WO1998053921A1 - Verfahren zum beschichten einer oberfläche - Google Patents

Verfahren zum beschichten einer oberfläche Download PDF

Info

Publication number
WO1998053921A1
WO1998053921A1 PCT/CH1998/000220 CH9800220W WO9853921A1 WO 1998053921 A1 WO1998053921 A1 WO 1998053921A1 CH 9800220 W CH9800220 W CH 9800220W WO 9853921 A1 WO9853921 A1 WO 9853921A1
Authority
WO
WIPO (PCT)
Prior art keywords
coated
platinum
reagent
coating
activator
Prior art date
Application number
PCT/CH1998/000220
Other languages
English (en)
French (fr)
Inventor
Martina K. N. Hirayama
Walter R. Caseri
Ulrich W. Suter
Original Assignee
Global Surface Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Surface Aktiengesellschaft filed Critical Global Surface Aktiengesellschaft
Priority to AU73295/98A priority Critical patent/AU7329598A/en
Priority to DE59802546T priority patent/DE59802546D1/de
Priority to AT98920438T priority patent/ATE211028T1/de
Priority to EP98920438A priority patent/EP0986438B1/de
Priority to JP50005599A priority patent/JP2002507146A/ja
Priority to US09/423,110 priority patent/US6316057B1/en
Publication of WO1998053921A1 publication Critical patent/WO1998053921A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/185Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/495Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as oligomers or polymers
    • C04B41/4961Polyorganosiloxanes, i.e. polymers with a Si-O-Si-O-chain; "silicones"
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/62Coating or impregnation with organic materials
    • C04B41/64Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/84Compounds having one or more carbon-to-metal of carbon-to-silicon linkages

