WO1998035972A1 - Complejo de platino con actividad antineoplasica - Google Patents

Complejo de platino con actividad antineoplasica Download PDF

Info

Publication number
WO1998035972A1
WO1998035972A1 PCT/ES1998/000027 ES9800027W WO9835972A1 WO 1998035972 A1 WO1998035972 A1 WO 1998035972A1 ES 9800027 W ES9800027 W ES 9800027W WO 9835972 A1 WO9835972 A1 WO 9835972A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
platinum complex
complex
dna
mercaptopyrimidine
Prior art date
Application number
PCT/ES1998/000027
Other languages
English (en)
French (fr)
Inventor
Virtudes Moreno Martinez
Gemma Cervantes Torre-Martin
Maria José PRIETO VILLANUEVA
Original Assignee
Universidad De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Barcelona filed Critical Universidad De Barcelona
Priority to AU58644/98A priority Critical patent/AU5864498A/en
Publication of WO1998035972A1 publication Critical patent/WO1998035972A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • C07F15/0093Platinum compounds without a metal-carbon linkage

Definitions

  • This invention relates to a new complex of Pt (III), its pharmaceutical compositions, its use for the preparation of antineoplastic drugs, and a method of preparing said complex.
  • antineoplastic agents used in cancer therapy are some platinum compounds.
  • Cisplatin and carboplatin which are both Pt (II) compounds, represent the first and second generation of platinum antineoplastic drugs, respectively.
  • Pt (IV) compounds that have been used in therapy, such as iproplatin and tetraplatin. But all these antineoplastic platinum agents have important adverse effects. Thus, providing new and / or better platinum antineoplastic agents is a problem that is not yet adequately resolved.
  • This invention provides a new symmetric complex of Pt (III), (Pt-Pt) -dichlorotetrakisf ⁇ - (2 (lH) -pyrimidinothionate-Nl: S2)] di-platinum of formula (I),
  • S-N represents the anion 2-mercaptopirimidinate, that is:
  • the platinum complex (I) is a brown solid prepared here for the first time.
  • Goodgame and cois. (Inora. Chiro. Acta 1986, vol. 120, pp. 91-101) have published the preparation, as an orange solid, of a constitutional isomer of (I), namely the non-symmetrical complex of Pt (III) that Chemical Abstracts Service has called (Pt-Pt) - dichlorotetrakis [ ⁇ - (2 (1H) -pyrimidinothionate-Nl: S2)] di-platinum and signed with the CAS registration number [106548-19-0], of formula ( II), in which SN represents the same 2-mercaptopyrimidinate anion as in (I). But a therapeutic activity for said compound (II) has never been mentioned or suggested.
  • the 195 Pt-NMR spectrum of the platinum complex (I) shows a single signal at -1179 ppm (referred to K 2 PtCl ⁇ ), which corresponds to an oxidation state Pt (III) and represents an intermediate displacement between those of Pt (II) and those of Pt (IV) for a similar environment.
  • the presence of a single signal for Pt (III) in the platinum complex (I) indicates that the two platinum atoms have a symmetrical environment, of the PtClN2S 2 type.
  • the crystalline structure indicates that there are two types of environments for Pt: PtClN 3 S and PtClNS 3 .
  • Example 1 Another embodiment of this invention, illustrated in Example 1, is a method of preparing the platinum complex (I) comprising mixing an aqueous solution of dipotassium tetrachloroplatinate (K 2 PtCl 4 ) with an aqueous suspension of 2-mercaptopyrimidine, at a temperature between ambient and 50 ° C, preferably at about 40 ° C.
  • the molar ratio between dipotassium tetrachloroplatinate and 2-mercaptopyrimidine is about 1: 2.
  • Another embodiment of this invention is a pharmaceutical composition
  • a pharmaceutical composition comprising an effective amount of the platinum complex (I), in combination with pharmaceutically acceptable excipients for oral or parenteral administration.
  • This invention also relates to a method of treating a mammalian suffering from cancer, which comprises administering to said mammal an effective amount of the platinum complex (I), in combination with pharmaceutically acceptable excipients.
  • another embodiment of this invention is the use of the platinum complex (I) for the preparation of a medicament for the treatment of cancer in mammals.
  • cancer It is selected from the group consisting of human leukemia and human uterine cancer.
  • compositions of the platinum complex (I) can be formulated in the form of solid preparations such as tablets, pills, granules, capsules, powders or the like; or in the form of liquid preparations such as solutions, suspensions, emulsions or the like. They are preferred excipients or carriers for oral administration of (I), sucrose, starch, lactose, crystalline cellulose, kaolin, talc, calcium carbonate, magnesium carbonate and the like.
  • a pharmaceutical composition of (I) is used in parenteral administration, it is preferably formulated as a suppository, injection, intravenous drip infusion, or the like.
  • the compound (I) is preferably dissolved or suspended in distilled water or in an aqueous solution of sodium chloride.
  • the compound (I) is preferably dissolved in a suitable fluid, such as physiological saline.
  • a suitable fluid such as physiological saline.
  • cocoa butter, glycergelatin, macrogol or laurin is preferably used as a base.
  • Example 2 illustrates the interaction of the platinum (I) complex with DNA using various techniques, and justifies its surprisingly high antineoplastic activity.
  • the platinum complex (I) due to the presence of two weak sites on the opposite sides of the complex (the two Pt-Cl bonds), causes the double helix to unwind and destabilizes the secondary structure of the DNA, at room temperature.
  • Other experiments indicate that the platinum complex (I) bond induces an interaction between different DNA molecules.
  • Experiments of circular dichroism and UV spectroscopy prove that the platinum complex (I) induces a certain decrease in the DNA denaturation temperature.
  • An Atomic Forces Microscopy study of the interaction of the platinum complex (I) with a linear DNA fragment indicates the formation of a cluster that has an area larger than a fragment alone, thus indicating that The complex produces the aggregation of several DNA fragments.
  • the antineoplastic activity of the platinum complex (I) is illustrated in Example 3 by in vitro assays with two tumor cell lines: the human uterine cancer HeLa cells and the human leukemia HL-60 cells.
