WO1999039393A1 - Modification d'anode pour diodes electroluminescentes organiques - Google Patents
Modification d'anode pour diodes electroluminescentes organiques Download PDFInfo
- Publication number
- WO1999039393A1 WO1999039393A1 PCT/IB1998/000124 IB9800124W WO9939393A1 WO 1999039393 A1 WO1999039393 A1 WO 1999039393A1 IB 9800124 W IB9800124 W IB 9800124W WO 9939393 A1 WO9939393 A1 WO 9939393A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- anode
- anode modification
- organic
- barrier layer
- Prior art date
Links
- 230000004048 modification Effects 0.000 title claims abstract description 62
- 238000012986 modification Methods 0.000 title claims abstract description 62
- 230000004888 barrier function Effects 0.000 claims abstract description 62
- 229910052751 metal Inorganic materials 0.000 claims abstract description 61
- 239000002184 metal Substances 0.000 claims abstract description 61
- 239000000758 substrate Substances 0.000 claims description 40
- 238000002347 injection Methods 0.000 claims description 19
- 239000007924 injection Substances 0.000 claims description 19
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 238000000151 deposition Methods 0.000 claims description 12
- 229910005855 NiOx Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 238000002310 reflectometry Methods 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 4
- 238000001429 visible spectrum Methods 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 2
- 229920005591 polysilicon Polymers 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 4
- 229910052710 silicon Inorganic materials 0.000 claims 4
- 239000010703 silicon Substances 0.000 claims 4
- 238000005401 electroluminescence Methods 0.000 abstract description 18
- 239000010410 layer Substances 0.000 description 141
- 239000000463 material Substances 0.000 description 20
- 230000006870 function Effects 0.000 description 17
- -1 poly(p-phenylenevinylene) Polymers 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000011368 organic material Substances 0.000 description 12
- 230000008021 deposition Effects 0.000 description 11
- 239000012044 organic layer Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 8
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 8
- 230000005525 hole transport Effects 0.000 description 7
- 238000001465 metallisation Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 238000003491 array Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 238000004803 parallel plate viscometry Methods 0.000 description 6
- 229910052681 coesite Inorganic materials 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000004776 molecular orbital Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 125000002080 perylenyl group Chemical class C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 108091008695 photoreceptors Proteins 0.000 description 3
- 229920000123 polythiophene Polymers 0.000 description 3
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 2
- MMHMYFWOECSGDR-UHFFFAOYSA-N 2,5-dimethoxybenzenesulfonamide Chemical compound COC1=CC=C(OC)C(S(N)(=O)=O)=C1 MMHMYFWOECSGDR-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000004866 oxadiazoles Chemical class 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 150000003413 spiro compounds Chemical class 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- DTZWGKCFKSJGPK-VOTSOKGWSA-N (e)-2-(2-methyl-6-(2-(1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)vinyl)-4h-pyran-4-ylidene)malononitrile Chemical compound O1C(C)=CC(=C(C#N)C#N)C=C1\C=C\C1=CC(C(CCN2CCC3(C)C)(C)C)=C2C3=C1 DTZWGKCFKSJGPK-VOTSOKGWSA-N 0.000 description 1
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical class C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 1
- UHXOHPVVEHBKKT-UHFFFAOYSA-N 1-(2,2-diphenylethenyl)-4-[4-(2,2-diphenylethenyl)phenyl]benzene Chemical compound C=1C=C(C=2C=CC(C=C(C=3C=CC=CC=3)C=3C=CC=CC=3)=CC=2)C=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 UHXOHPVVEHBKKT-UHFFFAOYSA-N 0.000 description 1
- SNTWKPAKVQFCCF-UHFFFAOYSA-N 2,3-dihydro-1h-triazole Chemical compound N1NC=CN1 SNTWKPAKVQFCCF-UHFFFAOYSA-N 0.000 description 1
- FQJQNLKWTRGIEB-UHFFFAOYSA-N 2-(4-tert-butylphenyl)-5-[3-[5-(4-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]phenyl]-1,3,4-oxadiazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=C(C=CC=2)C=2OC(=NN=2)C=2C=CC(=CC=2)C(C)(C)C)O1 FQJQNLKWTRGIEB-UHFFFAOYSA-N 0.000 description 1
- YLYPIBBGWLKELC-RMKNXTFCSA-N 2-[2-[(e)-2-[4-(dimethylamino)phenyl]ethenyl]-6-methylpyran-4-ylidene]propanedinitrile Chemical compound C1=CC(N(C)C)=CC=C1\C=C\C1=CC(=C(C#N)C#N)C=C(C)O1 YLYPIBBGWLKELC-RMKNXTFCSA-N 0.000 description 1
- GZEPZNKMABZIBC-UHFFFAOYSA-N 3,4-didecyl-2-[3-[3-[3-(3-thiophen-2-ylthiophen-2-yl)thiophen-2-yl]thiophen-2-yl]thiophen-2-yl]thiophene Chemical compound C(CCCCCCCCC)C=1C(=C(SC=1)C=1SC=CC=1C=1SC=CC=1C=1SC=CC=1C=1SC=CC=1C=1SC=CC=1)CCCCCCCCCC GZEPZNKMABZIBC-UHFFFAOYSA-N 0.000 description 1
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 1
- ZNJRONVKWRHYBF-VOTSOKGWSA-N 4-(dicyanomethylene)-2-methyl-6-julolidyl-9-enyl-4h-pyran Chemical compound O1C(C)=CC(=C(C#N)C#N)C=C1\C=C\C1=CC(CCCN2CCC3)=C2C3=C1 ZNJRONVKWRHYBF-VOTSOKGWSA-N 0.000 description 1
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- UHBIKXOBLZWFKM-UHFFFAOYSA-N 8-hydroxy-2-quinolinecarboxylic acid Chemical compound C1=CC=C(O)C2=NC(C(=O)O)=CC=C21 UHBIKXOBLZWFKM-UHFFFAOYSA-N 0.000 description 1
- 229910018182 Al—Cu Inorganic materials 0.000 description 1
- UYIABALEZWQXDK-UHFFFAOYSA-N C(C)(C)[Si](C(C)C)(C(C)C)C=1C(=C(SC=1)C=1SC=CC=1C=1SC=CC=1C=1SC=CC=1C=1SC=CC=1C=1SC=CC=1)[Si](C(C)C)(C(C)C)C(C)C Chemical compound C(C)(C)[Si](C(C)C)(C(C)C)C=1C(=C(SC=1)C=1SC=CC=1C=1SC=CC=1C=1SC=CC=1C=1SC=CC=1C=1SC=CC=1)[Si](C(C)C)(C(C)C)C(C)C UYIABALEZWQXDK-UHFFFAOYSA-N 0.000 description 1
- 239000004985 Discotic Liquid Crystal Substance Substances 0.000 description 1
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 241000702619 Porcine parvovirus Species 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- AEALHDNXDXBIII-UHFFFAOYSA-N S1C(=CC=C1)C=1SC=CC1C=1SC=CC1C=1SC=CC1C=1SC=CC1C=1SC=CC1.C1=CC=C2C=CC=C3N=C4C5=CC=CC=C5C(N4C1=C23)=O Chemical compound S1C(=CC=C1)C=1SC=CC1C=1SC=CC1C=1SC=CC1C=1SC=CC1C=1SC=CC1.C1=CC=C2C=CC=C3N=C4C5=CC=CC=C5C(N4C1=C23)=O AEALHDNXDXBIII-UHFFFAOYSA-N 0.000 description 1
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- SDVOZSYGHFDAKX-UHFFFAOYSA-N n,4-diphenyl-n-[4-[4-(n-(4-phenylphenyl)anilino)phenyl]phenyl]aniline Chemical compound C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(=CC=1)C=1C=CC=CC=1)C1=CC=C(C=2C=CC=CC=2)C=C1 SDVOZSYGHFDAKX-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000112 poly(2,5-bis(cholestanoxy) phenylene vinylene) Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80518—Reflective anodes, e.g. ITO combined with thick metallic layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
- H10K2102/3023—Direction of light emission
- H10K2102/3026—Top emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/878—Arrangements for extracting light from the devices comprising reflective means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8791—Arrangements for improving contrast, e.g. preventing reflection of ambient light
Definitions
- the present invention pertains to organic electroluminescent displays and methods for making the same.