Definitions

  • the present invention relates to a method for coating a metal surface, metal oxide surface, metal salt surface, silicon-containing surface and high-molecular aquoxide-containing organic surface according to the preamble of claim 1.
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • plasma coating Langmuir-Bodgett technology
  • adsorption or reaction from a solution With all of these techniques, thin or ultra-thin films (including monolayers) are obtained.
  • Thin and ultra-thin films are films with an average thickness of up to a few micrometers.
  • Self-assembling films for example, films which spontaneously attach to surfaces from a homogeneous solution, have been well investigated.
  • Diphosphates for example, form self-assembling multilayers (Ulman, A .; Chem. Rev. 1996, af>, 1 533 and Ulman, A .; MRS Bulletin 1995, f>, 46).
  • Self-assembling monolayers are also formed from organosulfur compounds, which mostly contain either a thiol, disulfide or thioether group (loc.cit.). These organosulfur compounds have a strong affinity for transition metal surfaces.
  • Organosele compounds such as organoselenol on gold (Samant, MG; Brown, CA; Gordon II, JG; Langmuir 1992, £, 1 61 5), and fatty acids, such as, for example, n-alkane fatty acids on Al 2 O 3 , AgO, CuO and glass (Ulman, A .; Chem. Rev. 1996,9 ⁇ , 1 533 and Ulman, A .; MRS Bulletin 1995, f>, 46) also form self-assembling monolayers.
  • the object of the present invention is to propose a method for coating surfaces which involves the production of well-adhering thin and / or ultra-thin layers (including monolayers) on materials as diverse as metals, metal oxides, metal salts, silicon-containing materials and high molecular weight, aquoxide-containing organic materials allowed.
  • This object is achieved by the features of the characterizing part of claim 1.
  • Preferred embodiments of the invention form the subject of claims 2 to 30.
  • the invention is based on the knowledge that reagents with Si-H, Sn-H or Ge-H groups in the presence of a platinum metal in the form of a compound or in metallic form as an activator layers on metallic surfaces, metal oxide surfaces, metal salt surfaces, form silicon-containing surfaces and high-molecular aquoxide-containing organic surfaces.
  • the reagents are solids or liquids which are applied as such or in a medium in liquid, pastose or solid form.
  • the reagents can be applied, for example, in solution, in emulsion, in suspension, in foam or in spray.
  • Platinum metals are, according to technical usage, the elements Ru, Rh, Pd, Os, Ir and Pt. Platinum compounds are preferred, including those which are reduced to platinum (O) with silanes or those which already contain platinum (O).
  • the platinum metals are preferably in the form of particles of atomic, colloidal or larger dimensions.
  • Platinum compounds which can be reduced to Pt (0) by silanes or those which are already in oxidation state 0 are, for example, from Caseri, WR; Dissertation, ETH Zurich, 1988, known.
  • platinum compounds are cis-dichlorobis (styrene) platinum (II), trans-dichlorobis (styrene) platinum (II), platinum (II) chloride, platinum (II) bromide, potassium terachloroplatinate (II), platinum ( 0) -divinyltetramethyldisiloxane, Zeise salt, triphenylphosphine acetylacetonatochloroplatin (II), dichloro- ⁇ 2 -dichlorobis- (styrene) diplatin (II) or bis (cyclooctadiene) platinum (0).
  • Transition metal compounds are known from organometallic chemistry which, for example, add Si-H, Sn-H or Ge-H bonds oxidatively. This property is used, for example, for the hydrosilylation, hydrostannylation and hydrogermylation reaction.
  • the hydrosilylation reaction describes the addition reaction of organic and inorganic silicon hydrides to multiple bonds such as, for example, olefins, acetylenes, ketones, imines and nitriles (Bogdan, M .; "Comprehensive Handbook on Hydrosilylation", Pergamon Press, Oxford 1992). Based on Speier's results (Speier, JL; Webster, JA; Barnes, GH; J.Am.Chem.Soc.
  • platinum (IV) - hydrochloric acid is reduced to platinum colloids, which are then catalytically active (Lewis, LN; Lewis, N .; J.Am.Chem.Soc. 1986,102,7228).
  • the hydrostannylation and hydrogermylation reactions analogously describe the addition reactions of their organic and inorganic hydrides on multiple bonds.
  • a crosslinking reaction of vinyl- and hydride-functionalized silicones is described in US Pat. No. 5,21,5801. This is a classic hydrosilylation reaction with a platinum catalyst.
  • the silicone to be vulcanized is filled with Si0 2 , which is added, among other things, to improve the adhesion properties.
  • a reaction between Si-H groups and the solid phase of the material of the surface to be coated in the presence of an activator is not targeted.
  • DE-A 1 9 1 4 41 1 describes a gas phase reaction or gas phase growth.
  • Compounds with e.g. Si-H are evaporated, i.e. brought into the gas phase.
  • the reactive gaseous substances are activated with catalysts (for example Pt).
  • the activated substances then either have to react with a reagent (e.g. ammonia) or decompose. Only the reacted or decomposed substance forms the desired layer.
  • a reagent e.g. ammonia
  • a gas phase reaction is also described in US Pat. No. 4,873, 1 1 9.
  • Amorphous semiconductors are produced from Si-H or Ge-H compounds.
  • the Si-H or Ge-H compounds are brought into the gas phase, activated with platinum, for example, and decomposed to amorphous semiconductors by glow discharge, heat (including pyrolysis) or light (including IR, UV) and deposited on a surface.
  • the present invention has the advantage over coating processes such as CVD and PVD that reagents do not have to be brought into the gas phase, but rather are applied in liquid, pastose or solid form.
  • a particular advantage of the method according to the invention is that a variety of substrates can be coated.
  • surfaces to be coated i.e. Substrates, metals, metal oxides, metal salts, alloys, for example steels, silicon compounds (for example silicon wafers or silicate glasses), ceramics (for example
  • Silicate ceramics oxide ceramics, bricks, clays, glass ceramics, cermets
  • rocks for example silicates, quartzes, carbonates, nitrates, borates, phosphates, sulfates
  • / or artificial stones for example concrete.
  • metals, metal oxides and metal salts are Li, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Rb, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, Hf, Ta, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Nd and U.
  • surfaces to be coated high-molecular organic compounds containing aquoxide for example wood, cardboard, paper, polysaccharides (for example cellulose or cellulose derivatives), proteins (for example silk, wool or collagen) and or polyalcohols.
  • Substrates with high molecular organic compounds containing aquoxide can also be obtained, for example, by surface treatments. Examples are polyethylene or polypropylene, which has been modified by corona, plasma, flame or chromic sulfuric acid treatment, or polyethylene terephthalate or polyamide, which has been pretreated by hydrolytic cleavage.
  • Suitable substrates can also occur in mixed form, for example different ones can be found on the surface of rocks Silicon oxides, metal oxides and metal salts can be contained simultaneously.
  • Another advantage of the method according to the invention is that it often allows the application of a wear layer on naturally formed oxide layers.
  • Both planar and non-planar surfaces can be coated.
  • the size and / or nature of the surface to be coated does not limit the method according to the invention. Therefore, foils, outer and inner surfaces on porous materials and layers (ie also the walls of pores), inner and outer surfaces, particles, colloids, and correspondingly pre-coated surfaces of, for example, plastics, glasses etc. can be coated according to the invention.
  • Oxides are compounds of an element with oxygen, provided that the oxygen is the electronegative component.
  • the number of oxygen atoms in the molecule can vary in relation to the element atoms.
  • Oxides can also be formed from several different elements (eg oxometalates, spinels) and / or from an element with different oxidation numbers (eg red lead).
  • Special forms of oxides are the hyperoxides, peroxides, suboxides and anhydrides as well as the iso- and heteropolyacids.
  • the aquoxides (hydroxides, oxide hydrates, oxonium salts and oxidaquate) must also be included in the oxidic compounds.
  • aquoxides hydrooxides, oxide hydrates, oxonium salts and oxidaquate
  • high molecular weight aquatic organic compounds (molecular weights above about 1,000 g / mol) contain hydroxide groups, deprotonated hydroxide groups and / or water (hydroxides, oxide hydrates, oxonium salts and oxide adequates).
  • the water as H 2 0 molecule and / or in the form of H 3 0 + groups can be stoichiometrically or non-stoichiometrically bound to the organic compound and / or freely movable adsorbed on it.
  • the method according to the invention allows a large variation in the coatings produced.
  • both low molecular weight compounds i.e. those with molecular weights of up to about 1,000 g / mol
  • high molecular compounds i.e. those with molecular weights above about 1,000 g / mol can be used.
  • reagents with which good results have been achieved are silanes containing Si — H groups, polysilazanes, polyhydrosiloxanes and polysiloxanes.
  • suitable reagents are polysilanes, polycarbosilanes or polysilsesquioxanes containing Si-H groups.
  • the coatings according to the invention can be decomposed for various purposes.
  • oxide layers can be produced by thermal decomposition of the coatings according to the invention.
  • the method according to the invention can be combined with other surface treatments in order to obtain various decomposition products.
  • the coatings according to the invention can be produced with different properties. Accordingly, they can be used in a wide variety of areas of technology.
  • the coatings can be used, for example, as protective (UV, corrosion, diffusion, microorganisms, etc.), impregnating, covering, coloring, varnish, decorative, adhesion promoters, biocompatibility, adhesive, adhesive, lubricating, Sliding, anti-blocking, non-stick, anti-graffiti, anti-fog, separating and / or demolding layer can be applied.
  • the method according to the invention can be combined with other surface treatments in order to achieve the types of layers mentioned above.
  • the coatings according to the invention are suitable, for example, for connecting surfaces.
  • the coatings according to the invention can be used to coat surfaces with reagents with further functional groups.
  • the reaction of such further functional groups with other substances enables surfaces to be connected to one another, for example.
  • the coatings according to the invention are suitable, for example, for the thermal connection with plastics.
  • the coatings according to the invention can be back-injected directly with plastics.
  • the method according to the invention can be combined with other surface treatments in order to achieve the types of effects mentioned above.
  • the coatings according to the invention are suitable, for example, for lubrication.
  • the coatings according to the invention can be used, for example, directly as a lubricating layer and / or as a layer to reduce the segregation between surface and lubricant.
  • the method according to the invention can be combined with other treatments in order to achieve the above-mentioned types of effects.
  • mechanical systems such as clockworks can be lubricated with the aid of the coatings according to the invention.
  • the coatings according to the invention can be used as a stabilizer, binder, setting agent, reinforcer, thickener and / or plasticizer.
  • the method according to the invention can be combined with other treatments in order to achieve the above-mentioned types of effects.
  • the coatings according to the invention can be used, for example, in the production of ceramics for binding suspended material particles.
  • Coatings according to the invention ensure that the smallest particles are held together.
  • these can be pre-consolidated into pressings and then sintered.
  • the coatings according to the invention can be used for the production of surfaces of different interfacial energy.
  • appropriate reagents for example, differently wettable hydrophilic or hydrophobic coatings with different contact angles can be produced.
  • the method according to the invention can be combined with other treatments in order to achieve the above-mentioned types of effects.
  • the coatings according to the invention can, for example, produce differently wettable hydrophilic or hydrophobic coatings with different contact angles
  • Printing plates or foils are applied.
  • the coatings can then be partially removed or changed. This method is particularly suitable for the production of labels. Labeling can also be done directly by applying the coating, for example in the print shop.
  • hydrophobic ink-repellent coating materials such as polysiloxanes on hydrophilic ink-carrying printing plates or foils such as aluminum or polyester, for example, waterless planographic printing is possible.
  • ink-bearing water-repellent coating materials on water-bearing printing plates or foils such as aluminum or polyester for example, wet offset printing is possible.
  • reagents for the coating which, for example by light and / or temperature, reversibly change their properties from hydrophilic to hydrophobic and / or vice versa (labeling).
  • labeling For example, printing plates or foils can be repeatedly labeled.
  • the method according to the invention can be combined with other treatments in order to achieve the above-mentioned types of effects.
  • the coatings according to the invention are suitable, inter alia, for various areas of electrical engineering, electronics, microtechnology,
  • Nanotechnology for example for isolators, for sensors, for detectors and / or for "micro-contact printing”.
  • the coatings according to the invention can also be used in the area of
  • Environmental technology can be used for filters, for example.
  • the coatings according to the invention can also be used, for example, in the areas
  • the coatings according to the invention are also suitable for various areas of the automotive industry, for example for
  • the activator can be used, for example, in bulk, in solution, in emulsion, in suspension, in foam, in spray or in other systems which contain liquid and / or solid phases.
  • the reagent is applied in liquid, pastose or solid form.
  • the activator and then the reagent are preferably first applied to a substrate surface to be coated, or the activator and reagent are first mixed with one another and the mixture obtained is applied to the substrate surface.
  • Activator and / or reagent can also be mixed with other substances and then applied to the substrate surface to be coated.
  • the surface of S 235 JRG2 (Surber Metallbau, Zurich, Switzerland) (1 8x40x1 mm) was used as an iron plate.
  • the plates were washed with toluene p.a. rubbed off.
  • the plates were then placed in acetic acid in an ultrasonic bath (Bandelin, Sonorex, Super RK 106) for one hour.
  • the plates were then washed with water (dist.), Acetone and toluene p.a. rinsed.
  • W 4301 BT Notz Metall, Biel, Switzerland
  • 1 8x40x1 mm The surface of W 4301 BT (Notz Metall, Biel, Switzerland) (1 8x40x1 mm) was used as a V2A steel plate.
  • the plates were rubbed with toluene pa.
  • the plates were then placed in aqua regia for one minute.
  • the plates were then washed with water (Dest.), acetone and toluene pa rinsed.
  • the surface of Cu-ETP / CuOF (DIN 1 787) (Metall Service Menziken, D Weg 1 787) (Metall Service Menziken, D Weg 1 787) was used as a copper plate.
  • the surface of AISM MgMn (Alusuisse Allega, Niederglatt, Switzerland) was used as an aluminum plate.
  • the plates (1 8x40x1 mm) were washed with toluene p.a. rubbed off. The plates were then placed in acetic acid for ten minutes. The plates were then washed with water (dist.), Acetone and toluene p.a. rinsed.
  • the surface of slides (Menzel, Braunschweig, Germany) (1 8x40x1 mm) was used as a glass plate.
  • the plates were placed in NaOH (10% by weight in water (dist.)) Overnight and then washed with water (dist.), Acetone and toluene p.a. rinsed.
  • the surface of aluminum oxide ceramic (96%, A476, Firag, Ebmatingen, Switzerland) (1 8x40x1 mm) was used as a ceramic plate.
  • the plates were cleaned of organic contaminants by placing them in toluene UV.
  • Pietra di Lecce (Ditta DECOR SaS di MARTINA & Co., Arnesano, Italy), Molasse (Bernese sandstone, Ostermundingen quarry, Switzerland) and Buntsandstein (quarry) were used as stone slabs Kirschfurt, Miltenberger Industriewerke, Bürgstadt, Germany).
  • the plates (approx. 5x5x1 cm) were cleaned of impurities by rinsing with water (dest.).
  • Poplar, maple and oak (Pastorini, Zurich, Switzerland) were used as pieces of wood (smaller 3x3x0.5 cm). Standard packaging material was used as the cardboard (approx. 2x2x0.1 cm). The substrates were rinsed with water (distilled water) and acetone.
  • Cotton (textiles about 3x3 cm) (100%, C&A, Zurich, Switzerland) was treated with toluene p.a. rinsed.
  • Viscose textiles about 3x3 cm (100%, C&A, Zurich, Switzerland) was washed with water (dest.), Acetone and toluene p.a. rinsed.
  • Silk twill (1 9001, boiled) and silk Habotai taffet (1 1 207, boiled) (Bilco silk, Zurich, Switzerland) were used as silk.
