WO1998027100A1 - Heterocomplexe a nitrure de metal de transition radioactif - Google Patents

Heterocomplexe a nitrure de metal de transition radioactif Download PDF

Info

Publication number
WO1998027100A1
WO1998027100A1 PCT/JP1997/004626 JP9704626W WO9827100A1 WO 1998027100 A1 WO1998027100 A1 WO 1998027100A1 JP 9704626 W JP9704626 W JP 9704626W WO 9827100 A1 WO9827100 A1 WO 9827100A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
bis
diphenylphosphinoethyl
transition metal
metal nitride
Prior art date
Application number
PCT/JP1997/004626
Other languages
English (en)
French (fr)
Inventor
Adriano Duatti
Cristina Bolzati
Licia Uccelli
Fiorenzo Refosco
Francesco Tisato
Original Assignee
Nihon Medi-Physics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Medi-Physics Co., Ltd. filed Critical Nihon Medi-Physics Co., Ltd.
Priority to AT97947953T priority Critical patent/ATE239745T1/de
Priority to EP97947953A priority patent/EP0949265B1/en
Priority to AU54128/98A priority patent/AU730120B2/en
Priority to CA002275451A priority patent/CA2275451C/en
Priority to DK97947953T priority patent/DK0949265T3/da
Priority to DE69721820T priority patent/DE69721820T2/de
Priority to JP52753998A priority patent/JP3935218B2/ja
Priority to US09/331,237 priority patent/US6270745B1/en
Publication of WO1998027100A1 publication Critical patent/WO1998027100A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • C07F13/005Compounds without a metal-carbon linkage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0476Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group complexes from monodendate ligands, e.g. sestamibi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0478Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group complexes from non-cyclic ligands, e.g. EDTA, MAG3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5004Acyclic saturated phosphines

Definitions

  • the present invention relates to a radioactive transition metal nitride heterocomplex, a radiopharmaceutical comprising the complex, and a method for producing the complex. More specifically, the present invention relates to a radioactive transition metal nitride heterocomplex in which two different ligands are coordinated to a radioactive technetium or radioactive rhenium nitride, and a radioactive image comprising the complex as an active ingredient.
  • the present invention relates to a diagnostic agent or a radiotherapeutic agent and a method for producing the same.
  • radioactive transition metals used as radiopharmaceuticals 9 gm T c is a nuclide most often used in the field of radioactive I Imaging diagnostic agent, 1 8 6 R e and 1 8 8 R e in the field of therapeutic agents It is a nuclide preferably used. Since these radioactive transition metals have different coordination numbers in various oxidation states and can form various complexes with a large number of ligands, they are generally used in the form of a complex.
  • a ligand is first chelated to Tc, and then a bioactive substance is bound to the chelate, or a bioactive substance is first bound to the ligand, and then T
  • Tc a method of coordinating c
  • WO 90/06 137 contains bisethylthiocarbamate getyl-Tc nitride complex, bisdithiocarbamate dimethyl-Tc nitride complex, bisdithiocarbamic acid-di-n- Propyl-Tc nitride complexes, bisdithiocarbamic acid-N-ethyl N- (2-ethoxyl) -Tc nitride complexes and the like are disclosed.
  • a transition metal oxide is treated with polyphosphine or the like as a transition metal reducing agent, and then a metal or ammonium nitride is used as a nitride nitrogen source.
  • a method of obtaining a transition metal nitride complex by reacting to a nitride and then coordinating a biologically active monoclonal antibody or the like.
  • metal nitride complexes can vary in number from monodentate to tetradentate. Since a coordination site can be adopted, multiple types of complexes are formed, and it has been difficult to obtain a single complex having a specific physiologically active ligand stoichiometrically.
  • the radioactive metal is technetium or rhenium
  • the oxidation number is from + I to + VI I valence
  • the nitride complex is usually + V valent
  • their metal atoms have five coordination sites
  • Equation (V) is called a square pyramid structure (square pyramidal geometry, sp structure), and the arrangement structure of equation (VI) is called a trigonal bi-yramidal geometry (tbp structure).
  • tbp structure trigonal bi-yramidal geometry
  • a, b, c, d and a ', b', c ', d' are symbols attached to the coordination sites for convenience of explanation.
  • the sp structure in Eq. (V) is a square pyramid with coordination sites a, b, c, and d forming a square, with this square as the base and N as the apex.
  • the present inventors form a complex having a single structure from ligands that may coordinate to transition metal nitrides such as bidentate ligands, tridentate ligands, and tetradentate ligands.
  • transition metal nitrides such as bidentate ligands, tridentate ligands, and tetradentate ligands.
  • a single and stable transition was achieved by asymmetrically coordinating two different bidentate ligands.
  • the present inventors have found that a metal nitride can be obtained and completed the present invention.
  • An object of the present invention is to provide a novel single radioactive transition metal nitride capable of labeling a physiologically active substance such as a peptide or a hormone without impairing its activity.
  • the present invention is a radioactive transition metal nitride hetero complex represented by the following formula (1) in which two different ligands are coordinated to a radioactive transition metal nitride:
  • the radioactive transition metal M is radioactive technetium or radioactive rhenium
  • N is a nitrogen atom
  • X is a diphosphine compound or a dialsine compound
  • Y is a combination of two electron donating atoms selected from the group consisting of 0, S and N. Having a bidentate ligand, wherein the electron donating atom may or may not be charged.
  • Another embodiment of the present invention relates to a method for preparing an oxide of a radioactive transition metal M in a solution, in the presence or absence of a reducing agent, with carbazic acid or a derivative thereof or hydrazine or a derivative thereof, and a diphosphine compound or a dialsine compound. And a first step of obtaining a radioactive transition metal nitride intermediate by reacting the intermediate with a bidentate coordination having a combination of two electron donating atoms selected from the group consisting of 0, S and N 2.
  • a single radioactive transition metal nitride hetero complex can be obtained in high yield without generating optical isomers or the like.
  • This complex is a novel complex composed of a diphosphine compound, which is one neutral bidentate ligand, and one electron-donating bidentate ligand in the core of the transition metal nitride.
  • the biological activity of the coordinating ligand itself or the molecular structure of the biologically active species bound thereto is less likely to be impaired.
  • Figure 1 shows the chromatogram of acidic 9 9 m technetium nitride intermediate complex.
  • Figure 2 shows the chromatogram of the g9 ra technetium nitride intermediate complex under alkaline conditions.
  • Figure 3 shows a chromatogram of a 99 m technetium nitride heterocomplex coordinated by bis (diphenylphosphinoethyl) ethylamine (PNP) and 1-thio-1D-glucose ⁇ -g 1 u). .
  • Figure 4 shows the chromatogram of the m- technetium nitride heterocomplex coordinated by PNP and thiosalicylic acid (tsa).
  • Figure 5 shows PNP and dithiocarbamic acid mono-N-ethoxy mono-N-ethyl
  • NOE Fig. 6 shows a chromatogram of a 991 "technetium nitride hetero complex coordinated by t).
  • Fig. 6 shows a chromatogram of a 9 ⁇ technetium nitride hetero complex coordinated by PNP and cysteine (Cys).
  • Figure 7 shows a chromatogram of a 99m technetium nitride heterocomplex in which PNP and cysteine ethyl ester (Cy sOEt) are rooster.
  • Figure 8 shows a chromatogram of terrorism complex to 99 m technetium nitride PNP and Cy s -Ly s- P ro- Va 1- NH 2 is coordinated.
  • FIG. 9 shows a scheme for synthesizing cysteine-desipramine (DESI).
  • DESI cysteine-desipramine
  • EDC 11- (3-dimethylaminopropyl) 1-3-ethylcarposimid TF A: Trifluoroacetic acid
  • TIS Triisopropyl silane
  • Trt trityl group
  • Figure 10 shows the structural formula of a 99 " 1 technetium nitride heterocomplex coordinated by bis (dimethoxypropylphosphinoethyl) methoxethylamine (PNP 3) and cysteine-desibramine (DESI). It is.
  • the radioactive transition metal nitride heterocomplex of the present invention comprises two different bidentate ligands X and Y coordinated to a metal nitride core having an M ⁇ N bond.
  • the two ligands X and Y coordinate to the core of the metal nitride having M ⁇ ⁇ ⁇ N bonds, and form an asymmetric tbp structure without generating optical or geometric isomers during coordination. It is chosen to stabilize the complex.
  • a ligand that coordinates to the trans position with respect to the metal ion so as to crosslink is preferably selected.
  • the remaining bidentate b ', c' Alternatively, another ligand can be coordinated to the cis position.
  • the bonding state of these two ligands, X and Y, is schematically shown in Equation (VII).
  • Examples of such a ligand X include a diphosphine compound or a dialsine compound, and a diphosphine compound or a diphosphine compound having an atom such as a phosphorus atom or an arsenic atom having affinity for 7 ⁇ electrons at a symmetric position. It is preferably a diarcine compound. For example, it has two phosphorus atoms, which are 7 ⁇ electron acceptors, and a methylene group, an oxygen atom, and a zeolite atom having an appropriate length so that the phosphorus atoms are coordinated to the trans position with respect to Tc.
  • R 1 , R 2 , R 3, and R 4 are each selected from the group consisting of a hydrogen atom, an alkyl group, a substituted alkyl group, an aryl group and a substituted aryl group.
  • R 5 is a methylene group
  • Z is an oxygen atom, a zeo atom, a methylene group
  • R 7 group (where R 7 is hydrogen, alkyl group, substituted alkyl group, aryl group, substituted aryl group, amino group, amino acid Or a group having a physiological activity)) or an ethylenedioxy group
  • P is a phosphorus atom
  • n is an integer of l ⁇ n ⁇ 5, and m is 0 or 1. More preferably, n is an integer of 2 ⁇ n ⁇ 4.
  • diphosphine compound of the formula (IV) bis (dimethoxyphosphinoethyl) amine ((CH 3 O) 2 -P-CH 2 CHz -NH-CH 2 CH 2 — P-I (OCH 3) 2), bis (dimethyl Tokishihosufi aminoethyl) Mechirua Mi emissions ((CH 3 0) 2 P- C H2 CH 2 -N (CH 3) -CH 2 CH 2 one P- (OC H 3) 2), bis (dimethyl Tokishihosufui Noechiru) Echiruami emissions ((CH 3 0) 2 - P - CH 2 CH 2 one N (CH 2 CH 3) one CH 2 CH 2 one P - (0 CH 3) 2 ), bis (dimethyl Tokishihosufu Inoechiru) Puropiruami emissions ((CH 3 0) 2 one P - CH 2 CH 2 -N ( CH 2 CH 2 CH 3) one CH 2 CH 2 one P- (OCH 3) 2)
  • ⁇ in the diphosphine compound of the above formula (II) is an ethylenedioxy group (hereinafter abbreviated as POOP type), bis (diphenylphosphinoethyl) dioxyethylene ((C 6 H 5 )- P-CH 2 CH 2 —OCH 2 CH 2 0— CH 2 CH 2 —P— (C 6 H 5 ) 2 ) or bis (dimethoxyphosphine) dioxyethylene ((CH 30 ) —P—CH 2 CH 2 -OCH 2 CH 2 0 1 CH 2 CH 2 1 P— (OCH 3 )), when Z is oxygen (hereinafter abbreviated as POP type), bis (diphenylphosphinoethyl) ether ((C 6 H 5 ) 2 — P— CH 2 CH 2 —O—C H2 CH 2 — P— (C 6 H 5 ) 2), where Z is sulfur (hereinafter abbreviated as PSP type), bis (diphenyl) Phos
  • the intermediate in which the diphosphine compound is coordinated to the M ⁇ N bond as ligand X has a tbp structure in which C 1- and OH- are coordinated in the remaining two coordination sites. It is stabilized.
  • the stabilized intermediate easily exchanges with the bidentate ligand Y having an electron-donating atom pair to form a useful radioactive transition metal nitride hetero complex.
  • a subsequent bidentate ligand having an electron-donating atom pair undergoes an exchange reaction, a single coordination structure is generated without generating optical isomers and the like. A complex can be obtained.
  • the bidentate ligand Y has a combination of two electron-donating atoms selected from the group consisting of 0, S, and N, which may or may not be charged.
  • the bidentate ligand itself preferably comprises a bioactive substance.
  • physiologically active substances include sugars, amino acids, fatty acids, hormones, peptides, receptor-binding ligands, and the like. By binding these combinations of electron-donating atoms to these physiologically active substances, various useful bidentate ligands forming radiometal nitride hetero complexes can be obtained.
  • a compound having a combination of electron-donating atoms [0—, S—] a combination of electron-donating atoms [N-, S—such as 1-thio-D-glucose, thiosalicylic acid, and their derivatives]
  • compounds having a []] include esters such as cysteine and cysteine ethyl ester, peptides having a cysteine residue, 2-aminoethanethiol (H 2 N-CH 2 CH 2 -SH), and electron-donating atoms.
  • Examples of compounds having the combination [S, S—] include dithiol-rubbamate [H 2 N—C (2S) -SH] and dithio-l-rubbamate mono-N-methyl-S-methyl
  • Examples of compounds having [N, N] include ethylenediamines, phenylenediamines
  • Examples of the compound having [0, 0] include salicylic acid, and examples of the compound having [0, N] include dalcosamine. These compounds themselves have the ability to have physiological activity. Furthermore, physiologically active substances such as sugars, amino acids, fatty acids, hormones, peptides, receptor binding ligands, etc. may be bound to these compounds.
  • the radioactive transition metal nitride heterocomplex of the present invention is an intermediate of a transition metal nitride complex having a tbp structure or a pseudo-tbP structure from an oxide of a radioactive transition metal M and the above-mentioned diphosphine compound or dialsin compound X. It is produced by reacting [(M ⁇ N) X] int. With a bidentate ligand Y having a combination of the above electron donating atoms.
  • the nitrogen donor is, in principle, selected from compounds having a functional group> N-N ⁇ .
  • Dithiocarbazic acid mono-N-methyl S-methyl, succinic dihydrazide, acetyl hydrazide, isonicotinic hydrazide, sodium azide and the like are preferably used as nitrogen donor D.
  • Nitrogen donors D may be used alone, but the use of different types in combination or in addition can improve the yield of intermediates.
  • a reducing agent such as stannous chloride or sodium dithionite may be used in combination.
  • the oxide of the transition metal M, 99m T c 0 4 - , 186 R e 0 4 -, 188 R e 0 4 - or the like is used.
  • Tighter control of the coordination between the bioactive molecule and the transition metal nitride is very important in determining the properties of the resulting radiopharmaceutical.
  • C 1- or OH-, etc. are coordinated to the remaining ligands after the bisphosphine compound is coordinated, when the pH of the reaction solution is in the acidic range. Because of the mixture of intermediates, the pH was adjusted in the presence of a pH buffer. By adjusting to ⁇ 10, an intermediate with a single structure can be obtained, and the exchange reaction can be more strictly controlled.
  • Stoichiometric ratio of ligand X to bidentate ligand Y, XZY affects the yield of teguchi complex to the resulting radiometal nitride, but the combination of ligand X and bidentate ligand Y
  • the appropriate ratio varies depending on the type.
  • the bidentate ligand Y is composed of dithiocarbazic acid mono-N-methyl mono-S-methyl, aminoethanethiol, cysteinethyl ester, monothio yS-D-glucose, and thiosalicylic acid.
  • the stoichiometric ratio X / Y is not particularly limited, and the dithio-power dimethyl rubbamate, dithiocarbamate-N-getyl, and dithiocarbamate-N-ethokine-N-ethyl are XZY1. Is a complex in which two bidentate ligands Y are substituted, 99m Tc (N)
  • (Y) 2 is produced as a by-product, and the yield of the target asymmetric radiometal nitride hetero complex is reduced. Therefore, it is preferable to select conditions so that ⁇ 1.
  • C Another way to prevent the formation of the disubstituted complex 99 m Tc (N) (Y) 2 is to increase the steric hindrance of ⁇ . Can be considered.
  • the radioactive transition metal nitride heterocomplex obtained by the reaction of the formulas (1) and (2) is a pharmaceutically acceptable stabilizer such as ascorbic acid and ⁇ -aminobenzoic acid, and a sodium carbonate buffer. , ⁇ regulators such as sodium phosphate buffer, solubilizers such as medalmin, and excipients such as D-mannitol to be aseptically mixed into radioactive diagnostic or radiotherapeutic agents. be able to.
  • the radiopharmaceutical diagnostic or therapeutic agent of the present invention can also be provided in the form of a kit for use at the time of use in combination with these additives.
  • the radioimaging diagnostic agent and the radiotherapeutic agent of the present invention can be administered by commonly used parenteral means such as intravenous administration, and the dosage depends on the age, weight, target disease state, target radiological condition, etc. of the patient. It is determined according to the amount of radioactivity considered to be possible for imaging and treatment, taking into account the imaging equipment. If you intended for human, the dosage of diagnostic agent using labeling of 99m Tc is translated into radioactivity 99m Tc, 37MB Q ⁇ 1, a 850 MB q, preferably 1 85MB q ⁇ 740 MB q.
  • the dose of a therapeutic agent using 186 Re or '88 Re label is 37 MBC! 118,500 MBq, preferably 370 MB (! ⁇ 7,400 MBQ.
  • the radioactive imaging diagnostic agent and the radiotherapeutic agent according to the present invention did not show any acute toxicity as long as they were used at the above doses.
  • diphosphine compound used as the ligand X and the bidentate ligand Y in the following examples are abbreviated as follows.
  • Diphosphine compound X PNP; (C 6 H 5 ) 2 PCH 2 CH 2 N (C 2 H 5 ) CH 2 CH 2 P (C 6 H 5 ) 2
  • Figures 1 and 2 show the radiochromatograms of the complex developed on a silica gel plate with a mixture of ethanol and formaldehyde Z benzene (0.85 / 2 / 1.5).
  • chromatograms in acidic Shows three peaks, indicating that three products were obtained (Fig. 1).
  • the pH is adjusted to about 8 or more, the chromatogram becomes a single peak ( Figure 2).
  • This suggests that the remaining coordination site coordinated by PNP is occupied by an unstable ligand such as C 1-or a water molecule in the acidic state, and changes pH to about 8 or more. It is considered that these ligands are replaced by OH groups and show a single peak.
  • Figure 3 shows the radiochromatogram of the complex developed on silica gel plate with tetrahydrofuran.
  • the radiochemical purity of the final complex was higher than 95%.
  • the complex contains a T c ⁇ N group, one PNP bidentate ligand in the metal ion at the trans position, and another bidentate ligand containing a dianion in the remaining bidentate.
  • the complex was stable at a cis position via a negative gamma atom and oxygen which had lost the proton of the hydroxy group.
  • Figure 4 shows the radiochromatogram of the complex developed on a silica gel plate with a mixture of ethanol / chloroform / benzene (0.7 / 2Z1.5). Radiochemistry of the emitter of the final complex Purity was higher than 95%.
  • the complex contains a Tc ⁇ N group, one PNP bidentate ligand is located at the trans position on the metal ion, and the other bidentate is a didentate dianion tsa force ⁇ , proton
  • the complex solution was stable through coordination via the negative Y atom that had lost the oxygen and the oxygen that had lost the carboxyl group proton.
  • a PNP of 5 mg SDH and of 1. 5 mg was dissolved in a mixture of ethanol 0. 6 m 1 and HC 1 solution 0. 1 mg (lmo 1/1), followed physiologically compatible 99 m TCOR solution ( 0.5m 1, 50 MB q) was added. The mixture was heated at 80 ° C for 20 minutes, then cooled to room temperature, and 1 ml of 0.05 mo 1 Z1 sodium phosphate buffer was added to adjust the pH to about 7.8. Then, 5.Omg of NOEt dissolved in 0.50 ml of water was added, and the mixture was left at room temperature for 5 minutes. The complex finally obtained was analyzed by HTLC and HPLC.
  • Figure 5 shows the radiochromatogram of the complex developed on a silica gel plate with a mixture of ethanol / chloroform Z benzene (1Z2Z1.5).
  • the radiochemical purity of the final complex was higher than 95%.
  • the complex contains a Tc ⁇ N group, with one PNP bidentate ligand coordinated to its metal ion in the trans position, and a monoanion NOE t coordinated in the remaining bidentate by the two zeo atoms of the CS 2 — group.
  • the solution of the complex was stable.
  • Figure 6 shows the radiochromatogram of the complex developed on a silica gel plate with a mixture of ethanol / chloroform Z benzene (0.85 / 2 / 1.5). Radiochemical purity of the final complex is 90 %.
  • the complex contains a Tc ⁇ N group, and one PNP bidentate ligand is coordinated to the trans position with the metal ion, and the dianion of the proton atom-depleted atom and the proton-depleted amino group It is coordinated to the remaining bidentate by the nitrogen atom.
  • an ester derivative (CysOEt) in the above process revealed that the carboxyl group of Cys was not involved in the coordination of the metal.
  • CysOEt is a force in which the OH group of the carboxyl group of Cys is replaced by an ethoxy group.
  • the radiochemical purity of the final complex obtained from this ligand (CysOEt) is 93 % ( Figure 7). Solutions of all complexes were stable.
  • the PNP bidentate ligand is coordinated to the trans position, and the dianionic tetrapeptide ligand is coordinated to the remaining bidentate by the proton atom-depleted iodine atom and the nitrogen atom devoid of the terminal cysteine residue proton.
  • the solution of the complex was stable.
  • TLC sica gel plate
  • Nitrogen donor D SDH diphosphine compound X PNP 1, PNP 2, PNP 4, PNP 5, bidentate ligand Y electron-donating atom pair [ ⁇ —, S], [ ⁇ , S—] or [ DTC, NS, CysOEt, tsa, and Sg1u having 0—, S] were used, respectively.
  • bidentate ligand when Y you increase the amount of asymmetrical 99 "1 Tc to nitride a side reaction terrorist complexing 9 ⁇ Tc (N ) Although the formation reaction of (Y) 2 was involved, the amount of formation varied depending on the ratio of X to Y and did not depend on the absolute amount of Y. That is, the bidentate coordination used in this example was used.
  • DTC, DEDC, NOE t having POP as diphosphine compound X and [NH—, S], [NH—, S—], [0—, S—], [S, S], etc. as bidentate ligand Y , tsa, FcCS, yS-1u, CysOEt, NS were used to evaluate the effect on complex formation, and complex 9 ⁇ Tc (N) (X) (Y) was synthesized as in Example 10. And examined.
  • Y For DTC, 99m T c hetero complex to nitride 99 m T c (N) ( POP) (DTC) + was obtained with a radiochemical purity of 95% or more.
  • Y DEDC, N OE t , tsa, F c CS, ⁇ - glu, Cy sOE t, complex 99m Tc in the case of using the NS disubstituted of Y ( ⁇ ) ( ⁇ ) 2 generation is Always accompanied.
  • the degree of formation of the disubstituted complex containing two ⁇ was in the order of DEDC>NOEt>tsa>FcCS>yS—g1u>CysOEt> NS.
  • Tween ⁇ 80 polyoxyethylene sorbitan monostearate
  • the diphosphine compound used here can be expressed as R 2 P—CH 2 CH 2 —Z—CH 2 CH 2 —PR 2 , where the two R groups are each bonded to a phosphorus atom and the bridge group Z Is linked to two ethylene groups.
  • Example 1 5 bidentate ligand cis Tin over Desi bra Min and synthetic hetero complex to the 99 m Tc nitride
  • Cystine-desibramine (hereinafter abbreviated as DESI) in which cystine was bound to desibramine, a derivative of imibramine, which is a physiologically active substance having an antidepressant effect, was synthesized according to the synthesis scheme shown in FIG.
  • This bidentate ligand, DE SI is obtained by an amide bond between the carboxyl group of cysteine and the terminal nitrogen atom of desibramine.
  • Diphosphine compound X as a PNP 3 the 99m T c hetero complex to nitride using DE SI as bidentate ligand Y (hereinafter referred to as 99 m T c N- DE SI) was form if as follows.
  • TcN-DESI complex was identified by thin-layer chromatography (TLC), high-performance liquid chromatography (HP LC), electrophoresis, and ion-exchange chromatography.
  • TLC thin-layer chromatography
  • HP LC high-performance liquid chromatography
  • electrophoresis electrophoresis
  • ion-exchange chromatography The measurement conditions are as follows.
  • TLC silica gel plate; mobile phase; ethanol Z-cloth form / benzene (1.5 / 2 / 1.5), R f: 0.19: reverse phase; C18 plate: mobile phase; methanol / acetonitrile Z tetrahydrofuran Z ammonium acetate (0.5 mol / cc), R f: 0.3 1
  • the retention time of the uncomplexed ligand is 7 minutes, while the retention time of the complex is 25 minutes. It was.
  • the electrophoresis was carried out using a Bettmann paper, voltage (AV): 150 V, 1.5 hr, and phosphate buffer (0.1 M). No migration was seen, indicating that the complex was neutral.
  • Ion exchange chromatography Cation exchange resin; Sep—Pak CM (COONa), Mi 11 pore, Anion exchange resin; Sep—Pak
  • Rats were divided into two groups, Group A and Group B.
  • Group A was injected with 20 ° C i of 99 mT cN-DES I.
  • Group B was injected with 20 / Ci of 99 " 1 TcN-DESI and simultaneously injected with 1.0 mg / kg of unlabeled desipramine.
  • the 99m TcN-DESI complex accumulated considerably in the heart and very high in the adrenal gland.
  • the active ingredient was excreted at a very fast rate through the liver and kidneys.
  • group B to which unlabeled desibramin was administered showed extremely low accumulation in the cortex, whereas unlabeled desibramin was administered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Ceramic Products (AREA)
  • Peptides Or Proteins (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

