preheats air, exhaust gas purifier 79 that purifies the combustion gas discharged from the air preheater 77, chimney 81 connected to the exhaust gas purifier 79, and thermoelectric conversion element 4 9 is provided.
  • thermoelectric conversion elements 49 have the same configuration as the thermoelectric conversion element 49 shown in FIG. 11, which will be described later.
  • the heavy oil combustion process in the preheating device 47 will be described.
  • 150 ° C heavy oil and 250 ° C preheated air are mixed in a mixing chamber to produce a 500 ° C mixed gas.
  • the mixed gas passes through pyrolysis combustion at 150 ° C. in the combustion chamber 69 and incandescent combustion (theoretical combustion temperature of 2000 ° C.), and then becomes 100 to 130 ° C. And is discharged from the combustion chamber 69.
  • the combustion gas discharged from the combustion chamber 69 passes through the superheater 71 and the reheater 73 and is led to the economizer 75 at 500 ° C.
  • the 500 ° C combustion gas supplied heat to the 15 ° C feedwater supplied to the economizer 75. After that, the temperature becomes 300 ° C. and is guided to the air preheater 77.
  • the combustion gas at 300 is preheated to 150 ° C from the 15 ° C air supplied to the air preheater ⁇ 7, and then becomes 200 to 160 ° C. Enter the exhaust gas purifier 7 9 Then, this combustion gas is purified by the exhaust gas purifying device 79 and discharged to the outside through the chimney 81.
  • the air preheated to 250 ° C by the air preheater 77 is led to the mixing chamber 67.
  • thermoelectric conversion elements 49 incorporated in three places of the preheating device 47 will be described.
  • a thermoelectric conversion element 49 is assembled in the mixing chamber 67, and the thermoelectric conversion element 49 is supplied to the heat collecting metal plate 1 on the high-temperature side by a temperature of 250 ° C supplied from the air preheater 77. Heat is supplied from the air, and the heat is taken away by the 15 ° C heavy oil at the electrode 7 on the low temperature side. Therefore, this thermoelectric conversion element 49 has the significance of recovering lost exergy using the difference between the temperature of preheated air and the temperature of heavy oil, and improves the power generation efficiency of the entire power generation device. It is to let.
  • thermoelectric conversion element 49 it is conceivable to use water discharged from the feed water heaters 43 and 45 to supply heat to the heavy oil, in which case the high temperature of the thermoelectric conversion element 49 is used. Heat is supplied from the water discharged from the feed water heaters 43 and 45 to the heat collecting metal plate 1 on the side.
  • thermoelectric conversion element 49 is incorporated in the economizer 75, and the thermoelectric conversion element 49 passes through the reheater 73 to the heat collecting metal plate 1 on the high-temperature side. Heat is supplied from the combustion gas of e C, and heat is taken off by the 15 ° C. water supply to the electrode 7 on the low temperature side. Therefore, like the thermoelectric conversion element 49 described above, the thermoelectric conversion element 49 has the significance of recovering lost exergy using the difference between the temperature of the combustion gas and the temperature of the feed water. O To further improve the power generation efficiency of the entire power plant o
  • thermoelectric conversion element 49 is also incorporated in the air preheater 77, and the thermoelectric conversion element 49 is mounted on the heat-collecting metal plate 1 on the high-temperature side. 3 0 0 supplied from the heat from the combustion gas e C is supplied, heat is deprived by the air of the low temperature side 1 5 ° C in electrodes 7. Therefore, like the above-described thermoelectric conversion element 49, this thermoelectric conversion element 49 is lost by utilizing the difference between the temperature of the combustion gas and the temperature of the air supplied to the air preheater 77. It has the significance of recovering energy, and further enhances the power generation efficiency of the entire power plant.
  • a cold LNG primarily methane configuration element is namely liquid, boiling point in one 1 6 l e C In a system in which
  • a vaporizer using seawater or the like
  • thermoelectric conversion technology to the carburetor in the same way Conceivable.
  • the operating temperature range of the vaporizer is from room temperature to about 170 ° C, while LNG is carried by liquid, has latent heat, and the medium temperature before gasification is almost constant. We use to.
  • FIG. 16 is a diagram showing a configuration of a vaporizer incorporating a matured electricity conversion element.
  • this vaporizer is composed of a vaporization chamber 84 to which liquid LNG is supplied, and feedwater heaters 43, 45 and condensers provided below the vaporization chamber 84.
  • feedwater heaters 43, 45 and condensers provided below the vaporization chamber 84.
  • thermoelectric conversion element 49 provided between the vaporization chamber 84 and the pipe 82
  • thermoelectric conversion element 49 has the same configuration as the thermoelectric conversion element shown in FIG. 11, but it is preferable to use a BiTe-based or BiSb-based material.
  • the liquid LNG in the vaporization chamber 84 takes heat from the heated water passing through the pipe 82 to vaporize, and LNG gas is generated.
  • thermoelectric conversion element 49 In the thermoelectric conversion element 49 attached to such a vaporizer, the heat collecting metal plate 1 on the high-temperature side receives heat from the heating water passing through the pipe 9 to the low-temperature side. Heat is taken from the electrode 7 by LNG at about 170 ° C. Thus, the thermoelectric conversion element 49 collects the exergy that flows out due to the temperature difference between the heated water and the liquid LNG, and generates electric power.
  • thermoelectric conversion technology to a vaporizer as described above assumes a heat cycle between the temperature of the heated water and liquid LNG, so the temperature difference is not as large as when operating in a high temperature range.
  • thermoelectric conversion elements made of existing BiTe-based materials into the vaporizer, the overall efficiency of the thermal power plant is improved by about 0.4%. It is also conceivable to guide seawater at normal temperature to the vaporizer to vaporize liquid LNG, but those who use the water discharged from the feedwater heaters 43, 45 and the condenser 35 will receive water. The amount of heat can be increased, and the cost can be reduced by downsizing the vaporizer. Further, there is an advantage that the electromotive force generated by the built-in thermoelectric conversion element 49 also increases.
  • the power generation efficiency can be further improved. That is, it is possible to achieve efficiency comparable to that of a power generation system employing a combined cycle power generation system using a gas turbine that rotates at a high speed, and it is possible to particularly reduce equipment costs and maintenance costs.
  • the number of the attached thermoelectric conversion elements can be increased or decreased to obtain a power generator corresponding to a required output.
  • the power generation apparatus according to Embodiment 2 of the present invention employs a method similar to the conventional exhaust heat recovery type combined cycle power generation method shown in FIG. However, the difference is that a thermoelectric conversion element 49 is added to the combustor 83 of the gas turbine.
  • thermoelectric conversion element 49 is the same as the thermoelectric conversion element 49 shown in FIG. Heat generated in the combustor 83 is supplied to the high-temperature side heat-collecting metal plate 1, and water is supplied from the low-temperature side electrode 7 by the water supply pump 27. Heat is deprived.
  • thermoelectric conversion element 49 uses the difference between the temperature in the combustor 83 and the temperature of the water supplied from the water supply pump 27 to recover the lost energy, and discharges the energy. It is meaningful to further improve the power generation efficiency of the entire power generation system that employs the heat recovery type combined cycle power generation system.
  • the electrode 7 on the low temperature side of the thermoelectric conversion element 49 is connected to the condenser 2 instead of the water supply pump 27.
  • FIG. 18 is a diagram for explaining energy conversion in a power generation device employing a combined cycle power generation system according to Embodiment 2 of the present invention.
  • the temperature of the flame in the combustor 83 of the gas turbine is around 1100, and the maximum temperature of the steam acting on the steam turbine 23 is 566 ° C. It is about.
  • a thermal cycle is formed at a temperature of 566 ° C. to 200 ° C. to 50 ° C. or less.
  • the thermal efficiency is about 0.18 to 0.31
  • the thermal efficiency of the steam turbine 23 is about 0.39.
  • the heat efficiency of the gas turbine 19 itself is lower than the heat efficiency of the steam turbine 23 as described above, the gas turbine 19 is used according to the purpose because the operating temperature range is different.
  • thermoelectric conversion element 49 attached to the combustor 83 of the gas turbine as described above is caused by the difference between the temperature in the combustor 83 and the temperature of steam in the steam turbine 23. Recover the exercised energy and generate electricity. More specifically, it is desirable that a thermoelectric conversion element 49 be provided between the outlet of the combustor 83 and the blade of the gas turbine 19.
  • the power generation efficiency can be further improved.
  • the thermal efficiency of the thermoelectric conversion element 49 is lower than the thermal efficiency of the gas turbine 19, but has the following advantages. That is, the power generation by the thermoelectric conversion element 49 does not require gasification of fuel, and a solid such as coal can be used as a heat energy source. In addition, maintenance is easy because it can be composed of stationary equipment. Further, when the operating temperature of the gas bin 19 becomes higher in the future, the mechanical strength of the turbine blade becomes a big problem, but the power generation by the thermoelectric conversion element 49 does not cause such a problem. .
  • the power generator according to Embodiment 3 of the present invention includes a high-pressure turbine 31, a medium-pressure turbine 33, and a low-pressure turbine 34 having different operating pressure ranges. It has a configuration similar to that of the power generator shown in the figure, except that a thermoelectric conversion element 49 is attached to the poiler 85, and the water discharged from the medium pressure bottle 33 is attached to the electrode 7 on the low temperature side. The difference is that water and steam are supplied.
  • thermoelectric conversion element 49 attached to the boiler 85 has the same structure as the thermoelectric conversion element 49 shown in FIG. Further, the steam generated in the water pipe 9 is guided to the feed water heater 87, and preheats the condensate supplied from the condenser 35.
  • thermoelectric conversion element 49 attached to the boiler 85 causes the exergy that is discharged due to the difference between the temperature inside the boiler 85 and the temperature of the water or steam discharged from the intermediate-pressure turbine 33 to occur. Collect and generate electricity.
  • Embodiment 3 of the present invention it is possible to recover energy that has been lost in a power generator having a plurality of steam turbines having different operating pressure ranges.
  • the rate can be improved.
  • water or water vapor discharged from the medium-pressure turbine 33 is supplied to the low-temperature side electrode 7 of the thermoelectric conversion element 9, but is supplied from the low-pressure turbine 34. Supplying discharged water or steam is also conceivable.
  • the high-temperature, high-pressure water discharged from the medium-pressure turbine 33 or the low-pressure turbine 34 is supplied to the heat-collecting metal plate 1 on the high-temperature side of the thermoelectric conversion element 49, and the high-pressure, high-pressure water discharged from the low-pressure turbine 34 is supplied to the low-temperature electrode 7.
  • a unit for supplying water discharged from the water heater 35 or the feed water heater 87 is also conceivable. In this case, the water supplied to the electrode 7 on the low temperature side is guided again to the feed water heater 87.
  • the temperature of the electrode 7 can be stably maintained at the temperature of water in the natural environment.

