WO2018199118A1 - 画像表示体形成用塗料および画像表示体 - Google Patents

画像表示体形成用塗料および画像表示体 Download PDF

Info

Publication number
WO2018199118A1
WO2018199118A1 PCT/JP2018/016682 JP2018016682W WO2018199118A1 WO 2018199118 A1 WO2018199118 A1 WO 2018199118A1 JP 2018016682 W JP2018016682 W JP 2018016682W WO 2018199118 A1 WO2018199118 A1 WO 2018199118A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
image display
display body
measured
sum
Prior art date
Application number
PCT/JP2018/016682
Other languages
English (en)
French (fr)
Inventor
慎悟 鈴木
大介 飯田
勝康 飯田
Original Assignee
株式会社アイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017090626A external-priority patent/JP6273392B1/ja
Priority claimed from JP2017232012A external-priority patent/JP7022421B2/ja
Application filed by 株式会社アイテック filed Critical 株式会社アイテック
Publication of WO2018199118A1 publication Critical patent/WO2018199118A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the present invention relates to a paint for forming an image display body and an image display body.
  • Patent Document 1 discloses a transparent screen film.
  • the transparent screen film includes a resin layer and inorganic particles.
  • the inorganic particles are at least partially contained in the resin layer in an aggregated state.
  • the primary particles of the inorganic particles have a median diameter of 0.1 to 50 nanometers and a maximum particle diameter of 10 to 500 nanometers.
  • the content of the inorganic particles is 0.015 to 1.2% by mass with respect to the resin.
  • the inorganic particles are metal-based particles. According to the transparent screen film disclosed in Patent Document 1, product information, advertisements, and the like can be clearly projected and displayed on a transparent partition or the like without impairing transmission visibility.
  • the transparent screen film disclosed in Patent Document 1 has a problem that it is difficult to individually set the total light transmittance and haze.
  • the total light transmittance of the transparent screen be high. This is because the high total light transmittance indicates the degree of transparency in the transparent screen.
  • a transparent screen having a high total light transmittance is not always preferable.
  • the total light transmittance of the screen is preferably low to some extent. This is because when the total light transmittance is low to a certain degree, the image appears more clearly than when the total light transmittance is high.
  • the image appearing on the screen may be made easier to see by increasing the haze.
  • the total light transmittance is reduced as the haze is increased, if the haze is increased, the purpose of using the light transmitted through the screen cannot be achieved.
  • An example of using light transmitted through the screen is to take light into the room through the screen.
  • a transparent screen having a high total light transmittance is not always preferable.
  • the total light transmittance of the transparent screen is preferably low to some extent. This is because when the total light transmittance is low to a certain degree, the image appears more clearly than when the total light transmittance is high.
  • a transparent screen for video display by increasing the haze, the video displayed there may be made easier to see.
  • a transparent screen with high haze is not always preferred.
  • the haze of the transparent screen is preferably low to some extent. If the haze is too high, the outside will be difficult to see due to cloudiness of the transparent screen.
  • the other will be determined by the setting of one of them. If one of these settings automatically determines the other, and if at least one of the total light transmittance and haze thus set does not reach the level required by the user, the screen Is unsatisfactory.
  • the present invention solves such a problem.
  • the object is to provide a coating material for forming an image display body and its image display body, which can be used for the production of a transparent screen or other image display body to improve the freedom of setting the total light transmittance and haze of the image display body. Is to provide.
  • the present inventors have provided a transmission layer containing zirconia particles, and the transmission layer contains graphite particles in addition to zirconia particles.
  • the present invention is as follows.
  • the image display body-forming paint includes zirconia particles, a solvent, and a transmission layer forming material.
  • the transmissive layer forming material forms a transmissive layer capable of transmitting light when the solvent is vaporized.
  • the paint for forming an image display body further includes graphite particles.
  • the transmission layer forming material forms a transmission layer capable of transmitting light when the solvent is vaporized.
  • Zirconia particles and graphite particles are held in the transmission layer by the transmission layer forming material.
  • Zirconia particles and graphite particles have different degrees of influence on the total light transmittance and haze in the transmission layer. Accordingly, one of the difference in total light transmittance and haze expressed by the difference between the mass% of the zirconia particles and the mass% of the graphite particles is the mass% of the zirconia particles and the mass% of the graphite particles. It can be countered by the other being different. As a result, it is possible to improve the degree of freedom in setting the total light transmittance and haze of the image display body in which the transmission layer and thus the transmission layer functions as a light scattering layer.
  • the mass% of the zirconia particles with respect to the mass sum is 20% or more.
  • the mass sum is the sum of the mass of the zirconia particles, the mass of the graphite particles, and the mass of the transmission layer forming material.
  • the mass% of the graphite particles with respect to the mass sum is 0.2% or more.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is preferably less than 100%.
  • the first problem is that a person who sees an image represented by light transmitted through the screen among images displayed on the front surface and the back surface of the screen may feel the light dazzling.
  • the second problem is that the images appearing on the front and back of the screen may be blurred.
  • the image display body When the image display body is formed when the mass% of the zirconia particles with respect to the mass sum is 20% or more, it is difficult to feel glare when viewing the image appearing on the back surface.
  • the mass% of the graphite particles with respect to the mass sum is 0.2% or more, when the image display body is formed, the images appearing on the front surface and the back surface are clear. As a result, it is possible to provide a paint for forming an image display body that makes it difficult to feel the transmitted light dazzling and can make an image appear more clearly.
  • the mass% of the graphite particles with respect to the above-mentioned mass sum is 0.2% or more and 1.64% or less.
  • the mass% of the graphite particles with respect to the above-mentioned mass sum is 0.21% or more and 0.41% or less.
  • the mass% of the graphite particles with respect to the mass sum is 0.21% or more and 0.41% or less, when the image display body according to the present invention is formed, it appears on the front surface and the back surface, as compared to the case where it is not. The image will be clear.
  • the mass% of the zirconia particles with respect to the above-described mass sum is 25% or more.
  • the mass% of the graphite particles with respect to the above-mentioned mass sum is 0.83% or more.
  • the above-mentioned transmission layer forming material is a film forming transparent resin.
  • the film-forming transparent resin forms a transparent film when the solvent is vaporized.
  • the mass% of the graphite particles with respect to the mass sum is 0.01% or more and 1.00% or less.
  • the mass sum is the sum of the mass of the zirconia particles, the mass of the graphite particles, and the mass of the transmission layer forming material.
  • the sum of the mass% of the graphite particles with respect to the mass sum and the mass% of the zirconia particles with respect to the mass sum is desirably 0.635% or more and 5.5% or less.
  • the mass% of the graphite particles with respect to the mass sum is 0.01% or more and 1.00% or less, and the sum of the mass% of the graphite particles with respect to the mass sum and the mass% of the zirconia particles with respect to the mass sum is 0.635% or more.
  • the content is 5.5% or less, the brightness of the image formed on the film is increased while suppressing a decrease in the degree of transparency of the film when the film-forming transparent resin forms a transparent film. it can.
  • the mass% of the zirconia particles with respect to the above-described mass sum is 0.625% or more and 2.5% or less.
  • the mass% of the graphite particles with respect to the mass sum is desirably 0.01% or more and 0.375% or less.
  • the film forming transparent The degree of transparency of the coating formed by the resin is close to the case where zirconia particles and graphite particles are not included.
  • the coating film The haze of the film formed by the formed transparent resin is larger than that in the case where zirconia particles and graphite particles are not included.
  • the mass% of the luconia particles with respect to the mass sum is 0.625% or more and 2.5% or less
  • the mass% of the graphite particles with respect to the mass sum is 0.01% or more and 0.375% or less.
  • the image display body includes a light scattering layer.
  • the light scattering layer scatters the light when the light enters.
  • the image display body is an object for displaying an image.
  • the light scattering layer includes zirconia particles and a transmission layer forming material.
  • the transmission layer forming material forms a transmission layer through which light can be transmitted.
  • the light scattering layer further includes graphite particles.
  • One of the differences in the total light transmittance and the haze expressed by the difference in one of the mass% of the zirconia particles and the mass% of the graphite particles is that the other of the mass% of the zirconia particles and the mass% of the graphite particles is different. Can be countered. As a result, it is possible to improve the degree of freedom in setting the total light transmittance and haze of the image display body in which the transmission layer and thus the transmission layer functions as a light scattering layer.
  • the mass% of the zirconia particles described above with respect to the mass sum is 20% or more.
  • the mass sum is the sum of the mass of the zirconia particles, the mass of the graphite particles, and the mass of the transmission layer forming material.
  • the mass% of the graphite particles with respect to the mass sum is 0.2% or more.
  • the sum of the mass% of the zirconia particles relative to the mass sum, the mass% of the graphite particles relative to the mass sum, and the mass% of the transmission layer forming material relative to the mass sum is preferably less than 100%.
  • the images appearing on the front surface and the back surface of the image display body are clear.
  • the total light transmittance of the image display body described above is 60% or less.
  • the haze of the image display body is desirably 97% or more.
  • the luminance ratio of reflected light is 0.2 or more.
  • the luminance ratio of the reflected light is a quotient calculated by dividing the luminance of the smaller reflected light of the two types of reflected light described below by the luminance of the larger reflected light.
  • the brightness of the first type of reflected light is the brightness of the reflected light in the direction of incidence as viewed from the normal direction of the image display body and in a direction inclined by 60 ° with respect to the normal direction.
  • the brightness of the second type of reflected light is the brightness of the reflected light in a direction opposite to the incident direction when viewed from the normal direction and inclined by 60 ° with respect to the normal direction. These reflected lights are reflected lights of light irradiated from the incident direction.
  • the incident direction is a direction inclined by 45 ° with respect to the normal direction.
  • the brightness ratio of the transmitted light is preferably 0.5 or more.
  • the luminance ratio of transmitted light is a quotient calculated by dividing the luminance of the smaller one of the two types of luminance described below by the luminance of the larger light.
  • the luminance of the first type of light is the luminance of light transmitted through the image display body in a direction inclined by 120 ° with respect to the normal direction when viewed from the origin when the normal direction viewed from the origin is 0 °.
  • the origin is a portion where light irradiated to the image display body from the normal direction of the image display body penetrates the image display body.
  • the luminance of the second type of light is the luminance of light transmitted through the image display body in a direction inclined by 150 ° with respect to the normal direction when viewed from the origin.
  • the degree of freedom in setting the total light transmittance and haze of the image display body can be improved.
  • the first embodiment of the present invention will be described in detail below.
  • an image display body that scatters light projected from a projector and forms an image by the light.
  • Such an image display body can be used, for example, as a video display screen.
  • the user can see an image formed by light reflected from the image display, and the user can see an image formed by light transmitted through the image display body.
  • the requirements are a total light transmittance of 60% or less and a haze of 97% or more.
  • the total light transmittance in the image display body of this embodiment is too high, the image formed by the light reflected from the image display body becomes too dark. Since the total light transmittance in the image display body of the present embodiment is 60% or less, the image formed by the light reflected from the image display body of the present embodiment is also light transmitted through the image display body of the present embodiment. The image formed by the above is also brighter. When the total light transmittance in the image display body of the present embodiment is 60% or less and a large amount of light is absorbed by the image display body, the brightness of the image is suppressed, but the image is clearer. It becomes.
  • the haze in the image display body of the present embodiment is too low, a person who sees the light transmitted through the image display body feels the light dazzling.
  • the haze in the image display body of the present embodiment is 97% or more, the possibility that the light transmitted through the image display body of the present embodiment becomes dazzling can be suppressed.
  • the image display body of the present embodiment satisfies the following requirements in addition to the requirements described above.
  • the requirements are that the luminance ratio of reflected light is 0.2 or more and the luminance ratio of transmitted light is 0.5 or more.
  • the brightness ratio of the reflected light in the image display body of the present embodiment is too low, the range in which an image formed by the light reflected from the image display body can be viewed becomes too narrow.
  • the brightness ratio of the reflected light in the image display body of the present embodiment is 0.2 or more, an image formed by the light reflected from the image display body of the present embodiment can be viewed from various directions.
  • the luminance ratio of the transmitted light in the image display body of the present embodiment is too low, the range in which an image formed by the light reflected from the image display body can be viewed becomes too narrow.
  • the luminance ratio of the transmitted light in the image display body of the present embodiment is 0.5 or more, an image formed by light transmitted through the image display body of the present embodiment can be viewed from various directions.
  • the image display body according to the present embodiment includes a light scattering layer.
  • the light scattering layer scatters the light when the light enters.
  • the light scattering layer has a plate shape.
  • the image display body according to the present embodiment may include an arbitrary layer in addition to the light scattering layer.
  • the layer enables the user to see the image formed by the light reflected from the image display body according to the present embodiment, and allows the user to see the image formed by the light transmitted through the layer. is there.
  • the image display body according to the present embodiment may consist only of the light scattering layer.
  • the specific form of the image display body concerning this embodiment is not specifically limited. For example, it may be a well-known screen.
  • it may be a building material that can be installed instead of the well-known plate glass.
  • it may be a plate-like object that is neither a well-known screen nor a building material that can be installed in place of a well-known plate glass. It may be a columnar acrylic resin.
  • the thickness of the light scattering layer according to this embodiment is preferably 1 micrometer or more and 200 micrometers or less.
  • the thickness is more preferably 2 micrometers or more and 100 micrometers or less.
  • the thickness is more preferably 5 micrometers or more and 50 micrometers or less.
  • the material of the light scattering layer includes zirconia particles, a transmission layer forming material, and graphite particles.
  • the size and shape of the zirconia particles are not particularly limited.
  • the average particle diameter of the zirconia particles used in this embodiment may be 5 nanometers or more and 400 nanometers or less.
  • the shape of the zirconia particles used in the present embodiment may be spherical.
  • the BET value of the zirconia particles is desirably 50 m 2 per gram or more.
  • the reason why the BET value is desirably 50 m 2 or more per gram is that it is easy to control the particle size distribution of the secondary particle size. Quality control becomes easy when the reproducibility of the particle size distribution of the secondary particle size is obtained. It is further desirable that the zirconia particles have a BET value of 150 m 2 or more per gram.
  • the BET value of the zirconia particles is desirably 1000 m 2 or less per gram. This is because it is easy to keep the crystallinity of zirconia good. More preferably, the zirconia particles have a BET value of 300 m 2 or less per gram. In addition, that the BET value of a zirconia particle is large is equivalent to that the particle diameter of the zirconia particle is small. Incidentally, it is desirable that the zirconia particles are produced by supercritical hydrothermal synthesis.
  • the transmission layer forming material is a material for forming a transmission layer. Light can pass through the transmissive layer. The zirconia particles and the graphite particles are held in the permeable layer by being included in the permeable layer forming material.
  • the kind of the transmissive layer forming material is not particularly limited.
  • the transmissive layer forming material is preferably a synthetic resin that does not prevent light transmission as much as possible.
  • the permeable layer forming material is more preferably one of the above-described synthetic resins that maintains its fluidity with a solvent and solidifies when the solvent is vaporized. Examples of such synthetic resins include polyester resin, polyethylene terephthalate, acrylic resin, polycarbonate, polystyrene, and vinyl resin.
  • the size and shape of the graphite particles are not particularly limited.
  • the average diameter of the graphite particles used in the present embodiment may be 5 micrometers or more and 100 micrometers or less.
  • the thickness is desirably not less than the thickness of one graphite atom layer and not more than 100 nanometers.
  • the shape of the graphite particles used in this embodiment is more preferably a flake shape having a thickness of 10 nanometers to 30 nanometers.
  • the aspect ratio is preferably as high as possible.
  • the concentration of zirconia particles in the light scattering layer and the concentration of graphite particles in the light scattering layer can be arbitrarily set as long as the following three requirements are satisfied.
  • the first requirement is that the mass% of zirconia particles relative to the mass sum is 20% or more.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 0.2% or more.