明 細 書 放射性遷移金属窒化物へテロ錯体 発明の属する技術分野
本発明は, 放射性遷移金属窒化物へテロ錯体, 該錯体を含んでなる放射性医薬 品及び該錯体の製造方法に関する。 さらに詳しくは, 本発明は, 放射性テクネチ ゥム又は放射性レニウムの窒化物に二種の異なる配位子が配位した放射性遷移金 属窒化物へテロ錯体, 該錯体を有効成分とする放射性ィメ一ジング診断剤又は放 射性治療薬及びそれらの製造方法に関する。
背景技術
放射性医薬品として用いられる放射性遷移金属の中でも, 9 g m T cは放射性ィ メージング診断剤の分野では最もよく使用される核種であり, 1 8 6 R e及び 1 8 8 R eは治療剤の分野で好ましく用いられている核種である。 これらの放射性 遷移金属は, 種々の酸化状態で異なる配位数を有し, 多数の配位子と種々の錯体 を形成することができるので, 一般に錯体の形態で用いられる。 例えば錯体を得 る方法として, 配位子をまず T cにキレ一卜させ, 次いでキレートに生理活性物 質を結合させるか, 又は最初に配位子に生理活性物質を結合させた後, T cを配 位させるという方法があるが, いずれの方法を採用しても, 通常は生理活性物質 の活性をそっくり維持したまま上記結合を行うことは困難であり, 特に小さな化 合物ではなおさら困難である。
最近, 生理活性物質の一部を, その活性を損なうことなく金属イオンを含む錯 体で置換する方法が提案されている (D. Y. Chi et al., J. Med. Chem. 1994, 37, 928-937 ) 。 この方法は, 金属を含有するブロックが正確に生理活性物質に結合 し, オリジナルの生理活性物質と非常に近い構造を保つことができるという利点 を有する。 しかし, 一般的に用いることができる方法は未だ確立されていない。 遷移金属の窒化物錯体は, 加水分解に対する安定性に優れているので, 医薬品 への適用に際して種々の有用な生理活性を有する配位子と交換反応を行う場合に, 窒化物錯体の二トリ ド基が金属原子と強固に結合したまま留まることができる。 したがって, 種々の置換基を有する遷移金属窒化物錯体が提案されてきた。 例え ば, WO 9 0 / 0 6 1 3 7には, ビスジチォカルバミン酸ジェチルー T c窒化物 錯体, ビスジチォ力ルバミン酸ジメチルー T c窒化物錯体, ビスジチォカルバミ ン酸—ジ— n—プロピル一 T c窒化物錯体, ビスジチォカルバミン酸ー N—ェチ ルー N— ( 2 —エトキシェチル) —T c窒化物錯体等が開示されている。
また, W0 8 9 / 0 8 6 5 7には, 遷移金属の酸化物に遷移金属の還元剤とし てポリホスフィン等を作用させ, 次いで窒化物の窒素源として金属又はアンモニ ゥムの窒化物を反応させて窒化物とした後, 生理活性を有するモノクロ一ナル抗 体等を配位させて遷移金属窒化物錯体を得る方法が開示されている。
しかしこれらの方法では, 生理活性基を有する配位子の選択が得られる医薬 の性質を決定づけるほどに非常に重要であるにもかかわらず, 金属窒化物錯体が 単座から四座までの様々な数の配位座を採り得るので複数の型の錯体が形成され てしまい, 生理活性を有する特定の配位子を化学量論的に有する単一の錯体を得 ることが困難であった。
発明の開示
放射性金属がテクネチウム又はレニウムでは酸化数が + I価から +VI I 価まで 存在し, 窒化物錯体は通常 + V価で, それらの金属原子は 5つの配位座を有し, その立体的な分子配置として下記式 (V ) 又は式 (VI) のような配置をとること が予想されている。
N 丄し ~― 一
Figure imgf000004_0001
Figure imgf000005_0001
式 (V ) の配置構造を正方錐構造 (Square Pyramidal Geometry, sp構造) , 式 (VI) の配置構造を三方両錐構造 (Trigonal Bi yramidal Geometry, tbp構造) という。 ただし, a, b, c, d及び a', b', c', d' は説明の便宜上配位座に付した符号 である。
式 (V ) の sp構造は, 配位座 a,b,c,dが正方形を形成し, この正方形を底面と して Nを頂点とする正方錐構造である。 式 (VI) の tbp構造は, 1>',(:',及び が 同一平面で一の三角形を形成し, この三角形を共通の底面として a'及び d'をそれ ぞれ頂点とする二つの三角錐構造からなると考えられる。
本発明者等は, 二座配位子, 三座配位子, 四座配位子等遷移金属窒化物に配位 する可能性のある配位子の中から, 単一構造の錯体を形成させることのできる配 位子の組合せ及びそのような錯体を形成する方法について鋭意検討した結果, 異 なる二つの二座配位子を非対称的に配位させることによつて単一で且つ安定な遷 移金属窒化物が得られることを見出し, 本発明を完成した。
本発明は, ペプチド, ホルモン等の生理活性物質を, その活性を損なうことな く, 標識することができる新規な単一の放射性遷移金属窒化物へテ口錯体を提供 することを目的とする。
本発明は, 放射性遷移金属の窒化物に二つの異なる配位子が配位してなる下記 式 (1 ) で表される放射性遷移金属窒化物へテロ錯体である:
( M≡ N ) X Y ただし, 放射性遷移金属 Mは放射性テクネチウム又は放射性レニウム, Nは窒 素原子, Xはジホスフィ ン化合物又はジアルシン化合物, Yは 0, S及び Nから なる群より選ばれる二つの電子供与性原子の組合せを有する二座配位子であつて, 該電子供与性原子は荷電していてもいなくてもよい。
本発明の他の態様は, 放射性遷移金属 Mの酸化物を, 溶液中で還元剤の存在下 又は非存在下に, カルバジン酸若しくはその誘導体又はヒドラジン若しくはその 誘導体のいずれかと, ジホスフィン化合物又はジアルシン化合物とを反応させて 放射性遷移金属窒化物中間体を得る第一の工程, 及び該中間体を, 0, S及び N からなる群より選ばれる二つの電子供与性原子の組合せを有する二座配位子と反 応させる第二の工程からなる請求項 1記載の放射性遷移金属窒化物へテロ錯体の 製造方法である。
本発明の新規な放射性遷移金属窒化物へテロ錯体の製造法によつて, 光学異性 体等を生成することなく単一の放射性遷移金属窒化物へテロ錯体が高収率で得ら れる。 該錯体は遷移金属窒化物のコアに一つの中性二座配位子であるジホスフィ ン化合物と一つの電子供与性二座配位子より構成された新規な錯体であり, かつ 電子供与性二座配位子自体の生理活性又はこれに結合された生理活性種の分子構 造が損なわれることが少ない。 このように本発明により, 厳密にコントロールさ れた分子構造を有する放射性医薬品を得ることが可能となった。
図面の簡単な説明
図 1は, 9 9 m テクネチウム窒化物中間錯体の酸性におけるクロマトグラムを示 す。
図 2は, g 9 ra テクネチウム窒化物中間錯体のアルカリ性におけるクロマトグラ ムを示す。
図 3は, ビス (ジフヱニルホスフィノエチル) ェチルァミン (P N P ) 及び 1 一チォ— 一 D—グルコース β— g 1 u ) が配位した9 9 m テクネチウム窒化物 ヘテロ錯体のクロマ卜グラムを示す。
図 4は, P N P及びチォサリチル酸 ( t s a ) が配位した m テクネチウム窒 化物へテロ錯体のクロマトグラムを示す。
図 5は, P N P及びジチォカルバミン酸一 N—エトキシ一 N—ェチル (N O E t) が配位した991" テクネチウム窒化物へテロ錯体のクロマトグラムを示す。 図 6は, PNP及びシスティン (Cy s) が配位した9 ^ テクネチウム窒化物 ヘテロ錯体のクロマトグラムを示す。
図 7は, PNP及びシスティンェチルエステル (Cy s OE t) が酉己位した 99m テクネチウム窒化物へテロ錯体のクロマトグラムを示す。
図 8は, PNP及び Cy s -Ly s— P r o— Va 1— NH2 が配位した99 m テクネチウム窒化物へテロ錯体のクロマトグラムを示す。
図 9は, システィンーデシプラミン (D E S I ) の合成スキームを示す図であ る。 図中の略称は, 以下の置換基又は化合物を表す。
Me : メチル基
E t :ェチル基
HOB t : N—ヒドロキシベンゾトリアゾ一ル
EDC: 1一 (3—ジメチルァミノプロピル) 一 3—ェチルカルポジイミ ド TF A: トリフルォロ酢酸
T I S : トリイソプロビルシラン
BOC: t e r t—ブトキシカルボニル基
T r t : トリチル基
図 1 0は, ビス (ジメ トキシプロピルホスフィノエチル) メ 卜キシェチルアミ ン (PNP 3) 及びシスティン一デシブラミン (DES I) が配位した99"1 テク ネチウム窒化物へテロ錯体の構造式を示す図である。
発明を実施するための最良の形態
本発明の放射性遷移金属窒化物へテロ錯体は, M≡N結合を有する金属窒化物 のコアに異なる二つの二座配位子 X, Yが配位してなるものである。 二種の配位 子 X, Yは M≡N結合を有する金属窒化物のコアに配位し, かつ配位に際して光 学異性体や幾何異性体を生じさせずに非対称な tbp構造をとつて錯体を安定化す るように選ばれる。 式 (VI) に示す tbp構造において金属窒化物のコアが有する a',b',c',d, の四つの配位座のうち, 最も遠い位置で相対する a及び d'の二座を 架橋するように, 金属イオンに対してトランス位に配位する配位子が好適に選ば れる。 このように a'及び d'の二座に配位させることによって, 残りの二座 b',c' に選択的にもう一つの配位子をシス位に配位させることができる。 このような 2 つの配位子 X, Yの結合状態を模式的に示すと, 式 (VI I ) のようであると考え れる。
Figure imgf000008_0001
ただし, Α A は配位子 Y, Β Βは配位子 Xを表す。
このような配位子 Xとしては, ジホスフィン化合物又はジアルシン化合物を挙 げることができ, 7Γ電子との親和性を有するリン原子又はヒ素原子のような原子 を対称的な位置に有するジホスフィン化合物又はジァルシン化合物であることが 好ましい。 例えば, 7Γ電子受容体である 2個のリン原子を有し, かつそれらのリ ン原子が T cに対してトランス位に配位するように適当な長さでメチレン基, 酸 素原子, ィォゥ原子, 窒素原子, エチレンジォキシ基等を介して結合されている, 下記式 (I I) に示すようなビスホスフィン化合物が好適である。
( Π )
Figure imgf000008_0002
ただし, R 12 , R 3 及び R 4 は各々水素原子, アルキル基, 置換アルキル 基, ァリール基及び置換ァリール基からなる群より選ばれる一つであって, 互い に同じであっても異なっていてもよく, R 5 はメチレン基, Zは各々酸素原子, ィォゥ原子, メチレン基, N R 6 (ただし, Nは窒素原子, R 6 は水素, アルキ ル基, 置換アルキル基, ァリール基, 置換ァリール基, アミノ基, アミノ酸鎖, 生理活性を有する基又は一 C (= 0) R 7 基 (ただし, R 7 は水素, アルキル基, 置換アルキル基, ァリール基, 置換ァリール基, アミノ基, アミノ酸鎖又は生理 活性を有する基である) ) 又はエチレンジォキシ基からなる群より選ばれる一つ であり, Pはリン原子, nは l≤n≤5の整数, mは 0又は 1である。 より好適 には nは 2≤n≤ 4の整数である。
上記式 (II) のジホスフィン化合物のうち, Zが NR6 の場合, 具体的には下 記式 (III )又は式 (IV) で表されるビスホスフィ ン化合物 (以下 PNP型と略 す) が好適に用いられる。
Figure imgf000009_0001
ただし, Phはフヱニル基, R6 は水素, アルキル基, 置換アルキル基, ァリ —ル基, 置換ァリール基, アミノ基, アミノ酸鎖, 生理活性を有する基又は一 C (=0) R7 基 (ただし, R7 は水素, アルキル基, 置換アルキル基, ァリ一ノレ 基, 置換ァリール基, アミノ基, アミノ酸鎖又は生理活性を有する基である) を 示す。
Figure imgf000009_0002
ただし, Xは 0≤X≤4の整数, Wは 0≤W 3の整数であり, R6 は水素, アルキル基, 置換アルキル基, ァリール基, 置換ァリール基, アミノ基, ァミノ 酸鎖, 生理活性を有する基又は一 C (=0) R7 基 (ただし, R7 は水素, アル キル基, 置換アルキル基, 了リール基, 置換ァリール基, アミノ基, アミノ酸鎖 又は生理活性を有する基である) を示す。
式 (III ) のジホスフィ ン化合物の例として, ビス (ジフヱニルホスフィノエ チル) ァミン ( (C6 H5 ) -P-CH2 CH2 -NH-CH2 CH2 一 P— (C6 H5 ) ) , ビス (ジフエニルホスフィノエチル) メチルァミ ン ( (C 6 ) 一 P - CH2 C H2 一 N (CH3 ) 一 CH2 C H2 — P— (C 6 H5 ) ) , ビス (ジフヱニルホスフィ ノェチル) ェチルァミ ン ( (C 6 H5 ) 2 一 P— CH2 CH2 -N (CH2 CH3 ) -CH, CH2 — P - (C6 H5 ) ) , ビス (ジフヱニルホスフィ ノェチル) プロピルァミ ン ( (C 6 H5 ) 2 - P - CH2 CH2 -N (CH2 CH2 CH3 ) 一 CH2 CH2 一 P- (C6 H5 ) 2 ) , ビス (ジフエニルホスフィ ノエチル) ブチルァミ ン ( (C6 H5 ) 2 — P - CH2 CH2 一 N (CH2 CH2 CH2 CH3 ) 一 CH2 CH2 一 P— (C6 H5 ) 2 ) , ビス (ジフエニルホスフィノエチル) ァ セトニルァミン ( (C6 H5 ) 2 -P-CH2 CH2 一 N (CH2 COCH3 ) -CH2 CH2 一 P— (C6 H5 ) 2 ) , ビス (ジフエニルホスフィノエチル) メ トキシェチルァミン ( (C6 H5 ) 2 — P— CH2 CH2 — N (CH2 CH2 OCH3 ) -C 2 CH2 一 P— (C6 H5 ) 2 ) 等が挙げられる。