  • the platinum complex (I) is more active than cisplatin in both lines.
  • the drastic effects of (I) on the DNA are probably related to the structure of the complex, but it cannot be ruled out that the oxidation state III plays a role in the cytotoxicity mechanism.
  • An additional advantage of the use of the complex (I) in therapeutics lies in its relatively low toxicity.
  • Figure 1 is a photomicrograph of plasmid PBR322 alone.
  • Figure 2 is a photomicrograph of plasmid PBR322 after 24 h of incubation with cisplatin, illustrating DNA compaction.
  • Figure 3 is a photomicrograph of the plasmid
  • Figure 4 is a photograph of atomic force microscopy (Atomic Forces Microscopy) of hliM, a linear DNA fragment.
  • Figure 5 corresponds to the hliM fragment after 24 h of incubation with cisplatin, illustrating the compaction of the DNA molecules.
  • Figure 6 corresponds to the hliM fragment after 24 h of incubation with the platinum complex (I), illustrating the compaction and aggregation of the DNA molecules
  • Figure 7 is a graphic illustration of the variation in the percentage of survival (S,%) of the HL-60 tumor cells with the dose (C, ⁇ M) of the cisplatin (Cispt) and the platinum complex (I).
  • Figure 8 is a graphic illustration of the variation in the percentage of survival (S,%) of HeLa tumor cells with the dose (C, ⁇ M) of cisplatin (Cispt) and platinum complex (I). The variation (practically zero) has also been included with the dose of 2-mercaptopyrimidine (Spym).
  • the brown solid obtained was characterized as the platinum complex (I), by the following spectroscopic data: FT-IR, v (cm ⁇ ): 1605S, 1575S, 1542m, 1248m, 1175m, 1026W, 1024W, 752s, 484m, 440w , 432w, 296w, 225w. ⁇ ⁇ -NMR, d 6 -DMSO, ⁇ (ppm): 9.24d, 8.68s, 7.36t. 13 C-NMR, d 6 -DMS0, ⁇ (ppm): 180.69, 158.63, 157.36, 117.76. 195 Pt-NMR, d 6 -DMSO, ⁇ (ppm): -1179 (single peak).
  • Figures 1, 2 and 3 show photomicrographs obtained with Philips EM 200 and Philips EM 301 electronic transmission microscopes at 80,000 V, the first working at 25,800 and 54,900 increases and the second at 16,000, 20,000 and 26,000 increases.
  • Figure 1 corresponds to plasmid PBR322 alone;
  • Figure 2 corresponds to the plasmid incubated with cisplatin, at a 0.50 molar ratio, for 24 h;
  • Figure 3 corresponds to the plasmid incubated with (I), at a 0.50 molar ratio, for 24 h.
  • the plasmid was only in a closed circular shape, with different degrees of curl; a small percentage of linear form was also observed (Figure 1).
  • Cisplatin caused a compaction in the plasmid, as previously described ( Figure 2).
  • the platinum complex (I) not only caused a compaction, but also a lateral aggregation with other plasmid molecules ( Figure 3).
  • Compaction with (I) was more intense than with cisplatin, under the same experimental conditions. This indicated that (I) induces some kind of interaction between different plasmid molecules, probably due to platinum bonding with two different molecules.
  • Figures 4, 5 and 6 show the images obtained by atomic force microscopy (using an Extended Extended Nanoscope III, Digital Instruments, Santa Barbara, CA, working in TMAFM mode at about 100 nN).
  • Figure 4 corresponds to hliM, a linear fragment of DNA;
  • Figure 5 corresponds to the same DNA incubated 24 h with cisplatin;
  • Figure 6 corresponds to the same DNA incubated 24 hours with the platinum complex (I).
  • the concentration in DNA was the same in all samples.
  • the cisplatin seemed to compact and distort. In the magnification corresponding to 400 nm, several points were observed where the fragment was double. The measurement of the length of this fragment in the microscope revealed such modification. The area measurement also showed that there was no aggregation between the different linear DNA fragments.
  • the type of cisplatin binding to DNA is reflected, mainly to two internal N sites. However, after incubation of the DNA with (I), aggregation and compaction phenomena were observed.
  • the cluster formed had an area greater than that of a single fragment, indicating that the presence of the complex had caused the aggregation of several DNA fragments.
  • the linkage of (I) induces the interaction between different DNA molecules. Probably (I) is linked through two lateral sites, after the Pt-Cl bond has been hydrolyzed. It was found that the observed effect was not due to the ligand itself.
  • EXAMPLE 3 Antineoplastic activity of the platinum complex (I) The tests were performed on two tumor cell lines: HeLa cells of human uterine cancer, and HL-60 human leukemia cells. The tests were conducted with cisplatin as a reference, with the 2-mercaptopyrimidine ligand (Spym), and with the platinum complex (I) prepared in Example 1.
  • Figures 7 and 8 show the survival percentage, S (%), versus dose (C, ⁇ M), for the HL-60 and HeLa tumor lines, respectively.
  • the corresponding LC 50 parameters were the following: For the HL-60 tumor line, 35.0 ⁇ M with cisplatin and 3.5 ⁇ M with (I); for the HeLa tumor line, 37.0 ⁇ M with cisplatin and 3.5 ⁇ M with (I). The values of (I) were better than those of cisplatin, in the case of the HL-60 tumor line. The difference between cisplatin and (I) was still greater in the case of the HeLA tumor line. 2-Mercaptopyrimidine (Spym) alone did not cause cell death.
  • aqueous suspension of the platinum complex (I) is loaded in vials, under aseptic conditions. Each vial contained 50 mg of (I). The vials were dried, sterilized and sealed. When used as an injection, 10 mL of physiological saline was added to each vial to prepare the injection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Complejo simétrico de Pt(III) y 2-mercaptopirimidina, cuyo nombre es (Pt-Pt)-diclorotetrakis[ν-(2(1H)-pirimidinationato-N1:S2)]di-platino, y cuya fórmula es (I), donde S-N representa el anión 2-mercaptopirimidinato. El complejo de platino (I) se prepara mezclando una disolución acuosa de K2PtCl4 con una suspensión acuosa de 2-mercaptopirimidina, preferiblemente en una relación molar de 1:2 y a una temperatura de 40 °C. El complejo de platino (I) es útil como agente antineoplásico y muestra una actividad contra la leucemia humana y el cáncer de útero que es mayor que la del cisplatino. Además tiene la ventaja adicional de una toxicidad substancialmente menor que la del cisplatino y la del carboplatino.