  • the third requirement is that the sum of the mass percent of the zirconia particles relative to the mass sum and the mass percent of the graphite particles relative to the mass sum is less than 100%.
  • concentration of the graphite particle in a light-scattering layer are low, haze will become low in connection with it.
  • a person facing the image display body according to the present embodiment can clearly see an image of an object on the other side of the image display body according to the present embodiment. Accordingly, a person facing the image display body according to the present embodiment may feel dazzling light coming from the other side of the image display body according to the present embodiment.
  • the mass% of the zirconia particles relative to the mass sum is desirably 25% or more.
  • the mass% of the zirconia particles with respect to the mass sum is more preferably 40% or more.
  • the thickness of the light scattering layer is preferably 1 micrometer or more and 200 micrometers or less.
  • the thickness is more preferably 2 micrometers or more and 100 micrometers or less.
  • the thickness is more preferably 5 micrometers or more and 50 micrometers or less.
  • the image display body according to the present embodiment may include a component different from the components described above.
  • Examples thereof include known pigments, polymer dispersants, and surfactants.
  • an inorganic material such as calcium carbonate, barium sulfate, titanium oxide, or zinc oxide
  • the dispersibility of zirconia can be increased, or a smooth appearance can be achieved by including a lot of pigment particles.
  • the image display body according to the present embodiment has various colors.
  • the diffuse reflectance of the image display body according to the present embodiment is improved. When the diffuse reflectance is improved, the brightness of the image appearing on the image display body can be increased as compared with the case where it is not.
  • An example of such metal particles is aluminum.
  • the image display body according to the present embodiment can also be formed by, for example, applying the image display body forming paint according to the present embodiment to the surface of a known glass plate inorganic material or transparent resin material.
  • the image display body-forming paint is dried on the surface of the glass plate, so that the glass plate covered with the image display body-forming paint becomes the image display body according to the present embodiment.
  • the paint for forming an image display body according to the present embodiment includes zirconia particles, graphite particles, a solvent, and a transmission layer forming material.
  • the solvent according to the present embodiment is a component of the paint for forming an image display body that maintains the fluidity of the paint for forming an image display body until it is applied, and vaporizes after being applied.
  • the component of the solvent is not particularly limited.
  • the solvent may be a mixture or a pure substance.
  • the solvent can disperse zirconia particles and graphite particles in the solvent. It is desirable that the solvent is well mixed with the liquid containing the synthetic resin. Examples of such solvents are methyl ethyl ketone and propylene glycol monomethyl ether.
  • the image display body forming paint according to the present embodiment it is possible to apply the image display body forming paint according to the present embodiment to an opaque object itself.
  • a light scattering layer is formed on the surface of the opaque object.
  • An image can be formed by projecting light onto an opaque object on which the light scattering layer is formed.
  • the manufacturing method of the image display body concerning this embodiment is not specifically limited.
  • One example is to apply the image display body forming paint according to the present embodiment to the surface of a known glass plate as described above.
  • Another example is to form a mixture of zirconia particles, graphite particles, and a transparent synthetic resin that is a permeable layer forming material (this synthetic resin is in a molten state) into a plate shape.
  • the method for producing the paint for forming an image display body according to the present embodiment is not particularly limited.
  • One example is that zirconia particles, graphite particles, and film-forming transparent resin are separately dispersed in a solvent, and zirconia particles, graphite particles, and film-forming transparent resin dispersed in the solvent are mixed. There is a way.
  • the paint for forming an image display body according to the present embodiment is used for manufacturing the image display body according to the present embodiment.
  • the image display body according to the present embodiment is used to project at least one of a still image and a moving image.
  • the specific method of use is the same as that of a well-known screen conventionally used.
  • the image display according to the present embodiment can be well applied to applications using an image formed by reflected light and applications using an image formed by transmitted light.
  • Example 1 (1) Preparation of coating material (A) Preparation of zirconia particle dispersion
  • the worker prepared a zirconia particle dispersion according to this example according to the following procedure.
  • an operator mixed Zirconeo which is zirconia particles made by ITEC Co., Ltd., into methyl ethyl ketone.
  • the BET value of the mixed zirconia particles was 242 m 2 per gram.
  • the zirconia particles were produced by supercritical hydrothermal synthesis.
  • the crystal phase of the zirconia particles analyzed by the X-ray diffraction method was predominantly tetragonal.
  • the refractive index of the zirconia particles was slightly higher than that of monoclinic zirconia.
  • the X-ray intensity peak width was wide when the angle formed between the sample surface and the X-ray was around 30 degrees.
  • the full width at half maximum of this peak read directly from the measured value was as large as 3.8 °.
  • the X-ray peak produced by irradiating the monoclinic crystal with X-rays was buried in the peak produced by irradiating other crystals with the X-ray. This means that the crystallite diameter of the sample is small.
  • the width of the X-ray intensity peak is 0.5 ° or more, quality control in the production of the zirconia particle dispersion is easy. If the peak width of the X-ray intensity is 10 ° or less, the light scattering characteristics of zirconia can be maintained.
  • the mass% of the zirconia particles in the methyl ethyl ketone containing zirconia particles was 30% by mass.
  • the worker put well-known beads for particle pulverization into the methyl ethyl ketone containing zirconia particles.
  • the worker stirred the methyl ethyl ketone containing zirconia particles with a magnetic stirrer. This caused the zirconia particles to be crushed by the beads.
  • the particle size of the zirconia particles was repeatedly measured with a particle size measuring device (manufacturer: Otsuka Electronics Co., Ltd., model number: FPAR-1000).
  • the measurement method was dynamic light scattering (DLS).
  • the operation of crushing the zirconia particles was continued until the average particle size of the zirconia particles reached 400 nanometers.
  • the beads were removed.
  • Methyl ethyl ketone containing zirconia particles from which beads have been removed is the zirconia particle dispersion according to this example.
  • (B) Preparation of Graphite Particle Dispersion The operator prepared a graphite particle dispersion according to this example according to the following procedure. First, an operator mixed iGurafen (registered trademark), which is graphite particles made by ITEC Co., Ltd., into methyl ethyl ketone. The BET value of the mixed graphite particles was 27 m 2 per gram. Incidentally, the BET value of graphite represents the degree of flaking of graphite. The larger the BET value, the thinner the graphite. If the BET value of graphite is 2.5 m 2 or more per gram, the light reflection / absorption surface per unit weight increases. As a result, the characteristics of the screen including this are improved.
  • iGurafen registered trademark
  • the BET value of graphite particles was 27 m 2 per gram. Incidentally, the BET value of graphite represents the degree of flaking of graphite. The larger the BET value, the thinner the graphite
  • the BET value of graphite is 5 m 2 per gram or more.
  • the BET value is 250 m 2 or less per gram, the amount of oil absorption can be suppressed and the oil can be easily dispersed in the paint, or multiple reflection can be suppressed and the light reflection characteristics can be maintained. More preferably, the BET value is 125 or less m 2 per gram.
  • the mass% of graphite particles in the methyl ethyl ketone containing graphite particles was 5 mass%.
  • the operator put the methyl ethyl ketone containing graphite particles into a jet mill (manufacturer: Sugino Machine Co., Ltd., model number: Starburst HJP-25008).
  • the graphite particles were crushed in the jet mill.
  • the operation of crushing the graphite particles was continued until the average particle size of the graphite particles reached 5 micrometers.
  • This methyl ethyl ketone containing graphite particles is the graphite particle dispersion according to this example.
  • the Raman spectrum of the graphite particles was measured, the peak height of the D band was 12% of the peak height of the G band. This indicates that there are few crystal defects in the graphite particles, which is advantageous for light reflection characteristics.
  • the smaller the ratio of the peak height of the D band to the peak height of the G band the better. This ratio is particularly desirably below 30%, and more desirably below 15%.
  • the operator is a zirconia particle dispersion, a graphite particle dispersion, and a toluene solution of acrylic rubber (hereinafter referred to as “acrylic rubber liquid”) so that the following two requirements are satisfied.
  • Tope Co., Ltd. XE-1345 was mixed.
  • the first requirement is that the mass% of the zirconia particles with respect to the sum of the mass of the zirconia particles, the mass of the graphite particles, and the mass of the acrylic rubber is 49.9 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the sum of the zirconia particles, the graphite particles, and the acrylic rubber is 0.21 mass%.
  • the liquid obtained by this mixing is the paint according to this example.
  • the mass% of the acrylic rubber in the acrylic rubber liquid was 30% by mass.
  • the thickness of the light scattering layer is adjusted according to how many tapes are stacked.
  • the operator bonded the remaining edges of the flat glass and the polyethylene terephthalate film in the same manner. Thereby, the four edges of the flat glass and the polyethylene terephthalate film were bonded together.
  • the operator hung the paint according to this example on a polyethylene terephthalate film having four edges bonded together.
  • the paint was dripped, the operator spread the paint over the area of the polyethylene terephthalate film surrounded by the tape using a straight metal cylinder bar. The amount of the paint was such that when it was spread over the area surrounded by the layered tape, it became the same height as the layered tape.
  • the operator dried the polyethylene terephthalate film and the flat glass with the paint spread in a drying furnace.
  • the temperature in the drying oven was 120 degrees Celsius.
  • the paint became a light scattering layer.
  • the thickness of the light scattering layer was 19.9 micrometers.
  • the image display body concerning a present Example was completed because the coating material became a light-scattering layer.
  • Measurement (A) Measurement of total light transmittance and haze The operator measures the total light transmittance and haze of the image display body according to this example by using a haze meter NDH7000 manufactured by Nippon Denshoku Industries Co., Ltd. did. The measured total light transmittance was 35.22%. The measured haze was 99.12%.
  • the operator measures the luminance described below for the image display according to the present embodiment by using a variable angle photometer GC-500L manufactured by Nippon Denshoku Industries Co., Ltd. did.
  • the first of the luminances is a direction inclined by 60 ° when viewed from the normal direction and viewed from the normal direction in the reflected light of the light irradiated from the incident direction (see “ Brightness in the direction marked “ ⁇ 60 °”.
  • the “incident direction” is a direction inclined by 45 ° with respect to the normal direction (the direction indicated as “light incident (front) ⁇ 45 °” in FIG. 5).
  • the “normal direction” is the normal direction of the image display body according to the present embodiment (the direction indicated as “light incident (rear) normal direction 0 °” in FIG. 5). That is, the “normal direction” is a direction orthogonal to the surface of the image display body according to the present embodiment.
  • the second luminance is the direction of the reflected light that is opposite to the incident direction when viewed from the normal direction and inclined by 60 ° with respect to the normal direction (indicated as “60 °” in FIG. 5). Direction).
  • the operator calculated the quotient by dividing the smaller value of these luminances by the larger value.
  • the calculated quotient is the brightness ratio of the reflected light in this embodiment.
  • the ratio obtained as a result of the measurement was 0.570.
  • (C) Measurement of transmitted light luminance ratio The operator measures the luminance described below for the image display according to this example by using a variable angle photometer GC-500L manufactured by Nippon Denshoku Industries Co., Ltd. did.
  • the first of the luminances is a direction inclined 120 ° with respect to the normal direction when the point described below is the origin and the normal direction when viewed from the origin is 0 °. This is the brightness described next (in the direction marked “120 °” in FIG. 5).
  • the origin is a location where light irradiated to the image display body from the normal direction penetrates the image display body.
  • the luminance is the luminance of light transmitted through the image display body. In FIG. 5, the intersection of two lines described next corresponds to the origin.
  • the first line is a line drawn between a location indicated as “light incident (rear) normal direction 0 °” and a location indicated as “parallel light transmission 180 °”.
  • the second line is a thick line that follows the description of “film ⁇ 90 ° direction”.
  • the second luminance is a direction inclined by 150 ° with respect to the normal direction when the normal direction when viewed from the above-mentioned origin is 0 ° (“150 °” in FIG. 5).
  • the brightness is described next.
  • the luminance is the luminance of light that has passed through the image display body. When these luminances were measured, the operator calculated the quotient by dividing the smaller value of these luminances by the larger value.
  • the calculated quotient is the luminance ratio of the transmitted light in this embodiment. The ratio obtained as a result of the measurement was 0.682.
  • Example 2 (1) Preparation of paint The preparation procedure of paint is the same as that of Example 1.
  • Example 3 (1) Preparation of paint
  • the operator prepared a zirconia particle dispersion and a graphite particle dispersion in the same manner as in Example 1.
  • the operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the acrylic rubber liquid so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the sum of the mass of the zirconia particles, the mass of the graphite particles, and the mass of the acrylic rubber is 49.8 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the sum of the zirconia particles, the graphite particles, and the acrylic rubber is 0.41 mass%.
  • the liquid thus mixed is the paint according to this example.
  • Example 4 (1) Preparation of paint The preparation procedure of paint is the same as that in Example 3.
  • Example 5 Preparation of paint
  • the operator prepared a zirconia particle dispersion and a graphite particle dispersion in the same manner as in Example 1.
  • the operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the acrylic rubber liquid so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the sum of the mass of the zirconia particles, the mass of the graphite particles, and the mass of the acrylic rubber is 49.6 mass%.
  • the 2nd requirement is that the mass% of the graphite particle with respect to the sum of a zirconia particle, a graphite particle, and an acrylic rubber will be 0.83 mass%.
  • Other points are the same as in the first embodiment.
  • the liquid thus mixed is the paint according to this example.
  • Example 6 (1) Preparation of paint The preparation procedure of paint is the same as that of Example 5.
  • Example 7 Preparation of paint
  • the operator prepared a zirconia particle dispersion and a graphite particle dispersion in the same manner as in Example 1.
  • the operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the acrylic rubber liquid so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the sum of the mass of the zirconia particles, the mass of the graphite particles, and the mass of the acrylic rubber is 49.2 mass%.
  • the 2nd requirement is that the mass% of the graphite particle with respect to the sum of a zirconia particle, a graphite particle, and an acrylic rubber will be 1.64 mass%. Other points are the same as in the first embodiment.
  • the liquid thus mixed is the paint according to this example.
  • Example 8 (1) Preparation of paint The preparation procedure of paint is the same as in Example 7.
  • Example 9 (1) Preparation of paint
  • the operator prepared a zirconia particle dispersion and a graphite particle dispersion in the same manner as in Example 1.
  • the operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the acrylic rubber liquid so that the following two requirements were satisfied.
  • the first requirement is that the mass percentage of the zirconia particles to the sum of the mass of the zirconia particles, the mass of the graphite particles, and the mass of the acrylic rubber is 48.4 mass%.
  • the 2nd requirement is that the mass% of the graphite particle with respect to the sum of a zirconia particle, a graphite particle, and an acrylic rubber will be 3.23 mass%. Other points are the same as in the first embodiment.
  • the liquid thus mixed is the paint according to this example.
  • FIG. 1 is a diagram showing the influence of the mass% of graphite particles on the total light transmittance in the examples and comparative examples of this embodiment.
  • the total light transmittance changes according to the mass% of the graphite particles.
  • the influence of the mass% of graphite particles on the total light transmittance is large.
  • FIG. 2 is a graph showing the influence of the mass% of zirconia particles on the total light transmittance in the comparative example.
  • Each of the comparative examples whose total light transmittance is shown in FIG. 2 does not contain graphite particles.
  • the total light transmittance changes according to the mass% of the zirconia particles.
  • the influence of the mass% of the zirconia particles on the total light transmittance is smaller than that of the mass% of the graphite particles.
  • FIG. 3 is a diagram showing the influence of the thickness of the light scattering layer on the total light transmittance in the comparative example. All of the comparative examples whose total light transmittance is shown in FIG. 3 do not contain graphite particles. In FIG. 3, the marks according to the comparative example having the same mass% of zirconia particles are connected by a line. In FIG. 3, the total light transmittance changes according to the thickness of the light scattering layer. However, the influence of the thickness of the light scattering layer on the total light transmittance is smaller than that of the mass% of the graphite particles. The influence of the thickness of the light scattering layer on the total light transmittance is smaller than that of the mass% of zirconia particles.
  • the mass% of the graphite particles has a greater influence on the total light transmittance than the mass% of the zirconia particles and the thickness of the light scattering layer. Since the mass% of the graphite particles has a great influence on the total light transmittance, the total light transmittance can be increased by including the graphite particles in addition to the zirconia particles, compared with the case where only the zirconia particles are included in the light scattering layer. Easy to set up.