式 (IV) のジホスフィ ン化合物の例として, ビス (ジメ トキシホスフイノェチ ル) ァミ ン ( (CH3 O) 2 -P-CH2 CHz -NH- C H 2 CH2 — P 一 (O C H3 ) 2 ) , ビス (ジメ トキシホスフィ ノエチル) メチルァ ミ ン ( (CH3 0) 2 P- C H2 CH2 -N (CH3 ) -CH2 CH2 一 P— (OC H3 ) 2 ) , ビス (ジメ トキシホスフイ ノェチル) ェチルァミ ン ( (C H3 0) 2 — P - CH2 CH2 一 N (C H2 CH3 ) 一 CH2 CH2 一 P - (0 CH3 ) 2 ) , ビス (ジメ トキシホスフイノェチル) プロピルアミ ン ( (CH3 0) 2 一 P - CH2 CH2 -N (CH2 CH2 CH3 ) 一 CH2 CH2 一 P— (OCH3 ) 2 ) , ビス (ジメ トキシプロピルホスフィノエチル) ェチルァミ ン ( [CH3 0 (CH2 ) 3 ] 2 一 P— CH2 CH2 -N (CH2 CH3 ) ― CH2 CH2 -P- [ (CH2 ) 3 0CH3 ] 2 ) , ビス (ジメ トキシプロピル ホスフィノエチル) プロピルアミン ( [CH3 0 (CH2 ) 3 ] 2 — P— CH2 CH2 一 N (CH2 CH2 CH3 ) 一 CH2 CH2 一 P - [ (CH2 ) 3 0 CH3 ] 2 ) , ビス (ジエトキンェチルホスフィノエチル) ェチルァミン ( (C H3 CH2 O C H 2 CH2 ) 2 -P- C H 2 CH2 一 N (CH2 CH3 ) - CH2 CH2 一 P— (CH2 CH2 O C H2 CH3 ) 2 ) , ビス (ジエトキシェ チルホスフィノエチル) プロピルアミン ( (CH3 CH, O C H2 CH2 ) 2 一 P - CH2 CH2 -N (CH2 CH2 CH3 ) 一 CH2 CH2 一 P - (CH2 C H2 O CH2 CH3 ) 2 ) , ビス (ジメ トキシプロピルホスフィノエチル) メ ト キシェチルァ ミ ン ( [CH3 0 (CH2 ) 3 ] 2 - P - C H 2 CH2 -N (CH2 CH2 OCH3 ) 一 CH2 CH2 一 P— [ (CH2 ) 3 OCH3 ] 2 ) 及びビス (ジエトキンェチルホスフィ ノエチル) メ トキシェチルァミ ン
( (CH3 CH2 OCH2 CH2 ) 一 P - CH2 CH2 一 N (CH2 CH2 O CH3 ) -CH2 CH2 一 P— (CH2 CH2 OCH2 CH3 ) 2 ) 等が挙げら れる。
また, 上記式 (II) のジホスフィン化合物のうち, Ζがエチレンジォキシ基で ある場合 (以下 POOP型と略す) の例として, ビス (ジフヱニルホスフィノエ チル) ジォキシエチレン ( (C6 H5 ) -P-CH2 CH2 —OCH2 CH2 0— CH2 CH2 —P— (C6 H5 ) 2 ) 又はビス (ジメ トキシホスフイノェチ ノレ) ジォキシエチレン ( (CH3 0) —P— CH2 CH2 -OCH2 CH2 0 一 CH2 CH2 一 P— (OCH3 ) ) , Zが酸素である場合 (以下 POP型と 略す) , ビス (ジフヱニルホスフィノエチル) エーテル ( (C6 H5 ) 2 — P— CH2 CH2 -O- C H2 CH2 — P— (C6 H5 ) 2 ) , Zが硫黄である場合 (以下 P S P型と略す) , ビス (ジフヱニルホスフィノエチル) スルフィ ド ( (C H5 ) 一 P - CH2 C H2 - S - C H2 C H 2 一 P— (C 6 H5 ) 2 ) , Zがメチレン基である場合 (以下 P (CH2 ) n P型と略す) , ビ ス (ジフエニルホスフィノエチル) アルキレンとして, ビス (ジフヱニルホスフ イ ノェチル) テトラメチレン ( (C6 H5 ) - P - C H2 C H2 - (C H2 ) — CH2 CH2 -P- (C6 H5 ) ) , ビス (ジフエニルホスフイノ ェチル) ペンタメチレン ( (C6 H5 ) — P— CH2 CH2 一 (CH2 ) 一 CH2 CH2 -P- (C6 H5 ) ) 等が挙げられる。
上記のように配位子 Xとしてジホスフィン化合物が M≡N結合に配位した中間 体は, 残りの二つの配位座に C 1— , OH—等が配位して tbp構造を形成して安 定化されている。 安定化された中間体は, 電子供与性原子対を有する二座配位子 Yと容易に交換反応を行い, 有用な放射性遷移金属窒化物へテロ錯体を形成する。 このような中間体を形成すると, ひき続いて電子供与性原子対を有する二座配位 子と交換反応を行わせる際に, 光学異性体等を発生させることなく単一の配位構 造の錯体を得ることができる。
二座配位子 Yは 0, S及び Nからなる群より選ばれる二つの電子供与性原子の 組合せを有するが, この電子供与性原子は荷電していてもいなくてもよい。 上記 電子供与性原子の組合せとして, [N— , S― ] , [0—, S— ] , [S一 , S ] , [N- , S] , [N, S" ] , [0, S - ] , [0, 0- ] , [0-, N ] , [N -, N - ] , [0-, S] , [0-, 0っ , [0 , N] , [S, S - ] , [N, N - ] , [0, N- ] , [0, N] , [N, N] , [S, S] ,
[0, 0] , [N, S] 及び [0, S] が挙げられる。 好ましくは, [N一, S - ] , [0-, S ] , [S-, S_ ] , [N -, S] , [N, S- ] , [0, S - ] , [0, 0- ] , [0 , N - ] , [N-, N - ] , [0-, S] ,
[0—, 0_ ] , [0—, N] 及び [S, S— ] が挙げられる。 二座配位子自体 力《生理活性物質からなることが好ましい。 生理活性物質としては, 糖, アミノ酸, 脂肪酸, ホルモン, ペプチド, リセプター結合性リガンド等が挙げられる。 これ らの生理活性物質に, 上記電子供与性原子の組合せを結合せしめることにより, 種々の有用な放射性金属窒化物へテロ錯体を形成する二座配位子が得られる。 例 えば, 電子供与性原子の組合せ [0—, S— ] を有する化合物の例として, 1一 チォー — D—グルコース, チォサリチル酸及びそれらの誘導体等, 電子供与性 原子の組合せ [N -, S— ] を有する化合物の例として, システィン及びシステ インのェチルエステル等のエステル類, システィン残基を有するペプチド, 2— アミノエタンチオール (H2 N-CH2 CH2 -SH)等, 電子供与性原子の組 合せ [S, S— ] を有する化合物の例として, ジチォ力ルバミン酸 [H2 N— C (二 S) -SH] 及びジチォ力ルバミン酸一 N—メチルー S—メチル
[HN (CH3 ) -C (=S) — SCH3 ] , ジチォ力ルバミン酸一 N—ジェチ ノレ [ (C2 H5 ) 2 N-C (=S) 一 SH] , ジチォ力ルバミン酸一 N—ェチ ル [HN (C2 H5 ) 一 C OS) — SH] , ジチォ力ルバミン酸一 N—ェトキ シ一 N—ェチル [C2 H5 ON (C2 H5 ) 一 C (=S) -SH] 等のジチォ力 ルバミン酸誘導体, ジチォカルバジン酸一 N—ェチル [H2 N-N (C2 H5 ) — C (=S) 一 SH] , ジチォカルバジン酸一 N—メチルー S—メチル [H2 N 一 N (CH3 ) —C (=S) — SCH3 ] 等のジチォカルバジン酸誘導体や
[ (シクロペンタジェニル) (ジチォカルボニルシクロペンタジェニル) 鉄
(Π) ] {F e (C5 H5 ) [C5 H4 C = S (SH) ] } 等が挙げられる。
[N, N] を有する化合物の例としてエチレンジァミン類, フヱニレンジァミン 類, [0, 0] を有する化合物の例としてサリチル酸, [0, N] を有する化合 物の例としてダルコサミン等が挙げられる。 これらの化合物自体も生理活性を有 している力 さらに糖, アミノ酸, 脂肪酸, ホルモン, ペプチド, リセプター結 合性リガンド等の生理活性物質をこれらの化合物に結合してもよい。
本発明の放射性遷移金属窒化物へテロ錯体は, まず放射性遷移金属 Mの酸化物 と上述のジホスフィン化合物又はジアルシン化合物 Xとから, tbp構造又は擬 tb P構造を有する遷移金属窒化物錯体の中間体 [ (M≡N) X] int.を得, 次いで これと上述の電子供与性原子の組合せを有する二座配位子 Yとを反応させること により製造される。
すなわち, 下記の如く反応が行われる:
MO4-+ X + D → [ (M≡ N) X] i n t. ( 1 ) [ (M≡ N ) X] i n l. + Y → (Mョ N) X Y ( 2 ) ここで, Dは金属窒化物を形成するための窒素ドナ一である。 窒素ドナーは, 原則として官能基〉 N— N<を有する化合物から選ばれる。 窒素ドナ一 Dの例と して, カルバジン酸及びジチォカルバジン酸一 N—メチルー S—メチル (H2 N — N (CH3 ) 一 C (=S) S CH3 ) , ジチォカルバジン酸一 S—メチル (H2 N-NH-C (=S) S CH3 ) , ジチォカルバジン酸一 N—メチル一 S — 2—プロピオン酸 (H2 N— N (CH3 ) — C (=S) S CH (CH3 ) CO OH) 等のカルバジン酸誘導体; ヒドラジン及びヒドラジン誘導体, コハク酸ジ ヒドラジド, ァセチルヒドラジド, ィソニコチン酸ヒドラジド等のヒドラジド誘 導体, 及びアジ化ナトリウムなどが挙げられる。 ジチォカルバジン酸一 N—メチ ルー S—メチル, コハク酸ジヒ ドラジド, ァセチルヒ ドラジド, イソニコチン酸 ヒドラジド, アジ化ナトリウム等が, 窒素ドナ一 Dとして好適に用いられる。 窒 素ドナ一 Dは単独で用いてもよいが, 異なる種類を併用したり追加したりして用 いることによって中間体の収率を向上することもできる。 (1 ) 式の中間体の生 成反応において, 塩化第一スズ, 亜ジチオン酸ナトリウム等の還元剤を併用して もよい。 遷移金属 Mの酸化物としては, 99m T c 04 ― , 186 R e 04 ― , 188 R e 04 — 等が用いられる。 生理活性分子と遷移金属窒化物との配位をより厳密にコントロールすることは, 得られる放射性医薬品の性質を決定する上で非常に重要である。 上記 (1)式で 得られる中間体は, 反応溶液の pHが酸性領域である場合は, ビスホスフィ ン化 合物が配位した後の残りの配位子に C 1― 又は OH—等が配位した中間体の混合 物であるので, pH緩衝液の存在下で pHを?〜 10に調整することによって単 一の構造の中間体を得ることができ, 交換反応をより厳密にコントロールするこ とができる。
中間体の生成反応は, 室温〜 150°C, 酸性 pHで 10〜30分間実施される c 上記 (2)式で表される配位子の交換反応は, (1)式で生成した中間体を, 室温〜 50 °Cに冷却後, p Hが 7〜 10好ましくは約 8になるように, 例えば HC03 ― /CO 3 2—緩衝液を添加して行われる。 緩衝液は pHを 7〜10に保 つことができればその種類は制限されず, リン酸ニ水素力リウム /リン酸水素二 ナトリウム, リン酸ニ水素力リゥム Z水酸化ナトリウム等のリン酸ナトリウム緩 衝液も使用される。
配位子 Xと二座配位子 Yとの化学量論比 XZYは得られる放射性金属窒化物へ テ口錯体の収率に影響するが, 配位子 Xと二座配位子 Yの組み合わせによって適 切な比率は異なる。 例えば, 配位子 Xが PNP型の場合, 二座配位子 Yがジチォ カルバジン酸一 N—メチル一S—メチル, アミノエタンチオール, システィンェ チルエステル, 1一チォー yS— D—グルコース, チォサリチル酸の場合は特に化 学量論比 X/Yの制限はない力く, ジチォ力ルバミン酸ジメチル, ジチォカルバミ ン酸一 N—ジェチル, ジチォカルバミン酸—N—エトキン一N—ェチルを用いた 場合は XZYく 1では二座配位子 Yが二つ置換した錯体, 99m Tc (N)
(Y) 2 が副産物として生成し目的とする非対称な放射性金属窒化物へテロ錯体 の収率が減少する。 従って ΧΖΥ≥ 1となるように条件を選択するのが好ましい c 又, Υの二置換錯体99 m Tc (N) (Y) 2 の生成を防ぐ他の方法として, Υ の立体障害を増大させることが考えられる。 例えば, Υとして [ (シクロペン夕 ジェニル) (ジチォカルボニルシクロペンタジェニル) 鉄 (π) ] (以下 FcC Sと略す) を用いた場合, F c C Sの二置換錯体の生成は殆どなく, XZF c C S=lのとき99 m Tc (N) (FcCS) 2 の生成率は 5 %以下であった。 これ は例えば, この二座配位子の大き 、立体障害によつて二置換体の生成が抑制され たものと考えられる。 このことは, R (R' ) -N-C (=S) S— や R (R' ) 一 C一 C (=S) S— タイプの大きい立体障害を有する二座配位子を用いると二 置換錯体99 m Tc (N) (Y) 2 の生成が少いことを示している。
(1) 式及び (2) 式の反応により得られた放射性遷移金属窒化物へテロ錯体 は, 薬学的に許容されるァスコルビン酸, ρ—ァミノ安息香酸等の安定化剤, 炭 酸ナトリウム緩衝液, リン酸ナトリウム緩衝液等の ρΗ調節剤, メダルミン等の 溶解剤, D—マンニトール等の賦形剤等の添加物と無菌的に混合することにより, 放射性イメージング診断剤又は放射性治療薬に調製することができる。 また, こ れらの添加物と組合せた用時調製用キッ卜の形態でも本発明の放射性イメージン グ診断剤又は放射性治療薬の提供が可能である。
本発明の放射性ィメージング診断剤及び放射性治療薬は, 静脈内投与等の一般 的に用いられる非経口手段により投与することができ, その投与量は患者の年齢, 体重, 対象疾患状態, 使用する放射線イメージング装置等を考慮し, イメージン グ及び治療が可能と考えられる放射能の量に応じて決定される。 ヒトを対象とす る場合, 99m Tcの標識物を用いた診断剤の投与量は, 99m Tcの放射活性に換 算して, 37MB Q〜1, 850 MB qであり, 好ましくは 1 85MB q〜74 0MB qである。
186 Re又は'88 Reの標識物を用いた治療薬の投与量は, 放射活性に換算し て, 37MBC!〜 1 8, 500 MB qであり, 好ましくは 37 0 MB (!〜 7, 4 00MB Qである。
本発明に係る放射性ィメ一ジング診断剤及び放射性治療薬は上述の投与量で使 用する限り, 何ら急性毒性は見られなかった。
実施例
以下本発明を実施例により, さらに詳細に説明する力^ 本発明はこれらの実施 例に限定されるものではない。
以下の実施例の配位子 Xとして用いるジホスフィン化合物および二座配位子 Y に次のように略称を付する。
ジホスフィン化合物 X: PNP ; (C6H5)2PCH2CH2N(C2H5)CH2CH2P(C6H5)2
PNP 1 ; (C6H5)2 CH2CH2PCH2CH2N(CH2CH2CH3)CH2CH2PCH2CH2(CSH5)2
PNP 2 ; (C6H5)2PCH2CH2N(CH2CH20CH3)CH2CH2P(CsH5)2
PNP 3 ; [CH30(CH2)3]2PCH2CH2N(CH2CH20CH3)CH2CH2P[(CH2)30CH3]2
PNP 4 ; (C6H5)2PCH2CH2N(CH2CH2CH2CH3)CH2CH2P(C6H5)2
PNP 5 ; (C6H5)2PCH2CH2N(CH2C0CH3)CH2CH2P(C6H5)2
POP ; (C6H5)2PCH2CH20CH2CH2P(C6H5)2
POOP ; (C6H5)2PCH2CH20CH2CH20CH2CH2P(C6H5)2
PSP ; (C6H5)2PCH2CH2SCH2CH2P(C6H5)2
二座配位子 Y:
DTC ; ジチォカルバジン酸一 N—メチルー S—メチル
NS ;アミノエタンチオール
C y s OE t ; システィンェチルエステル
t s a ;チォサリチル酸
DEDC ; ジチォカルバミン酸一 N—ジェチル
