WO1999038218A1 - Element luminescent a semiconducteur et procede de fabrication - Google Patents

Element luminescent a semiconducteur et procede de fabrication Download PDF

Info

Publication number
WO1999038218A1
WO1999038218A1 PCT/JP1998/000251 JP9800251W WO9938218A1 WO 1999038218 A1 WO1999038218 A1 WO 1999038218A1 JP 9800251 W JP9800251 W JP 9800251W WO 9938218 A1 WO9938218 A1 WO 9938218A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
semiconductor
emitting device
substrate
Prior art date
Application number
PCT/JP1998/000251
Other languages
English (en)
French (fr)
Inventor
Masayuki Sonobe
Shunji Nakata
Tsuyoshi Tsutsui
Norikazu Itoh
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to JP53813899A priority Critical patent/JP3602856B2/ja
Priority to US09/381,285 priority patent/US6191437B1/en
Priority to DE19882202T priority patent/DE19882202B4/de
Priority to KR1019997008172A priority patent/KR100542870B1/ko
Priority to PCT/JP1998/000251 priority patent/WO1999038218A1/ja
Publication of WO1999038218A1 publication Critical patent/WO1999038218A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Definitions

  • a semiconductor light emitting device using a gallium nitride compound semiconductor that emits blue (from ultraviolet to yellow) light has a structure as shown in FIG. That is, a low-temperature buffer layer 22 made of, for example, GaN on the sapphire substrate 21, an n-type layer (cladding layer) 23 on which n-type GaN is epitaxially grown at a high temperature, and a band gap energy.
  • the n-type layer 23 may use an A 1 GaN-based compound semiconductor layer on the active layer 23 side in order to improve the effect of confining the carrier.
  • conventional blue semiconductor light-emitting devices using a gallium nitride-based compound semiconductor are composed of a GaN, an InGaN, and an A1 GaN system that form a light-emitting layer on a sapphire substrate. It is formed by stacking gallium nitride-based compound semiconductors such as these.
  • the lattice constant of the sapphire substrate differs from that of the gallium nitride compound semiconductor by about 16%, and a gallium nitride compound semiconductor layer having excellent crystallinity cannot be obtained.
  • a buffer such as GaN or A1N formed at a low temperature between the single crystal layer of the gallium nitride compound semiconductor forming the light emitting layer and the substrate. It has been practiced to improve the crystallinity of a gallium nitride-based compound semiconductor layer by interposing a layer.
  • the crystallinity of the light emitting layer has been improved, and the blue semiconductor light emitting device has been put to practical use.
  • the crystal of the gallium nitride compound semiconductor layer has The defect problem has not been completely solved, and the leakage current has increased, making it impossible to improve the brightness sufficiently.Also, slight changes in the manufacturing process have resulted in insufficient brightness and increased yield. There is a problem not to do.
  • An object of the present invention is to solve the above-mentioned problems, and reduce a crystal defect based on a difference in lattice constant in a semiconductor light emitting device in which a gallium nitride-based compound semiconductor layer is stacked, thereby reducing a leakage current,
  • An object of the present invention is to provide a semiconductor light emitting device having excellent luminous efficiency.
  • Another object of the present invention is to provide a method for manufacturing a semiconductor light emitting device that can reduce crystal defects based on a difference in lattice constant when laminating gallium nitride-based compound semiconductor layers. Disclosure of the invention
  • a semiconductor light emitting device includes a substrate, a buffer layer formed of a gallium nitride compound semiconductor provided on the substrate, and an n-type layer and a p-type layer for forming a light emitting layer on the buffer layer.
  • a gallium nitride-based compound semiconductor is a compound of a group III element Ga and a group V element N or a part of the group III element G a with other group III elements such as A 1 and In. Substituted and part of N of group Z or V element is P,
  • Compound semiconductor containing the oxygen for example, G ai ⁇ - x ⁇ - y A 1 x I n v ON 1 - (0 ⁇ x ⁇ l, 0 ⁇ y ⁇ l, 0 ⁇ z ⁇ 1) is constituted by yz Upper z
  • the compound semiconductor containing oxygen includes ⁇ -type impurities and Z or P-type impurities may be contained.
  • the n-type impurity means at least one kind of Si, Se, Te, etc.
  • the p-type impurity means at least one kind of Mg, Zn, Be, etc. .
  • the compound semiconductor containing oxygen is used for the buffer layer, used for at least the semiconductor layer on the buffer layer side of the light emitting layer forming portion, or an n-type layer forming the light emitting layer forming portion. And an active layer sandwiched between p-type layers, or two or more layers such as the buffer layer and a semiconductor layer of a light emitting layer forming portion in contact with the buffer layer.
  • the substrate is made of a sapphire substrate
  • the buffer layer is composed of G a ON, (0 ⁇ z ⁇ 1)
  • the light emitting layer forming part is an n-type semiconductor layer.
  • a double heterojunction structure in which an active layer is sandwiched by p-type semiconductor layers, and at least the semiconductor layer in contact with the buffer layer in the light-emitting layer forming portion is a single layer of G a0 N, 7 (0 ⁇ z ⁇ 1). It is composed of a crystal layer.
  • the buffer layer may contain at least one selected from the group consisting of Si, Se, Te, Mg, Zn, and Be.
  • a gallium nitride compound semiconductor including an n-type layer and a p-type layer is laminated on a substrate regardless of the presence or absence of a buffer layer or its material.
  • the light emitting layer forming portion is provided by the method, at least one of the semiconductor layers constituting the light emitting layer forming portion is formed of a compound semiconductor layer containing oxygen in a gallium nitride-based compound. Crystal defects are reduced, and the luminance can be improved.
  • a buffer layer made of A 1 N may be provided between the substrate and the light emitting layer forming portion, or a buffer layer made of A 10 (0 ⁇ u ⁇ 1) may be provided.
  • Further semiconductor light-emitting device of the present invention includes a substrate and, provided on the substrate A L_ ⁇ u N 1 (0 ⁇ u ⁇ 1) and a buffer layer made of, n-type to form a light emitting layer on the buffer layer And a light emitting layer forming portion on which a gallium nitride compound semiconductor including a layer and a p-type layer is stacked.
  • a part of A1 of the buffer layer may be replaced with In, and the buffer layer may be at least selected from the group consisting of Si, Se, Te, Mg, Zn, and Be. One type may be contained.
  • the substrate is formed of a sapphire substrate
  • the light emitting layer forming section is formed of a double hetero junction structure in which an active layer is sandwiched between an n-type layer and a p-type layer.
  • the manufacturing method of the semiconductor light emitting device of the present invention is as follows: metal organic chemical vapor deposition (MOVP E method: Metal Organic Vapor Phased Epitaxy); Alternatively, a buffer layer made of a gallium nitride compound semiconductor is provided at a low temperature by a molecular beam epitaxy (MBE method), and a light emitting layer forming part made of a gallium nitride compound semiconductor is further provided.
  • MBE method molecular beam epitaxy
  • a method of manufacturing a semiconductor light emitting device in which semiconductor layers constituting the semiconductor layer are sequentially laminated at a high temperature, wherein at least one semiconductor layer of the buffer layer and Z or the semiconductor layer constituting the light emitting layer forming portion is grown. The semiconductor layer is grown while supplying or supplying an oxidation source.
  • oxygen ozone
  • oxygen, ozone means those capable of supplying oxygen such as N 2 0, H 2 0, can liberate oxygen oxides the growth furnace such Chiyanba made of quartz glass The meaning is also included.
  • MOVP E HVP E or MBE
  • MOVP E HVP E
  • MBE MBE
  • a buffer layer made of (0 ⁇ u ⁇ 1) is provided, and a semiconductor layer constituting a light emitting layer forming portion made of a gallium nitride-based compound semiconductor is epitaxially grown at a high temperature sequentially.
  • an oxidizing source is supplied or grown while supplying the oxidizing source, and G a A 1 In 0 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) , ⁇ -x-yxyz 1-z
  • a semiconductor layer consisting of 0 ⁇ z ⁇ 1) may be grown.
  • the supply of the oxidation source may be performed by introducing the oxidation source into a growth furnace for growing the semiconductor layer, or oxygen of an oxide in the growth furnace for growing the semiconductor layer may be used.
  • FIG. 1 is a sectional explanatory view of one embodiment of the semiconductor light emitting device of the present invention.
  • Fig. 2 shows the configuration of Fig. 1 with the amount of z of G a 0 N 1 in the n-type layer changed.
  • FIG. 7 is a diagram showing a change in the crystal defect density of the n-type layer and a change in luminance when the light-emitting element is used.
  • Fig. 3 shows the configuration of Fig. 1 with the amount of z of G a 0 in the n-type layer changed.
  • FIG. 7 is a diagram illustrating a leakage current at the time, and a voltage when a current value becomes a constant value when the voltage is increased.
  • FIG. 4 is a diagram showing the crystal defect density of the n-type layer when G a 0 N 1 is used for the buffer layer and the amount of z is changed, and the change in luminance when the light emitting element is used.
  • FIG. 5 shows that G a 0 is used for the buffer layer
  • FIG. 7 is a diagram illustrating a leakage current when the voltage increases, and a voltage when a current value becomes constant when the voltage is increased.
  • FIG. 9 is a diagram showing a voltage-current characteristic of a rising portion when the operation starts.
  • FIG. 7 is a perspective explanatory view of an example of a conventional semiconductor light emitting device using a gallium nitride compound semiconductor.
  • the semiconductor layer laminated on the sapphire substrate 1 has a low-temperature buffer layer 2 made of, for example, G a N at a low temperature of about 500 ° C. m, and an n-type layer (cladding layer) 3 composed of n-type GaN 1 at a high temperature of about 1000 ° C.
  • In-doped InGaN-based compound semiconductor In the case of emitting blue light, the proportion of In is 0.3 to 0.5 and the proportion of Ga is 0.7 to 0.5
  • the active layer 4 made of, for example, Si and Zn can be doped to emit impurities by setting the ratio of In to about 0.05, is 0.02 to 0.3.
  • the p-type layers 5 in which the p-type A 1 G a N-based compound semiconductor layer 5 a and the G a N layer 5 b are stacked in a thickness of about 0.05 to 0.5, respectively, are sequentially grown, respectively.