  • FIG. 4 is a diagram showing the influence of mass% of zirconia particles on haze in a comparative example. All the comparative examples in which haze is shown in FIG. 4 do not contain graphite particles. According to FIG. 4, the mass% of the zirconia particles affects the haze. That is, the haze can be set by including zirconia particles in the light scattering layer. Thereby, the freedom degree of the setting of the total light transmittance and haze of an image display body can be improved by including a graphite particle in addition to a zirconia particle.
  • the mass% of the zirconia particles with respect to the mass sum is 20% or more, and the mass% of the graphite particles with respect to the mass sum is 0.2% or more. It was difficult to feel glare when viewing the image on the back. In addition, the images appearing on the front and back surfaces of the image display body are clear.
  • the transparent screen according to the present embodiment is a kind of image display body.
  • the transparent screen according to the present embodiment includes a transparent sheet and a light scattering layer.
  • the transparent sheet is a sheet made of a known transparent material.
  • the material is not particularly limited. Examples of the material include polyethylene terephthalate, acrylic resin, polycarbonate, polystyrene, and vinyl resin.
  • the structure of the transparent sheet is not particularly limited.
  • the transparent sheet according to the present embodiment may have a uniform structure or may have a plurality of layers made of different materials. An example of such a structure is one having a known glass plate and a film made of polyethylene terephthalate.
  • the light scattering layer is formed on the surface of the transparent sheet.
  • the light scattering layer scatters light incident thereon.
  • the light scattering layer includes zirconia particles, graphite particles, and a film-forming transparent resin.
  • the size and shape of the zirconia particles are not particularly limited.
  • the average particle diameter of the zirconia particles used in the present embodiment may be 5 nanometers or more and 400 nanometers or less.
  • the shape of the zirconia particles used in the present embodiment may be spherical.
  • the size and shape of the graphite particles are not particularly limited.
  • the average diameter of the graphite particles used in this embodiment may be 5 micrometers or more and 100 micrometers or less.
  • the shape of the zirconia particles used in the present embodiment may be a flake shape having a thickness of 10 nanometers to 30 nanometers.
  • the film-forming transparent resin is a synthetic resin that forms a transparent film.
  • the film-forming transparent resin is a transmission layer forming material in the present embodiment. Zirconia particles and graphite particles are retained in the coating by being contained in the coating-forming transparent resin.
  • the type of the film-forming transparent resin is not particularly limited. However, the film-forming transparent resin is preferably a synthetic resin that does not prevent light transmission as much as possible. An example of such a synthetic resin is a polyester resin.
  • the diffuse reflectance of the image display according to the present embodiment is improved.
  • the brightness of the image appearing on the image display body can be increased as compared with the case where it is not.
  • An example of such metal particles is aluminum.
  • the transparent screen according to the present embodiment can be formed by applying the paint according to the present embodiment to the surface of the transparent sheet described above. When the paint is dried on the surface of the transparent sheet, the paint becomes a light scattering layer.
  • the paint is a paint for forming an image display body according to the present embodiment.
  • the paint according to this embodiment includes zirconia particles, graphite particles, a solvent, and a film-forming transparent resin.
  • the solvent according to the present embodiment is a component of the paint that maintains the fluidity of the paint until it is applied and vaporizes after being applied.
  • the component of the solvent is not particularly limited.
  • the solvent may be a mixture or a pure substance.
  • the solvent can disperse zirconia particles and graphite particles in the solvent. Examples of such solvents are methyl ethyl ketone and propylene glycol monomethyl ether.
  • the paint according to this embodiment when the paint according to this embodiment is applied to an opaque object, the paint according to this embodiment forms a light scattering layer on the surface of the opaque object.
  • An image can be formed by projecting light onto an opaque object on which the light scattering layer is formed.
  • the manufacturing method of the transparent screen concerning this embodiment is not specifically limited.
  • One example is to apply the paint according to the present embodiment to the surface of the transparent sheet, as described above.
  • any method applicable for forming the light scattering layer on the surface of the transparent sheet may be used.
  • the method for producing the paint according to this embodiment is not particularly limited.
  • One example is that zirconia particles, graphite particles, and film-forming transparent resin are separately dispersed in a solvent, and zirconia particles, graphite particles, and film-forming transparent resin dispersed in the solvent are mixed. There is a way.
  • the paint according to this embodiment is used for manufacturing the transparent screen according to this embodiment.
  • the transparent screen according to the present embodiment is used for projecting at least one of a still image and a moving image.
  • the specific method of use is the same as that of a well-known screen conventionally used.
  • Example 10 (1) Preparation of coating material (A) Preparation of zirconia particle dispersion
  • the worker prepared a zirconia particle dispersion according to this example according to the following procedure.
  • the worker mixed Zirconeo (registered trademark), which is zirconia particles manufactured by ITEC Co., Ltd., in propylene glycol monomethyl ether.
  • the BET value of the mixed zirconia particles was 242 m 2 per gram.
  • the mass% of zirconia particles in the propylene glycol monomethyl ether containing zirconia particles was 10 mass%.
  • the worker put well-known beads for particle pulverization into the propylene glycol monomethyl ether containing zirconia particles.
  • the worker stirred the propylene glycol monomethyl ether containing zirconia particles with a magnetic stirrer. This caused the zirconia particles to be crushed by the beads.
  • the particle size of the zirconia particles was repeatedly measured with a particle size measuring device (manufacturer: Otsuka Electronics Co., Ltd., model number: FPAR-1000).
  • the measurement method was dynamic light scattering (DLS). The operation of crushing the zirconia particles was continued until the average particle size of the zirconia particles reached 400 nanometers. At the end of the work, the beads were removed.
  • (B) Preparation of Graphite Particle Dispersion The operator prepared a graphite particle dispersion according to this example according to the following procedure. First, an operator mixed iGurafen (registered trademark), which is graphite particles made by ITEC Co., Ltd., into methyl ethyl ketone. The BET value of the mixed graphite particles was 27 m 2 per gram. The mass% of graphite particles in the methyl ethyl ketone containing graphite particles was 5 mass%.
  • iGurafen registered trademark
  • the operator put the methyl ethyl ketone containing graphite particles into a jet mill (manufacturer: Sugino Machine Co., Ltd., model number: Starburst HJP-25008).
  • the graphite particles were crushed in the jet mill.
  • the operation of crushing the graphite particles was continued until the average particle size of the graphite particles reached 5 micrometers.
  • the first requirement is that the mass% of the zirconia particles with respect to the sum of the mass of the zirconia particles, the mass of the graphite particles, and the mass of the polyester resin is 0.625 mass%.
  • the 2nd requirement is that the mass% of the graphite particle with respect to the sum of a zirconia particle, a graphite particle, and a polyester resin will be 0.375 mass%.
  • the mass of the graphite particles and the mass of the polyester resin is defined as “mass sum”, the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum The sum is 1.000% by mass.
  • the operator added propylene glycol monomethyl ether until the total weight was 3.46 times the weight of the polyester resin.
  • the paint to which propylene glycol monomethyl ether is added is the paint according to this example.
  • the operator bonded the remaining edges of the flat glass and the polyethylene terephthalate film in the same manner. Thereby, the four edges of the flat glass and the polyethylene terephthalate film were bonded together.
  • the operator hung the paint according to this example on a polyethylene terephthalate film having four edges bonded together.
  • the operator spread the paint over the area of the polyethylene terephthalate film surrounded by the tape using a straight metal cylinder bar.
  • the amount of the paint was such that it was the same height as the tape when spread over the area surrounded by the tape.
  • the operator dried the polyethylene terephthalate film and the flat glass with the paint spread in a drying furnace.
  • the temperature in the drying oven was 120 degrees Celsius.
  • the paint became a light scattering layer.
  • the thickness of the light scattering layer was 10 micrometers.
  • the transparent screen concerning a present Example was completed because the coating material became a light-scattering layer.
  • (B) Measurement of L * value, a * value, and b * value The operator uses a color analyzer C-2000S manufactured by Hitachi Science Systems, Ltd., so that the L * value in the D65 light source of the transparent screen according to this example is used. , A * and b * values were measured. These L *, a *, and b * are measured based on the spectral reflectance after the spectral reflectance is first measured. However, in order to prevent the light once transmitted through the transparent screen according to the present embodiment from being reflected somewhere and transmitted again through the transparent screen, a light trap is provided behind the transparent screen. Once the light has passed through the transparent screen, it can no longer pass through the transparent screen again by entering the inner surface of the light trap. The measured L * value was 13.0153. The a * value measured was -0.3328. The measured b * value was ⁇ 2.8519.
  • Example 11 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 1.25 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 0.25 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 1.50 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 12 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the 1st requirement is that the mass% of the zirconia particle with respect to the mass sum will be 1.875 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 0.125 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 2.000 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 13 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 2.1875 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 0.0625 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 2.2500 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 14 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 2.3435 mass%.
  • the 2nd requirement is that the mass% of the graphite particle with respect to the mass sum will be 0.03125 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 2.37475 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 15 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 2.5 mass%.
  • the 2nd requirement is that the mass% of the graphite particle with respect to the mass sum will be 0.01 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 2.51 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 16 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 2.5 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 0.1 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 2.6 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 17 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 0.625 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 0.5 mass%.
  • the sum of the mass% of the graphite particles with respect to the mass sum and the mass% of the zirconia particles with respect to the mass sum is 1.125 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 18 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 0.625 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 1.0 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 1.625 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 19 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 1.25 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 0.5 mass%.
  • the sum of the mass% of the graphite particles with respect to the mass sum and the mass% of the zirconia particles with respect to the mass sum is 1.75 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 20 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 1.25 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 1.0 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 2.25 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 21 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 2.5 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 0.5 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 3.0 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 22 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 2.5 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 1.0 mass%.
  • the sum of the mass% of the graphite particles with respect to the mass sum and the mass% of the zirconia particles with respect to the mass sum is 3.5 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 23 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 5.0 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 0.1 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 5.1 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 24 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 5.0 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 0.5 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 5.5 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 25 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 0.625 mass%.
  • the 2nd requirement is that the mass% of the graphite particle with respect to the mass sum will be 0.01 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 0.635 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 26 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 1.25 mass%.
  • the 2nd requirement is that the mass% of the graphite particle with respect to the mass sum will be 2.0 mass%.
  • the sum of the mass% of the graphite particles relative to the mass sum and the mass% of the zirconia particles relative to the mass sum is 3.25 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 27 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 5.0 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 1.0 mass%.
  • the sum of the mass% of the graphite particles with respect to the mass sum and the mass% of the zirconia particles with respect to the mass sum is 6.0 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 28 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 5.0 mass%.
  • the 2nd requirement is that the mass% of the graphite particle with respect to the mass sum will be 2.0 mass%.
  • the sum of the mass% of the graphite particles with respect to the mass sum and the mass% of the zirconia particles with respect to the mass sum is 7.0 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 29 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 10 mass%.
  • the second requirement is that the mass% of the graphite particles with respect to the mass sum is 1.0 mass%.
  • the sum of the mass% of the graphite particles with respect to the mass sum and the mass% of the zirconia particles with respect to the mass sum is 11 mass%.
  • the other points are the same as in the tenth embodiment.
  • Example 30 (1) Preparation of paint The operator mixed the zirconia particle dispersion, the graphite particle dispersion, and the polyester resin solution so that the following two requirements were satisfied.
  • the first requirement is that the mass% of the zirconia particles with respect to the mass sum is 10 mass%.
  • the 2nd requirement is that the mass% of the graphite particle with respect to the mass sum will be 2.0 mass%.
  • the sum of the mass% of the graphite particles with respect to the mass sum and the mass% of the zirconia particles with respect to the mass sum is 12 mass%.
  • the other points are the same as in the tenth embodiment.
  • FIG. 6 is a diagram showing the influence of mass% of zirconia particles on the total light transmittance in the examples and comparative examples according to the present embodiment.
  • the marks according to the example and the comparative example having the same mass% of the graphite particles are connected by a line.
  • the influence of the mass% of the zirconia particles on the total light transmittance is small. Rather, it is clear that the mass% of the graphite particles has a greater influence on the total light transmittance. That is, by including graphite particles in addition to zirconia particles in the light scattering layer, setting of the total light transmittance is facilitated as compared with the case where only zirconia particles are included in the light scattering layer.
  • FIG. 7 is a diagram showing the influence of mass% of zirconia particles on haze in the examples and comparative examples according to the present embodiment.
  • the marks according to Examples and Comparative Examples in which the mass% of the graphite particles are the same are connected by a line.
  • the mass% of zirconia particles not only the mass% of zirconia particles but also the mass% of graphite particles has a great influence on haze. That is, by including graphite particles in addition to zirconia particles in the light scattering layer, setting of haze is facilitated as compared with the case where only zirconia particles are included in the light scattering layer. In other words, by including the zirconia particles in addition to the graphite particles, it becomes possible to set the haze more finely than when only the graphite particles are included in the light scattering layer.
  • FIG. 8 is a diagram showing the influence of mass% of zirconia particles on b * in the examples and comparative examples according to the present embodiment.
  • a line is connected between marks according to Examples and Comparative Examples in which the mass% of the graphite particles is the same.
  • the light scattering layer does not contain graphite particles
  • b * is greatly reduced. This means that the transparent screen is bluish.
  • the light scattering layer includes graphite particles in addition to zirconia particles, b * does not decrease so much. This means that the transparent screen is not bluish. That is, by including graphite particles in addition to zirconia particles in the light scattering layer, it becomes easy to bring the color of the image displayed on the transparent screen close to the color of the light source of the image.
  • the transparent screens according to the examples according to the present embodiment those satisfying the first requirement and the second requirement described below are compared with the case where at least one of the two requirements is not satisfied. , Haze is greatly reduced or increased.
  • the first requirement is that the mass% of the graphite particles with respect to the mass sum is 0.01% or more and 1.00% or less.
  • the second requirement is that the sum of the mass percent of the graphite particles relative to the mass sum and the mass percent of the zirconia particles relative to the mass sum is 0.635% or more and 5.5% or less.
  • the transparent screens that satisfy these two requirements those that further satisfy the third requirement and the fourth requirement described below are compared with those that do not satisfy the first requirement and the second requirement.
  • the third requirement is that the mass% of the zirconia particles with respect to the mass sum is 0.625% or more and 2.5% or less.
  • the fourth requirement is that the mass% of the graphite particles with respect to the mass sum is 0.01% or more and 0.375% or less. Thereby, the balance of color tone can be maintained while ensuring the transparency of the transparent screen.
  • a transparent screen that satisfies these four requirements has high transmission visibility, can display an image clearly, and brings the color of the image displayed on the screen close to the color of the light source of the image. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

