WO1999017013A1 - Pompe a jet comprenant un gicleur de section variable - Google Patents

Pompe a jet comprenant un gicleur de section variable Download PDF

Info

Publication number
WO1999017013A1
WO1999017013A1 PCT/FR1998/002083 FR9802083W WO9917013A1 WO 1999017013 A1 WO1999017013 A1 WO 1999017013A1 FR 9802083 W FR9802083 W FR 9802083W WO 9917013 A1 WO9917013 A1 WO 9917013A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
pump according
section
nozzle
channel
Prior art date
Application number
PCT/FR1998/002083
Other languages
English (en)
Inventor
Bruno Sertier
Original Assignee
Marwal Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9712206A external-priority patent/FR2769053B1/fr
Application filed by Marwal Systems filed Critical Marwal Systems
Priority to EP98946524A priority Critical patent/EP1019627B1/fr
Priority to JP2000514056A priority patent/JP2001518594A/ja
Priority to BR9812571-0A priority patent/BR9812571A/pt
Priority to US09/510,000 priority patent/US6364625B1/en
Priority to DE69814654T priority patent/DE69814654T2/de
Publication of WO1999017013A1 publication Critical patent/WO1999017013A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control
    • F04F5/52Control of evacuating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/02Feeding by means of suction apparatus, e.g. by air flow through carburettors
    • F02M37/025Feeding by means of a liquid fuel-driven jet pump