- Organic electroluminescence (EL) has been studied extensively because of its possible applications in discrete light emitting diodes (LED), arrays and displays. Organic materials can potentially replace semiconductors in many LED applications and enable wholly new applications. The ease of organic LED (OLED) fabrication and the continuing development of improved organic materials promise novel and inexpensive OLED display possibilities.
- Tang used vacuum deposition of molecular compounds to form OLEDs with two organic layers.
- poly(p-phenylenevinylene) to form a single-organic-layer OLED.
- the simplest possible OLED structure depicted in Figure 1A, consists of an organic emission layer 10 sandwiched between cathode 11 and anode 12 electrodes which inject electrons (e " ) and holes (h + ), respectively, which meet in the emission layer 10 and recombine producing light. It has been shown (D. D. C. Bradley, Synthetic Metals, Vol. 54, 1993, pp. 401-405, J. Peng et al., Japanese Journal of Applied Physics, Vol. 35, No. 3A, 1996, pp. L317-L319, and I. D. Parker, Journal of Applied Physics, Vol. 75, No. 3, 1994, pp.
- Balanced charge injection is also important.
- an excellent anode is of limited use if the cathode has a large energy barrier to electron injection.
- Figure 2 illustrates a device with a large electron barrier 16 such that few electrons are injected, leaving the holes no option but to recombine non-radiatively in or near the cathode 15.
- the anode and cathode materials should be evenly matched to their respective MOs to provide balanced charge injection and optimized OLED efficiency.
- Electrodes With multilayer device architectures now well understood and widely used, a remaining performance limitation of OLEDs is the electrodes.
- the main figure of merit for electrode materials is the position of the electrode Fermi energy relative to the relevant organic MO.
- ITO is by no means an ideal anode, however. ITO is responsible for device degradation as a result of In diffusion into the OLED eventually causing short circuits as identified by G. Sauer et al., Fresenius J. Anal. Chem., pp. 642-646, Vol. 353 (1995). ITO is polycrystalline and its abundance of grain boundaries provides ample pathways for contaminant diffusion into the OLED. Finally, ITO is a reservoir of oxygen which is known to have a detrimental effect on many organic materials (see J.C. Scott, J.H. Kaufman, P.J. Brock, R. DiPietro, J. Salem, and J.A. Goita, J. Appl. Phys., Vol. 79, p. 2745, 1996). Despite all of these problems, ITO anodes are favored because no better transparent electrode material is known and ITO provides adequate stability for many applications.
- a TC OLED thin, semi-transparent low work function metal layer, e.g. Ca or MgAg, followed by ITO or another transparent, conducting material or materials, e.g. as reported in Bulovic et al., Nature, Vol. 380, No. 10, 1996 p. 29, or in the co-pending PCT patent application PCT/IB96/00557, published on 11 December 1997 (publication number WO97/47050).
- a highly reflective anode which can direct more light out through the TC is desired. Consequently, the low reflectivity of ITO is a disadvantage in TC OLEDs.
- a TC OLED could benefit from a non-reflective, highly absorbing anode. Again the optical characteristics of ITO are a disadvantage.
- High work function metals could form highly reflective anodes for TC OLEDs.
- Some of these metals, e.g. Au have a larger work function than ITO (5.2 eV vs. 4.7 eV), but lifetime may be compromised because of high diffusivity in organic materials. Like In from ITO, only worse, Au diffuses easily through many organic materials and can eventually short circuit the device. Efforts have been made to fabricate OLEDs on Si substrates (Parker and Kim, Applied Physics Letters, Vol. 64, No. 14, 1994, pp. 1774-1776). Si, due to its small bandgap and moderate work function, has a large barrier for both electron and hole injection into organic MOs, and therefore performs poorly as an electrode.
- electrode materials must be improved to realize OLEDs, and displays based thereon, with superior reliability and efficiency, and to enable novel architectures, such as devices emitting through a TC.
- an improved anode compatible with Si IC technology is required for optimized TC OLED architectures.
- an OLED having a cathode, an anode, and an organic region sandwiched in between, said anode being composed of
- anode being arranged such that said anode modification layer is in contact with said organic region and light is extracted through said cathode.
- metal layer in connection with the present invention.
- metal layer any kind of metal is suited as metal layer in connection with the present invention. Examples are Al, Cu, Mo, Ti, Pt, Ir, Ni, Au, Ag, and any alloy thereof, or any metal stack such as Pt on Al and the like.
- the inventive approach is specifically designed for the fabrication of OLEDs on top of Si, preferably Si crystalline wafers incorporating pre-processed integrated display circuitry (herein referred to as Si IC).
- Si IC pre-processed integrated display circuitry
- the present invention is designed to modify the existing Si device metallization into a stable OLED anode having good hole injection properties.
- the metal layer in the present invention is generally the final metallization layer of the Si IC process, which consistent with present Si technology is normally Al, Cu or an alloy thereof. Neither Al, Cu or Al:Cu alloys perform well as OLED anodes, but they do provide excellent visible spectrum reflectivity which increases the amount of light extracted through a TC.
- the Si IC metallization surface can vary widely in terms of oxide thickness, roughness and surface contaminants depending on numerous factors, including the fabrication process, the time between IC fabrication and OLED deposition, and the environment in which the Si IC was stored and shipped.
- the Si metallization anode properties must be improved and effects arising from variations of the initial state of the metal surface must be eliminated.
- the inventive approach is also suited for use with pixel and drive circuitry comprising polysilicon or amorphous silicon devices.
- the anode modification layer in the present invention is mainly selected for its high work function which provides efficient hole injection into OLEDs.
- the anode modification layer must form a stable interface with the adjacent organic layer being part of the so-called organic region (e.g. the organic HTL) to insure consistent OLED performance over an extended time period.
- the anode modification layer can be conductive or insulating, but it should be sufficiently thin that it contributes negligibly both to the OLED series resistance and optical absorption losses. Oxides are well suited as anode modification layers.
- the thickness of the anode modification layer is preferably between 0.5 nm and 10 nm.
- the barrier layer or layers in the present invention isolates the anode modification layer from the metal layer by forming a physical and chemical barrier, while permitting charge to pass freely through its interfaces with the metal layer and anode modification layer.
- the barrier layer(s) provides a consistent and reproduceable surface for the deposition or formation of the anode modification layer regardless of the metal layer composition or initial state of its surface.
- the barrier layer(s) can be conductive or insulating, but it (they) should be sufficiently thin that it (they) contributes negligibly to the OLED series resistance. Alternatively, the barrier layer(s) can be highly reflective which avoids absorption losses.
- the thickness of the barrier layer is preferably between 5 nm-100 nm. Well suited are barrier layers comprising TiN or TiNC, for example.
- a single or multilayer OLED structure having a TC fabricated on a Si substrate incorporates a multilayer anode structure comprising a metal layer, an anode modification layer, and an intermediate barrier layer(s), such that the anode is stable and efficient at hole injection.
- the barrier layer(s) provides between the metal layer and anode modification layer, and the stability of the anode modification layer interface with the adjacent organic HTL.
- FIG. 1 A shows the band structure of a known OLED having an emission layer and two electrodes (Prior Art).
- FIG. IB shows the band structure of another known OLED having an emission layer and two metal electrodes, with work functions chosen such that the energy barrier for carrier injection is reduced (Prior Art).
- FIG. 2 shows the band structure of another known OLED having an emission layer and two metal electrodes, the work function of the anode being chosen such that the energy barrier for hole injection is low, whereas the work function of the cathode poorly matches the emission layer yielding little electron injection and little radiative recombination in said emission layer (Prior Art).
- FIG. 3 shows the band structure of another known OLED having an electron transport layer and hole transport layer (Prior Art).
- FIG. 4 is a schematic cross section of a first embodiment of the present invention.
- FIG. 5 is a schematic cross section of a second embodiment of the present invention.
- FIG. 6 is a schematic cross section of a third embodiment of the present invention. 11
- a first embodiment is depicted in Figure 4.
- a TC OLED is shown which is formed on a substrate 45. Since in the present configuration the electroluminescent light 52 is emitted through the top electrode (cathode 51), almost any kind of substrate 45 can be used. Examples are Si, glass, quartz, stainless steel, and various plastics.
- the inventive anode comprising a metal layer 46, a barrier layer 47, and an anode modification layer 48 is situated on said substrate 45.
- Any kind of metal is suited as metal layer 46. Examples are Al, Cu, Mo, Ti, Pt, Ir, Ni, Au, Ag, and any alloy thereof, or any metal stack such as Pt on Al and the like. Depending on the embodiment, particularly well suited are metals which provide visible spectrum reflectivity.
- the barrier layer 47 isolates the anode modification layer 48 from the metal layer 46 by forming a physical and chemical barrier, while permitting charge to pass freely through its interfaces with the metal layer 46 and anode modification layer 48.
- the inventive anode might comprise one or more barrier layers.
- the barrier layer(s) 47 provides a consistent and reproduceable surface for the formation or deposition of the anode modification layer 48 regardless of the metal layer composition or initial state of its surface.
- the barrier layer(s) 47 can be conductive or insulating, but it (they) should be sufficiently thin that it (they) contributes negligibly to the OLED series resistance. Alternatively, the barrier layer (s) 47 can 12
- the thickness of the barrier layer is preferably between 5 nm-100 nm.
- the anode modification layer 48 is mainly selected for its high work function which provides efficient hole injection into the organic region of the OLED.
- the anode modification layer 48 must form a stable interface with the adjacent organic emission layer (EML) 49 to insure . consistent OLED performance over an extended time period.
- EML organic emission layer
- the anode modification layer 48 can be conductive or insulating, but it must be sufficiently thin that it contributes negligibly to both the OLED series resistance and the optical absorption losses.
- the thickness of the anode modification layer is preferably between 0.5 nm and 10 nm.
- a TC 51 is situated on the EML 49.
- the electroluminescence takes place within the EML 49.
- part of the light is emitted directly through the EML 49 and the TC 51 into the half space above the OLED.
- Another part of the light travels towards the inventive anode structure.
- the anode structure reflects the light such that it is also emitted into the half space above the OLED.
- Table 1 Exemplary details of the first embodiment Layer No. Material Thickness present example
- Substrate 45 Quartz 0.05 - 5 mm 800 ⁇ m
- Metal Layer 46 Ti/Al 0.01-0.7 ⁇ m / 0.05-3 ⁇ m 2 nm
- Anode modification Layer 48 ITO 0.003 - 2 ⁇ m 7 nm
- Emission Layer 49 PPV 50 - 500 nm 200 nm
- Transparent Cathode 51 Li:Al alloy 50 - 1000 nm 120 nm
- a second embodiment of the inventive anode for TC OLEDs fabricated on Si substrates is depicted in Figure 5.
- the Si IC 25 in Figure 5 comprises an Al top metal contact pad 26 which also serves as the metal layer in the inventive anode.
- an InN barrier layer 27 is deposited directly onto the substrate such that it overlaps at least the contact pad 26.
- the sample is then oxidized in an oxygen plasma, or equivalently in an air, steam, ozone or other oxidizing environment to prepare an InNO * surface anode modification layer 28 capable of low voltage hole injection into the organic HTL 29.
- Electrons injected into the ETL 30 from the TC 31 recombine with the holes in the organic region producing EL 32 which is extracted through the TC 31.
- the organic region in the present embodiment comprises an HTL 29 and an ETL 30. It is to be noted that the organic region in any case at least comprises one organic layer (see first embodiment, for example).
- the Si IC 25 might comprise integrated circuitry which is not illustrated in Figure 5, for sake of simplicity. Instead of InN other group III nitrides might be used, for example.
- InN is an excellent barrier layer material because it is a degenerate semiconductor which has both excellent transparency and is conductive, but not so conductive that lateral conduction through the InN barrier layer 27 between adjacent Al metal pads 26 on the Si IC 25 causes electrical crosstalk.
- InN having these properties can be deposited at or near room temperature as described in Beierlein et al., Materials Research Society Internet Journal of Nitride Semiconductor Research, Vol. 2, Paper 29.
- InN is also a convenient choice because its surface work function can be increased by oxidation thus forming an InNO x anode modification layer 28 directly on the InN barrier layer. Equivalently, the InNO x anode modification layer 28 could be directly deposited onto the InN.
- oxide-based anode modification layers Several methods of deposition of oxide-based anode modification layers are listed below:
- PECVD sputter deposition or reactive (e.g. in an oxygen environment) sputter deposition; thermal evaporation; electron-beam evaporation; • oxygen plasma (plasma-assisted oxidation); thermal annealing in an oxidizing environment; 14
- anode modification layer 28 could also be substituted, e.g. ITO, ZnO,
- a completely different metal layer 26 could also be substituted.
- the degeneracy of the InN semiconductor insures that charge can pass easily from the metal layer 26 into the InN barrier layer 27, regardless of the composition or initial state of the metal layer 26 surface. For the same reason, charge can also traverse the InN barrier layer 27 and into the anode modification layer 28 without significant series resistance.
- the strength of the highly polar In-N bond insures that InN 27 acts as an excellent chemical and physical barrier to corrosion or diffusion between the metal layer 26 and the anode modification layer 28.
- the device depicted in Figure 5 benefits from the high reflectivity of the Al metal layer 26, and the low visible spectrum absorption of the InN barrier layer 27 and the InNO x anode modification layer 28, which permits much of the EL 32 emitted towards the substrate to be reflected back through the TC 31.
- Devices having the anode structure depicted in Figure 5 exhibit higher quantum and power efficiencies than comparable structures having conventional ITO anodes as a result of more balanced charge injection between the Al InN/InNO ⁇ anode and the TC.
- Metal Layer 26 Aluminum 0.05 - 2 ⁇ m 500 nm
- a third embodiment of the inventive anode for TC OLEDs fabricated on Si substrates is depicted in Figure 6. From the substrate 33 up, listed in the order of deposition, is a Si
- the Si IC 33 in Figure 6 comprises an Al:Cu alloy top metal contact 34 which serves as the metal layer in the inventive anode.
- a two layer Ni 35/NiO x 36 barrier layer is deposited in sequence directly onto those parts of the substrate 33 which are covered by the metal contact layer 34, or alternatively, the Ni 35 barrier layer is deposited, and its surface is subsequently oxidized to form the NiO x 36 barrier layer.
- the inventive anode is completed by the deposition of the V 2 O 5 anode modification layer 37 capable of injecting holes into the HTL 38. Electrons injected into the ETL 40 from the TC 41 recombine in the organic emission layer 39 producing EL 42 which is extracted through the TC 41.
- the circuitry in the Si substrate is not shown for simplicity.
- barrier layers 35, 36 can be inserted between the metal layer 34 and the anode modification layer 37 of the inventive anode provided that they do not reduce device efficiency through excessive series resistance at their interfaces or in their bulk.
- the Ni 35/NiO x 36 barrier layer structure of the present embodiment relies on the high reflectivity of the Ni 35 metal and the transparency and thinness of the insulating NiO x 36 layer to insure good device efficiency. 16
- the third embodiment without the Ni and NiO x layers is unstable due to a chemical reaction between the Al:Cu alloy 34 and the anode modification layer 37.
- the oxidation of the Ni 35 surface, or alternatively the deposition of an additional barrier layer further chemically isolates the Ni metal from the anode modification layer 37.
- the Ni 35 barrier layer is highly conductive, it must be very thin, or patterned (as shown in Figure 6) to avoid lateral conduction between adjacent IC metallizations 34 (not shown in Figure 6).
- Devices having the inventive metal/Ni/NiO x /V 2 O 5 anode structure depicted in Figure 6 exhibit steeper current/voltage characteristics than conventional ITO anodes and similar power efficiencies.
- Transparent Cathode 41 Ca/InGaN/ITO 1-20 nm / 10-100 nm 10 nm / 80 nm / / 10-lOOOnm 150nm
- the Si substrate might comprise integrated circuitry which drives the pixels of the OLEDs formed thereon.
- the inventive anode might be connected to the metal contact of an active matrix element formed in the Si IC substrate. If the circuitry is patterned appropriately, individual pixels or groups of pixels can be turned on and off. 17
- Arrays and displays can be realized with high quantum and power efficiencies, lower threshold voltages, and/or steep current/voltage characteristics.
- the inventive anode is compatible with many known approaches.
- the substrate can be fabricated to contain the active Si devices, such as for example an active matrix, drivers, memory and so forth.
- active Si devices such as for example an active matrix, drivers, memory and so forth.
- Such an OLED on Si structure can be a very inexpensive small area organic display with high resolution and performance.
- An OLED or OLED array may either be grown directly on such a Si substrate carrying Si devices, or it may be fabricated separately and assembled in a flip-chip fashion onto the Si circuitry later.
- the Si metallization is typically Al or an Al alloy which are poor OLED anode or cathode materials.
- the inventive anode permits a stable, low voltage hole contact to be formed on top of the standard Si process metallizations.
- Electron transport/Emitting materials
- electron transporting materials are electron-deficient nitrogen-containing systems, for example oxadiazoles like PBD (and many derivatives), and triazoles, for example TAZ (l,2,4-triazole). These functional groups can also be incorporated in polymers, starburst and spiro compounds. Further classes are materials containing pyridine, pyrimidine, pyrazine and pyridazine functionalities.
- DPS6T didecyl sexithiophene
- 2D6T bis-triisopropylsilyl sexithiophene
- azomethin-zinc complexes pyrazine (e.g. BNVP), styrylanthracene derivatives (e.g. BSA-1, BSA-2), non-planar distyrylaiylene derivatives, for example DPVBi (see C. Hosokawa and T.
- cyano-substituted polymers such as cyano-PPV (PPV means poly(p-phenylenevinylene)) and cyano-PPV derivatives.
- Anthracene pyridine derivatives (e.g. ATP), Azomethin-zinc complexes, pyrazine (e.g. BNVP), styrylanthracene derivatives (e.g. BSA-1, BSA-2), Coronene, Coumarin, DCM compounds (DCM1, DCM2), distyryl arylene derivatives (DSA), alkyl-substituted distyrylbenzene derivatives (DSB), benzimidazole derivatives (e.g. NBI), naphthostyrylamine derivatives (e.g. NSD), oxadiazole derivatives (e.g.
- MEH-PPV poly(2-methoxy)-5-(2'-ethylhexoxy)- 1 ,4-phenylene-vinylene), poly(2,4-bis(cholestanoxyl)-l,4-phenylene-vinylene) (BCHA-PPV), and segmented PPVs (see for example: E. Staring in International Symposium on Inorganic and Organic Electroluminescence, 1994, Hamamatsu, 48, and T. Oshino et al. in Sumitomo Chemicals, 1995 monthly report).
- the following materials are suited as hole injection layers and hole transport layers.
- Materials containing aromatic amino groups like tetraphenyldiaminodiphenyl (TPD- 1 , TPD-2, or TAD) and NPB (see C. Tang, SID Meeting San Diego, 1996, and C. Adachi et al. Applied Physics Letters, Vol. 66, p. 2679, 1995), TPA, NIPC, TPM, DEH (for the abbreviations see for example: P. Borsenberger and D.S. Weiss, Organic Photoreceptors for Imaging Systems, Marcel Dekker, 1993).
- aromatic amino groups can also be incorporated in polymers, starburst (for example: TCTA, m-MTDATA, see Y. Kuwabara et al., Advanced Materials, 6, p. 677, 1994, Y. Shirota et al., Applied Physics Letters, Vol. 65, p. 807, 1994) and spiro compounds.
- NSD quinacridone
- P3MT poly(3-methylthiophene)
- PT polythiophene
- PTCDA 3,4,9, 10-perylenetetracarboxylic dianhydride
- PPV poly(9-vinylcarbazole)
- HPT discotic liquid crystal materials
- blend (i.e. guest-host) systems containing active groups in a polymeric binder are also possible.
- the concepts employed in the design of organic materials for OLED applications are to a large extent derived from the extensive existing experience in organic photoreceptors. A brief overview of some organic materials used in the fabrication of organic photoreceptors is found in the above mentioned publication of P. Brosenberger and D.S. Weiss, and in Teltech, Technology Dossier Service, Organic Electroluminescence (1995), as well as in the primary literature.
- OLEDs have been demonstrated using polymeric, oligomeric and small organic molecules.
- the devices formed from each type of molecule are similar in function, although the deposition of the layers varies widely.
- the present invention is equally valid in all forms described above for organic light emitting devices based on polymers, oligomers, or small molecules.
- Evaporation can be performed in a Bell jar type chamber with independently controlled resistive and electron-beam heating of sources. It can also be performed in a molecular beam deposition system incorporating multiple effusion cells and sputter sources. Oligomeric and polymeric organics can also be deposited by evaporation of their monomeric components with later polymerization via heating or plasma excitation at the substrate. It is therefore possible to copolymerize or create mixtures by co-evaporation. 21
- polymer containing devices are made by dissolving the polymer in a solvent and spreading it over the substrate either by spin coating or the doctor blade technique. After coating the substrate, the solvent is removed by evaporation or otherwise. This method allows the fabrication of well defined multilayer organic stacks, provided that the respective solvents for each subsequent layer do not dissolve previously deposited layers.
- hybrid devices containing both polymeric and evaporated small organic molecules are possible.
- the polymer film is generally deposited first, since evaporated small molecule layers often cannot withstand much solvent processing.
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
L'invention concerne un dispositif électroluminescent organique qui comprend une cathode (51), une anode (48, 47, 46) et une zone organique (50, 49) où l'électroluminescence apparaît si on applique une tension entre lesdites cathode et anode. L'anode comprend une couche métallique (46), une couche barrière (47) et une couche de modification d'anode (48). La lumière est émise à travers la cathode (51).
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53908199A JP3488474B2 (ja) | 1998-02-02 | 1998-02-02 | 有機発光ダイオード用のアノード改質 |
US09/381,648 US6501217B2 (en) | 1998-02-02 | 1998-02-02 | Anode modification for organic light emitting diodes |
PCT/IB1998/000124 WO1999039393A1 (fr) | 1998-02-02 | 1998-02-02 | Modification d'anode pour diodes electroluminescentes organiques |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB1998/000124 WO1999039393A1 (fr) | 1998-02-02 | 1998-02-02 | Modification d'anode pour diodes electroluminescentes organiques |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999039393A1 true WO1999039393A1 (fr) | 1999-08-05 |
Family
ID=11004664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB1998/000124 WO1999039393A1 (fr) | 1998-02-02 | 1998-02-02 | Modification d'anode pour diodes electroluminescentes organiques |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3488474B2 (fr) |
WO (1) | WO1999039393A1 (fr) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002246185A (ja) * | 2001-02-22 | 2002-08-30 | Victor Co Of Japan Ltd | 有機エレクトロルミネセンス素子 |
US6537688B2 (en) | 2000-12-01 | 2003-03-25 | Universal Display Corporation | Adhesive sealed organic optoelectronic structures |
US6559594B2 (en) * | 2000-02-03 | 2003-05-06 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
US6576351B2 (en) | 2001-02-16 | 2003-06-10 | Universal Display Corporation | Barrier region for optoelectronic devices |