  • the silks textiles about 3x3 cm) were rinsed with toluene pa.
  • Toluene UV (99.5%, UV quality), toluene (purum), hexane UV (UV quality), chloroform UV (UV quality), carbon tetrachloride UV (UV quality), hydrochloric acid (37%, puriss pa), nitric acid (65%, puriss pa), dimethyldichlorosilane (99.5%), tributyltin hydride (98%) and platinum (IV) - hydrochloric acid hydrate (38% Pt) were obtained from Fluka (Buchs, Switzerland).
  • Chlorodimethylsilane (98%), octadecylsilane (98%) and tributyl germanium hydride (99%) were obtained from Aldrich (Buchs, Switzerland).
  • octadecylsilane (98%) was dissolved in 20 ml of dioxane, and 1 ml of water and 2 g of silica gel were added. The mixture was stirred at room temperature for 48 hours. The mixture was then filtered through a paper filter and evaporated at 45 ° C. in vacuo. The substance was then distilled in a Kugelrohr distillation apparatus at 240 ° C and house vacuum.
  • Sylgard 1 84 was obtained from Dow Corning (Wiesbaden, Germany).
  • Polyester (Mylar A) was purchased from Du Pont Nemours (Bad Homburg, Germany).
  • Acetic acid (100%, ultra pure) and toluene p.a. (puriss p.a.) were obtained from Riedel- de Haen (Seelze, Germany).
  • Acetone (technical) was obtained from Scheller (Zurich, Switzerland).
  • Infrared reflection absorption spectra with grazing incidence (80 °) (IR), X-ray photoelectron spectra with MgK ⁇ radiation (XPS), ellipsometric measurements at ⁇ 632.8 nm and / or advancing contact angles of water ( ⁇ a ) were measured.
  • IR Infrared reflection absorption spectra with grazing incidence
  • XPS X-ray photoelectron spectra with MgK ⁇ radiation
  • Examples 1-2 60 ml of toluene UV were degassed with argon in an ice bath for about 15 minutes. Then 3.8 mg of cis-dichlorobis (styrene) platinum (II) were added and the mixture was stirred under an argon atmosphere in an ice bath for about 20 minutes. The substrate plate with a gold film was then immersed in the solution or suspension obtained. An Si-H reagent was then added. The ice bath was then removed and the reaction mixture was gently stirred under an argon atmosphere for 1 hour. The substrate plate was then removed, rinsed with 30 ml of toluene UV and blown dry with argon. The samples obtained in this way were stored in brown snap-cap wide-mouth bottles (Merck, Dietikon, Switzerland) under argon until they were characterized.
  • brown snap-cap wide-mouth bottles Merck, Dietikon, Switzerland
  • the Si-H reagent was 1 7.8 ⁇ l chlorodimethylsilane.
  • Example 2 The Si-H reagent was 23.4 ⁇ l diethylmethylsilane.
  • the Si-H reagent was 4.6 ml polydimethylsiloxane hydride-terminated (M.W. 28000 g / mol).
  • Example 3
  • the substrate plate was covered with a gold film.
  • the substrate plate carried a copper film.
  • Example 5 The substrate plate carried an aluminum film.
  • the substrate plate was covered with a chrome film.
  • Example 8 The substrate plate carried a titanium film.
  • the substrate plate carried an iron film.
  • the substrate plate was a copper plate.
  • Example 10 The substrate plate was an aluminum plate.
  • the substrate plate was an iron plate.
  • Example 1 2 is an iron plate.
  • the substrate plate was a V2A steel plate.
  • the substrate plate was a glass plate.
  • the substrate plate was a ceramic plate.
  • the substrate slab was a stone slab from Pietra di Lecce.
  • Example 1 6 The substrate plate was a stone plate made of molasses.
  • the substrate plate was a stone slab made of colored sandstone.
  • the substrate slab was a concrete slab made of gravel concrete with main gravel.
  • the substrate slab was a concrete slab made of gravel concrete
  • Example 20 The substrate slab was a slab concrete slab
  • the Si-H reagent was 0.37 ml polymethylhydrosiloxane.
  • the substrate plate was covered with a gold film.
  • the substrate plate carried a copper film.
  • Example 24 The substrate plate carried an aluminum film.
  • the substrate plate carried an iron film.
  • the substrate plate was covered with a nickel film.
  • the substrate plate was a silicon plate.
  • the substrate plate carried a copper film.
  • the Si-H reagent was 0.1 9 ml (45-50%) methylhydro- (50-55%) phenylmethylsiloxane copolymer dimethyl-siloxy-terminated.
  • the Si-H reagent was 0.05 ml (1,2-dimethylsilazane) - (1-methylsilazane) copolymer.
  • Example 29 The substrate plate carried a copper film.
  • the substrate plate was a silicon plate.
  • the Si-H reagent was 1.02 ml polydimethylsiloxane hydride-terminated (M.W. 62000 g / mol).
  • Example 31 The substrate plate was covered with a gold film.
  • Example 32 The substrate plate carried a copper film.
  • the substrate plate carried an aluminum film.
  • Example 33
  • the substrate plate carried an iron film.
  • the Si-H reagent was 45 mg octadecylsilane.
  • the substrate plate was covered with a gold film.
  • the Sn-H reagent was 0.04 ml tributyltin hydride.
  • Example 35 The substrate plate carried a gold film.
  • the substrate plate carried a copper film.
  • Examples 37-38 The Ge-H reagent was 0.04 ml tributyl germanium hydride.
  • the substrate plate was covered with a gold film.
  • the substrate plate carried a copper film.
  • Examples 39-46 cis-dichlorobis (styrene) platinum (II) was stirred in toluene at room temperature for about 10 minutes. The substrate plate was then in the Solution or suspension immersed. Polydimethylsiloxane hydride-terminated (MW 28000 g / mol) was then added. The reaction mixture was then gently stirred at room temperature for the specified time. The substrate plate was then removed, rinsed with 30 ml of toluene and air dried. The samples thus obtained were kept in brown snap-cap wide-mouth bottles until they were characterized.
  • Example 39-41 The concentration of the activator was 50 ⁇ M, that of the Si-H reagent
  • Example 40 The substrate plate carried a copper film.
  • Example 41 The substrate plate was a copper plate.
  • Example 42-44 The substrate plate was a copper plate. The reaction mixture was gently stirred for 1 hour.
  • the concentration of the activator was 50 ⁇ M, that of the Si-H reagent 0.1 mM.
  • Example 43 The concentration of the activator was 50 ⁇ M, that of the Si-H reagent 0.1 mM.
  • the concentration of the activator was 50 ⁇ M, that of the Si-H reagent 0.01 mM.
  • Example 44 The concentration of the activator was 50 ⁇ M, that of the Si-H reagent 0.01 mM.
  • the concentration of the activator was 5 ⁇ M, that of the Si-H reagent 0.1 mM.
  • the substrate plate was a copper plate.
  • the concentration of the activator was 50 ⁇ M, that of the Si-H reagent 0.1 mM.
  • the reaction mixture was stirred gently for 10 minutes.
  • Examples 47-55 cis-dichlorobis (styrene) platinum (II) was stirred in toluene at room temperature for about 10 minutes. Polydimethylsiloxane hydride-terminated (M.W. 28000 g / mol) was then added. The reaction mixture was then applied to the substrate plate at room temperature. The substrate plate was then rinsed with 30 ml of toluene and air dried. The samples thus obtained were kept in brown snap-cap wide-mouth bottles until they were characterized.
  • the concentration of the activator was 50 ⁇ M, that of the Si-H reagent 1 mM.
  • the reaction mixture was spread on with a cotton ball.
  • Example 48 The substrate plate was covered with a gold film.
  • the substrate plate was a steel plate.
  • the substrate plate was a copper plate.
  • the substrate plate was a copper plate.
  • the reaction mixture was dropped onto a pipette.
  • Examples 50 The concentration of the activator was 50 ⁇ M, that of the Si-H
  • the reaction was carried out in bulk without toluene.
  • Examples 53-55 The concentration of the activator was 50 ⁇ M, that of the Si-H reagent
  • reaction mixture was sprayed on with an atomizer.
  • Example 54 The substrate plate was covered with a gold film.
  • the substrate plate was a steel plate.
  • the substrate plate was a copper plate. Examples 56-59
  • RTV 601, RTV 604 and RTV 625 were applied to coated substrate plates.
  • the substrate plates carried copper films.
  • Example 63 The substrate plates carried aluminum films.
  • the substrate plates were copper plates.
  • the substrate plates were aluminum plates.
  • Example 65
  • the substrate plates were two copper plates.
  • Example 67 The substrate plates were two copper plates.
  • the substrate plates were two aluminum plates.
  • Aluminum films approximately 10 nm thick were evaporated onto polyester film. This was then terminated in a mixture of cis-dichlorobis (styrene) platinum (II) (50 ⁇ M) and polydimethylsiloxane hydride-terminated (M.W. 28000 g / mol) (0.1 mM) in toluene p.a. immersed for an hour. Then this was treated with toluene p.a. rinsed and blown dry with argon. The coated surface thus obtained was then structured with a laser. The textured surface was then glued to an aluminum plate and used as a printing plate for waterless planographic printing.
  • Example 69-72 1 60 ml of toluene UV were degassed with argon at room temperature for about 15 minutes. The activator was then added and the mixture was stirred under an argon atmosphere at room temperature for about 10 minutes. The substrate plate was then in the solution or suspension immersed. 0.46 ml of polydimethylsiloxane hydride-terminated (MW 28000 g / mol) were then added. The reaction mixture was then stirred gently for 1 hour under an argon atmosphere at room temperature. The substrate plate was then removed, rinsed with 30 ml of toluene UV and blown dry with argon. The samples thus obtained were stored in brown snap-cap wide-mouth bottles under argon until they were characterized.
  • Examples 69-71 The activator was 0.05 ml of platinum (0) -divinyltetramethyldisiloxane.
  • the substrate plate was covered with a gold film.
  • Example 71 The substrate plate carried a copper film.
  • the substrate plate carried an aluminum film.
  • the activator was 6 mg of platinum (IV) hydrochloric acid hydrate.
  • the substrate plate was covered with a gold film.
  • Examples 73-81; cis-dichlorobis (styrene) platinum (II) was stirred in toluene pa at room temperature for about 10 minutes.
  • the substrate was then immersed in the solution or suspension.
  • Polydimethylsiloxane hydride-terminated (MW 28000 g / mol) was then added.
  • the concentration of the activator was 50 ⁇ M, that of the Si-H reagent 0.1 mM.
  • the reaction mixture was then at room temperature for one hour slightly stirred.
  • the substrate was then removed, rinsed with toluene pa and air dried. The samples thus obtained were kept in brown snap-cap wide-mouth bottles until they were characterized.
  • the substrate was a piece of wood made of poplar.
  • the substrate was a piece of wood from maple.
  • Example 75 The substrate was a piece of wood made of oak.
  • the substrate was cardboard.
  • the substrate was a cellulose plate.
  • Example 78 The substrate was a cellulose plate.
  • the substrate was cotton.
  • the substrate was viscose.
  • Example 80 The substrate was silk from silk twill.
  • the substrate was silk from Habotai Taffet silk.
  • the coated substrates which were obtained in accordance with Examples 1-81, were placed in a solvent of the corresponding Si-H, Sn-H or Ge-H reagent for half a day and then rinsed well. Either toluene UV, toluene p.a., hexane UV, chloroform UV or carbon tetrachloride UV were used as solvents. The entirety of the results showed that the coating containing Si, Sn or Ge is present after rinsing.
  • Example 1 resulted in an approximately 6 nm thick layer with an advancing contact angle of water of approximately 1 08 °.
  • the IR spectra and the XPS measurements corresponded to those for oligomers and / or polymers OSi (CH 3 ) 2 units.
  • a test with distilled chlorodimethylsilane gave results comparable to those with the corresponding undistilled reagent.
  • Example 2 resulted in an approximately 3 nm thick layer with an advancing contact angle of water of approximately 90 °.
  • the IR spectra and the XPS measurements corresponded to those for oligomers and / or polymers with OSi (CH 2 CH 3 ) 2 and / or OSi (CH 2 CH 3 ) (CH 3 ) units.
  • a test with distilled diethylmethylsilane gave comparable results to the test with the corresponding undistilled reagent.
  • Examples 3-8 led to layers approximately 2-5 nm thick with advancing contact angles of water of approximately 108 ° to 115 °.
  • the IR spectra and the XPS measurements corresponded to those for polydimethylsiloxane.
  • Examples 9-1 4 led to layers with advancing contact angles of water of approximately 1 05 ° to 1 1 5 °.
  • Examples 1 5-20 resulted in layers with advancing contact angles of water of approximately 105 ° to 130 °.
  • Examples 21-26 resulted in layers approximately 5-8 nm thick with advancing contact angles of water of approximately 80 ° to 100 °.
  • the IR spectra and the XPS measurements corresponded to those for polymethylhydrosiloxane.
  • the IR spectra showed that not all Si-H groups reacted under the chosen conditions. No IR spectrum of Example 26 could be measured, since silicon surfaces cannot be routinely measured in the IR spectrometer in reflection.
  • film formation with polymethylhydrosiloxane was observed for gold films. This film was completely removed by exposure to chloroform UV for half a day.
  • Example 27 resulted in an approximately 3 nm thick layer with an advancing contact angle of water of approximately 100 °.
  • the IR spectra and the XPS measurements corresponded to those for a methylhydro-phenylmethylsiloxane copolymer without the Si-H stretching vibration.
  • Examples 28-29 led to layers approximately 2-5 nm thick with advancing contact angles of water of approximately 85-95 °.
  • the IR spectra and the XPS measurements corresponded to those for a (1,2-dimethylsilazane) - (1-methylsilazane) copolymer.
  • the IR spectra of Example 28 showed that not all Si-H groups reacted under the chosen conditions. As in Example 26, no IR spectrum could be measured from Example 29.
  • Examples 30-33 resulted in layers approximately 2-5 nm thick with advancing contact angles of water of approximately 105 ° to 115 °.
  • the IR spectra and the XPS measurements corresponded to those for polydimethylsiloxane.
  • Example 34 resulted in layers approximately 2 nm thick with advancing contact angles of water of approximately 1 06 °.
  • the IR spectra and the XPS measurements corresponded to those for a monolayer with a saturated hydrocarbon chain with a chain length of 1 8 carbon atoms and Si-O groups. Experiments with cleaned and unpurified octadecylsilane brought comparable results.
  • Examples 35-36 resulted in layers approximately 4 nm thick with advancing contact angles of water of approximately 90 °.
  • the IR spectra in the range of 3000-2800 cm "1 corresponded to those for tributyltin hydride. The Sn-H stretching vibration at 1 81 0 cm '1 was no longer seen.
  • Examples 37-38 led to layers approximately 1-2 nm thick with advancing contact angles of water of approximately 70 ° -85 °.
  • the IR spectra in the range of 3000-2800 cm '1 corresponded to those for tributyl germanium hydride.
  • the Ge-H stretching vibration at 2006 cm "1 was no longer seen.
  • Examples 41-46 resulted in layers with advancing contact angles of water of approximately 105 ° to 110 °.
  • Examples 47-55 resulted in layers with advancing contact angles of water of approximately 100 ° to 110 °.
  • Examples 56-59 resulted in layers with advancing water contact angles of about 100 ° to 105 °.
  • the reaction mixture used was colored brown, which indicates the presence of colloidal platinum.
  • Example 60 resulted in an approximately 100 nm thick layer with an advancing contact angle of water of approximately 1 38 °.
  • the IR spectra and the XPS measurements corresponded to those for polydimethylsiloxane.
  • Examples 61-65 resulted in firmly adhering layers of silicone rubbers on the substrate plates.
  • Example 61 when pulled, shows that the copper film is stripped from the silicon wafer while RTV adheres to the copper film. No comparable liability was found without the coating according to the invention.
  • Example 68 resulted in a layer with an advancing contact angle of water of about 105 °.
  • the layer thus obtained was then structured with a laser.
  • the textured surface was then used as a printing plate for waterless planographic printing and resulted in printed matter with good resolution. Without the coating according to the invention, no structured surface and therefore no printed products could be obtained.
  • Examples 69-71 resulted in a layer with an advancing contact angle of water of about 1 10 ° to 1 15 °.
  • the IR spectra corresponded to those for polydimethylsiloxane.
  • Example 72 resulted in an approximately 4 nm thick layer with an advancing contact angle of water of approximately 1 1 2 °.
  • the IR spectra and the XPS measurements corresponded to those for polydimethylsiloxane.
  • Examples 73-76 resulted in layers with advancing contact angles of water of about 1 1 3 ° to 1 33 °.
  • Example 77 resulted in layers with advancing water contact angles of about 1 10 °.
  • Examples 78-79 resulted in layers with advancing water contact angles of about 1 25 ° to 1 35 °.
  • Examples 80-81 resulted in layers with advancing contact angles of water of about 1 10 ° to 1 25 °.
  • the chosen concentrations and times should ensure comparable conditions.
  • the method according to the invention can also be carried out at different concentrations and / or at different times.
  • the coatings were made by immersion.
  • the coatings can also be obtained in other ways, such as by brushing or spraying.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Chemically Coating (AREA)