Definitions

  • the present invention relates to the field of jet pumps.
  • the present invention finds particular, but not exclusively, application in the field of motor vehicle fuel tanks.
  • the present invention can find application in the transfer of fuel between different pockets for multi-pocket fuel tanks, or for the filling of a reserve bowl from which draws a fuel pump or any other fuel supply device.
  • Examples of fuel suction devices based on a jet pump are illustrated in documents DE-A-3 915 185, DE-A-3 612 194 or DE-A-2 602 234.
  • the known jet pump-based suction devices are not always satisfactory, however.
  • the flow rate injected into the jet pump corresponding to a return of fuel from the engine, or even to a bypass of fuel taken from the outlet of the pump, sometimes exhibits fluctuations in pressure and / or high flow rates so that it is difficult to adapt the characteristics of the jet pump, and in particular to avoid the appearance of significant back pressures, at the inlet of the jet pump, if the section of the outlet nozzle is too narrow for the flow rate and / or pressure injected.
  • DE-A-4 201 037 to have inside the nozzle, upstream of the outlet nozzle thereof, a plunger core carried by a spring-loaded diaphragm, so that the plunger core recedes in the event of an increase in pressure to increase the free cross-section of the nozzle.
  • document DE-A-4 201 037 proposes to produce the very body of the nozzle in the form of a deformable element with respect to a fixed plunger core, here again to adapt the outlet section of the nozzle to the pressure injected .
  • the Applicant has itself proposed in its French patent application No. 96 11739 filed on September 26, 1996 a jet pump in which the nozzle which receives the injected flow is formed of a nozzle composed of several lips made of elastic material adapted to so that the nozzle has a variable section according to the pressure and the flow injected.
  • the present invention now aims to provide a new improved jet pump.
  • a jet pump comprising a nozzle and a core mounted to move opposite the nozzle outlet nozzle and downstream from it.
  • the core has a growing cross section away from the nozzle outlet nozzle.
  • the core is provided with a through longitudinal channel forming an auxiliary nozzle.
  • the operation of this alternative embodiment will be described later.
  • FIG. 1 represents a schematic view in longitudinal section of a jet pump according to an embodiment of the present invention
  • FIGS. 2 and 3 show schematic views in transverse section of the same pump according to cutting planes referenced II and III in FIG. 1
  • FIG. 4 represents a view of the same pump in the open position of the nozzle
  • FIG. 5 represents a view in longitudinal section of a pump according to an alternative embodiment of the present invention, in the closed position
  • FIGS. 6 to 9 represent four alternative embodiments of a nozzle end according to the present invention
  • FIG. 1 represents a schematic view in longitudinal section of a jet pump according to an embodiment of the present invention
  • FIGS. 2 and 3 show schematic views in transverse section of the same pump according to cutting planes referenced II and III in FIG. 1
  • FIG. 4 represents a view of the same pump in the open position of the nozzle
  • FIG. 5 represents a view in longitudinal section of a pump according to an alternative embodiment of the present invention, in the closed position
  • FIGS. 6 to 9 represent four alternative embodiment
  • FIG. 10 represents a schematic view in longitudinal section of a pump jet pe according to an alternative embodiment of the present invention
  • Figures 11 and 12 show the same variant for two different flow rates injected into the pump
  • Figures 13 and 14 show views in longitudinal section of two other variants of realization in accordance with the present invention.
  • a jet pump according to the present invention comprising a cylinder housing 10 centered on a longitudinal axis 0-0.
  • This housing 10 defines a control input 12 receiving the injected flow, at a first axial end.
  • the axial outlet 14 of the pump is defined at the opposite axial end.
  • the housing 10 also has an auxiliary suction inlet 16 which communicates laterally with the internal channel 18 of the housing 10.
  • This auxiliary suction input 16 is disposed near the control input 12. It can be formed by a tube inclined relative to the axis 0-0 of the housing, for example by an angle between 10 ° and 90 °.
  • the housing 10 has at the input 12 a nozzle 20. Thereafter this nozzle 20 will be called “main” nozzle. It may be a nozzle attached to the inlet 12 as illustrated in FIG. 1, or else a nozzle integrated by manufacture in the housing 10 or in a section of the housing 10. Of course, a seal must be defined between the inlet of the nozzle 20 and the inlet 12 of the housing 10.
  • the nozzle 20 is composed of two sections 22, 24 juxtaposed axially.
  • the first section 22 in the direction of flow is preferably of converging frustoconical shape.
  • the half angle at the top of this section 22 is preferably between 10 ° and 80 °.
  • the second section 24 of the nozzle 20 is preferably cylindrical in revolution and of constant section.
  • the free outer end 240 of this section 24 is preferably slightly rounded.
  • FIGS. 6 to 9 will describe various embodiments of such a nozzle end.
  • the cross section of the section 180 of the channel 18 formed in the housing 10 is preferably cylindrical in revolution and of constant size.
  • a core 30 is disposed opposite the outlet nozzle of the nozzle 20, being guided in translation, along the axis 0-0, against the stress of a spring 40 .
  • the core 30 can be guided along the 0-0 axis by many appropriate means.
  • the core 30 is provided with a central internal blind channel 32 opening on its rear end opposite to the nozzle 20. Furthermore, the core 30 is engaged, by this channel 32, on a rod 50 centered in the channel 18 and connected to the housing 10.
  • this rod 50 can thus be supported on the internal surface of the housing 10, in the channel thereof, by three fins 52 equi-distributed at 120 ° around the axis 0-0.
  • This rod 50 has over most of its length a cylindrical section of constant size complementary to the cross section of the channel 32 formed in the core 30.
  • the rod 50 preferably has a tapered or convergent rear section 54 tapered away from the nozzle 20.
  • the front face 56 of the rod 50 is preferably flat and orthogonal to the axis 0-0.
  • the rear face 58 of the rod 50 is preferably rounded or conical.
  • the fins 52 are connected to the cylindrical part of the rod 50, immediately upstream of the transition zone towards the tapered section 54.
  • the core 30 has for its part a generally cylindrical outer envelope of revolution and of constant section.
  • the core 30 however has a frustoconical front section 34 terminated by a front end generally in a hemisphere or in a warhead 36.
  • the core 30 also has a rear frustoconical section 38.
  • the spring 40 is advantageously a helical compression spring disposed in the channel 32 of the core 30 between the front face 56 of the rod 50 and the bottom of the channel 32.
  • the spring 40 urges the core 30 resting against the nozzle outlet nozzle 20, more precisely against the rear surface 240 of the section 24 or on a contact generator thereof.
  • the core 30 thus preferably rests against the free end 240 of the section 24, in the form of a zone limited substantially to a circular edge or on a contact generator defined at the transition zone between the frustoconical section 34 diverging and the front end in hemisphere 36.
  • the channel 18 formed in the housing 10 may have a section 181 converging towards the outlet 14, itself followed by a section 182 of constant cylindrical cross section.
  • the length of the converging section 181 is advantageously equal to the length of the diverging section 34 of the core 30.
  • the core 30 is advantageously guided along the axis 0-0, at its cylindrical section of revolution, by guide studs 17, for example three guide studs equi-distributed at 120 °. These are preferably arranged in the extension of the fins 52.
  • FIG. 6 illustrates a first alternative embodiment of the end 240 of the nozzle 20.
  • the internal surface 202 and the external surface 204 of the section 24 of the nozzle 20 are cylindrical of revolution around the axis 0 -0, and the end 240 of the nozzle 20 is formed of a toric cap 208, that is to say delimited in cross section by a circular sector, which is tangentially connected to the external surface 204 and which joins the internal surface 202 at a circular edge 206, which edge 206 defines the contact at rest with the core 30.
  • the angle defined between the toric cap 208 and the internal surface 202, at the level of the connection between them can make the subject to various variations. It is typically of the order of 90 °.
  • the second embodiment of the nozzle end 240 illustrated in FIG. 7 differs from that illustrated in FIG. 6 and previously described, by the fact that the toric cap 208 does not connect to the internal surface 202 in the form of a circular edge 206, but is tangentially connected to a second O-ring surface 210, radially internal, which itself is tangentially connected to the internal surface 202.
  • the contact at rest between the core 30 and the nozzle 20 is thus defined at the level of this toric surface 210.
  • the second radially internal toric surface 210 has a radius of curvature less than that of the radially external toric surface 208.
  • the radius of the radially external toric surface 208 is of the order of 1 to 2 mm, while the radius of the radially internal toric surface 210 is of the order of 0.05 to 0 , 5 mm.
  • FIG. 8 illustrates a third alternative embodiment according to which a planar surface in a ring 212, or if need be of frustoconical shape, is interposed between the two toric surfaces 208 and 212.
  • FIG. 9 a fourth alternative embodiment has been illustrated in FIG. 9 which differs from that illustrated in FIG. 8 by the fact that the radially external toric surface 208 is replaced by a chamfer or frustoconical surface 214.
  • end 240 of the nozzle 20 can be the subject of numerous other alternative embodiments.
  • the jet pump architecture in accordance with the present invention makes it possible to avoid any discharge valve upstream of the nozzle 20.
  • the present invention avoids any loss of the return flow, in the form of external discharge, so that the flow injected Qi is permanently equal to the return flow.
  • the ejection section that is to say the free section of the nozzle 20 is reduced and makes it possible to increase the power transmitted to the jet pump by a high injection pressure Pi.
  • the core 30 moves back by compression of the spring 40, with respect to the nozzle 20 which makes it possible to increase the passage section at the outlet of the nozzle and to limit the back pressure upstream of the nozzle 20 to a acceptable level.
  • Venturi core 30 translating downstream of the nozzle 20 thus guarantees optimal jet pump efficiency for the lowest flow rates injected Qi (by reducing the nozzle diameter
  • the flow of the flow leaving the nozzle 20 takes place in the form of a conical film channeled by the convergent towards the annular mixer.
  • the taper angle of the section 34 of the core is of the order of 8 °
  • of the section 38 of the core is of the order of 9 °
  • of the section 181 of the channel 18 is of l 'order of 5 °
  • the section 54 of the rod 50 is of the order of 6 °.
  • FIG. 5 An alternative embodiment has been illustrated in FIG. 5 which will not be described in detail, and which is essentially distinguished from the embodiment previously described by the fact that the core element 30 urged by the spring 40 opposite the nozzle outlet nozzle 20, and downstream of it, is guided in translation along the axis 0-0, by the rod 50 linked to the housing 10, not outside of this rod, but to the 'interior thereof, more specifically in a blind channel 51 which opens onto the front surface of this rod 50.
  • the embodiment illustrated in Figures 10 to 12 attached.
  • This variant differs essentially from those previously described, by the fact that according to FIGS. 10 to 12, the core 30 is provided with a longitudinal channel passing through 300. This forms an auxiliary nozzle whose operation will be described later.
  • this channel 300 can be the subject of various variants. According to the embodiment illustrated in FIGS. 10 to 12, the channel 300 is formed of three successive sections, 302, 304, 306, which follow one another from the nozzle 20, towards the outlet of the pump.
  • the first section 302 is cylindrical in revolution and of constant section. It typically extends over 4/5 of the length of the core 30.
  • the second section 304 converges towards the outlet of the pump.
  • the third section 306 is cylindrical in revolution and of at least substantially constant section.
  • the outlet diameter of the channel 300 ie the outlet diameter of the section 306 (which forms an auxiliary nozzle) is between 0.4 and 1 mm.
  • the core 30 is guided in translation opposite the outlet of the nozzle 20 and biased towards this outlet by a spring 40.
  • the core 30 can be guided in translation by any suitable means. According to the nonlimiting embodiment illustrated in FIGS. 10 to 12, there are provided for this purpose on the internal surface of the housing 10, longitudinal fins 310, for example three fins 310 distributed at 120 °, which in combination define a volume internal free complementary to the external envelope of the core 30. As a variant, the fins 310 can be made integral with the core 30.
  • the spring 40 can take various configurations.
  • the back pressure Pi remains below the opening pressure threshold Ps of the core 30 (function of the setting of the compression spring 40), which localizes the injection at through the auxiliary nozzle formed by the longitudinal channel 300 of the core 30 (see Figure 11).
  • the Venturi effect is then produced in a conventional manner and the transferred flow is collected through the mixing tube located downstream from the core 30.
  • a single flow annular jet pump can be obtained, according to the architecture illustrated in FIGS. 10 to 12, by obstructing the channel 300 formed in the core 30.
  • FIG. 14 an alternative embodiment with a double flow in which the core 30 provided with a longitudinal transverse channel 300 rests on the outlet of the nozzle 20 via a support surface of geometry hemispherical or semi-toroidal (while the bearing surface of the core 30 is generally frustoconical according to FIGS. 10 to 12); and in FIG. 13, an alternative embodiment which differs from FIG. 14 only in that the channel 300 is obstructed.
  • the embodiment of FIG. 13 corresponds to a simple flow.
  • the core 30 is guided by fins 310 as described with reference to Figures 10 to 12; and the spring 40 is supported between the core 30 and fins 110 secured to the housing 10.