Description

Complejo de platino con actividad antineoplásica
Esta invención se refiere a un nuevo complejo de Pt(III) , a sus composiciones farmacéuticas, a su uso para la preparación de medicamentos antineoplásicos, y a un procedimiento de preparación de dicho complejo.
ESTADO DE LA TÉCNICA ANTERIOR
Entre los agentes antineoplásicos usados en terapia del cáncer hay algunos compuestos de platino. El cisplatino y el carboplatino, que son ambos compuestos de Pt(II) , representan la primera y la segunda generación de medicamentos antineoplásicos de platino, respectivamente. También hay algunos compuestos de Pt(IV) que se han usado en terapia, tales como el iproplatino y el tetraplatino. Pero todos estos agentes antineoplásicos de platino tienen importantes efectos adversos. Así pues, el proporcionar nuevos y/o mejores agentes antineoplásicos de platino es un problema que todavía no está resuelto adecuadamente.
Nunca se ha mencionado el uso de compuestos de
Pt(III) en terapia del cáncer (para una revisión, ver B. Lippert y cois., "Metal-coordination chemistry with biomolecules: Platinum-nucleobase interactions" , en M. Nicolini, "Platinum and other metal coordination compounds in cáncer che otherapy" ,
Martinus Nijhoff Publishing, 1988, pág. 578). Aunque algunos compuestos de Pt(III) se han probado como agentes antineoplásicos, de momento todos los intentos han fracasado. Así, por ejemplo, se ha preparado el (Pt-Pt) -diclorotetrakis[μ- (2 (1H) - piridinotionato-Nl:S2)]di-platino, un complejo de Pt(III) análogo al de la presente invención con 2-mercaptopiridina en lugar de 2-mercaptopirimidina (ver K. Umakoshi y cois., Inorαanic Chemistrv 1987, vol. 26, págs. 3551-6) . Sin embargo, para este complejo de 2-mercaptopiridina no se ha descrito ninguna actividad antineoplásica.
EXPLICACIÓN DE LA INVENCIÓN
Esta invención proporciona un nuevo complejo simétrico de Pt(III), el (Pt-Pt) -diclorotetrakisfμ- (2 (lH)-pirimidinotionato-Nl:S2)]di-platino de fórmula (I),
Figure imgf000004_0001
(i)
donde S-N representa al anión 2-mercaptopirimidinato, o sea:
Figure imgf000004_0002
En lo que sigue, a veces la 2-mercaptopirimidina se representa por Spym. Con esta notación la fórmula molecular del complejo de platino (I) es [Pt2Cl2(Spym)4].
El complejo de platino (I) es un sólido marrón preparado aquí por primera vez. No obstante, Goodgame y cois. (Inora. Chiro. Acta 1986, vol. 120, págs. 91- 101) han publicado la preparación, como sólido naranja, de un isómero constitucional de (I) , a saber, el complejo no simétrico de Pt(III) que Chemical Abstracts Service ha llamado (Pt-Pt)- diclorotetrakis[μ- (2 (1H) -pirimidinotionato-Nl : S2) ]di- platino y ha fichado con el número de registro CAS [106548-19-0], de fórmula (II), en la cual S-N representa el mismo anión 2-mercaptopirimidinato que en (I) . Pero nunca se ha mencionado o sugerido una actividad terapéutica para dicho compuesto (II) .
Figure imgf000005_0001
(II)
El espectro de 195Pt-RMN del complejo de platino (I) muestra una única señal a -1179 ppm (referida al K2PtClδ) , que corresponde a un estado de oxidación Pt(III) y representa un desplazamiento intermedio entre los del Pt(II) y los del Pt(IV) para un entorno similar. La presencia de un única señal para el Pt(III) en el complejo de platino (I) indica que los dos átomos de platino tienen un entorno simétrico, del tipo PtClN2S2. En el caso del isómero constitucional (II) descrito por Goodgame y cois., la estructura cristalina indica que hay dos tipos de entornos para el Pt: PtClN3S y PtClNS3.
Otra realización de esta invención, ilustrada en el Ejemplo 1, es un procedimiento de preparación del complejo de platino (I) que comprende mezclar una disolución acuosa de tetracloroplatinato dipotásico (K2PtCl4) con una suspensión acuosa de 2-mercaptopirimidina, a una temperatura entre la ambiente y 50 °C , preferiblemente a unos 40 °C. En una realización preferida la relación molar entre el tetracloroplatinato dipotásico y la 2-mercaptopirimidina es de aproximadamente 1:2.
Otra realización de esta invención es una composición farmacéutica que comprende una cantidad efectiva del complejo de platino (I) , en combinación con excipientes farmacéuticamente aceptables para su administración oral or parenteral.
