WO1999005568A1 - Ecran contenant du mica synthetique - Google Patents

Ecran contenant du mica synthetique Download PDF

Info

Publication number
WO1999005568A1
WO1999005568A1 PCT/JP1998/003347 JP9803347W WO9905568A1 WO 1999005568 A1 WO1999005568 A1 WO 1999005568A1 JP 9803347 W JP9803347 W JP 9803347W WO 9905568 A1 WO9905568 A1 WO 9905568A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
synthetic mica
mica
light
titanium oxide
Prior art date
Application number
PCT/JP1998/003347
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Miyamoto
Asa Kimura
Original Assignee
Shiseido Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9218099A external-priority patent/JPH1144915A/ja
Priority claimed from JP9218100A external-priority patent/JPH1144914A/ja
Application filed by Shiseido Co., Ltd filed Critical Shiseido Co., Ltd
Priority to CA002267161A priority Critical patent/CA2267161A1/en
Priority to EP98933954A priority patent/EP0930526A4/en
Publication of WO1999005568A1 publication Critical patent/WO1999005568A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens

Definitions

  • the present invention relates to a screen for displaying an image, and more particularly to an improvement in mica powder used for improving luminance of an image projected on the screen.
  • a projector-type image display device or the like secures a sufficient projection distance by bending the projection light projected from the projection display device using a mirror or the like. This makes it relatively easy to make the entire device compact, and has the advantage that bright images can be viewed. In addition, it has the advantage that it can be easily displayed on a large screen and is less affected by radiation, etc., and demand for equipment is expected to increase in the future.
  • Such a display device projects an image on a screen.
  • a reflective screen for projecting an image from an observation side of the screen and observing a reflected image, and a rear side of the screen are used.
  • a rear projection type transmissive screen is disclosed in Japanese Patent Application Laid-Open Nos. Sho 62-1782827 and Hei 5-882864, Fresnel lens and lenticular lens.
  • the Fresnel lens plays a role of collecting the projection light projected from the back
  • the lenticular lens plays a role of distributing light widely in the horizontal direction.
  • both the Fresnel lens and the lenticular lens have irregularities on the surface, which can provide useful effects, but project images on the screen. In this case, there was a problem that the streaks appeared multiple times due to the unevenness of the lens, making the image very difficult to see.
  • the reflection type screen is provided with a light reflection surface and a light diffusion layer on the base material.
  • Recent screen technology ⁇ is to increase the reflection brightness with respect to the amount of light to be projected, and to provide a bright image at a wide angle.
  • the mainstream is to improve the visualization of.
  • For light reflection and light diffusion layers there are pearlescent agents using powder coated with titanium dioxide on the mica surface, screens with glass beads spread on the screen surface, or irregularities on the screen surface. Although the performance of the screen has been remarkably improved, there is still room for improvement in the reflection brightness and the clear viewing angle.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a mica used for a pearl agent used for improving reflection and diffusion of an image projected on a screen, and oxidation.
  • a synthetic mica-containing screen according to the present invention is characterized in that a screen displaying a projected image contains titanium oxide-coated mica, and the mica is a synthetic mica. .
  • the screen is a reflection type screen having a light reflecting surface and a light diffusing layer formed on a substrate. Further, in the screen according to the present invention, it is preferable that the screen is a transmission screen in which a light diffusion layer is formed on a substrate.
  • the synthetic mica contained in the titanium oxide-coated synthetic mica has a general formula:
  • X is N a + K + L i + C a 2 + R b 2 + S r 2 + represents one or more ions selected from the group consisting of
  • Y is Mg 2+ F e 2 + N i 2 + , Mn 2 + , A 1 3+ , Fe 3 + L i +, and represents one or more ions selected from the group consisting of:
  • Z is Al 3 + S i 4 + Ge 4+ , F e 3 + It represents one or more ions selected from the group consisting of B 3 + .
  • It is preferably a synthetic fluorophlogopite represented by:
  • the synthetic mica used for the titanium oxide-coated synthetic mica contained therein preferably has a particle size of 5200 m.
  • the synthetic mica used for the titanium oxide-coated synthetic mica contained therein preferably has a particle size of 60 200 / m.
  • the contained titanium oxide-coated synthetic mica is formed by coating synthetic mica with titanium oxide in a layer thickness of 2040 nm.
  • the contained titanium oxide-coated synthetic mica is obtained by coating synthetic mica with titanium dioxide oxide and / or low-order titanium oxide.
  • titanium oxide-coated synthetic mica is used as a main component of the pearl agent, and the titanium oxide-coated mica is contained in the screen by applying the pearl agent.
  • the pearl agent Preferably.
  • FIG. 1 is a conceptual diagram of a reflective screen and a projection display device according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram of a configuration of a reflective screen according to an embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a behavior of incident light in a thin film formed by a pearl agent in the reflective screen.
  • Figure 4 is an illustration of the behavior of incident light when aluminum powder is used instead of pearling agent in a reflective screen.
  • FIG. 5 is a conceptual diagram of a transmissive screen and a rear project type display device according to an embodiment of the present invention
  • FIG. 6 is a conceptual diagram of a configuration of a transmission screen according to an embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of a behavior of incident light in a thin film formed by a pearl agent in the transmission screen.
  • FIG. 8 is an explanatory diagram of the behavior of incident light when aluminum powder is used instead of the pearl agent in the transmission screen.
  • the present invention is intended to improve performance such as brightness, color reproducibility, and clear viewing angle of an image on a screen that displays an image projected from a projector in an observable manner.
  • a screen mainly includes a reflection type screen and a transmission type screen as described in the background art, and the present invention can be used in both of these forms.
  • FIG. 1 is a conceptual diagram of a reflective screen and a projection display device according to one embodiment of the present invention
  • FIG. 2 is a conceptual diagram of a configuration of a reflective screen according to one embodiment of the present invention. .
  • the light projected from the projection display device 10 of FIG. 1 is projected at a certain angle so as to be largely reflected on the reflection type screen 12.
  • the light projected on the upper end of the screen is called projection light 14 and the light projected on the lower end of the screen is called projection light 16.
  • the projection light 14 reaches the screen and is reflected. If the screen performs only specular reflection, this reflected light is reflected at an angle of reflection equal to the incident angle like the original reflected light 18 and does not reach the observer 20. Not visible. In this case, the projection light projected from the projection display device can be observed as an image by the observer. In order to be reflected, it is necessary to reflect the projection light in the direction of the observer.
  • the projected light 14 reaches the screen and is reflected and diffused at a wide angle as indicated by the dotted arrow, and a part of the diffuse reflected light is reflected by the reflected light 22 to the observer 20. It is visually recognized. The same applies to the lower end.
  • the projected light 16 reaches the screen and is reflected and diffused at a wide angle as indicated by the dotted arrow, and a part of the diffuse reflected light is visually recognized by the observer 20 as reflected light 24. You.
  • the projection light projected from the projection display device can project an image to the observer by the same reflection and enlargement action at all the portions on the screen where the projection light is projected.
  • the reflective screen 12 shown in FIG. 1 has a flat substrate 26, a light reflecting surface 28 formed thereon, and a thin film 3 containing a pearl agent using synthetic mica. 0 and the light diffusion layer 32, and the projected light is partially reflected from the screen surface on the light diffusion layer 32, the thin film 30 containing the pearl agent on the titanium oxide surface of the pearl agent or the synthetic mica surface In the thin film containing the pearl agent, it is partially reflected in the titanium oxide surface of the pearl agent or the synthetic mica surface, and is transmitted while being diffused.
  • the light diffused in multiple directions by the titanium oxide-coated synthetic mica is further diffused in multiple directions by a light diffusion layer that has been subjected to embossing or the like. In this manner, the screen can display a bright image at a wide angle with the projected light.
  • the production of a reflective screen with a high image intensity and a wide bright field angle must be performed by two contradictory processes.
  • the image projected on the screen must be capable of projecting a bright image at a wide angle so that many people can see it.In order to have a wide viewing angle, the projected light must be reduced. Spread as much as possible.
  • a screen that can have these two contradictory properties at the same time is an excellent screen. Therefore, in order to provide these two contradictory properties, how the reflected light can be efficiently reflected and diffused or transmitted and diffused, and the loss of light during the process can be reduced. The question is how to keep it low.
  • a feature of the present invention is that a screen image has a high luminance and a vivid image is projected, that is, a bright and bright projected image can be visually recognized.
  • synthetic mica with very little colorant metal and good saturation is used in the pearling agent used.