Abstract

La présente invention concerne une pompe à jet, notamment pour le transfert de carburant dans un réservoir de carburant de véhicule automobile, caractérisée par le fait qu'elle comprend un gicleur principal (20), et un noyau (30) monté à déplacement en regard de la buse de sortie du gicleur principal (20) et en aval de celle-ci.

Description

POMPE A JET COMPRENANT UN GICLEUR DE SECTION VARIABLE
La présente invention concerne le domaine des pompes à jet.
La présente invention trouve notamment, mais non exclusivement, application dans le domaine des réservoirs de carburant de véhicules automobiles.
Plus précisément encore la présente invention peut trouver application dans le transfert de carburant entre différentes poches pour réservoirs de carburant multipoches, ou pour le remplissage d'un bol de réserve dans lequel puise une pompe de carburant ou tout autre dispositif d'alimentation de carburant.
Des exemples de dispositifs d'aspiration de carburant à base de pompe à jet sont illustrés dans les documents DE-A-3 915 185, DE-A-3 612 194 ou DE-A-2 602 234.
Bien qu'ayant déjà rendu de grands services, les dispositifs d'aspiration à base de pompe à jet connus ne donnent cependant pas toujours satisfaction. En particulier il a été constaté que le débit injecté dans la pompe à jet, correspondant à un retour de carburant en provenance du moteur, ou encore à une dérivation de carburant prélevée en sortie de pompe, présente parfois des fluctuations de pression et/ou de débits importantes de sorte qu'il est difficile d'adapter les caractéristiques de la pompe à jet, et notamment d'éviter l'apparition de contre-pressions importantes, en entrée de la pompe à jet, si la section du gicleur de sortie est trop étroite pour le débit et/ou pression injecté.
Diverses propositions ont été formulées pour tenter d'éliminer cet inconvénient.
Ainsi on a par exemple proposé dans le document
DE-A-4 201 037 de disposer à l'intérieur du gicleur, en amont de la buse de sortie de celui-ci, un noyau plongeur porté par une membrane sollicitée par ressort, de sorte que le noyau plongeur recule en cas d'augmentation de pression pour augmenter la section libre de la buse du gicleur. Selon une variante, le document DE-A-4 201 037 propose de réaliser le corps même du gicleur sous forme d'un élément déformable par rapport à un noyau plongeur fixe pour adapter là encore la section de sortie de la buse à la pression injectée.
La Demanderesse a elle-même proposé dans sa demande de brevet français N° 96 11739 déposée le 26 Septembre 1996 une pompe à jet dans laquelle le gicleur qui reçoit le débit injecté est formé d'une buse composée de plusieurs lèvres en matériau élastique adaptées de sorte que la buse présente une section variable selon la pression et le débit injecté.
D'autres solutions connues consistent à disposer, en amont du gicleur ou de l'entrée de débit injecté de la pompe à jet, un clapet de décharge susceptible de s'ouvrir lorsque la pression injectée dépasse un seuil de tarage du clapet. Ces solutions présentent cependant l'inconvénient de perdre une partie du fluide, en dérive par le clapet, de sorte que cette partie de fluide n'est pas injectée dans le gicleur.
La présente invention a maintenant pour but de proposer une nouvelle pompe à jet perfectionnée.
Ce but est atteint dans le cadre de la présente invention grâce à une pompe à jet comprenant un gicleur et un noyau monté à déplacement en regard de la buse de sortie du gicleur et en aval de celle-ci. Selon une caractéristique avantageuse de la présente invention, le noyau possède une section droite croissante en éloignement de la buse de sortie du gicleur.
Selon une variante de réalisation conforme à la présente invention, le noyau est muni d'un canal longitudinal traversant formant un gicleur auxiliaire. Le fonctionnement de cette variante de réalisation sera décrit par la suite.
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés, donnés à titre d'exemples non limitatifs et sur lesquels : la figure 1 représente une vue schématique en coupe longitudinale d'une pompe à jet conforme à un mode de réalisation de la présente invention, les figures 2 et 3 représentent des vues schématiques en coupe transversale de la même pompe selon des plans de coupe référencés II et III sur la figure 1, la figure 4 représente une vue de la même pompe en position ouverte du gicleur, la figure 5 représente une vue en coupe longitudinale d'une pompe conforme à une variante de réalisation de la présente invention, en position fermée, les figures 6 à 9 représentent quatre variantes de réalisation d'une extrémité de gicleur conforme à la présente invention, la figure 10 représente une vue schématique en coupe longitudinale d'une pompe à jet conforme à une variante de réalisation de la présente invention, - les figures 11 et 12 représentent la même variante pour deux débits différents injectés dans la pompe, et les figures 13 et 14 représentent des vues en coupe longitudinale de deux autres variantes de réalisation conformes à la présente invention. On aperçoit sur la figure 1 annexée une pompe à jet conforme à la présente invention comprenant un boîtier cylindre 10 centré sur un axe longitudinal 0-0.
Ce boîtier 10 définit une entrée de commande 12 recevant le débit injecté, à une première extrémité axiale. La sortie axiale 14 de la pompe est définie à l'extrémité axiale opposée.
Le boîtier 10 possède en outre une entrée auxiliaire d'aspiration 16 qui communique latéralement avec le canal interne 18 du boîtier 10.
Cette entrée auxiliaire d'aspiration 16 est disposée à proximité de l'entrée de commande 12. Elle peut être formée d'une tubulure inclinée par rapport à l'axe 0-0 du boîtier, par exemple d'un angle compris entre 10° et 90°.
Le boîtier 10 possède au niveau de l'entrée 12 un gicleur 20. Par la suite ce gicleur 20 sera dénommé gicleur « principal ». Il peut s'agir d'un gicleur rapporté sur l'entrée 12 comme illustré sur la figure 1, ou encore d'un gicleur intégré par fabrication au boîtier 10 ou à un tronçon du boîtier 10. Bien entendu, une étanchéité doit être définie entre l'entrée du gicleur 20 et l'entrée 12 du boîtier 10.
Plus précisément encore, selon le mode de réalisation préférentiel illustré sur les figures annexées, le gicleur 20 est composé de deux tronçons 22, 24 juxtaposés axialement .
Le premier tronçon 22 dans le sens d'écoulement est de préférence de forme tronconique convergente . Le demi angle au sommet de ce tronçon 22 est de préférence compris entre 10° et 80°.
Le second tronçon 24 du gicleur 20 est de préférence cylindrique de révolution et de section constante. L'extrémité extérieure libre 240 de ce tronçon 24 est de préférence légèrement arrondie. On décrira par la suite en regard des figures 6 à 9 différents modes de réalisation d'une telle extrémité de gicleur.