画像表示体の全光線透過率とヘイズとの設定の自由度を向上させる。 画像表示体形成用塗料は、画像表示体を形成するための塗料である。画像表示体は、画像を表示するための物体である。画像表示体は、光散乱層を備える。光散乱層は、光が入射するとその光を散乱させる。光散乱層が、ジルコニア粒子と、透過層形成材と、黒鉛粒子とを含む。透過層形成材は、光が透過可能な透過層を形成する。透過層形成材が、被膜形成透明樹脂であることが望ましい。被膜形成透明樹脂は、溶剤が気化すると透明な被膜を透過層として形成する。

Description

画像表示体形成用塗料および画像表示体
 本発明は、画像表示体形成用塗料および画像表示体に関する。
 特許文献1は透明スクリーン用フィルムを開示する。この透明スクリーン用フィルムは、樹脂層と無機粒子とを含む。無機粒子は、樹脂層中に少なくとも一部が凝集状態で含まれる。この無機粒子の一次粒子が、0.1~50ナノメートルのメジアン径を有し、かつ、10~500ナノメートルの最大粒径を有する。無機粒子の含有量が、樹脂に対して0.015~1.2質量%である。無機粒子が、金属系粒子である。特許文献1に開示されている透明スクリーン用フィルムによれば、透過視認性を損なわずに、透明パーティション等に商品情報や広告等を鮮明に投射表示できる。
特開2015-212800号公報
 しかしながら、特許文献1に開示された透明スクリーン用フィルムには、全光線透過率とヘイズとを個別に設定することが難しいという問題点がある。
 しばしば、透明スクリーンの全光線透過率は高いことが好ましいとされる。全光線透過率の高さは透明スクリーンにおける透明の程度を示すためである。しかしながら、全光線透過率が高い透明スクリーンが常に好ましいとは限らない。例えば、スクリーンに投射された光の反射により映像を表わそうとする場合、スクリーンの全光線透過率はある程度低いことが好ましい。全光線透過率がある程度低いとそれが高い場合に比べて映像がはっきり表われるためである。
 一方、光の反射によって映像を表わそうとするだけでなくスクリーンを透過した光も利用しようとする場合、全光線透過率が低過ぎるとスクリーンを透過した光も利用するという目的が達成できなくなる。この場合、ヘイズを高くすることによってスクリーンに表われる映像を見えやすくすることもある。しかしながら、例えば、ヘイズを高くすることに伴って全光線透過率が低下してしまう場合、ヘイズを高くすると、スクリーンを透過した光も利用するという目的が達成できなくなる。なお、スクリーンを透過した光の利用例には、スクリーンを介して室内に光を取り入れるというものがある。
 上述されたように、全光線透過率が高い透明スクリーンが常に好ましいとは限らない。例えば、映像に重なる背景が明るい場合、透明スクリーンの全光線透過率はある程度低いことが好ましい。全光線透過率がある程度低いとそれが高い場合に比べて映像がはっきり表われるためである。映像表示用の透明スクリーンにおいては、ヘイズを高くすることによってそこに表われる映像を見えやすくすることもある。しかしながら、ヘイズが高い透明スクリーンが常に好ましいとは限らない。例えば、窓ガラスに貼られてそこに映像が表示される透明スクリーンの場合、透明スクリーンのヘイズはある程度低いことが好ましい。ヘイズが高過ぎると透明スクリーンの曇りによってそこから外が見え辛くなってしまうからである。
 全光線透過率とヘイズとを個別に設定することが難しければ、それらの一方の設定に伴って自ずと他方も決まってしまうこととなる。それらの一方の設定に伴って他方も自ずと決まってしまう場合、そのようにして設定された全光線透過率とヘイズとのうち少なくとも一方がユーザの求める水準に達していない場合、そのスクリーンはそのユーザにとって満足できないものとなる。
 本発明は、このような問題を解消するものである。その目的は、透明スクリーンその他の画像表示体の製造に用いられることでその画像表示体の全光線透過率とヘイズとの設定の自由度を向上させ得る画像表示体形成用塗料およびその画像表示体を提供することにある。
 本発明者らは、上記問題点に対して鋭意検討した結果、画像表示体がジルコニア粒子を含む透過層を備えており、かつ、その透過層がジルコニア粒子に加えて黒鉛粒子を含むことで、その透過層ひいては画像表示体の全光線透過率とヘイズとの設定の自由度を向上させ得ることを見出し、本発明を完成するに至った。すなわち、本発明は、次の通りである。
 上記課題を解決するために、本発明のある局面に従うと、画像表示体形成用塗料は、ジルコニア粒子と、溶剤と、透過層形成材とを含む。透過層形成材は、溶剤が気化すると光が透過可能な透過層を形成する。画像表示体形成用塗料は、黒鉛粒子をさらに含む。
 透過層形成材は、溶剤が気化すると光が透過可能な透過層を形成する。ジルコニア粒子と黒鉛粒子とはその透過層形成材によってその透過層に保持されることとなる。ジルコニア粒子と黒鉛粒子とは、その透過層における全光線透過率とヘイズとに及ぼす影響の度合いが異なる。これにより、ジルコニア粒子の質量%と黒鉛粒子の質量%とのうち一方が異なることによって表われる全光線透過率およびヘイズの相違の一方は、ジルコニア粒子の質量%と黒鉛粒子の質量%とのうち他方が異なることによって打ち消し得る。その結果、その透過層ひいてはその透過層が光散乱層として機能する画像表示体の全光線透過率とヘイズとの設定の自由度を向上させ得る。
 また、質量和に対するジルコニア粒子の質量%が20%以上であることが望ましい。質量和とはジルコニア粒子の質量と黒鉛粒子の質量と透過層形成材の質量との和のことである。この場合、質量和に対する黒鉛粒子の質量%が0.2%以上であることが望ましい。この場合、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和が100%未満であることが望ましい。
 スクリーンにおける全光線透過率とヘイズとの設定の自由度を向上させるばかりでなく、ユーザが直接感じ得る問題点を解決することが望ましい。例えば、スクリーンに表われる映像を見えやすくするとともに、スクリーンを透過した光も利用しようとする場合、次に述べられる問題点を解消することが望ましい。その1点目は、そのスクリーンの前面と背面とに表われる画像のうちスクリーンを透過した光によって表される画像を見る者がその光をまぶしく感じる可能性があるという問題点である。その2点目は、スクリーンの前面と背面とに表われる画像がぼんやりする可能性があるという問題点である。
 質量和に対するジルコニア粒子の質量%が20%以上であることで、画像表示体が形成されると、その背面に表われる画像を視る際にまぶしさを感じ難くなる。質量和に対する黒鉛粒子の質量%が0.2%以上であることで、画像表示体が形成されると、その前面と背面とに表われる画像がくっきりとしたものになる。その結果、透過した光をまぶしく感じ難く、かつ、画像をよりくっきり現わし得る画像表示体形成用塗料を提供できる。
 また、上述した質量和に対する黒鉛粒子の質量%が0.2%以上1.64%以下であることが望ましい。
 質量和に対する黒鉛粒子の質量%が0.2%以上1.64%以下である場合、そうでない場合に比べ、画像表示体が形成されると、その前面と背面とに表われる画像を様々な角度で視認可能になる。
 もしくは、上述した質量和に対する黒鉛粒子の質量%が0.21%以上0.41%以下であることが望ましい。
 質量和に対する黒鉛粒子の質量%が0.21%以上0.41%以下である場合、そうでない場合に比べ、本発明にかかる画像表示体が形成されると、その前面と背面とに表われる画像がくっきりとしたものになる。
 もしくは、上述した質量和に対するジルコニア粒子の質量%が25%以上であることが望ましい。
 もしくは、上述した質量和に対する黒鉛粒子の質量%が0.83%以上であることが望ましい。
 また、上述した透過層形成材が、被膜形成透明樹脂であることが望ましい。被膜形成透明樹脂は、溶剤が気化すると透明な被膜を形成する。この場合、質量和に対する黒鉛粒子の質量%が0.01%以上1.00%以下であることが望ましい。質量和は、ジルコニア粒子の質量と黒鉛粒子の質量と透過層形成材の質量との和である。この場合、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和が、0.635%以上5.5%以下であることが望ましい。
 質量和に対する黒鉛粒子の質量%が0.01%以上1.00%以下であり、かつ、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和が0.635%以上5.5%以下である場合、そうでない場合に比べ、被膜形成透明樹脂が透明な被膜を形成した際にその被膜の透明の程度の低下を抑えつつその被膜に形成される映像の輝度を高くできる。
 もしくは、上述した質量和に対するジルコニア粒子の質量%が0.625%以上2.5%以下であることが望ましい。この場合、質量和に対する黒鉛粒子の質量%が0.01%以上0.375%以下であることが望ましい。
 質量和に対するジルコニア粒子の質量%が0.625%以上2.5%以下であり、かつ、質量和に対する黒鉛粒子の質量%が0.01%以上0.375%以下である場合、被膜形成透明樹脂が形成する被膜の透明の程度は、ジルコニア粒子と黒鉛粒子とが含まれない場合に近くなる。しかも、質量和に対するジルコニア粒子の質量%が0.625%以上2.5%以下であり、かつ、質量和に対する黒鉛粒子の質量%が0.01%以上0.375%以下である場合、被膜形成透明樹脂が形成する被膜のヘイズは、ジルコニア粒子と黒鉛粒子とが含まれない場合に比べて大きくなる。その結果、質量和に対するルコニア粒子の質量%が0.625%以上2.5%以下であり、かつ、質量和に対する黒鉛粒子の質量%が0.01%以上0.375%以下である場合、被膜に形成される映像の輝度を高くできる。
 本発明の他の局面に従うと、画像表示体は、光散乱層を備える。光散乱層は、光が入射するとその光を散乱させる。画像表示体は、画像を表示するための物体である。光散乱層が、ジルコニア粒子と、透過層形成材とを含む。透過層形成材は、光が透過可能な透過層を形成する。光散乱層は、黒鉛粒子をさらに含む。
 ジルコニア粒子の質量%と黒鉛粒子の質量%とのうち一方が異なることによって表われる全光線透過率およびヘイズの相違の一方は、ジルコニア粒子の質量%と黒鉛粒子の質量%とのうち他方が異なることによって打ち消し得る。その結果、その透過層ひいてはその透過層が光散乱層として機能する画像表示体の全光線透過率とヘイズとの設定の自由度を向上させ得る。
 また、質量和に対する上述したジルコニア粒子の質量%が20%以上であることが望ましい。質量和とはジルコニア粒子の質量と黒鉛粒子の質量と透過層形成材の質量との和のことである。この場合、質量和に対する黒鉛粒子の質量%が0.2%以上であることが望ましい。この場合、質量和に対するジルコニア粒子の質量%と質量和に対する黒鉛粒子の質量%と質量和に対する透過層形成材の質量%との和が100%未満であることが望ましい。
 質量和に対するジルコニア粒子の質量%が20%以上であり、質量和に対する黒鉛粒子の質量%が0.2%以上であることで、画像表示体の前面と背面とに表われる画像がくっきりとする。
 また、上述した画像表示体の全光線透過率が60%以下であることが望ましい。この場合、画像表示体のヘイズが97%以上であることが望ましい。これにより、本発明の画像表示体から反射した光によって形成される画像も、本発明の画像表示体を透過した光によって形成される画像も明るいものとなる。しかも、本発明の画像表示体を透過した光がまぶしいものになる可能性をより抑え得る。
 また、反射光の輝度比が0.2以上であることが望ましい。反射光の輝度比は、次に述べられる2種類の反射光の輝度のうち小さい方の反射光の輝度を大きい方の反射光の輝度で除算することにより算出される商である。1種類目の反射光の輝度は、画像表示体の法線方向から見て入射方向側かつその法線方向に対して60°傾いた方向における反射光の輝度である。2種類目の反射光の輝度は、その法線方向から見てその入射方向とは反対側かつその法線方向に対して60°傾いた方向における反射光の輝度である。これらの反射光は、入射方向から照射される光の反射光である。入射方向は、法線方向に対して45°傾いた方向である。反射光の輝度比が0.2以上である場合、透過光の輝度比が0.5以上であることが望ましい。透過光の輝度比は、次に述べられる2種類の光の輝度のうち小さい方の光の輝度を大きい方の光の輝度で除算することにより算出される商である。1種類目の光の輝度は、原点から見た法線方向を0°とするとき、原点から見て法線方向に対し120°傾いた方向における画像表示体を透過した光の輝度である。この原点は、画像表示体の法線方向から画像表示体に対して照射される光が画像表示体を貫通した箇所のことである。2種類目の光の輝度は、その原点から見てその法線方向に対し150°傾いた方向におけるその画像表示体を透過した光の輝度である。これにより、画像表示体から反射した光によって形成される画像と、画像表示体を透過した光によって形成される画像とを様々な方向から見ることができる。
 本発明によれば、画像表示体の全光線透過率とヘイズとの設定の自由度を向上させ得る。
本発明の第1実施形態にかかる実施例および比較例において全光線透過率に及ぼす黒鉛粒子の質量%の影響を示す図である。 本発明の第1実施形態にかかる比較例において全光線透過率に及ぼすジルコニア粒子の質量%の影響を示す図である。 本発明の第1実施形態にかかる比較例において全光線透過率に及ぼす光散乱層の厚さの影響を示す図である。 本発明の第1実施形態にかかる比較例においてヘイズに及ぼすジルコニア粒子の質量%の影響を示す図である。 反射光の輝度および透過光の輝度の定義を示す図である。 本発明の第2実施形態にかかる実施例および比較例において全光線透過率に及ぼすジルコニア粒子の質量%の影響を示す図である。 本発明の第2実施形態にかかる実施例および比較例においてヘイズに及ぼすジルコニア粒子の質量%の影響を示す図である。 本発明の第2実施形態にかかる実施例および比較例においてb*に及ぼすジルコニア粒子の質量%の影響を示す図である。
〈第1実施形態〉
[画像表示体の性質の説明]
 本発明の第1実施形態について以下詳細に説明する。投影機から投影された光を散乱させその光によって画像を形成させる画像表示体が知られている。このような画像表示体は、例えば、映像表示用のスクリーンとして用いられ得る。本実施形態にかかる画像表示体は、これから反射した光が形成する画像をユーザが見ることができ、かつ、これを透過した光が形成する画像をユーザが見ることができる。本実施形態にかかる画像表示体が、以下の要件を満たすことが望ましい。その要件は、全光線透過率が60%以下であり、かつ、ヘイズが97%以上であることである。
 本実施形態の画像表示体における全光線透過率が高すぎると、その画像表示体から反射した光によって形成される画像が暗くなり過ぎてしまう。本実施形態の画像表示体における全光線透過率が60%以下であることで、本実施形態の画像表示体から反射した光によって形成される画像も、本実施形態の画像表示体を透過した光によって形成される画像も、より明るいものとなる。本実施形態の画像表示体における全光線透過率が60%以下であって、かつ、その画像表示体に吸収される光が多い場合、画像の明るさは抑えられるものの、画像はよりくっきりしたものとなる。
 本実施形態の画像表示体におけるヘイズが低すぎると、その画像表示体を透過した光を見る者がその光をまぶしく感じる。本実施形態の画像表示体におけるヘイズが97%以上であることで、本実施形態の画像表示体を透過した光がまぶしいものになる可能性を抑え得る。
 本実施形態の画像表示体が、上述された要件に加えて以下の要件を満たすことがより望ましい。その要件は、反射光の輝度比が0.2以上であり、かつ、透過光の輝度比が0.5以上であることである。
 本実施形態の画像表示体における反射光の輝度比が低すぎると、その画像表示体から反射した光によって形成される画像を視認できる範囲が狭くなり過ぎてしまう。本実施形態の画像表示体における反射光の輝度比が0.2以上であることで、本実施形態の画像表示体から反射した光によって形成される画像を様々な方向から見ることができる。
 本実施形態の画像表示体における透過光の輝度比が低すぎると、その画像表示体から反射した光によって形成される画像を視認できる範囲が狭くなり過ぎてしまう。本実施形態の画像表示体における透過光の輝度比が0.5以上であることで、本実施形態の画像表示体を透過した光によって形成される画像を様々な方向から見ることができる。
[画像表示体の構造の説明]
 本実施形態にかかる画像表示体は、光散乱層を備える。光散乱層は、光が入射するとその光を散乱させる。本実施形態において、光散乱層は板状である。本実施形態にかかる画像表示体は、光散乱層に加え、任意の層を備えていてもよい。ただし、その層は、本実施形態にかかる画像表示体から反射した光が形成する画像をユーザが見ることと、これを透過した光が形成する画像をユーザが見ることとを可能にするものである。もちろん、本実施形態にかかる画像表示体は光散乱層のみからなっていてもよい。また、本実施形態にかかる画像表示体の具体的な形態は特に限定されない。例えばそれは周知のスクリーンであってもよい。例えばそれは周知の板ガラスの代わりに設置し得る建材であってもよい。例えばそれは周知のスクリーンでも周知の板ガラスの代わりに設置し得る建材でもない板状の物体であってもよい。それは柱状のアクリル樹脂であってもよい。
 本実施形態にかかる光散乱層の厚さは、1マイクロメートル以上200マイクロメートル以下が望ましい。その厚さは、2マイクロメートル以上100マイクロメートル以下がより望ましい。その厚さは、5マイクロメートル以上50マイクロメートル以下がさらに望ましい。その厚さを1マイクロメートル以上にすることで、一定の散乱光強度を確保できる。その厚さを200マイクロメートル以下にすることで、映像のにじみを抑えることができる。
(光散乱層の成分の説明)
 光散乱層の素材は、ジルコニア粒子と、透過層形成材と、黒鉛粒子とを含む。
 ジルコニア粒子の大きさおよび形状は特に限定されない。例えば、本実施形態において用いられるジルコニア粒子の平均粒径は5ナノメートル以上400ナノメートル以下であってもよい。本実施形態において用いられるジルコニア粒子の形状は球形であってもよい。なお、このジルコニア粒子のBET値が50m毎グラム以上であることが望ましい。BET値が50m毎グラム以上であることが望ましいのは、二次粒径の粒度分布の制御がしやすいためである。二次粒径の粒度分布の再現性が得られると品質管理が容易となる。このジルコニア粒子のBET値が150m毎グラム以上であればさらに望ましい。一方、このジルコニア粒子のBET値が1000m毎グラム以下であることが望ましい。ジルコニアの結晶性を良好のまま保つことが容易なためである。このジルコニア粒子のBET値が300m毎グラム以下であればさらに望ましい。なお、ジルコニア粒子のBET値が大きいことはそのジルコニア粒子の粒子径が小さいことに相当する。ちなみに、このジルコニア粒子は、超臨界水熱合成で製造されることが望ましい。
 透過層形成材は、透過層を形成する材料である。光は、透過層を透過可能である。ジルコニア粒子と黒鉛粒子とは、透過層形成材に含まれることでその透過層に保持される。透過層形成材の種類も特に限定されない。透過層形成材は、光の透過をなるべく妨げない合成樹脂であることが望ましい。この透過層形成材は、上述された合成樹脂のうち、溶剤によって流動性が維持され溶剤が気化すると固化するものがより望ましい。そのような合成樹脂の例には、ポリエステル樹脂、ポリエチレンテレフタレート、アクリル樹脂、ポリカーボネート、ポリスチレン、ビニル樹脂がある。
 黒鉛粒子の大きさおよび形状も特に限定されない。例えば、本実施形態において用いられる黒鉛粒子の平均直径は5マイクロメートル以上100マイクロメートル以下であってもよい。ただし、本実施形態にかかる黒鉛粒子の形状が薄片状であるとき、その厚さは、黒鉛原子1層分の厚さ以上100ナノメートル以下であることが望ましい。本実施形態において用いられる黒鉛粒子の形状は厚さ10ナノメートル以上30ナノメートル以下の薄片状であることがより望ましい。なお、黒鉛粒子が薄片状である場合、そのアスペクト比はなるべく高いことが好ましい。
 光散乱層におけるジルコニア粒子の濃度、および、光散乱層における黒鉛粒子の濃度は、次に述べられる3つの要件を満たす限り、任意に設定し得る。第1の要件は、質量和に対するジルコニア粒子の質量%が20%以上という要件である。第2の要件は、質量和に対する黒鉛粒子の質量%が0.2%以上という要件である。第3の要件は、質量和に対するジルコニア粒子の質量%と質量和に対する黒鉛粒子の質量%との和が100%未満という要件である。なお、光散乱層におけるジルコニア粒子の濃度、および、光散乱層における黒鉛粒子の濃度が低いと、それに伴ってヘイズが低くなる。ヘイズが低くなると、本実施形態にかかる画像表示体に対向する人は、本実施形態にかかる画像表示体の向こう側にある物の像を鮮明に見ることができる。これに伴い、本実施形態にかかる画像表示体に対向する人が、本実施形態にかかる画像表示体の向こう側から来る光をまぶしく感じることはあり得る。質量和に対するジルコニア粒子の質量%は25%以上であることが望ましい。質量和に対するジルコニア粒子の質量%は40%以上であることがより望ましい。
 光散乱層の厚さは、1マイクロメートル以上200マイクロメートル以下が望ましい。その厚さは、2マイクロメートル以上100マイクロメートル以下がより望ましい。その厚さは、5マイクロメートル以上50マイクロメートル以下がさらに望ましい。その厚さを1マイクロメートル以上にすることで、一定の散乱光強度を確保できる。その厚さを200マイクロメートル以下にすることで、映像のにじみを抑えることができる。
 本実施形態にかかる画像表示体は、上述された成分とは異なる成分を含んでもよい。その例には周知の顔料や高分子分散剤、界面活性剤などがある。例えば、炭酸カルシウム、硫酸バリウム、酸化チタン、または、酸化亜鉛等の無機材料を添加することで、ジルコニアの分散性を上げたり、顔料粒子を多く含めることで滑らかな外観に仕上げたりすることができる。顔料を含むことにより本実施形態にかかる画像表示体は様々な色を有するものとなる。なお、本実施形態にかかる画像表示体に金属粒子がさらに含まれていると本実施形態にかかる画像表示体の拡散反射率が向上する。拡散反射率が向上すると、そうでない場合に比べ、その画像表示体に現れた画像の輝度を上げることができる。そのような金属粒子の例にはアルミニウムがある。
[塗料の説明]
 本実施形態にかかる画像表示体は、例えば、周知のガラス板の無機材や、透明樹脂材の表面へ本実施形態にかかる画像表示体形成用塗料を塗布することでも形成できる。その画像表示体形成用塗料がそのガラス板の表面で乾燥することで、その画像表示体形成用塗料によって覆われたガラス板は本実施形態にかかる画像表示体となる。本実施形態にかかる画像表示体形成用塗料は、ジルコニア粒子と、黒鉛粒子と、溶剤と、透過層形成材とを含む。
 本実施形態にかかる溶剤とは、塗布されるまで画像表示体形成用塗料の流動性を維持し、かつ、塗布された後は気化する、画像表示体形成用塗料の成分のことである。本実施形態にかかる塗料においては、溶剤の成分は特に限定されない。溶剤は混合物でも純物質であってもよい。ただし溶剤はジルコニア粒子と黒鉛粒子とをその溶剤中に分散させることができるものである。溶剤は、合成樹脂を含む液とよく混和することが望ましい。そのような溶剤の例には、メチルエチルケトンとプロピレングリコールモノメチルエーテルとがある。
 ジルコニア粒子と、黒鉛粒子と、透過層形成材とについての説明は上述された通りなので、ここではその説明は繰り返されない。
 ちなみに、本実施形態にかかる画像表示体形成用塗料を不透明な物体に塗布すること自体は可能である。本実施形態にかかる画像表示体形成用塗料は、不透明な物体に塗布されると、その不透明な物体の表面に光散乱層を形成する。その光散乱層が形成された不透明な物体に光を投射することで画像を形成することができる。
[製造方法の説明]
 本実施形態にかかる画像表示体の製造方法は特に限定されない。その一例は、上述されたように、周知のガラス板の表面へ本実施形態にかかる画像表示体形成用塗料を塗布することである。他の一例は、ジルコニア粒子と黒鉛粒子と透過層形成材である透明な合成樹脂(この合成樹脂は溶融状態である)との混合物を板状に成型することである。
 本実施形態にかかる画像表示体形成用塗料の製造方法も特に限定されない。その一例は、ジルコニア粒子と、黒鉛粒子と、被膜形成透明樹脂とを別々に溶剤中で分散させておき、溶剤中に分散したジルコニア粒子と、黒鉛粒子と、被膜形成透明樹脂とを混合するという方法がある。
[用途及び使用方法の説明]
 本実施形態にかかる画像表示体形成用塗料は、本実施形態にかかる画像表示体の製造に用いられる。本実施形態にかかる画像表示体は、静止画および動画の少なくとも一方を映し出すために用いられる。その具体的な使用方法は従来から用いられている周知のスクリーンと同様である。なお、本実施形態にかかる画像表示体は、反射光によって形成される画像を利用する用途へも透過光によって形成される画像を利用する用途へも良く適用できる。
 以下に、実施例を示して本実施形態にかかる発明を具体的に説明する。ただし、本実施形態にかかる発明はこれらの実施例に限定されない。
[実施例1]
 (1) 塗料の調製
 (A) ジルコニア粒子分散液の調製
 作業者は、以下の手順に従って本実施例にかかるジルコニア粒子分散液を調製した。まず、作業者は、メチルエチルケトン中に株式会社アイテック製ジルコニア粒子であるZirconeo(登録商標)を混入させた。混入されたジルコニア粒子のBET値は242m毎グラムであった。なお、このジルコニア粒子は、超臨界水熱合成で製造されたものであった。X線回折法によって解析されたこのジルコニア粒子の結晶相は正方晶が優勢であった。その結果、このジルコニア粒子の屈折率は、単斜晶のジルコニアの屈折率よりわずかに高かった。X線回折法によって解析された際、試料表面とX線とがなす角度が30度付近である場合のX線の強度のピークの幅は広かった。計測値から直接読み取ったこのピークの半値幅は、3.8°と大きいものであった。その結果、X線が単斜晶に照射されたことで生じるX線のピークは、X線が他の結晶に照射されたことで生じるピークに埋もれていた。このことは、試料の結晶子径が小さいことを意味する。ちなみに、X線の強度のピークの幅が0.5°以上であれば、ジルコニア粒子分散液の製造における品質制御がしやすい。X線の強度のピークの幅が10°以下であれば、ジルコニアの光散乱特性を維持することができる。そのジルコニア粒子入りメチルエチルケトンにおけるジルコニア粒子の質量%は30質量%であった。次に、作業者は、そのジルコニア粒子入りメチルエチルケトンに粒子粉砕用の周知のビーズを投入した。次に、作業者は、そのジルコニア粒子入りメチルエチルケトンをマグネティックスターラで撹拌した。これにより、ジルコニア粒子はビーズによって砕かれた。ジルコニア粒子入りメチルエチルケトンの撹拌中、そのジルコニア粒子の粒径は、粒径測定装置(メーカー:大塚電子株式会社、型番:FPAR-1000)によりくり返し測定された。測定方法は動的光散乱法(DLS)であった。ジルコニア粒子の平均粒径が400ナノメートルとなるまで、ジルコニア粒子を砕く作業が継続された。作業終了後、ビーズは取り除かれた。ビーズが取り除かれたジルコニア粒子入りメチルエチルケトンが本実施例にかかるジルコニア粒子分散液である。