Abstract

Metalloberflächen, Metalloxidoberflächen, Metallsalzoberflächen, siliziumhaltige Oberflächen und/oder hochmolekulare aquoxidhaltige organische Oberflächen werden beschichtet. Die Beschichtung erfolgt mit einem Reagenz, das eine reaktive Gruppe, ausgewählt aus Si-H, Sn-H und Ge-H, aufweist. Das Reagenz wird in flüssiger, pastoser oder fester Form auf die zu beschichtende Oberfläche aufgebracht. Weiterhin ist für die Beschichtungsreaktion die Gegenwart eines Aktivators erforderlich. Beim Aktivator handelt es sich um ein Platinmetall in Form einer Verbindung oder in metallischer Form.

Description

Verfahren zum Beschichten einer Oberfläche
Die vorliegende Erfindung betrifft ein Verfahren zum Beschichten einer Metalloberfläche, Metalloxidoberfläche, Metallsalzoberfläche, silizium- haltigen Oberfläche und hochmolekularen aquoxidhaltigen organischen Oberfläche gemass dem Oberbegriff von Anspruch 1 .
Es sind verschiedene Verfahren zum Beschichten von Oberflächen bekannt, wie beispielsweise CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), Plasmabeschichtung, Langmuir-Bodgett-Technik und Adsorption oder Reaktion aus einer Lösung. Bei allen diesen Techniken werden dünne bzw. ultradünne Filme (inkl. Monoschichten) erhalten.
Bei dünnen und ultradünnen Filmen handelt es sich um Filme mit einer durchschnittlichen Dicke bis zu einigen Mikrometern. Gut untersucht sind beispielsweise selbst-assemblierende Filme, d.h. Filme, welche sich aus homogener Lösung spontan an Oberflächen anlagern. Diphosphate bilden beispielsweise selbst-assemblierende Multischichten (Ulman,A.; Chem.Rev. 1996,af>, 1 533 und Ulman,A.; MRS Bulletin 1995,f>,46). Selbst-assemblierende Monoschichten werden auch von Organoschwefelverbindungen gebildet, welche meistens entweder eine Thiol-, Disulfid- oder Thioethergruppe enthalten (loc.cit.). Diese Organoschwefelverbindungen haben eine starke Affinität zu Übergangsmetall-Oberflächen. Die Koordination auf Gold-, Silber-, Kupfer-, Platin-, Quecksilber-, Eisen-, Galliumarsenid- und Goldkolloidoberflächen ist bereits untersucht (loc.cit.). Organoselenverbindungen, wie z.B. Organoselenol auf Gold (Samant,M.G.; Brown,C.A.; Gordon II, J.G.; Langmuir 1992,£,1 61 5), und Fettsäuren, wie z.B. n-Alkanfettsäuren auf AI2O3, AgO, CuO und Glas (Ulman,A.; Chem.Rev. 1996,9^,1 533 und Ulman,A.; MRS Bulletin 1995,f>,46) bilden ebenfalls selbst-assemblierende Monoschichten. Die Adsorption von Alkannitrilen (Steiner, U.B.; Caseri,W.R.; Suter,U.W.; Langmuir 1992,3,2771 ), Phosphinen, Triphenylamin, Triphenylarsin, Triphenylstibin, Triphenylbismutin (Steiner,U.B.; Neuenschwander,P.; Caseri,W.R.; Suter,U.W.; Stucki,F.; Langmuir 1992,£,90), Imiden (Steiner, U.B.; Caseri,W.R.; Suter,U.W.; Rehahn, M.; Schmitz,L.; Langmuir 1993,2,3245) und Tricosylisocyanid (Bain,C.D.; Eval,J.; Whitesides,G.M.;
J.Am.Chem.Soc. 1989, 1 1 1 ,71 55) wird ebenfalls beschrieben. Monoschichten mit kovalenten C-Si Bindungen werden auf H-Si( 1 1 1 ) oder H-Si( 100) Siliziumoberflächen durch den Einsatz von Peroxiden erhalten (Ulman,A.; Chem.Rev. 1996,9j3, 1 533). Organosiliziumverbindungen, welche meistens entweder eine Chlorosilan-, Alkoxysilan- oder Aminosilangruppe enthalten, bilden ebenfalls selbst-assemblierende Monoschichten auf Substraten wie Siliziumoxid, Aluminiumoxid, Quarz, Glas, Glimmer, Zinkselenid, Germaniumoxid und Gold (Ulman,A.; Chem.Rev. 1996, , 1 533 und Ulman,A.; MRS Bulletin 1995,6,46). Auch Multischichten dieser Organosiliziumverbindungen sind bekannt (Ulman,A.; Chem.Rev. 1996,26, 1 533 und Ulman,A.; MRS Bulletin 1995,£,46).
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Beschichten von Oberflächen vorzuschlagen, das die Herstellung von gut haftenden dünnen und/oder ultradünnen Schichten (inkl. Monoschichten) auf so unterschiedlichen Materialien wie Metallen, Metalloxiden, Metallsalzen, siliziumhaltigen Materialien und hochmolekularen aquoxidhaltigen organischen Materialien erlaubt. Diese Aufgabe wird durch die Merkmale des kennzeichnenden Teils von Anspruch 1 gelöst. Bevorzugte Ausführungsformen der Erfindung bilden den Gegenstand der Ansprüche 2 bis 30.
Die Erfindung beruht auf der Erkenntnis, dass Reagenzien mit Si-H-, Sn-H- oder Ge-H-Gruppen in Gegenwart eines Platinmetalles in Form einer Verbindung oder in metallischer Form als Aktivator Schichten auf metallischen Oberflächen, metalloxidischen Oberflächen, metallsalzigen Oberflächen, siliziumhaltigen Oberflächen und hochmolekularen aquoxidhaltigen organischen Oberflächen bilden. Die Reagenzien sind Feststoffe oder Flüssigkeiten, die als solche oder in einem Medium in flüssiger, pastoser oder fester Form appliziert werden. Die Reagenzien können beispielsweise in Lösung, in Emulsion, in Suspension, in Schaum oder in Spray appliziert werden. Unter den Platinmetallen werden gemass fachsprachlichem Gebrauch die Elemente Ru, Rh, Pd, Os, Ir und Pt verstanden. Bevorzugt werden Platinverbindungen, darunter solche, welche mit Silanen zu Platin(O) reduziert werden oder solche, die bereits Platin(O) enthalten. In metallischer Form liegen die Platinmetalle vorzugsweise als Teilchen atomarer, kolloidaler oder grösserer Dimension vor.
Platinverbindungen, die durch Silane zu Pt(0) reduziert werden können oder solche, die sich bereits in der Oxidationsstufe 0 befinden, sind beispielsweise aus Caseri, W.R.; Dissertation, ETH Zürich, 1988, bekannt. Beispiele für solche Platinverbindungen sind cis-Dichlorobis(styrol)platin(ll), trans-Dichlorobis(styrol)platin(ll), Platin(ll)-chlorid, Platin(ll)-bromid, Kalium- terachloroplatinat(ll), Platin(0)-divinyltetramethyldisiloxan, Zeise-Salz, Triphenylphosphinacetylacetonatochloroplatin(ll), Dichloro-μ2-dichlorobis- (styrol)diplatin(ll) oder Bis(cyclooctadien)platin(0). Aus der Organometallchemie kennt man Übergangsmetallverbindungen, die beispielsweise Si-H-, Sn-H- oder Ge-H-Bindungen oxidativ addieren. Diese Eigenschaft wird beispielsweise für die Hydrosilylierungs-, Hydrostannylierungs- und Hydrogermylierungsreaktion ausgenutzt. Die Hydrosilylierungsreaktion beschreibt die Additionsreaktion von organischen und anorganischen Siliziumhydriden an Mehrfachbindungen wie beispielsweise Olefine, Acetylene, Ketone, Imine und Nitrile (Bogdan, M.; "Comprehensive Handbook on Hydrosilylation", Pergamon Press, Oxford 1992). Auf der Grundlage von Speier's Ergebnissen (Speier,J.L.; Webster,J.A.; Barnes, G.H.; J.Am.Chem.Soc. 1957,79,974; Speier,J.L.; Adv.Organomet.Chem. 1979,12,407) und ihren eigenen Beobachtungen der ersten Beispiele für die oxidative Addition von Silanen an Übergangsmetallverbindungen, schlugen Chalk und Harrod einen homogenkatalysierten Reaktionsmechanismus für die Hydrosilylierung vor (Chalk, A.J.; Harrod,J.F.; J.Am.Chem.Soc. 1965,22, 1 6). Es gibt aber auch heterogen-katalysierte Hydrosilylierungsreaktionen, bei denen die Übergangsmetallverbindung zum Kolloid reduziert wird und das entstehende Kolloid katalytisch aktiv ist. Beispielsweise wird Platin(IV)- chlorwasserstoffsäure zu Platin-Kolloiden reduziert, welche dann katalytisch aktiv sind (Lewis, L.N.; Lewis, N.; J.Am.Chem.Soc. 1986,102,7228) . Die Hydrostannylierungs- und Hydrogermylierungs- reaktionen beschreiben analog die Additionsreaktionen ihrer organischen und anorganischen Hydride an Mehrfachbindungen.
Die obigen Literaturstellen beschreiben Reaktionen an Mehrfachbindungen. Gemass der Erfindung wurde überraschenderweise gefunden, dass eine Reaktion zwischen der festen Phase des Materials der zu beschichtenden Oberfläche und dem Reagenz stattfindet, wobei die gewünschte festhaftende Beschichtung in Gegenwart des Aktivators erzielt wird.
In der US-A 5,21 5,801 wird eine Vernetzungsreaktion von Vinyl- und Hydrid-funktionalisierten Silikonen beschrieben. Dabei handelt es sich um eine klassische Hydrosilylierungsreaktion mit einem Platinkatalysator. Das verwendete zu vulkanisierende Silikon ist mit Si02 gefüllt, welches unter anderem zur Verbesserung der Adhäsionseigenschaften zugefügt wird. Eine Reaktion zwischen Si-H-Gruppen und der festen Phase des Materials der zu beschichtenden Oberfläche in Gegenwart eines Aktivators wird nicht anvisiert.
In der DE-A 1 9 1 4 41 1 wird eine Gasphasenreaktion bzw. ein Gasphasenaufwachsen beschrieben. Verbindungen mit beispielsweise Si-H werden verdampft, d.h. in die Gasphase gebracht. Die reaktiven gasförmigen Substanzen werden mit Katalysatoren (beispielsweise Pt) aktiviert. Anschliessend müssen die aktivierten Substanzen entweder mit einem Reagenz (beispielsweise Ammoniak) reagieren oder sich zersetzen. Erst die reagierte oder zersetzte Substanz bildet die gewünschte Schicht.
In der US-A 4,873, 1 1 9 wird ebenfalls eine Gasphasenreaktion beschrieben. Dabei werden amorphe Halbleiter produziert, ausgehend von Si-H- oder Ge-H-Verbindungen. Die Si-H- oder Ge-H-Verbindungen werden in die Gasphase gebracht, mit beispielsweise Platin aktiviert und durch Glimmentladung, Hitze (inkl. Pyrolyse) oder Licht (inkl. IR, UV) zu amorphen Halbleitern zersetzt und auf einer Oberfläche abgeschieden. Die vorliegende Erfindung hat gegenüber Beschichtungsverfahren wie CVD und PVD den Vorteil, dass Reagenzien nicht in die Gasphase gebracht werden müssen, sondern in flüssiger, pastoser oder fester Form appliziert werden.
Ein besonderer Vorteil des erfindungsgemässen Verfahrens ist es, dass eine Vielfalt von Substraten beschichtet werden kann. Als zu beschichtende Oberflächen, d.h. Substrate, kommen Metalle, Metalloxide, Metallsalze, Legierungen, beispielsweise Stähle, Siliziumverbindungen (beispielsweise Siliziumwafer oder Silicatgläser), Keramiken (beispielsweise
Silicatkeramiken, Oxidkeramiken, Ziegel, Tone, Glaskeramiken, Cermets), Gesteine (beispielsweise Silicate, Quarze, Carbonate, Nitrate, Borate, Phosphate, Sulfate) und/oder künstliche Steine, beispielsweise Beton, in Frage. Beispiele für Metalle, Metalloxide und Metallsalze sind Li, Na, Mg, AI, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Rb, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, Hf, Ta, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Nd und U. Als zu beschichtende Oberflächen kommen auch hochmolekulare aquoxidhaltige organische Verbindungen, beispielsweise Holz, Karton, Papier, Polysaccharide (beispielsweise Cellulose oder Cellulosederivate), Proteine (beipielsweise Seide, Wolle oder Kollagen) und oder Polyalkohole in Frage. Substrate mit hochmolekularen aquoxidhaltigen organischen Verbindungen können beispielsweise auch durch Oberflächenbehandlungen erhalten werden. Beispiele sind Polyethylen oder Polypropylen, das durch Corona-, Plasma-, Flammen- oder Chromschwefelsäurebehandlung modifiziert worden ist, oder Polyethyienterephthalat oder Polyamid, das durch hydrolytische Spaltung vorbehandelt worden ist. In Frage kommmende Substrate können auch in gemischter Form auftreten, beispielsweise können an der Oberfläche von Gesteinen verschiedene Siliziumoxide, Metalloxide und Metallsalze gleichzeitig enthalten sein. Ein weiterer Vorteil des erfindungsgemässen Verfahrens ist es, dass es oft das Aufbringen einer Nutzschicht auf natürlich gebildeten Oxidschichten erlaubt. Es können sowohl planare als auch nichtplanare Oberflächen beschichtet werden. Die Grosse und/oder Beschaffenheit der zu beschichtenden Oberfläche beschränkt das erfindungsgemässe Verfahren nicht. Deshalb können Folien, äussere und innere Oberflächen an porösen Materialien und Schichten (d.h. auch die Wände von Poren), Innen- und Aussenflächen, Partikel, Kolloide, und entsprechend vorbeschichtete Oberflächen von beispielsweise Kunststoffen, Gläsern etc. erfindungsgemäss beschichtet werden.
Die folgende Definition von Oxiden basiert auf Falbe, J.; Regitz, M.; "Römpp Chemie Lexikon", Georg Thieme Verlag, Stuttgart 1991 . Oxide sind Verbindungen eines Elements mit Sauerstoff, sofern darin der Sauerstoff der elektronegative Bestandteil ist. Die Anzahl der im Molekül vorhandenen Sauerstoffatome, kann im Verhältnis zu den Elementatomen variieren. Oxide können ebenfalls von mehreren verschiedenen Elementen (z.B. Oxometallate, Spinelle) und/oder von einem Element mit unterschiedlichen Oxidationszahlen (z.B. Mennige) gebildet werden. Besondere Formen von Oxiden sind die Hyperoxide, Peroxide, Suboxide und Anhydride wie auch die Iso- und Heteropolysäuren. Zu den oxidischen Verbindungen muss man auch die Aquoxide (Hydroxide, Oxidhydrate, Oxonium-Salze und Oxidaquate) rechnen. Neben den stöchiometrisch zusammengesetzten Oxiden gibt es auch nichtstöchiometrische Verbindungen mit Sauerstoff, in denen Cluster-Bindungen vorliegen können. Hochmolekulare aquoxidhaltige organische Verbindungen (Molekulargewichte über etwa 1 '000 g/mol) enthalten Hydroxid-Gruppen, deprotonierte Hydroxid-Gruppen und/oder Wasser (Hydroxide, Oxidhydrate, Oxonium- Salze und Oxidaquate). Dabei kann das Wasser als H20-Molekül und/oder in Form von H30 +-Gruppen stöchiometrisch oder unstöchiometrisch an die organische Verbindung gebunden und/oder frei beweglich auf dieser adsorbiert sein.