Sur la longueur axiale du gicleur 20, la section droite du tronçon 180 du canal 18 formée dans le boîtier 10 est de préférence cylindrique de révolution et de dimension constante. Comme indiqué précédemment, dans le cadre de la présente invention, un noyau 30 est disposé en regard de la buse de sortie du gicleur 20, en étant guidé à translation, selon l'axe 0-0, contre la sollicitation d'un ressort 40.
Le noyau 30 peut être guidé selon l'axe 0-0 par de nombreux moyens appropriés .
De préférence, le noyau 30 est muni d'un canal borgne interne central 32 débouchant sur son extrémité arrière opposée au gicleur 20. Par ailleurs, le noyau 30 est engagé, par ce canal 32, sur une tige 50 centrée dans le canal 18 et reliée au boîtier 10. A titre d'exemple non limitatif, cette tige 50 peut ainsi être supportée sur la surface interne du boîtier 10, dans le canal de celui-ci, par trois ailettes 52 équi-réparties à 120° autour de l'axe 0-0.
Cette tige 50 présente sur l'essentiel de sa longueur une section cylindrique de dimension constante complémentaire de la section droite du canal 32 formée dans le noyau 30. Cependant, la tige 50 possède de préférence un tronçon arrière 54 tronconique effilé ou convergent en éloignement du gicleur 20.
La face avant 56 de la tige 50 est de préférence plane et orthogonale à l'axe 0-0. Par contre, la face arrière 58 de la tige 50 est de préférence arrondie ou conique .
Les ailettes 52 se raccordent sur la partie cylindrique de la tige 50, immédiatement en amont de la zone de transition vers le tronçon effilé 54. Le noyau 30 possède quant à lui une enveloppe extérieure généralement cylindrique de révolution et de section constante.
Le noyau 30 possède cependant un tronçon avant tronconique 34 terminé par une extrémité avant généralement en hémisphère ou en ogive 36. Le noyau 30 possède également un tronçon arrière 38 tronconique. Le ressort 40 est avantageusement un ressort de compression hélicoïdal disposé dans le canal 32 du noyau 30 entre la face avant 56 de la tige 50 et le fond du canal 32. Ainsi l'Homme de l'art comprendra aisément que le ressort 40 sollicite le noyau 30 en appui contre la buse de sortie du gicleur 20, plus précisément contre la surface arrière 240 du tronçon 24 ou sur une génératrice de contact de celle-ci. Le noyau 30 repose ainsi de préférence contre l'extrémité libre 240 du tronçon 24, sous forme d'une zone limitée sensiblement à une arête circulaire ou sur une génératrice de contact définie au niveau de la zone de transition entre le tronçon tronconique 34 divergent et l'extrémité avant en hémisphère 36.
En aval du tronçon initial 180 de section droite constante dont la longueur coïncide avec la longueur du gicleur 20, le canal 18 formé dans le boîtier 10 peut posséder un tronçon 181 convergent vers la sortie 14, lui-même suivi d'un tronçon 182 de section droite cylindrique constante.
La longueur du tronçon 181 convergent est avantageusement égale à la longueur du tronçon divergent 34 du noyau 30. Enfin, comme on le voit à l'examen des figures 1 et 3 , le noyau 30 est avantageusement guidé selon l'axe 0-0, au niveau de son tronçon cylindrique de révolution, par des gaudrons de guidage 17, par exemple trois gaudrons de guidage équi-répartis à 120°. Ceux-ci sont de préférence disposés dans le prolongement des ailettes 52 .
Il est important de noter que dans le cadre de la présente invention la zone de contact définie entre l'extrémité avant du noyau 30 et la buse de sortie du gicleur 20 présente une amplitude limitée. On a illustré sur la figure 6 une première variante de réalisation d'extrémité 240 de gicleur 20. Selon cette première variante, la surface interne 202 et la surface externe 204 du tronçon 24 du gicleur 20 sont cylindriques de révolution autour de l'axe 0-0, et l'extrémité 240 du gicleur 20 est formée d'une calotte 208 torique, c'est à dire délimitée en section droite par un secteur circulaire, qui se raccorde tangentiellement sur la surface externe 204 et qui rejoint la surface interne 202 au niveau d'une arête circulaire 206, laquelle arête 206 définit le contact au repos avec le noyau 30. L'angle défini entre la calotte torique 208 et la surface interne 202, au niveau de la liaison entre celles-ci peut faire l'objet de diverses variantes. Il est typiquement de l'ordre de 90°.
Le deuxième mode de réalisation de l'extrémité 240 de gicleur 20 illustré sur la figure 7 se distingue de celui illustré sur la figure 6 et précédemment décrit, par le fait que la calotte torique 208 ne se raccorde pas sur la surface interne 202 sous forme d'une arête 206 circulaire, mais se raccorde tangentiellement sur une seconde surface torique 210, radialement interne, qui elle même se raccorde tangentiellement sur la surface interne 202. Le contact au repos entre le noyau 30 et la buse 20 est ainsi défini au niveau de cette surface torique 210. La seconde surface torique 210, radialement interne, a un rayon de courbure inférieure à celui de la surface torique 208 radialement externe. De façon typique, mais non limitative, le rayon de la surface torique 208 radialement externe est de l'ordre de 1 à 2 mm, tandis que le rayon de la surface torique 210 radialement interne est de l'ordre de 0,05 à 0,5 mm.
On a illustré sur la figure 8 une troisième variante de réalisation selon laquelle une surface plane en couronne 212, ou le cas échéant de forme tronconique, est intercalée entre les deux surfaces toriques 208 et 212.
Enfin on a illustré sur la figure 9 une quatrième variante de réalisation qui se distingue de celle illustrée sur la figure 8 par le fait que la surface torique 208 radialement externe est remplacée par un chanfrein ou surface tronconique 214.
Bien entendu l'extrémité 240 du gicleur 20 peut faire l'objet de nombreuses autres variantes de réalisation.
Ainsi on peut envisager de raccorder directement le chanfrein 214 sur la surface torique radialement interne 210. Ou encore on peut remplacer la surface torique 208 par une surface annulaire dont la génératrice en section droite possède un rayon progressivement croissant vers l'extérieur.
L'architecture de pompe à jet conforme à la présente invention permet d'éviter tout clapet de décharge en amont du gicleur 20. Ainsi, la présente invention évite toute perte du débit retour, sous forme de décharge externe, de sorte que le débit injecté Qi est en permanence égal au débit de retour.
Pour les plus faibles débits injectés, la section d'éjection, c'est-à-dire la section libre du gicleur 20 est réduite et permet d'augmenter la puissance transmise à la pompe à jet par une pression d'injection Pi élevée.
Pour des débits de retour élevés, le noyau 30 recule par compression du ressort 40, par rapport au gicleur 20 ce qui permet d'augmenter la section de passage en sortie du gicleur et de limiter la contre- pression en amont du gicleur 20 à un niveau acceptable.
L'utilisation d'un noyau Venturi 30 translatant en aval du gicleur 20 permet ainsi de garantir une efficacité de pompe à jet optimale pour les plus faibles débits injectés Qi (par réduction du diamètre de gicleur
20 et augmentation de la vitesse d'injection). L'écoulement du débit en sortie du gicleur 20 s'effectue sous forme d'un film conique canalisé par le convergent vers le mélangeur annulaire.
A titre d'exemple non limitatif, l'angle de conicité du tronçon 34 du noyau est de l'ordre de 8°, du tronçon 38 du noyau est de l'ordre de 9°, du tronçon 181 du canal 18 est de l'ordre de 5° et du tronçon 54 de la tige 50 est de l'ordre de 6°.
On a illustré sur la figure 5 annexée une variante de réalisation qui ne sera pas décrite dans les détails, et qui se distingue essentiellement du mode de réalisation précédemment décrit par le fait que l'élément de noyau 30 sollicité par le ressort 40 en regard de la buse de sortie du gicleur 20, et en aval de celui-ci, est guidé à translation selon l'axe 0-0, par la tige 50 liée au boîtier 10, non pas à l'extérieur de cette tige, mais à l'intérieur de celle-ci, plus précisément dans un canal borgne 51 qui débouche sur la surface avant de cette tige 50. On va maintenant décrire la variante de réalisation illustrée sur les figures 10 à 12 annexées.
Cette variante se distingue essentiellement de celles précédemment décrites, par le fait que selon les figures 10 à 12, le noyau 30 est muni d'un canal longitudinal traversant 300. Celui-ci forme un gicleur auxiliaire dont le fonctionnement sera décrit par la suite .
La géométrie de ce canal 300 peut faire l'objet de diverses variantes . Selon le mode de réalisation illustré sur les figures 10 à 12, le canal 300 est formé de trois tronçons successifs, 302, 304, 306, qui se succèdent à partir du gicleur 20, vers la sortie de la pompe.
Le premier tronçon 302 est cylindrique de révolution et de section constante. Il s'étend typiquement sur les 4/5 de la longueur du noyau 30. Le second tronçon 304 est convergent en direction de la sortie de la pompe.
Le troisième tronçon 306 est cylindrique de révolution et de section au moins sensiblement constante. Typiquement le diamètre de sortie du canal 300, soit le diamètre de sortie du tronçon 306 (qui fait gicleur auxiliaire) est compris entre 0,4 et 1mm.
Comme décrit précédemment pour les modes de réalisation illustrés sur les figures 1 à 9, le noyau 30 est guidé à translation en regard de la sortie du gicleur 20 et sollicité vers cette sortie par un ressort 40.
Le noyau 30 peut être guidé à translation par tous moyens appropriés. Selon le mode de réalisation non limitatif illustré sur les figures 10 à 12, il est prévu à cet effet sur la surface interne du boîtier 10, des ailettes longitudinales 310, par exemple trois ailettes 310 réparties à 120°, qui définissent en combinaison un volume interne libre complémentaire de l'enveloppe externe du noyau 30. En variante on peut rendre les ailettes 310 solidaires du noyau 30.
Bien entendu selon cette variante il est important d'utiliser des moyens de guidage qui ne perturbent ni le fonctionnement du gicleur auxiliaire 300 ni le flux susceptible de s'écouler entre la sortie du gicleur 20 et la surface externe du noyau 30, et par conséquent qui n'obturent pas ceux-ci.
Le ressort 40 peut prendre diverses configurations .
Selon le mode de réalisation illustré sur les figures 10 à 12, il est formé d'un ressort spiral qui prend appui d'une part sur un décrochement du noyau 30, d'autre part sur l'extrémité amont d'ailettes 110 solidaires de la paroi interne du boîtier 10, par exemple trois ailettes 110 réparties à 120°. Les dispositions illustrées sur les figures 10 à
12 permettent d'augmenter les performances d'aspiration de la pompe à jet annulaire à très faible débit injecté (typiquement pour des débits inférieurs à 20 1/h) tout en limitant la contre-pression (ou pression d'injection) à débit retour maximal . Lorsque le débit dans l'entrée 12 est nul, il en est de même pour le débit dans l'entrée d'aspiration 16, et pour le débit à la sortie 14 (voir figure 10) . Dans ce cas le noyau 30 repose sur l'extrémité du gicleur 20.
Lorsque le débit Qi injecté dans l'entrée 12 est faible, la contre-pression Pi demeure en deçà du seuil de pression d'ouverture Ps du noyau 30 (fonction du tarage du ressort de compression 40) , ce qui localise l'injection à travers le gicleur auxiliaire formé par le canal longitudinal 300 du noyau 30 (voir figure 11) . L'effet Venturi est alors réalisé de façon classique et le débit transféré est collecté à travers le tube mélangeur situé en aval du noyau 30.
Lorsque le débit Qi injecté dans l'entrée 12 augmente, la contre-pression passe au dessus du seuil de pression Ps et le noyau 30 recule progressivement par déformation du ressort 40, libérant une section de passage annulaire entre le noyau 30 et le gicleur 20, comme on l'a décrit précédemment en regard des figures 1 à 9. Cette décharge permet de limiter l'augmentation de pression au dessus de Ps pour les forts débits injectés Qi, tout en garantissant un effet Venturi secondaire en sortie du gicleur 300, ce qui contribue à l'augmentation du débit Qa aspiré à travers l'entrée 16, après recul du noyau 30 (voir figure 12) . Bien entendu la présente invention n'est pas limitée aux modes de réalisation particulier qui viennent d'être décrits mais s'étend à toute variante conforme à son esprit .
On notera en particulier que l'on peut obtenir une pompe à jet annulaire simple flux, suivant l'architecture illustrée sur les figures 10 à 12, en obstruant le canal 300 formé dans le noyau 30.
On a ainsi illustré sur la figure 14, une variante de réalisation à double flux dans laquelle le noyau 30 muni d'un canal longitudinal traversant 300, repose sur la sortie du gicleur 20 par l'intermédiaire d'une surface d'appui de géométrie hémisphérique ou semi- toroïdale (alors que la surface d'appui du noyau 30 est globalement tronconique selon les figures 10 à 12) ; et sur la figure 13, une variante de réalisation qui ne se distingue de la figure 14 que par le fait que le canal 300 est obstrué. Ainsi le mode de réalisation de la figure 13 correspond à un simple flux. Dans les deux cas des figures 13 et 14, le noyau 30 est guidé par des ailettes 310 comme décrit en regard des figures 10 à 12 ; et le ressort 40 prend appui entre le noyau 30 et des ailettes 110 solidaires du boîtier 10.

Claims

REVENDICATIONS
1. Pompe à jet, notamment pour le transfert de carburant dans un réservoir de carburant de véhicule automobile, caractérisée par le fait qu'elle comprend un gicleur principal (20) , et un noyau (30) monté à déplacement en regard de la buse de sortie du gicleur principal (20) et en aval de celle-ci.
2. Pompe selon la revendication 1, caractérisé par le fait que le noyau (30) possède une section droite croissante en éloignement de la buse de sortie du gicleur principal (20) .
3. Pompe selon l'une des revendications 1 ou 2, caractérisée par le fait que le noyau (30) est muni d'un canal longitudinal traversant (300) formant un gicleur auxiliaire (306) .
4. Pompe selon la revendication 3, caractérisée par le fait que le diamètre de sortie du canal traversant (300) est compris entre 0,4 et 1mm.
5. Pompe selon l'une des revendications 1 à 4, caractérisée par le fait que le noyau (30) est en contact au repos contre la buse de sortie du gicleur principal (20) .
6. Pompe selon l'une des revendications 1 à 5, caractérisée par le fait que le gicleur principal (20) possède un tronçon convergent (22) suivi d'un tronçon de section constante (24) .
7. Pompe selon l'une des revendications 1 à 6, caractérisée par le fait que le demi angle au sommet du gicleur principal (20) est compris entre 10° et 80°.
8. Pompe selon l'une des revendications 1 à 7, caractérisée par le fait que 1 ' extrémité de la buse de sortie du gicleur principal (20) est globalement arrondie .
9. Pompe selon l'une des revendications 1 à 8, caractérisée par le fait que le noyau (30) possède un tronçon avant globalement tronconique (34) terminé par une extrémité avant en forme générale d'hémisphère ou d'ogive (36) .
10. Pompe selon la revendication 9, caractérisée par le fait que l'angle de conicité du tronçon avant du noyau (30) est de l'ordre de 8°.
11. Pompe selon l'une des revendications 1 à 10, caractérisée par le fait que le noyau (30) possède une enveloppe générale cylindrique de section constante.
12. Pompe selon l'une des revendications 1 à 11, caractérisée par le fait que le noyau (30) possède un tronçon arrière (38) convergent en éloignement du gicleur principal (20) .
13. Pompe selon l'une des revendications 1 à 12, caractérisée par le fait qu'elle comprend un ressort (40) intercalé entre l'extrémité avant d'un support (50) et le noyau (30) .
14. Pompe selon l'une des revendications 1 à 13, caractérisée par le fait que le noyau est guidé par des moyens support liés à la paroi interne du boîtier (10) par des ailettes radiales (52) .
15. Pompe selon l'une des revendications 1 à 14, caractérisée par le fait que le boîtier (10) de pompe définit un canal interne possédant un tronçon (181) convergent dans le sens d'écoulement, en regard du tronçon divergent du noyau (30) .
16. Pompe selon la revendication 15, caractérisée par le fait que la longueur du tronçon convergent du canal
(18) formé dans le boîtier (10) est de l'ordre de grandeur de la longueur du tronçon divergent (34) formé sur le noyau (30) .
17. Pompe selon l'une des revendications 1 à 16, caractérisée par le fait que le noyau (30) est guidé à l'intérieur du canal (18) du boîtier (10) par des gaudrons radiaux (17) liés à la surface interne de ce canal (18) .
18. Pompe selon l'une des revendications 1 à 17, caractérisée par le fait que le contact défini entre le noyau (30) et la buse de sortie (24) du gicleur principal (20) est formé d'une arête circulaire
(206) .
19. Pompe selon l'une des revendications 1 à 17, caractérisée par le fait que le contact défini entre le noyau (30) et la buse de sortie (24) du gicleur principal (20) est formé au niveau d'une calotte globalement torique (210) de ladite buse de sortie.
20. Pompe selon la revendication 19, caractérisée par le fait que le rayon de ladite calotte globalement torique (210) est compris entre 0,05 et 0,5 mm.
21. Pompe selon la revendication 3, caractérisée par le fait que le canal longitudinal (300) du noyau (30) possède un tronçon convergent (304) .
22. Réservoir de carburant équipé d'une pompe à jet conforme à l'une des revendications 1 à 21.
PCT/FR1998/002083 1997-10-01 1998-09-29 Pompe a jet comprenant un gicleur de section variable WO1999017013A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP98946524A EP1019627B1 (fr) 1997-10-01 1998-09-29 Pompe a jet comprenant un gicleur de section variable
JP2000514056A JP2001518594A (ja) 1997-10-01 1998-09-29 可変断面積ノズルを装備した噴射ポンプ
BR9812571-0A BR9812571A (pt) 1997-10-01 1998-09-29 Bomba de jato e reservatório de carburante
US09/510,000 US6364625B1 (en) 1997-10-01 1998-09-29 Jet pump comprising a jet with variable cross-section
DE69814654T DE69814654T2 (de) 1997-10-01 1998-09-29 Saugstrahlpumpe mit einer düse mit variabelem durchschnitt