 (B) 黒鉛粒子分散液の調製
 作業者は、以下の手順に従って本実施例にかかる黒鉛粒子分散液を調製した。まず、作業者は、メチルエチルケトン中に株式会社アイテック製黒鉛粒子であるiGurafen(登録商標)を混入させた。混入された黒鉛粒子のBET値は27m毎グラムであった。ちなみに、黒鉛のBET値は、黒鉛の薄片化度を表す。BET値が大きいほどより薄い黒鉛となる。黒鉛のBET値が2.5m毎グラム以上あれば、単位重量当たりの光の反射・吸収面が増加する。その結果、これを含むスクリーンの特性が向上する。黒鉛のBET値は5m毎グラム以上であればさらに望ましい。また、BET値が250m毎グラム以下であれば、吸油量が抑えられて塗料中に分散しやすくなったり、多重反射が抑えられて光の反射特性を維持できたりする。BET値は125以下m毎グラムがさらに望ましい。その黒鉛粒子入りメチルエチルケトンにおける黒鉛粒子の質量%は5質量%であった。次に作業者は、その黒鉛粒子入りメチルエチルケトンをジェットミル(メーカー:株式会社スギノマシン、型番:スターバーストHJP-25008)に入れた。ジェットミル内で黒鉛粒子は砕かれた。黒鉛粒子の平均粒径が5マイクロメートルとなるまで、黒鉛粒子を砕く作業が継続された。この黒鉛粒子入りメチルエチルケトンが本実施例にかかる黒鉛粒子分散液である。なお、この黒鉛粒子のラマンスペクトルを計測すると、Dバンドのピーク高はGバンドのピーク高の12%であった。このことは、この黒鉛粒子における結晶の欠陥が少なく、光の反射特性に有利であることを示している。Gバンドのピーク高に対するDバンドのピーク高の比は小さいほど望ましい。この比は30%を下回るのが特に望ましく、15%を下回るのがさらに望ましい。
 (C) 混合
 まず、作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、アクリルゴムのトルエン溶液(以下「アクリルゴム液」と称する)である株式会社トウペ製XE-1345とを混合した。その第1の要件は、ジルコニア粒子の質量と黒鉛粒子の質量とアクリルゴムの質量との和に対するジルコニア粒子の質量%が49.9質量%となるというものである。その第2の要件は、ジルコニア粒子と黒鉛粒子とアクリルゴムとの和に対する黒鉛粒子の質量%が0.21質量%となるというものである。この混合により得られた液が本実施例にかかる塗料である。なお、アクリルゴム液におけるアクリルゴムの質量%は30質量%であった。
 (2) 画像表示体の作製
 まず、作業者は、ハガキと同じ大きさの平板形ガラスに、イソプロピルアルコールを垂らした。次に、作業者は、その平板形ガラスにポリエチレンテレフタレートフィルムを被せた。ポリエチレンテレフタレートフィルムは東レ株式会社製のルミラー(登録商標)T60であった。次に、作業者は、平板形ガラスとポリエチレンテレフタレートフィルムとの間に挟まれた気泡を押し出した。気泡が押し出されると、作業者は、平板形ガラスおよびポリエチレンテレフタレートフィルムの一端と他端とに市販のテープを貼った。これにより、平板形ガラスとポリエチレンテレフタレートフィルムとは貼り合わされた。このテープの厚さは40マイクロメートルであった。このテープが何枚重ねられるかに応じて後述される光散乱層の厚さが調整される。次に、作業者は、平板形ガラスおよびポリエチレンテレフタレートフィルムの残る縁も同様にして貼り合わせた。これにより、平板形ガラスおよびポリエチレンテレフタレートフィルムの四方の縁が貼り合わされた。次に、作業者は、四方の縁が貼り合わされたポリエチレンテレフタレートフィルムへ本実施例にかかる塗料を垂らした。塗料が垂らされると、作業者は、まっすぐな金属製円柱棒を用いてその塗料をポリエチレンテレフタレートフィルムのうちテープで囲まれた領域に広げた。その塗料の量は、重ねて貼られたテープで囲まれた領域に広げられた際にその重ねて貼られたテープと同じ高さになる量であった。次に、作業者は、塗料が広げられたポリエチレンテレフタレートフィルムおよび平板形ガラスを乾燥炉内で乾燥させた。乾燥炉内の温度は摂氏120度であった。これにより、塗料は光散乱層となった。光散乱層の厚さは19.9マイクロメートルであった。塗料が光散乱層となったことにより、本実施例にかかる画像表示体が完成した。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、日本電色工業株式会社のヘイズメータNDH7000を用いることにより、本実施例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は35.22%であった。測定されたヘイズは99.12%であった。
 (B) 反射光の輝度比の測定
 作業者は、日本電色工業株式会社の変角光度計GC-500Lを用いることにより、本実施例にかかる画像表示体についての次に述べられる輝度を測定した。その輝度のうち1つ目の輝度は、入射方向から照射される光の反射光のうち法線方向から見て入射方向側かつその法線方向から見て60°傾いた方向(図5において「-60°」と記された方向)における輝度である。「入射方向」とは、法線方向に対して45°傾いた方向(図5において「光入射(フロント)-45°」と記された方向)のことである。「法線方向」とは、本実施例にかかる画像表示体の法線方向(図5において「光入射(リア)法線方向0°」と記された方向)のことである。すなわち、「法線方向」とは、本実施例にかかる画像表示体の表面に直交する方向である。2つ目の輝度は、その反射光のうちその法線方向から見て入射方向とは反対側かつその法線方向に対して60°傾いた方向(図5において「60°」と記された方向)における輝度である。これらの輝度が測定されると、作業者は、これらの輝度のうち小さい方の値を大きい方の値で除算することによりその商を算出した。算出した商が本実施例における反射光の輝度比である。測定の結果得られたその比は、0.570であった。
 (C) 透過光の輝度比の測定
 作業者は、日本電色工業株式会社の変角光度計GC-500Lを用いることにより、本実施例にかかる画像表示体についての次に述べられる輝度を測定した。その輝度のうち1つ目の輝度は、次に述べられる点を原点とし、その原点から見た場合の上述の法線方向を0°とするときその法線方向に対して120°傾いた方向(図5において「120°」と記された方向)における、次に述べられる輝度である。その原点は、その法線方向からその画像表示体に対して照射される光がその画像表示体を貫通した箇所である。その輝度は、その画像表示体を透過した光の輝度である。図5において次に述べられる2本の線の交点がその原点にあたる。1本目の線は、「光入射(リア)法線方向0°」と記された箇所と「平行光線透過180°」と記された箇所との間に描かれた線である。2本目の線は、「フィルム±90°方向」との記載に沿う太い線である。2つ目の輝度は、上述された原点から見た場合の上述の法線方向を0°とするときその法線方向に対して150°傾いた方向(図5において「150°」と記された方向)における、次に述べられる輝度である。その輝度は、その画像表示体を通過した光の輝度である。これらの輝度が測定されると、作業者は、これらの輝度のうち小さい方の値を大きい方の値で除算することによりその商を算出した。算出した商が本実施例における透過光の輝度比である。測定の結果得られたその比は、0.682であった。
 (D) 平行光線透過率の算出
 作業者は、次に述べられる式に値を代入することにより平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.31%であった。
 [平行光線透過率]=(100%-[ヘイズ])×[全光線透過率]
 (4) 画像表示体の映像
 作業者は、本実施例にかかる画像表示体に動画を投影した。その投影により、本実施例にかかる画像表示体の前面と背面とにくっきりとした画像が表われた。それらの画像を、本実施例にかかる画像表示体の法線方向に対して傾いた方向からは、背面および前面ともよく見ることができた。本実施例にかかる画像表示体の背面に表われた画像を見た際、作業者はまったくまぶしさを感じなかった。
[実施例2]
 (1) 塗料の調製
 塗料の調製手順は実施例1と同様である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体を作成した。光散乱層の厚さは13.3マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は47.24%であった。測定されたヘイズは98.35%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.571であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.590であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本実施例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.78%であった。
 (4) 画像表示体の映像
 作業者は、本実施例にかかる画像表示体に動画を投影した。その投影により、本実施例にかかる画像表示体の前面と背面とにくっきりとした画像が表われた。それらの画像を、本実施例にかかる画像表示体の法線方向に対して傾いた方向からは、背面および前面ともよく見ることができた。本実施例にかかる画像表示体の背面に表われた画像を見た際、作業者はまぶしさを感じなかった。
[実施例3]
 (1) 塗料の調製
 作業者は、実施例1と同様にして、ジルコニア粒子分散液と、黒鉛粒子分散液とを調整した。それらが調整されると、作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、アクリルゴム液とを混合した。その第1の要件は、ジルコニア粒子の質量と黒鉛粒子の質量とアクリルゴムの質量との和に対するジルコニア粒子の質量%が49.8質量%となるというものである。その第2の要件は、ジルコニア粒子と黒鉛粒子とアクリルゴムとの和に対する黒鉛粒子の質量%が0.41質量%となるというものである。その他の点は実施例1と同様である。このようにして混合された液が本実施例にかかる塗料である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体を作成した。光散乱層の厚さは19.6マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は22.84%であった。測定されたヘイズは98.73%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.452であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.632であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本実施例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.29%であった。
 (4) 画像表示体の映像
 作業者は、本実施例にかかる画像表示体に動画を投影した。その投影により、本実施例にかかる画像表示体の前面と背面とにくっきりとした画像が表われた。それらの画像を、本実施例にかかる画像表示体の法線方向に対して傾いた方向からは、背面および前面ともよく見ることができた。本実施例にかかる画像表示体の背面に表われた画像を見た際、作業者はまったくまぶしさを感じなかった。
[実施例4]
 (1) 塗料の調製
 塗料の調製手順は実施例3と同様である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体を作成した。光散乱層の厚さは13.1マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は34.35%であった。測定されたヘイズは97.99%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.466であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.546であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本実施例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.69%であった。
 (4) 画像表示体の映像
 作業者は、本実施例にかかる画像表示体に動画を投影した。その投影により、本実施例にかかる画像表示体の前面と背面とにくっきりとした画像が表われた。それらの画像を、本実施例にかかる画像表示体の法線方向に対して傾いた方向からは、背面および前面ともよく見ることができた。本実施例にかかる画像表示体の背面に表われた画像を見た際、作業者はまぶしさを感じなかった。
[実施例5]
 (1) 塗料の調製
 作業者は、実施例1と同様にして、ジルコニア粒子分散液と、黒鉛粒子分散液とを調整した。それらが調整されると、作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、アクリルゴム液とを混合した。その第1の要件は、ジルコニア粒子の質量と黒鉛粒子の質量とアクリルゴムの質量との和に対するジルコニア粒子の質量%が49.6質量%となるというものである。その第2の要件は、ジルコニア粒子と黒鉛粒子とアクリルゴムとの和に対する黒鉛粒子の質量%が0.83質量%となるというものである。その他の点は実施例1と同様である。このようにして混合された液が本実施例にかかる塗料である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体を作成した。光散乱層の厚さは19.2マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は15.48%であった。測定されたヘイズは98.64%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.340であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.644であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本実施例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.21%であった。
 (4) 画像表示体の映像
 作業者は、本実施例にかかる画像表示体に動画を投影した。その投影により、本実施例にかかる画像表示体の前面と背面とにくっきりとした画像が表われた。それらの画像を、本実施例にかかる画像表示体の法線方向に対して傾いた方向からは、背面および前面ともよく見ることができた。ただし前面側において画像が見える範囲が若干狭く、かつ、背面側の画像が若干暗かった。本実施例にかかる画像表示体の背面に表われた画像を見た際、作業者はまったくまぶしさを感じなかった。
[実施例6]
 (1) 塗料の調製
 塗料の調製手順は実施例5と同様である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体を作成した。光散乱層の厚さは12.8マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は24.08%であった。測定されたヘイズは98.17%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.355であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.562であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本実施例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.44%であった。
 (4) 画像表示体の映像
 作業者は、本実施例にかかる画像表示体に動画を投影した。その投影により、本実施例にかかる画像表示体の前面と背面とにくっきりとした画像が表われた。それらの画像を、本実施例にかかる画像表示体の法線方向に対して傾いた方向からは、背面および前面ともよく見ることができた。ただし前面側において画像が見える範囲が若干狭かった。本実施例にかかる画像表示体の背面に表われた画像を見た際、作業者はまったくまぶしさを感じなかった。
[実施例7]
 (1) 塗料の調製
 作業者は、実施例1と同様にして、ジルコニア粒子分散液と、黒鉛粒子分散液とを調整した。それらが調整されると、作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、アクリルゴム液とを混合した。その第1の要件は、ジルコニア粒子の質量と黒鉛粒子の質量とアクリルゴムの質量との和に対するジルコニア粒子の質量%が49.2質量%となるというものである。その第2の要件は、ジルコニア粒子と黒鉛粒子とアクリルゴムとの和に対する黒鉛粒子の質量%が1.64質量%となるというものである。その他の点は実施例1と同様である。このようにして混合された液が本実施例にかかる塗料である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体を作成した。光散乱層の厚さは18.2マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は12.98%であった。測定されたヘイズは98.46%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.375であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.582であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本実施例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.20%であった。
 (4) 画像表示体の映像
 作業者は、本実施例にかかる画像表示体に動画を投影した。その投影により、本実施例にかかる画像表示体の前面と背面とにくっきりとした画像が表われた。それらの画像を、本実施例にかかる画像表示体の法線方向に対して傾いた方向からは、背面および前面ともよく見ることができた。ただし前面側において画像が見える範囲が若干狭く、かつ、背面側の画像が若干暗かった。本実施例にかかる画像表示体の背面に表われた画像を見た際、作業者はまったくまぶしさを感じなかった。
[実施例8]
 (1) 塗料の調製
 塗料の調製手順は実施例7と同様である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体を作成した。光散乱層の厚さは12.2マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は9.65%であった。測定されたヘイズは97.93%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.280であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.509であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本実施例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.20%であった。
 (4) 画像表示体の映像
 作業者は、本実施例にかかる画像表示体に動画を投影した。その投影により、本実施例にかかる画像表示体の前面と背面とに画像が表われた。背面の画像はくっきりとしていた。それらの画像を、本実施例にかかる画像表示体の法線方向に対して傾いた方向からは、背面および前面ともよく見ることができた。ただし画像が見える範囲が若干狭く、かつ、背面側の画像が若干暗かった。本実施例にかかる画像表示体の背面に表われた画像を見た際、作業者はまったくまぶしさを感じなかった。
[実施例9]
 (1) 塗料の調製
 作業者は、実施例1と同様にして、ジルコニア粒子分散液と、黒鉛粒子分散液とを調整した。それらが調整されると、作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、アクリルゴム液とを混合した。その第1の要件は、ジルコニア粒子の質量と黒鉛粒子の質量とアクリルゴムの質量との和に対するジルコニア粒子の質量%が48.4質量%となるというものである。その第2の要件は、ジルコニア粒子と黒鉛粒子とアクリルゴムとの和に対する黒鉛粒子の質量%が3.23質量%となるというものである。その他の点は実施例1と同様である。このようにして混合された液が本実施例にかかる塗料である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体を作成した。光散乱層の厚さは16.7マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は10.11%であった。測定されたヘイズは98.44%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.228であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.618であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本実施例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.17%であった。
 (4) 画像表示体の映像
 作業者は、本実施例にかかる画像表示体に動画を投影した。その投影により、本実施例にかかる画像表示体の前面と背面とにくっきりとした画像が表われた。それらの画像を、本実施例にかかる画像表示体の法線方向に対して傾いた方向からは、背面および前面ともよく見ることができた。ただし前面側において画像が見える範囲が若干狭く、かつ、背面側の画像が若干暗かった。本実施例にかかる画像表示体の背面に表われた画像を見た際、作業者はまったくまぶしさを感じなかった。
 [比較例1]
 (1) 塗料の調製
 作業者は、実施例1と同様にして、黒鉛粒子分散液を調整した。それが調整されると、作業者は、次の要件が満たされるように、黒鉛粒子分散液と、アクリルゴム液とを混合した。その要件は、黒鉛粒子の質量とアクリルゴムの質量との和に対する黒鉛粒子の質量%が4.00質量%となるというものである。その混合された液にはジルコニア粒子分散液が混入されなかった。したがって、その混合された液にはジルコニア粒子が含まれていない。その他の点は実施例1と同様である。このようにして混合された液が本比較例にかかる塗料である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体を作成した。光散乱層の厚さは25.1マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は1.8%であった。測定されたヘイズは76.67%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.015であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本実施例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.787であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本比較例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.42%であった。
 (4) 画像表示体の映像
 作業者は、本比較例にかかる画像表示体に動画を投影した。その投影により、本比較例にかかる画像表示体の前面と背面とに画像が表われた。それらの画像のうち前面側に表われた画像が見える範囲は、上述された実施例1乃至実施例9に比べて狭かった。その前面側の画像は上述された実施例1乃至実施例9に比べて暗かった。その背面側の画像は、上述された実施例1乃至実施例9に比べて特に暗かった。本比較例にかかる画像表示体の背面に表われた画像を見た際、作業者はまったくまぶしさを感じなかった。
[比較例2]
 (1) 塗料の調製
 塗料の調製手順は比較例1と同様である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体を作成した。光散乱層の厚さは16.7マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は4.7%であった。測定されたヘイズは68.72%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.031であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.962であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本比較例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は1.47%であった。
 (4) 画像表示体の映像
 作業者は、本比較例にかかる画像表示体に動画を投影した。その投影により、本比較例にかかる画像表示体の前面と背面とに画像が表われた。それらの画像のうち前面側に表われた画像が見える範囲は、上述された実施例1乃至実施例9に比べて狭かった。その前面側の画像は上述された実施例1乃至実施例9に比べて暗かった。その背面側の画像は、上述された実施例1乃至実施例9に比べて特に暗かった。本比較例にかかる画像表示体の背面に表われた画像を見た際、作業者はややまぶしさを感じた。
[比較例3]
 (1) 塗料の調製
 作業者は、実施例1と同様にして、ジルコニア粒子分散液を調整した。それが調整されると、作業者は、次の要件が満たされるように、ジルコニア粒子分散液と、アクリルゴム液とを混合した。その要件は、ジルコニア粒子の質量とアクリルゴムの質量との和に対するジルコニア粒子の質量%が50.0質量%となるというものである。その混合された液には黒鉛粒子分散液が混入されなかった。したがって、その混合された液には黒鉛粒子が含まれていない。その他の点は実施例1と同様である。このようにして混合された液が本比較例にかかる塗料である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体を作成した。光散乱層の厚さは20.2マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は60.16%であった。測定されたヘイズは98.67%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.823であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.656であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本比較例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.8%であった。
