WO1998036447A1 - Verfahren zum bilden einer strukturierten metallisierung auf einem halbleiterwafer - Google Patents

Verfahren zum bilden einer strukturierten metallisierung auf einem halbleiterwafer Download PDF

Info

Publication number
WO1998036447A1
WO1998036447A1 PCT/EP1998/000618 EP9800618W WO9836447A1 WO 1998036447 A1 WO1998036447 A1 WO 1998036447A1 EP 9800618 W EP9800618 W EP 9800618W WO 9836447 A1 WO9836447 A1 WO 9836447A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
structured
activated
bond pad
dielectric
Prior art date
Application number
PCT/EP1998/000618
Other languages
English (en)
French (fr)
Inventor
Rolf Aschenbrenner
Ghassem Azdasht
Elke Zakel
Andreas Ostmann
Gerald Motulla
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to DE59803920T priority Critical patent/DE59803920D1/de
Priority to EP98906918A priority patent/EP0968523B1/de
Publication of WO1998036447A1 publication Critical patent/WO1998036447A1/de
Priority to US09/367,462 priority patent/US6284639B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0101Neon [Ne]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Definitions

  • the present invention relates to methods for forming a structured metallization on a semiconductor wafer and in particular to methods which are suitable for producing rewiring on a chip surface.
  • chip housings are known in the art in which the connections of the chip are folded over to a flat arrangement.
  • a flat arrangement is shown in FIG. 1, in which a multiplicity of edge pads, reference number 10, are rewired into a corresponding plurality of flat pads, reference number 12.
  • Another example of rewiring is, for example, the rewiring of two pads on a chip into very large bumps which are arranged on a chip surface, such very large bumps being referred to in the art as megabumps.
  • metallization layers are electrodeposited, the latter subsequently being structured by photolithography, whereupon the metallization areas which are not required are etched.
  • metal can be deposited over the entire surface by vapor deposition.
  • the process flow is as follows. First, a photostructurable dielectric is applied to a main surface of a semiconductor wafer, which is provided with a passivation layer for fixing bond pads. The bond pads in the dielectric are then opened. This is followed by a sputtering process for producing a full-area metallization on the wafer, ie on the bond pads and on the dielectric. The metallization applied over the entire surface is subsequently structured using a photoresist mask, as a result of which the rewiring metallization is defined. A galvanic metal deposition is then carried out on the thin metallization that has now been determined. The remaining photoresist mask is then removed and the base metalization is selectively etched. Finally, a solder mask that fixes the flat pads is placed on the surface of the Wafers applied.
  • EP-A-0151413 relates to methods for selective electroless metal deposition on dielectric surfaces.
  • a dielectric surface is treated by selectively preselecting areas thereof using a pretreatment solution, for example a palladium chloride solution, in order to subsequently carry out electroless metal deposition on the activated areas.
  • a pretreatment solution for example a palladium chloride solution
  • Conductor patterns are formed by first depositing a thin aluminum layer over an Si0 2 surface in order to form an adhesive layer between the later metallization and the Si0 2 layer. Electroless metal deposition is then selectively carried out, for example, using a suitable mask in order to produce the desired conductor patterns.
  • JP-A-4-206680 discloses forming a layer from a nem activated dielectric material 2 on a substrate 1 in order to electrolessly deposit metal layers 4 on side surfaces of the activated dielectric material. In order to prevent deposition on the surface of the activated dielectric material parallel to the substrate 1, a layer of an inactive dielectric material 3 is applied to this surface.
  • the present invention is based on the object of creating methods for forming a structured metallization on a semiconductor wafer, in particular in order to enable rewiring of edge connections of the wafer into a flat configuration, which are simpler, faster and are less expensive than known methods.
  • the present invention is based on the idea of creating a deposition and structuring method which is based on the selective chemical deposition of metal on a suitably germinated substrate, or the structured application of a conductive material.
  • a deposition and structuring method which is based on the selective chemical deposition of metal on a suitably germinated substrate, or the structured application of a conductive material.
  • an activated dielectric for an additive chemical deposition or a conductive material is applied to the wafers.
  • the materials mentioned, i.e. the activated dielectric or a conductive material can be realized, for example, by stencil application using a stencil, dispensing, application over the entire surface and subsequent photolithographic structuring thereof, as well as application over the entire surface and activation of the areas to be metallized by exposure.
  • the present invention relates to methods for forming a structured metallization on the surface. before a semiconductor wafer, on which a passivation layer is already applied, which is structured in order to fix at least one bond pad.
  • Such bond pads are usually realized as aluminum bond pads.
  • a metal bump is first produced on the at least one bond pad, for example by chemical metal deposition or by photolithographic processes.
  • An activated dielectric is then produced on the areas of the passivation layer on which the structured metallization is to be formed, whereupon metal is chemically deposited on the activated dielectric and the metal bump.
  • the at least one bond pad is first prepared for chemical metal deposition, i.e. activated.
  • An activated dielectric is generated on the areas of the passivation layer on which the structured metallization is to be formed.
  • metal is chemically deposited on the activated areas and the activated bond pad.
  • an activated, electrically conductive paste is produced on the areas of the passivation layer on which the structured metallization is to be formed and on the at least one bond pad on the main surface of the output wafer provided with the passivation layer. Chemical metal is then deposited on the activated, electrically conductive paste.
  • the present invention provides a method for forming a structured metallization on an output wafer of the type described above, wherein a metal bump is first generated on the at least one bond pad.
  • a structured metal foil on the areas of the passivation layer on which the structured metallization is to be formed and on the metal bump.
  • chemical metal deposition is carried out on the metal foil.
  • solder resist is applied to the surface of the wafer on which the structured metallization is formed, whereupon openings for the flat pad - Arrangement are generated in the solder resist.
  • the present invention thus creates methods for forming a structured metallization on a semiconductor wafer, in particular for rewiring, which do not require an expensive sputtering device. Furthermore, the methods according to the invention can be carried out more easily and quickly compared to known methods, which brings further cost savings.