NOE t ; ジチォ力ルバミン酸一 N—エトキシ—N—ェチル
— g 1 u ; 1—チォー 3— D—グルコース
F c CS ; [ (シクロペンタジェニル) (ジチォカルボニルシクロペンタジェ二 ル) 鉄 (Π) ]
中間体の生成反応
5 mgのコハク酸ジヒドラジド (以下 SDHと略す) を含むバイアルに, 1. 5mgのビス (ジフヱニルホスフィノエチル) ェチルァミン (PNP) をェタノ —ル 0. 6mlと塩酸水溶液 0. 1m l (1. 0 m o 1 Z 1 ) との混合物に溶解 させて得られた溶液を, 次いで生理学的に認容性の99 m TcO 溶液 (0. 5m 1, 5 0 MB q) を加え, 得られた混合物を 8 0 °Cで 2 0分間加熱した。
得られた中間錯体を高速薄層クロマトグラフィー (HTLC) 及び高速液体ク 口マトグラフィ一 (HPLC) によって分析した。 図 1及び図 2にェタノ一ノレ Z クロ口ホルム Zベンゼン (0. 8 5/2/1. 5) 混合物でシリカゲルプレート に展開した錯体のラジオクロマトグラムを示す。 酸性におけるクロマトグラムに は 3つのピークが見られ, 3種の生成物が得られたことが分かる (図 1) 。 一方 pHを約 8以上に調整するとクロマトグラムは単一のピークとなる (図 2) 。 こ のことからは, PNPが配位した残りの配位座が, 酸性においては C 1— 又は水 分子のような不安定な配位子によって占められ, p Hを約 8以上に変化させるこ とによって, これらの配位子が OH基により置換され単一のピークを示すと考え れ o
例 2 1—チォ一 3— D—グルコース (yg— g 1 u) と中間体との反応
5mgの SDHと 1. 5mgの PNPとを, エタノール 6 m 1及び H C 1 水溶液 0. lmg (lmo l/l) の混合物に溶解し, 次いで生理学的に認容性 の99 m Tc04 溶液 (0. 5m 1, 50 MB q) を加えた。 混合物を 80 °Cで 2 0 分間加熱し, 次いで 40°Cに冷却後, これに 0. 25 m 1の HC03— /C03 2-緩衝液 を加えて pHを約 8. 0に調整し, 続いて 1. 5m lの水に溶解した 0. 5mg の β— g 1 uを添加した。 最終的に得られた錯体を HTLC及び HP LCによつ て分析した。 図 3にテトラヒドロフランでシリカゲルプレー卜に展開した錯体の ラジオクロマトグラムを示す。 最終錯体の放射化学的純度は 95%より高かった。 錯体は T c≡N基を含み, その金属イオンに一つの PNP二座配位子がトランス 位に配位し, また残りの二座にジァニオンを含むもう一つの二座配位子である /3 一 g 1 u力く, 陰性ィォゥ原子とヒドロキシ基のプロトンを失った酸素とを介して シス位に配位しており, 錯体は安定であった。
チォサリチル酸 (t s a) と中間体との反応
5mgの SDHと 1. 5mgの PNPとを, エタノール 0. 6m l及び HC 1 水溶液 0. 1 mg (lmo 1Z1) の混合物に溶解し, 次いで生理学的に認容性 の99 m Tc04—溶液 (0. 5ml, 50 MB q) を加えた。 混合物を 80°Cで 20 分間加熱し, 次いで室温に冷却後, これに 0. 0 5 m 01 Z 1のリン酸ナトリゥ ム緩衝液 1 m 1を加えて pHを約 7. 8に調整し, 続いて 0. 20mlのェタノ —ルに溶解した 5. 01118の1; 3 aを加え, 混合物を室温に 5分間放置した。 最 終的に得られた錯体を HT L C及び H PLCによって分析した。 図 4にエタノー ル /クロ口ホルム/ベンゼン (0. 7/2Z1. 5 ) 混合物でシリカゲルプレー 卜に展開した錯体のラジオクロマトグラムを示す。 最終錯体の放射体の放射化学 的純度は 95%より高かった。 錯体は Tc≡N基を含み, その金属イオンに一つ の PNP二座配位子がトランス位に配置し, また残りの二座に, 二座配位子であ るジァニオン t s a力 <, プロトンを失った陰性ィォゥ原子とカルボキシル基のプ 口トンを失った酸素とを介して配位しており, 錯体の溶液は安定であった。
± ジチォカルバミン酸一 N—エトキン一 N—ェチル (NOE t) と中間体 との反応
5mgの SDHと 1. 5mgの PNPとを, エタノール 0. 6 m 1及び H C 1 水溶液 0. 1 mg (lmo 1/1) の混合物に溶解し, 次いで生理学的に認容性 の99 m TcOr溶液 (0. 5m 1, 50 MB q) を加えた。 混合物を 80°Cで 20 分間加熱し, 次いで室温に冷却後, これに 0. 05 m o 1 Z 1のリン酸ナ卜リウ ム緩衝液 1 m 1を加えて pHを約 7. 8に調整し, 続いて 0. 5 0 m 1の水に溶 解した 5. Omgの NOE tを加え, 混合物を室温に 5分間放置した。 最終的に 得られた錯体を HTLC及び HPLCによつて分析した。 図 5にエタノール/ク ロロホルム Zベンゼン (1Z2Z1. 5) 混合物でシリカゲルプレートに展開し た錯体のラジオクロマトグラムを示す。 最終錯体の放射化学的純度は 95%より 高かった。 錯体は Tc≡N基を含み, その金属イオンに一つの PNP二座配位子 がトランス位に配位し, またモノァニオン NOE tが CS2 —基の二つのィォゥ 原子により残りの二座に配位しており, 錯体の溶液は安定であつた。
例 5 システィン (Cy s) 及びシスティンエステル (Cy s OE t) と中間 体との反応
5mgの SDHと 1. 5mgの PNPとを, エタノール 0. 6ml及び HC 1 水溶液 0. lmg (lmo 1/1) の混合物に溶解し, 次いで生理学的に認容性 の99 m Tc04—溶液 (0. 5m 1, 50 MB q) を加えた。 混合物を 80°Cで 20 分間加熱し, 次いで室温に冷却後, これに 0. 05 m o 1 / 1のリン酸ナトリゥ ム緩衝液 1 m 1を加えて pHを約 7. 8に調整し, 続いて 0. 5 0 m 1の水に溶 解した 3. Omgの Cy sを加え, 混合物を室温に 30分間放置した。 最終的に 得られた錯体を HTLC及び HPLCによって分析した。 図 6にエタノール/ク ロロホルム Zベンゼン (0. 85/2/1. 5) 混合物でシリカゲルプレートに 展開した錯体のラジオクロマトグラムを示す。 最終錯体の放射化学的純度は 90 %より高かった。 錯体は Tc≡N基を含み, その金属イオンに一つの PNP二座 配位子がトランス位に配位し, ジァニオン Cy s力く, プロトンを失ったィォゥ原 子及びプロトンを失ったァミノ基の窒素原子により残りの二座に配位している。 C y sのカルボキシル基が金属の配位に関与していないことは, 上記工程におい て, エステル誘導体 (Cy s OE t) を用いる実験によってわかった。 Cy sO E tは C y sのカルボキシル基の OH基がエトキシ基で置換されてなるものであ る力 この配位子 (Cy s OE t) から得られた最終錯体の放射化学的純度は 9 3%より高かった (図 7) 。 すべての錯体の溶液は安定であった。
例 6 テトラべプチド Cy s— Ly s— P r o— Va 1 -NH2 と中間体との K
5mgの SDHと 1. 5mgの PNPとを, エタノール 0. 6ml及び HC 1 水溶液 0. lmg (lmo 1/1) の混合物に溶解し, 次いで生理学的に認容性 の99"1 T c 04 溶液 (0. 5m 1, 50 MB q) を加えた。 混合物を 80でで 20分間加熱し, 次いで室温に冷却後, これに 0. 05 m o 1 Z 1のリン酸ナト リウム緩衝液 1 m 1を加えて pHを約 7. 8に調整し, 続いて 0. 20 m 1の水 に溶解した 1. 0 mgのテトラべプチド Cy s— Ly s— P r o— Va l— NH2 を加え, 混合物を室温に 30分間放置した。 最終的に得られた錯体を HT LC及び HPLCによって分析した。 図 8にメタノール Zァセトニトリル Zテト ラヒドロフラン Z酢酸アンモニゥム (3Z3Z2Z2)混合物で逆相 C 1 8プレ —卜に展開した錯体のラジオクロマトグラムを示す。 最終錯体の放射化学的純度 は 90%より高かった。 錯体は Tc≡N基を含み, その金属イオンに一つの PN P二座配位子がトランス位に配位し, ジァニォン性テトラぺプチドリガンドが, プロトンを失ったィォゥ原子及び末端システィン残基のプロトンを失った窒素原 子により残りの二座に配位しており, 錯体の溶液は安定であつた。
_ 中間体の生成反応
(1) 式で示される金属窒化物へテロ錯体の中間体の製造において, 窒素ドナ —Dの種類およびジホスフィン化合物 Xの種類を変えて, それらの影響について 調べた。
遷移金属として99 m Tc, 窒素ドナ一 Dとして DTC, ジホスフィ ン化合物 X として PNP 1, PNP 2, PNP 4, PNP 5, POP, POOPを用いた。
1. Omgの DTCと 3. Omgの X (X=PNP 1, PNP 2, PNP 4, PNP 5, POP, POOP) をそれぞれ 1 m 1のエタノールに溶解し, 0. 1 mlの塩酸水溶液 (1. Omo lZl) と 1. 0mlの99"1 Tc04 Na (約 4 00 MB q) をバイアルに加え, 1 5— 30分間室温に保った。
得られた中間体を薄層クロマトグラフィー (TLC: シリカゲルプレート) で 展開したところ, ジホスフィン化合物 Xの種類を変更した中間体のいずれも単一 のピークを示し収率は 98 %以上であつた。
TLC (シリカゲルプレート) の条件は, 移動相;エタノール/ クロ口ホルム Iベンゼン (1. 5/ 2/ 1. 5 ; R f = 0. 53) , 又は, エタノール/ クロ 口ホルム/ トルエン/酢酸アンモニゥム (0. 5M) (5/ 3/ 3/ l ; Rf = 0. 68) で行った。
例 8 中間体の生成反応
例 7と同様にして, 5. Omgの SDHと 3. 0 m gの X (X = P N P 1, PNP 2, PNP 4, PNP 5, POP, POOP) を, それぞれ lmlのエタ ノールに溶解し, 0. lmlの塩酸水溶液 (1. 0mo l/l) と 1. 0mlの 99m Tc04 Na (約 400 MB q) をバイアルに加え, 1 5— 30分間室温に 保った o
得られたそれぞれの中間体を TLC (シリカゲルプレート) で展開したところ, 残留パ一テクネテートは見られなかったが中間体はいずれも混合物であった。 そ こでこの混合物に, 二座配位子 Yとして 1. 0 mgの DTCを更に室温で加える といずれの中間体混合物も瞬間的に単一のピークを示す化合物に変化した。 収率 は 98%以上であった。 この化合物の TLCのパターンは例 7の化合物と同じで あることから, 同一化合物であると考えられた。 このことから DTCは窒素ドナ —Dとして有用であると同時に, 二座配位子 Yとしても有用であることが明らか にされた。
例 9 中間体の生成反応
例 7と同様にして, 窒素ドナ一 Dとして 5. Omgの DTCOOH (ジチ才力 ルバジン酸一 N—メチル一S— 2—プロピオン酸) と 3. Omgのジホスフィン 化合物 X (X=PNP 1, PNP 2, PNP 4, PNP 5, POP, POOP) をそれぞれ 0. 1 m 1のエタノールに溶解し, 0. 1 m lの塩酸水溶液 (1. 0 mo 1 / 1 ) と 1. 0mlの99 m Tc04 N a (約 4 00 MB q) をバイアルに 加えた。 バイアルを 1 5— 3 0分間室温に保った後, pHを 0. 2 5mgの NaHCOs /Na2 C03 (0. 5 M) を加えて p H= 1 0に調整した。
得られた中間体を TLC (シリカゲルプレート) で展開した。 ジホスフィン化 合物 Xの異なるいずれの中間体も, 単一ピークを示し収率は 9 8%以上であった。 例 1 0 錯体の生成反応
非対称な放射性金属窒化物へテロ錯体の生成反応に対するジホスフィン化合物 Xと二座配位子 Yの影響を調べるため, 式 (1) で示される中間体の生成反応に 続いて, 緩衝液 (NaH2 P04 ZNa2 HP04 , pH= 7. 4又は
NaHCOs /Na2 C03 , pH= 1 0) を添加して反応液の p Hを調整し, 適当な二座配位子 Yを添加してバイアルを室温に保った。 最終的に得られた錯体 99m Tc (N) (X) (Y) を TLCでモニタ一した。
窒素ドナ一 Dとして SDH, ジホスフィン化合物 Xとして PNP 1, PNP 2, PNP 4, PNP 5, 二座配位子 Yとして電子供与性原子対 [ΝΗ— , S] , [ΝΗ, S— ] 又は [0—, S ] を有する DTC, NS, Cy s OE t, t s a, S— g 1 uをそれぞれ用いた。
5. Omgの SDHと 3. 0 m gの X (X = P N P 1, PNP 2, PNP 4, PNP 5) それぞれを 1 m 1のェタノールに溶解し, 0. 1 m lの塩酸水溶液 (1, 0mo l/l) と 1. 0mlの99 m TcOi Na (約 4 0 O MB Q) をバ ィアルに加え, 混合物を 3 0分間室温に保った。 0. 2 5mgの NaHC03 / Na2 C03 (0. 5M) を加え pH= 1 0に調整した後, 0. 7mgの NSを 加えた。 錯体99 m Tc (N) (X) (NS) の形成は一瞬のうちに行われ, 収率 は 9 5%以上であった。 NS以外の二座配位子 Yについても同様であった。
得られた錯体を TLC (シリカゲルプレート) に展開したところ, 単一のピー クを示した。 TLC (シリカゲルプレート) は, 移動相;エタノール/ クロロホ ルム / ベンゼン (1. 5/ 2/ 1. 5 ; R f = 0. 4 5) , 又はエタノール/ ク ロロホルム/ トルエン/酢酸アンモニゥム (0. 5M) (5/ 3/ 3/ 0. 5 ; R f = 0. 52) で行った。
例 1 1 錯体の生成反応
ジホスフィン化合物 Xとして PNP 1, PNP 2, PNP 4, PNP 5, 二座 配位子 Yとして電子供与性原子対 [S—, S] を有する DEDC, NOE t, F c C Sを用いてその錯体形成に対する影響を検討した。 典型的な工程を Y = D E D Cの場合について示す。
5. Omgの SDHと 3. 0 m gの X (X= P N P 1, PNP 2, PNP 4, PNP 5) をそれぞれ 1 m 1のエタノールに溶解し, 0. 1 m 1の塩酸水溶液 (1. Omo lZl) と 1. Om 1の99 m Tc04 Na (約 40 OMBq) をバ ィアルに加え, 混合物を 30分間室温に保った。 0. 25mgの NaHC03 Z Na2 COs (0. 5M) を加え pH= 1 0に調整した後, 0. 2mgの DED Cを加えた。 錯体99"1 Tc (N) (X) (DEDC) の形成は一瞬のうちに行わ れ, 収率は 90 %以上であった。