 (4) 画像表示体の映像
 作業者は、本比較例にかかる画像表示体に動画を投影した。その投影により、本比較例にかかる画像表示体の前面と背面とに画像が表われた。それらの画像のうち前面側の画像は、背面側の画像に比べてあまりくっきりとしていなかった。本比較例にかかる画像表示体の背面に表われた画像を見た際、作業者はまぶしさを感じなかった。
[比較例4]
 (1) 塗料の調製
 塗料の調製手順は比較例3と同様である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体を作成した。光散乱層の厚さは13.4マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は66.33%であった。測定されたヘイズは97.09%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.862であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.576であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本比較例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は1.93%であった。
 (4) 画像表示体の映像
 作業者は、本比較例にかかる画像表示体に動画を投影した。その投影により、本比較例にかかる画像表示体の前面と背面とに画像が表われた。それらの画像のうち前面側の画像は、背面側の画像に比べてあまりくっきりとしていなかった。本比較例にかかる画像表示体の背面に表われた画像を見た際、作業者はややまぶしさを感じた。
[比較例5]
 (1) 塗料の調製
 塗料の調製手順は比較例3と同様である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体を作成した。光散乱層の厚さは6.7マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は71.7%であった。測定されたヘイズは94.64%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.598であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.498であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本比較例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は3.84%であった。
 (4) 画像表示体の映像
 作業者は、本比較例にかかる画像表示体に動画を投影した。その投影により、本比較例にかかる画像表示体の前面と背面とに画像が表われた。それらの画像のうち背面側に表われた画像が見える範囲は、上述された実施例1乃至実施例9に比べて狭かった。それらの画像のうち前面側の画像は、背面側の画像に比べてあまりくっきりとしていなかった。本比較例にかかる画像表示体の背面に表われた画像を見た際、作業者はまぶしさを感じた。
[比較例6]
 (1) 塗料の調製
 作業者は、実施例1と同様にして、ジルコニア粒子分散液を調整した。それが調整されると、作業者は、次の要件が満たされるように、ジルコニア粒子分散液と、アクリルゴム液とを混合した。その要件は、ジルコニア粒子の質量とアクリルゴムの質量との和に対するジルコニア粒子の質量%が33.3質量%となるというものである。その混合された液には黒鉛粒子分散液が混入されなかった。したがって、その混合された液には黒鉛粒子が含まれていない。その他の点は実施例1と同様である。このようにして混合された液が本比較例にかかる塗料である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体を作成した。光散乱層の厚さは24.1マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は62.32%であった。測定されたヘイズは99.09%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.887であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.697であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本比較例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.57%であった。
 (4) 画像表示体の映像
 作業者は、本比較例にかかる画像表示体に動画を投影した。その投影により、本比較例にかかる画像表示体の前面と背面とに画像が表われた。それらの画像のうち前面側の画像は、背面側の画像に比べてあまりくっきりとしていなかった。本比較例にかかる画像表示体の背面に表われた画像を見た際、作業者はまぶしさを感じなかった。
[比較例7]
 (1) 塗料の調製
 塗料の調製手順は比較例6と同様である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体を作成した。光散乱層の厚さは16.1マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は63.73%であった。測定されたヘイズは99.01%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.952であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.659であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本比較例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は0.63%であった。
 (4) 画像表示体の映像
 作業者は、本比較例にかかる画像表示体に動画を投影した。その投影により、本比較例にかかる画像表示体の前面と背面とに画像が表われた。それらの画像のうち前面側の画像は、背面側の画像に比べてあまりくっきりとしていなかった。本比較例にかかる画像表示体の背面に表われた画像を見た際、作業者はまぶしさを感じなかった。
[比較例8]
 (1) 塗料の調製
 塗料の調製手順は比較例6と同様である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体を作成した。光散乱層の厚さは8.0マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は71.94%であった。測定されたヘイズは97.78%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.679であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.458であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本比較例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は1.60%であった。
 (4) 画像表示体の映像
 作業者は、本比較例にかかる画像表示体に動画を投影した。その投影により、本比較例にかかる画像表示体の前面と背面とに画像が表われた。それらの画像のうち背面側に表われた画像が見える範囲は、上述された実施例1乃至実施例9に比べて狭かった。それらの画像のうち前面側の画像は、背面側の画像に比べてあまりくっきりとしていなかった。本比較例にかかる画像表示体の背面に表われた画像を見た際、作業者はややまぶしさを感じた。
[比較例9]
 (1) 塗料の調製
 作業者は、実施例1と同様にして、ジルコニア粒子分散液を調整した。それが調整されると、作業者は、次の要件が満たされるように、ジルコニア粒子分散液と、アクリルゴム液とを混合した。その要件は、ジルコニア粒子の質量とアクリルゴムの質量との和に対するジルコニア粒子の質量%が20.0質量%となるというものである。その混合された液には黒鉛粒子分散液が混入されなかった。したがって、その混合された液には黒鉛粒子が含まれていない。その他の点は実施例1と同様である。このようにして混合された液が本比較例にかかる塗料である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体を作成した。光散乱層の厚さは27.1マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は80.08%であった。測定されたヘイズは71.68%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.473であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.576であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本比較例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は22.68%であった。
 (4) 画像表示体の映像
 作業者は、本比較例にかかる画像表示体に動画を投影した。その投影により、本比較例にかかる画像表示体の前面と背面とに画像が表われた。それらの画像のうち背面側の画像は、前面側の画像に比べてくっきりとしていなかった。本比較例にかかる画像表示体の背面に表われた画像を見た際、作業者は強いまぶしさを感じた。
[比較例10]
 (1) 塗料の調製
 塗料の調製手順は比較例9と同様である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体を作成した。光散乱層の厚さは18.1マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は81.67%であった。測定されたヘイズは71.72%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.452であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.511であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本比較例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は23.1%であった。
 (4) 画像表示体の映像
 作業者は、本比較例にかかる画像表示体に動画を投影した。その投影により、本比較例にかかる画像表示体の前面と背面とに画像が表われた。それらの画像のうち背面側の画像は、前面側の画像に比べてくっきりとしていなかった。本比較例にかかる画像表示体の背面に表われた画像を見た際、作業者は強いまぶしさを感じた。
[比較例11]
 (1) 塗料の調製
 塗料の調製手順は比較例9と同様である。
 (2) 画像表示体の作製
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体を作成した。光散乱層の厚さは9.0マイクロメートルであった。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の全光線透過率およびヘイズを測定した。測定された全光線透過率は83.6%であった。測定されたヘイズは69.38%であった。
 (B) 反射光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の反射光の輝度比を測定した。測定された反射光の輝度比は0.409であった。
 (C) 透過光の輝度比の測定
 作業者は、実施例1と同様にして、本比較例にかかる画像表示体の透過光の輝度比を測定した。測定された透過光の輝度比は0.511であった。
 (D) 平行光線透過率の算出
 作業者は、実施例1と同様にして、本比較例にかかる平行光線透過率を算出した。算出の結果得られたその平行光線透過率は25.6%であった。
 (4) 画像表示体の映像
 作業者は、本比較例にかかる画像表示体に動画を投影した。その投影により、本比較例にかかる画像表示体の前面と背面とに画像が表われた。それらの画像のうち背面側の画像は、前面側の画像に比べてくっきりとしていなかった。本比較例にかかる画像表示体の背面に表われた画像を見た際、作業者は強いまぶしさを感じた。
[実施例にかかる画像表示体の効果の説明]
 図1は本実施形態の実施例および比較例において全光線透過率に及ぼす黒鉛粒子の質量%の影響を示す図である。図1では、黒鉛粒子の質量%に応じて全光線透過率が変化する。全光線透過率に及ぼす黒鉛粒子の質量%の影響は大きい。
 図2は比較例において全光線透過率に及ぼすジルコニア粒子の質量%の影響を示す図である。図2に全光線透過率が示される比較例は、いずれも黒鉛粒子を含まないものである。図2では、ジルコニア粒子の質量%に応じて全光線透過率が変化する。ただし全光線透過率に及ぼすジルコニア粒子の質量%の影響は黒鉛粒子の質量%のそれに比べると小さい。
 図3は比較例において全光線透過率に及ぼす光散乱層の厚さの影響を示す図である。図3に全光線透過率が示される比較例は、いずれも黒鉛粒子を含まないものである。図3では、ジルコニア粒子の質量%が同一の比較例にかかる印の間が線でつながれている。図3では、光散乱層の厚さに応じて全光線透過率が変化する。ただし全光線透過率に及ぼす光散乱層の厚さの影響は黒鉛粒子の質量%のそれに比べると小さい。全光線透過率に及ぼす光散乱層の厚さの影響はジルコニア粒子の質量%のそれに比べても小さい。
 図1乃至図3によれば、黒鉛粒子の質量%は、ジルコニア粒子の質量%および光散乱層の厚さに比べ、全光線透過率に大きな影響を及ぼす。黒鉛粒子の質量%が全光線透過率に大きな影響を及ぼすので、ジルコニア粒子に加えて黒鉛粒子を含ませることで、光散乱層に対してジルコニア粒子のみを含ませる場合に比べ、全光線透過率の設定が容易になる。
 図4は比較例においてヘイズに及ぼすジルコニア粒子の質量%の影響を示す図である。図4にヘイズが示される比較例は、いずれも黒鉛粒子を含まないものである。図4によれば、ジルコニア粒子の質量%はヘイズへ影響を及ぼす。すなわち、光散乱層に対してジルコニア粒子を含ませることで、ヘイズの設定が可能になる。これにより、ジルコニア粒子に加えて黒鉛粒子を含ませることで、画像表示体の全光線透過率とヘイズとの設定の自由度を向上させ得る。
 また、本実施形態の実施例によれば、質量和に対するジルコニア粒子の質量%が20%以上であり、質量和に対する黒鉛粒子の質量%が0.2%以上であることで、画像表示体の背面に表われる画像を視る際にまぶしさを感じ難くなった。また、画像表示体の前面と背面とに表われる画像がくっきりとした。
〈第2実施形態〉
[透明スクリーンの構造の説明]
 本発明の第2実施形態について以下詳細に説明する。本実施形態にかかる透明スクリーンは、画像表示体の一種である。本実施形態にかかる透明スクリーンは、透明シートと、光散乱層とを備える。
(透明シートの説明)
 透明シートは、周知の透明な素材からなるシートである。その素材は特に限定されない。その素材の例には、ポリエチレンテレフタレート、アクリル樹脂、ポリカーボネート、ポリスチレン、ビニル樹脂がある。透明シートの構造も特に限定されない。本実施形態にかかる透明シートは、一様な構造であってもよいし、互いに異なる素材からなる複数の層を有していてもよい。そのような構造の例には、周知のガラス板とポリエチレンテレフタレート製のフィルムとを有するものがある。
 光散乱層は、透明シートの表面に形成される。光散乱層は、そこに入射してくる光を散乱させる。光散乱層は、ジルコニア粒子と、黒鉛粒子と、被膜形成透明樹脂とを含む。
 ジルコニア粒子の大きさおよび形状は特に限定されない。例えば、本実施形態に用いられるジルコニア粒子の平均粒径は5ナノメートル以上400ナノメートル以下であってもよい。本実施形態に用いられるジルコニア粒子の形状は球形であってもよい。
 黒鉛粒子の大きさおよび形状も特に限定されない。例えば、本実施形態に用いられる黒鉛粒子の平均直径は5マイクロメートル以上100マイクロメートル以下であってもよい。本実施形態に用いられるジルコニア粒子の形状は厚さ10ナノメートル以上30ナノメートル以下の薄片状であってもよい。
 被膜形成透明樹脂は、透明な被膜を形成する合成樹脂である。被膜形成透明樹脂は、本実施形態における透過層形成材である。ジルコニア粒子と黒鉛粒子とは、被膜形成透明樹脂に含まれることでその被膜に保持される。被膜形成透明樹脂の種類も特に限定されない。ただしこの被膜形成透明樹脂は、光の透過をなるべく妨げない合成樹脂であることが好ましい。そのような合成樹脂の例には、ポリエステル樹脂がある。
 なお、本実施形態にかかる光散乱層が金属粒子をさらに含むと本実施形態にかかる画像表示体の拡散反射率が向上する。拡散反射率が向上すると、そうでない場合に比べ、その画像表示体に現れた画像の輝度を上げることができる。そのような金属粒子の例にはアルミニウムがある。
[塗料の説明]
 本実施形態にかかる透明スクリーンは、上述された透明シートの表面へ本実施形態にかかる塗料を塗布することで形成できる。その塗料がその透明シートの表面で乾燥することで、その塗料は光散乱層となる。その塗料は、本実施形態にかかる画像表示体形成用塗料である。本実施形態にかかる塗料は、ジルコニア粒子と、黒鉛粒子と、溶剤と、被膜形成透明樹脂とを含む。
 本実施形態にかかる溶剤は、塗布されるまで塗料の流動性を維持し、かつ、塗布された後は気化する、塗料の成分のことである。本実施形態にかかる塗料においては、溶剤の成分は特に限定されない。溶剤は混合物でも純物質であってもよい。ただし溶剤はジルコニア粒子と黒鉛粒子とをその溶剤中に分散させることができるものである。そのような溶剤の例には、メチルエチルケトンとプロピレングリコールモノメチルエーテルとがある。
 ジルコニア粒子と、黒鉛粒子と、被膜形成透明樹脂とについての説明は上述された通りなので、ここではその説明は繰り返されない。
 ちなみに、本実施形態にかかる塗料が不透明な物体に塗布されると、本実施形態にかかる塗料は、その不透明な物体の表面に光散乱層を形成する。その光散乱層が形成された不透明な物体に光を投射することで画像を形成することができる。
[製造方法の説明]
 本実施形態にかかる透明スクリーンの製造方法は特に限定されない。その一例は、上述されたように、透明シートの表面へ本実施形態にかかる塗料を塗布することである。その他、透明シートの表面に光散乱層を形成するために適用可能な任意の方法が用いられ得る。
 本実施形態にかかる塗料の製造方法も特に限定されない。その一例は、ジルコニア粒子と、黒鉛粒子と、被膜形成透明樹脂とを別々に溶剤中で分散させておき、溶剤中に分散したジルコニア粒子と、黒鉛粒子と、被膜形成透明樹脂とを混合するという方法がある。
[用途及び使用方法の説明]
 本実施形態にかかる塗料は、本実施形態にかかる透明スクリーンの製造に用いられる。本実施形態にかかる透明スクリーンは、静止画および動画の少なくとも一方を映し出すために用いられる。その具体的な使用方法は従来から用いられている周知のスクリーンと同様である。
 以下に、実施例を示して本実施形態にかかる発明を具体的に説明する。ただし、本実施形態にかかる発明はこれらの実施例に限定されない。
[実施例10]
 (1) 塗料の調製
 (A) ジルコニア粒子分散液の調製
 作業者は、以下の手順に従って本実施例にかかるジルコニア粒子分散液を調製した。まず、作業者は、プロピレングリコールモノメチルエーテル中に株式会社アイテック製ジルコニア粒子であるZirconeo(登録商標)を混入させた。混入されたジルコニア粒子のBET値は242m毎グラムであった。そのジルコニア粒子入りプロピレングリコールモノメチルエーテルにおけるジルコニア粒子の質量%は10質量%であった。次に、作業者は、そのジルコニア粒子入りプロピレングリコールモノメチルエーテルに粒子粉砕用の周知のビーズを投入した。次に、作業者は、そのジルコニア粒子入りプロピレングリコールモノメチルエーテルをマグネティックスターラで撹拌した。これにより、ジルコニア粒子はビーズによって砕かれた。ジルコニア粒子入りプロピレングリコールモノメチルエーテルの撹拌中、そのジルコニア粒子の粒径は、粒径測定装置(メーカー:大塚電子株式会社、型番:FPAR-1000)によりくり返し測定された。測定方法は動的光散乱法(DLS)であった。ジルコニア粒子の平均粒径が400ナノメートルとなるまで、ジルコニア粒子を砕く作業が継続された。作業終了後、ビーズは取り除かれた。
 (B) 黒鉛粒子分散液の調製
 作業者は、以下の手順に従って本実施例にかかる黒鉛粒子分散液を調製した。まず、作業者は、メチルエチルケトン中に株式会社アイテック製黒鉛粒子であるiGurafen(登録商標)を混入させた。混入された黒鉛粒子のBET値は27m毎グラムであった。その黒鉛粒子入りメチルエチルケトンにおける黒鉛粒子の質量%は5質量%であった。次に作業者は、その黒鉛粒子入りメチルエチルケトンをジェットミル(メーカー:株式会社スギノマシン、型番:スターバーストHJP-25008)に入れた。ジェットミル内で黒鉛粒子は砕かれた。黒鉛粒子の平均粒径が5マイクロメートルとなるまで、黒鉛粒子を砕く作業が継続された。
 (C) 被膜形成透明樹脂溶液の調製
 作業者は、メチルエチルケトン中に東洋紡株式会社製ポリエステル樹脂であるバイロン(登録商標)を混入させることにより、本実施例にかかる合成樹脂液を調製した。そのポリエステル樹脂入りメチルエチルケトンにおけるポリエステル樹脂の質量%は45質量%であった。これが本実施例にかかる被膜形成透明樹脂溶液である。
 (D) 混合
 まず、作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、ジルコニア粒子の質量と黒鉛粒子の質量とポリエステル樹脂の質量との和に対するジルコニア粒子の質量%が0.625質量%となるというものである。その第2の要件は、ジルコニア粒子と黒鉛粒子とポリエステル樹脂との和に対する黒鉛粒子の質量%が0.375質量%となるというものである。その結果、ジルコニア粒子の質量と黒鉛粒子の質量とポリエステル樹脂の質量との和が「質量和」と定義されるとき、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、1.000質量%となる。次に、作業者は、総重量がポリエステル樹脂の重量の3.46倍になるまで、プロピレングリコールモノメチルエーテルを添加した。プロピレングリコールモノメチルエーテルが添加されたものが本実施例にかかる塗料である。
 (2) 透明スクリーンの作製
 まず、作業者は、ハガキと同じ大きさの平板形ガラスに、イソプロピルアルコールを垂らした。次に、作業者は、その平板形ガラスにポリエチレンテレフタレートフィルムを被せた。ポリエチレンテレフタレートフィルムは東レ株式会社製のルミラー(登録商標)T60であった。次に、作業者は、平板形ガラスとポリエチレンテレフタレートフィルムとの間に挟まれた気泡を押し出した。気泡が押し出されると、作業者は、平板形ガラスおよびポリエチレンテレフタレートフィルムの一端と他端とに厚さ40マイクロメートルの市販のテープを貼った。これにより、平板形ガラスとポリエチレンテレフタレートフィルムとは貼り合わされた。次に、作業者は、平板形ガラスおよびポリエチレンテレフタレートフィルムの残る縁も同様にして貼り合わせた。これにより、平板形ガラスおよびポリエチレンテレフタレートフィルムの四方の縁が貼り合わされた。次に、作業者は、四方の縁が貼り合わされたポリエチレンテレフタレートフィルムへ本実施例にかかる塗料を垂らした。塗料が垂らされると、作業者は、まっすぐな金属製円柱棒を用いてその塗料をポリエチレンテレフタレートフィルムのうちテープで囲まれた領域に広げた。その塗料の量は、テープで囲まれた領域に広げられた際にそのテープと同じ高さになる量であった。次に、作業者は、塗料が広げられたポリエチレンテレフタレートフィルムおよび平板形ガラスを乾燥炉内で乾燥させた。乾燥炉内の温度は摂氏120度であった。これにより、塗料は光散乱層となった。光散乱層の厚さは10マイクロメートルであった。塗料が光散乱層となったことにより、本実施例にかかる透明スクリーンが完成した。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、日本電色工業株式会社のヘイズメータNDH7000を用いることにより、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は82%であった。測定されたヘイズは6.65%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、株式会社日立サイエンスシステムズのカラーアナライザーC-2000Sを用いることにより、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。これらのL*、a*、および、b*は、分光反射率がまず測定された後に、その分光反射率に基づいて測定されたものである。ただし本実施例にかかる透明スクリーンをいったん透過した光がどこかで反射して再びその透明スクリーンを透過することを防ぐため、その透明スクリーンの背後にはライトトラップが設けられた。その透明スクリーンをいったん透過した光はそのライトトラップの内面に入ることでその透明スクリーンを再度透過することはできなくなった。測定されたL*値は13.0153であった。測定されたa*値は-0.3328であった。測定されたb*値は-2.8519であった。
[実施例11]
 (1) 塗料の調製
  作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が1.25質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.25質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、1.50質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は82.73%であった。測定されたヘイズは6.95%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は10.885であった。測定されたa*値は-0.1651であった。測定されたb*値は-2.641であった。
[実施例12]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が1.875質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.125質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、2.000質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は88.46%であった。測定されたヘイズは5.42%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は9.547であった。測定されたa*値は-0.0487であった。測定されたb*値は-5.2785であった。