  • FIG. 1 shows a top view of an exemplary rewiring of edge pads into a flat pad configuration
  • a semiconductor wafer (20) is provided with a passivation layer (22) on a main surface thereof. Bond pads (24) are arranged in the passivation layer (22). These bond pads (24) are usually designed as aluminum bond pads.
  • the semiconductor wafer (20) preferably consists of silicon, the passivation layer (22) consisting of silicon nitride. Such a semiconductor structure is available in this form from semiconductor manufacturers.
  • a preferred exemplary embodiment of the method according to the first aspect of the present invention is explained in more detail below with reference to FIG. 2.
  • a chemical, ie electroless, metal deposition is first carried out on the aluminum bond pad (24).
  • This deposition creates a metal bump (26) on the bond pad (24), as can be seen in FIG. 2b).
  • a plurality of metal bumps can be produced in this step.
  • the aluminum bond pads must first be subjected to an activation, for example a palladium activation.
  • the metal bumps can also be produced by photolithographic processes using a photoresist.
  • a dielectric is now applied to the passivation (22) of the wafer (20), this application being possible by means of stencil printing or, alternatively, over the entire area with subsequent photolithographic structuring.
  • a photomask is applied in a known manner, the bond pad and the structures, which are later not intended to represent conductor tracks, are exposed, and the exposed areas are subsequently removed.
  • the structure after the structuring of the dielectric (28) is shown in FIG. 2c). Only a small distance may exist between the metal bump (26) and the dielectric (28). Alternatively, the metal bump and the dielectric (28) can touch slightly. When it is applied, the dielectric (28) can already be activated for subsequent chemical metallization, for example by means of palladium particles. Alternatively, the dielectric can be germinated after it has been applied in a wet chemical process, for example by immersion in a palladium chloride solution.
  • the dielectric (28) has the same height as the metal bump (26). This can be achieved by adjusting the thickness of the dielectric depending on the process used. However, it is also possible for the dielectric (28) to have a greater height than the metal bump (26) after the application thereof, which necessitates an etching back of the dielectric after the application of the same to the height of the metal bump.
  • the activated di- electrical metal chemical deposition In a subsequent step, the activated di- electrical metal chemical deposition.
  • gold, nickel, copper or palladium is electrolessly deposited on the activated dielectric and the metal bump to form a metallization layer (30).
  • the chemically deposited metal grows together with the metal bump and thus forms an electrically conductive connection from the metal bump to the metallization layer arranged on the dielectric (28), as a result of which the electrical connection from the bond pad to the rewiring is realized.
  • a solder resist with openings for the flat pad arrangement, the pads of which are connected by the method according to the invention, for example, to edge pads is subsequently applied.
  • the activated dielectric can be generated on the areas of the passivation layer on which the structured metallization is to be formed by applying the dielectric over the entire area with the exception of the metal bumps and activating the areas to be metallized by exposure.
  • FIG. 3a the output wafer (20) with the passivation layer (22) and the bond pad (24) is again shown.
  • a dielectric (30) is applied to the entire surface of the wafer (20) on which the passivation layer (22) is arranged.
  • the dielectric (30) is structured, for example, by means of a photolithography process, on the one hand to expose the bond pad (24) and on the other hand to determine the structure of the metallization to be subsequently applied.
  • the resulting structure is shown in Fig. 3b).
  • the dielectric (30) and the bond pad (24) are preferably germinated by a wet chemical process, ie by immersing the wafer in a palladium-chloride solution.
  • the structure now available is ner chemical metal deposition a metallization layer (32) applied.
  • the metallization layer is deposited by chemical metal deposition on the activated dielectric (30) and the activated bond pads (24), as shown in FIG. 3c).
  • the method described with reference to FIG. 3 allows the metal layer deposited on the dielectric to be contacted to the bond pad (24) in one step without a metal bump.
  • an electrically conductive paste (40) which consists, for example, of an adhesive with silver particles contained therein, is applied in a structured manner to this starting wafer.
  • This application can take place, for example, by means of stencil printing and the like.
  • the electrically conductive paste (40) is applied only to the areas of the passivation layer (22) on which the metallization is to be formed later, and also to the bond pad (24). This results in a conductive connection between the bond pad (24) and the structured adhesive layer, which, for example, enables the desired rewiring.
  • the conductive paste For the subsequent chemical metal deposition, the conductive paste must be pretreated in such a way that the paste is activated with the necessary particles, for example palladium particles. This activation is carried out, for example, by plasma etching followed by palladium activation or by wet chemical etching and subsequent palladium activation. The etching process roughenes epoxy surfaces of the paste adhesive, thereby removing an epoxy film over the silver particles.
  • the conductive pastes are preferably activated after they have been applied to the surface of the wafer.
  • the fourth aspect of the present invention is explained in more detail below with reference to FIG. 5.
  • a chemical metal deposition is first carried out on the aluminum bond pads (24). Nickel, copper, palladium or gold can in turn be used for this chemical metal deposition.
  • a metal bump (26) is formed by chemical metal deposition.
  • a metal foil which in the preferred embodiment consists of copper, is applied over the entire surface of the wafer on which the passivation layer (22) is applied, as well as over the metal bumps (26), for example by lamination.
  • the conductive connection between the contact pad of the chip and the copper foil can be realized by a contact pressure, metallic contact.
  • solder can be applied over the entire surface of the copper foil surface facing the wafer. The contacting can then be effected by means of a laser bonding process.
  • the copper foil is then structured using a photolithographic process, a photoresist mask with subsequent selective etching, so that copper tracks are produced in the shape of the metallization to be structured.
  • the copper tracks are subsequently reinforced according to the invention by chemical metal deposition on them.
  • the methods according to the present invention are advantageously suitable for producing rewiring on a chip.
  • rewiring can be implemented more economically and more quickly, saving on process steps compared to known methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