Das erfindungsgemässe Verfahren erlaubt eine grosse Variation der erstellten Beschichtungen. Erfindungsgemäss können sowohl niedermolekulare Verbindungen, d.h. solche mit Molekulargewichten von bis zu etwa 1 '000 g/mol, als auch hochmolekulare Verbindungen, d.h. solche mit Molekulargewichten über etwa 1 '000 g/mol, eingesetzt werden.
Durch den Einsatz von niedermolekularen Verbindungen, Polymeren oder Copolymeren, welche weitere funktioneile Gruppen enthalten können, können Beschichtungen für verschiedene Zwecke hergestellt werden.
Beispiele von Reagenzien, mit denen gute Resultate erzielt worden sind, sind Si-H-Gruppen enthaltende Silane, Polysilazane, Polyhydrosiloxane und Polysiloxane. Als Reagenzien kommen beispielsweise auch Si-H-Gruppen enthaltende Polysilane, Polycarbosilane oder Polysilsesquioxane in Frage.
Durch den Einsatz von Reagenzien mit weiteren reaktiven Gruppen können auf den erfindungsgemässen Beschichtungen weitere Reaktionen zur Modifizierung der Oberfläche durchgeführt werden. Die erfindungsgemässen Beschichtungen können für verschiedene Zwecke zersetzt werden. Beispielsweise können durch thermische Zersetzung der erfindungsgemässen Beschichtungen Oxidschichten erzeugt werden. Ausserdem kann das erfindungsgemässe Verfahren zusammen mit anderen Oberflächenbehandlungen kombiniert werden, um verschiedene Zersetzungsprodukte zu erhalten.
Die erfindungsgemässen Beschichtungen können, je nach Wahl des Reagenzes, mit verschiedenen Eigenschaften hergestellt werden. Entsprechend können sie in den verschiedensten Bereichen der Technik Verwendung finden. Die Beschichtungen können beispielsweise als Schutz- (UV, Korrosion, Diffusion, Mikroorganismen, etc.), Imprägnier-, Deck-, Färb-, Lack-, Zier-, Haftvermittler-, Biokompatibilitäts-, Haft-, Klebe-, Schmier-, Gleit-, Antiblock-, Antihaft-, Antigraffiti-, Antibeschlag-, Trenn- und/oder Entformungsschicht angewendet werden. Ausserdem kann das erfindungsgemässe Verfahren zusammen mit anderen Oberflächenbehandlungen kombiniert werden, um die oben genannten Arten von Schichten zu erzielen.
Die erfindungsgemässen Beschichtungen eignen sich, wie oben erwähnt, beispielsweise für die Verbindung von Oberflächen.
Beispielsweise können mit Hilfe der erfindungsgemässen Beschichtungen Oberflächen mit Reagenzien mit weiteren funktionellen Gruppen beschichtet werden. Durch die Reaktion solcher weiterer funktioneller Gruppen mit anderen Substanzen können Oberflächen beispielsweise miteinander verbunden werden. Die erfindungsgemässen Beschichtungen eignen sich beispielsweise für die thermische Verbindung mit Kunststoffen. Beispielsweise können die erfindungsgemässen Beschichtungen direkt mit Kunststoffen hinterspritzt werden. Ausserdem kann das erfindungsgemässe Verfahren zusammen mit anderen Oberflächenbehandlungen kombiniert werden, um die oben genannten Arten von Wirkungen zu erzielen.
Die erfindungsgemässen Beschichtungen eignen sich, wie oben erwähnt, beispielsweise für die Schmierung. Die erfindungsgemässen Beschichtungen können beispielsweise direkt als Schmierschicht und/oder als Schicht zur Herabsetzung der Entmischung zwischen Oberfläche und Schmiermittel verwendet werden. Ausserdem kann das erfindungsgemässe Verfahren zusammen mit anderen Behandlungen kombiniert werden, um die oben genannten Arten von Wirkungen zu erzielen.
Beispielsweise können, wie oben erwähnt, mit Hilfe der erfindungsgemässen Beschichtungen mechanische Systeme wie Uhrwerke geschmiert werden.
Die erfindungsgemässen Beschichtungen können als Stabilisator, Bindemittel, Festiger, Verstärker, Verdicker und/oder Weichmacher eingesetzt werden. Ausserdem kann das erfindungsgemässe Verfahren zusammen mit anderen Behandlungen kombiniert werden, um die oben genannten Arten von Wirkungen zu erzielen.
Die erfindungsgemässen Beschichtungen können beispielsweise, wie oben erwähnt, bei der Herstellung von Keramik zum Binden von suspendierten Materialteilchen verwendet werden. Dabei kann beispielsweise mit Hilfe der erfindungsgemässen Beschichtungen der Zusammenhalt kleinster Teilchen erreicht werden. Diese können so beispielsweise zu Pressungen vorverfestigt und anschliessend gesintert werden.
Die erfindungsgemässen Beschichtungen können für die Herstellung von Oberflächen unterschiedlicher Grenzflächenenergie genutzt werden. Durch den Einsatz entsprechender Reagenzien können beispielsweise unterschiedlich benetzbare hydrophile oder hydrophobe Beschichtungen mit unterschiedlichen Kontaktwinkeln hergestellt werden. Ausserdem kann das erfindungsgemässe Verfahren zusammen mit anderen Behandlungen kombiniert werden, um die oben genannten Arten von Wirkungen zu erzielen.
Die erfindungsgemässen Beschichtungen können beispielsweise, wie oben erwähnt, zur Herstellung unterschiedlich benetzbarer hydrophiler oder hydrophober Beschichtungen mit unterschiedlichen Kontaktwinkeln auf
Druckplatten oder -folien aufgebracht werden. Die Beschichtungen können anschliessend partiell entfernt oder verändert werden. Diese Methode eignet sich insbesondere zur Herstellung von Beschriftungen. Eine Beschriftung kann aber auch direkt durch das Aufbringen der Beschichtung beispielsweise in der Druckerei vorgenommen werden. Bei der Verwendung von hydrophoben farbabstossenden Beschichtungsmaterialien wie beispielsweise Polysiloxanen auf hydrophilen farbführenden Druckplatten oder -folien wie beispielsweise Aluminium oder Polyester ist damit beispielsweise ein wasserloser Flachdruck möglich. Bei der Verwendung von farbführenden wasserabstossenden Beschichtungsmaterialien auf wasserführenden Druckplatten oder -folien wie beispielsweise Aluminium oder Polyester ist damit beispielsweise ein Naß-Offsetdruck möglich. Es können auch Reagenzien zur Beschichtung verwendet werden, welche beispielsweise durch Licht und/oder Temperatur ihre Eigenschaften reversibel von hydrophil zu hydrophob und/oder umgekehrt verändern (Beschriftung). So können Druckplatten oder -folien beispielsweise wiederholt beschriftet werden. Ausserdem kann das erfindungsgemässe Verfahren zusammen mit anderen Behandlungen kombiniert werden, um die oben genannten Arten von Wirkungen zu erzielen.
Die erfindungsgemässen Beschichtungen eignen sich unter anderem für verschiedene Bereiche der Elektrotechnik, Elektronik, Mikrotechnik,
Nanotechnik, Biotechnik und/oder Medizin, beispielsweise für Isolatoren, für Sensoren, für Detektoren und/oder für das "Micro-Contact-Printing".
Die erfindungsgemässen Beschichtungen können auch im Bereich der
Umwelttechnik beispielsweise für Filter Anwendung finden. Die erfindungs- gemässen Beschichtungen können beispielsweise auch in den Bereichen
Bauten-, Denkmal- und/oder Kunstschutz und/oder -Sanierung verwendet werden. Die erfindungsgemässen Beschichtungen eignen sich auch für verschiedene Bereiche der Automobilindustrie, beispielsweise für die
Oberflächenmodifizierung für Lacke. Ausserdem kann das erfindungsgemässe Verfahren zusammen mit anderen Behandlungen kombiniert werden, um in den oben genannten Bereichen eingesetzt zu werden.
Bei der Durchführung des erfindungsgemässen Verfahrens kann der Aktivator beispielsweise in Substanz, in Lösung, in Emulsion, in Suspension, in Schaum, in Spray oder in anderen Systemen, welche flüssige und/oder feste Phasen enthalten, eingesetzt werden. Das Reagenz wird, wie bereits erwähnt, in flüssiger, pastoser oder fester Form appliziert. Bevorzugt wird zuerst der Aktivator und dann das Reagenz auf eine zu beschichtende Substratoberfläche aufgebracht oder Aktivator und Reagenz werden zuerst miteinander vermischt, und die erhaltene Mischung wird auf die Substratoberfläche aufgebracht. Aktivator und/oder Reagenz können auch mit anderen Substanzen gemischt werden und dann auf die zu beschichtende Substratoberfläche aufgebracht werden.
Die nachfolgenden Beispiele veranschaulichen einzelne Aspekte der Erfindung. Ein Teil der Beispiele wurde unter Argonatmosphäre ausgeführt. Dadurch soll der Einfiuss von Luftverunreinigungen auf die erfindungsgemässe Beschichtungsreaktion ausgeschlossen werden. Das erfindungsgemässe Verfahren lässt sich aber auch problemlos ohne Edelgasatmosphäre, d.h. an der Luft, durchführen.
Beispiele
Herstellung von mit einer Nutzschicht zu versehenden Oberflächen Auf einseitig polierte Si(100)Einkristallscheiben (Philips Semiconductor AG, Zürich, Schweiz) ( 1 8x40x0.38 mm) wurden Aluminium-, Titan-, Chrom-, Eisen-, Nickel-, Kupfer- oder Goldfilme aufgebracht. Die Scheiben wurden durch Einstellen in Toluol UV von organischen Verunreinigungen gesäubert. Die Filme wurden auf den Scheiben mittels thermischer Bedampfung bei einem Druck von etwa 1 0"3 Pa in einer Balzers MED 010 Kleinbedampfungsanlage (Balzers AG, Balzers, Liechtenstein) erzeugt. Dabei wurde zuerst eine Schicht von ca. 6 nm Chrom (99.9%, Balzers AG, Balzers, Liechtenstein) als Haftvermittler und darauf mit Bedampfungsraten von ca. 2 nm/s entweder etwa 200 nm Aluminium (99.89%, Balzers AG, Balzers, Liechtenstein), Eisen (99.9%, Aldrich, Buchs, Schweiz), Kupfer (99.9%, Balzers AG, Balzers, Liechtenstein), Gold (99.99%, Balzers AG, Balzers, Liechtenstein) oder etwa 40 nm Nickel (99.9%, Aldrich, Buchs, Schweiz) aufgedampft. Etwa 200 nm Titan (99.99%, Aldrich, Buchs, Schweiz) oder Chrom (99.9%, Balzers AG, Balzers, Liechtenstein) wurden mit Bedampfungsraten von ca. 2 nm/s direkt auf die Si( 1 00)- Einkristallscheiben aufgedampft. Nach dem Aufdampfprozess wurde die Vakuumkammer mit Argon gefüllt. Die Platten wurden der Kammer entnommen und direkt weiterverarbeitet. Die durch die aufgedampften Filme gebildeten Aluminium-, Titan-, Chrom-, Eisen-, Nickel- und Kupferoberflächen wurden mit ihrer unter den gewählten Bedingungen entstehenden natürlichen Oxidschichten verwendet. Bei Goldfilmen konnte unter den gewählten Bedingungen keine Oxidation nachgewiesen werden.
Als eine Stahloberfläche wurde die Oberfläche von warmgewalzten Blechen aus unlegiertem Baustahl (USt 37-2, roh, Pestalozzi, Dietikon, Schweiz) (1 8x40x1 mm) verwendet. Die Bleche wurden durch Einstellen in Toluol UV von organischen Verunreinigungen gesäubert.
Als eine Eisenplatte wurde die Oberfläche von S 235 JRG2 (Surber Metallbau, Zürich, Schweiz) ( 1 8x40x1 mm) verwendet. Die Platten wurden mit Toluol p.a. abgerieben. Anschliessend wurden die Platten während einer Stunde in Essigsäure ins Ultraschallbad (Bandelin, Sonorex, Super RK 106) gestellt. Die Platten wurden dann mit Wasser (dest.), Aceton und Toluol p.a. gespült.
Als eine V2A-Stahlplatte wurde die Oberfläche von W 4301 BT (Notz Metall, Biel, Schweiz) ( 1 8x40x1 mm) verwendet. Die Platten wurden mit Toluol p.a. abgerieben. Anschliessend wurden die Platten während einer Minute in Königswasser eingestellt. Die Platten wurden dann mit Wasser (dest.), Aceton und Toluol p.a. gespült.
Als eine Kupferplatte wurde die Oberfläche von Cu-ETP/CuOF (DIN 1 787) (Metall Service Menziken, Dübendorf, Schweiz) verwendet. Als eine Aluminiumplatte wurde die Oberfläche von AISM MgMn (Alusuisse Allega, Niederglatt, Schweiz) verwendet. Die Platten (1 8x40x1 mm) wurden mit Toluol p.a. abgerieben. Anschliessend wurden die Platten zehn Minuten in Essigsäure eingestellt. Die Platten wurden dann mit Wasser (dest.), Aceton und Toluol p.a. gespült.
Als eine Siliziumplatte wurde die Oberfläche von einseitig polierten Si( 1 00)- Einkristallscheiben (Philips Semiconductor AG, Zürich, Schweiz) (1 8x40x0.38 mm) verwendet. Die Platten wurden durch Einstellen in Toluol UV von organischen Verunreinigungen gesäubert.
Als eine Glasplatte wurde die Oberfläche von Objektträgern (Menzel, Braunschweig, Deutschland) ( 1 8x40x1 mm) verwendet. Die Platten wurden über Nacht in NaOH ( 1 0 w% in Wasser (dest.)) eingestellt und anschliessend mit Wasser (dest.), Aceton und Toluol p.a. gespült.
Als eine Keramikplatte wurde die Oberfläche von Aluminiumoxidkeramik (96%, A476, Firag, Ebmatingen, Schweiz) (1 8x40x1 mm) verwendet. Die Platten wurden durch Einstellen in Toluol UV von organischen Verunreinigungen gesäubert.
Als Steinplatten wurden die Oberflächen von Pietra di Lecce (Ditta DECOR S.a.S. di MARTINA & Co., Arnesano, Italien), Molasse (Berner Sandstein, Steinbruch Ostermundingen, Schweiz) und Buntsandstein (Steinbruch Kirschfurt, Miltenberger Industriewerke, Bürgstadt, Deutschland) verwendet. Die Platten (ca. 5x5x1 cm) wurden durch Abspülen mit Wasser (dest.) von Verunreinigungen gesäubert.
Als Betonplatten wurden die Oberflächen von Kiesbeton mit Mainkies, Kiesbeton mit Donaukies und Splittbeton mit Kalkschotter und Mainsand (Miltenberger Industriewerke, Bürgstadt, Deutschland) verwendet. Die Platten (ca. 4x4x4 cm) wurden durch Abspülen mit Wasser (dest.) von Verunreinigungen gesäubert.