[実施例13]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が2.1875質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.0625質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、2.2500質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は86.59%であった。測定されたヘイズは7.23%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は11.8526であった。測定されたa*値は-0.3113であった。測定されたb*値は-5.1488であった。
[実施例14]
 (1) 塗料の調製
  作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が2.3435質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.03125質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、2.37475質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は87.66%であった。測定されたヘイズは6.44%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は11.1067であった。測定されたa*値は-0.3789であった。測定されたb*値は-4.9282であった。
[実施例15]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が2.5質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.01質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、2.51質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は88.31%であった。測定されたヘイズは6.24%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は10.9759であった。測定されたa*値は-0.4978であった。測定されたb*値は-5.3946であった。
[実施例16]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が2.5質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.1質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、2.6質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は87.07%であった。測定されたヘイズは6.55%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は9.48であった。測定されたa*値は-0.3242であった。測定されたb*値は-4.7368であった。
[実施例17]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が0.625質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.5質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、1.125質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は76%であった。測定されたヘイズは8.84%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は18.26であった。測定されたa*値は-0.177であった。測定されたb*値は-2.161であった。
[実施例18]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が0.625質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が1.0質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、1.625質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は71.89%であった。測定されたヘイズは11.36%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は20.5652であった。測定されたa*値は-0.5242であった。測定されたb*値は-1.6932であった。
[実施例19]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が1.25質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.5質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、1.75質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は77.74%であった。測定されたヘイズは11.96%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は13.3055であった。測定されたa*値は-0.0958であった。測定されたb*値は-1.7414であった。
[実施例20]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が1.25質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が1.0質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、2.25質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は72.06%であった。測定されたヘイズは13.63%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は21.7576であった。測定されたa*値は-0.1659であった。測定されたb*値は-2.0661であった。
[実施例21]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が2.5質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.5質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、3.0質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は79.83%であった。測定されたヘイズは11.31%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は15.436であった。測定されたa*値は-0.4533であった。測定されたb*値は-3.1075であった。
[実施例22]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が2.5質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が1.0質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、3.5質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は70.73%であった。測定されたヘイズは14.66%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は17.1678であった。測定されたa*値は-0.2232であった。測定されたb*値は-1.7017であった。
[実施例23]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が5.0質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.1質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、5.1質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は84.42%であった。測定されたヘイズは12.07%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は15.158であった。測定されたa*値は-0.5547であった。測定されたb*値は-5.476であった。
[実施例24]
 (1) 塗料の調製
  作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が5.0質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.5質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、5.5質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は77.63%であった。測定されたヘイズは16.00%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は16.3883であった。測定されたa*値は-0.2609であった。測定されたb*値は-3.0212であった。
[実施例25]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が0.625質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が0.01質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、0.635質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は88.41%であった。測定されたヘイズは3.44%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は8.6154であった。測定されたa*値は-0.3224であった。測定されたb*値は-4.7987であった。
[実施例26]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が1.25質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が2.0質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、3.25質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は58.7%であった。測定されたヘイズは19.74%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は24.63であった。測定されたa*値は-0.1387であった。測定されたb*値は-0.7801であった。
[実施例27]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が5.0質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が1.0質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、6.0質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は69.34%であった。測定されたヘイズは22.56%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は19.7022であった。測定されたa*値は-0.1775であった。測定されたb*値は-1.7485であった。
[実施例28]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が5.0質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が2.0質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、7.0質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は53.4%であった。測定されたヘイズは35.79%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は25.6488であった。測定されたa*値は-0.1312であった。測定されたb*値は-0.7911であった。
[実施例29]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が10質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が1.0質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、11質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は69.62%であった。測定されたヘイズは22.84%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は24.3643であった。測定されたa*値は-0.524であった。測定されたb*値は-2.6793であった。
[実施例30]
 (1) 塗料の調製
 作業者は、次の2つの要件が満たされるように、ジルコニア粒子分散液と、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その第1の要件は、質量和に対するジルコニア粒子の質量%が10質量%となるというものである。その第2の要件は、質量和に対する黒鉛粒子の質量%が2.0質量%となるというものである。その結果、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和は、12質量%となる。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は53.47%であった。測定されたヘイズは38.73%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本実施例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は26.2355であった。測定されたa*値は-0.2037であった。測定されたb*値は-1.2559であった。
 [比較例12]
 (1) 塗料の調製
 作業者は、次の要件が満たされるように、ジルコニア粒子分散液と、ポリエステル樹脂液とを混合した。その要件は、ジルコニア粒子とポリエステル樹脂との和に対するジルコニア粒子の質量%が0.3125質量%となるというものである。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は89.1%であった。測定されたヘイズは2.81%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は6.7536であった。測定されたa*値は-0.1228であった。測定されたb*値は-4.017であった。
[比較例13]
 (1) 塗料の調製
 作業者は、次の要件が満たされるように、ジルコニア粒子分散液と、ポリエステル樹脂液とを混合した。その要件は、ジルコニア粒子とポリエステル樹脂との和に対するジルコニア粒子の質量%が0.625質量%となるというものである。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は88.93%であった。測定されたヘイズは3.14%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は6.9542であった。測定されたa*値は-0.1301であった。測定されたb*値は-4.7726であった。
[比較例14]
 (1) 塗料の調製
 作業者は、次の要件が満たされるように、ジルコニア粒子分散液と、ポリエステル樹脂液とを混合した。その要件は、ジルコニア粒子とポリエステル樹脂との和に対するジルコニア粒子の質量%が1.25質量%となるというものである。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は88.73%であった。測定されたヘイズは4.49%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は7.5094であった。測定されたa*値は-0.3298であった。測定されたb*値は-5.0782であった。
[比較例15]
 (1) 塗料の調製
 作業者は、次の要件が満たされるように、ジルコニア粒子分散液と、ポリエステル樹脂液とを混合した。その要件は、ジルコニア粒子とポリエステル樹脂との和に対するジルコニア粒子の質量%が2.5質量%となるというものである。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は88.77%であった。測定されたヘイズは5.36%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は9.6688であった。測定されたa*値は-0.2991であった。測定されたb*値は-5.4833であった。
[比較例16]
 (1) 塗料の調製
 作業者は、次の要件が満たされるように、ジルコニア粒子分散液と、ポリエステル樹脂液とを混合した。その要件は、ジルコニア粒子とポリエステル樹脂との和に対するジルコニア粒子の質量%が5.0質量%となるというものである。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は88.09%であった。測定されたヘイズは11.27%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は16.9984であった。測定されたa*値は-0.7858であった。測定されたb*値は-6.3418であった。
[比較例17]
 (1) 塗料の調製
 作業者は、次の要件が満たされるように、ジルコニア粒子分散液と、ポリエステル樹脂液とを混合した。その要件は、ジルコニア粒子とポリエステル樹脂との和に対するジルコニア粒子の質量%が10質量%となるというものである。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は87.5%であった。測定されたヘイズは16.51%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は20.3171であった。測定されたa*値は-1.0199であった。測定されたb*値は-6.9866であった。
[比較例18]
 (1) 塗料の調製
 作業者は、ポリエステル樹脂液に対し、総重量がポリエステル樹脂の重量の3.46倍になるまで、プロピレングリコールモノメチルエーテルを添加した。プロピレングリコールモノメチルエーテルが添加されたものが本比較例にかかる塗料である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は89.06%であった。測定されたヘイズは1.89%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は5.3675であった。測定されたa*値は0.2322であった。測定されたb*値は-3.817であった。
[比較例19]
 (1) 塗料の調製
 作業者は、次の要件が満たされるように、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その要件は、黒鉛粒子とポリエステル樹脂との和に対する黒鉛粒子の質量%が0.01質量%となるというものである。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は88.95%であった。測定されたヘイズは1.95%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は4.721であった。測定されたa*値は-0.0222であった。測定されたb*値は-3.0976であった。
[比較例20]
 (1) 塗料の調製
 作業者は、次の要件が満たされるように、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その要件は、黒鉛粒子とポリエステル樹脂との和に対する黒鉛粒子の質量%が0.1質量%となるというものである。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は87.17%であった。測定されたヘイズは2.97%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は6.4747であった。測定されたa*値は-0.0312であった。測定されたb*値は-3.2847であった。
[比較例21]
 (1) 塗料の調製
 作業者は、次の要件が満たされるように、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その要件は、黒鉛粒子とポリエステル樹脂との和に対する黒鉛粒子の質量%が1.0質量%となるというものである。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は71.91%であった。測定されたヘイズは10.58%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は23.2348であった。測定されたa*値は-0.2608であった。測定されたb*値は-1.188であった。
[比較例22]
 (1) 塗料の調製
 作業者は、次の要件が満たされるように、黒鉛粒子分散液と、ポリエステル樹脂液とを混合した。その要件は、黒鉛粒子とポリエステル樹脂との和に対する黒鉛粒子の質量%が2.0質量%となるというものである。その他の点は実施例10と同様である。
 (2) 透明スクリーンの作製
 透明スクリーンの作成手順は実施例10と同様である。
 (3) 測定
 (A) 全光線透過率およびヘイズの測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンの全光線透過率およびヘイズを測定した。測定された全光線透過率は57.73%であった。測定されたヘイズは17.4%であった。
 (B) L*値、a*値、b*値の測定
 作業者は、実施例10と同様にして、本比較例にかかる透明スクリーンのD65光源におけるL*値、a*値、および、b*値を測定した。測定されたL*値は24.4753であった。測定されたa*値は-0.0867であった。測定されたb*値は-0.3863であった。
[実施例にかかる透明スクリーンの効果の説明]
 図6は本実施形態にかかる実施例および比較例において全光線透過率に及ぼすジルコニア粒子の質量%の影響を示す図である。図6では、黒鉛粒子の質量%が同一の実施例および比較例にかかる印の間が線でつながれている。黒鉛粒子の質量%に関わらず、全光線透過率に及ぼすジルコニア粒子の質量%の影響は小さい。むしろ、黒鉛粒子の質量%の方が全光線透過率へ大きな影響を及ぼすことが明らかである。すなわち、光散乱層に対してジルコニア粒子に加えて黒鉛粒子を含ませることで、光散乱層に対してジルコニア粒子のみを含ませる場合に比べ、全光線透過率の設定が容易になる。
 図7は本実施形態にかかる実施例および比較例においてヘイズに及ぼすジルコニア粒子の質量%の影響を示す図である。図7でも、黒鉛粒子の質量%が同一の実施例および比較例にかかる印の間が線でつながれている。図7によれば、ジルコニア粒子の質量%ばかりでなく黒鉛粒子の質量%もヘイズへ大きな影響を及ぼす。すなわち、光散乱層に対してジルコニア粒子に加えて黒鉛粒子を含ませることで、光散乱層に対してジルコニア粒子のみを含ませる場合に比べ、ヘイズの設定が容易になる。言い換えると、黒鉛粒子に加えてジルコニア粒子を含ませることで、光散乱層に対して黒鉛粒子のみを含ませる場合に比べ、ヘイズを細やかに設定することが可能になる。
 図8は本実施形態にかかる実施例および比較例においてb*に及ぼすジルコニア粒子の質量%の影響を示す図である。図8でも、黒鉛粒子の質量%が同一の実施例および比較例にかかる印の間が線でつながれている。図8によれば、光散乱層に黒鉛粒子が含まれていない場合、b*は大きく下がる。このことは透明スクリーンが青みがかることを意味する。これに対し、光散乱層がジルコニア粒子に加えて黒鉛粒子も含む場合、b*はそれほど下がらない。このことは、透明スクリーンが青みがからないことを意味する。すなわち、光散乱層に対してジルコニア粒子に加えて黒鉛粒子を含ませることで、その透明スクリーンに映し出される画像の色をその画像の光源の色に近づけることが容易になる。
 また、本実施形態にかかる実施例にかかる透明スクリーンのうち、次に述べられる第1の要件と第2の要件とが満たされるものは、それら2つの要件のうち少なくとも一方が満たされない場合に比べ、ヘイズが大幅に小さくなったり大きくなったりする。その第1の要件は、質量和に対する黒鉛粒子の質量%が0.01%以上1.00%以下であるという要件である。第2の要件は、質量和に対する黒鉛粒子の質量%と質量和に対するジルコニア粒子の質量%との和が、0.635%以上5.5%以下であるという要件である。これにより、透明スクリーンに形成される映像の濁りを抑えつつ映像の輝度を高くできる。これらの2つの要件を満たす透明スクリーンのうち、次に述べられる第3の要件と第4の要件とがさらに満たされるものは、第1の要件と第2の要件とを満たさないものに比べ、全光線透過率が大きい。その第3の要件は、質量和に対するジルコニア粒子の質量%が0.625%以上2.5%以下であるという要件である。第4の要件は、質量和に対する黒鉛粒子の質量%が0.01%以上0.375%以下であるという要件である。これにより、透明スクリーンにおける透明感を確保しつつ色調のバランスを保つことができる。その結果、これら4つの要件を満たす透明スクリーンは、高い透過視認性を有しており、像を鮮明に映し出すことができ、かつ、スクリーンに映し出される画像の色をその像の光源の色に近づけることができる。

Claims (12)

  1.  ジルコニア粒子と、
     溶剤と、
     前記溶剤が気化すると光が透過可能な透過層を形成する透過層形成材とを含む画像表示体形成用塗料であって、
     黒鉛粒子をさらに含むことを特徴とする画像表示体形成用塗料。
  2.  前記ジルコニア粒子の質量と前記黒鉛粒子の質量と前記透過層形成材の質量との和である質量和に対する前記ジルコニア粒子の質量%が20%以上であり、
     前記質量和に対する前記黒鉛粒子の質量%が0.2%以上であり、
     前記質量和に対する前記ジルコニア粒子の質量%と前記質量和に対する前記黒鉛粒子の質量%との和が100%未満であることを特徴とする請求項1に記載の画像表示体形成用塗料。
  3.  前記質量和に対する前記黒鉛粒子の質量%が0.2%以上1.64%以下であることを特徴とする請求項2に記載の画像表示体形成用塗料。
  4.  前記質量和に対する前記黒鉛粒子の質量%が0.2%以上0.41%以下であることを特徴とする請求項3に記載の画像表示体形成用塗料。
  5.  前記質量和に対する前記ジルコニア粒子の質量%が25%以上であることを特徴とする請求項2に記載の画像表示体形成用塗料。
  6.  前記質量和に対する前記黒鉛粒子の質量%が0.83%以上であることを特徴とする請求項2に記載の画像表示体形成用塗料。
  7.  前記透過層形成材が、前記溶剤が気化すると透明な被膜を形成する被膜形成透明樹脂であり、
     前記ジルコニア粒子の質量と前記黒鉛粒子の質量と前記透過層形成材の質量との和である質量和に対する前記黒鉛粒子の質量%が0.01%以上1.00%以下であり、
     前記質量和に対する前記黒鉛粒子の質量%と前記質量和に対する前記ジルコニア粒子の質量%との和が、0.635%以上5.5%以下であることを特徴とする請求項1に記載の画像表示体形成用塗料。
  8.  前記質量和に対する前記ジルコニア粒子の質量%が0.625%以上2.5%以下であり、
     前記質量和に対する前記黒鉛粒子の質量%が0.01%以上0.375%以下であることを特徴とする請求項7に記載の画像表示体形成用塗料。
  9.  光が入射すると前記光を散乱させる光散乱層を備える、画像を表示するための物体である画像表示体であって、
     前記光散乱層が、
     ジルコニア粒子と、
     前記光が透過可能な透過層を形成する透過層形成材とを含み、
     前記光散乱層が黒鉛粒子をさらに含むことを特徴とする画像表示体。
  10.  前記ジルコニア粒子の質量と前記黒鉛粒子の質量と前記透過層形成材の質量との和である質量和に対する前記ジルコニア粒子の質量%が20%以上であり、
     前記質量和に対する前記黒鉛粒子の質量%が0.2%以上であり、
     前記質量和に対する前記ジルコニア粒子の質量%と前記質量和に対する前記黒鉛粒子の質量%と前記質量和に対する前記透過層形成材の質量%との和が100%以下であることを特徴とする請求項9に記載の画像表示体。
  11.  前記画像表示体の全光線透過率が60%以下であり、
     前記画像表示体のヘイズが97%以上であることを特徴とする請求項10に記載の画像表示体。
  12.  前記画像表示体の法線方向に対して45°傾いた方向である入射方向から照射される光の反射光のうち前記法線方向から見て前記入射方向側かつ前記法線方向に対して60°傾いた方向における前記反射光の輝度と前記法線方向から見て前記入射方向とは反対側かつ前記法線方向に対して60°傾いた方向における前記反射光の輝度とのうち小さい方の前記反射光の輝度を大きい方の前記反射光の輝度で除算することにより算出される商である反射光の輝度比が0.2以上で、
     前記画像表示体の前記法線方向から前記画像表示体に対して照射される光が前記画像表示体を貫通した箇所を原点とし、前記原点から見た前記法線方向を0°とするとき、前記原点から見て前記法線方向に対し120°傾いた方向における前記画像表示体を透過した前記光の輝度と前記原点から見て前記法線方向に対し150°傾いた方向における前記画像表示体を透過した前記光の輝度とのうち小さい方の前記光の輝度を大きい方の前記光の輝度で除算することにより算出される商である透過光の輝度比が0.5以上であることを特徴とする請求項10に記載の画像表示体。
PCT/JP2018/016682 2017-04-28 2018-04-24 画像表示体形成用塗料および画像表示体 WO2018199118A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017090626A JP6273392B1 (ja) 2017-04-28 2017-04-28 透明スクリーンを形成するための塗料、塗料、および、透明スクリーン
JP2017-090626 2017-04-28
JP2017232012A JP7022421B2 (ja) 2017-12-01 2017-12-01 画像表示体形成用塗料および画像表示体
JP2017-232012 2017-12-01

Publications (1)

Publication Number Publication Date
WO2018199118A1 true WO2018199118A1 (ja) 2018-11-01

Family

ID=63920468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016682 WO2018199118A1 (ja) 2017-04-28 2018-04-24 画像表示体形成用塗料および画像表示体

Country Status (1)

Country Link
WO (1) WO2018199118A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030203186A1 (en) * 2002-04-26 2003-10-30 Naiyong Jing Optical elements comprising fluorochemical surface treatment
WO2016068087A1 (ja) * 2014-10-27 2016-05-06 旭硝子株式会社 透過型透明スクリーン、映像表示システムおよび映像表示方法
JP2016109894A (ja) * 2014-12-08 2016-06-20 旭硝子株式会社 映像表示透明部材、映像表示システムおよび映像表示方法
JP2017001649A (ja) * 2015-06-16 2017-01-05 旭硝子株式会社 可動ドア装置
JP2017021155A (ja) * 2015-07-09 2017-01-26 セントラル硝子株式会社 光散乱性被膜を有する透明スクリーン及び光散乱性被膜形成用塗布液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030203186A1 (en) * 2002-04-26 2003-10-30 Naiyong Jing Optical elements comprising fluorochemical surface treatment
WO2016068087A1 (ja) * 2014-10-27 2016-05-06 旭硝子株式会社 透過型透明スクリーン、映像表示システムおよび映像表示方法
JP2016109894A (ja) * 2014-12-08 2016-06-20 旭硝子株式会社 映像表示透明部材、映像表示システムおよび映像表示方法
JP2017001649A (ja) * 2015-06-16 2017-01-05 旭硝子株式会社 可動ドア装置
JP2017021155A (ja) * 2015-07-09 2017-01-26 セントラル硝子株式会社 光散乱性被膜を有する透明スクリーン及び光散乱性被膜形成用塗布液

Similar Documents

Publication Publication Date Title
TWI515507B (zh) Penetrate the screen
EP2071395B1 (en) Display device having a structural colour filter
TWI435143B (zh) Anti-glare components and the use of such a display device, and the screen
JP3332211B2 (ja) プロジェクタ用反射型スクリーン
CN101364039A (zh) 一种纳米涂层背投显示屏
US20200033506A1 (en) Anti-glare anti-reflection hard coating film, image display device, and method for producing anti-glare anti-reflection hard coating film
JP7402609B2 (ja) 低スパークルマットコート及び製造方法
JP2012212092A (ja) 透視可能な透過型スクリーン及びその製造方法
JP7151710B2 (ja) 表示装置用の前面板
WO2018199118A1 (ja) 画像表示体形成用塗料および画像表示体
JP7022421B2 (ja) 画像表示体形成用塗料および画像表示体
WO2020194720A1 (ja) 光散乱膜および液晶表示装置
JP2017021200A (ja) 透明スクリーン
JP6273392B1 (ja) 透明スクリーンを形成するための塗料、塗料、および、透明スクリーン
WO1999005568A1 (fr) Ecran contenant du mica synthetique
JPH04191727A (ja) 高画質スクリーン
JP3694570B2 (ja) プロジェクタ用反射型スクリーン
JP2004061521A (ja) 反射型スクリーン
JPH10186521A (ja) プロジェクタ用反射型スクリーン
JP2003228305A (ja) 内照式広告用透過型フィルム
JPH02310554A (ja) 高画質スクリーン
JPH1144915A (ja) 透過型スクリーン
JPH11271511A (ja) 半透過半反射体
JP5758135B2 (ja) 液晶表示装置
CN107850699A (zh) 光扩散透射片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791801

Country of ref document: EP

Kind code of ref document: A1