Bei einem Verfahren zum Bilden einer strukturierten Metallisierung (30) auf einem Halbleiterwafer (20), wobei auf einer Hauptoberfläche des Wafers (20) eine Passivierungsschicht (22) aufgebracht ist, die strukturiert ist, um zumindest ein Bondpad (24) festzulegen, wird zunächst ein Metallbump (26) auf dem zumindest einen Bondpad (24) erzeugt. Nachfolgend wird auf den Bereichen der Passivierungsschicht (22), auf denen die strukturierte Metallisierung (30) gebildet werden soll, ein aktiviertes Dielektrikum (28) erzeugt. Abschließend wird direkt auf dem aktivierten Dielektrikum (28) und dem Metallbump (26) Metall chemisch abgeschieden, derart, daß die auf dem aktivierten Dielektrikum gebildete strukturierte Metallisierung und das auf dem Metallbump chemisch abgeschiedene Metall elektrisch leitfähig verbunden sind.

Description

Verfahren zum Bilden einer strukturierten Metallisierung auf einem Halbleiterwafer
Beschreibung
Die vorliegende Erfindung bezieht sich auf Verfahren zum Bilden einer strukturierten Metallisierung auf einem Halbleiterwafer und insbesondere Verfahren, die zur Erzeugung einer Umverdrahtung auf einer Chipoberfläche geeignet sind.
Die fortschreitende Miniaturisierung elektronischer Systeme erfordert eine zunehmende Verkleinerung der Chipgehäuse. Eine optimale Ausnutzung der Leiterplattenoberfläche kann nur durch die Verwendung einer Flip-Chip-Montage für ungehäuste Chips erreicht werden.
Die Padanordnung und das Rastermaß heute verfügbarer Chips sind durch die Möglichkeiten der Drahtbondtechnik begrenzt, da mittelfristig die überaus meisten Chips in gehäuster Form eingesetzt werden. Bei hochpoligen Chips wird daher ein sehr geringes Rastermaß und ferner sehr kleine Padflächen eingesetzt. Üblich sind Padgrößen von 80 x 80 μm und ein Raster- raaß von 100 μm. Bei derartig kleinen Konfigurationen kann zwar eine Kontaktierung durch Bonddrähte, nicht jedoch durch die klassische Flip-Chip-Technik realisiert werden.
Bei dem oben genannten feinen Rastermaß existiert hinsichtlich der klassischen Flip-Chip-Technik eine Vielzahl von Problemen. Diese beziehen sich auf Lotbrücken zwischen benachbarten Lotbumps, auf Lötstoplacköffnungen auf der Leiterplatte sowie die Ausrüstung für die ultrafeinen Abstände (Pitch) .
Um die oben beschriebene Problematik zu vermeiden, sind in der Technik Chipgehäuse bekannt, bei denen die Anschlüsse des Chips auf eine flächige Anordnung umgelegt werden. Ein Beispiel einer derartigen flächigen Anordnung ist in Fig. 1 dargestellt, bei dem eine Vielzahl von Randpads, Bezugszeichen 10, in eine entsprechende Vielzahl von flächig angeordneten Pads, Bezugszeichen 12, umverdrahtet sind. Ein weiteres Beispiel einer Umverdrahtung ist beispielsweise die Um- verdrahtung von zwei Pads auf einem Chip in sehr große Bumps, die auf einer Chipoberfläche angeordnet sind, wobei derartige sehr große Bumps in der Technik als Megabumps bezeichnet werden.
Um eine Umverdrahtungstechnik auf der Chipoberfläche zur Veränderung der Bumpgeometrie und der Anschlüsse, sowie eine Verteilung der Anschlüsse von der Kante des Chips in eine Flächenverteilung zu realisieren, gibt es verschiedene Möglichkeiten. Gemäß dem Stand der Technik werden Metallisierungslagen galvanisch abgeschieden, wobei dieselben nachfolgend durch Photolithographie strukturiert werden, woraufhin eine Ätzung der nicht benötigten Metallisierungsflächen erfolgt. Die ganzflächige Abscheidung von Metall kann neben der galvanischen Abscheidung auch durch Bedampfung erfolgen.
Gemäß dem herkömmlichen Verfahren zur Umverdrahtung ergibt sich folgender Prozeßfluß. Zunächst wird ein photostruktu- rierbares Dielektrikum auf eine Hauptoberfläche eines Halb- leiterwafers, die mit einer Passivierungsschicht zur Festlegung von Bondpads versehen ist, aufgebracht. Nachfolgend werden die Bondpads in dem Dielektrikum geöffnet. Im Anschluß daran erfolgt ein Sputterverfahren zur Erzeugung einer ganzflächigen Metallisierung auf dem Wafer, d.h. auf den Bondpads und auf dem Dielektrikum. Die ganzflächig aufgebrachte Metallisierung wird nachfolgend unter Verwendung einer Photolackmaske strukturiert, wodurch die Umverdrah- tungsmetallisierung festgelegt wird. Auf der nun festgelegten dünnen Metallisierung wird im Anschluß eine galvanische Metallabscheidung durchgeführt. Im Anschluß daran wird die verbleibende Photolackmaske entfernt und die Basismetallisierung selektiv geätzt. Abschließend wird eine Lötstopmaske, die die flächigen Pads festlegt, auf die Oberfläche des Wafers aufgebracht.
Vor allem die Kosten für die Sputter-Ausrüstung, die in der Regel sehr hoch sind, stellen einen Nachteil des bekannten Verfahrens dar. Ferner muß nach dem Erzeugen der ganzflächigen Metallisierung auf dem Wafer ein weiteres photolithographisches Verfahren unter Verwendung einer Photolackmaske durchgeführt werden. Das bekannte Verfahren ist somit relativ aufwendig.
Die EP-A-0151413 bezieht sich auf Verfahren zur selektiven stromlosen Metallabscheidung auf dielektrischen Oberflächen. Dabei wird eine dielektrische Oberfläche behandelt, indem selektiv vorgewählte Bereiche derselben mittels einer Vorbehandlungslösung, beispielsweise einer Palladium-Chlorid-Lösung aktiviert werden, um nachfolgend eine stromlose Metallabscheidung auf den aktivierten Bereichen durchzuführen.
Aus J. Electrochem. Soc. 1989, Vol. 136, Nr. 2, S. 456-462, sind Verfahren zur selektiven stromlosen Metallabscheidung zur Verwendung bei der Herstellung von integrierten Schaltungen, und insbesondere zur Herstellung von Mehrebenen-Zwischenverbindungen in VLSI-Schaltungen bekannt. Dabei werden Leitermuster gebildet, indem zunächst eine dünne Aluminiumschicht über einer Si02-Oberflache abgeschieden wird, um eine Haftschicht zwischen der späteren Metallisierung und der Si02-Schicht zu bilden. Nachfolgend wird beispielsweise durch eine geeignete Maske selektiv eine stromlose Metallabscheidung durchgeführt, um die gewünschten Leitermuster zu erzeugen.
In IEEE Transactions on Components, Packaging, and Manufac- turing Technology, Part B, 1995, Vol. 18, Nr. 2, S. 334-338 sind Verfahren zur stromlosen Nickel/Kupfer-Abscheidung auf Bondpads eines mit einer Passivierungsschicht versehenen Si- liziumwafers beschrieben, um Metallbumps zu erzeugen.
Die JP-A-4-206680 offenbart das Bilden einer Schicht aus ei- nem aktivierten dielektrischen Material 2 auf einem Substrat 1, um auf Seitenflächen des aktivierten dielektrischen Materials stromlos Metallschichten 4 abzuscheiden. Um eine Abscheidung auf der zum Substrat 1 parallelen Oberfläche des aktivierten dielektrischen Materials zu verhindern, ist auf diese Oberfläche eine Schicht aus einem inaktiven dielektrischen Material 3 aufgebracht.
Ausgehend von dem oben genannten Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, Verfahren zum Bilden einer strukturierten Metallisierung auf einem Halb- leiterwafer, insbesondere um eine Umverdrahtung von Kantenanschlüssen des Wafers in eine flächige Konfiguration zu ermöglichen, zu schaffen, die einfacher, schneller und kostengünstiger als bekannte Verfahren sind.