WO2003055275A1 (fr) * | 2001-12-21 | 2003-07-03 | International Business Machines Corporation | Structure d'electrode pour dispositifs electroniques et optoelectroniques |
US6608449B2 (en) | 2000-05-08 | 2003-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Luminescent apparatus and method of manufacturing the same |
US6614057B2 (en) | 2001-02-07 | 2003-09-02 | Universal Display Corporation | Sealed organic optoelectronic structures |
US6624568B2 (en) | 2001-03-28 | 2003-09-23 | Universal Display Corporation | Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices |
JP2003317971A (ja) * | 2002-04-26 | 2003-11-07 | Semiconductor Energy Lab Co Ltd | 発光装置およびその作製方法 |
US6664137B2 (en) | 2001-03-29 | 2003-12-16 | Universal Display Corporation | Methods and structures for reducing lateral diffusion through cooperative barrier layers |
EP1406474A1 (fr) * | 2002-10-01 | 2004-04-07 | Eastman Kodak Company | Dispositif electroluminescent organique avec une extraction de lumière ameliorée |
EP1422977A1 (fr) * | 2001-08-31 | 2004-05-26 | Sony Corporation | Dispositif electroluminescent organique et son procede de fabrication |
WO2004112441A1 (fr) * | 2002-03-18 | 2004-12-23 | Fuji Electric Holdings Co., Ltd. | Del organique et panneau de dels organiques |
KR100477746B1 (ko) * | 2002-06-22 | 2005-03-18 | 삼성에스디아이 주식회사 | 다층 구조의 애노드를 채용한 유기 전계 발광 소자 |
JP2006503443A (ja) * | 2002-12-11 | 2006-01-26 | エルジー・ケム・リミテッド | 低い仕事関数の陽極を有する電界発光素子 |
US7029764B2 (en) * | 2003-01-24 | 2006-04-18 | Ritdisplay Corporation | Organic electroluminescent material and electroluminescent device by using the same |
KR100761080B1 (ko) * | 2005-12-21 | 2007-09-21 | 삼성에스디아이 주식회사 | 유기전계발광소자 및 그 제조방법 |
KR100764673B1 (ko) | 2005-02-25 | 2007-10-08 | 미쓰비시덴키 가부시키가이샤 | 유기 전계발광형 표시장치 |
KR100769586B1 (ko) | 2006-04-14 | 2007-10-23 | 한양대학교 산학협력단 | 유기 el 소자 및 그 제조 방법 |
KR100855487B1 (ko) * | 2006-09-12 | 2008-09-01 | 엘지디스플레이 주식회사 | 전계발광소자 |
GB2448175A (en) * | 2007-04-04 | 2008-10-08 | Cambridge Display Tech Ltd | Organic semiconductor devices with oxidized electrodes |
US7538341B2 (en) | 1999-12-31 | 2009-05-26 | Lg Chem, Ltd. | Electronic device comprising organic compound having p-type semiconducting characteristics |
US7566253B2 (en) | 2000-10-26 | 2009-07-28 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting device with anodized anode surface |
US7615921B2 (en) | 2003-06-13 | 2009-11-10 | Fuji Electric Holdings Co., Ltd. | Organic EL device and organic EL panel |
US7763882B2 (en) | 1999-12-31 | 2010-07-27 | Lg Chem, Ltd. | Organic light-emitting device comprising buffer layer and method for fabricating the same |
CN101901878A (zh) * | 2009-06-01 | 2010-12-01 | 三星移动显示器株式会社 | 有机发光二极管 |
US8021204B2 (en) | 2002-04-23 | 2011-09-20 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing the same |
US20120148755A1 (en) * | 2000-08-31 | 2012-06-14 | Fujitsu Limited | Organic el element and method of manufacturing the same, organic el display device using the element, organic el material, and surface emission device and liquid crystal display device using the material |
US8253126B2 (en) | 1999-12-31 | 2012-08-28 | Lg Chem. Ltd. | Organic electronic device |
US8362688B2 (en) | 2005-03-25 | 2013-01-29 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
JP2013165068A (ja) * | 2013-04-15 | 2013-08-22 | Sony Corp | 上面発光型発光素子及びその製造方法 |
US8575598B2 (en) | 2009-10-09 | 2013-11-05 | Samsung Display Co., Ltd. | Organic light emitting diode display |
US8680693B2 (en) | 2006-01-18 | 2014-03-25 | Lg Chem. Ltd. | OLED having stacked organic light-emitting units |
CN103928628A (zh) * | 2013-01-11 | 2014-07-16 | 海洋王照明科技股份有限公司 | 一种修饰氧化铟锡阳极及其制备方法和有机电致发光器件 |
US8790938B2 (en) | 2001-10-30 | 2014-07-29 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11307261A (ja) * | 1998-04-16 | 1999-11-05 | Tdk Corp | 有機el素子 |
JP4244126B2 (ja) * | 2001-09-28 | 2009-03-25 | 株式会社半導体エネルギー研究所 | 発光装置の作製方法 |
SG111968A1 (en) | 2001-09-28 | 2005-06-29 | Semiconductor Energy Lab | Light emitting device and method of manufacturing the same |
JP3691475B2 (ja) * | 2001-09-28 | 2005-09-07 | 株式会社半導体エネルギー研究所 | 発光装置 |
KR100915617B1 (ko) * | 2003-06-13 | 2009-09-07 | 후지 덴키 홀딩스 가부시키가이샤 | 유기 el 소자 및 유기 el 패널 |
US7679282B2 (en) * | 2005-03-02 | 2010-03-16 | Osram Opto Semiconductors Gmbh | Polymer and small molecule based hybrid light source |
JP5072243B2 (ja) * | 2005-03-25 | 2012-11-14 | 株式会社半導体エネルギー研究所 | 発光装置 |
US20080252204A1 (en) * | 2005-03-31 | 2008-10-16 | Pioneer Corporation | Organic Electroluminescence Device and Manufacturing Method of the Same |
US7687986B2 (en) | 2005-05-27 | 2010-03-30 | Fujifilm Corporation | Organic EL device having hole-injection layer doped with metallic oxide |
JP5618458B2 (ja) * | 2007-08-10 | 2014-11-05 | 住友化学株式会社 | 有機エレクトロルミネッセンス素子、製造方法及び塗布液 |
JP5001745B2 (ja) * | 2007-08-10 | 2012-08-15 | 住友化学株式会社 | 有機エレクトロルミネッセンス素子及び製造方法 |
JP2009044104A (ja) * | 2007-08-10 | 2009-02-26 | Sumitomo Chemical Co Ltd | 有機エレクトロルミネッセンス素子及び製造方法 |
JP4962452B2 (ja) * | 2008-09-04 | 2012-06-27 | コニカミノルタホールディングス株式会社 | 面発光素子及び発光パネル |
JP2019021599A (ja) | 2017-07-21 | 2019-02-07 | 株式会社東芝 | 透明電極、およびその製造方法、ならびにその透明電極を用いた電子デバイス |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0668620A1 (fr) * | 1994-02-17 | 1995-08-23 | AT&T Corp. | Dispositif à diode émettrice de lumière et méthode de fabrication |
WO1997047051A1 (fr) * | 1996-06-05 | 1997-12-11 | International Business Machines Corporation | Anodes au nitrure de gallium pour affichages et dispositifs organiques electroluminescents |
-
1998
- 1998-02-02 JP JP53908199A patent/JP3488474B2/ja not_active Expired - Lifetime
- 1998-02-02 WO PCT/IB1998/000124 patent/WO1999039393A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0668620A1 (fr) * | 1994-02-17 | 1995-08-23 | AT&T Corp. | Dispositif à diode émettrice de lumière et méthode de fabrication |