Description

明細書
技術分野
本発明は発電装置に関し、 さらに詳しくは、 熱エネルギーを電気 エネルギーに変換する発電装置に関するものである。
背景技術
近年においても、 熱エネルギーを電気エネルギーに変換する技術 は広く研究されているが、 熱電効果を利用したエネルギー変換は、 火力発電や原子力発電など主要なエネルギー変換システムには十分 利用されていないのが実情である。
この理由について、 以下において簡単に説明する。 第 1図は、 熱 電変換素子内のエネルギーフローを模式的に示した図である。 なお この図は、 越後の 「熱電変換技術の何処が問題か」 と題する論文 (エネルギー資源学会、 1 9 9 5年 7月, 4 3ページ) に掲載され たものである。 また、 図中の幅はエネルギー流束の大きさに比例し て画かれている。
第 1図に示されるように、 加熱熱流束 qH の過半はもともと熱電 変換に関係のない無効な伝熱熱流束 qHCに費やされ、 有効なペル チヱ吸熱 qHPはむしろ脇役になっている。 ここで、 性能指数を z、 高温端温度を TH とした時、 Z · TH ^ 1の場合についてみると、 伝熱熱流束 qHCはペルチェ吸熱 q HPの約 2倍にもなり、 しかもペル チェ放熱を差し引いた正味のペルチヱ熱 (qHP— qLP) のうちの約 半分はジュール熱 となる。 従って、 実質的に電力に変換される のは熱 Pとなるため、 変換効率が低くなり温度が低いとさらに低く なる。
ここで例えば、 低温端の温度 Tし = 3 0 0 °C. TH = 1 3 0 0 °C である時は、 最大効率は 1 3. 7 %であり、 材料が飛躍的に進歩し て z - T„ ^ 2になったと仮定しても最大効率は 2 2. 0 %程度と なるに過ぎない。 この点が熱電発電における最大の問題点であり、 熱電発電単独では、 ガスタービンや燃料電池等他の発電設備に対抗 しうる競争力は期待できないことが技術開発上の最大の阻害要因と されている。
第 2図は、 各種熱電材料の性能指数特性を示す図である。 ここで、 縦軸は性能指数を、 横軸は温度を表す。 第 2図より、 熱電材料のェ ネルギー変換効率は最大でも 1 0 %程度であることがわかる。 従つ て、 熱電素子の材料開発にも今後更なる研究開発期間を要する。 第 3図は、 充塡スクッテルダイ ト合金の熱伝導率の温度依存性を 示す図である。 第 3図に示されるように、 LaFe 3 CoSb 1 2 や CeFe 3 CoS b i 2 という組成を持つ充塡スクッテルダイ ト合金は、 電気的特性が 優れている 2元のスクッテルダイ ト合金 CoSb 3 と比較すると、 熱伝 導率は 1桁も小さくなり、 室温においてはガラス状のシリカ (S i O
2 ) と同程度の値を示す。
第 4図は、 充填スクッテルダイ ト合金のほぼ最適化した試料にお ける無次元性能指数 Z Tの温度依存性を示す図である。 ここで第 4 図の黒丸は、 単一の放物線的なバンドと音響フォノン散乱を仮定し、 測定した室温でのキヤリァ濃度を基に計算したものである。 また、 この計算には、 高温での熱伝導率の測定値も反映されている。
ここで、 無次元性能指数 Z Tの値に理論的上限はなく、 無次元性 能指数 Z Tが 3〜 4程度の材料の実現可能性もあるが、 かかる材料 は現時点では見出されていない。
なお、 上記の第 3図及び第 4図は、 「パリティ」 Vo l. 12 No. 10 1 997- 10に掲げられたものである。
一方、 熱エネルギーを電気エネルギーへ変換する技術として、 従 来よりガスタービンと蒸気夕一ビンを結合した発電システムも研究 されており、 発電効率の向上を図るコンバインドサイクル発電方式 が各種提案されている。
これは、 蒸気タービンでは最高温度 (水の臨界圧における温度) 力 5 6 6 °Cであり、 燃焼ガスの温度は概ね 1 5 0 0 °C程度以上であ るため、 熱機関としては 1 5 0 0で〜 5 6 6 °Cではェンタルピーが 利用されていない。 従って、 コンバイン ドサイクル発電方式は、 発 電効率を減少させているこのような一因に着目したシステムである と言える。
なお、 コンバイン ドサイクル発電方式 (単に 「コンバイン ドシス テム」 ともいう。 ) における軸構成は、 排熱回収サイクルにおいて 一台のガスタービンと一台の蒸気タービンとを同一の軸に直結した 一軸型と、 ガスタービンと蒸気タービンとを別の軸で運転する多軸 型とがあり、 利用目的や運転方法、 設置条件に応じて各種の形式が 選定される。
第 5図は従来の排熱回収型のコンバイン ドサイクル発電方式を説 明する図である。 第 5図に示されるように、 この従来の排熱回収型 のコンバイン ドサイクル発電方式は、 ガス夕一ビン 1 9 と、 ガス タービン 1 9に接続された排熱回収ボイラ 2 1 と、 排熱回収ボイラ 2 1 に接続された蒸気タービン 2 3 と、 蒸気タービン 2 3に接続さ れた復水器 2 5 と、 復水器 2 5 と排熱回収ポイラ 2 1 との間に接続 された給水ポンプ 2 7 とを備えたものである。
ここで、 「電気工学ハン ドブック」 の 1 0 2 6ページにも記載さ れているように、 ガスタービン 1 9が高温化する程コンバイン ドシ ステム全体の熱効率の上昇割合は大きくなる。
第 5図に示されたシステムにおいては、 ガスタービン 1 9を約 1 5 0 0 °C程度の高温ガスのエネルギーを利用して回すと共に、 排ガ スを利用して蒸気を生成することによって蒸気タービンも稼動させ ることができるため、 総合的に発電効率が上昇する。
また、 熱電変換効率の向上を目指した蒸気タービン機関として、 タービンの中間段落から全蒸気を取り出して再加熱し、 再びタービ ンに送るという再熱サイクルを利用したシステムが、 従来より考案 されている。 第 6図は、 この再熱サイクル等を利用した実際の火力 発電所のシステムにおける熱平衡図である。
第 6図に示されるように、 ボイラ 2 9で生成された高温高圧水蒸 気は高圧タービン 3 1を回した後再熱器で再び加熱され、 中圧ター ビン 3 3に導かれる。 また、 各タービンのブレードでは、 外に対す る仕事をしたことで一部の水蒸気が水になる。 そして、 これらの水 蒸気や水は復水器 3 5で冷却されて低温低圧の水に戻り、 給水加熱 器 3 7に導かれる。 給水加熱器 3 7では、 復水器 3 5から供給され た水が加熱され、 再度給水ポンプ 3 9で圧縮されてボイラ 2 9へ供 給される。 なお、 現在における火力発電所の発電効率は概ね 3 9 % 程度となっている。
熱エネルギーを電気エネルギーに変換する技術は、 以上のように 様々な角度からその向上が図られているが、 以下においては、 火力 発電におけるエネルギー変換システムへの利用がなされた熱電変換 技術を説明する。
第 7図は、 従来の熱電変換素子を説明する図である。 第 7図に示 されるように、 N型半導体素子としてのカーボン 3と P型半導体素 子としての B4 C (ボロンカーバイ ド) 5 とが共に、 P— N接合電極 としての W若しくは M oなどから成る集熱金属板 1に接合され、 カーボン 3及びボロン力一バイ ド 5の集熱金属板 1 と対向する他端 には電極 7がそれぞれ設けられる。 そして、 二つの電極 7に生ずる 電位差により出力電圧が得られる。 なお、 二つの電極 7にはそれぞ れ貫通孔が形成され、 この貫通孔に水管 9が通される。
このような熱電変換素子によれば、 例えば集熱金属板 1の温度が 1 5 0 0でで電極 7の温度が 3 0 °Cの場合に最大 8 %の熱効率が得 られ、 集熱金属板 1の温度が 1 5 0 0てで電極 7の温度が 6 0 0 °C の場合には最大 4 %の熱効率が得られる。
第 8図は、 第 7図に示された熱電変換素子が組み込まれた従来の 火力発電装置の構成を示す図である。 第 8図の斜線部に示されるよ うに、 ボイラ 1 1の燃焼室を囲繞するように第 7図に示された熱電 変換素子 1 3が縦列に付設される。 ここで、 熱電変換素子 1 3は集 熱金属板 1が燃焼室内を向く ように配置されるとともに、 給水管 1 7を介してボイラ 1 1に供給された水が、 第 7図に示された水管 9 内を通って水蒸気が生成される。 そして、 この水蒸気はボイラ 1 1 の出口 1 5より蒸気タービンへ供給される。 なお、 ボイラ 1 1で生 じた燃焼ガスは煙突 1 2から排出される。
発明の開示
本発明は、 熱エネルギーから電気エネルギーへの変換効率が従来 より高い発電装置を提供することを目的とするものである。
本発明の目的は、 燃焼ガス或いは水蒸気の熱エネルギーを利用し て発電を行う発電装置であって、 温度の異なる少なく とも二つの部 位に、 それぞれ熱電変換素子を備えた発電装置を提供することに よって達成される。
また本発明の目的は、 加圧された水を燃焼室内にて加熱し蒸気を 生成するボイラと、 該ボイラに接続され、 蒸気の仕事によって発電 を行うタービンと、 該タービンに接続され、 タービンから出た蒸気 を冷却することにより蒸気を凝縮し復水する復水器と、 タービンで 仕事をしつつある蒸気の一部を用いて、 復水器からボイラへ供給さ れる水を予熱する給水加熱器と、 ボイラの燃焼室を囲繞するよう付 設され、 燃焼室の内部の温度と給水加熱器若しくは復水器から排出 された水の温度との差を利用して電力を生成する第一の熱電変換素 子と、 給水加熱器に付設され、 タービンから供給された蒸気の一部 の温度と復水器から供給された水の温度との差を利用して電力を生 成する第二の熱電変換素子とを備えた発電装置を提供することに よって達成される。
また、 本発明の目的は、 給水加熱器とボイラとの間に設けられ、 ボイラへ供給される加圧された水を予熱する予熱手段と、 該予熱手 段に付設され、 上記加圧された水を予熱するために燃焼室から供給 された燃焼ガスの温度と予熱手段に供給された上記加圧された水の 温度との差を利用して電力を生成する第三の熱電変換素子とをさら に備えた発電装置を提供することによって達成される。
また、 本発明の目的は、 燃焼室内に供給される空気を予熱する空 気予熱器と、 該空気予熱器に付設され、 空気予熱器へ供給された空 気の温度と該空気を予熱するために燃焼室から供給された燃焼ガス の温度との差を利用して電力を生成する第四の熱電変換素子とをさ らに備えた発電装置を提供することによって達成される。
また、 本発明の目的は、 燃焼室へ供給される燃料の温度と空気予 熱器で予熱された空気あるいは給水加熱器から排出された水の温度 との差を利用して電力を生成する第五の熱電変換素子をさらに備え た発電装置を提供することによって達成される。
また、 本発明の目的は、 上記第一の熱電変換素子が、 燃焼室の内 部に面して設けられた第一の電極と、 一端が第一の電極に接合され た N型半導体と、 一端が第一の電極に接合された P型半導体と、 N 型半導体及び P型半導体の他端に設けられた第二の電極と、 第二の 電極を貫くよう給水加熱器からタービンへ架設された水管と、 該水 管と第二の電極との間に狭装された保温材とを備えた発電装置を提 供することによって達成される。
また、 本発明の目的は、 液体の L N Gを気化してボイラに供給す る気化器と、 気化器に付設され、 L N Gの温度と L N Gを気化する ために気化器に導かれた水の温度との差を利用して電力を生成する 第三の熱電変換素子とをさらに備えた発電装置を提供することに よって達成される。
また、 本発明の目的は、 動作圧力域が異なる複数の蒸気タービン を有する発電装置であって、 燃焼室内にて圧縮水を加熱し水蒸気を 生成するボイラと、 ボイラの燃焼室を囲繞するよう付設され、 燃焼 室の内部の温度といずれか一- ^の蒸気夕ービンから排出される水も しくは水蒸気の温度との差を利用して電力を生成する第一の熱電変 換素子とを備えた発電装置を提供することによって達成される。 また、 本発明の目的は、 蒸気タービンに接続され、 蒸気タービン から出た水蒸気を冷却することにより水蒸気を凝縮し復水する復水 器と、 蒸気タービンで仕事をしつつある水蒸気の一部を用いて、 復 水器からボイラへ供給される水を予熱する給水加熱器と、 蒸気ター ビンから出た水蒸気の温度と復水器もしくは給水加熱器から排出さ れた水の温度との差を利用して電力を生成する第二の熱電変換素子 とをさらに備えた発電装置を提供することによって達成される。 また、 本発明の目的は、 いずれか一つの蒸気タービンから排出さ れ第一の熱電変換素子から熱を奪った水もしくは水蒸気は、 再度給 水加熱器に導かれた発電装置を提供することによって達成される。
また、 本発明の目的は、 第二の熱電変換素子に熱を与えた水蒸気 は、 復水器へ導かれた発電装置を提供することによって達成される。 また、 本発明の目的は、 第二の熱電変換素子が、 P b T eもしく は C 0 S b系の材料からなる発電装置を提供することによって達成 される。
また、 本発明の目的は、 蒸気タービンから出た水蒸気の温度と自 然環境に存在する水の温度との差を利用して電力を生成する第二の 熱電変換素子をさらに備えた発電装置を提供することによって達成 される。
また、 本発明の目的は、 ガスタービンと蒸気タービンとを組み合 わせた発電装置であって、 ガスタービンに供給されるガスの温度と 蒸気タービンから排出された水の温度との差を利用して電力を生成 する熱電変換素子を備えた発電装置を提供することによって達成さ れる。
そして、 本発明の主たる利点は、 従来の発電装置の各部間に生じ ている温度差を利用して電力を生成する熱電変換素子が備えられる ことにより、 装置全体での発電効率が従来より高められることにあ る。 これは本来エネルギー損失を伴わない過程であるためである。 また、 本発明の別な利点は、 ガス夕一ビンのような可動部を有し ない熱電変換素子が備えられることにより、 保守の負担を増加させ ることなく装置全体の運転発電効率を高めることができることにあ な
図面の簡単な説明
第 1図は熱電変換素子内のエネルギーフローを模式的に示した図、 第 2図は各種熱電材料の性能指数特性を示す図、
第 3図は充塡スクッテルダイ ト合金の熱伝導率の温度依存性を示 す図、
第 4図は充塡スクッテルダイ ト合金のほぼ最適化した試料におけ る無次元性能指数 Z Tの温度依存性を示す図、
第 5図は従来の排熱回収型のコンバインドサイクル発電方式を説 明する図、
第 6図は再熱サイクル等を利用した実際の火力発電所のシステム における熱平衡図、
第 7図は従来の熱電変換素子を説明する図、
第 8図は第 7図に示された熱電変換素子が組み込まれた従来の火 力発電装置の構成を示す図、
第 9図は本発明の実施の形態 1 に係る発電装置の全体構成を示す 図、
第 1 0図は第 9図に示されたボイラの構成を示す図、
第 1 1図は第 1 0図に示された熱電変換素子の構成を示す図、 第 1 2図は熱流束及び温度の面から見たトッビングの原理を示す 図、
第 1 3図は第 1 1図に示された水管の構造を示す図、
第 1 4図は第 9図に示された給水加熱器の構造を示す図、 第 1 5図は第 9図に示された予熱装置の全体構成を示す図、 第 1 6図は熱電変換素子を組み込んだ気化器の構成を示す図、 第 1 7図は本発明の実施の形態 2に係る発電装置の全体構成を示 す図、 第 1 8図は本発明の実施の形態 2に係るコンバインドサイクル発 電方式を採用した発電装置におけるエネルギー変換を説明する図、 第 1 9図は本発明の実施の形態 3に係る発電装置の全体構成を示 す図である。
発明を実施するための最良の態様
以下において、 本発明に係る発電装置を図面を参照して詳述する。 なお、 図中同一符号は同一または相当部分を示す。
熱力学における 「ェクセルギー」 は 「有効エネルギー」 とも呼ば れ、 ェントロピー概念を組み込んだ利用可能なエネルギーを表現し たものである。 ここで、 熱機関はそれが熱源を持ち環境との温度差 で熱サイクルを作り仕事をするため、 その時ェクセルギー Wは以下 のように定義される。
W = Q · ( T„ 一 Τ。 ) Ζ Τ Η
= Q ' V c
ここで、 Qは熱量であり、 熱源の温度は T H 、 環境温度は T。 で あり、 7? c はカルノーサイクルの効率である。
熱機関の最大効率がカルノーサイクル効率で決まるため、 ェクセ ルギ一は熱機関の最大仕事を与えるものである。 従って、 これは熱 電変換技術の解析にも大きな威力を発揮する。 それは、 熱電素子の 電気出力 Eが以下のように書かれるからである。