  • it is a pearl agent using synthetic mica powder that can suppress light loss in the process of light reflection and diffusion.
  • FIG. 3 is an explanatory diagram of the behavior of incident light in a thin film by a pearl agent provided in the reflective screen of the present invention shown in FIGS. 1 and 2.
  • the titanium oxide-coated synthetic mica 34 is oriented in an arbitrary direction, so that the projection light 36 is reflected on the titanium oxide or synthetic mica powder surface.
  • the image can be viewed at a wide angle with respect to the front of the screen by bending during the transmission through the titanium oxide or synthetic mica powder.
  • the diffusion of light is mainly due to bending during the transmission through titanium oxide and synthetic mica powder.
  • the projected light will be reduced due to the coloring due to the fact that natural mica contains a trace amount of metal.
  • this can have the adverse effect of weakening the light or altering the color of the projected light due to the effects of coloring.
  • the projected light does not necessarily pass through natural mica only once, but the possibility of reflection through the light-reflecting surface and then through natural mica again, and titanium oxide-coated natural mica once transmitted Considering that it transmits through other titanium oxide-coated natural mica, it will penetrate natural mica twice or three times, and the adverse effect on the light of natural mica is significant despite its slight coloration. Bring.
  • the pearl agent in the present invention which is mainly due to diffusion due to refraction, it is due to reflection
  • aluminum powder is used for reflection and diffusion.
  • the aluminum powder 42 also exists at an arbitrary position in the thin film. Since the aluminum powder does not transmit light, the projection light 44 is reflected on the aluminum powder surface and reflected on another aluminum powder surface. The reflection on the surface of the luminium powder and the light reflection surface 46 are repeated, and the irregular reflection is repeated until light escapes from the surface of the reproduction screen.
  • Titanium oxide-coated synthetic mica also reflects projected light on the surface of titanium oxide and synthetic mica, but the light transmittance of the titanium oxide-coated synthetic mica is high, and the amount of reflection is small. Since most of the diffusion process of the projection light is diffusion by refraction, it is possible to minimize light loss. In addition, by reflecting the projection light on the surface of titanium oxide and the surface of synthetic mica, there is an effect of further widening the diffusion direction.
  • a characteristic of the present invention is that the use of synthetic mica having good saturation and no metal contamination minimizes the loss of light, thereby increasing the brightness of a screen image. It is possible to realize a reflective screen that can project vivid images at a wide angle.
  • X represents one or more ions selected from the group consisting of Na K + , Li +, Ca 2 + , R b 2 + , and S r 2 +
  • Y represents Mg 2 + , Fe 2 + , N i 2 + , M n 2 + , A 13 + , Fe 3 + , L i +, and represent one or more ions selected from the group consisting of:
  • Z is A l 3 + , S i 4 + , G e + , Fe 3 + , and B 3 + represent one or more ions selected from the group consisting of:
  • a general method for producing synthetic mica powder is, for example, in the case of synthetic fluorophlogopite, about 40 parts of anhydrous silicic acid, about 30 parts of magnesium oxide, about 13 parts of aluminum oxide, and about 17 parts of potassium fluoride. After mixing, the mixture is melted at 140 to 150 ° C. and further crystallized at 130 to 140 ° C. to obtain synthetic fluorophlogopite (KM g (A 1 Si 3 O 1 0 ) F 2 ) is obtained. The obtained ore of synthetic fluorophlogopite is crushed and classified to obtain a synthetic fluorophlogopite powder.
  • the shape of the synthetic fluorophlogopite powder thus obtained is irregularly shaped plate-like, The diameter depends on the application, but is generally 0.05 to 10 ⁇ in the thickness direction and 2 to 200 m in the plane direction.
  • a reflective screen and a projection display device are configured by providing a light reflecting surface on a base material, and further laminating a pearl agent using the synthetic mica according to the present invention, and a light diffusion layer in this order. Is done.
  • a material such as a white plastic sheet, polyvinyl chloride, polyolefin such as polyethylene and polypropylene, polyester such as polyethylene terephthalate, polystyrene, polycarbonate, acryl resin and polyurethane resin can be used. If necessary, a plasticizer may be added to the resin in an amount of 20 to 100% by weight.
  • the thickness of the substrate is preferably from 100 to 100 ⁇ m.
  • an aluminum foil, an aluminum plate, an aluminum vapor-deposited film, aluminum powder, or the like can be used for the light reflecting surface. Further, a thin film is formed thereon with a pearl agent using the synthetic mica according to the present invention.
  • a plastic film polypropylene, vinyl chloride, polyethylene terephthalate, triacetyl cellulose film, or the like can be used. It is preferable to use a film whose surface is embossed or matted.
  • the light reflecting surface, the thin film made of a pearl agent, and the light diffusion layer can be exemplified by a method of printing by a screen printing method, a roll coating method, an offset printing method, and a method of coating by a knife coater, a comma coater, or the like.
  • the pearlescent ink used was silk-printed to a thickness of 100 ⁇ ⁇ , and then a polysiloxane resin was silk-printed on it to a thickness of 100 ⁇ m.
  • Lean was obtained (hereinafter referred to as the present invention product 1).
  • the application amount of the var agent per unit area is about 20 mg / cm 2 .
  • a screen (hereinafter, referred to as Comparative Example 1) using a pearl agent using natural mica instead of the pearl agent according to the present invention was produced from a screen prepared by the same procedure as in the example of the present invention. And the comparative experiment of the performance of the reflective screen.
  • Comparative Example 2 A screen (hereinafter, referred to as Comparative Example 2) using aluminum powder instead of the pearling agent according to the present invention was produced on a screen prepared by the same procedure as in the example of the present invention, and the reflective screen according to the present invention was manufactured. Lean performance and comparative experiments.
  • the screen performance comparison experiment showed that the screen gage value (hereinafter referred to as SG value), which is ⁇ times the ratio of the reflected luminance at the front of the screen to the incident illuminance of the screen, and half the value at half the reflected luminance at the front of the screen.
  • the angle value hereinafter referred to as the half-value angle
  • the reproducibility for the colors of the projected image
  • Comparative Example 1 As shown in Table 1, in Comparative Example 1, the SG value and the half-value angle show somewhat favorable results, but are not preferable in terms of reproducibility. In Comparative Example 2, the SG value and the reproducibility were good to some extent, but sufficient results were not obtained for the half-value angle. However, the performance of the reflective screen using the pearlescent agent using the synthetic mica powder according to the present invention showed good results in all the items tested.
  • the unit of the particle size in Table 2 is / im.
  • the particle size of the synthetic mica powder used in the present invention is preferably about 5 ⁇ m to 200 ⁇ m.
  • the particle size of natural mica shows good results when the particle size is 5 to 60 // m, but the synthetic mica according to the present invention, which contains a very small amount of a coloring metal, has good particle size. Results are shown.
  • the following data are available on the interference color of synthetic mica coated with titanium dioxide, depending on the thickness of the titanium dioxide layer coated on the surface of the synthetic mica powder.
  • the unit of the layer thickness in Tables 3 and 4 is nm ( From the results of Tables 3 and 4, it is preferable that the layer thickness of titanium dioxide coated on the surface of the synthetic mica in the present invention is about 20 nm to 40 nm.
  • the performance of the screen is further improved by using the synthetic mica having excellent chroma with extremely little contamination of the coloring metal according to the present invention.
  • the effect is most effective when the particle size is 5 ⁇ to 200 ⁇ and the layer thickness is 20 nm to 40 nm.
  • the mica used for the pearling agent and the titanium oxide-coated mica can be mixed with a colorant metal and the synthetic mica having a good saturation can be obtained. By using this, it is possible to provide a reflection type screen and a projection type display device capable of increasing the reflection luminance of the screen and observing a clear image at a wide angle.
  • FIG. 5 is a conceptual diagram of a transmissive screen and a rear project type display device according to an embodiment of the present invention
  • FIG. 6 is a conceptual diagram of a configuration of a transmissive screen according to an embodiment of the present invention. ing.
  • the light projected from the rear-projection display device 134 shown in FIG. 5 is projected at a certain angle so as to largely appear on the transmission screen 136.
  • the light projected on the upper end of the screen is called projection light 114
  • the light projected on the lower end of the screen is called projection light 116.
  • the projection light 1 1 4 reaches the screen and passes through the screen. If the screen only transmits the projection light, this transmitted light will be transmitted in the direction in which it is incident, as is the original transmitted light 1 38, and will not reach the observer 120, that is, the observer Is invisible. In this case, it is necessary to diffuse the projection light in the direction of the observer in order for the projection light projected from the rear-projection display device to be visible to the observer as an image.
  • the projection light 114 reaches the screen and is diffused at a wide angle as shown by the dotted arrow, and a part of the diffused light is visually recognized by the observer by the diffused light 140.