  • the light emitting layer forming portion 10 is laminated.
  • n-side electrode 9 is formed on the n-type layer 3 which is exposed by removing a part of the laminated semiconductor layer 35.
  • the ratio of 0 of G a ON, of the above-mentioned n-type layer 3, that is, the range of z is preferably 0.2 or more, as described later, but a remarkable effect is exhibited even at 0.1, and it may be slight, 0 ⁇ z ⁇ 1. in the range, selected is J due relationship to another layer 0
  • the p-type layer 5 is formed of a multilayer of the GaN layer 5b and the AlGaN-based compound semiconductor layer 5a. From the viewpoint, it is preferable that the layer containing A1 be provided on the active layer 4 side, and thus only the GaN layer may be used. Also, the n-type layer 3 may be provided with an A1GaN-based compound semiconductor layer to form a multi-layer, and these may be formed of another gallium nitride-based compound semiconductor layer. Further, the buffer layer 2 is also formed of a GaN layer, but is formed of another semiconductor layer such as an A 1 N layer, an A 1 GaN compound semiconductor layer, and a layer to which In is added. It may be.
  • the present inventors have conducted intensive studies to improve the luminance by minimizing the lattice defects generated in the gallium nitride compound semiconductor layer constituting the light emitting layer forming portion laminated on the sapphire substrate as much as possible.
  • Fig. 1 for example, as shown in Fig. 1, by incorporating oxygen into the gallium nitride-based compound semiconductor layer laminated on the substrate, the crystal defect density is greatly reduced and the brightness is greatly improved. That's what I found.
  • the crystal defect density and luminance were greatly improved only by containing oxygen at a ratio of about 0.1, and the value of z was increased.
  • the crystal defect density improved by about two orders of magnitude, and the brightness increased more than three times.
  • A indicates the crystal defect density
  • B indicates the luminance.
  • the thickness of the n-type layer 3 is set to 5
  • the other buffer layer 2 is about 0.03 ⁇ m in GaN
  • the active layer 4 is in Si and Zn doped In 0.05 G a 0 o 5 N.
  • the crystal defect density is determined by measuring the number of pits, which are pits formed by etching, by etching the surface of the n-type layer 3 in a state where the n-type layer 3 is laminated and the semiconductor layer such as the next active layer is not laminated.
  • the luminance was measured by the etch-pit method described below. The luminance was measured in a state in which an n-type layer 3 was laminated, and then an active layer 4 and a p-type layer 5 were successively laminated thereon to form a semiconductor light emitting device. The results are expressed as relative luminance, where the luminance when a conventional n-type layer is composed of G a N is 1.
  • the phenomenon that the number of crystal defects is small was confirmed by measuring a leak current as a semiconductor light emitting device. That is, the voltage (V) and current (logl (logarithmic scale)) characteristics of the semiconductor light emitting device generally show the characteristics shown in C of FIG. The region where the current does not saturate and increase even when the voltage of the V-log I characteristic is increased is almost constant due to the resistance of the contact portion of the electrode. As shown by D, the rise is faster. Therefore, by measuring the voltages V and V 0 at a constant current value (for example, 1 A) logl ⁇ , it can be seen that the leak current increases as the curve D shows a smaller voltage.
  • V voltage
  • logl logarithmic scale
  • the film grown thereon also becomes a flat film with few defects, and the active layer and the P-type layer also have a flat film with few defects.
  • a high-brightness semiconductor light-emitting device can be obtained. Therefore, when oxygen is added to only one layer, it is presumed that it is preferable to add oxygen to a layer as low as possible (closer to the substrate).
  • FIG. 4 Examine the luminance density and the light emitting element of the crystal defects when using G a 0 7 in this buffer layer 2, and the results are shown in FIG.
  • A indicates the crystal defect density
  • B indicates the luminance
  • the crystal defect density was determined by etching the n-type layer 3 on the buffer layer 2 in the same manner as described above, with the epitaxial growth.
  • the luminance was examined by a relative value based on the luminance when GaN was used for the buffer layer, with the light-emitting element being used in the same manner as described above, using the etch-pit method for examining the number of bits.
  • the voltage at a constant current indicating the leakage current when the light emitting element is used
  • Figure 5 shows the relationship.
  • the ⁇ -type layer 3 is monocrystallized.
  • the single crystallized layer contains oxygen and becomes a dense layer with few crystal defects, and the single crystal layer formed thereon has the same structure as the layer with few crystal defects on the surface of the buffer layer. It is considered that a semiconductor layer with few crystal defects can be obtained because the layers are stacked.
  • the use of a gallium nitride-based compound semiconductor containing oxygen for the buffer layer allows the formation of crystal defects even if the semiconductor layer laminated thereon is a gallium nitride-based compound semiconductor layer containing no oxygen.
  • a semiconductor light-emitting element having less luminance and high luminance can be obtained.
  • the present inventor further proposes that when A 1 ⁇ ⁇ ⁇ is used as a buffer layer,
  • a 1 O n N 1 n moistened oxygen also regulating the crystallinity in the case of forming a composition of (0 ⁇ u ⁇ 1)
  • the light-emitting layer forming portion 10 adds G a 0 z N 11 1 to the buffer layer 2 described above.
  • the buffer layer 2 was formed at a low temperature of about 500 ° C. to have a thickness of about 0.03 m with the same configuration as the case where z was used. In this case as well, the aforementioned G a N 1 ,
  • the proportion of containing oxygen that is, the value of u is about 0.2
  • the defect density is reduced by about two digits
  • the luminance is significantly increased
  • other values of u it is considered that a similar effect can be obtained.
  • growth A 1 0 1-u in the amorphous not become a single crystal state when the formation It is thought that it is difficult to obtain a layer having a small number of crystal defects with a dense film like a single crystal layer, but at least the surface of the buffer layer 2 becomes single crystal during the next high temperature growth of the n-type layer 3.
  • the thickness of the buffer layer 2 is preferably set to about 0.01 to 0.2 ⁇ m in the same manner as described above, from the viewpoint of providing a buffer function.
  • the surface of the sapphire substrate is nitrided to A 1 n (ON) 3 .
  • a method is known in which a low-temperature buffer layer made of GaN is formed on a substrate, and a gallium nitride-based compound semiconductor is formed thereon.
  • the buffer layer is G a N layer grown at a low temperature, even planarization of the sapphire substrate surface
  • a dense film is not formed in the same manner as a GaN layer is formed directly on a sapphire substrate, and the film is grown thereon at a high temperature as in the present invention. It does not act to make the gallium nitride-based compound semiconductor layer a dense film.
  • a reactive gas such as trimethyl gallium (TMG) or ammonia (NH 3 ) is supplied together with the carrier gas H 2 , and first, for example, at 400 to 600 ° C. on the substrate 1 made of, for example, sapphire.
  • a low-temperature buffer layer 2 composed of a GaN layer is formed at a low temperature of about 0.01 to 0.2 m.
  • Ni and Au are laminated by vacuum deposition or the like and alloyed by sintering to form a current diffusion layer 7 of about 2 to 100 nm.
  • a resist film is provided on the surface, patterned, and reactive ion etching using chlorine gas or the like is performed to remove a part of the stacked semiconductor layers to expose the n-type layer 3, for example, by a lift-off method.
  • Ti and Au are laminated so as to be electrically connected to the p-type layer 5 to form a p-side electrode 8 having a laminated structure of both metals.
  • T i and A 1 are respectively laminated and synchronized so as to be electrically connected to the n-type layer 3 to form an n-side electrode 9 made of an alloy layer of both metals.
  • the semiconductor light emitting device shown in FIG. 1 is obtained.
  • the semiconductor layer is grown by the MO VPE method, but the semiconductor layer can be similarly grown by the HVPE method or the MBE method.
  • o 2 was used as an oxidation source, it is not limited to this, and any material that can be oxidized may be used. Therefore, it is also possible to use oxygen released from oxides such as N 20 , H 20 or quartz glass in a growth furnace, or oxygen released by introducing a reducing agent.
  • the GaN layer was used as the oxygen-containing gallium nitride compound semiconductor layer.
  • the A 1 GaN compound semiconductor layer and the In GaN Similar results were obtained for mixed crystal gallium nitride compound semiconductors to which other Group III elements were added, such as compound semiconductor layers.
  • the p-type layer becomes a lower layer
  • the shaped layer contains oxygen.
  • the present invention can be applied to a compound semiconductor layer containing Ga and N.
  • G a N, G a 0 N, and A 10 N are also possible.
  • the buffer layer is effective even with other compositions such as A 1 N. appear. Also, even when A 10 N, is used as the buffer layer, A
  • the present invention is not limited to the sapphire substrate, and other semiconductor substrates such as a SiC substrate, a Si substrate, and a GaAs substrate may also use a gallium nitride compound semiconductor.
  • the present invention can be applied to the case of stacking.
  • the active layer is formed by Si and Zn doping, but may be formed by a single chip.
  • the example is a double hetero junction structure in which an active layer is sandwiched between an n-type layer and a p-type layer. The same is true.
  • the present invention even when a gallium nitride-based compound semiconductor layer is grown on a substrate having a different lattice constant, at least one of the gallium nitride-based compound semiconductor layers and the G a N
  • the crystallinity of the semiconductor layer in the light emitting layer forming portion is greatly improved by containing oxygen in the system or A 1 N compound semiconductor.
  • the luminance is increased, and the variation in manufacturing is reduced, and a high-intensity and inexpensive blue-based semiconductor light-emitting device can be obtained.
  • blue (B) -based light having high luminance can be obtained, and can be used as various light sources for blue, and can be used for other red (R) and green (G) light sources.
  • R red
  • G green