Diese Aufgabe wird durch Verfahren gemäß den Ansprüchen 1 bis 4 gelöst.
Die vorliegende Erfindung basiert auf der Idee, ein Abscheide- und Strukturierungs- Verfahren zu schaffen, das auf der selektiven chemischen Abscheidung von Metall auf einer geeignet bekeimten Unterlage beruht, bzw. der strukturierten Aufbringung eines leitfähigen Materials. Zu diesem Zweck wird auf den Wafern ein aktiviertes Dielektrikum für eine additive chemische Abscheidung oder ein leitfähiges Material aufgebracht.
Die genannten Materialien, d.h. das aktivierte Dielektrikum oder ein leitfähiges Material, können beispielsweise durch einen Schablonenauftrag durch eine Schablone, ein Dispensieren, eine ganzflächige Auftragung und eine anschließende photolithographische Strukturierung derselben, sowie eine ganzflächige Auftragung und eine Aktivierung der zu metallisierenden Bereiche durch eine Belichtung realisiert werden.
Die vorliegende Erfindung bezieht sich auf Verfahren zum Bilden einer strukturierten Metallisierung auf der Oberflä- ehe eines Halbleiterwafers, auf der bereits eine Passivierungsschicht aufgebracht ist, die strukturiert ist, um zumindest ein Bondpad festzulegen. Derartige Bondpads sind üblicherweise als Aluminium-Bondpads realisiert.
Gemäß einem ersten Aspekt der vorliegenden Erfindung wird zunächst ein Metallbump auf dem zumindest einen Bondpad, beispielsweise durch eine chemische Metallabscheidung oder durch photolithographische Verfahren, erzeugt. Nachfolgend wird ein aktiviertes Dielektrikum auf den Bereichen der Passivierungsschicht, auf denen die strukturierte Metallisierung gebildet werden soll, erzeugt, woraufhin Metall auf dem aktiviertem Dielektrikum und dem Metallbump chemisch abgeschieden wird.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird das zumindest eine Bondpad zunächst für eine chemische Metallabscheidung vorbereitet, d.h. aktiviert. Ein aktiviertes Dielektrikum wird auf den Bereichen der Passivierungsschicht, auf denen die strukturierte Metallisierung gebildet werden soll, erzeugt. Nachfolgend wird Metall chemisch auf den aktivierten Bereichen und dem aktivierten Bondpad abgeschieden.
Gemäß einem dritten Aspekt der vorliegenden Erfindung wird auf der mit der Passivierungsschicht versehenen Hauptoberfläche des Ausgangswafers eine aktivierte, elektrisch leitfähige Paste auf den Bereichen der Passivierungsschicht, auf denen die strukturierte Metallisierung gebildet werden soll, und auf dem zumindest einen Bondpad erzeugt. Nachfolgend wird auf der aktivierten, elektrisch leitfähigen Paste chemisch Metall abgeschieden.
Die vorliegende Erfindung schafft gemäß einem vierten Aspekt ein Verfahren zum Bilden einer strukturierten Metallisierung auf einem Ausgangswafer der oben beschriebenen Art, wobei zunächst ein Metallbump auf dem zumindest einen Bondpad erzeugt wird. Nachfolgend wird eine strukturierte Metallfolie auf den Bereichen der Passivierungsschicht, auf denen die strukturierte Metallisierung gebildet werden soll, und dem Metallbump erzeugt. Schließlich wird eine chemische Metallabscheidung auf der Metallfolie durchgeführt.
Bei Verwendung der erfindungsgemäßen Verfahren zur Umverdrahtung von Kanten-Pads auf einem Chip in eine flächige Konfiguration der Pads wird nach der chemischen Metallabscheidung jeweils ein Lötstoplack auf die Oberfläche des Wafers, auf der die strukturierte Metallisierung gebildet ist, aufgebracht, woraufhin Öffnungen für die flächige Pad- anordnung in dem Lötstoplack erzeugt werden.
Die vorliegende Erfindung schafft somit Verfahren zum Bilden einer strukturierten Metallisierung auf einem Halbleiterwa- fer, insbesondere zur Umverdrahtung, die ohne eine kosten- spielige Sputter-Vorrichtung auskommen. Ferner können die erfindungsgemäßen Verfahren im Vergleich zu bekannten Verfahren einfacher und schneller durchgeführt werden, was weitere Kosteneinsparungen mit sich bringt.
Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:
Fig. 1 eine Draufsicht einer beispielhaften Umverdrahtung von Kanten-Pads in eine flächige Padkonfiguration;
Fig. 2a) bis d) schematische Querschnittansichten zur Erläuterung des Verfahrens gemäß dem ersten Aspekt der vorliegenden Erfindung;
Fig. 3a) bis c) schematische QuerSchnittansichten zur Erläuterung des Verfahrens gemäß dem zweiten Aspekt der vorliegenden Erfindung;
Fig. 4 a) und b) schematische Querschnittansichten zur Erläuterung des Verfahrens gemäß dem dritten Aspekt der vorliegenden Erfindung; und
Fig. 5a) bis c) schematische Querschnittansichten zur Erläuterung des Verfahrens gemäß dem vierten Aspekt der vorliegenden Erfindung.
An dieser Stelle sei darauf hingewiesen, daß in sämtlichen Figuren für jeweils gleiche Elemente gleiche Bezugszeichen verwendet sind.
In den Fig. 2a) , 3a) , 4a) und 5a) ist jeweils eine schematische Teilquerschnittansicht eines Halbleiterwafers dargestellt, der den Ausgangspunkt der erfindungsgemäßen Verfahren darstellt. Ein Halbleiterwafer (20) ist auf einer Hauptoberfläche desselben mit einer Passivierungsschicht (22) versehen. In der Passivierungsschicht (22) sind Bondpads (24) angeordnet. Diese Bondpads (24) sind üblicherweise als Aluminium-Bondpads ausgebildet. Der Halbleiterwafer (20) besteht vorzugsweise aus Silizium, wobei die Passivierungsschicht (22) aus Siliziumnitrid besteht. Eine derartige Halbleiterstruktur ist in dieser Form von Halbleiterherstellern erhältlich.
Bezugnehmend auf Fig. 2 wird nachfolgend ein bevorzugtes Ausführungsbeispiel des Verfahrens gemäß dem ersten Aspekt der vorliegenden Erfindung näher erläutert. Ausgehend von dem in Fig. 2a) dargestellten Ausgangssubstrat wird zunächst eine chemische, d.h. stromlose Metallabscheidung auf dem Aluminium-Bondpad (24) durchgeführt. Durch diese Abscheidung wird ein Metallbump (26) auf dem Bondpad (24) erzeugt, wie in Fig. 2b) zu sehen ist. Es ist offensichtlich, daß entsprechend einer beliebigen Anzahl von Bondpads auf dem Halbleiterwafer bei diesem Schritt eine Vielzahl von Metallbumps erzeugt werden können. Um die chemische Metallabscheidung zu realisieren, müssen die Aluminium-Bondpads zunächst einer Aktivierung, beispielsweise einer Palladium-Aktivierung, unterworfen werden. Neben der chemischen Metallabscheidung können die Metall- bumps auch durch photolithographische Verfahren unter Verwendung eines Photolacks erzeugt werden.
Gemäß dem vorliegenden Ausführungsbeispiel wird nun ein Dielektrikum auf die Passivierung (22) des Wafers (20) aufgebracht, wobei dieses Aufbringen mittels eines Schablonendrucks oder alternativ ganzflächig mit anschließender photolithographischer Strukturierung erfolgen kann. Bei der ganzflächigen Auftragung des Dielektrikums wird in bekannter Weise eine Photomaske aufgebracht, das Bondpad und die Strukturen, die später keine Leiterbahnen darstellen sollen, belichtet, und nachfolgend die belichteten Bereiche entfernt.
In Fig. 2c) ist die Struktur nach der Strukturierung des Dielektrikums (28) dargestellt. Zwischen dem Metallbump (26) und dem Dielektrikum (28) darf nur ein kleiner Abstand existieren. Alternativ können sich der Metallbump und das Dielektrikum (28) leicht berühren. Das Dielektrikum (28) kann bei der Aufbringung desselben bereits für eine nachfolgende chemische Metallisierung aktiviert sein, beispielsweise durch Palladiumpartikel. Alternativ kann das Dielektrikum nach dem Aufbringen desselben in einem naßchemischen Verfahren bekeimt werden, beispielsweise durch Eintauchen in eine Palladium-Chlorid-Lösung.
Wie in Fig. 2c) dargestellt ist, weist das Dielektrikum (28) die gleiche Höhe wie der Metallbump (26) auf. Dies kann durch das Einstellen der Auftragsdicke des Dielektrikums abhängig von dem verwendeten Prozeßablauf realisiert werden. Es ist jedoch auch möglich, daß das Dielektrikum (28) nach dem Auftragen desselben eine größere Höhe als der Metallbump (26) aufweist, was eine Zurückätzung des Dielektrikums nach dem Aufbringen desselben auf die Höhe des Metallbumps erforderlich macht.
In einem nachfolgenden Schritt wird auf dem aktivierten Di- elektrikum eine chemische Metallabscheidung durchgeführt. Bei dieser chemischen Metallabscheidung wird stromlos Gold, Nickel, Kupfer oder Palladium auf dem aktivierten Dielektrikum und dem Metallbump abgeschieden, um eine Metallisierungsschicht (30) zu bilden. Das chemisch abgeschiedene Metall wächst mit dem Metallbump zusammen und bildet damit eine elektrisch leitfähige Verbindung von dem Metallbump zu der auf dem Dielektrikum (28) angeordneten Metallisierungsschicht, wodurch die elektrische Verbindung von dem Bondpad zu der Umverdrahtung realisiert wird. Bei dem bevorzugten Ausführungsbeispiel wird im Anschluß ein Lötstoplack mit Öffnungen für die flächige Padanordnung, deren Pads durch das erfindungsgemäße Verfahren beispielsweise mit Kanten- Pads verbunden werden, aufgebracht.
Alternativ kann das aktivierte Dielektrikum auf den Bereichen der Passivierungsschicht, auf denen die strukturierte Metallisierung gebildet werden soll, erzeugt werden, indem das Dielektrikum ganzflächig mit Ausnahme der Metallbumps aufgebracht wird und die zu metallisierenden Bereiche durch Belichtung aktiviert werden.
Bezugnehmend auf Fig. 3 wird nachfolgend ein bevorzugtes Ausführungsbeispiel des Verfahrens gemäß dem zweiten Aspekt der vorliegenden Erfindung erläutert. In Fig. 3a) ist wiederum der Ausgangswafer (20) mit der Passivierungsschicht (22) und dem Bondpad (24) dargestellt. Auf die Oberfläche des Wafers (20) , auf dem die Passivierungsschicht (22) angeordnet ist, wird ganzflächig ein Dielektrikum (30) aufgebracht. Das Dielektrikum (30) wird beispielsweise mittels eines Photolithographieverfahrens strukturiert, um zum einen das Bondpad (24) freizulegen und zum anderen die Struktur der nachfolgend aufzubringenden Metallisierung festzulegen. Die sich ergebende Struktur ist in Fig. 3b) dargestellt. Nachfolgend wird das Dielektrikum (30) und das Bondpad (24) vorzugsweise durch ein naßchemisches Verfahren bekeimt, d.h. durch das Eintauchen des Wafers in eine Palladium-Chorid-Lö- sung. Auf die nunmehr vorliegende Struktur wird mittels ei- ner chemischen Metallabscheidung eine Metallisierungsschicht (32) aufgebracht. Die Metallisierungsschicht wird durch die chemische Metallabscheidung auf dem aktivierten Dielektrikum (30) und den aktivierten Bondpads (24) abgeschieden, wie in Fig. 3c) dargestellt ist. Durch das bezugnehmend auf Fig. 3 beschriebene Verfahren kann das Ankontaktieren der auf dem Dielektrikum abgeschiedenen Metallschicht an das Bondpad (24) in einem Schritt ohne einen Metallbump erfolgen.
Das Verfahren gemäß dem dritten Aspekt der vorliegenden Erfindung wird nachfolgend bezugnehmend auf Fig. 4 beschrieben. Wiederum ist in Fig. 4a) der Ausgangswafer (20) dargestellt. Auf diesen Ausgangswafer wird bei diesem Ausführungsbeispiel eine elektrisch leitfähige Paste (40) , die beispielsweise aus einem Kleber mit in demselben enthaltenen Silberpartikeln besteht, strukturiert aufgetragen. Dieses Auftragen kann beispielsweise mittels einen Schablonendrucks und dergleichen erfolgen. Durch die Strukturierung wird die elektrisch leitfähige Paste (40) nur auf die Bereiche der Passivierungsschicht (22) aufgebracht, auf denen später die Metallisierung gebildet werden soll, und ferner auf das Bondpad (24) . Dadurch ergibt sich eine leitfähige Verbindung zwischen dem Bondpad (24) und der strukturierten Kleberschicht, die beispielsweise die gewünschte Umverdrahtung ermöglicht.
Für die nachfolgende chemische Metallabscheidung muß die leitfähige Paste so vorbehandelt werden, daß die Paste mit den erforderlichen Partikeln, beispielsweise Palladium-Partikeln, aktiviert ist. Diese Aktivierung erfolgt beispielsweise durch Plasmaätzen mit einer anschließenden Palladium- Aktivierung oder durch ein naßchemisches Ätzen und eine nachfolgende Palladium-Aktivierung. Durch den Ätzvorgang werden epoxidische Oberflächen des Pastenklebstoffs angerauht, wodurch ein Epoxidfilm über den Silberpartikeln entfernt wird. Die Aktivierung der leitfähigen Pasten erfolgt vorzugsweise nach dem Aufbringen derselben auf die Oberfläche des Wafers. Der vierte Aspekt der vorliegenden Erfindung wird nachfolgend bezugnehmend auf Fig. 5 näher erläutert. Ausgehend von dem in Fig. 5a) dargestellten Ausgangswafer wird zunächst auf den Aluminium-Bondpads (24) eine chemische Metallabscheidung durchgeführt. Für diese chemische Metallabscheidung kann wiederum Nickel, Kupfer, Palladium oder Gold verwendet werden. Wie bei dem Verfahren gemäß dem ersten Aspekt der vorliegenden Erfindung wird durch die chemische Metallabscheidung ein Metallbump (26) gebildet.
Nachfolgend wird eine Metallfolie, die bei dem bevorzugten Ausführungsbeispiel aus Kupfer besteht, über die gesamte Oberfläche des Wafers, auf der die Passivierungsschicht (22) aufgebracht ist, sowie über die Metallbumps (26) aufgebracht, beispielsweise durch Auflaminierung. Die leitfähige Verbindung zwischen dem Kontaktpad des Chips und der Kupferfolie kann dabei durch einen Kontaktdruck, metallischer Kontakt, realisiert seien. Alternativ kann auf der dem Wafer zugewandten Oberfläche der Kupferfolie ganzflächig Lot aufgebracht sein. Die Kontaktierung kann dann mittels eines Laserbondverfahrens bewirkt werden.
Im Anschluß wird die Kupferfolie durch ein photolithographisches Verfahren, Photolackmaske mit anschließendem selektivem Ätzen, strukturiert, so daß sich Kupferbahnen in der Form der zu strukturierenden Metallisierung ergeben. Nachfolgend werden die Kupferbahnen erfindungsgemäß durch eine chemische Metallabscheidung auf denselben verstärkt.
Die Verfahren gemäß der vorliegenden Erfindung sind vorteilhaft bei der Erzeugung einer Umverdrahtung auf einem Chip geeignet. Durch die vorliegende Erfindung kann eine derartige Umverdrahtung unter Einsparung von Prozeßschritten verglichen mit bekannten Verfahren kostengünstiger und schneller realisiert werden.