E = Q * 77 C · V E = W · 7} E
ここで ? E は素子の効率である。 即ち、 熱電素子の出力はェクセ ルギ一に素子の性能指数及び外部回路等によって決定される効率を 乗じた形になる。 従って、 熱電変換素子を有効に利用するためには ェクセルギ一流束の大きな部分で利用することが本質的に重要なこ とであり、 エネルギー (熱) 流束が大きい部分とは必ずしも一致し ないことに着目すべきである。 以下において、 このような原理に基 いた実施の形態を説明する。
[実施の形態 1 ] 第 9図を参照すると、 本発明の実施の形態 1 に係る発電装置は、 ボイラ 3 9 と、 ボイラ 3 9に接続された過熱器 4 0 と、 過熱器 4 0 に接続された 夕一ビン 4 1 と、 タービン 4 1 に接続された復水器 3 5 と、 復水器 3 5に接続された給水ポンプ 3 4 と、 タービン 4 1 及び給水ポンプ 3 4に接続された給水加熱器 4 3 と、 給水加熱器 4 3に接続された給水ポンプ 3 6 と、 タービン 4 1および給水ポンプ 3 6に接続された給水加熱器 4 5 と、 給水加熱器 4 5に接続された 給水ポンプ 3 8 と、 給水ポンプ 3 8に接続された予熱装置 4 7と、 給水加熱器 4 3から復水器 3 5へ復水を供給するポンプ 4 4 と、 給 水加熱器 4 5から給水加熱器 4 3へ復水を供給するポンプ 4 6 とを 備えたものである。
このような発電装置において、 給水ポンプ 3 4 , 3 6 , 3 8によ り給水加熱器 4 3 , 4 5及び予熱装置 4 7を経て加熱された純水は、 ボイラ 3 9内の水管に入り、 燃焼ガスと熱交換して高温高圧の飽和 蒸気となり、 更に過熱器 4 0を経て高温となる。 この高温高圧の過 熱蒸気はタービン 4 1に送られ、 タービン 4 1の羽根に衝突して発 電機 (図示していない。 ) に直結してあるタービン軸を回転させる。 タービン 4 1を出た蒸気は復水器 3 5に入り、 冷却水により冷却さ れて凝縮復水し、 復水ポンプ 3 4によりくみ上げられて再び給水加 熱器 4 3へ送られる。
本発明の実施の形態に係る発電装置は、 第 9図におけるボイラ 3 9 と、 給水加熱器 4 3, 4 5及び予熱装置 4 7に、 それぞれ熱電変 換素子を組み込んだことを特徴とする。 これにより、 発電装置の各 部で失われるェクセルギーを回収し、 発電装置全体の発電効率をさ らに向上させることができる。 なお、 上記 4箇所の全てではなく、 少なく ともいずれか 2箇所に熱電変換素子を組み込むことによって も所定の効果が得られることはいうまでもない。
以下において、 組み込まれた熱電変換素子による熱電変換技術に ついて順次説明する。 第 1 0図は、 第 9図に示されたボイラ 3 9の構成を示す図である。 第 9図に示されるように、 ボイラ 3 9はその燃焼室内で燃料 1 4を 燃焼させ多大な熱を発生させるものであるが、 この燃焼室を囲繞す るように熱電変換素子 4 9が付設される。
第 1 1図は第 1 0図に示された熱電変換素子 4 9の構成を示す図 である。 第 1 1図に示されるように、 熱電変換素子 4 9は、 S i C などのアーマー材からなる集熱金属板 1 と、 一端が集熱金属板 1 に 接合され他端に電極 7が取り付けられた N型 S i G eから成る N型 熱電材料 5 0及び P型 S i G eから成る P型熱電材料 5 1 とを備え たものである。 なお、 この熱電変換素子 4 9に利用できる半導体と しては S i G eの他にポロン系の材料が考えられる。
また、 電極 7には貫通孔が設けられ, この貫通孔には水管 9が通 される。
このような熱電変換素子は、 第 1 0図に示されるように、 集熱金 属板 1がボイラ 3 9の燃焼室の内側に対向する向きに配置される。 これにより、 ボイラ 3 9内で発生した熱によって集熱金属板 1の温 度は 1 2 5 0 °C程度となる。 また、 電極 7内を貫通する水管 9には 予熱装置 4 7から供給された水が流れ、 ボイラ 3 9内で生じた熱を 受けて 5 6 6 °C, 2 5 0気圧の水蒸気 1 6が発生されるため、 電極 7の温度は 6 5 0 °C程度となる。 なお、 このようにしてボイラ 3 9 で発生された水蒸気 1 6を用いてタービン 4 1が運転され、 回転型 発電機 4 2によって発電される。
以上より、 第 1 1図に示された二つの電極 7の間には起電力が生 じるため、 例えば、 第 1 0図に示されるように複数の熱電変換素子 4 9を配線 4 4によって直列接続することにより、 出力電圧を得る ことができる。 なお、 第 1 0図においては熱電変換素子 4 9が燃焼 ガスの流路にそって直列に配置されるが、 それに限られるものでな く、 燃焼室の周りに付設される限りどのような配置であっても同様 の効果を得ることができる。 また、 第 1 0図における熱電変換素子 4 9の斜線部は N型熱電材 料 5 0を示す。
以下において、 上記の熱電変換システムの原理について第 1 2図 を参照しつつ説明する。 上記のような構造を有する発電装置では、 発電に預からない熱流束は熱伝導で熱電変換素子 4 9の低温側の電 極 7へ伝わるので、 この限りにおいてエネルギー損失が発生しない。 しかも、 タービン 4 1は同じ温度 ·圧力の蒸気を得るので回転型発 電機 4 2での効率は低下しない。 従って、 従来のシステムで生じて いたこの温度領域でのェクセルギー損失の一部を回収することがで きる。
このような手法を、 トッピング(Toppi ng) と言い、 第 1 2図に熱 流束及び温度の面から見た原理を示す。 第 1 2図に示されるように、 ボイラ 3 9での炎及び燃焼ガスの温度は例えば 1 3 0 0 °C以上であ るとする。 一方、 水蒸気の温度は 2 5 0気圧以上加圧しても 5 6 6。C程度である。 従って、 タービン 4 1は 5 6 6 °Cからおおよそ水 の 5 0 °C以下で熱サイクルを形成する。 ここで、 炎の温度 1 3 0 0 °Cから高温端蒸気温度 5 6 6 °Cまではエネルギーは失われないが、 ェントロピ一は増大しェクセルギ一が減少するため、 最終的にはシ ステム全体の効率を下げることになる。 そこで、 発電に預からな かったエネルギーは水蒸気を生成し回転型発電機 4 2によってエネ ルギー変換を行うこととする。
このようなシステムによる総合エネルギー変換効率 £ e f f は、 以 下のように書ける。
ε e f r = ε ι + ε 2 ( 1 - ε ι
ここで、 ε ι は熱電変換効率であり、 e 2 はタービン発電機の効 率である。 これは恒等式としてそれぞれの変換効率より高いのでシ ステム全体の効率を向上させることが原理的に可能になる。 即ち、 トッピングによって 3〜 5 %の効率の改善が図られる。
より具体的には、 第 1 1図に示された熱電変換素子の熱電変換効 率 e , は、 最適動作で約 0 . 0 5 6 となる。 また、 例えば熱源の温 度 Τ Η が 1 1 0 0 °C、 熱電変換素子の電極 7の温度が 6 0 0でのと き熱電変換効率 は 0 . 0 7 9 6 となり、 電極 7の温度をさらに 下げることによって熱電変換効率 S! を実効的に向上させることが できる。
なお、 ボイラ 3 9内の温度をより高温にすることによつても、 ボ イラ 3 9のェクセルギー効率の改善が期待できる。
次に、 第 1 1図に示された水管 9の構造を第 1 3図を参照して説 明する。 水管 9は炭素鋼からなり、 外径〜 8 0 m m , 厚さ〜 9 m m , 熱伝導率〜 3 5 W/m Z Kとされる。 また、 第 1 3図 (a ) に示さ れるように、 水管 9の外側には順に、 伝熱管 5 2、 電気絶縁材 5 4、 低温電極 5 6、 P型及び N型の熱電材料から成る半導体 5 8、 高温 電極 6 0、 電気絶縁材 5 4、 アーマー材 6 2が巻装される。
なお他に、 第 1 3図 (b ) に示されるように、 水管 9の外側へ順 に、 内部ケ一シング 5 7 a、 保温材 5 5、 外部ケーシング 5 7 bを 巻装した構造も考えられる。 また、 第 1 3図 ( c ) に示されるよう に、 水管 9の外側へ順に、 耐火れんが 5 3、 高温保温材 5 9、 保温 材 5 5、 ケーシング 5 7を巻装した構造も考えられる。
さらには、 第 1 3図 (d ) に示されるように、 複数の水管 9が フィ ン 6 1で繫がれており、 それらの周りが保温材 5 5 とケーシン グ 5 7で巻装されている構造も考えられる。
以上のような構造を有することにより、 第 1 1図に示された熱電 変換素子において集熱金属板 1 と電極 7との温度勾配を容易に維持 することができるため、 より効率的に電気エネルギーを得ることが できる。
また、 上記において熱電変換素子 4 9における低温側の電極 7の 水管 9には予熱装置 4 7から排出された水が供給されるが、 給水加 熱器 4 3, 4 5あるいは復水器 3 5から排出された水を直接供給す るものも同様に考えられる。 なお、 上記のような熱電変換技術は、 現在ゴミを利用した発電、 あるいは火力発電の排水部等での利用も検討されている。
次に、 第 9図に示された給水加熱器 4 3 , 4 5への熱電変換技術 の適用について説明する。 第 1 4図は給水加熱器 4 3の構造を示す 図であり、 給水加熱器 4 5 も同様な構造である。 第 1 4図に示され るように、 給水加熱器 4 3の内部には仕切板 6 3が設けられ、 仕切 板 6 3には熱電変換素子 4 9が備えられる。
給水加熱器 4 3は復水器 3 5からの低温低圧 (常温、 0. 03気圧程 度) の水とタービン 4 1からの高温高圧の水 (ボイラ 3 9からの蒸 気を入れることもある。 ) を熱交換し、 最終的に混合してェネル ギー回収を行う装置である。 従って、 給水加熱器 4 3 , 4 5は良い エネルギー回収装置であり、 原理的にはエネルギー損失はない。 し かし、 温度 ·圧力の異なった媒体を混合するとその過程でェント口 ピーが生産されるので、 ェクセルギー損失が生じ、 効率の低下を招 来する。
このことから、 上記のように給水加熱器 4 3 , 4 5において熱電 変換素子 4 9を組み込む意義が生じる。 即ち、 2種類の異なる温度 の水を混合する前に、 その温度差を利用して発電を行う構造を取る のである。
具体的には、 第 1 1図に示された熱電変換素子の集熱金属板 1に は、 ボイラ 3 9から導かれた 3 0 0 °C前後の高温加熱蒸気から熱が 供給され、 電極 7からは復水器 3 5より供給された常温の水によつ て熱が奪われる。
上記のような方法によれば、 発電が行われた分だけ水の熱量は減 少するが、 電気エネルギーが発生するので最終的には発電装置全体 での総合変換効率がさらに 1〜 2 %向上される。
さらに、 上記の給水加熱器 4 3 , 4 5は動作媒体が液体であるた め、 熱伝達率が気体の場合より高くなり、 そのため熱電装置の小型 化が実現できてコストを低減できる。 なお、 利用する熱電半導体としては B 1丁 6ゃ? 13丁 6などの中 温材料が望ましい。
また、 第 1 4図において復水は出口 6 5を通して復水器 3 5へ導 かれるが、 第 9図に示されるように、 給水加熱器 4 5においては出 口 6 5を通して復水が給水加熱器 4 3へ導かれる。
次に、 第 9図に示された予熱装置 4 7への熱電変換技術の適用に ついて説明する。 第 1 5図は、 予熱装置 4 7の全体構成を示す図で ある。 第 1 5図に示されるように、 予熱装置 4 7は、 重油と予熱さ れた空気とが混合される混合室 6 7と、 混合室 6 7に接続された重 油燃焼室 6 9と、 重油燃焼室 6 9から排出された燃焼ガスが導かれ る過熱器 7 1 と、 過熱器 7 1を通った燃焼ガスが導かれる再熱器 7 3と、 第 9図に示された給水ポンプ 3 8から供袷された 1 5 °Cの給 水を飽和蒸気温度以下に予熱してボイラ 3 9に供給する節炭器 7 5 と、 供給された 1 5 °Cの空気を 2 5 0 °Cに予熱する空気予熱器 7 7 と、 空気予熱器 7 7から排出された燃焼ガスを浄化する排ガス浄化 装置 7 9 と、 排ガス浄化装置 7 9に接続された煙突 8 1 と、 熱電変 換素子 4 9 とを備えたものである。
なお、 これらの熱電変換素子 4 9は、 第 1 1図に示された熱電変 換素子 4 9 と同様な構成を有するが、 これらについては後に説明す る。
以下において、 予熱装置 4 7における重油燃焼プロセスについて 説明する。 最初に、 1 5 °Cの重油と 2 5 0 °Cの予熱された空気が混 合室で混合され、 5 0 0 °Cの混合ガスが生成される。 そして、 この 混合ガスは、 燃焼室 6 9での 1 5 0 0 °Cの熱分解燃焼と白熱燃焼 (理論燃焼温度 2 0 0 0 °C ) とを経て、 1 0 0 0〜 1 3 0 0でで燃 焼室 6 9から排出される。
さらに、 燃焼室 6 9から排出された燃焼ガスは過熱器 7 1 と再熱 器 7 3を通り 5 0 0 °Cで節炭器 7 5に導かれる。 ここで、 5 0 0 °C の燃焼ガスは節炭器 7 5に供給された 1 5 °Cの給水に熱を供給した 後、 3 0 0 °Cとなって空気予熱器 7 7に導かれる。
そして、 この 3 0 0での燃焼ガスは、 空気予熱器 Ί 7に供給され た 1 5 °Cの空気を 2 5 0 °Cに予熱した後、 2 0 0〜 1 6 0 °Cとなつ て排ガス浄化装置 7 9に入る。 そして、 この燃焼ガスは排ガス浄化 装置 7 9で浄化され煙突 8 1を通って外部へ排出される。
なお、 空気予熱器 7 7で 2 5 0 °Cに予熱された空気は混合室 6 7 に導かれる。
次に、 上記予熱装置 4 7の 3箇所に組み込まれた熱電変換素子 4 9について説明する。 まず混合室 6 7に熱電変換素子 4 9が組み込 まれるが、 この熱電変換素子 4 9は、 その高温側の集熱金属板 1 に 空気予熱器 7 7から供給された 2 5 0 °Cの空気より熱が供給され、 低温側の電極 7では 1 5 °Cの重油により熱が奪われる。 従って、 こ の熱電変換素子 4 9は、 予熱された空気の温度と重油の温度との差 を利用して、 失われるェクセルギーを回収する意義を有するもので あり、 発電装置全体の発電効率を向上させるものである。
なお、 図示していないが上記重油に熱を供給するために、 給水加 熱器 4 3 , 4 5から排出された水を利用することも考えられ、 この 場合には熱電変換素子 4 9の高温側の集熱金属板 1へ給水加熱器 4 3 , 4 5から排出された水より熱が供給される。
次に、 節炭器 7 5に熱電変換素子 4 9が組み込まれるが、 この熱 電変換素子 4 9は、 その高温側の集熱金属板 1へ再熱器 7 3を通つ た 5 0 0 eCの燃焼ガスより熱が供給され、 低温側の電極 7では 1 5 °Cの給水により熱が奪われる。 従って、 上記の熱電変換素子 4 9 と同様に、 この熱電変換素子 4 9は、 燃焼ガスの温度と給水の温度 との差を利用して、 失われるェクセルギーを回収する意義を有する ものであり、 発電装置全体の発電効率をさらに向上させるものであ る o
また、 空気予熱器 7 7にも熱電変換素子 4 9が組み込まれるが、 この熱電変換素子 4 9は、 その高温側の集熱金属板 1 に節炭器 7 5 から供給された 3 0 0 eCの燃焼ガスより熱が供給され、 低温側の電 極 7では 1 5 °Cの空気により熱が奪われる。 従って、 上記の熱電変 換素子 4 9 と同様に、 この熱電変換素子 4 9は、 燃焼ガスの温度と 空気予熱器 7 7に供給された空気の温度との差を利用して、 失われ るェクセルギーを回収する意義を有するものであり、 発電装置全体 の発電効率をさらに向上させるものである。
以上が第 9図に示された発電装置の説明であるが、 さらに L N G 火力発電システム、 即ち液体である低温の L N G (主にメタンが構 成要素であり、 沸点は一 1 6 l eCである。 ) を海水などを用いた気 化器でガス化し、 第 9図に示されたボイラ 3 9に導いて燃焼させる システムにおいては、 上記の気化器へ熱電変換技術を適用すること が同様に考えられる。
即ち、 気化器の動作温度領域としては常温から一 1 7 0 °C程度で ある一方、 L N Gは液体で運ばれ潜熱があるうえにガス化する前の 媒体温度がほぼ一定であるため熱電変換技術に利用しゃすい。
第 1 6図は熟電変換素子を組み込んだ気化器の構成を示す図であ る。 第 1 6図に示されるように、 この気化器は、 液体の L N Gが供 給される気化室 8 4 と、 気化室 8 4の下に設けられ給水加熱器 4 3 , 4 5や復水器 3 5から排出された加熱水が通される配管 8 2と、 気 化室 8 4 と配管 8 2との間に設けられた熱電変換素子 4 9 とを備え る o
なお、 熱電変換素子 4 9は第 1 1図に示された熱電変換素子と同 様な構成を有するが、 B i T e系や B i S b系の材料を用いること が望ましい。
上記のような気化器においては、 気化室 8 4内の液体 L N Gが配 管 8 2内を通る加熱水から熱を奪って気化し、 L N Gガスが生成さ れる。
このような気化器に付設された熱電変換素子 4 9においては、 高 温側の集熱金属板 1に配管 9内を通る加熱水から熱を受け、 低温側 の電極 7からは一 1 7 0 °C程度の L N Gにより熱が奪われる。 これ より、 この熱電変換素子 4 9は、 加熱水と液体 L N Gとの間の温度 差によって流出するェクセルギーを回収して電力を生成する。
以上のような気化器への熱電変換技術の適用は、 加熱水の温度と 液体 L N Gとの間で熱サイクルを想定するので温度差は高温域で動 作する場合に比べて大きくないが、 ェクセルギ一の利用の観点から は見劣りしないことなど、 固有の有利さがある。 なお、 上記のよう に、 気化器へ既存の B i T e系材料からなる熱電変換素子を組み込 むことによって、 火力発電所の総合効率は 0 . 4 %程度改善される。 なお、 液体 L N Gを気化する為に気化器へ常温の海水等を導く こ とも考えられるが、 給水加熱器 4 3 , 4 5や復水器 3 5から排出さ れた水を利用した方が受熱量を多くでき、 気化器の小型化によるコ ストの低減を図ることができる。 また、 組み込まれた熱電変換素子 4 9によって生成される起電力も増大する利点がある。
以上のように本実施の形態 1に係る発電装置によれば、 従来失わ れていたェクセルギーを回収することができるため、 更なる発電効 率の向上を実現することができる。 即ち、 高速回転するガスタービ ンを用いたコンバインドサイクル発電方式を採用した発電装置に匹 敵する効率を達成できるとともに、 設備コストゃ維持管理費を特段 に低減することができる。
また、 本実施の形態 1 に係る発電装置によれば、 付設する熱電変 換素子の個数を増減することにより、 必要な出力に応じた発電装置 を得ることができる。
[実施の形態 2 ]
第 1 7図を参照すると、 本発明の実施の形態 2に係る発電装置は、 第 5図に示された従来の排熱回収型のコンバインドサイクル発電方 式と同様な方式を採用したものであるが、 ガスタービンの燃焼器 8 3に熱電変換素子 4 9が付設された点で相違するものである。
この熱電変換素子 4 9は、 第 1 1図に示された熱電変換素子 4 9 と同様な構造を有し、 高温側の集熱金属板 1には燃焼器 8 3内で発 生した熱が供給され、 低温側の電極 7からは給水ポンプ 2 7より供 給された給水により熱が奪われる。
従って、 この熱電変換素子 4 9は、 燃焼器 8 3内の温度と給水ポ ンプ 2 7から供給された給水の温度との差を利用して、 失われるェ クセルギーを回収するものであり、 排熱回収型のコンバインドサイ クル発電方式を採用した発電装置全体の発電効率をさらに向上させ る意義がある。
なお、 上記実施の形態 2に係る発電装置においては、 熱電変換素 子 4 9の低温側の電極 7に、 給水ポンプ 2 7からではなく復水器 2
5から直接復水を供給するものも同様に考えられる。
第 1 8図は本発明の実施の形態 2に係るコンバインドサイクル発 電方式を採用した発電装置におけるエネルギー変換を説明する図で ある。 第 1 8図に示されるように、 ガスタービンの燃焼器 8 3内の 炎の温度は 1 1 0 0で前後であり、 蒸気タービン 2 3に作用する蒸 気の最高温度は 5 6 6 °C程度である。 また、 蒸気タービン 2 3は、
5 6 6 °Cカヽら 2 0 0 °C乃至 5 0 °C以下で熱サイクルを形成する。 ここで、 ガスタービン 1 9単独で発電機を稼動させた場合の熱効 率は 0 . 1 8〜 0 . 3 1程度であり、 蒸気タービン 2 3の熱効率は 0 . 3 9程度となる。 なお、 このようにガスタービン 1 9自体の熱 効率は蒸気タービン 2 3の熱効率より低いものの、 動作温度範囲が 異なる為に目的に応じて利用されている。
ここで、 上記のようにガスタービンの燃焼器 8 3に付設された熱 電変換素子 4 9が、 燃焼器 8 3内の温度と蒸気タービン 2 3におけ る水蒸気の温度との差を起因として流出されるェクセルギ一を回収 し電力を生成する。 なお、 より具体的には燃焼器 8 3の出口とガス タービン 1 9のブレードとの間に熱電変換素子 4 9が付設されるの が望ましい。
従って、 本発明の実施の形態 2に係る発電装置によれば、 コ インドサイクル発電方式において従来失われていたェクセルギーを 回収することができるため、 更に発電効率の向上を実現することが できる。
なお、 熱電変換素子 4 9の熱効率はガスタービン 1 9の熱効率よ り低いが、 以下の利点がある。 即ち、 熱電変換素子 4 9による発電 では燃料のガス化が不要であり、 熱エネルギー源として石炭のよう な固体も利用できる。 また、 静止機器で構成できるのでメインテナ ンスも容易である。 さらには、 ガス夕一ビン 1 9の動作温度が将来 より高温になった時には、 タービンブレードの機械強度が大きな問 題となるが、 熱電変換素子 4 9による発電ではこのような問題は生 じない。
[実施の形態 3 ]
第 1 9図を参照すると、 本発明の実施の形態 3に係る発電装置は、 動作圧力域が異なる高圧タービン 3 1、 中圧タービン 3 3、 低圧 タービン 3 4を備えるものであって、 第 6図に示された発電装置と 同様な構成を有するが、 ポイラ 8 5には熱電変換素子 4 9が付設さ れ、 その低温側の電極 7には中圧夕一ビン 3 3から排出された水及 び水蒸気が供給される点で相違するものである。
なお、 ボイラ 8 5に付設された熱電変換素子 4 9は、 第 1 1図に 示された熱電変換素子 4 9 と同様な構造を持つ。 また、 水管 9内で 生成された水蒸気は給水加熱器 8 7へ導かれ、 復水器 3 5から供給 された復水を予熱する。
ここで、 ボイラ 8 5に付設された熱電変換素子 4 9が、 ボイラ 8 5内の温度と中圧タービン 3 3から排出される水または水蒸気の温 度との差を起因として流出されるェクセルギーを回収し電力を生成 する。
従って、 本発明の実施の形態 3に係る発電装置によれば、 動作圧 力域が異なる複数の蒸気タービンを有する発電装置において従来失 われていたェクセルギーを回収することができるため、 更に発電効 率の向上を実現することができる。
なお、 本実施の形態 3に係る発電装置においては、 熱電変換素子 9の低温側の電極 7へ中圧タービン 3 3から排出された水又は水蒸 気が供給されるが、 低圧タービン 3 4から排出された水又は水蒸気 を供給するものも同様に考えられる。
また、 熱電変換素子 4 9の高温側の集熱金属板 1には中圧タービ ン 3 3あるいは低圧タービン 3 4から排出された高温高圧の水を供 給し、 低温側の電極 7には復水器 3 5または給水加熱器 8 7から排 出される水を供給するものも同様に考えられる。 なおこの場合、 低 温側の電極 7に供給された水は、 再度給水加熱器 8 7に導くように する。
またさらには、 低温側の電極 7へ海水や川の水等の自然環境に存 在する水を供給するのも有効である。 即ち、 このような構成とすれ ば、 電極 7の温度を安定して自然環境の水の温度に保つことができ る。

Claims

請求の範囲
1 . 燃焼ガス或いは水蒸気の熱エネルギーを利用して発電を行う発 電装置であって、
温度の異なる少なく とも二つの部位に、 それぞれ熱電変換素子を 備えた発電装置。
2 . 加圧された水を燃焼室内にて加熱し蒸気を生成するボイラと、 該ボイラに接続され、 前記蒸気の仕事によって発電を行うタービ ンと、
該タービンに接続され、 前記タービンから出た蒸気を冷却するこ とにより前記蒸気を凝縮し復水する復水器と、
前記タービンで仕事をしつつある前記蒸気の一部を用いて、 前記 復水器から前記ボイラへ供給される水を予熱する給水加熱器と、 前記ボイラの前記燃焼室を囲繞するよう付設され、 前記燃焼室の 内部の温度と前記給水加熱器若しくは前記復水器から排出された水 の温度との差を利用して電力を生成する第一の熱電変換素子と、 前記給水加熱器に付設され、 前記タービンから供給された前記蒸 気の一部の温度と前記復水器から供給された前記水の温度との差を 利用して電力を生成する第二の熱電変換素子とを備えた発電装置。
3 . 前記給水加熱器と前記ボイラとの間に設けられ、 前記ボイラへ 供給される前記加圧された水を予熱する予熱手段と、
該予熱手段に付設され、 前記加圧された水を予熱するために前記 燃焼室から供給された燃焼ガスの温度と前記予熱手段に供給された 前記加圧された水の温度との差を利用して電力を生成する第三の熱 電変換素子とをさらに備えた請求の範囲第 2項に記載の発電装置。
4 . 前記燃焼室内に供給される空気を予熱する空気予熱器と、 該空気予熱器に付設され、 前記空気予熱器へ供給された空気の温 度と該空気を予熱するために前記燃焼室から供給された燃焼ガスの 温度との差を利用して電力を生成する第四の熱電変換素子とをさら に備えた請求の範囲第 3項に記載の発電装置。
5 . 前記燃焼室へ供給される燃料の温度と前記空気予熱器で予熱さ れた空気あるいは前記給水加熱器から排出された水の温度との差を 利用して電力を生成する第五の熱電変換素子をさらに備えた請求の 範囲第 4項に記載の発電装置。
6 . 前記第一の熱電変換素子は、 前記燃焼室の内部に面して設けら れた第一の電極と、
一端が前記第一の電極に接合された N型半導体と、
一端が前記第一の電極に接合された P型半導体と、
前記 N型半導体及び前記 P型半導体の他端に設けられた第二の電 極と、
前記第二の電極を貫くよう前記給水加熱器から前記タービンへ架設 された水管と、
該水管に巻装された保温材とを備えた請求の範囲第 2項に記載の
7 . 液体の L N Gを気化して前記ボイラに供給する気化器と、 前記気化器に付設され、 前記 L N Gの温度と前記 L N Gを気化す るために前記気化器に導かれた水の温度との差を利用して電力を生 成する第三の熱電変換素子とをさらに備えた請求の範囲第 2項に記 載の発電装置。
8 . 動作圧力域が異なる複数の蒸気タービンを有する発電装置で あつ ヽ
燃焼室内にて圧縮水を加熱し水蒸気を生成するボイラと、 前記ボイラの前記燃焼室を囲繞するよう付設され、 前記燃焼室の 内部の温度といずれか一つの前記蒸気タービンから排出される水も しくは水蒸気の温度との差を利用して電力を生成する第一の熱電変 換素子とを備えた発電装置。
9 . 前記蒸気タービンに接繞され、 前記蒸気タービンから出た水蒸 気を冷却することにより前記水蒸気を凝縮し復水する復水器と、 前記蒸気タービンで仕事をしつつある前記水蒸気の一部を用いて、 前記復水器から前記ボイラへ供給される水を予熱する給水加熱器と、 前記蒸気タービンから出た水蒸気の温度と前記復水器もしくは前 記給水加熱器から排出された水の温度との差を利用して電力を生成 する第二の熱電変換素子とをさらに備えた請求の範囲第 8項に記載 の発電装置。
1 0 . 前記いずれか一つの蒸気タービンから排出され前記第一の熱 電変換素子から熱を奪った水もしくは水蒸気は、 再度前記給水加熱 器に導かれた請求の範囲第 9項に記載の発電装置。
1 1 . 前記第二の熱電変換素子に熱を与えた前記水蒸気は、 前記復 水器へ導かれた請求の範囲第 9項に記載の発電装置。
1 2 . 前記第二の熱電変換素子は、 P b T eもしくは C o S b系の 材料からなる請求の範囲第 9項に記載の発電装置。
1 3 . 前記蒸気タービンから出た水蒸気の温度と自然環境に存在す る水の温度との差を利用して電力を生成する第二の熱電変換素子を さらに備えた請求の範囲第 8項に記載の発電装置。
1 4 . ガスタービンと蒸気夕一ビンとを組み合わせた発電装置で あっ し、
前記ガスタービンに供給されるガスの温度と前記蒸気タービンか ら排出された水の温度との差を利用して電力を生成する熱電変換素 子を備えた発電装置。
PCT/JP1999/002473 1998-05-14 1999-05-13 Generateur d'energie WO1999058820A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP99919558A EP0997613B1 (en) 1998-05-14 1999-05-13 Power generator
US09/462,940 US6269645B1 (en) 1998-05-14 1999-05-13 Power plant
DE69932989T DE69932989T2 (de) 1998-05-14 1999-05-13 Kraftwerk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/150657 1998-05-14
JP15065798 1998-05-14

Publications (1)

Publication Number Publication Date
WO1999058820A1 true WO1999058820A1 (fr) 1999-11-18

Family

ID=15501649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002473 WO1999058820A1 (fr) 1998-05-14 1999-05-13 Generateur d'energie

Country Status (5)

Country Link
US (1) US6269645B1 (ja)
EP (1) EP0997613B1 (ja)
CN (1) CN1257343C (ja)
DE (1) DE69932989T2 (ja)
WO (1) WO1999058820A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075881A (ja) * 2017-10-16 2019-05-16 三井E&S造船株式会社 浮体構造物用発電システム、浮体構造物における発電方法、及び、発電用配管
JP2021148307A (ja) * 2020-03-16 2021-09-27 三浦工業株式会社 ボイラ