  • the projected light 1 16 reaches the screen and is diffused at a wide angle as shown by the dotted arrow, and a part of the diffused light is As seen by the observer. In this way, the projection light projected from the rear-projection display device can project an image to the observer by the same transmission and diffusion effects in all parts on the screen where the projection light is projected.
  • the transmission screen 1336 shown in FIG. 5 has a flat base material 126, and a thin film 130 containing a pearlescent agent using synthetic mica formed on it.
  • the projected light passes through the screen substrate and partially reflects in the thin film containing the var agent, on the surface of titanium oxide with the var agent, or on the surface of synthetic mica.
  • the light that is transmitted while being diffused and diffused in multiple directions by the titanium oxide-coated synthetic mica is further diffused in multiple directions by a light diffusion layer that is embossed or the like. In this way, the screen can display a bright image at a wide angle with the projected light.
  • a screen with high image brightness and a wide bright field angle is a screen that can have two contradictory properties at the same time. It is. Therefore, in order to provide these two contradictory properties, there is a problem how to efficiently reflect and transmit or diffuse the projected light, and how to reduce the loss of light in the process.
  • a feature of the present invention is that a screen image has a high luminance and a vivid image is projected, that is, a bright and bright projected image can be visually recognized.
  • synthetic mica with very little colorant metal and good saturation is used in the pearling agent used.
  • it is a pearl agent using synthetic mica powder that can suppress light loss in the process of light reflection and diffusion.
  • FIG. 7 is an explanatory diagram of the behavior of incident light in a thin film by a pearl agent provided in the transmission screen of the present invention shown in FIGS. 5 and 6.
  • the titanium oxide-coated synthetic mica 234 is oriented in an arbitrary direction, whereby the projection light 236 is made of titanium oxide or synthetic mica powder. It is reflected on the body surface or refracted while passing through titanium oxide or synthetic mica powder. Then, the reflected projection light 238 is screened by another titanium oxide-coated synthetic mica or by being refracted when being transmitted or transmitted. The image can be viewed from a wide angle with respect to the front.
  • the titanium oxide-coated synthetic mica partially reflects light on its surface, it has high light transmittance and most of the light is refracted in the process of passing through titanium oxide and synthetic mica powder. It is due to
  • the aluminum powder 342 also exists at an arbitrary position in the thin film as in FIG. 8. Since the aluminum powder does not transmit light, the projection light 3 4 4 is reflected on the surface of the aluminum powder and is repeatedly reflected on the surface of the aluminum powder, such as on another aluminum powder surface. Repeat the diffuse reflection until light escapes from the screen surface. However, if the irregular reflection is repeated in the same manner as in the above-described reflective screen, the optical path length is much longer than the diffusion caused by refraction such as a pearlescent agent, and the intensity of the projected light is reduced. However, if the transmission efficiency is deteriorated, of course, if the transmission type screen is diffused by reflection like aluminum powder, the projected light will be reflected not toward the screen but toward the substrate. This often results in darker images on the front side of the screen.
  • Titanium oxide-coated synthetic mica also reflects projected light on the surface of titanium oxide and on the surface of synthetic mica. In most cases, the diffusion process of projected light from titanium oxide-coated synthetic mica is diffusion by refraction, so that light loss can be minimized. In addition, by reflecting the projection light on the surface of titanium oxide and the surface of synthetic mica, there is an effect of further widening the diffusion direction.
  • the characteristic of the present invention is that the use of synthetic mica with good saturation and no metal contamination minimizes the loss of light, thereby increasing the brightness of the image on the screen, This will enable the realization of a transmissive screen that can project vivid images at various angles.
  • X is Na +, K +, L i +, C a 2 +, R b 2 +, represents one or more ions selected from the group consisting of S r 2 +, Y is Mg 2+, F e 2 + , N i 24 , Mn 2 + , A 13 + , Fe 3 + , L i +, wherein Z represents ⁇ 13 + , S i 4 + , G e 4+, F e 3 +, represents one or more ions selected from the group consisting of B 3 +.
  • the general method for producing synthetic mica powder is, for example, in the case of synthetic fluorophlogopite, after mixing about 40 parts of caic anhydride, about 30 parts of magnesium oxide, about 13 parts of aluminum oxide and about 17 parts of potassium fluoride. , 1400 ⁇ : 1500. It melted in C, and obtaining a synthetic fluorphlogopite (KMg (A 1 S i 3 O 10) F 2) further crystallized at 1 300 to 1400 C. The obtained ore of synthetic fluorophlogopite is crushed and classified to obtain a synthetic fluorophlogopite powder.
  • the shape of the synthetic fluorophlogopite powder obtained in this way is irregularly shaped plate-like, and its particle size depends on the application, but is generally 0.05 to 10 ⁇ in the thickness direction.
  • the plane direction is 2-200 // m.
  • a transmissive screen and a rear-projection display device are configured by laminating a pearl agent using the synthetic mica according to the present invention on a base material, and a light diffusion layer in this order.
  • the base material materials such as transparent plastic, glass, polychlorinated vinyl, polyethylene, polyolefin such as polypropylene, polyester such as polyethylene terephthalate, polystyrene, polycarbonate, ataryl resin, and polyurethane resin can be used. If necessary, a plasticizer may be added to the resin in an amount of 20 to 100% by weight.
  • the thickness of the substrate is preferably from 100 to 100 / m.
  • a thin film is formed on a base material using a pearl agent using the synthetic mica according to the present invention, and a light diffusion layer is formed thereon.
  • a plastic film polypropylene, vinyl chloride, polyethylene terephthalate, triacetyl cellulose film, or the like can be used. It is preferable to use a film whose surface is embossed or matted.
  • a pearling agent using synthetic mica according to the present invention was printed on silk to a thickness of 100 m, and then a silicone resin was applied thereon to a thickness of 100 ⁇ .
  • a transmission screen hereinafter, referred to as product 2 of the present invention.
  • the unit of pearl agent The application amount per area is about 20 mg / cm 2 .
  • a combination of the transmission screens (hereinafter referred to as “Product 3 of the present invention”) was manufactured, and the performance of the transmission screen according to the invention was tested.
  • Comparative Example 1 ' A screen prepared by the same procedure as in Example 2-1 of the present invention and using a pearl agent using natural mica instead of the pearl agent according to the present invention (hereinafter referred to as Comparative Example 1 ') was produced. Then, the performance of the transmission screen according to the present invention was compared with an experiment.
  • Comparative Example 2 ′ On a screen prepared by the same procedure as in Example 1 of the present invention, a screen using aluminum powder instead of the pearling agent of the present invention (hereinafter referred to as Comparative Example 2 ′) was produced. The performance of the transmissive screen and comparative experiments were performed.
  • the comparison of the screen performance is based on the results that the brightness of the image in front of the screen (hereinafter referred to as “brightness”) for the same incident illuminance on the screen and the value of the angle at which the brightness of the image in front of the screen is halved ( In the following, four values were examined and judged, namely, the half-value angle, the reproducibility of the projected image for color (hereinafter, reproducibility), and the visibility of the image (hereafter, easy to see).
  • Comparative Example 1 ′ showed somewhat good results in luminance, half-value angle, and visibility, but had a problem in reproducibility.
  • Comparative Example 2 ′ although the reproducibility was good to some extent, no satisfactory results were obtained in other items, and it was not usable as a screen.
  • Comparative Example 3 ′ although all the items showed good results to some extent, the streaks due to the lens were still visible, and there was some difficulty in the visibility.
  • the performance of the present invention product 2 of the transmission type screen using the pearl agent using the synthetic mica powder according to the present invention showed good results in all the items tested. Inventive product 3 was similarly good in all cases.
  • the particle size of the synthetic mica powder used in the present invention is preferably about 60 ⁇ m to 200 ⁇ m .
  • the interference color of titanium dioxide-coated synthetic mica varies depending on the thickness of the titanium dioxide layer coated on the surface of the synthetic mica powder. Therefore, an experiment was conducted on the performance of a screen using titanium dioxide-coated synthetic mica powder for different layer thicknesses of titanium dioxide, and the results shown in Tables 7 and 8 below were obtained. In this experiment, the particle size of the synthetic mica was uniformed to 60 ⁇ m.
  • the evaluation method and expression method are the same as Table 6.
  • the unit of the layer thickness in Tables 7 and 8 is nm.
  • the layer thickness of titanium dioxide coated on the synthetic mica surface in the present invention is about 20 rim to 40 nm.
  • the performance of the screen is further improved by using the synthetic mica having excellent chroma with extremely little contamination of the coloring metal according to the present invention.
  • the effect is most effective when the particle size is 60 ⁇ to 200 ⁇ and the layer thickness is 20 nm to 40 nm.
  • the mica used for the pearling agent and the titanium oxide-coated mica can be formed by using a good synthetic mica having a very small amount of a coloring metal and having a high saturation.