得られた錯体を TLC (シリカゲルプレート) で展開したところ, 単一のピー クを示した。 TLC (シリカゲルプレート) は, 移動相;エタノール/ クロロホ ルム / ベンゼン (1. 5/ 2/ 1. 5 ; R f = 0. 34) , 又はエタノール/ ク ロロホルム/ トルエン/酢酸アンモニゥム (0. 5M) (5/ 3/ 3/ 0. 5 ; R f = 0. 75) で行った。
二座配位子 DED NOE tを用いた場合, 二座配位子 Yの使用量を増大す ると, 非対称な99"1 Tc窒化物へテロ錯体形成の副反応である9^ Tc (N) (Y) 2 の生成反応が伴ったが, 生成量は Xと Yの比率によって変化し, Yの絶 対量に依存するものではなかった。 即ち, 本実施例で用いた二座配位子 Yはいず れのジホスフィン化合物に対しても, ジホスフィン化合物 Xと二座配位子 Yの化 学量論比 X/Y≥ 1のとき非対称な99 m Tc窒化物へテロ錯体の収率は高く, X ZY< 1のときは二座配位子の二置換体99 m Tc (Ν) (Υ) 2 の生成が多く見 られ非対称な99"1 Tc窒化物へテロ錯体の生成は減少した。 又, 二座配位子 F c CSを用いた場合99 m Tc (Ν) (Υ) 2 の生成は殆どなく, XZF c CS= l のとき 5%以下であった。 DEDCを用いた場合の Xと Yの比率 XZY, Xの使用量, Υの使用量, 及び99 m Tc (Ν) (PNP 1 ) (DEDC) の収率との関係を下表に示す c
X/Y X (mg) Y (m ) 収率 (%)
1 5 3. 0 0. 2 90
1 0 1 0. 0 1. 0 78
1 0 5. 0 0. 5 76
1 0 3. 0 0. 3 8 1
1 1 0. 0 1 0. 0 46
1 5. 0 5. 0 50
1 3. 0 3. 0 52
0. 3 3. 0 1 0. 0 26
0. 1 1. 0 1 0. 0 20
0. 1 0. 5 5. 0 2 1
例 1 2 錯体の生成反応
ジホスフィン化合物 Xとして POP, 二座配位子 Yとして [NH— , S] , [NH― , S - ] , [0— , S— ] , [S, S ] 等を有する DTC, DEDC, NOE t, t s a, F c CS, yS- 1 u, Cy sOE t, NSを用いてその錯 体形成に対する影響を, 実施例 1 0と同様に錯体9^ Tc (N) (X) (Y) を 合成し検討した。
Y = DTCの場合, 99m T c窒化物へテロ錯体99 m T c (N) (POP) (DTC) + が放射化学純度 95%以上で得られた。 しかし, Y = DEDC, N OE t, t s a, F c CS, β- g l u, Cy sOE t, NSを用いた場合は Y の二置換体である錯体 99m Tc (Ν) (Υ) 2 の生成が常に伴った。 Υを二つ含 む二置換錯体の生成の程度は, DEDC>NOE t > t s a〉F c CS〉yS— g 1 u >Cy s OE t >NSの順であつた。
例 1 3 錯体の生成反応
ジホスフィン化合物 Xとして POOP, 二座配位子 Yとして [NH— , S] , [NH―, S― ] , [0— , S - ] , [S, S ] 等を有する DTC, DEDC, NOE t, t s a, F c CS, ~g \ u, Cy sOE t, NSを用いてその錯 体形成に対する影響を, 実施例 1 0と同様に錯体 Tc (N) (X) (Y) を 合成し検討した。 POOPを用いた場合は, 使用したすべての二座配位子に対して99 m Tc窒化 物へテロ錯体99 m Tc (N) (POOP) (Y) °/+ が得られ, Yの二置換錯体 は生成しなかった。
例 1 4 体内分布
一般式99 m Tc (N) (X) (Y) で示される99 m Tc窒化物へテロ錯体の体 内分布を, 二座配位子 Yとして DTCを用い, 下記のジホスフィン化合物 Xにつ いて99 m Tc窒化物へテロ錯体を合成し, それらのラットにおける体内分布につ いて検討した。
99m Tc (N) (X) (DTC) + タイプの99" Tc窒化物へテロ錯体を, 下 記ジホスフィン化合物 POP, PNP 1, PNP 2, P N P 3を用いて合成した。 POP: (CsH5)2PCH2CH20CH2CH2P(C6H5)2
PNP 1 (C6H5)2 PCH2CH2N(CH2CH2CH3)CH2CH2P(C6H5)2
PNP 2 (C6H5)2 PCH2CH2N(CH2CH20CH3)CH2CH2P(C6H5)2
PNP 3 [CH30(CH2) 3] 2PCH2CH2N(CH2CH20CH3)CH2CH2P [(CH2) 30CH3]
99m Tc窒化物へテロ錯体99"1 Tc (N) (X) (DTC) + の生成
1. Omgの DTC, 0. 1 mgの S n C 12 を溶解した水 0. lml, 1
0m 1のエタノール及び 3. Omgの X (X = POP, PNP 1 , PNP 2, P NP 3) を含むバイアルに 0. 25mlの99 m Tc04 — (1 00— 500 MB q) を添加し, このバイアルを室温で 30分又は 80°Cで 1 5分放置した。 錯体 の収率は 90 %以上であつた。 得られた錯体は, 逆相クロマトグラフィ一で, 使 用カラム; PRP— 1ノヽミルトンカラム, 移動層; [ NH4 ][CH3 COO] (0. 1 M) /CH3 CN (0. 1 %THFを含む) = 90/1 0, 流速; 0. 5ml/ m i nの条件で確認した。
体内分布測定
ラットに注射する前に, バイアルの内容物を 1 0%の Twe e η 80 (ポリオ キシエチレンソルビタンモノステアレート) を含むリン酸緩衝液 (0. 1 mo 1 I dm3 , pH=7. 06) で希釈した。 錯体は溶液中又はヒト血漿中で少なく とも 6時間安定であつた。
体重 200 - 250 gの雄の Spraque-Dawleyラット (SDラット) を用いて体 内分布を測定した。 24時間断食の後ラットに腹腔内麻酔を行い, 頸静脈に注射 の後異なる時間ごとに器官を切除し, 洗浄, 重量測定を行った。 又血液サンプル を集め重量測定した。 体内分布データは投与放射能量に対する器官重量当り (g) の放射能量の割合 dose/g) を平均値土有意差で示した。 ラット数は n = 5で 行った。 測定結果を表 1〜表 4に示す。
実験に用いたヘテロ錯体の構造は, ジホスフィン化合物の相違点以外は同じな ので体内分布の相違はジホスフィン化合物の相違を反映していると考えられる。 ここで用いたジホスフィン化合物は, R2 P— CH2 CH2 -Z-CH2 CH2 一 PR2 と表すことができ, 二つの R基がそれぞれリン原子に結合し, 橋掛け基 である Zは, 二つのエチレン基に結合している。 Rがフヱニル基で, Z基を Z = 0, >N-CH2 CH2 CH3, >N-CH2 CH2 OCH3 の如く変化させたと き, すべての錯体の体内分布は, 脳および心臓に対する集積は特に著しいもので はなく, 肺および血液からのゥォッシュアゥトは比較的早く, 錯体は肝臓および 腎臓を通じて排泄された。
Rを—CH2 CH2 CH2 0 CH3 で置換し, Zを〉 N— CH2 CH2 0 CH3 とした錯体99"1 Tc (N) (PNP 3) (DTC) + は特に心臓に著しく 高い集積を示しかつ測定時間内は殆ど一定の値を示した。 肺, 血液からのゥォッ シュアゥトは速く, 腎臓及び肝臓からも比較的速く排出され, この錯体の代謝は 容易であると思われる。 このような心臓への高い集積は, 99m Tc (N) (PN P 3) (DTC) +或いはその誘導体が心筋血流の診断薬として用いることがで きる可食 έ性を示すものである。
例 1 5 二座配位子システィンーデシブラミンおよびその99 m Tc窒化物へテロ 錯体の合成
システィンーデシプラミンの合成
抗うつ作用を有する生理活性物質であるィミブラミンの誘導体であるデシブラ ミンにシスティンを結合したシスティン一デシブラミン (以下 DES Iと略す) を図 9に示した合成スキームにしたがって合成した。
この二座配位子 DE S Iはシスティンのカルボキシル基とデシブラミンの末端 窒素原子間のアミ ド結合により得られる。 錯体の合成
ジホスフィン化合物 Xとして PNP 3, 二座配位子 Yとして DE S Iを用いた 99m T c窒化物へテロ錯体 (以下99 m T c N— DE S Iと略す) を下記の如く合 成した。
( 1 ) 5 mgの SDHと 0. 1 m gの S n C 12 を懸濁させた 0. 1 m 1の生理 食塩水の入ったバイアルに, 0. 2 5 0 m 1の99"1 T c 04 N a (5 0. 0MB Q- 3. O GB q) を加え 1. 0 m 1のエタノールを添加し, 室温に 1 5分保つ た。 次いで, この溶液に 0. 1 m 1のエタノールに溶解した 3. O mgの PNP 3および 0. 1 m lの水に溶解した 5. 0111 の0£ 3 1を加ぇ, 1 0 0 °Cで 1 5分加熱した。 この放射化学的純度は 9 5 %以上であった。
(2) 99m T c 04 Na, SDH, S n C l 2 , P N P 3および D E S Iを同じ バイアルに, 次のような方法で添加する一段法で (1 ) と同じ錯体を合成した。 SDH 5 mg, S n C 12 0. 1 mg, PNP 3 3. Omgおよび DE S I 5m gを, 1. 0m lのエタノール, 0. 5 m 1の生理食塩水を含むバイアルに加え, 次いで 0. 2 5 0 m lの99 m T c 04 Na (5 0. OMB q— 3. O G B Q) を 添加した。 このバイアルを 1 0 0°Cで 3 0分間加熱した。 放射化学的純度は 9 0 %以上であった。
分析
得られた T cN-DE S I錯体を薄層クロマトグラフィー (TLC) , 高 速液体クロマトグラフィー (HP LC) , 電気泳動及びイオン交換クロマトグラ フィ一によつて同定した。 測定条件は以下の通りである。
TLC : シリカゲルプレート ;移動相;エタノール Zクロ口ホルム /ベンゼン ( 1. 5/2/1. 5) , R f : 0. 1 9 :逆相; C 1 8プレート :移動相;メ タノール/ァセトニトリル Zテトラヒドロフラン Z酢酸アンモニゥム (0. 5 m o l /c c) , R f : 0. 3 1
HPLC :ベックマン社製高速液体ク口マトグラフィ一を用いた。 逆相; C 1 8 プレート :溶出; 1 m 1 Zm i n, A: トリエチルァミン (NE t 3 0. 1 M, pH= 3 (1 M-H3 P〇4 添加) , B :ァセトニトリル
錯体の保持時間 2 5分に対し, 錯体を形成していないリガンドの保持時間は 7分 であつた。
電気泳動: ヮッ トマンぺ一パ一, 電圧 (AV) : 150 V, 1. 5 hr, リン酸 緩衝液 (0. 1M) を用いて行った。 錯体が中性であるということを示す移動は 見られなかった。
イオン交換クロマトグラフィー:陽イオン交換樹脂; S e p— Pak CM (COONa) , M i 1 1 p o r e, 陰イオン交換樹脂; Sep— Pak
QMA (CONH (CH2 ) 3 N (CH3 ) 3 + C I) , Mi 1 l po r e, 逆 相カラム; Sep— Pak C 18 M i 1 1 p o r eを用いた。 錯体は, 陽ィ ォン交換樹脂では約 95 %, 陰ィォン交換樹脂では約 60%, 逆相カラムでは 9 9. 5%保持された。 逆相カラムの高い保持は, 錯体が高い脂質親和性を有する ことを示している。
99m T c N-DE S Iの構造
以上の実験から, 99m TcN— DES Iの構造は, 図 10に示した如くである と推定した。
例 16 9m TcN-DES Iの体内分布
例 15で得られた99 m T c N— DE S Iの SDラットにおける体内分布を測定 した。
ラットに注射する前に, 9Sm TcN— DES Iを HPLCによって過剰の遊離 した二座配位子から分離精製した。 活性成分は 5 m 1の 95 %エタノ一ルで活性 ィヒした S e p— P a kカートリッジに通して, 更に精製した。 最終の活性成分を 95 %エタノールにより回収し, 10 %Twe e n 80を含む生理食塩水で希釈 し 7>— o
ラットは A群と B群の二つのグループに分けた。 A群には 20〃C iの99 m T cN-DES Iを注射した。 B群には, 20 /C iの99"1 TcN— DES Iを注 射すると同時に 1. 0mg/k gの未標識のデシプラミンを注射した。
体重約 250 gの SDラットをキラジン (18mgZkg) , ケ夕ミン (15 mg/kg) の混合物で腹腔内麻酔を行い, 頸静脈に注射の後異なる時間ごとに 器官 (脳, 心臓, 肺, 肝臓, 脾臓, 腎臓, 筋肉, 副腎, 顎下腺) を切除し, 洗浄, 重量測定を行った。 又血液サンプルを集め重量測定した。 体内分布データは投与 放射能量に対する器官重量当り (g) の放射能量の割合 (%doseZg) を平均値 土有意差で示した。 ラット数は n= 3で行った。 測定結果を表 5〜表 8に示す。
99m TcN— DES I錯体は, 心臓にかなり集積し, 副腎には非常に高い集積 を示した。 活性成分は肝臓および腎臓を通じて極めて速い速度で排泄された。 又, 表 7, 8に示したように, 脳領域における体内分布については, 非標識デシブラ ミンを投与した B群は, 皮質への集積が極度に低いのに対して非標識デシブラミ ンを投与していない A群は, g9m TcN— DES I錯体が皮質に特異的に集積し ていることが示されており, セロトニンレセプタ一に対する特異性が保持されて いることを示唆している。
表 1. ラットにおける99 m Tc (N) (POP) (DTC) +の体内分布
時 間 rfn 液 脳 心 臓 肺 肝 臓 脾 廳 賢 臓
¾dose/g %dose/g %dose/g ¾dose/g ¾dose/g %dose/g ¾dose/g ¾dose/g
Omin 2.617 ±0.04 0.142 ±0.14 0.923 ±0.04 2.792 ±0.18 3.662 ±0.43 2.202 ±0.07 0.522 ±0.09 3.141 ±0.35
2min 1.254 ±0.19 0.073 ±0.00 0.73 ±0.07 2.387 ±0.08 4.821 ±0.71 3.587 ±0.99 0.493 ±0.02 5.952 土 0.74 lOmin 0.542 ±0.02 0.029 ±0.00 0.434 ±0.05 1.19±0.40 6.161 土 0.47 3.538 ±0.70 0.653 ±0.06 4.805 ±0.51
30min 0.547 ±0.01 0.023 ±0.00 0.428 ±0.05 1.05±0.13 6.199 +0.15 2.07 ±0.55 0.216 ±0.01 3.25±1.12 lhr 0.261 ±0.14 0.019 ±0.00 0.42 ±0.05 0.771 ±0.09 5.128 +0.15 3.542 ±1.23 0.944 ±0· 16 5.054 ±0.18