Description

明糸田 » 半導体発光素子およびその製法 技術分野
本発明は、 基板上にチッ化ガリゥム系化合物半導体層を積層して発光 ダイォードゃ半導体レーザを形成する半導体発光素子に関する。 さらに 詳しくは、 基板とチッ化ガリウム系化合物半導体との間の結晶格子のズ レの影響を小さく し、 発光特性を向上させ得る半導体発光素子に関する。 背景技術
従来、 たとえば青色系 (紫外線から黄色) の光を発光するチッ化ガリ ゥム系化合物半導体を用いた半導体発光素子は、 図 7に示されるような 構造になっている。 すなわち、 サフアイァ基板 2 1上にたとえば G a N からなる低温バッファ層 2 2と、 高温で n形の G a Nがェピタキシャル 成長された n形層 (クラッ ド層) 2 3と、 バンドギヤップエネルギーが クラッ ド層のそれよりも小さく発光波長を定める材料、 たとえば I n G a N系 ( I nと G aの比率が種々変わり得ることを意味する、 以下同じ) 化合物半導体からなる活性層 2 4と、 p形の A 1 G a N系 (A 1 と G a の比率が種々変わり得ることを意味する、 以下同じ) 化合物半導体層 2 5 aおよび G a N層 2 5 bからなる p形層 (クラッ ド層) 2 5とからな り、 その表面に p側電極 2 8が設けられ、 積層された半導体層の一部が エッチングされて露出する n形層 2 3の表面に n側電極 2 9が設けられ ることにより形成されている。 なお、 n形層 2 3も p形層 2 5と同様に、 キヤリァの閉じ込め効果を向上させるため、 活性層 2 3側に A 1 G a N 系化合物半導体層が用いられることもある。 前述のように、 従来のチッ化ガリゥム系化合物半導体を用いた青色系 の半導体発光素子は、 サファイア基板上に発光層を形成する G a N、 I n G a N系、 A 1 G a N系などのチッ化ガリゥム系化合物半導体が積層 されることにより形成されている。 しかし、 サファイア基板とチッ化ガ リウム系化合物半導体との間では、 その格子定数が 1 6 %程度も異なつ ており、 結晶性の優れたチッ化ガリゥム系化合物半導体層が得られない。 この問題を解決するために、 前述のように、 発光層を形成するチッ化ガ リウム系化合物半導体の単結晶層と基板との間に低温で成膜した G a N や A 1 Nなどのバッファ層を介在させることにより、 チッ化ガリゥム系 化合物半導体層の結晶性を向上させることが行われている。
前述の低温で成膜するバッファ層を介在させることにより、 発光層の 結晶性が改善されて青色系の半導体発光素子の実用化の段階に至ってい るが、 チッ化ガリゥム系化合物半導体層の結晶欠陥の問題は完全には解 決されておらず、 リーク電流が大きくなって充分に輝度を向上させるこ とができなかったり、 製造工程の僅かな変化により輝度が充分でなく歩 留りが向上しないという問題がある。
本発明の目的は、 前述の問題を解決し、 チッ化ガリウム系化合物半導 体層が積層される半導体発光素子において、 格子定数の差に基づく結晶 欠陥を少なく して、 リーク電流を小さく し、 発光効率の優れた半導体発 光素子を提供することにある。
本発明の他の目的は、 チッ化ガリウム系化合物半導体層を積層する際 に、 格子定数の差に基づく結晶欠陥を少なくすることができる半導体発 光素子の製法を提供することにある。 発明の開示
本発明者は、 チッ化ガリゥム系化合物半導体層からなる発光層形成部 を積層する際に、 半導体層の結晶欠陥を少なく してリーク電流を減らし、 輝度を向上させるため、 鋭意検討を重ねた結果、 発光層形成部を構成す るチッ化ガリゥム系化合物半導体層の少なく とも 1層に酸素を含有させ ることにより、 結晶欠陥密度を減少させることができ、 輝度を向上させ ることができることを見出した。 1層の半導体層に酸素を含有させる場 合、 できるだけ下層側に設けられることにより、 その上に設けられる半 導体層の結晶欠陥が少なくなつて輝度が向上し、 また、 基板と発光層形 成部との間にチッ化ガリゥム系化合物半導体からなるバッファ層が介在 される場合、 そのバッファ層に酸素が含まれてもその上に積層される半 導体層の結晶欠陥が改善されることを見出した。 さらに、 バッファ層が A 1 Nからなる場合に、 その A 1 Nに酸素を含ませても結晶性の改善が 見られ、 複数層に酸素を含有させることにより一層の改善が得られるこ とを見出した。
本発明による半導体発光素子は、 基板と、 該基板上に設けられるチッ 化ガリウム系化合物半導体からなるバッファ層と、 該バッファ層上に発 光層を形成すべく n形層および p形層を含むチッ化ガリゥム系化合物半 導体が積層される発光層形成部とを有し、 前記バッファ層または前記発 光層形成部を構成する各半導体層の少なく とも 1層がチッ化ガリウム系 化合物に酸素を含有する化合物半導体で形成されている。
ここにチッ化ガリゥム系化合物半導体とは、 ΠΙ 族元素の G aと V族 元素の Nとの化合物または III 族元素の G aの一部が A 1、 I nなどの 他の III 族元素と置換したものおよび Zまたは V族元素の Nの一部が P、
A sなどの他の V族元素と置換した化合物からなる半導体をいう。
前記酸素を含有する化合物半導体は、 たとえば G a i丄- x γ- y A 1 x I n v O N 1 - ( 0≤x < l、 0≤y < l、 0 < z < 1 ) により構成され y z 上 z
る。 この酸素を含有する化合物半導体には、 η形不純物および Zまたは P形不純物が含有されていてもよい。 ここに、 n形不純物とは、 S i、 S e、 T eなどの少なく とも 1種を意味し、 p形不純物とは、 M g、 Z n、 B eなどの少なく とも 1種を意味する。
また、 前記酸素を含有する化合物半導体は、 前記バッファ層に用いら れたり、 前記発光層形成部の少なく ともバッファ層側の半導体層に用い られたり、 前記発光層形成部を構成する n形層および p形層により挟持 される活性層に用いられたり、 前記バッファ層および該バッファ層に接 する発光層形成部の半導体層などの 2層以上に用いられる。
さらに具体的には、 前記基板がサファイア基板からなり、 前記バッフ ァ層が G a O N, (0 < z < 1) により構成され、 さらに具体的に は、 前記発光層形成部が n形半導体層および p形半導体層により活性層 が挟持されるダブルへテロ接合構造からなり、 該発光層形成部の少なく とも前記バッファ層に接する半導体層が G a 0 N, 7 (0 < z < 1) 単結晶層により構成される。
前記バッファ層は、 S i、 S e、 T e、 Mg、 Z nおよび B eよりな る群れから選ばれた少なく とも 1種を含有することができる。
また、 本発明の半導体発光素子は、 バッファ層の有無またはその材料 に拘らず、 基板上に発光層を形成すべく n形層および p形層を含むチッ 化ガリゥム系化合物半導体が積層されることにより発光層形成部が設け られる場合に、 前記発光層形成部を構成する各半導体層の少なく とも 1 層がチッ化ガリウム系化合物に酸素を含有する化合物半導体層で構成さ れることにより、 半導体層の結晶欠陥が少なくなり、 輝度を向上させる ことができる。