Esta invención también se refiere a un método de tratamiento de un mamímero que padece cáncer, que comprende administrar a dicho mamífero una cantidad efectiva del complejo de platino (I) , en combinación con excipientes farmacéuticamente aceptables. Así, otra realización de esta invención es el uso del complejo de platino (I) para la preparación de un medicamento para el tratamiento del cáncer en mamíferos. En una realización específica, el cáncer se selecciona entre el grupo formado por leucemia humana y cáncer humano de útero.
Para su administración oral las composiciones farmacéuticas del complejo de platino (I) pueden formularse en forma de preparaciones sólidas tales como comprimidos, pildoras, granulos, cápsulas, polvos o similares; o en forma de preparaciones líquidas tales como disoluciones, suspensiones, emulsiones o similares. Son excipientes o portadores preferidos para la administración oral de (I) , la sacarosa, el almidón, la lactosa, la celulosa cristalina, el caolín, el talco, el carbonato calcico, el carbonato magnésico y similares. Cuando una composición farmacéutica de (I) se usa en administración parenteral, se formula preferiblemente como supositorio, inyección, infusión intravenosa de goteo, o similares. Para la preparación de inyecciones, el compuesto (I) se disuelve o suspende preferiblemente en agua destilada o en una disolución acuosa de cloruro sódico. Para la preparación de infusiones intravenosas de goteo, el compuesto (I) se disuelve preferiblemente en un fluido adecuado, tal como suero salino fisiológico. Para la preparación de supositorios, preferiblemente se usa como base la manteca de cacao, la glicerogelatina, el macrogol o la laurina.
El Ejemplo 2 ilustra la interacción del complejo de platino (I) con ADN usando varias técnicas, y justifica su sorprendentemente alta actividad antineoplásica. Aparentemente el complejo de platino (I) , debido a la presencia de dos sitios débiles en los lados opuestos del complejo (los dos enlaces Pt-Cl) , causa el desenrollamiento de la doble hélice y desestabiliza la estructura secundaria del ADN, a temperatura ambiente. Otros experimentos indican que el enlace del complejo de platino (I) induce una interacción entre diferentes moléculas de ADN. Experimentos de dicroísmo circular y espectroscopia de UV prueban que el complejo de platino (I) induce una cierta disminución en la temperatura de desnaturalización del ADN. Un estudio comparativo mediante microscopía electrónica de transmisión, de la interacción del complejo de platino (I) con un fragmento circular de ADN (un plásmido) , muestra una compactación del ADN que es más intensa que la correspondiente con cisplatino, en las mismas condiciones experimentales. Un estudio de microsopía de fuerzas atómicas (Atomic Forces Microscopy, en inglés) de la interacción del complejo de platino (I) con un fragmento lineal de ADN indica la formación de un cúmulo que tiene un área mayor que un fragmento solo, indicando así que el complejo produce la agregación de varios fragmentos de ADN.
La actividad antineoplásica del complejo de platino (I) se ilustra en el Ejemplo 3 mediante ensayos in vitro con dos líneas celulares tumorales: la células HeLa de cáncer humano 'de útero y las células HL-60 de leucemia humana. El complejo de platino (I) se muestra más activo que el cisplatino en ambas líneas. Probablemente los efectos drásticos de (I) sobre el ADN están relacionados con la estructura del complejo, pero no puede descartarse que el estado de oxidación III juegue un papel en el mecanismo de citotoxicidad.
Una ventaja adicional del uso del complejo (I) en terapéutica reside en su relativamente baja toxicidad. Así, un ensayo de toxicidad in vivo con ratones macho BDFi muestra un valor DL50 = 250 mg/kg i.p. para el complejo de platino (I) , valor que representa una toxicidad mucho menor que la del cisplatino (DL50 = 17 mg/kg) o la del carboplatin (DL50 = 150 mg/kg) .
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Los resultados, en parte, se presentan gráficamente en las siguientes figuras:
La Figura 1 es una microfotografía del plásmido PBR322 solo.
La Figura 2 es una microfotografía del plásmido PBR322 después de 24 h de incubación con cisplatino, ilustrando la compactación del ADN.
La Figura 3 es una microfotografía del plásmido