2hr 0.145 ±0.01 0.018 ±0.01 0.384 ±0.00 0.757 ±0.05 3.05 ±0.07 4.32±0.19 1.857 ±0.22 5.145 ±0.11
4hr 0.125 ±0.00 0.01 ±0.00 0.303 ±0.01 0.549 ±0.03 1.538 ±0.01 3.094 ±0.50 1.74±0.01 1.745 ±0.11 時 間 筋 肉 腸 骨
¾dose/g ¾dose/g %dose/g
Omin 0.087 ±0.00 0.482 ±0.02 0. 25 ±0.01
2min 0.075 ±0.00 0.581 ±0.06 0.214 ±0.05
lOmin 0.069 士 0.01 0.934 ±0.03 0.306 ±0.07
30min 0.083 ±0.03 0.64±0· 00 0.21±0.02
lhr 0.068 ±0.01 1.236 ±0.03 0.327 ±0.02
2hr 0.066 ±0.00 1.478 ±0.09 0.296 ±0.01
4hr 0.067 ±0.00 1.843 ±0.02 0.321 ±0.01
表 2. ラットにおける991" Tc (N) (PNP 1) (DTC) +の体内分布 時 間 血 液 脳 肺 肝 臓 脾 臓 胃 腎 臓
%dose/g ¾dose/g ¾dose/g ¾dose/g %dose/g %dose/g %dose/g
Omin 2.125 ±0.3 0.143 ±0.02 1.236 ±0.08 5.815 ±0.04 3.593 ±0.42 1.948 ±0.20 0.337 ±0.00 2.66 ±0.05
2min 1.062 ±0.13 0.086 ±0.00 0.824 ±0.01 4.653 ±0.65 5.555 ±0.83 4.459 ±0.09 0.379 ±0.02 4.145 ±0.64 lOmin 0.495 ±0.01 0.041 ±0.00 0.795 ±0.06 3.191 ±0.60 5.795 ±0.03 7.237 ±0.88 0.438 ±0.03 4.251 ±0.02
30min 0.285 ±0.01 0.027 ±0.00 0.513 ±0.07 2.089 ±0· 16 5.976 ±0.49 5.884 +2.7 0.444 ±0.09 4.095 士 0.73 lhr 0.311 ±0.03 0.019 ±0.00 0.55 ±0.04 1.586 ±0.16 5.116 ±0.00 6.711 ±1.27 0.625 ±0.34 4.779 ±0.21 で
2hr 0.22 ±0.05 0.025 ±0.00 0.603蟹 ±0.05 1.716 ±0.23 3.524 ±0.53 4.747 ±1.78 0.776 土 0.07 5.327 ±0.52
4hr 0.137 ±0.02 0.021 ±0.00 0.382 ±0.04 1.08±0.16 2.604 ±0.25 6.294 ±1.29 0.719 ±0.18 4.282 ±0.67 時 間 ¾曰- %dose/g
Omin 0.098 ±0.00 0.418 ±0.03 0.244 ±0.01
2min 0.085 ±0.01 0.471 ±0.00 0.234 ±0.06
lOmin 0.121 ±0.02 0.704 ±0.08 0.3 ±0.05
30min 0.106 ±0.00 1.107 ±0.31 0.324 ±0.05
lhr 0.302 ±0.39 0.896 ±0.04 0.398 ±0.12
2hr 0.111 ±0.01 0.977 ±0.42 0.347 ±0.01
4hr 0.077 ±0.01 0.906 ±0.24 0.264 ±0.10
表 3. ラッ トにおける99 m Tc (N) (PNP 2) (DTC) + の体内分布 時 間 血 液 脳 、 臓 肝 臓 胃 腎 臓
%dose/g ¾dose/g Wose/g ¾dose/g ¾dose/g ¾dose/g
Omin 3.220 ±0.45 0.120 ±0.00 1.399 ±0.08 3.568 ±0.94 3.385 士 0.81 2.739 ±0.07 0.752 ±0.09 5.702 ±0.732
2min 1.025 ±0.02 0.065 ±0.01 0.728 ±0.04 2.040 ±0.234 7.723 ±0.20 5.018 ±0.02 0.0603 ±0.03 4.941 ±0.60 lOmin 0.355 ±0.03 0.040 ±0.00 0.736 ±0.12 1.481 ±0.10 4.686 ±0.89 5.334 ±0.10 0.517 土 0.16 6.910 ±0.081
30min 0.333 ±0.03 0.020 ±0.00 0.652 ±0.19 1.015 ±0.16 7.341 ±0.38 5.131 ±0.59 1.135 +0.298 7.542 ±1.410 lhr 0.19±0.01 0.025 ±0.00 0.534 ±0.02 1.011 ±0.01 7.436 ±1.44 5.073 ±0.01 0.932 ±0.12 6.713 ±0.83
2hr 0.129 ±0.02 0.025 ±0.00 0.511 ±0.05 0.962 ±0.02 4.061 ±0.64 5.507 ±0.84 1.701 ±0.34 6.799 ±1.348
4hr 0.087 ±0.00 0.018 ±0.00 0.506 ±0.04 0.670 ±0.09 1.784 土 0.25 5.055 ±0.02 1.220 ±0.150 7.471 ±0.03 時 間 筋 肉 腸
%dose/g %dose/g
Omin 0.134 土 0.01 0.906 ±0.03 0.209 ±0.01
2min υ.077 ±◦, 00 1. b94 ±0.18 0.265 ±0.04
lOmin 0.064 ±0.02 2.861 ±0.74 0.268 ±0.10
30min 0.103 ±0.02 7.254 ±0.46 0.301 ±0.03
lhr 0.075 ±0.01 7.644 ±1.01 0.294 ±0.02
2hr 0.102 ±0.02 6.442 ±0.59 0.357 ±0.08
4hr 0.08 ±0.00 4.054 ±0.39 0.329 ±0.01
表 4. ラットにおける99 m T c (N) (PNP 3) (DTC) + の体内分布 時 間 血 液 肺 肝 臓 脾 臓 賢 臓
¾dose/g ¾dose/g ¾dose/g ¾dose/g ¾dose/g %dose/g
Omin 1.149 ±0.04 0.096 土 0.00 2.704 ±0.03 2.133 ±0.03 1.5 ±0.02 1.686 ±0.03 1.121 ±0.01 8.289 ±0.03
2min 0.421 ±0.10 0.035 ±0.01 3.007 ±0.16 0.995 ±0.17 2.778 ±0.06 1.215 ±0.1 0.740 ±0.02 9.676 ±0.620 ミ co
CD
lOmin 0.147 ±0.02 0.019 ±0.00 2.506 ±0.36 0.725 ±0.104 1.719 ±0.14 0.856 ±0.12 0.852 ±0.118 6.559 +0.928
30min 0.098 ±0.01 0.012 ±0.00 2.551 ±0.10 0.446 ±0.00 0.732 ±0.08 0.550 ±0.06 1.511 ±0.39 5.354 ±1.00 lhr 0.071 ±0.00 0.014 ±0.00 2.155 ±0.29 0.329 ±0.05 0.500 ±0.01 0.238 ±0.02 0.892 ±0.085 4.127 ±0.178
2hr 0.049 ±0.00 0.009 ±0.00 2.721籠 ±0.06 0.312 ±0.2 0.164 ±0.04 0.300 ±0.05 1.521 ±0.50 3.139 ±0.20
4hr 0.030 ±0.00 0.009 土 0.00 2.503 士 0.13 0.219 ±0.01 0.155 ±0.00 0.195 ±0.02 0.485 ±0.07 2.536 ±0.12 時 間 筋 肉 骨
%dose/g ¾dose/g ¾dose/g
Omin 0.232 ±0.07 2.578 ±0.350 0.198 ±0.03
2min 0.264 ±0.09 4.188 ±0.60 2.242 ±0.02
lOmin 0.252 ±0.01 10.959±1.64 0.204 ±0.00
30min 0.273 ±0.05 10.201 ±1.28 0.230 ±0.04
lhr 0.236 ±0.04 5.447 ±0.87 0.099 ±0.00
2hr 0.268 ±0.88 2.720 ±0· 11 0.121 ±0.00
4hr 0.245 ±0.031 1.810 ±0.716 0.079 ±0.01
表 5. ラット (A群) における99"1 TcN— DES Iの体内分布 時 間 n/血 液 心 臓 肝 臓 腎 臓
%dose/g
Figure imgf000033_0001
¾dose/g ¾dose/g %dose/g
2min 0.383 ±0.287 0.082 ±0.010 0.904 ±0.062 0.565 ±0,074 7.259 ±0.005 1, 833 ±0.249 6.518 ±1.821
5min 0.349 土 0 033 0.079 ±0.002 0 881 ±0.071 0.425 ±0.094 5.798 ±0.549 1.927 ±0.155 D.丄 93 ±0.421 lOmin 0.212 ±0.012 0.076 ±0.003 0.894 ±0.016 0.399 ±0. Oil 4.539 ±0.286 2.139 ±0.200 6.295 ±0.329
30min 0.095 ±0.024 0.070 ±0.005 0.951 ±0.103 0.351 ±0.085 3.069 +0.672 1.965 ±0.158 10.11 ±1.762
60min 0.069 ±0.008 0.064 ±0.003 0.931 +0.025 U. IL^ ±0.070 2.809 ±0.739 1 873 ±◦ bo7 6.227 ±1.020
120min 0.068 ±0.001 0.051 ±0.001 0.806 ±0.080 0.151 ±0.001 1.463 ±0.186 1.453 ±0.085 5.538 +0.607
150min 0.058 士 0.008 0.034 ±0.004 0.884 土 0.075 U.194 ±U. UU 1.375 ±0.054 1.4 1 土 ϋ. Ιόί 7.182 ±0.349 時 間 筋 肉 顎 下 腺
¾aose/g ¾aose/g
2niin U.丄丄 U πυ. UU4 4.227 ±0.089
mi n η ιη^ Η-Π πιπ 3.710 ±0.682 1 7 1 +Π IRO
lOmin 0.096 ±0.009 5.353 ±0.339 1.876 ±0.030
30min 0.098 ±0.021 5.153 ±0.039 2.065 ±0.069
60min 0.108 ±0.015 4.800 ±1.737 1.491 ±1.149
120min 0.397 ±0.033 4.220 ±0.182 1.351 +0.037
150min 0.090 ±0.009 5.013 ±1.061 1.976 ±0.293
表 6. ラット (B群) における99"1 TcN— DES Iの体内分布 時 間 血 液 脳 心 臓 肺 肝 臓 脾 臓 腎 臓
%dose/g %dose/g ¾dose/g ¾dose/g %dose/g \dose/g ¾dose/g
2min 0.467 ±0. Oil 0.032 ±0.004 0.793 ±0.037 0.488 ±0.042 5.149 ±0.787 1.841 ±0.197 5.492 ±0.602
5min 0.277 ±0.028 0.029 ±0.003 0.819 ±0.052 0.353 ±0.028 6.420 ±0.378 2.032 ±0.197 5.899 ±1.397 lOmin 0.170 ±0.020 0.018 ±0.001 0.814 ±0.023 0.348 ±0.003 4.732 ±0.057 1.559 ±0.074 5.192 土 0.036
30min 0.169 土 0· 028 0.018 ±0.003 0.832 ±0.170 0.27 土 0,117 4.957 ±0.168 1.339 ±0.380 7.883 ±1.689
60mm 0.074 +0.016 0.016 ±0.002 0.693 ±0.057 0.253 ±0.014 2.505 ±0.113 1.403 ±0.209 5.176 ±0.584
120min 0.050 土 0.007 0.004 ±0.000 0.745 ±0.063 0.206 ±0.048 1.159 ±0.09 1.865 ±0.313 5.737 +0.093
150min 0.050 ±0.014 0.001 ±0.000 0.815 ±0.070 0.163 ±0.036 1.253 ±0.006 1.637 ±0.147 5.646 +1.192 時 間 筋 肉 副 腎 顎 下 腺
¾dose/g ¾dose/g ¾dose/g
2min 0 103 土 0002 4.314 ±0.718 1878 ±009
J nun n 1Π1 +Π Π1/1 A iQn +Π QQ1 1 0οα0 + -!-πU.9Π UlΊ lOmin 0.086 ±0.007 4.349 ±0.164 1.669 ±0.126
30min 0.091 ±0. Oil 6.120 ±2.224 1.042 土 0.123
60min 0.110 ±0.024 4.321 ±0.712 1.596 ±0.138
120min 0.343 ±0.443 4.588 ±0.985 1.641 ±0.280
150min 0.096 ±0.007 4.09 ±0.294 1.983 ±0.339
表 7. ラット (A群)の脳領域における99 ra TcN— DES Iの体内分布 時 間 皮 質 小 脳 ネ!^ T部
¾dose/g %dose/g %dose/g ¾dose/g
5min 0.029 ±0.004 0.064 ±0.005 0.076 ±0· 025 0.325 ±0.058 0.057 ±0.004
30min 0.021 ±0.002 0.039 ±0.015 0.054 ±0.017 0.408 ±0.085 0.046 ±0.003
60min 0.021 ±0.002 0.028 ±0.012 0.364 ±0.069 0.029 ±0.006 表 8· ラット (B群)の 域における99 m TcN— DES Iの体内分布 時 間 皮 質 嫌下部 髄 質
%dose/g マ^ %dose/g ¾dose/g
5min 0.014 ±0.004 0.048 ±0.008 0.053 ±0.001 0.125 ±0.029 0.038 ±0.001
30min 0.009 ±0.002 0.035 ±0.007 0.023 ±0.003 0.162 ±0.106 0.027 ±0.013
60min 0.006 ±0.000 0.031 ±0.011 0.035 ±0.011 0.152 ±0.033 0.016 ±0.002
+1