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR97/12206 1997-10-01
FR9712206A FR2769053B1 (fr) 1997-10-01 1997-10-01 Pompe a jet comprenant un gicleur de section variable
FR98/06524 1998-05-25
FR9806524A FR2769054B1 (fr) 1997-10-01 1998-05-25 Pompe a jet comprenant un gicleur de section variable

Publications (1)

Publication Number Publication Date
WO1999017013A1 true WO1999017013A1 (fr) 1999-04-08

Family

ID=26233828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/002083 WO1999017013A1 (fr) 1997-10-01 1998-09-29 Pompe a jet comprenant un gicleur de section variable

Country Status (8)

Country Link
US (1) US6364625B1 (fr)
EP (1) EP1019627B1 (fr)
JP (1) JP2001518594A (fr)
AR (1) AR015461A1 (fr)
BR (1) BR9812571A (fr)
DE (1) DE69814654T2 (fr)
FR (1) FR2769054B1 (fr)
WO (1) WO1999017013A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086323A2 (fr) * 2001-04-21 2002-10-31 Siemens Aktiengesellschaft Ejecteur et procede de production d'une buse destinee a cet ejecteur
FR2834016A1 (fr) * 2001-12-21 2003-06-27 Marwal Systems Pompe a jet
FR2834017A1 (fr) * 2001-12-21 2003-06-27 Marwal Systems Pompe a jet
US6708673B2 (en) 2001-12-13 2004-03-23 Siemens Aktiengesellschaft Fuel feed unit