PBR322 después de 24 h de incubación con el complejo de platino (I) , ilustrando la compactación y la agregación lateral de las moléculas de ADN.
La Figura 4 es una fotografía de microscopía de fuerzas atómicas (Atomic Forces Microscopy, en inglés) del hliM, un fragmento lineal de ADN.
La Figura 5 corresponde al fragmento hliM después de 24 h de incubación con cisplatino, ilustrando la compactación de las moléculas de ADN.
La Figura 6 corresponde al fragmento hliM después de 24 h de incubación con el complejo de platino (I) , ilustrando la compactación y la agregación de las moléculas de ADN.
La Figura 7 es una ilustración gráfica de la variación del porcentaje de supervivencia (S, %) de las células tumorales HL-60 con la dosis (C, μM) del cisplatino (Cispt) y del complejo de platino (I) .
La Figura 8 es una ilustración gráfica de la variación del porcentaje de supervivencia (S, %) de las células tumorales HeLa con la dosis (C, μM) del cisplatino (Cispt) y del complejo de platino (I) . También se ha incluido la variación (prácticamente nula) con la dosis de 2-mercaptopirimidina (Spym) .
EJEMPLOS
Los siguiente ejemplos ilustran la invención.
EJEMPLO 1: Preparación y caracterización del complejo de platino (I)
1 mol de K2PtCl4 se disolvió en 10 mi de agua y se mezcló con una suspensión de 1 mmol de 2-mercaptopirimidina (Spym) en 10 mi de agua caliente. Después de unos minutos se formó un precipitado marrón pálido; tras agitar durante 3 h a 40 se y durante 48 h a temperatura ambiente, se separó un sólido marrón oscuro. El producto se filtró dejando una disolución naranja; se lavó con H2O y etanol, y finalmente se secó sobre silicagel.
Análisis elemental calculado para [Pt2Cl2 (Spym) 4] : C, 21.18; N, 12.35; H, 1.55; S, 14.12; Cl, 7.81. Encontrado: C, 21.42; N, 12.07; H, 1.60; S, 13.84; Cl, 7.87. Cuando la síntesis se repitió usando una relación molar K2PtCl4 : Spym de 1:2, se obtuvo el mismo producto pero la disolución permaneció incolora. El sólido marrón obtenido se caracterizó como el complejo de platino (I) , mediante los siguientes datos espectroscópicos: FT-IR, v (cm~ ) : 1605S, 1575S, 1542m, 1248m, 1175m, 1026W, 1024W, 752s, 484m, 440w, 432w, 296w, 225w. ^Η-RMN, d6-DMSO, δ (ppm) : 9.24d, 8.68s, 7.36t. 13C-RMN, d6-DMS0, δ (ppm) : 180.69, 158.63, 157.36, 117.76. 195Pt-RMN, d6- DMSO, δ (ppm) : -1179 (pico único) .
EJEMPLO 2: Interacción del complejo de platino (I) con ADN
Se registraron los espectros de dicroísmo circular (espectropolarímetro JASCO J720 con lámpara de xenón de 450 ) de ADN de timo de ternera, y de ADN de timo de ternera incubado con el complejo de platino (I) , durante varios tiempos y con varias relaciones molares. Se observó una pequeña modificación del espectro del ADN cuando (I) se enlazó a la hélice. Este cambio fue más marcado a las 16 h de la incubación. La banda positiva tuvo menos elipticidad que la de ADN; este efecto, junto con el incremento de la elipticidad y el descenso de la longitud de onda, indicaron cambios en el apilamiento de las bases, probablemente debidos a la apertura de la hélice. Este comportamiento fue muy similar al inducido por el transplatino, el cual da lugar a la apertura de la hélice debida al enlace entre las dos moléculas de la misma hélice de ADN. La estructura de (I) , presentando dos sitios lábiles (Pt-Cl) en los extremos del dímero, podría permitir un enlace del mismo tipo. Se registraron las longitudes de onda y las absorbancias correspondientes al máximo de UV del aducto ADN- (I) . Se observó un fuerte desplazamiento del máximo hacia longitudes de onda menores. Este efecto era mayor para mayores relaciones molares (I) /ADN (0.25, 0.50) y también se observó un progresivo incremento en la hipercromicidad cuando se incrementó la relación Pt/nucleótido. Esto indicó una fuerte modificación de la estructura secundaria del ADN.