Claims

請 求 の 範 囲
1. 放射性遷移金属の窒化物に二つの異なる配位子が配位してなる下記式 (1) で表される放射性遷移金属窒化物へテロ錯体:
(M≡N) X Y (I) ただし, 放射性遷移金属 Mは放射性テクネチウム又は放射性レニウム, Nは窒素 原子, Xはジホスフィ ン化合物又はジアルシン化合物, Yは 0, S及び Nからな る群より選ばれる二つの電子供与性原子の組合せを有する二座配位子であって, 該電子供与性原子は荷電していてもいなくてもよい。
2. 前記ジホスフィン化合物 Xが下記式 (Π) で表されるビスホスフィン化合 物である請求項 1記載の放射性遷移金属窒化物へテロ錯体:
Rl
p? ( Π
Figure imgf000036_0001
(ただし, R1 , R2 , R3 及び R4 は各々水素原子, アルキル基, 置換アルキ ル基, ァリール基及び置換ァリール基からなる群より選ばれる一つであって, 互 いに同じであっても異なっていてもよく, R5 はメチレン基, Zは酸素原子, ィ ォゥ原子, メチレン基, NRS (ただし, Nは窒素原子, R6 は水素, アルキル 基, 置換アルキル基, ァリール基, 置換ァリール基, アミノ基, アミノ酸鎖, 生 理活性を有する基又は— C (=0) R7 基 (ただし, R7 は水素, アルキル基, 置換アルキル基, ァリール基, 置換ァリール基, アミノ基, アミノ酸鎖又は生理 活性を有する基である) ) 及びエチレンジォキシ基からなる群より選ばれる一つ であり, Pはリン原子, nは l≤n≤5の整数, mは 0又は 1である) 。
3. 前記ジホスフィン化合物 Xが下記式 (III ) 又は下記式 (IV) で表される ビスホスフィン化合物である請求項 1又は 2記載の放射性遷移金属窒化物へテロ 錯体: Ph Ph
ph P(CH2)2N 6(CH2)2Pく ( m )
Ph ただし, Phはフヱニル基, R6 は水素, アルキル基, 置換アルキル基, ァリ一 ル基, 置換ァリール基, アミノ基, アミノ酸鎖, 生理活性を有する基又は一 C
(=0) R7 基 (ただし, R7 は水素, アルキル基, 置換アルキル基, ァリ一ノレ 基, 置換ァリール基, アミノ基, アミノ酸鎖又は生理活性を有する基である) を 示す。
Figure imgf000037_0001
m ただし, Xは 0≤X≤4の整数, Wは 0≤W≤ 3の整数であり, R6 は水素, ァ ルキル基, 置換アルキル基, ァリール基, 置換ァリール基, アミノ基, アミノ酸 鎖, 生理活性を有する基又は一 C (=0) R7 基 (ただし, R7 は水素, アルキ ル基, 置換アルキル基, ァリ一ル基, 置換ァリール基, アミノ基, アミノ酸鎖又 は生理活性を有する基である) を示す。
4. 前記ジホスフィン化合物が, ビス (ジフヱニルホスフィノエチル) ァミン, ビス (ジフエニルホスフィノエチル) メチルァミ ン, ビス (ジフエニルホスフィ ノエチル) ェチルァミン, ビス (ジフヱニルホスフィノエチル) プロピルァミン, ビス (ジフエニルホスフィノエチル) ブチルァミ ン, ビス (ジフヱニルホスフィ ノエチル) ァセトニルァミン及びビス (ジフヱニルホスフィノエチル) メ トキシ ェチルアミンからなる群より選ばれる請求項 1力、ら 3のいずれか一項に記載の放 射性遷移金属窒化物へテロ錯体。
5. 前記ジホスフィン化合物が, (CH3 0) 2 — P— CH2 CH2 一 NH— CH2 CH2 一 P - (OCH3 ) 2 , (CH3 0) 2 一 P— CH2 CH2 一 N (CH3 ) - CH2 CH2 一 P— (OCH3 ) 2 , (CH3 0) 2 — P— CH2 CH2 一 N (CH2 CH3 ) 一 CH2 CH2 一 P— (OCH3 ) 2 , (C H3 O) 2 -P-CH2 CH2 -N (CH2 CH2 CH3 ) 一 CH2 CH2 一 P - (0 CH3 ) 2 , [C H3 0 (CH2 ) ] 2 — P— CH2 CH2 一 N (CH2 CH3 ) 一 CH2 CH2 一 P - [ (CH2 ) 3 OCH3 ] 2 , [CH3
0 (CH2 ) 2 一 P— CH2 CH2 一 N (CH2 CH2 CH3 ) 一 CH2 C H2 一 P— [ (CH2 ) OCH3 ] , (CH3 CH2 OCH2 CH2 )
P-CH2 CH2 —N (CH2 CHs ) -CH2 CH2 一 P - (CH2 CH2 O CH2 CH3 ) 2 , (CH3 CH2 OCH2 CH2 ) 2 -P-CH2 CH2 一 N (CH2 CH2 CH3 ) 一 CH2 CH2 一 P - (CH2 CH2 0 CH2 C H3 ) 2 , [CH3 0 (CH2 ) ] 2 -P-CH2 CH2 -N (CH2 CH2 OCH3 ) — CH2 CH2 — P— [ (CH2 ) 3 OCH3 ] 2 及び (CH3 CH2 OCH2 CH2 ) 2 一 P - CH2 CH2 一 N (CH2 CH2 OCH3 ) -CH2 CH2 — P— (CH2 CH2 OCH2 CH3 ) 2 からなる群より選ばれ る請求項 1から 3のいずれか一項に記載の放射性遷移金属窒化物へテロ錯体。
6. 前記ジホスフィン化合物がビス (ジフヱニルホスフィノエチル) ジォキシ エチレン, ビス (ジメ トキシホスフィノエチル) ジォキシエチレン, ビス (ジフ ェニルホスフィノエチル) エーテル, ビス (ジフエニルホスフィノエチル) スル フィ ド及びビス (ジフヱニルホスフィノエチル) アルキレンからなる群より選ば れる請求項 1又は 2に記載の放射性遷移金属窒化物へテロ錯体。
7. 前記二座配位子 Yが, [N—, S— ] , [0—, S― ] , [S― , S― ] , [N- , S] , [N, S- ] , [0, S - ] , [0, 0- ] , [0-, N - ] ,
[N , Nつ , [0 , S] , [0- , 0 ] , [0-, N] , [S, S- ] , [N, N- ] , [0, N- ] , [0, N] , [N, N] , [S, S] , [0,
01 , [N, S] 及び [0, S] からなる群より選ばれる電子供与性原子の組合 せを有する二座配位子である請求項 1から 6のいずれか一項に記載の放射性遷移 金属窒化物へテロ錯体。
8. 前記二座配位子 Yが, 生理活性を有する請求項 1から 7のいずれか一項に 記載の放射性遷移金属窒化物へテロ錯体。
9. 前記二座配位子 Yが, 糖, アミノ酸, 脂肪酸, ホルモン, ペプチド及びリ セプタ一結合性リガンド力、らなる群より選ばれる生理活性物質と前記電子供与性 原子との組合せからなる請求項 1から 8のいずれか一項に記載の放射性遷移金属 窒化物へテロ錯体。
10. 前記二座配位子 Yが, 1ーチォー/3— D—グルコース, チォサリチル酸, システィン, システィンェチルエステル, 2—アミノエタンチオール, ジチォ力 ルバミン酸及びその誘導体, 及びジチォカルバジン酸及びその誘導体からなる群 より選ばれる一つである請求項 8又は 9記載の放射性遷移金属窒化物へテロ錯体。
11. 前記ジチォ力ルバミン酸誘導体が, ジチォ力ルバミン酸一 N—メチル—S ーメチル, ジォチカルバミン酸一 N—ジェチル, ジチォ力ルバミン酸一 N—ェチ ル及びジチォカルバミン酸一N—エトキン— N—ェチル, 又は前記ジチォ力ルバ ジン酸誘導体が, ジチォカルバジン酸一 N—ェチル及びジチォカルバジン酸一 N —メチルー S—メチルからなる群より選ばれる一つである請求項 1 0に記載の放 射性遷移金属窒化物へテロ錯体。
12. 前記放射性遷移金属元素 Mが, 9 9 m T c, 1 8 6 R e及び1 8 8 R eからなる 群より選ばれる一つである請求項 1から 1 1のいずれか一項に記載の放射性遷移 金属窒化物へテロ錯体。
13. 請求項 1から 1 2に記載の放射性遷移金属窒化物へテロ錯体を有効成分と して含有する放射性医薬品。
14. 放射性遷移金属 Mの酸化物を, 溶液中で還元剤の存在下又は非存在下に, カルバジン酸若しくはその誘導体又はヒドラジン若しくはその誘導体のいずれか と, ジホスフィ ン化合物又はジアルシン化合物とを反応させて放射性遷移金属窒 化物中間体を得る第一の工程, 及び
該中間体を, 0, S及び Nからなる群より選ばれる二つの電子供与性原子の組 合せを有する二座配位子と反応させる第二の工程からなる請求項 1記載の放射性 遷移金属窒化物へテロ錯体の製造方法。
15. 前記カルバジン酸誘導体がジチォカルバジン酸一 N—メチルー S—メチル, ジチォカルバジン酸一 S—メチル及びジチォカルバジン酸一 N—メチルー S— 2
—プロピオン酸からなる群より選ばれる請求項 1 4記載の方法。
16. 前記ヒドラジン誘導体が, コハク酸ヒドラジド, ァセチルヒドラジド及び イソニコチン酸ヒドラジドからなる群より選ばれる請求項 1 4記載の方法。
17. 前記ジホスフィン化合物 Xが下記式(Π)で表されるビスホスフィン化合物 である請求項 14から 16のいずれか一項に記載の方法。
Figure imgf000040_0001
(ただし, R' , R2 , R3 及び R4 は各々水素原子, アルキル基, 置換アルキ ル基, ァリ一ル基及び置換ァリール基からなる群より選ばれる一つであって, 互 いに同じであっても異なっていてもよく, R5 はメチレン基, Ζは酸素原子, ィ ォゥ原子, メチレン基, NR6 (ただし, Νは窒素原子, R6 は水素, アルキル 基, 置換アルキル基, ァリール基, 置換ァリール基, アミノ基, アミノ酸鎖, 生 理活性を有する基又は一 C (=0) R7 基 (ただし, R7 は水素, アルキル基, 置換アルキル基, ァリ一ノレ基, 置換ァリール基, アミノ基, アミノ酸鎖又は生理 活性を有する基である) ) 及びエチレンジォキシ基からなる群より選ばれる一つ であり, Ρはリン原子, ηは 1≤η^5の整数, mは 0又は 1である) 。
18. 前記ジホスフィン化合物が, ビス (ジフヱニルホスフィノエチル) ァミン, ビス (ジフエニルホスフィノエチル) メチルァミン, ビス (ジフエニルホスフィ ノエチル) ェチルァミン, ビス (ジフエニルホスフィノエチル) プロピルアミ ス ビス (ジフヱニルホスフィノエチル) ブチルァミ ン, ビス (ジフヱニルホスフィ ノエチル) ァセトニルァミン及びビス (ジフヱニルホスフィノエチル) メ トキシ ェチルァミンからなる群より選ばれる請求項 14から 17のいずれか一項に記載 の方法。
19. 前記ジホスフィン化合物が, (CH3 0) 2 -P-CH2 CH2 一 NH— CH2 CH2 一 P - (OCH3 ) 2 , (CH3 O) 2 一 P - CH2 CH2 一 N (CH3 ) -CH2 CH2 一 P (OCH3 ) 2 , (CH3 0) 2 一 P - CH2 CH2 -N (CH2 CH3 ) 一 CH2 CH2 一 P - (0 CH3 ) 2 , (C H3 0) 2 — P - CH2 CH2 一 N (CH2 CH2 CH3 ) — CH2 CH2 一 P 一 (0 CH3 ) 2 , [C H3 0 (CH2 ) 3 ] 2 -P- C H 2 CH2 一 N (CH2 CH3 ) — CH2 CH2 一 P— [ (CH2 ) 3 OCH3 ] 2 , CCH3 0 (CH2 ) 3 ] 2 — P - CH2 CH2 一 N (CH2 CH2 CH3 ) 一 CH2 C H2 一 P - [ (CH2 ) 3 OCH3 ] 2 , (CH3 CH2 O CH2 CH2 ) 2 ― P - CH2 CH2 -N (CH2 CH3 ) -CH2 CH2 一 P— (CH2 CH2 0 CH2 CH3 ) 2 , (CH3 CH2 OCH2 CH2 ) 2 -P-CH2 CH2 一 N (CH2 CH2 CH3 ) - CH2 CH2 — P— (CH2 CH2 OCH2 C H3 ) 2 , [CH3 0 (CH2 ) 3 ] 2 一 P - CH2 CH2 — N (CH2 CH2 0 CH3 ) - CH2 CH2 一 P— [ (CH2 ) 3 OCH3 ] 2 及び (CH3 CH2 OCH2 CHZ ) 2 -P-CH2 CH2 — N (CH2 CH2 OCH3 ) ― CH2 CH2 一 P— (CH2 CH2 OCH2 CH3 ) 2 からなる群より選ばれる 請求項 1 4から 1 8のいずれか一項に記載の方法。
20. 前記ジホスフィン化合物が, ビス (ジフヱニルホスフィノエチル) ジォキ シエチレン, ビス (ジメ トキシホスフィノエチル) ジォキシエチレン, ビス (ジ フエニルホスフィノエチル) エーテル, ビス (ジフエニルホスフィノエチル) ス ルフィ ド及びビス (ジフヱニルホスフィノエチル) アルキレンからなる群より選 ばれる請求項 1 4から 1 7のいずれか一項に記載の方法。
21. 前記二座配位子 Yが,
[N-, S- ] , [0-, S ] , [S - , S - ] , [N- , S] , [N, S ] , [0, S- ] , [0, 0- ] , [0- , N ] , [N- , N - ] ,
[0 , S] , [0-, 0- ] , [0_ , N] , [S, S- ] , [N, N- ] , [0, N- ] , [0, N] , [N, N] , [S, S] , [0, 0] , [N, S] 及び [0, S] からなる群より選ばれる電子供与性原子の組合せを有する二座配 位子である請求項 1 4から 20のいずれか一項に記載の方法。
22. 前記二座配位子が生理活性を有する請求項 1 4から 2 1のいずれか一項に 記載の方法。
23. 前記二座配位子 Yが, 糖, アミノ酸, 脂肪酸, ホルモン, ペプチド及びリ セプタ一結合性リガンド力、らなる群より選ばれる生理活性物質と前記電子供与性 原子との組合せよりなる請求項 1 4から 22のいずれか一項に記載の方法。
24. 前記二座配位子が, 1ーチォ— 3— D—グルコース, チォサリチル酸, シ スティン, システィンェチルエステル, 2—アミノエタンチオール, ジチォカル バミン酸及びその誘導体, 及びジチォカルバミン酸及びその誘導体からなる群よ り選ばれる請求項 22又は 23に記載の方法。
25. 前記ジチォ力ルバミン酸誘導体力 \ ジチォ力ルバミン酸一 N—メチルー S ーメチル, ジォチカルバミン酸一 N—ジェチル, ジチォカルバジン酸一 N—ェチ ノレ及びジチォ力ルバミ ン酸— N—エトキシー N—ェチル, 又は前記ジチォ力ルバ ジン酸誘導体が, ジチォカルバミン酸ー N—ェチル及びジチォカルバジン酸— N ―メチルー S—メチルからなる群より選ばれる一つである請求項 24に記載の方 法。
26. 前記放射性遷移金属 Mの酸化物が9 ^ Tc04 — , 186 Re 04 — 及び 188 Re 04 — からなる群より選ばれる請求項 1 4から 24のいずれか一項に記 載の方法。
PCT/JP1997/004626 1996-12-18 1997-12-16 Heterocomplexe a nitrure de metal de transition radioactif WO1998027100A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AT97947953T ATE239745T1 (de) 1996-12-18 1997-12-16 Nitrid-heterokomplexe von radioaktiven übergangsmetallen
EP97947953A EP0949265B1 (en) 1996-12-18 1997-12-16 Radioactive transition metal nitride hetero-complex
AU54128/98A AU730120B2 (en) 1996-12-18 1997-12-16 Radioactive transition metal nitride heterocomplex
CA002275451A CA2275451C (en) 1996-12-18 1997-12-16 Radioactive technetium and rhenium nitride heterocomplexes
DK97947953T DK0949265T3 (da) 1996-12-18 1997-12-16 Nitrid-heterokomplekser af radioaktive overgangsmetaller
DE69721820T DE69721820T2 (de) 1996-12-18 1997-12-16 Nitrid-heterokomplexe von radioaktiven übergangsmetallen
JP52753998A JP3935218B2 (ja) 1996-12-18 1997-12-16 放射性遷移金属窒化物へテロ錯体
US09/331,237 US6270745B1 (en) 1996-12-18 1997-12-16 Radioactive transition metal nitride heterocomplex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33855396 1996-12-18
JP8/338553 1996-12-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/331,237 A-371-Of-International US6270745B1 (en) 1996-12-18 1997-12-16 Radioactive transition metal nitride heterocomplex
US09/838,254 Continuation US20020048549A1 (en) 1996-12-18 2001-07-16 Radioactive transition metal nitride heterocomplex