WO1997047051A1 (fr) * | 1996-06-05 | 1997-12-11 | International Business Machines Corporation | Anodes au nitrure de gallium pour affichages et dispositifs organiques electroluminescents |
Cited By (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8253126B2 (en) | 1999-12-31 | 2012-08-28 | Lg Chem. Ltd. | Organic electronic device |
US7538341B2 (en) | 1999-12-31 | 2009-05-26 | Lg Chem, Ltd. | Electronic device comprising organic compound having p-type semiconducting characteristics |
US7560175B2 (en) | 1999-12-31 | 2009-07-14 | Lg Chem, Ltd. | Electroluminescent devices with low work function anode |
US7648779B2 (en) | 1999-12-31 | 2010-01-19 | Lg Chem, Ltd. | Electroluminescent devices with low work function anode |
US7648780B2 (en) | 1999-12-31 | 2010-01-19 | Lg Chem, Ltd. | Electroluminescent devices with low work function anode |
US7763882B2 (en) | 1999-12-31 | 2010-07-27 | Lg Chem, Ltd. | Organic light-emitting device comprising buffer layer and method for fabricating the same |
JP2013110124A (ja) * | 2000-02-03 | 2013-06-06 | Semiconductor Energy Lab Co Ltd | 発光装置 |
US7867053B2 (en) | 2000-02-03 | 2011-01-11 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing light emitting device |
US8339038B2 (en) | 2000-02-03 | 2012-12-25 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
US7745993B2 (en) | 2000-02-03 | 2010-06-29 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing light emitting device comprising reflective film |
US7101242B2 (en) | 2000-02-03 | 2006-09-05 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing light emitting device comprising reflective film |
US8810130B2 (en) | 2000-02-03 | 2014-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and method of manufacturing the same |
US6768260B2 (en) | 2000-02-03 | 2004-07-27 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device, personal computer having the same, and portable telephone having the same |
KR100926006B1 (ko) * | 2000-02-03 | 2009-11-11 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 디스플레이 장치 |
US6559594B2 (en) * | 2000-02-03 | 2003-05-06 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
EP1122800A3 (fr) * | 2000-02-03 | 2005-10-12 | Semiconductor Energy Laboratory Co., Ltd. | Dispositif émetteur de lumière et méthode de fabrication |
US9419066B2 (en) | 2000-02-03 | 2016-08-16 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and method of manufacturing the same |
KR100857726B1 (ko) * | 2000-02-03 | 2008-09-10 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 장치 및 이를 제조하는 방법과, 전기 기구 |
US7667393B2 (en) | 2000-05-08 | 2010-02-23 | Semiconductor Energy Laboratory Co., Ltd. | Luminescent apparatus and method of manufacturing the same |
US7116044B2 (en) | 2000-05-08 | 2006-10-03 | Semiconductor Energy Laboratory Co., Ltd. | Luminescent apparatus and method of manufacturing the same |
US6608449B2 (en) | 2000-05-08 | 2003-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Luminescent apparatus and method of manufacturing the same |
US20120148755A1 (en) * | 2000-08-31 | 2012-06-14 | Fujitsu Limited | Organic el element and method of manufacturing the same, organic el display device using the element, organic el material, and surface emission device and liquid crystal display device using the material |
US7566253B2 (en) | 2000-10-26 | 2009-07-28 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting device with anodized anode surface |
US6537688B2 (en) | 2000-12-01 | 2003-03-25 | Universal Display Corporation | Adhesive sealed organic optoelectronic structures |
US6614057B2 (en) | 2001-02-07 | 2003-09-02 | Universal Display Corporation | Sealed organic optoelectronic structures |
US6576351B2 (en) | 2001-02-16 | 2003-06-10 | Universal Display Corporation | Barrier region for optoelectronic devices |
JP2002246185A (ja) * | 2001-02-22 | 2002-08-30 | Victor Co Of Japan Ltd | 有機エレクトロルミネセンス素子 |
US6624568B2 (en) | 2001-03-28 | 2003-09-23 | Universal Display Corporation | Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices |
US7187119B2 (en) | 2001-03-29 | 2007-03-06 | Universal Display Corporation | Methods and structures for reducing lateral diffusion through cooperative barrier layers |
US6664137B2 (en) | 2001-03-29 | 2003-12-16 | Universal Display Corporation | Methods and structures for reducing lateral diffusion through cooperative barrier layers |
US7683534B2 (en) | 2001-03-29 | 2010-03-23 | Universal Display Corporation | Methods and structures for reducing lateral diffusion through cooperative barrier layers |
US9240564B2 (en) | 2001-08-31 | 2016-01-19 | Sony Corporation | Organic electroluminescence device and method of manufacturing the same |
US9722201B2 (en) | 2001-08-31 | 2017-08-01 | Sony Corporation | Organic electroluminescence device and method of manufacturing the same |
EP1422977A4 (fr) * | 2001-08-31 | 2009-06-17 | Sony Corp | Dispositif electroluminescent organique et son procede de fabrication |
US8937428B2 (en) | 2001-08-31 | 2015-01-20 | Sony Corporation | Organic electroluminescence device with silver alloy anode and method of manufacturing the same |
US10020460B2 (en) | 2001-08-31 | 2018-07-10 | Sony Corporation | Electroluminescence device and display device |
US10522781B2 (en) | 2001-08-31 | 2019-12-31 | Sony Corporation | Electroluminescence device and display device |
EP1422977A1 (fr) * | 2001-08-31 | 2004-05-26 | Sony Corporation | Dispositif electroluminescent organique et son procede de fabrication |
US9099678B2 (en) | 2001-10-30 | 2015-08-04 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US8790938B2 (en) | 2001-10-30 | 2014-07-29 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US9406903B2 (en) | 2001-10-30 | 2016-08-02 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US9818978B2 (en) | 2001-10-30 | 2017-11-14 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