前記基板と前記発光層形成部との間に A 1 Nからなるバッファ層が設 けられたり、 A 10 (0 < u < 1) からなるバッファ層が設け られてもよい。 さらに本発明の半導体発光素子は、 基板と、 該基板上に設けられる A l〇u N1 (0 < u < 1) からなるバッファ層と、 該バッファ層上に 発光層を形成すべく n形層および p形層を含むチッ化ガリゥム系化合物 半導体が積層される発光層形成部とを有する構造にすることができる。 前記バッファ層の A 1の一部が I nと置換されてもよく、 前記バッフ ァ層が、 S i、 S e、 T e、 Mg、 Z nおよび B eよりなる群れから選 ばれた少なく とも 1種を含有していてもよい。
前記発光層形成部を構成する半導体層の少なく とも 1層が G a 1-χ_γ A 1 I n 0 N (0≤x< l、 0≤y< l、 0< z < l) から なる場合には、 さらに輝度が向上する。 さらに具体的には、 前記基板が サファイア基板からなり、 前記発光層形成部が活性層を n形層および p 形層により挟持するダブルへテロ接合構造により構成される。
本発明の半導体発光素子の製法は、 基板上に有機金属化学気相成長法 (MOVP E法: Metal Organic Vapor Phased Epitaxy) 、 ノヽィ ドライ ド気相成長法 (HVP E法: Hydride Vapor Phased Epitaxy) または分 子線ェピタキシャル成長法 (MB E法: Molecular Beam Epitaxy) によ り、 低温でチッ化ガリゥム系化合物半導体からなるバッファ層を設け、 さらにチッ化ガリウム系化合物半導体からなる発光層形成部を構成する 半導体層を高温で順次積層する半導体発光素子の製法であつて、 前記バ ッファ層および Zまたは前記発光層形成部を構成する半導体層の少なく とも 1層の半導体層を成長する際に、 酸化源を供給し、 または供給しな がら該半導体層の成長をすることを特徴とする。
ここに酸化源とは、 酸素、 オゾン、 N2 0、 H2 0などの酸素を供給 し得るものを意味し、 石英ガラスからなるチヤンバなどの成長炉内の酸 化物の酸素を遊離し得るものも含む意味である。
さらに別の製法は、 基板上に MOVP E法、 HVP E法または MBE 法により、 低温で酸化源を供給し、 または供給しながら A 1 0 ,, N 1 ,,
11 丄ー U
( 0 < u < 1 ) からなるバッファ層を設け、 さらにチッ化ガリウム系化 合物半導体からなる発光層形成部を構成する半導体層を高温で順次ェピ タキシャル成長することを特徴とする。 この場合、 前記発光層形成部の 少なくとも 1層を形成する際に酸化源を供給し、 または供給しながら成 長し、 G a A 1 I n 0 ( 0≤ x < 1、 0≤ yく 1、 丄- x - y x y z 1 - z
0 < z < 1 ) からなる半導体層を成長してもよい。
前記酸化源の供給は、 前記半導体層を成長する成長炉内への酸化源の 導入により行ってもよく、 また、 前記半導体層を成長する成長炉内の酸 化物の酸素を用いてもよい。 図面の簡単な説明
図 1は、 本発明の半導体発光素子の一実施形態の断面説明図である。 図 2は、 図 1の構成で n形層の G a 0 N 1 の zの量を変化させた
Z 丄- Z
ときの n形層の結晶欠陥密度および発光素子としたときの輝度の変化を 示す図である。
図 3は、 図 1の構成で n形層の G a 0 の zの量を変化させた
Z 丄ー Z
ときのリーク電流を示す、 電圧を増加させたときに電流値が一定の値に なるときの電圧を示す図である。
図 4は、 バッファ層に G a 0 N 1 を用い、 その zの量を変化させ たときの n形層の結晶欠陥密度および発光素子としたときの輝度の変化 を示す図である。
図 5は、 バッファ層に G a 0 を用い、 その zの量を変化させ z 1 - z
たときのリーク電流を示す、 電圧を増加させたときに電流値が一定の値 になるときの電圧を示す図である。
図 6は、 半導体発光素子のリーク電流を説明するための、 電圧を印加 し始めたときの立上り部分の電圧一電流特性を示す図である。
図 7は、 チッ化ガリゥム系化合物半導体を用いた従来の半導体発光素 子の一例の斜視説明図である。 発明を実施するための最良の形態
本発明の半導体発光素子は、 たとえば図 1に一実施形態の断面説明図 が示されるように、 たとえばサファイア (A 1 Q 03 単結晶) などから なる基板 1の表面にチッ化ガリゥム系化合物半導体からなるバッファ層 2と、 バッファ層 2上に発光層を形成すべく n形層 3および p形層 5を 含むチッ化ガリウム系化合物半導体が積層される発光層形成部 1 0とを 有している。 そして図 1に示される例では、 発光層形成部 1 0を構成す る n形層 3の半導体層がチッ化ガリゥム系化合物に酸素を含有する化合 物半導体で形成されていることに特徴がある。
図 1に示される例では、 サファイア基板 1上に積層される半導体層は、 たとえば G a Nからなる低温バッファ層 2が 5 0 0 °C程度の低温で 0 . 0 1〜0 . 2 // m程度堆積され、 ついで 1 0 0 0 °C程度の高温で n形の G a N 1 からなる n形層 (クラッ ド層) 3が l〜 5〃m程度、 ノ
Z 丄- Z
ンドープの I n G a N系化合物半導体 (青色を発光させる場合、 ノ ンド —プで I nの割合が 0 . 3〜 0 . 5で、 G aの割合が 0 . 7〜 0 . 5である が、 たとえば S iおよび Z nをド一プして I nの割合を 0 . 0 5程度と して不純物発光をさせることができる) からなる活性層 4が 0 . 0 0 2 〜 0 . 3 m程度、 p形の A 1 G a N系化合物半導体層 5 aおよび G a N層 5 bがそれぞれ 0 . 0 5〜0 . 5 程度づっ積層される p形層 5が、 それぞれ順次成長されて発光層形成部 1 0が積層されている。 そして、 積層された半導体層の表面に、 たとえば N i と A uの合金層からなる 2 〜 1 0 0 n m程度の電流拡散層 7を介して p側電極 8が形成されると共 に、 積層された半導体層 3 5の一部が除去されて露出する n形層 3に n側電極 9が形成されている。
前述の n形層 3の G a O N, の 0の割合、 すなわち zの範囲は、 後述するように、 0.2以上が好ましいが、 0.1でも顕著な効果が現れ、 僅かでもよく、 0 < z < 1の範囲で、 他の層との関係などにより選定さ Jし 0
なお、 図 1に示される例では、 p形層 5は G a N層 5 bと A l G aN 系化合物半導体層 5 aとの複層で形成されているが、 キャリアの閉じ込 め効果の点から A 1を含む層が活性層 4側に設けられることが好ましい ためで、 G aN層だけでもよい。 また、 n形層 3にも A 1 G aN系化合 物半導体層を設けて複層にしてもよく、 またこれらを他のチッ化ガリゥ ム系化合物半導体層で形成することもできる。 さらに、 バッファ層 2も G a N層により形成されているが、 たとえば A 1 N層や、 A 1 G a N系 化合物半導体層、 さらに I nが添加された層など他の半導体層で形成さ れていてもよい。
つぎに、 図 1に示される構造の半導体発光素子の輝度の向上について 説明をする。 前述のように、 本発明者は、 たとえばサファイア基板上に 積層される発光層形成部を構成するチッ化ガリゥム系化合物半導体層に 発生する格子欠陥をできるだけ少なく して輝度を向上させるため、 鋭意 検討を重ねた結果、 たとえば図 1に示されるように、 基板上に積層され るチッ化ガリゥム系化合物半導体層に酸素を含有せしめることにより、 結晶欠陥密度が大幅に減少し、 輝度も大幅に向上することを見出したも のである。
すなわち、 図 1に示される構造の青色系の半導体発光素子において、 G a O— N1-7 からなる n形層 3の酸素の量 (z) を変化させたときの
Z
n形層 3の表面の結晶欠陥の密度、 および発光素子にした状態での輝度 のそれぞれの変化を調べた結果、 図 2に示されるように、 z力 0. 1程 度の割合で酸素が含まれるだけで、 結晶欠陥密度および輝度が大幅に向 上し、 zの値が 0.2以上になれば結晶欠陥密度は 2桁程度、 輝度は 3 倍以上に向上した。 図 2において、 Aが結晶欠陥密度、 Bが輝度をそれ ぞれ示す。 なお、 n形層 3の厚さを 5 とし、 それ以外のバッファ層 2は G aNで 0.03〃 m程度、 活性層 4は S iおよび Z n ドープの I n0.05G a0 o5 Nで 2 m程度、 p形層 5は A 10 ^ G a Q 85N層 5 aが 0.2 と GaN層 5 bが 0.3 m程度の積層構造で一定とし、 Zの値のみを変化させて製造した。 ここで、 結晶欠陥密度は、 n形層 3 を積層した状態で、 つぎの活性層などの半導体層を積層しないで、 その 表面をエッチングして、 エッチングにより生じる窪みであるピッ トの数 を測定するエッチピッ ト法により測定したもので、 輝度は n形層 3を積 層した後、 その上に連続的に活性層 4や p形層 5などを積層して半導体 発光素子とした状態で測定し、 従来の n形層を G a Nで構成したときの 輝度を 1とした相対的な輝度で表した結果である。
この結晶欠陥が少ないという現象は、 半導体発光素子としてのリーク 電流を測定することによつても確認することができた。 すなわち、 半導 体発光素子の電圧 (V) と電流 (logl (対数目盛) ) の特性は、 図 6 の Cに示されるような特性を一般に示す。 この V- log I特性の電圧を高 く しても電流が飽和して増えない領域は電極の接触部の抵抗によるもの でほぼ一定になるが、 リーク電流の大きい半導体発光素子の V-log I特 性は Dにより示されるように、 立上りが早くなる。 そのため、 一定の電 流値 (たとえば 1 A) logl { のときの電圧 V 、 V0 を測定するこ とにより、 電圧の小さいもの を示すカーブ D) 程リーク電流が大 きいことがわかる。 前述の G a 0 の zをパラメータとして一定 電流のときの電圧をプロッ トすると図 3に示されるようになり、 図 3か らも zが 0のときの G a N層に比べ、 酸素を含有することにより、 明ら かにリーク電流が少ない (一定電流のときの電圧が高い) ことがわかる。 図 2〜 3から明らかなように、 n形層 3に酸素を含有することにより、 結晶欠陥の数が大幅に減少し、 輝度も向上する。 これは、 G a O Z N 1丄- の成長は、 G a Nに比べて縦方向より横方向の成長が早くて支配的に なるため、 横方向につながって平坦な膜とな てから縦方向に成長して いくため欠陥の少ない膜を成長させることができるものと思われる。 そ して、 欠陥の少ない平坦な膜が成膜されると、 その上に成長される膜も 欠陥の少ない平坦な膜になり、 活性層や P形層についても欠陥の少ない 平坦な膜が成膜され、 高輝度の半導体発光素子が得られる。 そのため、 1層のみに酸素を添加する場合には、 できるだけ下 (基板に近い側) の 層に添加することが好ましいことが推察される。
この観点から、 高温でェピタキシャル成長される n形層ではなく、 低 温で成膜されるバッファ層 2が酸素を含有することによる n形層の結晶 欠陥の状態および輝度の変化を同様に調べた。 すなわち、 バッファ層 2 に G a 0 7 N _!— 7 を用いて 0 . 0 3 〃 m程度を 5 0 0 °C程度で成膜し、 そのほかの n形層 3は n形の G a Nを 5 m程度で、 活性層 4、 および P形層 5については前述の例と同様にしてバッファ層 2の zの値を種々 変化させた。 このバッファ層 2に G a 0 7 を用いたときの結晶欠 陥の密度および発光素子の輝度を調べ、 その結果を図 4に示す。 なお、 図 4においても Aが結晶欠陥密度を示し、 Bが輝度を示し、 結晶の欠陥 密度は、 バッファ層 2上に n形層 3をェピタキシャル成長した状態で、 前述と同様にエッチングをしてピッ ト数を調べるエッチピッ ト法を用い、 輝度については前述と同様に発光素子にした状態で、 バッファ層に G a Nを用いたときの輝度を基準として相対的な値で調べた。 また、 前述と 同様に、 発光素子としたときのリーク電流を示す一定電流のときの電圧 の関係を図 5に示す。
図 4〜 5から明らかなように、 バッファ層に酸素を添加した G a 0 7 N ^, を用いることによつても、 前述の n形層に用いる場合よりは結晶 欠陥密度および輝度共に低下するものの、 従来の構造よりは明らかな向 上が見られる。 これはつぎのように考えられる。 すなわち、 バッファ層 2の成長は低温であるため、 成長時には単結晶にはならずアモルファス の状態であり、 酸素が含有されていても、 前述の G a O の単結
Ζ,
晶層のように緻密な膜で結晶欠陥の少ない層は得られにくいと考えられ る。 し力、し、 つぎの η形層 3の高温による成長時に少なく ともバッファ 層 2の表面は単結晶化される。 そして、 その単結晶化された層は酸素を 含有することにより、 緻密で結晶欠陥の少ない層となり、 その上に成膜 される単結晶層もそのバッファ層表面の結晶欠陥の少ない層に揃って積 層されるため結晶欠陥の少ない半導体層が得られるものと考えられる。 その結果、 バッファ層に酸素を含むチッ化ガリゥム系化合物半導体が用 いられることにより、 その上に積層される半導体層が酸素を含まないチ ッ化ガリウム系化合物半導体層であっても、 結晶欠陥が少なく、 輝度の 大きい半導体発光素子が得られる。
もちろんバッファ層および発光層形成部の半導体層共に酸素を含むチ ッ化ガリウム系化合物半導体が用いられることにより、 一層結晶欠陥を 少なくすることができ、 輝度を向上させることができる。 さらに、 前述 の構造の発光層形成部の活性層にも酸素を添加することにより、 一層の 輝度の向上を得ることができた。
本発明者は、 さらにバッファ層として A 1 Νが用いられる場合に、 A
1 Nを成膜する際に酸化源を供給することにより、 酸素を含ませた A 1 O n N 1 n ( 0 < u < 1 ) の組成で形成する場合の結晶性についても調
U 丄ー U
ベた。 このとき発光層形成部 1 0は前述のバッファ層 2に G a 0 z N 11一 z を用いた場合と同様の構成にし、 バッファ層 2は 500°C程度の低温 で 0. 0 3 m程度成膜した。 この場合も、 前述の G a N1 , をバ