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2181167C1 (ru) * 2001-02-20 2002-04-10 Зиновий Дмитриевич Хоминец Скважинная струйная установка для испытания и освоения скважин
DE10224696A1 (de) * 2002-06-04 2003-12-18 Bosch Gmbh Robert Vorrichtung zum Fördern von Kraftstoff aus einem Vorratsbehälter zur Brennkraftmaschine eines Kraftfahrzeugs
US20050089408A1 (en) * 2003-05-09 2005-04-28 Solomon Jason D. Fluid ejector pumps
DE102005000731A1 (de) * 2005-01-04 2006-07-13 Siemens Ag Kraftstoffversorgungsanlage für ein Kraftfahrzeug
JP4696603B2 (ja) * 2005-03-09 2011-06-08 トヨタ自動車株式会社 燃料電池の反応ガス供給装置およびその反応ガス供給装置を備える燃料電池の制御装置
DE102008007204B4 (de) * 2008-02-01 2018-04-19 Robert Bosch Gmbh Saugstrahlpumpe
DE102008032825B3 (de) * 2008-07-11 2010-01-14 Siemens Aktiengesellschaft Strahlpumpe sowie Verfahren zu deren Betrieb
DE102011105891B4 (de) 2011-06-27 2013-12-05 Kautex Textron Gmbh & Co. Kg Vorrichtung zum druckabhängigen Öffnen einer Ansaugöffnung und Kraftstoffbehälter
AR082603A1 (es) 2011-08-09 2012-12-19 Lavaque Oscar Un dispositivo solubilizador de dioxido de carbono en una bebida, de presion variable
US9039385B2 (en) 2011-11-28 2015-05-26 Ford Global Technologies, Llc Jet pump assembly
TWM453728U (zh) * 2012-11-22 2013-05-21 Shen S Glory Inc 燃油供給裝置及其中之回油三通管
JP6090104B2 (ja) * 2012-12-13 2017-03-08 株式会社デンソー エジェクタ
JP6048339B2 (ja) * 2013-08-01 2016-12-21 株式会社デンソー エジェクタ
US9605625B2 (en) 2013-12-19 2017-03-28 Continental Automotive Systems, Inc. High performance vacuum venturi pump
DE102014223765B4 (de) * 2013-12-19 2018-01-04 Continental Automotive Systems, Inc. Hochleistungs-Vakuum-Venturipumpe
MX2018005056A (es) * 2017-07-19 2019-03-28 Chapin Mfg Inc Dispositivo de tubo venturi variable con vastago de valvula ajustable.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346299A1 (de) * 1973-09-14 1975-03-20 Baelz Gmbh Helmut Regelbare strahlpumpe, insbesondere fuer heizungsanlagen
EP0044494A1 (fr) * 1980-07-17 1982-01-27 General Conveyors Limited Buse pour pompe à jet annulaire
DE9101313U1 (fr) * 1991-02-06 1991-04-25 Adam Opel Ag, 6090 Ruesselsheim, De
DE4201037A1 (de) * 1992-01-17 1993-07-22 Bayerische Motoren Werke Ag Saugstrahlpumpe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US571692A (en) * 1896-11-17 Joseph schneible
US3771913A (en) 1971-05-18 1973-11-13 Susquehanna Corp Aspirator
US3922113A (en) 1972-01-06 1975-11-25 Plessey Co Ltd Metered supply of liquids
DE2602234B1 (de) 1976-01-22 1977-04-28 Opel Adam Ag Kraftstoffbehaelter mit einem Speichertopf
US4408961A (en) 1982-02-16 1983-10-11 Chandler Evans, Inc. Jet pump with integral pressure regulator
US4631004A (en) * 1982-07-13 1986-12-23 The Garrett Corporation Jet pump having pressure responsive motive fluid control valve
DE3612194C1 (de) 1986-04-11 1986-10-16 Daimler-Benz Ag, 7000 Stuttgart Im Kraftstoffbehälter eines Kraftfahrzeuges vorgesehene Kraftstoffstauvorrichtung
DE3915185C1 (fr) 1989-05-10 1990-10-04 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
US5954481A (en) * 1996-03-14 1999-09-21 Itt Manufacturing Enterprises Inc. Jet pump
FR2753748B1 (fr) 1996-09-26 1998-12-11 Dispositif d'aspiration a base de pompe a jet pour reservoir de carburant de vehicules automobiles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346299A1 (de) * 1973-09-14 1975-03-20 Baelz Gmbh Helmut Regelbare strahlpumpe, insbesondere fuer heizungsanlagen
EP0044494A1 (fr) * 1980-07-17 1982-01-27 General Conveyors Limited Buse pour pompe à jet annulaire
DE9101313U1 (fr) * 1991-02-06 1991-04-25 Adam Opel Ag, 6090 Ruesselsheim, De
DE4201037A1 (de) * 1992-01-17 1993-07-22 Bayerische Motoren Werke Ag Saugstrahlpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.R.C. LABORATORIES: "two-stage nozzle adjusts suction to fluid bulk", MACHINE DESIGN, vol. 47, no. 4, 20 February 1975 (1975-02-20), pages 44, XP002079645 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086323A2 (fr) * 2001-04-21 2002-10-31 Siemens Aktiengesellschaft Ejecteur et procede de production d'une buse destinee a cet ejecteur
WO2002086323A3 (fr) * 2001-04-21 2003-02-06 Siemens Ag Ejecteur et procede de production d'une buse destinee a cet ejecteur
DE10119553B4 (de) * 2001-04-21 2005-06-23 Siemens Ag Saugstrahlpumpe und Verfahren zur Herstellung einer Düse für eine Saugstrahlpumpe
CN1313734C (zh) * 2001-04-21 2007-05-02 西门子公司 吸入式喷射泵和用来制造用于吸入式喷射泵的喷嘴的方法
US6708673B2 (en) 2001-12-13 2004-03-23 Siemens Aktiengesellschaft Fuel feed unit
FR2834016A1 (fr) * 2001-12-21 2003-06-27 Marwal Systems Pompe a jet
FR2834017A1 (fr) * 2001-12-21 2003-06-27 Marwal Systems Pompe a jet
DE10259808B4 (de) * 2001-12-21 2016-01-14 Ti Automotive Fuel Systems Sas Strahlpumpe

Also Published As

Publication number Publication date
BR9812571A (pt) 2000-07-25
JP2001518594A (ja) 2001-10-16
US6364625B1 (en) 2002-04-02
EP1019627A1 (fr) 2000-07-19
FR2769054B1 (fr) 2001-12-07
DE69814654D1 (de) 2003-06-18
EP1019627B1 (fr) 2003-05-14
AR015461A1 (es) 2001-05-02
FR2769054A1 (fr) 1999-04-02
DE69814654T2 (de) 2004-04-08

Similar Documents

Publication Publication Date Title
EP1019627B1 (fr) Pompe a jet comprenant un gicleur de section variable
EP2475463B1 (fr) Dispositif de distribution de liquide
FR2641840A1 (fr) Soupape pour buse d'atomisation sous pression d'une installation de chauffage
EP2964933B1 (fr) Dispositif de dosage compact pour injecteur a deux circuits de carburant pour une turbomachine d'aeronef
FR2716936A1 (fr) Circuit de distribution de carburant pour moteur à combustion interne.
FR2834016A1 (fr) Pompe a jet
EP1084342A1 (fr) Ensemble de puisage de carburant dans un reservoir de vehicule automobile
FR2566841A1 (fr) Injecteur de combustible
FR3067437B1 (fr) Gicleur de fluide axial a clapet evente
FR2862369A1 (fr) Element femelle de raccord et raccord rapide incorporant un tel element
FR2693248A1 (fr) Vanne du type à bille ou à boisseau équipé d'un insert.
WO2001018380A1 (fr) Dispositif de puisage de curburant pour reservoir de vehicule automobile
FR2534976A1 (fr) Injecteur de combustible
FR2739416A1 (fr) Injecteur de carburant pour moteur a combustion interne
EP1265012B1 (fr) Vanne de désaérage pour canalisations de liquide
FR2769053A1 (fr) Pompe a jet comprenant un gicleur de section variable
FR2781528A1 (fr) Dispositif pour fournir du carburant a l'aide d'une unite debitant du carburant, logee dans un boitier
FR2834017A1 (fr) Pompe a jet
WO1985004928A1 (fr) Injecteur pour turbine hydraulique
EP2808531B1 (fr) Module de pompage de carburant
FR2752902A1 (fr) Vanne, notamment pour la regulation d'une installation de distribution d'eau potable
FR2798163A1 (fr) Pompe a jet perfectionnee notamment pour dispositif de puisage de carburant
FR2654468A1 (fr) Soupape de pression pour installation d'injection, en particulier pour moteur a combustion interne.
FR2873960A1 (fr) Dispositif de puisage et/ou jaugeage de carburant
FR2904380A1 (fr) Perfectionnement aux pompes a barillet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP MX PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1998946524

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998946524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09510000

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1998946524

Country of ref document: EP