WO2003055275A1 (fr) * | 2001-12-21 | 2003-07-03 | International Business Machines Corporation | Structure d'electrode pour dispositifs electroniques et optoelectroniques |
WO2004112441A1 (fr) * | 2002-03-18 | 2004-12-23 | Fuji Electric Holdings Co., Ltd. | Del organique et panneau de dels organiques |
GB2417827B (en) * | 2002-03-18 | 2007-01-10 | Fuji Electric Holdings Co | Organic el device and organic el panel |
GB2417827A (en) * | 2002-03-18 | 2006-03-08 | Fuji Electric Holdings Co | Organic el device and organic el panel |
US8021204B2 (en) | 2002-04-23 | 2011-09-20 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing the same |
US8519619B2 (en) | 2002-04-23 | 2013-08-27 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing the same |
US9978811B2 (en) | 2002-04-23 | 2018-05-22 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing the same |
US9287330B2 (en) | 2002-04-23 | 2016-03-15 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing the same |
US8803418B2 (en) | 2002-04-26 | 2014-08-12 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method of the same |
JP2003317971A (ja) * | 2002-04-26 | 2003-11-07 | Semiconductor Energy Lab Co Ltd | 発光装置およびその作製方法 |
US9853098B2 (en) | 2002-04-26 | 2017-12-26 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method of the same |
US9412804B2 (en) | 2002-04-26 | 2016-08-09 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method of the same |
US8044580B2 (en) | 2002-04-26 | 2011-10-25 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method of the same |
US8497628B2 (en) | 2002-04-26 | 2013-07-30 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method of the same |
US7190111B2 (en) | 2002-06-22 | 2007-03-13 | Samsung Sdi Co., Ltd. | Organic electroluminescent device employing multi-layered anode |
KR100477746B1 (ko) * | 2002-06-22 | 2005-03-18 | 삼성에스디아이 주식회사 | 다층 구조의 애노드를 채용한 유기 전계 발광 소자 |
US6965197B2 (en) | 2002-10-01 | 2005-11-15 | Eastman Kodak Company | Organic light-emitting device having enhanced light extraction efficiency |
EP1406474A1 (fr) * | 2002-10-01 | 2004-04-07 | Eastman Kodak Company | Dispositif electroluminescent organique avec une extraction de lumière ameliorée |
JP2006503443A (ja) * | 2002-12-11 | 2006-01-26 | エルジー・ケム・リミテッド | 低い仕事関数の陽極を有する電界発光素子 |
US7029764B2 (en) * | 2003-01-24 | 2006-04-18 | Ritdisplay Corporation | Organic electroluminescent material and electroluminescent device by using the same |
CN1685772B (zh) * | 2003-06-13 | 2011-05-11 | 富士电机控股株式会社 | 有机el元件及有机el面板 |
US7615921B2 (en) | 2003-06-13 | 2009-11-10 | Fuji Electric Holdings Co., Ltd. | Organic EL device and organic EL panel |
KR100764673B1 (ko) | 2005-02-25 | 2007-10-08 | 미쓰비시덴키 가부시키가이샤 | 유기 전계발광형 표시장치 |
US9246056B2 (en) | 2005-03-25 | 2016-01-26 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US8362688B2 (en) | 2005-03-25 | 2013-01-29 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
KR100761080B1 (ko) * | 2005-12-21 | 2007-09-21 | 삼성에스디아이 주식회사 | 유기전계발광소자 및 그 제조방법 |
US8680693B2 (en) | 2006-01-18 | 2014-03-25 | Lg Chem. Ltd. | OLED having stacked organic light-emitting units |
KR100769586B1 (ko) | 2006-04-14 | 2007-10-23 | 한양대학교 산학협력단 | 유기 el 소자 및 그 제조 방법 |
KR100855487B1 (ko) * | 2006-09-12 | 2008-09-01 | 엘지디스플레이 주식회사 | 전계발광소자 |
GB2448175A (en) * | 2007-04-04 | 2008-10-08 | Cambridge Display Tech Ltd | Organic semiconductor devices with oxidized electrodes |
GB2448175B (en) * | 2007-04-04 | 2009-07-22 | Cambridge Display Tech Ltd | Thin film transistor |
US8642379B2 (en) | 2007-04-04 | 2014-02-04 | Cambridge Display Technology Limited | Thin film transistor |
EP2259362A1 (fr) * | 2009-06-01 | 2010-12-08 | Samsung Mobile Display Co., Ltd. | Diode électroluminescente organique |
CN101901878A (zh) * | 2009-06-01 | 2010-12-01 | 三星移动显示器株式会社 | 有机发光二极管 |
US8575598B2 (en) | 2009-10-09 | 2013-11-05 | Samsung Display Co., Ltd. | Organic light emitting diode display |
CN105576141A (zh) * | 2013-01-11 | 2016-05-11 | 林振坤 | 一种有机电致发光器件 |
CN103928628A (zh) * | 2013-01-11 | 2014-07-16 | 海洋王照明科技股份有限公司 | 一种修饰氧化铟锡阳极及其制备方法和有机电致发光器件 |
CN105576141B (zh) * | 2013-01-11 | 2017-08-25 | 姜玉兰 | 一种有机电致发光器件 |
JP2013165068A (ja) * | 2013-04-15 | 2013-08-22 | Sony Corp | 上面発光型発光素子及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2001507167A (ja) | 2001-05-29 |
JP3488474B2 (ja) | 2004-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6501217B2 (en) | Anode modification for organic light emitting diodes | |
JP3488474B2 (ja) | 有機発光ダイオード用のアノード改質 | |
JP3327558B2 (ja) | 有機エレクトロルミネセント・デバイスを改良するために使用される有機/無機合金 | |
JP3254221B2 (ja) | 有機エレクトロルミネセンス・デバイス用の注入層または接触電極あるいはその両方としての非縮退広バンドギャップ半導体 | |
US6432741B1 (en) | Organic opto-electronic devices and method for making the same | |
KR101003267B1 (ko) | 유기발광소자 및 이의 제조 방법 | |
JP5182775B2 (ja) | トランジスタ素子及びその製造方法、電子デバイス、発光素子並びにディスプレイ | |
JP2019061964A (ja) | 有機エレクトロルミネッセンス素子の作製方法、及びエレクトロニクスデバイスの作製方法 | |
KR100781620B1 (ko) | 전계 발광 장치 및 전계 발광 장치의 형성 방법 | |
JP4615083B2 (ja) | 二重絶縁層を有する有機電界発光素子 | |
JP2001093671A6 (ja) | 二重絶縁層を有する有機電界発光素子 | |
WO1998007202A1 (fr) | Cathodes en nitrure de gallium pour dispositifs electroluminescents et ecrans de visualisation | |
JP5282045B2 (ja) | トランジスタ素子、電子デバイス、発光素子及びディスプレイ | |
WO1999031741A1 (fr) | Contacts en composes metalliques pour des composants organiques et leur procede de fabrication | |
JP2003007465A (ja) | 有機発光アレイ又はディスプレイ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1999 539081 Kind code of ref document: A Format of ref document f/p: F |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09381648 Country of ref document: US |