ζ 丄ー ζ ッファ層 2とする場合と同様に酸素を含ませる割合、 すなわち uの値が 0. 2程度で欠陥密度が 2桁程度低下し、 輝度が顕著に上昇し、 uの他 の値でも同様の効果が得られるものと考えられる。 これは、 前述の G a Ο Ν1 -7 の場合と同様に、 バッファ層 2の成長は低温であるため、 成 長時には単結晶にはならずアモルファスの状態で A 1 0 1-u が形成 され、 単結晶層のように緻密な膜で結晶欠陥の少ない層は得られにくい と考えられるが、 つぎの n形層 3の高温による成長時に少なく ともバッ ファ層 2の表面は単結晶化されて緻密となり、 前述と同様に、 結晶欠陥 の少ない半導体層が積層されるためと考えられる。 その結果、 バッファ 層 2に酸素を含む A 1 0 χ_ が用いられることにより、 その上に積 層されるチッ化ガリゥム系化合物半導体層は結晶欠陥が少なく、 輝度の 大きい半導体発光素子が得られる。 ここで、 バッファ層 2の厚さは、 バ ッファ機能をもたせる点からも、 前述と同様に 0. 0 1〜 0. 2 um程度 設けられることが好ましい。
なお、 サファイア基板の表面を平坦化することにより、 結晶欠陥の少 ないチッ化ガリゥム系化合物半導体層を得るために、 サファイア基板の 表面をチッ化させて A 1 n (O N) 3 とし、 その上に G a Nからなる低 温のバッファ層を成膜し、 その上にチッ化ガリウム系化合物半導体を積 層する方法が知られている。 しかし、 この場合も、 サファイア基板の表 面をチッ化させて A 12 (O N) 3 とするだけで、 バッファ層は低温で 成長された G a N層であり、 たとえサファイア基板表面の平坦化が図ら れていても、 サフアイァ基板上に G a N層が直接成膜されるのと同様に、 緻密な膜が成膜されず、 また、 本発明のようにその上に高温で成長され るチッ化ガリゥム系化合物半導体層を緻密な膜にする作用もしない。 つぎに、 図 1に示される半導体発光素子の製法について説明をする。 MO V P E法により、 キャリアガス H2 と共にトリメチリガリウム ( TMG) 、 アンモニア (NH3 ) などの反応ガスを供給して、 まず、 た とえばサファイアからなる基板 1上に、 たとえば 400〜600°C程度 の低温で、 G a N層からなる低温バッファ層 2を 0.01〜 0.2 m程 度程度成膜する。
ついで、 たとえば 600〜1200°C程度の高温で前述の反応ガスに、 n形のドーパントガスとしての S i H4 など、 さらに酸化源としての 0 2 を追加し、 n形の G a Οζ χ_ζ からなる η形層 3を 1〜 5 m程度 成長する。 ついで、 反応ガスにトリメチルインジゥム (以下、 TM I n という) を加え、 ドーパントガスの S i H4 にさらにジメチル亜鉛 (D MZ n) を加え、 S iおよび Z nドープの I n G a N系化合物半導体か らなる活性層 4を 0.002〜0.3 m程度形成する。 ついで、 TM I nに代えてトリメチルアルミニウム (以下、 TMAという) を導入し、 さらにド一パントガスをシクロペンタジェニルマグネシウム (Cp2 M g) またはジメチル亜鉛 (DMZ n) にして、 p形の A 1 G a N系化合 物半導体層 5 aを 0.05〜 0.5 程度成長し、 ついで TM Aを止め て p形の G aNを 0.05〜0.5 m程度成長し、 p形層 5を全体とし て 0.1〜1 程度形成する。
その後、 たとえば N iおよび Auを真空蒸着などにより積層してシン ターすることにより合金化し、 電流拡散層 7を、 2〜100 nm程度形 成する。 ついで、 表面にレジスト膜を設け、 パターニングをして塩素ガ スなどによる反応性ィオンエッチングにより、 積層された半導体層の一 部を除去して n形層 3を露出させ、 たとえばリフ トオフ法により、 p形 層 5と電気的に接続されるように T iと Auとを積層して両金属の積層 構造からなる p側電極 8を形成する。 また同様に、 たとえばリ フ トオフ 法により、 n形層 3と電気的に接続されるように、 T i と A 1をそれぞ れ積層してシン夕一することにより両金属の合金層からなる n側電極 9 を形成する。 その結果、 図 1に示される半導体発光素子が得られる。 この例では、 MO V P E法により半導体層を成長させたが、 HV P E 法、 または MB E法によっても同様に半導体層を成長させることができ る。 また、 酸化源として o2 を用いたが、 これに限定されることなく、 酸化させ得るものであればよい。 したがって、 N2 0、 H2 0、 または 成長炉内の石英ガラスなどの酸化物から遊離する酸素または還元剤を導 入することにより遊離させ得る酸素などを利用することもできる。
前述の各例では、 酸素を含有するチッ化ガリウム系化合物半導体層と して、 G a N層の場合の例であつたが、 A 1 G aN系化合物半導体層や、 I n G a N系化合物半導体層など、 他の III 族元素が加えられた混晶の チッ化ガリゥム系化合物半導体でも同様の結果が得られた。
さらに前述の例では、 バッファ層をノンドープで製造したが、 S i、 S e、 T eなどの n形不純物を導入して n形としてもよく、 また、 Mg、 Z n. B eなどの p形不純物を導入して p形とし、 発光層形成部の p形 層を先に成長させてもよい。 また、 前述の例では、 発光層形成部の n形 層に酸素を含有させたが、 p形層ゃノンド一プ層に含有させてもよい。 とくに、 基板側に p形層が形成され、 その上に活性層や n形層が積層さ れることにより発光層形成部が設けられる構造の場合には、 p形層が下 層になるため P形層に酸素が含まれることが好ましい。 要は、 G aおよ び Nを含む化合物半導体層に本発明を適用することができる。
また、 ノ ッファ層として、 G a N、 G a 0 N, 、 A 1 0 N.
z 1 - z z 1 - z の例であつたが、 発光層形成部に酸素を含有するチッ化ガリウム系化合 物半導体が用いられる場合は、 バッファ層は A 1 Nなどの他の組成でも 効果が現れる。 また、 A 1 0 N, をバッファ層とする場合でも、 A
Z 丄— Z 1の一部が I nなど他の III 族元素と置換される構造のものや、 前述の n形および Zまたは p形の不純物が添加される構造のものでも同様であ さらに、 前述の例では、 基板としてサファイア基板が用いられたが、 サファイア基板に限定されるものではなく、 S i C基板や、 S i基板、 G a A s基板など他の半導体基板でも、 チッ化ガリゥム系化合物半導体 を積層する場合に本発明を適用することができる。
また、 前述の各例では、 活性層を S iおよび Z n ドープで形成したが、 ノ ンド一プで形成してもよい。 さらに、 発光層形成部として、 n形層と p形層とで活性層を挟持するダブルへテロ接合構造の例であつたが、 n 形層と P形層とが直接接合する p n接合構造でも同様である。
本発明によれば、 チッ化ガリウム系化合物半導体層を格子定数が異な る基板上に成長する場合でも、 チッ化ガリウム系化合物半導体層の少な く とも 1層、 および Zまたはバッファ層の G a N系もしくは A 1 N系化 合物半導体に酸素が含有さていることにより、 発光層形成部の半導体層 の結晶性が大幅に向上する。 その結果、 輝度が大きくなり、 また製造上 のバラツキが小さくなり、 高輝度で安価な青色系の半導体発光素子が得 られる。 産業上の利用性
本発明の半導体発光素子によれば、 輝度の大きい青色 (B ) 系の光が 得られ、 青色系の種々の光源として利用することができると共に、 他の 赤色 (R ) や緑色 (G ) の発光素子と共に用いることにより、 その混色 のあらゆる色の光源とすることができ、 信号機や、 大型ディスプレーな どの表示器などの幅広い分野で利用することができる。

Claims

言青求の範囲
1 基板と、 該基板上に設けられるチッ化ガリウム系化合物半導体か らなるバッファ層と、 該バッファ層上に発光層を形成すべく n形層およ び p形層を含むチッ化ガリゥム系化合物半導体が積層される発光層形成 部とを有し、 前記バッファ層または前記発光層形成部を構成する各半導 体層の少なく とも 1層がチッ化ガリゥム系化合物に酸素を含有する化合 物半導体である半導体発光素子。
2 前記酸素を含有する化合物半導体が G a γ v A 1 γ I n v
丄- χ - y x y z ( 0≤ χ < 1、 0≤ y < l、 0 < z < 1 ) からなる請求の範囲第
1項記載の半導体発光素子。
3 前記酸素を含有する化合物半導体に、 n形不純物および Zまたは P形不純物が含有されてなる請求の範囲第 2項記載の半導体発光素子。
前記酸素を含有する化合物半導体が前記バッファ層に用いられて なる請求の範囲第 1項、 第 2項または第 3項記載の半導体発光素子。
5 前記酸素を含有する化合物半導体が前記発光層形成部の少なく と も前記バッファ層側の半導体層に用いられてなる請求の範囲第 1項、 第 2項、 第 3項または第 4項記載の半導体発光素子。
6 前記発光層形成部が活性層を n形層および p形層により挟持する ダブルへテロ接合構造からなり、 前記酸素を含有する化合物半導体が前 記活性層に用いられてなる請求の範囲第 1項、 第 2項、 第 3項、 第 4項 または第 5項記載の半導体発光素子。
7 前記基板がサファイア基板からなり、 前記バッファ層が G a 07
N ^, ( 0 < z < 1 ) からなる請求の範囲第 2項または第 3項記載の半 導体発光素子。
8 前記バッファ層が、 S i、 S e、 T e、 M g、 Z nおよび B eよ りなる群れから選ばれた少なく とも 1種を含有する請求の範囲第 7項記 載の半導体発光素子。
9 前記発光層形成部が n形半導体層および p形半導体層により活性 層が挟持されるダブルへテロ接合構造からなり、 該発光層形成部の少な く とも前記バッファ層に接する半導体層が G a 07 N , ( 0 < z < 1 ) 単結晶層からなる請求の範囲第 2項、 第 3項、 第 7項または第 8項記載 の半導体発光素子。
1 0 基板上に発光層を形成すべく n形層および p形層を含むチッ化 ガリゥム系化合物半導体が積層されることにより発光層形成部が設けら れる半導体発光素子であって、 前記発光層形成部を構成する各半導体層 の少なく とも 1層がチッ化ガリゥム系化合物に酸素を含有する化合物半 導体層である半導体発光素子。
1 1 前記基板と前記発光層形成部との間に A 1 Nからなるバッファ 層が設けられてなる請求の範囲第 1 0項記載の半導体発光素子。
1 2 前記基板と前記発光層形成部との間に A 1 O u ( 0 < u
< 1 ) からなるバッファ層が設けられてなる請求の範囲第 1 0項記載の 半導体発光素子。
1 3 基板と、 該基板上に設けられる A 1 0 , ( 0 < u < l )
U 丄ー u
からなるバッファ層と、 該バッファ層上に発光層を形成すべく n形層お よび p形層を含むチッ化ガリゥム系化合物半導体が積層される発光層形 成部とを有する半導体発光素子。
1 4 前記バッファ層の A 1の一部が I nと置換されてなる請求の範 囲第 1 3項記載の半導体発光素子。
1 5 前記バッファ層が、 S i S e T e M g Z nおよび B e よりなる群れから選ばれた少なく とも 1種を含有する請求の範囲第 1 3 項または第 1 4項記載の半導体発光素子。 1 6 前記発光層形成部を構成する半導体層の少なく とも 1層が G a
, A 1 I n 0 N, (0≤χ< 1
- y x y z 1 - z 、 0≤ y < l、 0 < z < 1) 丄- x
からなる請求の範囲第 1 3項、 第 1 4項または第 1 5項記載の半導体発 光素子。
1 7 前記基板がサファイア基板からなり、 前記発光層形成部が活性 層を n形層および p形層により挟持するダブルへテロ接合構造からなる 請求の範囲第 1 3項または第 1 6項記載の半導体発光素子。
1 8 基板上に MO V P E法、 H V P E法または M B E法により、 低 温でチッ化ガリゥム系化合物半導体からなるバッファ層を設け、 さらに チッ化ガリゥム系化合物半導体からなる発光層形成部を構成する半導体 層を高温で順次積層する半導体発光素子の製法であって、 前記バッファ 層および Zまたは前記発光層形成部を構成する半導体層の少なく とも 1 層の半導体層を成長する際に、 酸化源を供給し、 または供給しながら該 半導体層の成長をする半導体発光素子の製法。
1 9 基板上に MO V P E法、 H V P E法または MB E法により、 低 温で酸化源を供給し、 または供給しながら A 1 0 Νχ (0 < u < 1) からなるバッファ層を設け、 さらにチッ化ガリゥム系化合物半導体から なる発光層形成部を構成する半導体層を高温で順次ェピタキシャル成長 する半導体発光素子の製法。
2 0 前記発光層形成部の少なく とも 1層を形成する際に酸化源を供 給し、 または供給しながら成長し、 G a A 1 I n 0
丄一 x— y x y z 丄ー z
(0≤ χ < 1、 0≤ y < l、 0 < z < 1 ) からなる半導体層を成長する 請求の範囲第 1 9項記載の製法。
2 1 前記酸化源の供給を、 前記半導体層を成長する成長炉内への酸 化源の導入により行う請求の範囲第 1 8項または第 1 9項記載の製法。
2 2 前記酸化源の供給を、 前記半導体層を成長する成長炉内の酸化 物の酸素を用いることにより行う請求の範囲第 1 8項または第 1 9項記 載の製法。
PCT/JP1998/000251 1998-01-21 1998-01-21 Element luminescent a semiconducteur et procede de fabrication WO1999038218A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP53813899A JP3602856B2 (ja) 1998-01-21 1998-01-21 半導体発光素子およびその製法
US09/381,285 US6191437B1 (en) 1998-01-21 1998-01-21 Semiconductor light emitting device and method of manufacturing the same
DE19882202T DE19882202B4 (de) 1998-01-21 1998-01-21 Lichtemittierende Halbleitervorrichtung und Verfahren zu ihrer Herstellung
KR1019997008172A KR100542870B1 (ko) 1998-01-21 1998-01-21 반도체 발광소자 및 그 제조방법
PCT/JP1998/000251 WO1999038218A1 (fr) 1998-01-21 1998-01-21 Element luminescent a semiconducteur et procede de fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/000251 WO1999038218A1 (fr) 1998-01-21 1998-01-21 Element luminescent a semiconducteur et procede de fabrication