Description

明 細 書
合成雲母含有スクリーン 本出願は、 ] 9 9 7 ^ 0 7月 2 8日付け出願の曰本国特許出願平成 9年第 2 1 8 0 9 9号、 1 9 9 7年 0 7月 2 8日付け出願の日本国特許出願平成 9年第 2 1 8 1 0 0号の優先権を主張しており、 ここに折り込まれるものである。
[技術分野]
本発明は映像を表示するスクリーン、 特にスクリーンに投影された映像の輝度の 向上に用いられる雲母粉体の改良に関する。
[背景技術]
一般に、 プロジェクタ一型の映像表示装置等は、 スクリーンとの問の距離が短く ても、 投影表示装置から映写する投影光を鏡等を使用して曲げることで、 十分な投 影距離を確保することができるため、 比較的容易に装置全体のコンパク ト化が可能 で、 しかも明るい映像が鑑賞できるなどの利点を有している。 また、 容易に大画面 表示が可能で、 しかも放射線等の影響が少ないという利点を有しており、 今後、 機 器の益々需要が期待される。 このような表示装置は、 スク リーン上に映像を投影し ており、 該スク リーンとしては、 スク リーンの観察側より映像を投影し、 反射映像 を観察する反射型スクリーンと、 スク リーンの背面側より映像を投影し、 透過画像 を観察する透過型スクリーンがある。
この中で、 背面投写型の透過型スクリーンは、 特開昭 6 2— 1 7 8 2 2 7、 特開 平 5— 8 8 2 6 4に開示されているように、 フレネルレンズ、 レンチキユラレンズ の二枚のレンズにより構成され、 フレネルレンズは背面より投影された投影光を集 光する役目を果たし、 レンチキユラレンズは水平方向に広く配光する役目を果たす。 この二枚のレンズの働きにより正面位置において明るい画像が観測できるというも のであった。
しかしフレネルレンズ、 レンチキユラレンズは共にその表面に凹凸があり、 その 凹凸によって有用な効果を得ることができる反面、 映像をスクリーン上に映し出す 際、 レンズの凹凸によりすじが幾重にも見えてしまい、 画像を大変見にくいものに してしまうという問題点があった。
また、 反射型スク リーンは、 基材上に光反射面と光拡散層とが備えられ、 近年の スク リーンの技術 ^ は、 映写される光量に対する反射輝度を上げることと、 広い 角度において明るい映像を視覚できるための改良が主流となっている。 そして光反 射、 光拡散層においては雲母表面に二酸化チタンを被覆した粉末を用いたパール剤 や、 スクリーン表面にガラスビーズを敷き詰めたスク リーン、 あるいはスク リーン 表面に凹凸を設けるなどのものがあり、 スクリーンの性能は著しく進歩しているが、 まだまだ反射輝度、 明視角度には改良の余地が残されている。
特に、 スクリーンの反射輝度を向上するために、 雲母表面に二酸化チタンを被覆 した粉末を用いたパール剤を使用し、 光の多重反射を意図することは、 特開平 3— 2 0 9 4 4 7、 特開平 3— 2 4 9 6 3 4、 特開平 4— 1 3 9 4 3 7、 特開平 4 - 1 7 9 9 4 3などに公開される通り、 既に広く用いられる公知の技術である。
しかし、 実際は投影された映像の色彩が暗くなつてしまい、 鮮やかな映像とは言 えず、 反射輝度においてもそれほど高いものであるとは言えず、 投影映像の色彩の 再現性、 反射輝度においては必ずしも期待通りの効果をもたらすものであるとは言 い難い。 これらは二酸化チタン被覆雲母の性質によるものであり、 二酸化チタン被 覆雲母の持つ性能の限界かと思われていた。
[発明の開示]
本発明は前記従来技術の課題に鑑みなされたものであり、 その目的は、 スクリー ンに投影された映像の反射、 拡散性の向上のために使用されるパール剤に用いられ る雲母、 及び酸化チタン被覆雲母を改良することにより、 映像の輝度を上げ、 色彩 の再現性に優れた、 広い範囲で視認識性を持ったスクリーンを提供することにある。 前記目的を達成するために本発明にかかる合成雲母含有スクリーンは、 投影され た映像を表示するスク リーンにおいて、 酸化チタン被覆雲母が含有されており、 該 雲母は合成雲母であろことを特徴とする。
また、 本発明における前記スク リーンにおいて、 基材上に光反射面と、 光拡散層 が形成された反射型スクリーンであることが好適である。 また、 本発明における前記スク リーンにおいて、 基材上に光拡散層が形成された 透過型スクリーンであることが好適である。
また、 本発明における前記スクリーンにおいて、 含有される酸化チタン被覆合成 雲母は合成雲母が一般式、
1 3 1 2 3 ^ 4 ^ 1 0 2
(式中 Xは N a+ K + L i + C a 2 + R b 2 + S r 2 +からなる群より選ばれる 一種以上のイオンを表し、 Yは Mg 2+ F e 2 + N i 2 + , Mn 2 + , A 1 3+, F e 3 + L i +からなる群より選ばれる一種以上のイオンを表し、 Zは A l 3 + S i 4 + G e 4+, F e 3 + B 3 +からなる群より選ばれる一種以上のイオンを表す。 ) で表される合成フッ素金雲母であることが好適である。
また、 本発明における投影型反射スク リーンにおいて、 含有される酸化チタン被 覆合成雲母に用いられる合成雲母は 5 200 mの粒径であることが好適である。 また、 本発明における透過型スク リーンにおいて、 含有される酸化チタン被覆合 成雲母に用いられる合成雲母は 60 200 / mの粒径であることが好適である。 また、 本発明における前記スク リーンにおいて、 含有される酸化チタン被覆合成 雲母は合成雲母に酸化チタンを 20 40 n mの層厚で被覆したものであることが 好適である。
また、 本発明における前記スク リーンにおいて、 含有される酸化チタン被覆合成 雲母とは合成雲母に二酸化酸化チタン及び/または低次酸化チタンを被覆したもの であることが好適である。
また、 本発明における前記スク リーンにおいて、 パール剤を構成する主成分とし て酸化チタン被覆合成雲母が用いられており、 前記パール剤を塗布することでスク リ一ンに酸化チタン被覆雲母が含有されていることが好適である。
[図面の簡単な説明]
図 1は、 本発明の一実施形態にかかる反射型スクリーンおよび投影型表示装置の 概念図、
図 2は、 本発明の一実施形態にかかる反射型スクリーンの構成の概念図、 図 3は、 反射型スクリーンにおいてパール剤により形成された薄膜中での入射光 の挙動の説明図、 図 4は、 反射型スクリーンにおいてパール剤の代わりにアルミニウム粉体を使用 した場合での入射光の挙動の説明図、
図 5は、 本発明の一実施形態にかかる透過型スクリーンおよびリアプロジェク ト 型表示装置の概念図、
図 6は、 本発明の一実施形態にかかる透過型スクリーンの構成の概念図、 図 7は、 透過型スクリーンにおいてパール剤により形成された薄膜中での入射光 の挙動の説明図、
図 8は、 透過型スクリーンにおいてパール剤の代わりにアルミニウム粉体を使用 した場合の入射光の挙動の説明図である。
[発明を実施するための最良の形態]
本発明は、 プロジェクターから投影される映像を観察可能に表示するスクリーン の映像の輝度、 色彩の再現性、 明視角度などの性能を向上するものである。 このよ うなスクリーンには、 背景技術でも述べたように主に反射型スクリーンと透過型ス クリーンとが存在し、 本発明はこのどちらの形態においても使用することが可能で ある。
以下、 本発明の好適な実施形態について形態別に分けて説明する。 反射型スクリーン
図 1には本発明の一実施形態にかかる反射型スクリーンおよび投影型表示装置の 概念図が、 図 2には本発明の一実施形態にかかる反射型スクリーンの構成の概念図 が示されている。
図 1の投影型表示装置 1 0より投影された光は、 反射型スク リーン 1 2上に大き く映し出すためにある程度の角度を持って投影される。 この図 1においてスクリー ン上端部に投影される光を投影光 1 4、 スクリーン下端部に投影される光を投影光 1 6と呼ぶことにする。 投影光 1 4はスクリーン上に至り反射される。 この反射光 はスク リーンが正反射のみを行うならば、 本来の反射光 1 8のように入射角と等し い反射角で反射され、 観察者 2 0に届くことがない、 つまり観察者は視認できない。 こうなると投影型表示装置より投影された投影光が観察者に映像として観察可能に 映るためには、 観察者の方向に投影光を反射させる必要がある。 また観察者が多人 数の場合に、 多くの人に映像が視認できるようにするためには、 投影光を広い方向 に反射しなければならない。 このため投影光 1 4はスク リーン上に至り、 点線の矢 印で示されるように、 広い角度で反射、 拡散され、 その拡散反射光の一部が反射光 2 2にょうに観察者 2 0に視認される。 下端の場合も同様である。 投影光 1 6は、 スクリーン上に至り、 点線の矢印で示されるように広い角度で反射、 拡散され、 そ の拡散反射光の一部が反射光 2 4のように観察者 2 0に視認される。 このように投 影型表示装置より投影される投影光は、 投影光が投影されたスクリーン上の全ての 部分で同様な反射と拡故の作用によつて観察者に映像を映し出すことができる。 図 1に示す反射型スクリーン 1 2は、 図 2にあるように平板状の基材 2 6と、 そ の上に形成された光反射面 2 8と合成雲母を用いたパール剤を含む薄膜 3 0と光拡 散層 3 2とを備え、 投影された光はスクリーン表面より光拡散層 3 2、 パール剤を 含む薄膜 3 0を一部はパール剤の酸化チタン表面、 あるいは合成雲母表面において 反射、 拡散されながら透過して行き、 光反射面にいたり、 全反射して再びパール剤 を含む薄膜中において一部はパール剤の酸化チタン表面、 あるいは合成雲母表面に おいて反射、 拡散されながら透過して行き、 酸化チタン被覆合成雲母によって多方 向に拡散された光を、 エンボス加工等を施された光拡散層によって更に多方向に拡 散される。 このようにしてスクリーンは投影された光を広い角度で明るい映像を映 し出すことが可能となる。
ところで、 映像の鲆度が高く、 広い明視野角を有する反射型スク リーンを作るこ とは、 相反する二つの行程によらなければならない。 つまりは、 スク リーンにおい て高い映像の輝度を持たせるためには、 投影された光の拡散を抑え、 光を一定の範 囲に絞り込むようにする方がよレ、。 しかしスク リーンに映し出される映像は、 大勢 の人が見ることができるように広い角度において明るい映像を映し出せるものが必 要であり、 広い視野角を持つようにするためには投影された光を可能な限り拡散し なければならない。
このように相反する二つの性質を同時に持ち得るスクリーンが優れたスクリーン であるといえる。 このため、 この相反する二つの性質を備えるためには、 如何に投 影された光を効率よく反射拡散あるいは透過拡散でき、 且つその過程で光の損失を 如何に少なく抑えるかが問題となる。
本発明において特徴的なことは、 スクリーンの映像の輝度が高く、 鮮やかな映像 を映写すること、 つまり、 色鮮やかな、 明るい投影画像を視覚できるものとするこ とであり、 このために本実施形態では使用するパール剤において、 着色性金属の混 入の極めて少なレ、彩度の良好な合成雲母を用いている。
すなわち、 光の反射、 拡散における過程での光の損失を抑え得る合成雲母粉体を 用いたパール剤である。
図 3は図 1及び図 2に示した本発明の反射型スクリーン中に設けられたパール剤 による薄膜中での入射光の挙動の説明図である。
図 3に示すようにバール剂を含む薄膜 3 0中で、 酸化チタン被覆合成雲母 3 4は 任意の方向を向いており、 これにより投影光 3 6は酸化チタン、 あるいは合成雲母 粉体表面において反射し、 または酸化チタン、 合成雲母粉体内を透過する過程で屈 折することによりスクリーン正面に対して広い角度で映像を視覚することができる。 そしてこの場合、 光の拡散は主に酸化チタン、 合成雲母粉体内を透過する過程で屈 折することによるものである。
ここで図 3において合成雲母でなく天然雲母による酸化チタン被覆雲母を使用し た場合、 天然雲母が微量の金属を含有していることによる着色があるために、 投影 された光が酸化チタン被覆天然雲母を透過する際に、 光が弱められてしまったり、 着色の影響で投影された光の色彩を変えてしまうなどの悪い影響を及ぼす結果とな る。 また投影された光が天然雲母中を透過するのは一度だけであるとは限らず、 光 反射面で反射したのち再び天然雲母中を透過する可能性や一度透過した酸化チタン 被覆天然雲母とは別の酸化チタン被覆天然雲母を透過することも考えれば、 二度、 三度と天然雲母を透過することとなり、 天然雲母の光に及ぼす悪影響は、 僅かな着 色であるにも関わらず大きな意味を持ってくる。
また本発明でのパール剤のような主に屈折による拡散によるものではなく、 代わ りに反射によるもの、 例えばアルミニウム粉体を反射、 拡散に使用した場合を考え てみる。 図 4に示すようにアルミニウム粉体 4 2も薄膜中で任意の位置に存在して いる。 アルミニウム粉体は光を透過させることはないので投影光 4 4はアルミニゥ ム粉体表面で反射し、 また別のアルミニウム粉体表面にて反射するというようにァ ルミニゥム粉体表面と光反射面 4 6での反射を繰り返し、 再ぴスクリーン表面より 光が抜け出すまで乱反射を繰り返す。
しかしこのように乱反射を繰り返していると、 パール剤のような屈折による拡散 より光路長が遥かに長くなり、 反射光の強さを減退する原因となってしまい、 結局、 反射効率が悪くなつてしまう。
ところが本発明によれば、 金属の混入のない彩度の良好な合成雲母を使用するの で、 光が透過する際に、 光を吸収したり、 弱めたり、 着色してしまう可能性が全く ない。 また酸化チタン被覆合成雲母も、 酸化チタン表面、 合成雲母表面で投影光を 反射させるものの、 酸化チタン被覆合成雲母の光の透過性は高く、 その反射量は僅 かであり、 酸化チタン被覆合成雲母の投影光の拡散過程は、 その殆どが屈折による 拡散であるから、 光の損失を最小限に抑えることが可能である。 そしてまた、 酸化 チタン表面、 合成雲母表面で投影光を反射させることで、 拡散方向をさらに広くす る効果もある。
このように本発明において特徴的なことは、 金属の混入のない彩度の良好な合成 雲母を使用することで、 光の損失を最小限に抑えることにより、 スク リーンの映像 の輝度を上げ、 広い角度で鮮やかな映像を映写することのできる反射型スクリーン の実現が可能となることである。
ここで、 本発明において使用される合成雲母の一例が以下の一般式で示される。
1 / 3〜: 1 2〜 ·? し 】 J 1 0 ) 1 2
(式中 Xは N a K + , L i +, C a 2 + , R b 2 +, S r 2 +からなる群より選ばれる 一種以上のイオンを表し、 Yは M g 2 +, F e 2 + , N i 2 +, M n 2 + , A 1 3 +, F e 3 +, L i +からなる群より選ばれる一種以上のイオンを表し、 Zは A l 3 + , S i 4 +, G e +, F e 3 + , B 3 +からなる群より選ばれる一種以上のイオンを表す。 )
合成雲母粉体の一般的製造方法は、 例えば合成フッ素金雲母の場合、 無水ケィ酸 約 4 0部、 酸化マグネシゥム約 3 0部、 酸化アルミニゥム約 1 3部及びケィフッ化 力リウム約 1 7部を混合した後、 1 4 0 0〜 1 5 0 0 Cで溶融し、 さらに 1 3 0 0 〜: 1 4 0 0 °Cで晶出して合成フッ素金雲母 (KM g (A 1 S i 3 O 1 0) F 2) を得る。 得られた合成フッ素金雲母の鉱塊を粉砕し、分級して合成フッ素金雲母粉体を得る。 このようにして得られた合成フッ素金雲母粉体の形状は不定形板状であり、 その粒 径は用途にもよるが、 一般的には厚さ方向が 0 . 0 5〜 1 0 μ Γηであり、 面方向が 2〜 2 0 0 mである。
以下に、 本発明における反射型スクリーンの製造実施例と性能の比較実験の結果 をそれぞれ記す。 本発明の一実施形態にかかる反射型スクリーンおよび投影型表示装置は、 基材の 上に光反射面を設け、 さらに本発明による合成雲母を用いたパール剤、 光拡散層の 順に積層して構成される。
基材は、 白色ブラスティックシート、 ポリ塩化ビニル、 ポリエチレン、 ポリプロ ピレンなどのポリオレフイン、 ポリエチレンテレフタレー トなどのポリエステル、 ボリスチレン、 ポリカーボネート、 アタ リル樹脂、 ポリ ウレタン樹脂などの材料を 用いることができる。 樹脂に必要に応じて可塑剤を 2 0〜 1 0 0重量%加えてもよ レ、。 基材の厚さとしては 1 0〜 1 0 0 0 μ mが好適である。
光反射面は、 アルミニウム箔、 アルミニウム板、 アルミニウム蒸着フィルム、 ァ ルミニゥム粉などを用いることができる。 さらにその上に本発明による合成雲母を 用いたパール剤で薄膜を形成する。
光拡散層は、 プラスティックフィルムやポリプロピレン、 塩化ビニル、 ポリェチ レンテレフタレート、 トリァセチルセルロースフィルムなどを用いることができ、 表面をエンボス加工、 マツト加工したフィルムを用いるのが好適である。
光反射面、 パール剤による薄膜、 光拡散層は、 スク リーン印刷法、 ロールコート 法、 オフセット印刷などにより印刷される方法と、 ナイフコ一ター、 コンマコータ —などによりコーティングされる方法が例示できる。
以下、 本発明の好適な実施例を説明する。
[実施例 1一 1 ]
無水ケィ酸 4 0部、 酸化マグネシウム 3 0部、 酸化アルミニウム 1 3部及びケィ フッ化カリウム 1 7部を混合した後、 1 5 0 0 °Cで溶融し 1 3 5 0 °Cで晶出した合 成フッ素金雲母を粗粉砕、 微粉砕し、 粒径 2 0〜 1 0 0 μ m (マイクロメリティッ ク社製セディグラフ 5 0 0 0— 0 1型により測定した球状換算値、 以下粒径の測定 方法は同じ) の合成フッ素金合成雲母粉体 1 0 0部を得た。 さらに得られた合成雲 母 5 0部をイオン交換水 5 0 0部に添加して十分に攪拌し均一に分散させた。 得ら れた分散液に濃度 4 0重量パーセントの硫酸チタニル水溶液 2 0 8 . 5部を加えて、 攪拌しながら加熱し 6時間沸騰させた。 放冷後、 濾過水洗し 9 0 0 °Cで焼成して、 二酸化チタンで被覆された合成雲母 9 0部を得た。 この合成雲母粉体を用いたパー ル剤をァクリル樹脂ラッカー中に添加し、 ホモジナイザ一にて分散混合してパール 剤ィンキとした。 厚さ 2 0 0 / mのポリ塩化ビュルシ一トを基材とし、 その上に縦 6 0 0 m m , 横 6 0 0 m mの金属アルミニウム箔を張り付け、 その上に本発明によ る合成雲母を用いたパール剤インキを厚さ 1 0 0 μ Γτιとなるようにシルク印刷した 後、 更にその上に厚さ 1 0 0 μ mになるようにポリシロキサン樹脂をシルク印刷し て、 投影型反射スク リーンを得た (以下、 本発明品 1 という) 。 なお、 バール剤の 単位面積当たりの塗布量は約 2 0 m g / c m 2である。
[比較例 1 一 1の製造]
本発明の実施例と同様の手順により作成したスク リーンにおいて、 本発明による パール剤の代わりに天然雲母を用いたパール剤を使用したスク リーン (以下、 比較 例 1という) を製造し、 本発明による反射型スクリーンの性能と比較実験をした。
[比較例 1 一 2の製造]
本発明の実施例と同様の手順により作成したスクリ一ンにおいて、 本発明による パール剤の代わりにアルミニウム粉末を用いたスク リーン (以下、 比較例 2という) を製造し、 本発明による反射型スク リーンの性能と比較実験をした。
[実験結果]
スクリーンの性能の比較実験は、 スク リーンの入射照度に対するスクリーン正面 の反射輝度の割合の π倍の値を示すスク リーンゲージ値 (以下、 S G値という) と、 スクリーン正面における反射輝度が半分の値になる角度の値 (以下、 半値角度とい う) と、 投影された映像の色彩に対する再現性 (以下、 再現性という) の 3つの値 について調べ、 判定した。
前述した通りに比較実験を行ったところ、 次に示す表 1のような結果を得た。 尚、 スクリーン性能の評価に際しては、 S G値、 半値角度については実際の測定により、 数値により表され、 その数値の大きいものほど優れた性能を持つていることを示し ており、 再現性については、 スク リーン上に映し出された映像の色彩と実際のフィ ルムにおける色彩を比較し、 大変良い◎、 良い〇、 普通△、 悪い X、 大変悪い X X . の五段階で評価した。
【表 1】
Figure imgf000012_0001
表 1に示すように、 比較例 1は、 S G値、 半値角度は、 ある程度良好な結果を示 すが、 再現性の点で好ましくない。 比較例 2は、 S G値、 再現性はある程度良好で あつたが、 半値角度について十分な結果を得ることができなかった。 しかし、 本発 明による合成雲母粉体を用いたパール剤を使用した反射型スクリーンの性能は、 実 験した全ての項目におレ、て良好な結果を示した。
次に一定の層厚の二酸化チタンを被覆した、 粒径の違う合成雲母粉体を用いたパ 一ル剤を使用して、 スク リーンの性能への影響の実験を行った。 この実験において 二酸化チタンの層厚は 4 0 n mで一律にそろえられている。 この結果、 次の表 2の ような結果を得た。 評価の表し方は表 1 と同じである。
【表 2】
Figure imgf000012_0002
尚、 表 2の粒径の単位は/ i mである。
表 2にある結果より、 本発明において用いられる合成雲母粉体の粒径は 5 μ m〜 2 0 0 μ m程度が好適であることがわかる。 この結果、 天然雲母による粒径は 5〜 6 0 // mで良好な結果を示すというデータがあるが、 着色性金属の混入の極めて少 ない本発明による合成雲母はさらに大きな粒径においても良好な結果を示している。 さらに合成雲母粉体表面に被覆させる二酸化チタンの層厚によって、 二酸化チタ ン被覆合成雲母の示す干渉色について次のようなデーターがある。
Figure imgf000013_0001
そこで、 二酸化チタンの異なる層厚ごとの、 二酸化チタン被覆合成雲母粉体を用 いたスクリーンの性能について実験を行ったところ次の表 3及び表 4のような結果 を得た。 この実験において、 合成雲母の粒径は 6 0 μ mに一律にそろえられている。 評価の表し方は表 1、 2と同じである。
【表 3】
Figure imgf000013_0002
【表 4】
Figure imgf000013_0003
尚、 表 3、 表 4の層厚の単位は n mである ( 表 3、 及び表 4の結果より、 本発明における合成雲母表面に被覆させる二酸化チ タンの層厚としては、 2 0 n m〜4 0 n m程度であることが好適である。
以上のように、 本発明にかかる着色性金属の混入の極めて少ない彩度の良好な合 成雲母を使用することによって、 スク リーンの性能はさらに向上する。 特に粒径 5 μ πι〜2 0 0 μ ηι、 層厚が、 2 0 n m〜 4 0 n mにおいて最も効果を発揮する。 以上説明したように本発明にかかる反射型スクリーンおよび投影型表示装置によ れば、 パール剤に用いられる雲母、 及び酸化チタン被覆雲母を着色性金属の混入の 極めて少ない彩度の良好な合成雲母を使用することにより、 スク リーンの反射輝度 を上げ広い角度で鮮やかな映像を観察することのできる反射型スクリ一ンおよび投 影型表示装置を提供することができる。 透過型スクリーン
図 5には本発明の一実施形態にかかる透過型スクリーンおよびリアプロジェク ト 型表示装置の概念図が、 図 6には本発明の一実施形態にかかる透過型スクリーンの 構成の概念図が示されている。
図 5のリアプロジェク ト型表示装置 1 3 4より投影された光は、 透過型スクリー ン 1 3 6上に大きく映し出すためにある程度の角度を持って投影される。 この図 5 においてスク リーン上端部に投影される光を投影光 1 1 4、 スク リーン下端部に投 影される光を投影光 1 1 6と呼ぶことにする。 投影光 1 1 4はスクリーン上に至り スクリーンを透過する。 この透過光はスクリーンが投影光を透過させるのみならば、 本来の透過光 1 3 8のように入射したままの方向に透過して行き、 観察者 1 2 0に 届くことがない、 つまり観察者は視認できない。 こうなるとリアプロジェク ト型表 示装置より投影された投影光が観察者に映像として観察可能に映るためには、 観察 者の方向に投影光を拡散させる必要がある。 また観察者が多人数の場合に、 多くの 人に映像が視認できるようにするためには、 投影光を広い方向に拡散しなければな らない。 このため投影光 1 1 4はスク リーン上に至り、 点線の矢印で示されるよう に、 広い角度で拡散され、 その拡散光の一部が拡散光 1 4 0にょうに観察者に視認 される。 下端の場合も同様である。 投影光 1 1 6は、 スク リーン上に至り、 点線の 矢印で示されるように広い角度で拡散され、 その拡散光の一部が拡散光 1 4 2のよ うに観察者 1 2 0に視認される。 このようにリアプロジェク ト型表示装置より投影 される投影光は、 投影光が投影されたスク リーン上の全ての部分で同様な透過、 拡 散の作用によって観察者に映像を映し出すことができる。
図 5に示す透過型スクリーン 1 3 6は、 図 6にあるように平板状の基材 1 2 6と、 その上に形成された合成雲母を用いたパール剤を含む薄膜 1 3 0と光拡散層 1 3 2 とを備え、 投影された光はスク リーン基材を透過して行き、 バール剤を含む薄膜中 において一部はノ、°―ル剤の酸化チタン表面、 あるいは合成雲母表面において反射、 拡散されながら透過して行き、 酸化チタン被覆合成雲母によって多方向に拡散され た光を、 エンボス加工等を施された光拡散層によって更に多方向に拡散される。 こ のようにしてスクリーンは投影された光を広い角度で明るい映像を映し出すことが 可能となる。
ところで反射型スクリーンにおいても述べたが、 映像の輝度が高く、 広い明視野 角を有するスク リーンとは、 相反する二つの性質を同時に持ち得るスク リーンであ ることは透過型スク リーンにおいても同様である。 このため、 この相反する二つの 性質を備えるためには、 如何に投影された光を効率よく反射拡散あるいは透過拡散 でき、 且つその過程で光の損失を如何に少なく抑えるかが問題となる。
本発明において特徴的なことは、 スクリーンの映像の輝度が高く、 鮮やかな映像 を映写すること、 つまり、 色鮮やかな、 明るい投影画像を視覚できるものとするこ とであり、 このために本実施形態では使用するパール剤において、 着色性金属の混 入の極めて少なレ、彩度の良好な合成雲母を用いている。
すなわち、 光の反射、 拡散における過程での光の損失を抑え得る合成雲母粉体を 用いたパール剤である。
図 7は図 5及び図 6に示した本発明の透過型スクリーン中に設けられたパール剤 による薄膜中での入射光の挙動の説明図である。
図 7に示すようにパール剤を含む薄膜 2 3 0中で、 酸化チタン被覆合成雲母 2 3 4は任意の方向を向いており、 これにより投影光 2 3 6は酸化チタン、 あるいは合 成雲母粉体表面において反射し、 または酸化チタン、 合成雲母粉体内を透過する過 程で屈折する。 そして、 反射した投影光 2 3 8はまた別の酸化チタン被覆合成雲母 においてあるいは反射され、 あるいは透過にする際に屈折することによりスクリ一 ン正面に対して広い角度で映像を視覚することができる。 そしてこの場合、 酸化チ タン被覆合成雲母は、 その表面で光を一部は反射させるものの、 光の透過性が高く 光の拡散はその殆どが酸化チタン、 合成雲母粉体内を透過する過程で屈折すること によるものである。
ここで図 7において合成雲母でなく天然雲母による酸化チタン被覆雲母を使用し た場合、 反射型スク リーンにおいて述べたことと同様の問題を生じる。 つまり天然 雲母が微量の金属を含有していることによる着色があるために、 投影された光が酸 化チタン被覆天然雲母を透過する際に、 光が弱められてしまったり、 着色の影響で 投影された光の色彩を変えてしまうなどの悪い影響を及ぼす結果となる。 また投影 された光が天然雲母中を透過するのは一度だけであるとは限らず、 光反射面で反射 したのち再び天然雲母中を透過する可能性や一度透過した酸化チタン被覆天然雲母 とは別の酸化チタン被覆天然雲母を透過することも考えれば、 二度、 三度と天然雲 母を透過することとなり、 天然雲母の光に及ぼす悪影響は、 僅かな着色であるにも 関わらず大きな意味を持つてくる。
またアルミニウム粉体を透過型スクリーンでの拡散に使用した場合を考えてみる。 図 8に示すようにアルミニウム粉体 3 4 2も図 7と同様に薄膜中で任意の位置に 存在している。 アルミニウム粉体は光を透過させることはないので投影光 3 4 4は アルミニウム粉体表面で反射し、 また別のアルミニウム粉体表面にて反射するとい うようにアルミニウム粉体表面での反射を繰り返し、 スクリーン表面より光が抜け 出すまで乱反射を繰り返す。 しかし前述の反射型スクリーン同様このように乱反射 を繰り返していると、 パール剤のような屈折による拡散より光路長が遥かに長くな り、 投影光の強さを減退する原因となってしまい、 結局、 透過効率が悪くなつてし まうことはもちろん、 透過型スクリーンにおいてはアルミニゥム粉体のように反射 によつて拡散を行うと、 投影光がスクリーンの表面側でなく基材侧の方に反射され てしまうことが多くなり、 結局はスクリーン表面側の映像を暗く してしまう。
ところが本発明によれば、 金属の混入のない彩度の良好な合成雲母を使用するの で、 光が透過する際に、 光を吸収したり、 弱めたり、 着色してしまう可能性が全く ない。 また酸化チタン被覆合成雲母も、 酸化チタン表面、 合成雲母表面で投影光を 反射させるものの、 酸化チタン被覆合成雲母の光の透過性は高く、 その反射量は僅 かであり、 酸化チタン被覆合成雲母の投影光の拡散過程は、 その殆どが屈折による 拡散であるから、 光の損失を最小限に抑えることが可能である。 そしてまた、 酸化 チタン表面、 合成雲母表面で投影光を反射させることで、 拡散方向をさらに広くす る効果もある。
このように本発明において特徴的なことは、 金属の混入のない彩度の良好な合成 雲母を使用することで、 光の損失を最小限に抑えることにより、 スクリーンの映像 の輝度を上げ、 広い角度で鮮やかな映像を映写することのできる透過型スクリーン の実現が可能となることである。