Claims

Patentansprüche
1. Verfahren zum Bilden einer strukturierten Metallisierung (30) auf einem Halbleiterwafer (20) wobei auf eine Hauptoberfläche des Wafers (20) eine Passivierungsschicht (22) aufgebracht ist, die strukturiert ist, um zumindest ein Bondpad (24) festzulegen, mit folgenden Schritten:
al) Erzeugen eines Metallbumps (26) auf dem zumindest einen Bondpad (24) ;
bl) Erzeugen eines aktivierten Dielektrikums (28) auf den Bereichen der Passivierungsschicht (22) , auf denen die strukturierte Metallisierung (30) gebildet werden soll; und
cl) chemisches Abscheiden von Metall direkt auf dem aktivierten Dielektrikum (28) und dem Metallbump (26) , derart, daß die auf dem aktivierten Dielektrikum gebildete strukturierte Metallisierung und das auf dem Metallbump chemisch abgeschiedene Metall elektrisch leitfähig verbunden sind.
2. Verfahren zum Bilden einer strukturierten Metallisierung (32) auf einem Halbleiterwafer (20) , wobei auf eine Hauptoberfläche des Wafers (20) eine Passivierungsschicht (22) aufgebracht ist, die strukturiert ist, um zumindest ein Bondpad (24) festzulegen, mit folgenden Schritten:
a2) Erzeugen eines aktivierten Dielektrikums (30) auf den Bereichen der Passivierungsschicht (22) , auf denen die strukturierte Metallisierung (32) gebildet werden soll, und Aktivieren des zumindest einen Bondpads (24) ; b2) Chemisches Abscheiden von Metall direkt auf den aktivierten Bereichen und dem aktivierten Bondpad (24) , derart, daß die auf dem aktivierten Dielektrikum gebildete strukturierte Metallisierung und das auf dem Metallbump chemisch abgeschiedene Metall elektrisch leitfähig verbunden sind.
3. Verfahren zum Bilden einer strukturierten Metallisierung auf einem Halbleiterwafer (20) , wobei auf eine Hauptoberfläche des Wafers (20) eine Passivierungsschicht (22) aufgebracht ist, die strukturiert ist, um zumindest ein Bondpad (24) festzulegen, mit folgenden Schritten:
a3) Erzeugen einer aktivierten, elektrisch leitfähigen Paste (40) auf den Bereichen der Passivierungsschicht, auf denen die strukturierte Metallisierung gebildet werden soll, und auf dem zumindest einen Bondpad (24) ; und
b3) chemisches Abscheiden von Metall auf der aktivierten, elektrisch leitfähigen Paste (40) .
4. Verfahren zum Bilden einer strukturierten Metallisierung auf einem Halbleiterwafer (20) , wobei auf eine Hauptoberfläche des Wafers (20) eine Passivierungsschicht (22) aufgebracht ist, die strukturiert ist, um zumindest ein Bondpad (24) festzulegen, mit folgenden Schritten:
a4) Erzeugen eines Metallbumps (26) auf dem zumindest einen Bondpad (24) ;
b4) Erzeugen einer strukturierten Metallfolie (50) auf den Bereichen der Passivierungsschicht (22) , auf denen die strukturierte Metallisierung gebildet werden soll, und dem Metallbump (26) ; und
c4) chemisches Abscheiden von Metall auf der Metallfolie ( 50 ) .
5. Verfahren gemäß Anspruch 1 oder Anspruch 4 , wobei in den Schritten al) und a4) der Metallbump (26) durch chemische Metallabscheidung auf dem zumindest einen Bondpad (26) gebildet wird.
6. Verfahren gemäß Anspruch 1 oder Anspruch 4 , wobei in den Schritten al) und a4) der Metallbump (26) mittels Photolithographischer Verfahren auf dem zumindest einen Bondpad (24) gebildet wird.
7. Verfahren gemäß Anspruch 1 oder Anspruch 2 , wobei in den Schritten bl) und a2) das Dielektrikum (28; 30) zunächst ganzflächig aufgebracht und nachfolgend mittels photolithographischer Verfahren strukturiert wird.
8. Verfahren gemäß Anspruch 7, bei dem das aufgebrachte Dielektrikum (28; 30) Palladiumpartikel enthält.
9. Verfahren gemäß Anspruch 7, bei dem das Dielektrikum (28; 30) nach dem Strukturieren durch Eintauchen in eine Palladium-Chloridlösung aktiviert wird.
10. Verfahren gemäß Anspruch 9 in Rückbezug auf Anspruch 2, bei dem durch das Eintauchen in die Palladium-Chloridlösung ferner das zumindest eine Bondpad (24) aktiviert wird.
11. Verfahren gemäß Anspruch 3, bei dem im Schritt a3) die elektrisch leitfähige Paste (40) strukturiert aufgebracht wird und nachfolgend mittels Palladiumpartikeln aktiviert wird.
12. Verfahren gemäß Anspruch 11, bei dem die elektrisch leitfähige Paste aus einem Kleber, der Silberpartikel aufweist, besteht.
13. Verfahren gemäß Anspruch 12 , bei dem vor der Aktivierung der elektrisch leitfähigen Paste (40) mittels Palladiumpartikeln ein Plasmaätzen oder ein naßchemisches Ätzen der elektrisch leitfähigen Paste (40) durchgeführt wird.
14. Verfahren gemäß Anspruch 4, bei dem die Metallfolie (50) im Schritt b4) ganzflächig aufgebracht und nachfolgend mittels photolithographischer Verfahren strukturiert wird.
15. Verfahren gemäß Anspruch 12, bei dem Metallfolie (50) aus Kupfer besteht.
16. Verfahren gemäß Anspruch 14 oder 15, bei dem auf der dem Wafer (20) zugewandten Oberfläche der Metallfolie (50) Lot aufgebracht ist, wobei die Metallfolie (50) mittels Laserbondverfahren mit dem zumindest einen Metallbump (26) elektrisch kontaktiert wird.
17. Verfahren gemäß einem der Ansprüche 1 bis 16, bei dem bei der chemischen Metallabscheidung jeweils Gold, Nickel, Kupfer oder Palladium abgeschieden wird.
18. Verfahren gemäß einem der Ansprüche 1 bis 17 zur Umverdrahtung von Padflächen auf einem Wafer in eine flächige Anordnung, bei dem jeweils nach der chemischen Metallabscheidung ein Lötstoplack auf die Oberfläche des Wafers, auf der die strukturierte Metallisierung gebildet ist, aufgebracht wird, woraufhin Öffnungen für die flächige Padanordnung in dem Lötstoplack erzeugt werden.
PCT/EP1998/000618 1997-02-14 1998-02-05 Verfahren zum bilden einer strukturierten metallisierung auf einem halbleiterwafer WO1998036447A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59803920T DE59803920D1 (de) 1997-02-14 1998-02-05 Verfahren zum bilden einer strukturierten metallisierung auf einem halbleiterwafer
EP98906918A EP0968523B1 (de) 1997-02-14 1998-02-05 Verfahren zum bilden einer strukturierten metallisierung auf einem halbleiterwafer
US09/367,462 US6284639B1 (en) 1997-02-14 1999-09-23 Method for forming a structured metallization on a semiconductor wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19705745.4 1997-02-14
DE19705745A DE19705745C2 (de) 1997-02-14 1997-02-14 Verfahren zum Bilden einer strukturierten Metallisierung auf einem Halbleiterwafer

Publications (1)

Publication Number Publication Date
WO1998036447A1 true WO1998036447A1 (de) 1998-08-20

Family

ID=7820295

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP1998/000618 WO1998036447A1 (de) 1997-02-14 1998-02-05 Verfahren zum bilden einer strukturierten metallisierung auf einem halbleiterwafer
PCT/EP1998/000826 WO1998036448A1 (de) 1997-02-14 1998-02-13 Verfahren zum bilden einer strukturierten metallisierung auf einem halbleiterwafer

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/000826 WO1998036448A1 (de) 1997-02-14 1998-02-13 Verfahren zum bilden einer strukturierten metallisierung auf einem halbleiterwafer

Country Status (7)

Country Link
US (1) US6284639B1 (de)
EP (1) EP0968523B1 (de)
JP (1) JP3509879B2 (de)
KR (1) KR100325925B1 (de)
CA (1) CA2280904C (de)
DE (2) DE19705745C2 (de)
WO (2) WO1998036447A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10126734B4 (de) * 2001-05-31 2009-02-26 Qimonda Ag Umverdrahtungsverfahren und damit hergestelltes Bauelement
US7391107B2 (en) * 2005-08-18 2008-06-24 Infineon Technologies Ag Signal routing on redistribution layer
TW200843063A (en) * 2007-04-16 2008-11-01 Phoenix Prec Technology Corp Structure of semiconductor chip and package structure having semiconductor chip embedded therein

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0092971A1 (de) * 1982-04-27 1983-11-02 Richardson Chemical Company Verfahren zum selektiven Abscheiden einer Nickel-Bor Schicht über einem metallurgischen Muster auf einem dielektrischen Substrat und auf diese Weise hergestellte Produkte
EP0382298A1 (de) * 1989-02-08 1990-08-16 Koninklijke Philips Electronics N.V. Verfahren zum Herstellen einer Halbleiteranordnung beim stromlosen Abscheiden von Metall
US4988412A (en) * 1988-12-27 1991-01-29 General Electric Company Selective electrolytic desposition on conductive and non-conductive substrates
JPH03177048A (ja) * 1989-12-05 1991-08-01 Toshiba Corp 半導体装置及びその製造方法
EP0479373A1 (de) * 1990-10-05 1992-04-08 Koninklijke Philips Electronics N.V. Verfahren zum Herstellen einer Halbleiteranordnung mit stromlosem Abscheiden von Metall
JPH04206680A (ja) * 1990-11-30 1992-07-28 Noritake Co Ltd 導体パターンの製造方法および誘電体ペースト
JPH04290249A (ja) * 1991-03-19 1992-10-14 Nec Corp 半導体装置の製造方法
US5169680A (en) * 1987-05-07 1992-12-08 Intel Corporation Electroless deposition for IC fabrication
EP0535864A1 (de) * 1991-09-30 1993-04-07 AT&T Corp. Herstellung eines leitenden Gebietes in elektronischen Vorrichtungen
WO1995002900A1 (en) * 1993-07-15 1995-01-26 Astarix, Inc. Aluminum-palladium alloy for initiation of electroless plating

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3138474A1 (de) * 1981-09-26 1983-04-14 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt "verfahren zur selektiven chemischen metallisierung"
US4448804A (en) * 1983-10-11 1984-05-15 International Business Machines Corporation Method for selective electroless plating of copper onto a non-conductive substrate surface
US4639378A (en) * 1984-01-17 1987-01-27 Inoue Japax Research Incorporated Auto-selective metal deposition on dielectric surfaces
US5266446A (en) * 1990-11-15 1993-11-30 International Business Machines Corporation Method of making a multilayer thin film structure
US5445994A (en) * 1994-04-11 1995-08-29 Micron Technology, Inc. Method for forming custom planar metal bonding pad connectors for semiconductor dice
DE19500655B4 (de) * 1995-01-12 2004-02-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Chipträger-Anordnung zur Herstellung einer Chip-Gehäusung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0092971A1 (de) * 1982-04-27 1983-11-02 Richardson Chemical Company Verfahren zum selektiven Abscheiden einer Nickel-Bor Schicht über einem metallurgischen Muster auf einem dielektrischen Substrat und auf diese Weise hergestellte Produkte
US5169680A (en) * 1987-05-07 1992-12-08 Intel Corporation Electroless deposition for IC fabrication
US4988412A (en) * 1988-12-27 1991-01-29 General Electric Company Selective electrolytic desposition on conductive and non-conductive substrates
EP0382298A1 (de) * 1989-02-08 1990-08-16 Koninklijke Philips Electronics N.V. Verfahren zum Herstellen einer Halbleiteranordnung beim stromlosen Abscheiden von Metall
JPH03177048A (ja) * 1989-12-05 1991-08-01 Toshiba Corp 半導体装置及びその製造方法
EP0479373A1 (de) * 1990-10-05 1992-04-08 Koninklijke Philips Electronics N.V. Verfahren zum Herstellen einer Halbleiteranordnung mit stromlosem Abscheiden von Metall
JPH04206680A (ja) * 1990-11-30 1992-07-28 Noritake Co Ltd 導体パターンの製造方法および誘電体ペースト
JPH04290249A (ja) * 1991-03-19 1992-10-14 Nec Corp 半導体装置の製造方法
EP0535864A1 (de) * 1991-09-30 1993-04-07 AT&T Corp. Herstellung eines leitenden Gebietes in elektronischen Vorrichtungen
WO1995002900A1 (en) * 1993-07-15 1995-01-26 Astarix, Inc. Aluminum-palladium alloy for initiation of electroless plating

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ASCHENBRENNER R ET AL: "Electroless Nickel/Copper Plating as a New Bump Metallization", IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY. PART B: ADVANCED PACKAGING., vol. 18, no. 2, May 1995 (1995-05-01), NJ US, pages 334 - 338, XP002067164 *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 423 (E - 1127) 28 October 1991 (1991-10-28) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 539 (E - 1289) 10 November 1992 (1992-11-10) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 101 (E - 1327) 2 March 1993 (1993-03-02) *
PATTERSON J C ET AL: "SELECTIVE ELECTROLESS COPPER METALLIZATION ON A TITANIUM NITRIDE BARRIER LAYER", MICROELECTRONIC ENGINEERING, vol. 33, no. 1/04, January 1997 (1997-01-01), pages 65 - 73, XP000656758 *
TING C H ET AL: "SELECTIVE ELECTROLESS METAL DEPOSITION FOR INTEGRATED CIRCUIT FABRICATION", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 136, no. 2, February 1989 (1989-02-01), MANCHESTER, NH, USA, pages 456 - 462, XP000024850 *

Also Published As

Publication number Publication date
US6284639B1 (en) 2001-09-04
EP0968523A1 (de) 2000-01-05
CA2280904A1 (en) 1998-08-20
KR100325925B1 (ko) 2002-02-27
JP3509879B2 (ja) 2004-03-22
DE19705745C2 (de) 2002-02-07
CA2280904C (en) 2001-07-24
DE59803920D1 (de) 2002-05-29
EP0968523B1 (de) 2002-04-24
DE19705745A1 (de) 1998-08-20
JP2000509914A (ja) 2000-08-02
KR20000070491A (ko) 2000-11-25
WO1998036448A1 (de) 1998-08-20

Similar Documents

Publication Publication Date Title
DE69737262T2 (de) Herstellungsverfahren für einen Vorder-Hinterseiten-Durchkontakt in mikro-integrierten Schaltungen
DE4446881C2 (de) Durchgangslochstruktur und ihr Herstellungsverfahren
DE68927931T2 (de) Verfahren zur Herstellung einer Packungsstruktur für einen integrierten Schaltungschip
DE60033901T2 (de) Verpackung für Halbleitervorrichtung und deren Herstellungsverfahren
DE69918631T2 (de) Flipchip-Metallisierung für eine elektronische Baugruppe
DE102019117027A1 (de) Halbleiter-package und verfahren für dessen bildung
WO2005081315A2 (de) Halbleiterbauteil mit einem stapel aus halbleiterchips und verfahren zur herstellung desselben
DE102006058010A1 (de) Halbleiterbauelement mit Hohlraumstruktur und Herstellungsverfahren
WO2004015770A1 (de) Mehrlagiger schaltungsträger und herstellung desselben
DE69415927T2 (de) Verfahren zur Herstellung eines Halbleiterbauelements mit einer Höckerelectrode
EP1620893B1 (de) Verfahren zur herstellung eines nutzens und verfahren zur herstellung elektronischer bauteile mit gestapelten halbleiterchips aus dem nutzen
DE102009010885B4 (de) Metallisierungssystem eines Halbleiterbauelements mit Metallsäulen mit einem kleineren Durchmesser an der Unterseite und Herstellungsverfahren dafür
DE10146353B4 (de) Verfahren zur Herstellung einer Lötperle und Lötperlenstruktur
DE112005000438B4 (de) Eine Zwischenverbindungsstruktur und ein Verfahren zum Verbinden von vergrabenen Signalleitungen mit elektrischen Vorrichtungen
DE1766297A1 (de) Verfahren zum Anpassen einer integrierten Schaltung an ein als Traeger dienendes Substrat
DE102004047522B3 (de) Halbleiterchip mit einer Metallbeschichtungsstruktur und Verfahren zur Herstellung desselben
DE10241589B4 (de) Verfahren zur Lötstopp-Strukturierung von Erhebungen auf Wafern
EP0968523B1 (de) Verfahren zum bilden einer strukturierten metallisierung auf einem halbleiterwafer
DE10250634A1 (de) Nachgiebige Entlastungsverkapselung auf Waferebene
DE10239081B4 (de) Verfahren zur Herstellung einer Halbleitereinrichtung
WO2006000291A1 (de) Verfahren zur herstellung einer keramischen leiterplatte
WO2002095817A2 (de) Halbleiterbauelement mit zumindest einem halbleiterchip auf einem als substrat dienenden basischip und verfahren zu dessen herstellung
DE102006050505A1 (de) Elektronische Verschaltungen und Verfahren zur Herstellung derselben
DE102005010308B4 (de) Verfahren zur Herstellung von Chips mit lötfähigen Anschlüssen auf der Rückseite
DE10358325B4 (de) Verfahren zum Herstellen einer integrierten Halbleiterschaltungsanordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998906918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09367462

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998906918

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998906918

Country of ref document: EP