Als Holzstücke (kleiner 3x3x0.5 cm) wurden Pappel, Ahorn und Eiche (Pastorini, Zürich, Schweiz) verwendet. Als Karton (etwa 2x2x0.1 cm) wurde Standardverpackungsmaterial verwendet. Die Substrate wurden mit Wasser (dest.) und Aceton gespült.
Celluloseplatten (etwa 2x2x0.1 cm) (Mikro Technik, Bürgstadt, Deutschland) wurden mit Toluol p.a. gespült.
Baumwolle (Textilien etwa 3x3 cm) ( 100%, C&A, Zürich, Schweiz) wurde mit Toluol p.a. gespült.
Viskose (Textilien etwa 3x3 cm) ( 1 00%, C&A, Zürich, Schweiz) wurde mit Wasser (dest.), Aceton und Toluol p.a. gespült.
Als Seide wurde Seiden-Twill (1 9001 , abgekocht) und Seide Habotai Taffet ( 1 1 207, abgekocht) (Bilco-Seide, Zürich, Schweiz) verwendet. Die Seiden (Textilien etwa 3x3 cm) wurden mit Toluol p.a. gespült. Verwendete Chemikalien und Analysegeräte Chemikalien:
Toluol UV (99.5%, UV-Qualität), Toluol (purum), Hexan UV (UV-Qualität), Chloroform UV (UV-Qualität), Tetrachlorkohlenstoff UV (UV-Qualität), Salzsäure (37%, puriss p.a.), Salpetersäure (65%, puriss p.a.), Dimethyldichlorsilan (99.5%), Tributylzinnhydrid (98%) und Platin(IV)- chlorwasserstoffsäure Hydrat (38% Pt) wurden bei Fluka (Buchs, Schweiz) bezogen.
Chlordimethylsilan (98%), Octadecylsilan (98%) und Tributyl- germaniumhydrid (99%) wurden bei Aldrich (Buchs, Schweiz) bezogen.
Zur Reinigung wurde 1 g Octadecylsilan (98%) in 20 ml Dioxan gelöst und mit 1 ml Wasser und 2 g Kieselgel versetzt. Das Gemisch wurde 48 h bei Raumtemperatur gerührt. Danach wurde das Gemisch durch einen Papierfilter filtriert und unter Vakuum bei 45 °C einrotiert. Anschliessend wurde die Substanz in einer Kugelrohrdestillations-Apparatur bei 240°C und Hausvakuum destilliert.
Diethylmethylsilan, Polydimethylsiloxan Hydrid-terminiert (M.W. 28000 g/mol), Polydimethylsiloxan Trimethylsiloxy-terminiert (M.W. 28000 g/mol), Polydimethylsiloxan Hydrid-terminiert (M.W. 62000 g/mol), Polymethylhydrosiloxan (M.W. 2270 g/mol), (45-50%)Methylhydro-(50- 55%)Phenylmethylsiloxan-Copolymer Dimethylsiloxy-terminiert, (1 ,2- Dimetylsilazan)-(1 -Methylsilazan)-Copolymer und Platin(0)-divinyltetra- methyldisiloxan (Komplex in Xylol, 2.1 -2.4% Platin, Iow color) wurden bei ABCR (Karlsruhe, Deutschland) bezogen. RTV 601 , RTV 604 und RTV 625 Silkonkautschuke wurden bei Wacker (Basel, Schweiz) bezogen.
Sylgard 1 84 wurde bei Dow Corning (Wiesbaden, Deutschland) bezogen.
Polyester (Mylar A) wurde bei Du Pont Nemours (Bad Homburg, Deutschland) bezogen.
Essigsäure (100%, reinst) und Toluol p.a. (puriss p.a.) wurden bei Riedel- de Haen (Seelze, Deutschland) bezogen.
NaOH (Plätzchen PH. Eur. II) wurde bei Siegfried (Zofingen, Schweiz) bezogen.
Aceton (technisch) wurde bei Scheller (Zürich, Schweiz) bezogen.
cis-Dichlorobis(styrol)platindl) wurde wie in der Literatur beschrieben synthetisiert (Caseri, W.R.; Dissertation, ETH Zürich, 1 988).
Argon (99.99%) wurde bei Pan Gas (Luzern, Schweiz) bezogen.
Analyseverfahren:
Infrarot-Reflexions-Absorptions-Spektren bei streifendem Einfall (80°) (IR), Röntgenphotoelektronenspektren mit MgKα-Strahlung (XPS), ellipsometri- sehe Messungen bei λ = 632.8 nm und/oder vorrückende Kontaktwinkel von Wasser (θa) wurden gemessen. Eine genauere Beschreibung der Messmethoden findet man in Steiner,U.B.; Caseri,W.R.; Suter,U.W.; Rehahn. M.; Schmitz,L.; Langmuir 1993,2,3245.
Beispiele 1 -2: 1 60 ml Toluol UV wurden während ca. 1 5 Minuten im Eisbad mit Argon entgast. Anschliessend wurden 3.8 mg cis-Dichlorobis(styrol)platin(ll) zugegeben und unter Argon-Atmosphäre im Eisbad während ca. 20 Minuten gerührt. Die Substratplatte mit einem Goldfilm wurde dann in die erhaltene Lösung oder Suspension eingetaucht. Ein Si-H-Reagenz wurde anschliessend zugegeben. Das Eisbad wurde dann weggenommen, und das Reaktionsgemisch wurde während 1 Stunde unter Argon-Atmosphäre leicht gerührt. Die Substratplatte wurde danach herausgenommen, mit 30 ml Toluol UV gespült und mit Argon trocken geblasen. Die so erhaltenen Proben wurden bis zur Charakterisierung in braunen Snap-cap- Weithalsflaschen (Merck, Dietikon, Schweiz) unter Argon aufbewahrt.
Beispiel 1 :
Das Si-H-Reagenz war 1 7.8 μl Chlordimethylsilan. Beispiel 2: Das Si-H-Reagenz war 23.4 μl Diethylmethylsilan.
Beispiele 3-38:
1 60 ml Toluol UV wurden während ca. 1 5 Minuten bei Raumtemperatur mit Argon entgast. Anschliessend wurden 3.8 mg cis-Dichlorobis- (styrol)platin(ll) zugegeben und unter Argon-Atmosphäre bei Raumtemperatur während ca. 1 0 Minuten gerührt. Die Substratplatte wurde dann in die erhaltene Lösung oder Suspension eingetaucht. Ein Si-H-, Sn-H- oder Ge-H-Reagenz wurde anschliessend zugegeben. Das Reaktionsgemisch wurde dann während 1 Stunde unter Argon-Atmosphäre bei Raumtemperatur leicht gerührt. Die Substratplatte wurde danach herausgenommen, mit 30 ml Toluol UV gespült und mit Argon trocken geblasen. Die so erhaltenen Proben wurden bis zur Charakterisierung unter Argon aufbewahrt.
Beispiele 3-20:
Das Si-H-Reagenz war 4.6 ml Polydimethylsiloxan Hydrid-terminiert (M.W. 28000 g/mol). Beispiel 3:
Die Substratplatte trug einen Goldfilm.
Beispiel 4;
Die Substratplatte trug einen Kupferfilm.
Beispiel 5: Die Substratplatte trug einen Aluminiumfilm.
Beispiel 6:
Die Substratplatte trug einen Chromfilm.
Beispiel 7:
Die Substratplatte trug einen Titanfilm. Beispiel 8:
Die Substratplatte trug einen Eisenfilm.
Beispiel 9:
Die Substratplatte war eine Kupferplatte.
Beispiel 1 0: Die Substratplatte war eine Aluminiumplatte.
Beispiel 1 1 :
Die Substratplatte war eine Eisenplatte. Beispiel 1 2:
Die Substratplatte war eine V2A-Stahlplatte.
Beispiel 1 3:
Die Substratplatte war eine Glasplatte. Beispiel 14:
Die Substratplatte war eine Keramikplatte.
Beispiel 1 5:
Die Substratplatte war eine Steinplatte aus Pietra di Lecce.
Beispiel 1 6: Die Substratplatte war eine Steinplatte aus Molasse.
Beispiel 1 7:
Die Substratplatte war eine Steinplatte aus Buntsandstein.
Beispiel 1 ;
Die Substratplatte war eine Betonplatte aus Kiesbeton mit Mainkies.
Beispiel 1 9:
Die Substratplatte war eine Betonplatte aus Kiesbeton mit
Donaukies.
Beispiel 20: Die Substratplatte war eine Betonplatte aus Splittbeton mit
Kalkschotter und Mainsand.
Beispiele 21 -26:
Das Si-H-Reagenz war 0.37 ml Polymethylhydrosiloxan. Beispiel 21 ;
Die Substratplatte trug einen Goldfilm.
Beispiel 22;
Die Substratplatte trug einen Kupferfilm. Beispiel 23;
Die Substratplatte trug einen Aluminiumfilm. Beispiel 24:
Die Substratplatte trug einen Eisenfilm. Beispiel 25;
Die Substratplatte trug einen Nickelfilm.
Beispiel 26:
Die Substratplatte war eine Siliziumplatte.
Beispiel 27:
Die Substratplatte trug einen Kupferfilm. Das Si-H-Reagenz war 0.1 9 ml (45-50%)Methylhydro-(50-55%)Phenylmethylsiloxan-Copolymer Dimethyl-siloxy-terminiert.
Beispiele 28-29:
Das Si-H-Reagenz war 0.05 ml (1 ,2-Dimetylsilazan)-( 1 -Methylsilazan)- Copolymer.
Beispiel 28:
Die Substratplatte trug einen Kupferfilm. Beispiel 29:
Die Substratplatte war eine Siliziumplatte.
Beispiele 30-33:
Das Si-H-Reagenz war 1 .02 ml Polydimethylsiloxan Hydrid-terminiert (M.W. 62000 g/mol).
Beispiel 30;
Die Substratplatte trug einen Goldfilm. Beispiel 31 :
Die Substratplatte trug einen Kupferfilm. Beispiel 32:
Die Substratplatte trug einen Aluminiumfilm. Beispiel 33:
Die Substratplatte trug einen Eisenfilm.
Beispiel 34:
Das Si-H-Reagenz war 45 mg Octadecylsilan. Die Substratplatte trug einen Goldfilm.
Beispiele 35-36:
Das Sn-H-Reagenz war 0.04 ml Tributylzinnhydrid.
Beispiel 35: Die Substratplatte trug einen Goldfilm.
Beispiel 36:
Die Substratplatte trug einen Kupferfilm.
Beispiele 37-38: Das Ge-H-Reagenz war 0.04 ml Tributylgermaniumhydrid.
Beispiel 37:
Die Substratplatte trug einen Goldfilm.
Beispiel 38:
Die Substratplatte trug einen Kupferfilm.
Beispiele 39-46: cis-Dichlorobis(styrol)platin(ll) wurde in Toluol bei Raumtemperatur während ca. 10 Minuten gerührt. Die Substratplatte wurde dann in die Lösung oder Suspension eingetaucht. Polydimethylsiloxan Hydrid-terminiert (M.W. 28000 g/mol) wurde anschliessend zugegeben. Das Reaktionsgemisch wurde dann während der angegebenen Zeit bei Raumtemperatur leicht gerührt. Die Substratplatte wurde danach herausgenommen, mit 30 ml Toluol gespült und an der Luft getrocknet. Die so erhaltenen Proben wurden bis zur Charakterisierung in braunen Snap- cap-Weithalsflaschen aufbewahrt.
Beispiel 39-41 : Die Konzentration des Aktivators war 50 μM, die des Si-H-Reagenzes
1 mM. Das Reaktionsgemisch wurde 1 Stunde leicht gerührt.
Beispiel 39:
Die Substratplatte trug einen Goldfilm. Beispiel 40: Die Substratplatte trug einen Kupferfilm.
Beispiel 41 : Die Substratplatte war eine Kupferplatte.
Beispiel 42-44: Die Substratplatte war eine Kupferplatte. Das Reaktionsgemisch wurde 1 Stunde leicht gerührt. Beispiel 42:
Die Konzentration des Aktivators war 50 μM, die des Si-H- Reagenzes 0.1 mM. Beispiel 43:
Die Konzentration des Aktivators war 50 μM, die des Si-H- Reagenzes 0.01 mM. Beispiel 44:
Die Konzentration des Aktivators war 5 μM, die des Si-H- Reagenzes 0.1 mM.
Beispiel 45-46:
Die Substratplatte war eine Kupferplatte. Die Konzentration des Aktivators war 50 μM, die des Si-H-Reagenzes 0.1 mM. Beispiel 45:
Das Reaktionsgemisch wurde 30 Minuten leicht gerührt. Beispiel 46:
Das Reaktionsgemisch wurde 1 0 Minuten leicht gerührt.
Beispiele 47-55: cis-Dichlorobis(styrol)platin(ll) wurde in Toluol bei Raumtemperatur während ca. 10 Minuten gerührt. Polydimethylsiloxan Hydrid-terminiert (M.W. 28000 g/mol) wurde anschliessend zugegeben. Das Reaktionsgemisch wurde dann auf die Substratplatte bei Raumtemperatur aufgebracht. Die Substratplatte wurde danach mit 30 ml Toluol gespült und an der Luft getrocknet. Die so erhaltenen Proben wurden bis zur Charakterisierung in braunen Snap-cap-Weithalsflaschen aufbewahrt.
Beispiele 47-49:
Die Konzentration des Aktivators war 50 μM, die des Si-H-Reagenzes 1 mM. Das Reaktionsgemisch wurde mit einem Wattebausch auf- gestrichen.
Beispiel 47:
Die Substratplatte trug einen Goldfilm. Beispiel 48:
Die Substratplatte war eine Stahlplatte.
Beispiel 49:
Die Substratplatte war eine Kupferplatte.
Beispiel 50-52:
Die Substratplatte war eine Kupferplatte. Das Reaktionsgemisch wurden mit einer Pipette aufgetropft.
Beispiele 50: Die Konzentration des Aktivators war 50 μM, die des Si-H-
Reagenzes 0.1 mM.
Beispiele 51 :
5 mg Aktivator, 1 ml Toluol und 1 ml Si-H-Reagenz wurden verwendet. Beispiele 52:
5 mg Aktivator und 1 ml Si-H-Reagenz wurden verwendet. Die
Reaktion wurde ohne Toluol, in Substanz durchgeführt.
Beispiele 53-55: Die Konzentration des Aktivators war 50 μM, die des Si-H-Reagenzes
1 mM. Das Reaktionsgemisch wurde mit einem Zerstäuber aufgesprüht.
Beispiel 53:
Die Substratplatte trug einen Goldfilm. Beispiel 54:
Die Substratplatte war eine Stahlplatte.
Beispiel 55:
Die Substratplatte war eine Kupferplatte. Beispiele 56-59:
3.8 mg cis-Dichlorobis(styrol)platinOI) wurden in 1 60 ml Toluol p.a. bei Raumtemperatur während ca. 10 Minuten gerührt. 0.46 ml Polydimethylsiloxan Hydrid-terminiert (M.W. 28000 g/mol) wurden anschliessend zugegeben. Die Kupferplatte wurde nach der angegebenen Zeit in die erhaltene Lösung oder Suspension eingetaucht und für 1 Stunde in dem Reaktionsgemisch leicht gerührt. Die Kupferplatte wurde danach herausgenommen, mit 30 ml Toluol p.a. gespült und an der Luft getrocknet. Die so erhaltenen Proben wurden bis zur Charakterisierung in braunen Snap-cap-Weithalsflaschen aufbewahrt.
Beispiel 56:
Nach 1 Stunde eingetaucht.
Beispiel 57:
Nach 6 Stunden eingetaucht. Beispiel 58:
Nach 1 Woche eingetaucht.
Beispiel 59;
Nach 2 Wochen eingetaucht.
Beispiel 60:
1 60 ml Toluol UV wurden während ca. 1 5 Minuten bei Raumtemperatur mit Argon entgast. Anschliessend wurden 3.8 mg cis-Dichlorobis(styrol)- platin(ll) zugegeben und unter Argon-Atmosphäre bei Raumtemperatur während ca. 1 0 Minuten gerührt. Die Substratplatte mit einem Kupferfilm wurde dann in die Lösung oder Suspension eingetaucht. 1 7.8 μl Chlordimethylsilan wurden anschliessend zugegeben und während 1 0 Minuten unter Argon-Atmosphäre bei Raumtemperatur leicht gerührt. 1 93 μl Dimethyldichlorsilan wurden dann zugegeben und während 50 Minuten unter Argon-Atmosphäre bei Raumtemperatur leicht gerührt. Die Substratplatte wurde danach herausgenommen, mit 30 ml Toluol UV gespült und mit Argon trocken geblasen. Die so erhaltenen Proben wurden bis zur Charakterisierung in braunen Snap-cap-Weithalsflaschen unter Argon aufbewahrt.
Beispiele 61 -67:
3.8 mg cis-Dichlorobis(styrol)platin(ll) wurden in 1 60 ml Toluol p.a. bei
Raumtemperatur während ca. 1 0 Minuten gerührt. Die Substratplatte wurde dann in die erhaltene Lösung oder Suspension eingetaucht. 0.37 ml Polymethylhydrosiloxan wurden anschliessend zugegeben. Das Reaktionsgemisch wurde dann während 1 Stunde bei Raumtemperatur leicht gerührt. Die Substratplatte wurde danach herausgenommen, mit 30 ml Toluol p.a. gespült und mit Argon trocken geblasen. Die so erhaltenen Proben wurden bis zur Weiterverarbeitung in braunen Snap-cap- Weithalsflaschen aufbewahrt.
Beispiele 61 -64:
Auf beschichtete Substratplatten wurden Schichten aus RTV 601 , RTV 604 und RTV 625 aufgebracht.
Beispiel 61 :
Die Substratplatten trugen Kupferfilme.
Beispiel 62:
Die Substratplatten trugen Aluminiumfilme. Beispiel 63:
Die Substratplatten waren Kupferplatten.
Beispiel 64:
Die Substratplatten waren Aluminiumplatten. Beispiel 65:
Auf beschichtete Glasplatten wurden Schichten aus Sylgard 1 84 aufgebracht.
Beispiele 66-67:
Zwischen zwei beschichtete Substratplatten wurden Schichten aus RTV 601 aufgebracht. Beispiel 66:
Die Substratplatten waren zwei Kupferplatten. Beispiel 67:
Die Substratplatten waren zwei Aluminiumplatten.
Beipiel 68:
Auf Polyesterfolie wurden ca. 10 nm dicke Aluminiumfilme aufgedampft. Diese wurde dann in eine Mischung aus cis-Dichlorobis(styrol)platin(ll) (50 μM) und Polydimethylsiloxan Hydrid-terminiert (M.W. 28000 g/mol) (0.1 mM) in Toluol p.a. während einer Stunde eingetaucht. Danach wurde diese mit Toluol p.a. gespült und mit Argon trocken geblasen. Die so erhaltene beschichtete Oberfläche wurde anschliessend mit einem Laser strukturiert. Die strukturierte Oberfläche wurde dann auf eine Aluminiumplatte aufgeklebt und als Druckplatte für einen wasserlosen Flachdruck verwendet.
Beispiel 69-72: 1 60 ml Toluol UV wurden während ca. 1 5 Minuten bei Raumtemperatur mit Argon entgast. Anschliessend wurde der Aktivator zugegeben und unter Argon-Atmosphäre bei Raumtemperatur während ca. 1 0 Minuten gerührt. Die Substratplatte wurde dann in die Lösung oder Suspension eingetaucht. 0.46 ml Polydimethylsiloxan Hydrid-terminiert (M.W. 28000 g/mol) wurden anschliessend zugegeben. Das Reaktionsgemisch wurde dann während 1 Stunde unter Argon-Atmosphäre bei Raumtemperatur leicht gerührt. Die Substratplatte wurde danach herausgenommen, mit 30 ml Toluol UV gespült und mit Argon trocken geblasen. Die so erhaltenen Proben wurden bis zur Charakterisierung in braunen Snap-cap- Weithalsflaschen unter Argon aufbewahrt.
Beispiele 69-71 : Der Aktivator war 0.05 ml Platin(0)-divinyltetramethyldisiloxan.
Beispiel 69:
Die Substratplatte trug einen Goldfilm.
Beispiel 70;
Die Substratplatte trug einen Kupferfilm. Beispiel 71 :
Die Substratplatte trug einen Aluminiumfilm.
Beispiel 72:
Der Aktivator war 6 mg Platin(IV)-chlorwasserstoffsäure Hydrat. Die Substratplatte trug einen Goldfilm.
Beispiele 73-81 ; cis-Dichlorobis(styrol)platin(ll) wurde in Toluol p.a. bei Raumtemperatur während ca. 1 0 Minuten gerührt. Das Substrat wurde dann in die Lösung oder Suspension eingetaucht. Polydimethylsiloxan Hydrid-terminiert (M.W. 28000 g/mol) wurde anschliessend zugegeben. Die Konzentration des Aktivators war 50 μM, die des Si-H-Reagenzes 0.1 mM. Das Reaktionsgemisch wurde dann während einer Stunde bei Raumtemperatur leicht gerührt. Das Substrat wurde danach herausgenommen, mit Toluol p.a. gespült und an der Luft getrocknet. Die so erhaltenen Proben wurden bis zur Charakterisierung in braunen Snap-cap-Weithalsflaschen aufbewahrt. Beispiel 73:
Das Substrat war ein Holzstück aus Pappel.
Beispiel 74:
Das Substrat war ein Holzstück aus Ahorn.
Beispiel 75: Das Substrat war ein Holzstück aus Eiche.
Beispiel 76:
Das Substrat war Karton.
Beispiel 77:
Das Substrat war eine Celluloseplatte. Beispiel 78:
Das Substrat war Baumwolle.
Beispiel 79:
Das Substrat war Viskose.
Beispiel 80: Das Substrat war Seide aus Seiden-Twill.
Beispiel 81 :
Das Substrat war Seide aus Seide Habotai Taffet.
Alle Experimente, wie sie in den Beispielen 1 -81 beschrieben sind, wurden auch ohne Aktivator durchgeführt. Die Gesamtheit der Ergebnisse zeigte, dass ohne Aktivator das entsprechende Si-H-, Sn-H- oder Ge-H-Reagenz nicht oder nur unwesentlich an die Oberfläche bindet. Blindversuche mit reinem Lösungsmittel oder mit einer Lösung oder Suspension, welche nur den Aktivator enthält, zeigten ebenfalls keine Beschichtung, wie sie mit den entsprechenden Si-H-, Sn-H- oder Ge-H-Reagenzien erhalten wurde.
In Anwesenheit des Aktivators zeigten die Ergebnisse für alle Experimente, wie sie in den Beispielen 1 -81 beschrieben sind, die Bildung einer Beschichtung, die Si, Sn oder Ge enthält.
Die beschichteten Substrate, die gemass den Beispielen 1 -81 erhalten wurden, stellte man einen halben Tag in ein Lösungsmittel des entsprechenden Si-H-, Sn-H- oder Ge-H- Reagenzes ein und spülte anschliessend gut. Als Lösungsmittel wurden entweder Toluol UV, Toluol p.a., Hexan UV, Chloroform UV oder Tetrachlorkohlenstoff UV verwendet. Die Gesamtheit der Ergebnisse zeigte, dass die Beschichtung die Si, Sn oder Ge enthält, nach dem Spülen vorhanden ist.
Versuche in Anwesenheit von cis-Dichlorobis(styrol)platin(ll) mit einer Si- Verbindung ohne Si-H-Gruppe wurden mit Dimethyldichlorsilan und mit Polydimethylsiloxan Trimethylsiloxy-terminiert auf Goldfilmen durchgeführt. Die Gesamtheit der Ergebnisse zeigte, dass die Si-Verbindung ohne Si-H- Gruppe nicht oder nur unwesentlich auf der Oberfläche bindet.
Bewertung der Beispiele:
Beispiel 1 führte zu einer ca. 6 nm dicken Schicht mit einem vorrückenden Kontaktwinkel von Wasser von etwa 1 08° . Die IR-Spektren und die XPS Messungen entsprachen denen für Oligomere und/oder Polymere mit OSi(CH3)2-Einheiten. Ein Versuch mit destilliertem Chlordimethylsilan brachte vergleichbare Ergebnisse wie der Versuch mit dem entsprechenden undestillierten Reagenz.
Beispiel 2 führte zu einer ca. 3 nm dicken Schicht mit einem vorrückenden Kontaktwinkel von Wasser von etwa 90°. Die IR-Spektren und die XPS Messungen entsprachen denen für Oligomere und/oder Polymere mit OSi(CH2CH3)2- und/oder OSi(CH2CH3)(CH3)-Einheiten. Ein Versuch mit destilliertem Diethylmethylsilan brachte vergleichbare Ergebnisse wie der Versuch mit dem entsprechenden undestillierten Reagenz.
Beispiele 3-8 führten zu ca. 2-5 nm dicken Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 108 ° bis 1 1 5 ° . Die IR-Spektren und die XPS Messungen entsprachen denen für Polydimethylsiloxan.
Beispiele 9-1 4 führten zu Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 1 05 ° bis 1 1 5 ° .
Beispiele 1 5-20 führten zu Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 105 ° bis 1 30° .
Beispiele 21 -26 führten zu ca. 5-8 nm dicken Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 80° bis 100° . Die IR-Spektren und die XPS Messungen entsprachen denen für Polymethylhydrosiloxan. Die IR- Spektren zeigten, dass unter den gewählten Bedingungen nicht alle Si-H- Gruppen reagiert haben. Von Beispiel 26 konnte kein IR-Spektrum gemessen werden, da Siliziumoberflächen im IR-Spektrometer in Reflexion nicht routinemässig gemessen werden können. Für den Versuch ohne Aktivator beobachtete man für Goldfilme eine Filmbildung mit Polymethylhydrosiloxan. Dieser Film wurde durch Einstellen in Chloroform UV während eines halben Tages vollständig entfernt.
Beispiel 27 führte zu einer ca. 3 nm dicken Schicht mit einem vorrückenden Kontaktwinkel von Wasser von etwa 100° . Die IR-Spektren und die XPS Messungen entsprachen denen für ein Methylhydro- Phenylmethylsiloxan-Copolymer ohne die Si-H Streckschwingung.
Beispiele 28-29 führten zu ca. 2-5 nm dicken Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 85-95 ° . Die IR-Spektren und die XPS Messungen entsprachen denen für ein ( 1 ,2-Dimetylsilazan)-( 1 - Methylsilazan)-Copolymer. Die IR-Spektren von Beispiel 28 zeigten, dass unter den gewählten Bedingungen nicht alle Si-H Gruppen reagiert haben. Von Beispiel 29 konnte wie für Beispiel 26 kein IR-Spektrum gemessen werden.
Beispiele 30-33 führten zu ca. 2-5 nm dicken Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 1 05 ° bis 1 1 5 ° . Die IR-Spektren und die XPS Messungen entsprachen denen für Polydimethylsiloxan.
Beispiel 34 führte zu ca. 2 nm dicken Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 1 06 ° . Die IR-Spektren und die XPS Messungen entsprachen denen für eine Monoschicht mit einer gesättigten Kohlenwasserstoff kette mit einer Kettenlänge von 1 8 Kohlenstoff atomen und Si-O-Gruppen. Versuche mit gereinigtem und ungereinigtem Octadecylsilan brachten vergleichbare Ergebnisse. Beispiele 35-36 führten zu ca. 4 nm dicken Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 90° . Die IR-Spektren im Bereich von 3000-2800 cm"1 entsprachen denen für Tributylzinnhydrid. Die Sn-H Streckschwingung bei 1 81 0 cm'1 sah man nicht mehr.
Beispiele 37-38 führten zu ca. 1 -2 nm dicken Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 70°-85 ° . Die IR-Spektren im Bereich von 3000-2800 cm'1 entsprachen denen für Tributylgermaniumhydrid. Die Ge-H Streckschwingung bei 2006 cm"1 sah man nicht mehr.
Die IR-Spektren und die XPS Messungen für die Beispiele 39-40, 47-48 und 53-54 entsprachen denen für Polydimethylsiloxan.
Beispiele 41 -46 führten zu Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 105 ° bis 1 10° .
Beispiele 47-55 führten zu Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 100° bis 1 1 0° .
Beispiele 56-59 führten zu Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 100° bis 105° . Das verwendete Reaktionsgemisch war braun gefärbt, was auf die Anwesenheit von kolloidalem Platin hinweist.
Beispiel 60 führte zu einer ca. 100 nm dicken Schicht mit einem vorrückenden Kontaktwinkel von Wasser von etwa 1 38° . Die IR-Spektren und die XPS Messungen entsprachen denen für Polydimethylsiloxan. Beispiele 61 -65 führten zu fest haftenden Schichten von Silikonkautschuken auf den Substratplatten. Beispiel 61 zeigt beim Ziehen, dass der Kupferfilm von dem Siliziumwafer abgelöst wird, während RTV auf dem Kupferfilm haften bleibt. Ohne die erfindungsgemässe Beschichtung wurde keine vergleichbare Haftung festgestellt.
Beispiele 66-67 führten zum Verkleben der beiden Platten. Bei Zugscherversuchen nach DIN 53 283 wurden Klebefestigkeiten von bis zu
8 N/mm gemessen. Dabei wurde ein kohäsiver Bruch beobachtet. Der Einsatz von Silikonkautschuken oder anderen Substanzen mit besseren mechanischen Eigenschaften wird also zu höheren Klebefestigkeiten führen. Substratplatten ohne die erfindungsgemässe Beschichtung konnten nicht verklebt werden.
Beispiel 68 führte zur einer Schicht mit einem vorrückenden Kontaktwinkel von Wasser von etwa 105 ° . Die so erhaltene Schicht wurde dann mit einem Laser strukturiert. Die strukturierte Oberfläche wurde dann als Druckplatte für einen wasserlosen Flachdruck verwendet und führte zu Druckerzeugnissen mit guter Auflösung. Ohne die erfindungsgemässe Beschichtung konnte keine strukturierte Oberfläche und damit keine Druckerzeugnisse erhalten werden.
Beispiele 69-71 führten zu einer Schicht mit einem vorrückenden Kontaktwinkel von Wasser von etwa 1 1 0° bis 1 1 5 ° . Die IR-Spektren entsprachen denen für Polydimethylsiloxan. Beispiel 72 führte zu einer ca. 4 nm dicken Schicht mit einem vorrückenden Kontaktwinkel von Wasser von etwa 1 1 2 ° . Die IR-Spektren und die XPS Messungen entsprachen denen für Polydimethylsiloxan.
Beispiele 73-76 führten zu Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 1 1 3° bis 1 33° .
Beispiel 77 führte zu Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 1 1 0° .
Beispiele 78-79 führten zu Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 1 25 ° bis 1 35 ° .
Beispiele 80-81 führten zu Schichten mit vorrückenden Kontaktwinkeln von Wasser von etwa 1 1 0° bis 1 25 ° .
Alle erhaltenen Ergebnisse zeigten, dass sowohl die Anwesenheit eines Si- H-, Sn-H- oder Ge-H-Reagenzes als auch die Anwesenheit eines Aktivators für die Beschichtung notwendig ist. Es hat sich weiter gezeigt, dass die genaue Zusammensetzung der Beschichtung durch die Anwesenheit von zusätzlichen Substanzen beeinflusst werden kann.
Die Beispiele wurden in Toluol und bei Raumtemperatur durchgeführt. Dadurch sollten vergleichbare Bedingungen gewährleistet werden. Das erfindungsgemässe Verfahren lässt sich aber auch in anderen Lösungsmitteln, ohne Lösungsmittel in Substanz und/oder bei anderen Temperaturen durchführen. Ein Teil der Beispiele wurde mit Lösungsmitteln in UV-Qualität durchgeführt, um bei der Charakterisierung der Beschichtungen Probleme durch Verunreinigungen aus dem Lösungsmittel zu vermeiden. Das erfindungsgemässe Verfahren lässt sich aber auch in technischen Lösungsmitteln geringer Reinheit durchführen.
Ein Teil der Beispiele wurde auf Oberflächen durchgeführt, welche auf Scheiben mittels thermischer Bedampfung erzeugt wurden, um eine einwandfreie Charakterisierung der Beschichtung zu gewährleisten. Jedoch kann das erfindungsgemässe Verfahren auch auf anderen Oberflächen durchgeführt werden.
Die gewählten Konzentrationen und Zeiten sollten vergleichbare Bedingungen gewährleisten. Das erfindungsgemässe Verfahren lässt sich aber auch mit anderen Konzentrationen und/oder anderen Zeiten durchführen.
Ein Teil der Beispiele zeigt, dass die Beschichtungen durch Eintauchen hergestellt wurden. Die Beschichtungen können aber auch auf andere Art und Weise erhalten werden, wie beispielsweise durch Aufpinseln oder Aufsprühen.

Claims

Patentansprüche
1 . Verfahren zum Beschichten einer Metalloberfläche, Metalloxidoberfläche, Metallsalzoberfläche, siliziumhaltigen Oberfläche und hoch- molekularen aquoxidhaltigen organischen Oberfläche, dadurch gekennzeichnet, dass man ein Reagenz, das eine reaktive Gruppe, ausgewählt aus Si-H, Sn-H und Ge-H, aufweist, in Gegenwart eines Platinmetalles in Form einer Verbindung oder in metallischer Foim als Aktivator, in flüssiger, pastoser oder fester Form, auf die zu beschichtende Oberfläche aufbringt.
2. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man eine siliziumoxidhaltige Oberfläche beschichtet.
3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man die Oberfläche eines Silizumwafers beschichtet.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man die Oberfläche eines anorganischen Glases beschichtet.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man eine Keramikoberfläche beschichtet.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man eine Gesteinoberfläche beschichtet.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man die Oberfläche eines künstlichen Steins beschichtet.
8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man die Oberfläche eines Polysaccharids beschichtet.
9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man die Oberfläche einer Cellulose oder eines
Cellulosederivats beschichtet.
1 0. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man eine Holzoberfläche beschichtet.
1 1 . Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man die Oberfläche eines Proteins beschichtet.
1 2. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man eine Oberfläche, die eine natürliche
Oxidschicht aufweist, beschichtet.
1 3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man eine Verbindung von Platin als Aktivator verwendet.
14. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man Platin in metallischer Form als Teilchen atomarer, kolloidaler oder grösserer Dimension als Aktivator verwendet.
1 5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man als Aktivator eine Platinverbindung verwendet, welche mit Silanen zu Platin(O) reduziert wird oder welche bereits Platin(O) enthält.
1 6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man als Aktivator cis-Dichlorobis(styrol)platin(ll) verwendet.
1 7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man als Aktivator Platin(0)-divinyltetramethyl- disiloxan verwendet.
1 8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man als Reagenz eine niedermolekulare Verbindung verwendet.
1 9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man als Reagenz, welches als reaktive Gruppe eine Si-H-Gruppe aufweist, ein Silan verwendet.
20. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man als Reagenz eine hochmolekulare Verbindung verwendet.
21 . Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man als Reagenz, welches als reaktive Gruppe eine Si-H-Gruppe aufweist, ein Polysilazan, ein Polyhydrosiloxan oder ein Polysiloxan verwendet.
22. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man als Reagenz ein Copolymer verwendet.
23. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man ein Reagenz mit weiteren reaktiven Gruppen verwendet, wobei die weitere(n) reaktive(n) Gruppe(n) für eine Reaktion nach dem Beschichten der Oberfläche bestimmt sind.
24. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man die Beschichtung auf der Oberfläche zersetzt.
25. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man eine Haft-, Klebe- und/oder Haftver- mittlerschicht herstellt.
26. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man eine Schmier- und/oder Gleitschicht herstellt.
27. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man eine Schutzschicht herstellt.
28. Verfahren nach einem der vorangehenden Asprüche, dadurch gekennzeichnet, dass man eine Biokompatibilitätsschicht herstellt.
29. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man die Beschichtung als Antihaft- und/oder
Antigraffitischicht verwendet.
30. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man die Beschichtung für Druckplatten oder - folien herstellt.
31 . Formkörper mit einer Metalloberfläche, Metalloxidoberfläche, Metallsalzoberfläche, siliziumhaltigen Oberfläche und/oder hochmolekularen aquoxidhaltigen organischen Oberfläche, der nach dem Verfahren gemass einem der vorangehenden Ansprüche beschichtet worden ist.
PCT/CH1998/000220 1997-05-28 1998-05-26 Verfahren zum beschichten einer oberfläche WO1998053921A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU73295/98A AU7329598A (en) 1997-05-28 1998-05-26 Method for coating a surface
DE59802546T DE59802546D1 (de) 1997-05-28 1998-05-26 Verfahren zum beschichten einer oberfläche
AT98920438T ATE211028T1 (de) 1997-05-28 1998-05-26 Verfahren zum beschichten einer oberfläche
EP98920438A EP0986438B1 (de) 1997-05-28 1998-05-26 Verfahren zum beschichten einer oberfläche
JP50005599A JP2002507146A (ja) 1997-05-28 1998-05-26 表面をコーティングする方法
US09/423,110 US6316057B1 (en) 1997-05-28 1998-05-26 Method for coating a surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1262/97 1997-05-28
CH126297 1997-05-28

Publications (1)

Publication Number Publication Date
WO1998053921A1 true WO1998053921A1 (de) 1998-12-03

Family

ID=4206289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1998/000220 WO1998053921A1 (de) 1997-05-28 1998-05-26 Verfahren zum beschichten einer oberfläche

Country Status (8)

Country Link
US (1) US6316057B1 (de)
EP (1) EP0986438B1 (de)
JP (1) JP2002507146A (de)
AT (1) ATE211028T1 (de)
AU (1) AU7329598A (de)
DE (1) DE59802546D1 (de)
ES (1) ES2170492T3 (de)
WO (1) WO1998053921A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069572A2 (en) * 1999-05-17 2000-11-23 University Of Massachusetts Surface modification using hydridosilanes to prepare monolayers
EP1070688A1 (de) * 1999-07-19 2001-01-24 Daniele Casalini Oberflächenbeschichteter Hartstoff
WO2004024407A1 (de) * 2002-08-27 2004-03-25 Nanosys Gmbh Verfahren zur hydrophobierung der oberfläche eines porösen substrats unter beibehaltung seiner porosität
EP1935835A1 (de) * 2006-12-18 2008-06-25 Manitowoc Crane Group France SAS Gleitbeschichtung für Teleskopkranteile
DE102015209794A1 (de) * 2015-05-28 2016-12-01 Carl Zeiss Vision International Gmbh Verfahren zur Herstellung eines optischen Glases mit Antifog-Beschichtung

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19957276A1 (de) * 1999-11-29 2001-10-11 Abb Research Ltd Additionsvernetzende Siliconkautschukmischungen
DE19959525A1 (de) * 1999-12-09 2001-06-13 Bayer Ag Katalysatoren auf Basis Edelmetall- und Titan-haltiger, organisch-anorganisch Hybridmaterialien zur selektiven Oxidation von Kohlenwasserstoffen
US6852353B2 (en) * 2000-08-24 2005-02-08 Novartis Ag Process for surface modifying substrates and modified substrates resulting therefrom
US6890855B2 (en) * 2001-06-27 2005-05-10 International Business Machines Corporation Process of removing residue material from a precision surface
FR2840297B1 (fr) * 2002-05-31 2005-03-25 Centre Nat Rech Scient Procede pour l'elaboration d'un substrat mineral modifie en surface, et substrat obtenu
KR100499348B1 (ko) * 2002-11-05 2005-07-04 주식회사 엔비켐 금속 모노리스형 촉매 모듈 제조를 위한 금속구조체 표면상에 금속-금속산화물 층상입자층의 피복방법 및 촉매부착방법
JP4757474B2 (ja) * 2004-10-15 2011-08-24 日本曹達株式会社 有機薄膜形成方法
WO2006123619A1 (ja) * 2005-05-17 2006-11-23 Matsushita Electric Industrial Co., Ltd. 多層情報記録媒体及びその製造方法
US8309237B2 (en) * 2007-08-28 2012-11-13 Alcoa Inc. Corrosion resistant aluminum alloy substrates and methods of producing the same
US7732068B2 (en) * 2007-08-28 2010-06-08 Alcoa Inc. Corrosion resistant aluminum alloy substrates and methods of producing the same
US20090162544A1 (en) * 2007-12-20 2009-06-25 Garesche Carl E Method of surface coating to enhance durability of aesthetics and substrate component fatigue
US8062466B2 (en) * 2008-05-06 2011-11-22 Asahi Rubber Inc. Base material for adhesion and silicone rubber-adhered article using thereof
US8673393B2 (en) * 2009-06-08 2014-03-18 Innovanano, Inc. Hydrophobic materials made by vapor deposition coating and applications thereof
KR20120013040A (ko) * 2010-08-04 2012-02-14 (주)디엔에프 비공성 기재 표면 개질용 실리콘계 발수 코팅제 조성물
WO2013055746A1 (en) 2011-10-12 2013-04-18 Novartis Ag Method for making uv-absorbing ophthalmic lenses by coating
EP2932314B1 (de) 2012-12-17 2017-02-01 Novartis AG Verfahren zur herstellung von uv-licht-absorbierenden brillengläsern
RU2513818C1 (ru) * 2013-01-15 2014-04-20 Юлия Алексеевна Щепочкина Шихта для изготовления глазури
EP3118277B1 (de) 2014-03-10 2019-10-23 Kyoto University Verfahren zur herstellung eines oberflächenmodifizierten substrats, verfahren zur herstellung eines konjugats, neuartige hydrosilanverbindung, oberflächenbehandlungsmittel, oberflächenbehandlungsmittel-kit und oberflächenmodifiziertes substrat
KR102050715B1 (ko) * 2018-02-28 2020-01-08 인하대학교 산학협력단 폴리메틸하이드로실록산 표면 도포 기법을 이용한 폴리디메틸실록산의 표면 개질 방법 및 이로 제조된 폴리디메틸실록산

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1914411A1 (de) * 1968-03-22 1969-10-09 Syumpei Yamazaki Beschichtungsverfahren
US4873119A (en) * 1987-01-28 1989-10-10 Chronar Corp. Catalytic deposition of semiconductors
US5215801A (en) * 1990-08-22 1993-06-01 At&T Bell Laboratories Silicone resin electronic device encapsulant
JPH06256659A (ja) * 1993-03-05 1994-09-13 Shin Etsu Chem Co Ltd 剥離性シリコーン硬化皮膜の形成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308421A (en) * 1991-04-12 1994-05-03 Allied-Signal Inc. Method for forming fiber-reinforced glass composite protective layers on insulating bodies
JP3098946B2 (ja) * 1995-09-21 2000-10-16 東レ・ダウコーニング・シリコーン株式会社 剥離性硬化皮膜形成性オルガノポリシロキサン組成物
JPH09183903A (ja) * 1995-12-28 1997-07-15 Toray Dow Corning Silicone Co Ltd 硬化性シリコーン組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1914411A1 (de) * 1968-03-22 1969-10-09 Syumpei Yamazaki Beschichtungsverfahren
US4873119A (en) * 1987-01-28 1989-10-10 Chronar Corp. Catalytic deposition of semiconductors
US5215801A (en) * 1990-08-22 1993-06-01 At&T Bell Laboratories Silicone resin electronic device encapsulant
JPH06256659A (ja) * 1993-03-05 1994-09-13 Shin Etsu Chem Co Ltd 剥離性シリコーン硬化皮膜の形成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CASERI, WALTER ET AL: "Hydrosilylation chemistry and catalysis with cis-PtCl2(PhCH:CH2)2", ORGANOMETALLICS (1988), 7(6), 1373-80 CODEN: ORGND7;ISSN: 0276-7333, 1988, XP002035407 *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 656 (C - 1286) 13 December 1994 (1994-12-13) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069572A2 (en) * 1999-05-17 2000-11-23 University Of Massachusetts Surface modification using hydridosilanes to prepare monolayers
WO2000069572A3 (en) * 1999-05-17 2001-02-08 Univ Massachusetts Surface modification using hydridosilanes to prepare monolayers
US6331329B1 (en) 1999-05-17 2001-12-18 University Of Massachusetts Surface modification using hydridosilanes to prepare monolayers
JP2002544388A (ja) * 1999-05-17 2002-12-24 ユニバーシティー オブ マサチューセッツ 単層を調製するためにヒドリドシランを用いた表面改変
US6524655B2 (en) 1999-05-17 2003-02-25 University Of Massachusetts Surface modification using hydridosilanes to prepare monolayers
US6673459B2 (en) 1999-05-17 2004-01-06 University Of Massachusetts Surface modification using hydridosilanes to prepare monolayers
EP1070688A1 (de) * 1999-07-19 2001-01-24 Daniele Casalini Oberflächenbeschichteter Hartstoff
WO2004024407A1 (de) * 2002-08-27 2004-03-25 Nanosys Gmbh Verfahren zur hydrophobierung der oberfläche eines porösen substrats unter beibehaltung seiner porosität
EP1935835A1 (de) * 2006-12-18 2008-06-25 Manitowoc Crane Group France SAS Gleitbeschichtung für Teleskopkranteile
DE102015209794A1 (de) * 2015-05-28 2016-12-01 Carl Zeiss Vision International Gmbh Verfahren zur Herstellung eines optischen Glases mit Antifog-Beschichtung
DE102015209794B4 (de) * 2015-05-28 2017-07-27 Carl Zeiss Vision International Gmbh Verfahren zur Herstellung eines optischen Glases mit Antifog-Beschichtung und optisches Glas mit Antifog-Beschichtung

Also Published As

Publication number Publication date
ATE211028T1 (de) 2002-01-15
DE59802546D1 (de) 2002-01-31
EP0986438B1 (de) 2001-12-19
EP0986438A1 (de) 2000-03-22
JP2002507146A (ja) 2002-03-05
AU7329598A (en) 1998-12-30
ES2170492T3 (es) 2002-08-01
US6316057B1 (en) 2001-11-13

Similar Documents

Publication Publication Date Title
EP0986438B1 (de) Verfahren zum beschichten einer oberfläche
US4338377A (en) Sulfonato-organosilanol compounds and aqueous solutions thereof
US7261768B2 (en) Hydrophobic coatings and methods
US4150191A (en) Process for forming an optical black surface and surface formed thereby
TWI472641B (zh) 基材之高疏水性表面的處理方法
WO2001074739A1 (de) Glas-, keramik- und metall-substrate mit selbstreinigender oberfläche, verfahren zu deren herstellung und deren verwendung
EP1136527A1 (de) Fläckenbestädiges material und verfahren zur herstellung desselben, überzugszusammensetzung und vorrichtung dafür
WO2005003033A2 (en) Aluminum phosphate coatings
HUT75966A (en) Metal pretreated with an aqueous solution containing a dissolved inorganic silicate or aluminate, an organofunctional silane and a non-functional silane for enhanced corrosion resistance
US5935638A (en) Silicon dioxide containing coating
WO2006095464A1 (ja) 酸化チタンコーティング剤、及び酸化チタン塗膜形成方法
WO1998005589A1 (fr) Procede de revetement de peroxyde de titane amorphe
US9334404B2 (en) Method of making superhydrophobic/superoleophilic paints, epoxies, and composites
CN112143332B (zh) 一种超疏水涂层及制备方法
KR101078946B1 (ko) 광촉매 박막, 광촉매 박막의 형성방법 및 광촉매 박막 피복제품
US5919726A (en) Method for producing photocatalyst material
DE19938551A1 (de) Hydrophobe Beschichtung
DE69507352T2 (de) Verfahren zum Anbringen Mineralteilchen auf einem Substrat
Bhardwaj et al. Optimization studies and characterization of advanced geopolymer coatings for the fabrication of mild steel substrate by spin coating technique
JPH039074B2 (de)
JP3870253B2 (ja) 無機−有機ハイブリッド薄膜及びその製造方法
CH693844A5 (de) Verfahren zum Beschichten einer Oberflaeche.
Zainuri et al. The Effect of Variation Concentration Cristobalite Silica from Natural Silica Sand to Hydrophobicity on Steel Plate Surface
Subagyo The Effect of Variation Concentration Cristobalite Silica from Natural Silica Sand to Hydrophobicity on Steel Plate Surface
KR20100112041A (ko) 초소수 코팅재료 및 초소수 코팅막 형성방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09423110

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998920438

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 500055

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1998920438

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1998920438

Country of ref document: EP