ここで、 透過型スクリーンにおいて使用される合成雲母は反射型スクリーンで述 ベたものと同様、 合成雲母の一般式およびその製造方法も以下のように示される。
人 1 ' 3〜1 2〜3 、ん 4し 1 0) I 2
(式中 Xは Na+, K +, L i +, C a 2 + , R b 2 +, S r 2 +からなる群より選ばれる 一種以上のイオンを表し、 Yは Mg2+, F e 2 +, N i 24, Mn2 +, A 13+, F e 3 +, L i +からなる群より選ばれる一種以上のイオンを表し、 Zは Λ 1 3 +, S i 4 +, G e 4+, F e 3 +, B 3 +からなる群より選ばれる一種以上のイオンを表す。 )
合成雲母粉体の一般的製造方法は、 例えば合成フッ素金雲母の場合、 無水ケィ酸 約 40部、 酸化マグネシゥム約 30部、 酸化アルミニゥム約 1 3部及びケィフッ化 カリウム約 1 7部を混合した後、 1 400〜: 1 500。Cで溶融し、 さらに 1 300 〜1400 Cで晶出して合成フッ素金雲母 (KMg (A 1 S i 3O10) F2) を得る。 得られた合成フッ素金雲母の鉱塊を粉砕し、分級して合成フッ素金雲母粉体を得る。 このようにして得られた合成フッ素金雲母粉体の形状は不定形板状であり、 その粒 径は用途にもよるが、 一般的には厚さ方向が 0. 05〜1 0 μιηであり、 面方向が 2〜200 // mである。
以下に、 本発明における透過型スクリーンの製造実施例と性能の比較実験の結果 をそれぞれ記す。 本発明の一実施形態にかかる透過型スクリーンおよびリアプロジェク ト型表示装 置は、 基材の上に本発明による合成雲母を用いたパール剤、 光拡散層の順に積層し て構成される。 基材は、 透明プラスティック、 ガラス、 ポリ塩化ビュル、 ポリエチレン、 ポリプ 口ピレンなどのポリオレフイン、 ポリエチレンテレフタレートなどのポリエステル、 ポリスチレン、 ポリカーボネート、 アタリル樹脂、 ポリウレタン樹脂などの材料を 用いることができる。 樹脂に必要に応じて可塑剤を 2 0〜 1 0 0重量%加えてもよ レ、。 基材の厚さとしては 1 0〜 1 0 0 0 / mが好適である。
基材の上には本発明による合成雲母を用いたパール剤で薄膜を形成し、 その上に 光拡散層を形成する。
光拡散層は、 プラスティックフィルムやポリプロピレン、 塩化ビニル、 ポリェチ レンテレフタレート、 トリァセチルセルロースフィルムなどを用いることができ、 表面をエンボス加工、 マツト加工したフィルムを用いるのが好適である。
パール剤による薄膜、 光拡散層は、 スク リーン印刷法、 ロールコート法、 オフセ ッ ト印刷などにより印刷される方法と、 ナイフコーター、 コンマコ一ターなどによ りコーティングされる方法が例示できる。
以下、 本発明の好適な実施例を説明する。
[実施例 2— 1 ]
無水ケィ酸 4 0部、 酸化マグネシゥム 3 0部、 酸化アルミニゥム 1 3部及びケィ フッ化カリウム 1 Ί部を混合した後、 1 5 0 0 °Cで溶融し 1 3 5 0 °Cで晶出した合 成フッ素金雲母を粗粉砕、 微粉砕し、 粒径 2 0〜 1 0 0 m (マイクロメリティッ ク社製セディグラフ 5 0 0 0— 0 1型により測定した球状換算値、 以下粒径の測定 方法は同じ) の合成フッ素金合成雲母粉体 1 0 0部を得た。 さらに得られた合成雲 母 5 0部をィオン交換水 5 0 0部に添加して十分に攪拌し均一に分散させた。 得ら れた分散液に濃度 4 0重量パーセントの硫酸チタニル水溶液 2 0 8 . 5部を加えて、 攪拌しながら加熱し 6時間沸騰させた。 放冷後、 濾過水洗し 9 0 0 °Cで焼成して、 二酸化チタンで被覆された合成雲母 9 0部を得た。 この合成雲母粉体を用いたパー ル剤をァクリル樹脂ラッカ一中に添加し、 ホモジナイザ一にて分散混合してパール 剤インキとした: 厚さ 2 0 0 μ mの透明ブラスティックを基材とし、 その上に本発 明による合成雲母を用いたパール剤ィンキを厚さ 1 0 0 mとなるようにシルク印 刷した後、 更にその上に厚さ 1 0 0 μ πιになるようにシリコン樹脂をシルク印刷し て、 透過型スク リーン (以下、 本発明品 2という) を得た。 なお、 パール剤の単位 面積当たりの塗布量は約 2 0 m g / c m 2である。
[実施例 2— 2 ]
フレネノレレンズ、 レンチキユラレンズの二枚のレンズにより構成された従来の透 過型スクリーンと、 実施例 2— 1 と同様の手順で製造した本発明品を本発明品が一 番表面に来るよう組み合わせ、 一つの透過型スクリーン (以下、 本発明品 3という) を製造し、 本発明による透過型スクリーンの性能を実験した。
[比較例 2— 1の製造]
本発明の実施例 2— 1 と同様の手順により作成したスクリーンにおいて、 本発明 によるパール剤の代わりに、 天然雲母を用いたパール剤を使用したスクリーン (以 下、 比較例 1 ' という) を製造し、 本発明による透過型スク リーンの性能と比較実 験をした。
[比較例 2— 2の製造]
本発明の実施例 1 と同様の手順により作成したスクリーンにおいて、 本発明によ るパール剤の代わりに、 アルミニウム粉末を用いたスク リーン (以下、 比較例 2 ' という) を製造し、 本発明による透過型スクリーンの性能と比較実験をした。
[比較例 2— 3の製造]
フレネルレンズ、 レンチキユラレンズのニ枚のレンズにより構成された従来の透 過型スクリーン (以下、 比較例 3 ' とレ、う) を使用して、 本発明による透過型スク リーンの性能と比較実験をした。
スクリーンの性能の比較実験は、 スクリ一ンへの同じ入射照度に対するスクリ一 ン正面における映像の輝度 (以下、 輝度という) と、 スク リーン正面における映像 の輝度が半分の値になる角度の値 (以下、 半値角度という) と、 投影された映像の 色彩に対する再現性 (以下、 再現性という) 、 さらに映像の見やすさ (以下、 見や すさという) の 4つの値について調べ、 判定した。
スクリーン性能の評価に際しては、 輝度、 半値角度については実際の測定により、 数値により表され、 その数値の大きいものほど優れた性能を持っていることを示し ており、 再現性については、 スク リーン上に映し出された映像の色彩と実際のフィ ルムにおける色彩を比較することで、 大変良い◎、 良い〇、 普通△、 悪い X、 大変 悪い X X、 の五段階で評価した。 また、 映像の見やすさにおいては、 主観的観点か らの評価を避けるため、 無作為に選んだ 1 0人の人に名前を伏せてそれぞれのスク リーンによる映像を観察してもらい、 大変良い 5、 良い 4、 普通 3、 悪い 2、 大変 悪い 1、 の五段階で評価してもらい、 その平均を取って、 4 . 5〜5を大変良い◎、 3 . 5〜4 . 4を良い〇、 2 . 5〜3 . 4を普通△、 1 . 5〜2 . 4を悪い X、 1 〜 1 . 4を大変悪レ、 X X、 の五段階で表した。
[実験結果]
【表 5】
Figure imgf000020_0001
以上の結果から、 表 5にある通り、 比較例 1 ' は、 輝度、 半値角度、 見やすさと も、 ある程度良好な結果を示したものの、 再現性に問題があった。 比較例 2 ' は、 再現性はある程度良好であったものの、 その他の項目においては芳しい結果が得ら れず、 スク リーンとして使えるものではなかった。 比較例 3 ' は、 全ての項目にお いてある程度良好な結果を示したものの、 やはりレンズによるすじが見えてしいま い、 見やすさにおいて多少の難があった。 しかし本発明による合成雲母粉体を用い たパール剤を使用した透過型スクリ一ンの本発明品 2の性能は、 実験した全ての項 目において良好な結果を示した。 本発明品 3も同様に、 全てに良好であった。
次に- 定の層厚の二酸化チタンを被覆した、 粒径の違う合成雲母粉体を用いたパ 一ル剤を使用して、 輝度、 半値角度、 再現性の 3つのスク リーンの性能への影響の 実験を行った。 この実験において二酸化チタンの層厚は 4 0 n mで一律にそろえら れている。 この結果、 次の表 6のような結果を得た。 評価の表し方は表 5における 輝度、 半値角度、 再現性と同じ方法を用いた。
【表 6】 粒径 2 5 20 60 80 1 00 200 輝度 70 70 80 1 00 1 1 0 1 00 1 00 半値角度 ± 20° ±20° ± 25° ±3 5° ±3 5° ±3 5° ±3 5° 再現性 Δ △ 〇 ◎ ◎ ◎ ◎ 尚、 表 6の粒径の単位は μ mである。
表 6にある結果より、 本発明において用いられる合成雲母粉体の粒径は 60 μ m 〜200 μ m程度が好適であることがわかる。
また、 反射スクリーンで述べたように合成雲母粉体表面に被覆させる二酸化チタ ンの層厚によって、 二酸化チタン被覆合成雲母の示す干渉色は異なる。 そこで、 二 酸化チタンの異なる層厚ごとの、 二酸化チタン被覆合成雲母粉体を用いたスクリ一 ンの性能について実験を行ったところ次の表 7、 及び表 8のような結果を得た。 こ の実験において、 合成雲母の粒径は 60 μ mに一律にそろえられている。 評価の方 法、 表し方は表 6と同じである。
【表 7】
Figure imgf000021_0001
【表 8】
Figure imgf000021_0002
尚、 表 7、 表 8の層厚の単位は nmである。
表 7、 表 8の結果より、 本発明における合成雲母表面に被覆させる二酸化チタン の層厚としては、 20 rim〜40 n m程度であることが好適である。 以上のように、 本発明にかかる着色性金属の混入の極めて少ない彩度の良好な合 成雲母を使用することによって、 スク リーンの性能はさらに向上する。 特に粒径 6 0 μ ιτι〜2 0 0 μ πι、 層厚が、 2 0 n m〜 4 0 n mにおいて最も効果を発揮する。 以上説明したように本発明にかかる透過型スクリーンによれば、 パール剤に用い られる雲母、 及び酸化チタン被覆雲母を着色性金属の混入の極めて少ない彩度の良 好な合成雲母を使用することにより、 スクリーンの映像の輝度を上げ広い角度で鮮 やかな映像を観察することのできる透過型スクリーンおよびリアプロジュク ト型表 示装置を提供することができる。