Publications (1)

Publication Number Publication Date
WO1998027100A1 true WO1998027100A1 (fr) 1998-06-25

Family

ID=18319265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004626 WO1998027100A1 (fr) 1996-12-18 1997-12-16 Heterocomplexe a nitrure de metal de transition radioactif

Country Status (13)

Country Link
US (2) US6270745B1 (ja)
EP (1) EP0949265B1 (ja)
JP (1) JP3935218B2 (ja)
KR (1) KR100554563B1 (ja)
AT (1) ATE239745T1 (ja)
AU (1) AU730120B2 (ja)
CA (1) CA2275451C (ja)
DE (1) DE69721820T2 (ja)
DK (1) DK0949265T3 (ja)
ES (1) ES2193407T3 (ja)
NZ (1) NZ335950A (ja)
PT (1) PT949265E (ja)
WO (1) WO1998027100A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1009447A1 (en) * 1997-03-14 2000-06-21 The Curators Of The University Of Missouri Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same
JP2006505599A (ja) * 2002-11-07 2006-02-16 ブラッコ イメージング ソチエタ ペル アチオニ 放射性遷移金属イミドヘテロ−ジホスフィン錯体、その調製およびその放射性医薬組成物
WO2006054466A1 (ja) * 2004-11-19 2006-05-26 Nihon Medi-Physics Co., Ltd. 新規放射性テクネチウム-ビスホスフィノアミン錯体および該錯体を含む放射性画像診断剤
US7445765B2 (en) 2000-07-28 2008-11-04 Nihon Medi-Physics Co., Ltd. Radiopharmaceutical for diagnostic imaging containing a technetium-99m nitride heterocomplex
JP2009523702A (ja) * 2006-01-20 2009-06-25 日本メジフィジックス株式会社 放射性画像診断のための窒化テクネチウム錯体の中間体化合物
JP2020504103A (ja) * 2016-12-15 2020-02-06 ブラッコ イメージング エス.ピー.エー. テクネチウム系化合物により高感受性及び感熱性の標的指向性生体分子を標識化する方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3922601A (en) * 2000-01-28 2001-08-07 Molypharma, S.A. A radiopharmaceutical for radionuclide tumor therapy
CA2470888C (en) * 2001-12-20 2011-01-25 Sasol Technology (Pty) Ltd. Trimerisation and oligomerisation of olefins using a chromium based catalyst
US8980870B2 (en) * 2002-09-24 2015-03-17 Boehringer Ingelheim International Gmbh Solid telmisartan pharmaceutical formulations
CA2565130C (en) * 2003-05-02 2011-03-15 Kamaluddin Abdur-Rashid Transfer hydrogenation processes and catalysts
WO2006080993A1 (en) * 2004-12-08 2006-08-03 Purdue Research Foundation Novel cationic metal complex radiopharmaceuticals
US20130195756A1 (en) 2012-01-31 2013-08-01 General Electric Company 99mTc IMAGING AGENTS AND METHODS OF USE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05508842A (ja) * 1990-07-04 1993-12-09 セ・イ・エス・ビオ・アンテルナショナル 遷移金属の窒化物錯体の製造方法
JPH07500816A (ja) * 1991-07-22 1995-01-26 シーアイエス バイオ インターナショナル 遷移金属窒化物錯体からなる特に脳向性を有する放射性医薬化合物及びその製造方法
JPH07110869B2 (ja) * 1988-03-09 1995-11-29 セ・イ・エス・ビオ・アンテルナシヨナル 放射性医薬品として使用できる99mTc、186Reまたは188Reの窒化物錯体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8723438D0 (en) * 1987-10-06 1987-11-11 Amersham Int Plc Cationic complexes of technetium-99m
JPH07110869A (ja) 1993-10-12 1995-04-25 Fuji Xerox Co Ltd 図形編集装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110869B2 (ja) * 1988-03-09 1995-11-29 セ・イ・エス・ビオ・アンテルナシヨナル 放射性医薬品として使用できる99mTc、186Reまたは188Reの窒化物錯体の製造方法
JPH05508842A (ja) * 1990-07-04 1993-12-09 セ・イ・エス・ビオ・アンテルナショナル 遷移金属の窒化物錯体の製造方法
JPH07500816A (ja) * 1991-07-22 1995-01-26 シーアイエス バイオ インターナショナル 遷移金属窒化物錯体からなる特に脳向性を有する放射性医薬化合物及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1009447A1 (en) * 1997-03-14 2000-06-21 The Curators Of The University Of Missouri Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same
EP1009447A4 (en) * 1997-03-14 2001-04-11 Univ Missouri HYDROXYMETHYLIC PHOSPHINE COMPOUNDS FOR USE AS DIAGNOSTIC AND THERAPEUTIC PHARMACEUTICALS AND PROCESS FOR PRODUCING THE SAME
US7445765B2 (en) 2000-07-28 2008-11-04 Nihon Medi-Physics Co., Ltd. Radiopharmaceutical for diagnostic imaging containing a technetium-99m nitride heterocomplex
JP2006505599A (ja) * 2002-11-07 2006-02-16 ブラッコ イメージング ソチエタ ペル アチオニ 放射性遷移金属イミドヘテロ−ジホスフィン錯体、その調製およびその放射性医薬組成物
WO2006054466A1 (ja) * 2004-11-19 2006-05-26 Nihon Medi-Physics Co., Ltd. 新規放射性テクネチウム-ビスホスフィノアミン錯体および該錯体を含む放射性画像診断剤
JP2009523702A (ja) * 2006-01-20 2009-06-25 日本メジフィジックス株式会社 放射性画像診断のための窒化テクネチウム錯体の中間体化合物
US8182789B2 (en) 2006-01-20 2012-05-22 Nihon Medi-Physics Co., Ltd. Intermediate compound of technetium nitride complex for radiodiagnostic imaging
JP2020504103A (ja) * 2016-12-15 2020-02-06 ブラッコ イメージング エス.ピー.エー. テクネチウム系化合物により高感受性及び感熱性の標的指向性生体分子を標識化する方法

Also Published As

Publication number Publication date
ATE239745T1 (de) 2003-05-15
CA2275451C (en) 2007-01-02
DE69721820D1 (de) 2003-06-12
DK0949265T3 (da) 2003-08-11
JP3935218B2 (ja) 2007-06-20
PT949265E (pt) 2003-08-29
CA2275451A1 (en) 1998-06-25
DE69721820T2 (de) 2004-02-26
KR20000057661A (ko) 2000-09-25
EP0949265B1 (en) 2003-05-07
KR100554563B1 (ko) 2006-03-03
AU5412898A (en) 1998-07-15
AU730120B2 (en) 2001-02-22
NZ335950A (en) 2000-06-23
EP0949265A1 (en) 1999-10-13
US20020048549A1 (en) 2002-04-25
ES2193407T3 (es) 2003-11-01
US6270745B1 (en) 2001-08-07
EP0949265A4 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
WO1998027100A1 (fr) Heterocomplexe a nitrure de metal de transition radioactif
HUT73665A (en) Bifunctional-chelating agents braked with calcogene atoms, pharmaceutical compositions containing them , and use of these compositions in radio- diagnosis and radiotherapy
US5876693A (en) Hydroxyalkyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals
EP1307239A1 (en) Radiopharmaceutical for diagnostic imaging containing a technetium-99m nitride heterocomplex
AU2001276677A1 (en) Radiopharmaceutical for diagnostic imaging containing a technetium-99m nitride heterocomplex
JP5481673B2 (ja) 放射性標識薬剤
EP3721907B1 (en) Psma inhibitor derivatives for labelling with 99mtc via hynic, a radiopharmaceutical kit, radiopharmaceutical preparations and their use in prostate cancer diagnostics
CN101035567B (zh) 新的锝和铼的络合物、其制备中所用的配体及其作为放射性药物的用途
Kothari et al. Synthesis and characterization of 99mTc-and 188Re-complexes with a diamido-dihydroxymethylenephosphine-based bifunctional chelating agent (N2P2-BFCA)
AU2004283026A1 (en) Use of metal tricarbonyl complexes as radiotherapeutic chemotoxic agents
EP1009447B1 (en) Hydroxymethyl phosphine compounds for use as diagnostic and therapeutic pharmaceuticals and method of making same
JP5604680B2 (ja) 放射性標識薬剤
KR101551232B1 (ko) N3s1형의 새로운 킬레이터가 접합된 폴레이트 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 암 진단 또는 치료용 조성물
WO2009112823A2 (en) Metal complexes
Moura et al. 99mTc (I) scorpionate complexes for brain imaging: Synthesis, characterization and biological evaluation
WO2023227535A1 (en) Functionalized bisaminothiol derivatives, complexes with these bisaminothiol derivatives and use of said complexes as diagnostics and therapeutics
WO2023017101A2 (en) Diphosphine compounds and complexes
MOLECOLARI Radiofarmaci “metal based” nella cardiologia nucleare e nell’imaging tumorale
WO1999040882A2 (en) STEREOSELECTIVE Tc-99m LIGANDS

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 335950

Country of ref document: NZ

Ref document number: 54128/98

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2275451

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2275451

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09331237

Country of ref document: US

Ref document number: 1019997005482

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997947953

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997947953

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997005482

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 54128/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1997947953

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1019997005482

Country of ref document: KR