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620994B2 (en) 2000-10-04 2003-09-16 Leonardo Technologies, Inc. Thermoelectric generators
CN100372223C (zh) * 2001-08-09 2008-02-27 张征 热电机
US7001386B2 (en) * 2002-07-23 2006-02-21 Advanced Orthopaedic Solutions, Inc. Intramedullary nail for long bone fractures
JP2004096821A (ja) * 2002-08-29 2004-03-25 Ishikawajima Harima Heavy Ind Co Ltd 発電装置及び方法
AU2003277414A1 (en) * 2002-10-10 2004-05-04 Robert D. Hunt Hybrid energy combustion engine system and method
EP1613903B1 (en) * 2003-04-17 2007-05-02 Toyota Jidosha Kabushiki Kaisha Energy recovery system
JP4959156B2 (ja) * 2004-11-29 2012-06-20 三菱重工業株式会社 熱回収設備
US7475543B2 (en) 2005-11-14 2009-01-13 Kenneth Bruce Martin System and method for conveying thermal energy
CN101313419A (zh) * 2005-11-17 2008-11-26 开利公司 多功能能量转换器
RU2434145C2 (ru) * 2006-05-15 2011-11-20 Ньюкасл Инновейшн Лимитед Способ и система для производства энергии из теплового источника
GB2457266B (en) * 2008-02-07 2012-12-26 Univ City Generating power from medium temperature heat sources
US8618406B1 (en) 2008-02-18 2013-12-31 B & B Innovators, LLC Thermoelectric power generation method and apparatus
US8631658B2 (en) * 2008-03-07 2014-01-21 Clean Energy Systems, Inc. Method and system for enhancing power output of renewable thermal cycle power plants
US20100126178A1 (en) * 2008-10-08 2010-05-27 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Hybrid propulsive engine including at least one independently rotatable turbine stator
US8857191B2 (en) 2008-10-08 2014-10-14 The Invention Science Fund I, Llc Hybrid propulsive engine including at least one independently rotatable propeller/fan
WO2011060768A1 (de) * 2009-11-20 2011-05-26 Netzsch-Gerätebau GmbH System und verfahren zur thermischen analyse
CN102116469B (zh) * 2009-12-30 2013-06-12 中国电力工程顾问集团华东电力设计院 发电厂中压加热器给水及疏水系统
JP2013128333A (ja) * 2010-03-31 2013-06-27 Tokyo Institute Of Technology 蒸気発生装置及びこれを用いたエネルギ供給システム
TWI426219B (zh) * 2010-10-15 2014-02-11 Grand Mate Co Ltd Power supply system and its method for storm type gas appliance
US20110265479A1 (en) * 2011-04-27 2011-11-03 Sam Mihailoff System for steam production for electric power generation
JP5785789B2 (ja) * 2011-06-13 2015-09-30 パナソニック環境エンジニアリング株式会社 ボイラ廃熱利用システム
JP5834538B2 (ja) * 2011-06-27 2015-12-24 株式会社Ihi 廃熱発電装置
CN103688379A (zh) * 2011-07-20 2014-03-26 中弥浩明 热电转变元件和热电转变发电装置
WO2013170861A1 (en) * 2012-05-16 2013-11-21 Aalborg Universitet A flue gas tube for thermoelectric generator
US9391254B2 (en) * 2012-06-27 2016-07-12 Daniel Lessard Electric power generation
US9074491B2 (en) * 2012-09-05 2015-07-07 General Electric Company Steam cycle system with thermoelectric generator
US8869532B2 (en) * 2013-01-28 2014-10-28 General Electric Company Steam turbine utilizing IP extraction flow for inner shell cooling
JP2016141868A (ja) * 2015-02-04 2016-08-08 三菱重工環境・化学エンジニアリング株式会社 排熱回収装置、発電システム、及び排熱回収方法
IT201700073449A1 (it) * 2017-07-05 2019-01-05 Fpt Ind Spa Veicolo dotato di sistema recuperativo di calore (whr)
JP6851945B2 (ja) * 2017-09-19 2021-03-31 株式会社東芝 熱発電システム
CN108412614A (zh) * 2018-04-09 2018-08-17 李良杰 便捷燃烧发电装置
CN109340774A (zh) * 2018-08-31 2019-02-15 南宁市绿城环保设备有限责任公司 一种基于垃圾焚烧的发电装置
CN109812810A (zh) * 2019-03-05 2019-05-28 珠海格力电器股份有限公司 一种炉头及炉头组件及燃气灶
US20230074679A1 (en) * 2021-09-03 2023-03-09 Microsoft Technology Licensing, Llc Image sensor with actively cooled sensor array
DE102022110580A1 (de) * 2022-04-29 2023-11-02 Dürr Systems Ag Anlage mit wärmetauscher und anlagen-betriebsverfahren
CN117145633B (zh) * 2023-10-31 2024-01-19 中国航发四川燃气涡轮研究院 一种用于航空发动机的基于热电效应的余热回收系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147907A (ja) * 1983-02-14 1984-08-24 株式会社日立製作所 蒸気タ−ビンプラントの給水加熱系統
JPH02238104A (ja) * 1989-03-09 1990-09-20 Mitsubishi Heavy Ind Ltd 蒸気タービン発電プラント
JPH02264101A (ja) * 1989-04-03 1990-10-26 Toshiba Corp 複合サイクル発電設備
JPH09275692A (ja) * 1996-04-04 1997-10-21 Hiroshi Ko 熱発電システム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274259A (en) * 1976-09-30 1981-06-23 Westinghouse Electric Corp. Superheated steam power plant with steam to steam reheater
US4372125A (en) * 1980-12-22 1983-02-08 General Electric Company Turbine bypass desuperheater control system
US4476683A (en) * 1982-12-20 1984-10-16 General Electric Company Energy efficient multi-stage water gas shift reaction
JPS6043083A (ja) 1983-08-19 1985-03-07 Ishikawajima Harima Heavy Ind Co Ltd Lνgの直接発電気化器
JPS63137588A (ja) 1986-11-28 1988-06-09 Mitsubishi Electric Corp ロ−ルの粗面加工方法
JP2639480B2 (ja) 1989-03-31 1997-08-13 日本原子力発電株式会社 熱電発電装置
JP2654326B2 (ja) 1992-12-16 1997-09-17 鹿島建設株式会社 極低温物質の冷熱利用発電装置
JPH07119908A (ja) 1993-10-25 1995-05-12 Nissho Kisen Kk ボイラ設備
JPH0898569A (ja) * 1994-09-16 1996-04-12 Unie Net:Kk 火力発電の効率を向上させる発電装置
JPH08125232A (ja) 1994-10-21 1996-05-17 Mitsui Eng & Shipbuild Co Ltd 熱電発電装置
JPH08139373A (ja) 1994-11-09 1996-05-31 Kubota Corp 熱電発電装置
JP3571390B2 (ja) 1994-12-01 2004-09-29 関西電力株式会社 Lng冷熱利用発電システム
JP3585565B2 (ja) 1995-03-09 2004-11-04 日新製鋼株式会社 金属多孔体を使用した熱電素子
KR970705158A (ko) 1995-04-28 1997-09-06 미가꾸 다까하시 자성박막 및 그 제조방법(magnetic thin film and production method therefor)
JPH0923669A (ja) 1995-07-05 1997-01-21 Kansai Electric Power Co Inc:The 極低温用熱電発電器
DE19537478C1 (de) * 1995-10-09 1996-12-12 Siemens Ag Dampfturbinenanlage
JP3626798B2 (ja) 1995-10-13 2005-03-09 三菱重工業株式会社 熱電発電設備
JPH09149666A (ja) 1995-11-22 1997-06-06 Nisshin Steel Co Ltd 熱電発電装置
JP3586505B2 (ja) 1995-12-06 2004-11-10 三菱重工業株式会社 熱電発電装置
JP3130799B2 (ja) 1996-06-28 2001-01-31 川崎重工業株式会社 発電方法及び装置
JPH10163538A (ja) 1996-12-04 1998-06-19 Ngk Insulators Ltd 熱交換器用熱電変換装置
JPH10190073A (ja) 1996-12-25 1998-07-21 Ngk Insulators Ltd 炉壁用熱電変換装置
JP3712809B2 (ja) 1997-01-14 2005-11-02 新日本石油株式会社 熱併給発電装置
JPH10271861A (ja) 1997-03-21 1998-10-09 Tokyo Gas Co Ltd Lng冷熱利用発電方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147907A (ja) * 1983-02-14 1984-08-24 株式会社日立製作所 蒸気タ−ビンプラントの給水加熱系統
JPH02238104A (ja) * 1989-03-09 1990-09-20 Mitsubishi Heavy Ind Ltd 蒸気タービン発電プラント
JPH02264101A (ja) * 1989-04-03 1990-10-26 Toshiba Corp 複合サイクル発電設備
JPH09275692A (ja) * 1996-04-04 1997-10-21 Hiroshi Ko 熱発電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0997613A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075881A (ja) * 2017-10-16 2019-05-16 三井E&S造船株式会社 浮体構造物用発電システム、浮体構造物における発電方法、及び、発電用配管
JP2021148307A (ja) * 2020-03-16 2021-09-27 三浦工業株式会社 ボイラ
JP7390224B2 (ja) 2020-03-16 2023-12-01 三浦工業株式会社 ボイラ

Also Published As

Publication number Publication date
CN1272902A (zh) 2000-11-08
CN1257343C (zh) 2006-05-24
EP0997613A1 (en) 2000-05-03
EP0997613A4 (en) 2003-07-23
EP0997613B1 (en) 2006-08-30
DE69932989T2 (de) 2007-05-10
US6269645B1 (en) 2001-08-07
DE69932989D1 (de) 2006-10-12

Similar Documents

Publication Publication Date Title
WO1999058820A1 (fr) Generateur d'energie
Abuelnuor et al. Exergy analysis of Garri “2” 180 MW combined cycle power plant
Qiu et al. Integrated thermoelectric and organic Rankine cycles for micro-CHP systems
US20060174622A1 (en) Electrical generating system using solar energy and gas turbine
CA2190675C (en) Conversion of waste heat to power
CA2562886C (en) Method and device for carrying out a thermodynamic cycle
Lior Advanced energy conversion to power
Ayub et al. Exergetic optimization and comparison of combined gas turbine supercritical CO2 power cycles
CN110234846A (zh) 热循环设备
RU2122642C1 (ru) Электростанция с комбинированным паросиловым циклом
KR20150109102A (ko) Orc 발전시스템
RU2000449C1 (ru) Многоконтурна энергетическа установка
RU2230921C2 (ru) Способ работы парогазовой электростанции на комбинированном топливе (твердом с газообразным или жидким) и парогазовая установка для его реализации
CN111512096B (zh) 用于锅炉的热电联产系统
JPH04219470A (ja) 太陽熱発電装置
Amirante et al. Experimental prototype development and performance analysis of a small-scale combined cycle for energy generation from biomass
JPH02238104A (ja) 蒸気タービン発電プラント
Barbarelli et al. An externally fired micro combined-cycle, with largely adjustable steam turbine, in a CHP system
Simanjuntak et al. Development of a Small-Scale Electricity Generation Plant Integrated on Biomass Carbonization: Thermodynamic and Thermal Operating Parameters Study
Bisio et al. Thermodynamic analysis of solar energy utilization combined with the exploitation of the LNG physical exergy
Mondal et al. Thermal performance of an indirectly heated biogasification based combined cycle plant employing reciprocating compressor
Fukuda et al. Double reheat Rankine cycle for hydrogen-combustion, turbine power plants
RU2278279C2 (ru) Когенерационная система на основе паровой котельной установки с использованием теплоты уходящих газов
Ayeleso et al. An optimised hybrid biomass combined cycle with integrated solar thermal system
JPS60119305A (ja) 熱電変換・有機媒体サイクル複合発電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800943.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999919558

Country of ref document: EP

Ref document number: 09462940

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999919558

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999919558

Country of ref document: EP