Claims

請求の範囲
1. 投影された映像を表示するスク リーンにおいて、 酸化チタン被覆雲母が含有さ れており、 該雲母は合成雲母であることを特徴とする合成雲母含有スクリーン。
2. 基材上に光反射面と、 光拡散層が形成された反射型スク リーンであることを特 徴とする請求項 1記載の合成雲母含有スクリーン。
3. 基材上に光拡散層が形成された透過型スクリーンであることを特徴とする請求 項 1記載の合成雲母含有スクリーン。
4. 請求項 1乃至 3いずれか記載のスク リーンにおいて、 含有される酸化チタン被 覆合成雲母は合成雲母が一般式、
X 1 , 3〜:! i 2〜 3 \ '1し 1 0 ) 1 2
(式中 Xは Na+, K +, L 1—, C a 2+, R b 2 +, S r 2 +からなる群より選ばれる 一種以上のイオンを表し、 Yは Mg 2 +, F e 2 +, N i 2 +, Mn 2 + , A 13 +, F e 3 +, L i +からなる群より選ばれる一種以上のイオンを表し、 Zは A l 3 +, S i 4+, G e + , F e 3 + , B 3 +からなる群より選ばれる一種以上のイオンを表す。 ) で表される合成フッ素金雲母であることを特徴とする合成雲母含有スクリーン。
5. 請求項 2または 4いずれか記載の投影型反射スク リーンにおいて、 含有される 酸化チタン被覆合成雲母に用いられる合成雲母は 5〜 200 μ mの粒径であること を特徴とする合成雲母含有スクリーン。
6. 請求項 3または 4いずれか記載の透過型スクリーンにおいて、 含有される酸化 チタン被覆合成雲母に用いられる合成雲母は 60〜200 mの粒径であることを 特徴とする合成雲母含有スクリーン。
7. 請求項 1乃至 6いずれか記載のスク リーンにおいて、 含有される酸化チタン被 覆合成雲母は合成雲母に酸化チタンを 20〜40 nmの層厚で被覆したものである ことを特徴とする合成雲母含有スクリーン。
8. 請求項 1乃至 7いずれか記載のスクリーンにおいて、 含有される酸化チタン被 覆合成雲母とは合成雲母に二酸化酸化チタン及び/または低次酸化チタンを被覆し たものであることを特徴とする合成雲母含有スクリーン。
9. 請求項 1乃至 8いずれか記載のスク リーンにおいて、 パール剤を構成する主成 分として酸化チタン被覆合成雲母が用いられており、 前記パール剤を塗布すること でスク リーンに酸化チタン被覆雲母が含有されていることを特徴とする合成雲母含 有スクリーン。
PCT/JP1998/003347 1997-07-28 1998-07-28 Ecran contenant du mica synthetique WO1999005568A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002267161A CA2267161A1 (en) 1997-07-28 1998-07-28 Screen containing synthetic mica
EP98933954A EP0930526A4 (en) 1997-07-28 1998-07-28 SCREEN CONTAINING SYNTHETIC MICA

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/218099 1997-07-28
JP9/218100 1997-07-28
JP9218099A JPH1144915A (ja) 1997-07-28 1997-07-28 透過型スクリーン
JP9218100A JPH1144914A (ja) 1997-07-28 1997-07-28 反射型スクリーン

Publications (1)

Publication Number Publication Date
WO1999005568A1 true WO1999005568A1 (fr) 1999-02-04

Family

ID=26522395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003347 WO1999005568A1 (fr) 1997-07-28 1998-07-28 Ecran contenant du mica synthetique

Country Status (6)

Country Link
EP (1) EP0930526A4 (ja)
KR (1) KR20000068648A (ja)
CN (1) CN1234880A (ja)
CA (1) CA2267161A1 (ja)
TW (1) TW367429B (ja)
WO (1) WO1999005568A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO327082B1 (no) * 1999-11-11 2009-04-20 Osi Pharm Inc Farmasøytisk sammensetning omfattende stabil polymorf av N-(3-etynylfenylamino)-6,7-bis(2-metoksyetoksy)-4-quinazolinamin hydroklorid

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10336131A1 (de) * 2003-08-04 2005-02-24 Röhm GmbH & Co. KG Stabiler Rückprojektionsschirm sowie Verfahren zu dessen Herstellung
KR100824324B1 (ko) * 2006-05-17 2008-04-22 요업기술원 비팽윤성 운모의 제조방법 및 이에 따라 제조된 비팽윤성운모
JP6260044B2 (ja) * 2013-07-31 2018-01-17 平岡織染株式会社 背面投映用スクリーン
US10018754B2 (en) * 2014-12-22 2018-07-10 Jxtg Nippon Oil & Energy Corporation Sheet-form transparent molding, transparent screen comprising same, and image projection device comprising same
DE112016002657T5 (de) * 2015-06-12 2018-03-08 Asahi Glass Company, Limited Film oder folie und projektionsschirm
CN110525071A (zh) * 2019-09-03 2019-12-03 天津保创印刷材料有限公司 一种屏幕印刷工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233554A (ja) * 1989-03-08 1990-09-17 Kazutoshi Iizuka フッ素雲母セラミックの製造方法
JPH03249634A (ja) * 1990-02-27 1991-11-07 Toppan Printing Co Ltd 反射形スクリーン

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233554A (ja) * 1989-03-08 1990-09-17 Kazutoshi Iizuka フッ素雲母セラミックの製造方法
JPH03249634A (ja) * 1990-02-27 1991-11-07 Toppan Printing Co Ltd 反射形スクリーン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0930526A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO327082B1 (no) * 1999-11-11 2009-04-20 Osi Pharm Inc Farmasøytisk sammensetning omfattende stabil polymorf av N-(3-etynylfenylamino)-6,7-bis(2-metoksyetoksy)-4-quinazolinamin hydroklorid

Also Published As

Publication number Publication date
TW367429B (en) 1999-08-21
EP0930526A1 (en) 1999-07-21
KR20000068648A (ko) 2000-11-25
CN1234880A (zh) 1999-11-10
EP0930526A4 (en) 1999-10-06
CA2267161A1 (en) 1999-02-04

Similar Documents

Publication Publication Date Title
JP3996192B2 (ja) ディスプレイパネル
JP3332211B2 (ja) プロジェクタ用反射型スクリーン
JP4408809B2 (ja) 両面映像フィルムスクリーン
KR101934607B1 (ko) 화상 표시 장치용 방현 시트
JP6142251B2 (ja) 投映スクリーン
WO1999005568A1 (fr) Ecran contenant du mica synthetique
CN112909208B (zh) 一种显示装置
JP2015232629A (ja) 透過投映スクリーン
JPH1144915A (ja) 透過型スクリーン
JP6260044B2 (ja) 背面投映用スクリーン
JP3003505B2 (ja) 反射型映写スクリーン
JPH07109478B2 (ja) 高画質スクリーン
JPH09274254A (ja) 映写スクリーン
JPH10213851A (ja) 反射型映写スクリーン
JPH1144914A (ja) 反射型スクリーン
JPH0934012A (ja) 反射型映写スクリーン
JP2007072146A (ja) 両面視認性透過型スクリーン
JP7022421B2 (ja) 画像表示体形成用塗料および画像表示体
JP6318448B2 (ja) 透過投映スクリーン
JP2508906B2 (ja) 反射形スクリ―ン
JPH05273652A (ja) 反射型スクリーンおよびその作製方法
WO2018199118A1 (ja) 画像表示体形成用塗料および画像表示体
JPH0792589B2 (ja) 高画質スクリーン
JP2003228305A (ja) 内照式広告用透過型フィルム
CN117518699A (zh) 线性抗光背投光学成像膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801055.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09269230

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2267161

Country of ref document: CA

Ref document number: 2267161

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998933954

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997002660

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998933954

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997002660

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998933954

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997002660

Country of ref document: KR