Las Figuras 1, 2 y 3 muestran microfotografías obtenidas con microscopios de transmisión electrónica Philips EM 200 y Philips EM 301 a 80,000 V, el primero trabajando a 25,800 y 54,900 aumentos y el segundo a 16,000, 20,000 y 26,000 aumentos. La Figura 1 corresponde al plásmido PBR322 solo; la Figura 2 corresponde al plásmido incubado con cisplatino, a relación molar 0.50, durante 24 h; y la Figura 3 corresponde al plásmido incubado con (I) , a una relación molar 0.50, durante 24 h. El plásmido solo estaba en una forma circular cerrada, con diferentes grados de enrollamiento; también se observaba un pequeño porcentaje de forma lineal (Figura 1) . El cisplatino causó una compactación en el plásmido, tal como había sido previamente descrito (Figura 2) . El complejo de platino (I) no sólo causó una compactación, sino también una agregación lateral con otras moléculas de plásmido (Figura 3) . La compactación con (I) fue más intensa que con cisplatino, en las mismas condiciones experimentales. Esto indicó que (I) induce algún tipo de interacción entre diferentes moléculas del plásmido, probablemente debida al enlace del platino con dos moléculas distintas. Las Figuras 4, 5 y 6 muestran las imágenes obtenidas mediante microscopía de fuerzas atómicas (usando un Extended Nanoscope extendido III, Digital Instruments, Santa Barbara, CA, trabjando en modo TMAFM en unos 100 nN) . La Figura 4 corresponde al hliM, un frag ent lineal de ADN; la Figura 5 corresponde al mismo ADN incubado 24 h con cisplatino; la Figura 6 corresponde al mismo ADN incubado 24 h con el complejo de platino (I) . La concentración en ADN era la misma en todas las muestras. El cisplatino parecía compactar y distorsionar. En la ampliación correspondiente a 400 nm, se observaron varios puntos donde el fragmento era doble. La medida de la longitud de este fragmento en el microscopio reveló dicha modificación. La medida del área también mostró que no había agregación entre los diferentes fragmentos lineales de ADN. Así pues, se refleja el tipo de enlace del cisplatino al ADN, principalmente a dos sitios N internos. Sin embargo, después de la incubación del ADN con (I) , se observaron fenómenos de agregación y compactación. El cúmulo formado tenía un área mayor que la de un fragmento simple, indicando que la presencia del complejo había producido la agregación de varios fragmentos de ADN. Así pues, el enlace de (I) induce la interacción entre distintas moléculas de ADN. Probablemente (I) se enlaza a través de dos sitios laterales, después de que el enlace Pt-Cl ha sido hidrolizado. Se comprobó que el efecto observado no era debido al propio ligando.
EJEMPLO 3: Actividad antineoplásica del complejo de platino (I) Los ensayos fueron realizados sobre dos líneas celulares tumorales: células HeLa de cáncer humano de útero, y células HL-60 de leucemia humana. Los ensayos fueros realizados con cisplatino como referencia, con el ligando 2-mercaptopirimidina (Spym) , y con el complejo de platino (I) preparado en el Ejemplo 1. Las Figuras 7 y 8 muestran el porcentaje de supervivencia, S(%), frente a la dosis (C, μM) , para las líneas turmorales HL-60 y HeLa, respectivamente. Los correspondientes parámetros LC50 fueron los siguientes: Para la línea tumoral HL-60, 35.0 μM con cisplatino y 3.5 μM con (I); para la línea tumoral HeLa, 37.0 μM con cisplatino y 3.5 μM con (I). Los valores de (I) fueron mejores que los del cisplatino, en el caso de la línea tumoral HL-60. La diferencia entre cisplatino y (I) todavía fue mayor en el caso de la línea tumoral HeLA. La 2-mercaptopirimidina (Spym) sola no produjo muerte celular.
Por otra parte, se llevó a cabo un análisis del tipo de muerte celular con dos clases de ensayos: la observación de los cambios morfológicos característicos mediante microscopía de contraste de fase, y el análisis de la digestión de ADN en fragmentos regulares mediante electroforesis de gel. Los resultados indicaron que las células murieron por apoptosis en la línea HeLa, pero no en la línea HL-60.
EJEMPLO 4: Preparación de composiciones farmacéuticas del complejo de platino (I)
a) Inyecciones
Una suspensión acuosa del complejo de platino (I) se cargó en viales, bajo condiciones asépticas. Cada vial contenía 50 mg de (I) . Los viales se secaron, se esterilizaron y se cerraron herméticamente. Cuando se usaron como inyección, 10 mL de disolución salina fisiológica se añadía a cada vial para preparar la inyección.
b) Comprimidos
50 g del complejo de platino (I) , 100 g de lactosa, 30 g de celulosa cristalina, 5 g de almidón y 2 g de estearato magnésico se mezclaron y comprimieron en una máquina de comprimidos, para dar comprimidos de 180 mg cada uno.
HOJA DE SUSTITUCIÓN (REGLA 26)