Publications (1)

Publication Number Publication Date
WO1999038218A1 true WO1999038218A1 (fr) 1999-07-29

Family

ID=14207452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000251 WO1999038218A1 (fr) 1998-01-21 1998-01-21 Element luminescent a semiconducteur et procede de fabrication

Country Status (5)

Country Link
US (1) US6191437B1 (ja)
JP (1) JP3602856B2 (ja)
KR (1) KR100542870B1 (ja)
DE (1) DE19882202B4 (ja)
WO (1) WO1999038218A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283052A (ja) * 2002-03-22 2003-10-03 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2007184644A (ja) * 2007-04-02 2007-07-19 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2010532561A (ja) * 2007-07-04 2010-10-07 ウリエルエスティー カンパニー リミテッド 化合物半導体発光素子
JP2014528178A (ja) * 2011-09-30 2014-10-23 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス半導体チップの製造方法および対応するオプトエレクトロニクス半導体チップ
JP5743893B2 (ja) * 2009-09-28 2015-07-01 株式会社トクヤマ 積層体の製造方法
JP2015192036A (ja) * 2014-03-28 2015-11-02 日亜化学工業株式会社 窒化物半導体素子の製造方法
US9343615B2 (en) 2011-09-30 2016-05-17 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609661B2 (ja) * 1999-08-19 2005-01-12 株式会社東芝 半導体発光素子
TW541710B (en) * 2001-06-27 2003-07-11 Epistar Corp LED having transparent substrate and the manufacturing method thereof
US7112825B2 (en) * 2002-07-11 2006-09-26 Rohm Co., Ltd. Semiconductor light emitting device
KR100497127B1 (ko) * 2002-09-05 2005-06-28 삼성전기주식회사 질화갈륨계 반도체 엘이디 소자
GB2395839A (en) * 2002-11-30 2004-06-02 Sharp Kk MBE growth of p-type nitride semiconductor materials
JP3767863B2 (ja) * 2003-12-18 2006-04-19 ローム株式会社 半導体発光素子およびその製法
US7804100B2 (en) * 2005-03-14 2010-09-28 Philips Lumileds Lighting Company, Llc Polarization-reversed III-nitride light emitting device
JP4907121B2 (ja) * 2005-07-28 2012-03-28 昭和電工株式会社 発光ダイオード及び発光ダイオードランプ
JP4872450B2 (ja) * 2006-05-12 2012-02-08 日立電線株式会社 窒化物半導体発光素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129927A (ja) * 1995-08-31 1997-05-16 Toshiba Corp 青色発光素子
JPH09186364A (ja) * 1995-12-28 1997-07-15 Sharp Corp 窒化物系iii−v族化合物半導体装置およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599088B2 (ja) * 1993-04-12 1997-04-09 信越半導体株式会社 GaP赤色発光素子基板及びその製造方法
US5693963A (en) * 1994-09-19 1997-12-02 Kabushiki Kaisha Toshiba Compound semiconductor device with nitride
WO1996011502A1 (en) * 1994-10-11 1996-04-18 International Business Machines Corporation WAVELENGTH TUNING OF GaN-BASED LIGHT EMITTING DIODES, LIGHT EMITTING DIODE ARRAYS AND DISPLAYS BY INTRODUCTION OF DEEP DONORS
JP3448450B2 (ja) * 1996-04-26 2003-09-22 三洋電機株式会社 発光素子およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129927A (ja) * 1995-08-31 1997-05-16 Toshiba Corp 青色発光素子
JPH09186364A (ja) * 1995-12-28 1997-07-15 Sharp Corp 窒化物系iii−v族化合物半導体装置およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
22ND INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, Volume 3, 1994, pages 2327-2330. *
JOURNAL OF ELECTRONIC MATERIALS, Vol. 26, No. 10, 1997, pages 1127-1130. *
JOURNAL OF ELECTRONIC MATERIALS, Vol. 26, No. 3, 1997, pages 334-339. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003283052A (ja) * 2002-03-22 2003-10-03 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2007184644A (ja) * 2007-04-02 2007-07-19 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2010532561A (ja) * 2007-07-04 2010-10-07 ウリエルエスティー カンパニー リミテッド 化合物半導体発光素子
JP5743893B2 (ja) * 2009-09-28 2015-07-01 株式会社トクヤマ 積層体の製造方法
JP2014528178A (ja) * 2011-09-30 2014-10-23 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス半導体チップの製造方法および対応するオプトエレクトロニクス半導体チップ
US9343615B2 (en) 2011-09-30 2016-05-17 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
US9647174B2 (en) 2011-09-30 2017-05-09 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2015192036A (ja) * 2014-03-28 2015-11-02 日亜化学工業株式会社 窒化物半導体素子の製造方法
US9252323B2 (en) 2014-03-28 2016-02-02 Nichia Corporation Method for manufacturing nitride semiconductor element

Also Published As

Publication number Publication date
DE19882202B4 (de) 2007-03-22
US6191437B1 (en) 2001-02-20
JP3602856B2 (ja) 2004-12-15
KR20000076084A (ko) 2000-12-26
KR100542870B1 (ko) 2006-01-20
DE19882202T1 (de) 2000-04-13

Similar Documents

Publication Publication Date Title
JP3846150B2 (ja) Iii族窒化物系化合物半導体素子および電極形成方法
JP3250438B2 (ja) 窒化物半導体発光素子
JP3890930B2 (ja) 窒化物半導体発光素子
JP4631884B2 (ja) 閃亜鉛鉱型窒化物半導体自立基板、閃亜鉛鉱型窒化物半導体自立基板の製造方法、及び閃亜鉛鉱型窒化物半導体自立基板を用いた発光装置
JP2006108585A (ja) Iii族窒化物系化合物半導体発光素子
JP3602856B2 (ja) 半導体発光素子およびその製法
JPH08316528A (ja) 窒化物半導体発光素子
JPH11145514A (ja) 窒化ガリウム系半導体素子およびその製造方法
JP2918139B2 (ja) 窒化ガリウム系化合物半導体発光素子
JP2002299686A (ja) 半導体発光素子およびその製造方法
JP2003204080A (ja) 窒化物半導体素子及びその成長方法
JP3458007B2 (ja) 半導体発光素子
JP2713094B2 (ja) 半導体発光素子およびその製造方法
JP3064891B2 (ja) 3−5族化合物半導体とその製造方法および発光素子
JPH0864866A (ja) 半導体発光素子の製法
JPH0936429A (ja) 3−5族化合物半導体の製造方法
JP2003249684A (ja) 窒化物半導体用成長基板及び窒化物半導体発光素子並びにその製造方法
JPH0923026A (ja) 3−5族化合物半導体発光素子
JPH0964419A (ja) 3−5族化合物半導体及び発光素子
JPH1093138A (ja) 窒化物半導体発光ダイオードを備えた表示装置
JPH0883956A (ja) 半導体発光素子
JP2006032739A (ja) 発光素子
JPH09129920A (ja) 発光素子用3−5族化合物半導体及び発光素子
JP3267250B2 (ja) 窒化物半導体発光素子
JP2000049377A (ja) 窒化ガリウム系化合物半導体発光素子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP KR US

WWE Wipo information: entry into national phase

Ref document number: 1019997008172

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09381285

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19882202

Country of ref document: DE

Date of ref document: 20000413

WWE Wipo information: entry into national phase

Ref document number: 19882202

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1019997008172

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

WWG Wipo information: grant in national office

Ref document number: 1019997008172

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607