Claims

REIVINDICACIONES
1. Complejo de Pt(III) simétrico de nombre (Pt-Pt)- diclorotetrakis[μ- (2 (1H) -pirimidinotionato-Nl : S2) ]di- platino, y de fórmula (I) , donde S-N representa al anión 2-mercaptopirimidinato.
Figure imgf000016_0001
(i)
Figure imgf000016_0002
2. Composición farmacéutica que comprende una cantidad efectiva del compuesto de la reivindicación 1 en combinación con excipientes farmacéuticamente aceptables.
3. Uso del compuesto de la reivindicación 1, para la preparación de un medicamento para el tratamiento del cáncer.
4. Uso según la reivindicación 3 , donde el cáncer se selecciona del grupo formado por leucemia humana y cáncer humano de útero.
5. Procedimiento de preparación del compuesto de la reivindicación 1 caracterizado por mezclar una disolución acuosa de tetracloroplatinato dipotásico, K2PtCl4, con una suspensión acuosa de 2-mercaptopirimidina, a una temperatura entre la ambiental y 50 °C, durante el tiempo necesario para que se forme el compuesto deseado, y aislar posteriormente el compuesto deseado como un sólido.
6. Procedimiento de preparación según la reivindicación 5, donde la relación molar entre el tetracloroplatinato dipotásico y la 2-mercaptopirimidina es de 1:2 aproximadamente.
7. Procedimiento de preparación según la reivindicación 5, donde la temperatura es de 40 C aproximadamente.
HOJA DE SUSTITUCIÓN (REGLA26)
PCT/ES1998/000027 1997-02-13 1998-02-10 Complejo de platino con actividad antineoplasica WO1998035972A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU58644/98A AU5864498A (en) 1997-02-13 1998-02-10 Platinum complex with antineoplasic activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP9700403 1997-02-13
ES9700403 1997-02-13

Publications (1)

Publication Number Publication Date
WO1998035972A1 true WO1998035972A1 (es) 1998-08-20

Family

ID=8298399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1998/000027 WO1998035972A1 (es) 1997-02-13 1998-02-10 Complejo de platino con actividad antineoplasica

Country Status (2)

Country Link
AU (1) AU5864498A (es)
WO (1) WO1998035972A1 (es)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D. GOODGAME ET AL.: "Synthesis and X-Ray structural studies of some dinuclear Platinum (III) complexes of pyrimidine-2-thione and 2-thiouracil", INORGANIC CHIMICA ACTA,, vol. 120, no. 1, 1986, pages 91 - 101 *
G. CERVANTES ET AL.: "Antitumor activity of a Pt (III) derivative of 2-mercaptopyrimidine", METAL-BASED DRUGS,, vol. 4, no. 1, 1997, pages 9 - 18 *
T. UEMURA ET AL.: "ESR of Pt (III) in anticancer platinum pyrimidine green", CHEMICAL PHYSICS LETTERS,, vol. 142, no. 5, 1987, pages 423 - 425 *

Also Published As

Publication number Publication date
AU5864498A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
Galanski et al. Recent developments in the field of tumor-inhibiting metal complexes
KR100484504B1 (ko) 쿠커비투릴 유도체를 주인 분자로서 포함하고 있는 내포화합물 및 이를 포함한 약제학적 조성물
PT943331E (pt) Formulacoes que contem oxaliplatina
US20070207993A1 (en) Molybdenum carbonyl complexes for treating rheumatoid arthritis and other inflammatory diseases
CN105753922A (zh) 用于肿瘤治疗四价铂糖基配合物及其制备方法
WO2007073226A1 (en) Method for treating a mammal by administration of a compound having the ability to release co
FI116058B (fi) Kolme ydintä käsittävät kationiset platinakompleksit, joilla on kasvaimenvastainen vaikutus, sekä niitä sisältävät farmaseuttiset koostumukset
US6340770B1 (en) Platinum (IV) complex used as anti-cancer agent and preparing method thereof
PT701440E (pt) Complexos tri(platinicos)
WO2005090372A2 (en) Platinum carboxylate anticancer compounds
WO1998035972A1 (es) Complejo de platino con actividad antineoplasica
EP0793667B1 (en) Trinuclear cationic platinum complexes having antitumour activity and pharmaceutical compositions containing them
ES2284061T3 (es) Procedimiento para la produccion de sales y derivados de trans- o cis-diamoniodiclorodihidroxoplatino (iv) y su uso para la produccion de principios activos farmaceuticos.
ES2198580T3 (es) Nuevas sales de compuestos anionicos de ru (iii), utilizados como agentes antimetastasicos y antineoplasticos.
US7268245B2 (en) Multinuclear platinum compounds
ES2272755T3 (es) Agente antitumoral organometalico.
US8703756B2 (en) Synthetic procedure and cancer treatment with cisplatin derivatives
ES2206230T3 (es) Complejos dimericos de rutenio adecuados como agentes antineoplasticos y antimetastasicos.
ES2246150B1 (es) Compuestos trans de platino (ii) de formula trans-(ptcl2(oxima)(amina)), con actividad antitumoral.
ES2200967T3 (es) Complejos de rutenio (ii) con gran actividad antitumoral y antimetastasica.
JP2005511497A (ja) 光反応性化合物および組成物
ES2401553T3 (es) Complejo de platino con actividad antitumoral
ES2214137B1 (es) Compuestos trans de platino (ii) de formula trans- (ptcl2 (amina) ( dimetilamina)), con actividad antitumoral.
KR101560263B1 (ko) 신규 4핵 아렌-루테늄 화합물 및 이를 유효성분으로 함유하는 암질환의 치료 또는 예방용 약학조성물
ES2321785B1 (es) Tionato complejos de platino(ii) de estequiometria (pt(r)(r')(l)(l'))n con actividad antitumoral.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998535381

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase