WO1998025718A1 - Induktor bei einem schmelzengefäss - Google Patents

Induktor bei einem schmelzengefäss Download PDF

Info

Publication number
WO1998025718A1
WO1998025718A1 PCT/DE1997/002784 DE9702784W WO9825718A1 WO 1998025718 A1 WO1998025718 A1 WO 1998025718A1 DE 9702784 W DE9702784 W DE 9702784W WO 9825718 A1 WO9825718 A1 WO 9825718A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
areas
melt
inductor according
electromagnetic field
Prior art date
Application number
PCT/DE1997/002784
Other languages
English (en)
French (fr)
Inventor
Raimund Brückner
Daniel Grimm
Original Assignee
Didier-Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Didier-Werke Ag filed Critical Didier-Werke Ag
Priority to EP97949973A priority Critical patent/EP0944448B1/de
Priority to DE59706455T priority patent/DE59706455D1/de
Priority to AT97949973T priority patent/ATE213440T1/de
Priority to US09/319,383 priority patent/US6052403A/en
Priority to JP52607798A priority patent/JP2001505487A/ja
Priority to DE19781390T priority patent/DE19781390D2/de
Priority to AU53093/98A priority patent/AU5309398A/en
Publication of WO1998025718A1 publication Critical patent/WO1998025718A1/de

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • G08B13/24Electrical actuation by interference with electromagnetic field distribution
    • G08B13/2402Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting
    • G08B13/2405Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used
    • G08B13/2408Electronic Article Surveillance [EAS], i.e. systems using tags for detecting removal of a tagged item from a secure area, e.g. tags for detecting shoplifting characterised by the tag technology used using ferromagnetic tags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/60Pouring-nozzles with heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/42Cooling of coils

Definitions

  • the invention relates to an inductor for generating an electromagnetic alternating field, which is arranged at an outlet member of a melt vessel and through which a cooling fluid flows for cooling.
  • GB 22 79 543 A describes a two-part inductor with separate electrical connections on the outlet member of a melt vessel. None is said about the cooling.
  • the object of the invention is to construct an inductor of the type mentioned at the outset in such a way that it can be operated with different coolants in order to adapt to different cooling requirements.
  • the inductor is provided with different areas with separate inlets and outlets for cooling fluid, it is possible to apply different cooling fluids to the different areas of the inductor simultaneously or in succession.
  • the cooling in the individual areas can be adapted to the respective requirements there.
  • a gas in particular air
  • the danger zone is where the inductor is closest to the melt in the melt vessel because wear and / or cracking in the wall of the melt vessel may cause melt to reach the inductor.
  • water or steam can be used for cooling.
  • the cooling fluid that is most suitable for its cooling and the cooling of its surroundings can always be used for the respective area of the inductor.
  • the different cooling fluids are preferably liquid gas, or dry ice, or water, or water vapor, or gas, or compressed air.
  • gases for example compressed air and supercooled air or nitrogen or carbon dioxide or oxygen or the like, can also be used to adapt to a cooling capacity which is required in each case.
  • the areas of the inductor can preferably be acted upon with different electrical frequencies and / or electrical powers depending on the purpose of the respective area.
  • the figure shows an inductor in an outlet element designed as a tube-in-tube rotary closure at the bottom of a melt vessel.
  • a tube-in-tube closure system (R) is built into a base (1) of a melt vessel, for example for a steel melt. It has a perforated brick (2) in which a stator (4) made of refractory ceramic material is fastened by means of a holding device (3). A rotor (6) made of refractory ceramic material is rotatably mounted in the stator (4), which has a melt inlet opening (5). There is a gap (7) between the stator (4) and the rotor (6).
  • a melt outlet channel (8) is designed within the rotor (6).
  • the melt outlet channel (8) thereof can be brought more or less or not to coincide with the inlet opening (5), as a result of which the melt outflow can be controlled or interrupted.
  • the stator (4) is enclosed by a coil-shaped inductor (9), which is installed in the perforated brick (2) and rests on the stator (4) via insulation (10).
  • the inductor (9) consists of a hollow chamber-shaped metal profile and is connected to an electrical frequency converter (1 1), the frequency and / or power of which is adjustable.
  • the inductor (9) is divided into an upper region (12) and a lower region (13) with regard to its hollow chamber profile which serves to guide cooling fluid.
  • the upper area (12) is closer to the melt (S) in the vessel. It is close to a danger zone (G), in which wear or cracking is to be feared during operation.
  • the lower area (13) is further away from this.
  • the upper region (12) has an inlet (14) and an outlet (15) for a cooling fluid.
  • the lower area (13) has an inlet (16) and an outlet (17) for another cooling fluid.
  • One feed (14) is fed by a first coolant source (18).
  • the other feed (16) is fed by a second coolant source (19).
  • the coolant for the upper region (12) is a gas, in particular compressed air.
  • the cooling fluid for the lower region (13) is liquid gas, or dry ice, or water, or water vapor. Depending on the application, the cooling fluids are also interchangeable.
  • the regions (12, 13) can be cooled independently of one another with regard to the type of cooling fluid and the cooling power from the first coolant source (18) or the second coolant source (19).
  • Frequency converter or converter (20) connected by means of electrical connections (23, 24).
  • the frequencies and / or powers of the converter or converter (11, 20) are adjustable.
  • the upper region (12) in particular is used for inductive heating of the melt flowing through the outlet channel (8).
  • the steel melt itself can couple to the alternating electromagnetic field of the inductor (9), or the rotor (6) and / or the stator (4) can couple to the alternating electromagnetic field, the melt then possibly being heated up by heat conduction or heat radiation.
  • the cooling is done to protect the inductor from overheating and, if necessary, to dissipate heat from its surroundings.
  • the lower region (13) can also be used for inductive heating of the
  • melt flow channel (8) Use melt flow channel (8). Its cooling can be stronger than in the upper region (12) by appropriate selection of the cooling fluid and / or its throughput speed. Intensive cooling also allows heat to be dissipated from the surroundings (perforated brick).
  • the lower region (13) can also serve as a reference coil or reference field for a temperature measurement of the melt flowing through the outlet channel (8) or for the detection of slag in the through channel (8). This requires an additional (receiver) coil (not shown).
  • the lower region (13) is connected to a measuring device (not shown). Since the electrical properties, in particular the conductivity, of the melt are temperature-dependent, they influence the reference field of the lower region (13) differently depending on the temperature, which is detected and evaluated by the measuring device. The same applies to slag detection because slag has a different electrical conductivity than the melt.
  • the cooling of area (13) can also be selected independently of the cooling in area (12).
  • the lower region (13) can also be used to generate a directed electromagnetic field, which generates a force component in the melt that has penetrated into the gap (7), which counteracts the melt flow. This seals the gap (7). In this case, intensive cooling is favorable because high electrical powers are required to generate the power component.
  • the inductor described can also be used for other spouts in the wall or in the bottom of a metallurgical vessel for casting liquid metals, in particular steel. However, it can also be used in devices for slag tapping in waste incineration plants, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Furnace Details (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Discharge Heating (AREA)
  • General Induction Heating (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

Ein Induktor zur Erzeugung eines elektromagnetischen Wechselfeldes ist bei einem Auslauforgan eines Schmelzengefäßes angeordnet und zur Kühlung von einem Kühlfluid durchströmt. Um den Induktor mit unterschiedlichen Kühlmitteln betreiben zu können, weist der Induktor (9) wenigstens zwei Bereiche (12, 13) mit getrennten Zu- und Abführungen (14, 15; 16, 17) für Kühlfluid auf und die Bereiche sind mit unterschiedlichen Kühlfluids beaufschlagt.

Description

Beschreibung
Induktor bei einem Schmelzengefäß
Die Erfindung betrifft einen Induktor zur Erzeugung eines elektromagnetischen Wechselfeldes, der bei einem Auslauforgan eines Schmelzengefäßes angeordnet ist und der zur Kühlung von einem Kühlfluid durchströmt ist.
In der DE 195 00 012 A1 ist ein derartiger Induktor bei einer Regel- und Verschlußeinrichtung eines metallurgischen Gefäßes beschrieben, die einen in einer Gefäßwandung angeordneten Stator und einen in diesem zum Drosseln oder Absperren der Schmelzenströmung drehbaren Rotor aufweist (Rohr-im-Rohr- Verschluß-System). Die Kühlung erfolgt einheitlich mittels eines einzigen Kühlfluids. Als Kühlfluid wird aus Sicherheitsgründen gewöhnlich Druckluft verwendet, damit es bei Leckagen, beispielsweise durch Verschleiß der Gefäßwandung, nicht zu einer gefährlichen Wasserdampfentwicklung bzw. Knallgasbildung kommen kann.
In der älteren Patentanmeldung 196 03 317.9-34 ist angegeben, daß der Induktor während einer Arbeitsphase mit Flüssiggas und während einer Bereitsschaftsphase mit Luft gekühlt wird. Eine Wasserkühlung ist auch hier vermieden.
Die GB 22 79 543 A beschreibt einen zweiteiligen Induktor mit separaten elektrischen Anschlüssen am Auslaßorgan eines Schmelzengefäßes. Über die Kühlung wird nichts ausgesagt. Aufgabe der Erfindung ist es, einen Induktor der eingangs genannten Art so aufzubauen, daß er zur Anpassung an unterschiedliche Kühlungserfordernisse mit unterschiedlichen Kühlmitteln betrieben werden kann.
Erfindungsgemäß ist obige Aufgabe durch die Merkmale des kennzeichnenden Teils des Anspruchs 1 gelöst.
Dadurch, daß der Induktor verschiedene Bereiche mit getrennten Zu- und Abführungen für Kühlfluid versehen ist, ist es möglich, die unterschiedlichen Bereiche des Induktors gleichzeitig oder nacheinander mit verschiedenen Kühlfluids zu beaufschlagen. Dadurch kann die Kühlung in den einzelnen Bereichen den jeweils dortigen Erfordernissen angepaßt werden. Insbesondere ist es möglich, die Kühlung in einem einer Gefahrenzone nahen Bereich, in der die Verwendung von Wasser als Kühlmittel zu gefährlich ist, mittels eines Gases, insbesondere Luft vorzunehmen. Die Gefahrenzone liegt dort, wo der Induktor der im Schmeizengefäß befindlichen Schmelze am nächsten liegt, weil dort durch Verschleiß und/oder Rißbildung in der Wandung des Schmelzengefäßes Schmelze möglicherweise bis an den Induktor gelangt. In einem anderen Bereich kann mit Wasser oder Wasserdampf gekühlt werden.
Für den jeweiligen Bereich des Induktors läßt sich immer dasjenige Kühlfluid verwenden, das für seine Kühlung und die Kühlung seiner Umgebung jeweils am geeignetsten ist. Die unterschiedlichen Kühlfluids sind vorzugsweise Flüssiggas, oder Trockeneis, oder Wasser, oder Wasserdampf, oder Gas, oder Druckluft. Bei der vor allem in Gefahrenzonen bevorzugten Verwendung von Gasen als Kühlfluid kann auch zur Anpassung an eine jeweils erforderliche Kühlleistung ein veränderlich einstellbares Verhältnis von mehreren Gasen, beispielsweise Druckluft und unterkühlte Luft oder Stickstoff oder Kohlendioxid oder Sauerstoff oder dergleichen verwendet werden. Durch die Verwendung unterschiedlicher Kühlfluids und damit unterschiedlicher Kühlleistungen in den einzelnen Bereichen des Induktors läßt sich das von diesem erzeugte elektromagnetische Wechselfeld für verschiedene Funktionen nutzen. Diese sind insbesondere das induktive Aufheizen und/oder die Erzeugung eines Referenzfeides für eine Temperaturmessung und/oder die Schlackendetektierung und/oder die Erzeugung eines gerichteten elektromagnetischen Feldes zur Ausübung einer Kraftkomponente auf die Schmelze, was beispielsweise für eine Spaltdichtung im Auslaßorgan verwendet werden kann.
Vorzugsweise sind die Bereiche des Induktors mit unterschiedlichen elektrischen Frequenzen und/oder elektrischen Leistungen je nach dem Zweck des jeweiligen Bereichs beaufschlagbar.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung eines Ausführungsbeispiels.
Die Figur zeigt einen Induktor bei einem als Rohr-im-Rohr-Drehverschluß ausgebildeten Auslaßorgan am Boden eines Schmelzengefäßes.
In einen Boden (1) eines Schmelzengefäßes, beispielsweise für eine Stahlschmelze, ist ein Rohr-im-Rohr-Verschluß-System(R) eingebaut. Es weist einen Lochstein (2) auf, in dem mittels einer Halteeinrichtung(3) ein Stator(4) aus feuerfestem, keramischem Material befestigt ist. Im Stator (4), der eine Schmelzeneintrittsöffnung (5) aufweist, ist ein Rotor (6) aus feuerfestem, keramischem Material drehbar gelagert. Zwischen dem Stator (4) und dem Rotor (6) besteht ein Spalt (7). Innerhalb des Rotors (6) ist ein Schmelzenauslaufkanal (8) gestaltet. Durch Drehen des Rotors (6) kann dessen Schmelzenauslaufkanal (8) mehr oder weniger oder nicht zur Deckung mit der Eintrittsöffnung (5) gebracht werden, wodurch der Schmelzenausfluß steuerbar bzw. unterbrechbar ist. Der Stator (4) ist von einem spulenförmigen Induktor (9) umschlossen, welcher in den Lochstein (2) eingebaut ist und über eine Isolierung (10) am Stator (4) anliegt. Der Induktor (9) besteht aus einem hohlkammerförmigen Metallprofil und ist an einen elektrischen Frequenzumrichter (1 1) angeschlossen, dessen Frequenz und/oder Leistung einstellbar ist.
Der Induktor (9) ist bezüglich seines der Führung von Kühlfluid dienenden Hohlkammerprofils in einen oberen Bereich (12) und in einen unteren Bereich (13) aufgeteilt. Der obere Bereich (12) liegt näher bei der im Gefäß befindlichen Schmelze (S). Er liegt nahe einer Gefahrenzone (G), in der im Betrieb Verschleiß oder Rißbildung zu befürchten ist. Der untere Bereich (13) liegt weiter von dieser entfernt. Der obere Bereich (12) weist eine Zuführung (14) und eine Abführung (15) für ein Kühlfluid auf. Der untere Bereich (13) weist eine Zuführung (16) und eine Abführung (17) für ein anderes Kühlfluid auf. Die eine Zuführung (14) ist von einer ersten Kühlmittelquelle (18) gespeist. Die andere Zuführung (16) ist von einer zweiten Kühlmittelquelle (19) gespeist. Das Kühlmittel für den oberen Bereich (12) ist ein Gas, insbesondere Druckluft. Das Kühlfluid für den unteren Bereich (13) ist Flüssiggas, oder Trockeneis, oder Wasser, oder Wasserdampf. Je nach dem Einsatzfall sind die Kühlfluide jedoch auch austauschbar. Aus der ersten Kühlmittelquelle (18) bzw. der zweiten Kühlmittelquelle (19) lassen sich die Bereiche (12, 13) unabhängig voneinander hinsichtlich der Art des Kühlfluids und der Kühlleistung kühlen.
Der Induktor (9) kann ebenso, wie er hinsichtlich der Kühlung in Bereiche (12, 13) aufgeteilt ist, auch elektrisch in verschiedene Bereiche aufgeteilt sein. An diese sind unterschiedliche Frequenzen und/oder Leistungen anlegbar. Dementsprechend ist in der Figur an den unteren Bereich (13) ein Frequenzumrichter oder Umformer (11) mittels elektrischer Anschlüsse (21 , 22) und an den oberen Bereich (12) ein weiterer 0
Frequenzumrichter oder Umformer (20) mittels elektrischer Anschlüsse (23, 24) angeschlossen. Die Frequenzen und/oder Leistungen der Umrichter oder Umformer (11 , 20) sind einstellbar.
Insbesondere der obere Bereich (12) wird zum induktiven Aufheizen der den Auslaufkanal (8) durchströmenden Schmelze verwendet. Hierbei kann entweder die Stahlschmelze selbst an das elektromagnetische Wechselfeld des Induktors (9) ankoppeln, oder der Rotor (6) und/oder der Stator (4) kann an das elektromagnetische Wechselfeld ankoppeln, wobei dann die Schmelze ggebenenfalls durch Wärmeleitung oder Wärmestrahlung aufgeheizt wird. Die Kühlung erfolgt zum Schütze des Induktors vor Überhitzung und gegebenenfalls zur Ableitung von Wärme aus dessen Umgebung.
Auch der untere Bereich (13) läßt sich zum induktiven Aufheizen der den
Auslaufkanal (8) durchströmenden Schmelze verwenden. Seine Kühlung kann durch entsprechende Wahl des Kühlfluids und/oder dessen Durchlaufgeschwindigkeit stärker sein als im oberen Bereich (12). Durch intensive Kühlung ist auch hier eine Wärmeableitung aus der Umgebung (Lochstein) möglich.
Der untere Bereich (13) kann auch als Referenzspule bzw. Referenzfeld für eine Temperaturmessung der den Auslaufkanal (8) durchströmenden Schmelze oder für die Erkennung von Schlacke im Durchlaufkanal (8) dienen. Hierzu ist eine weitere (Empfänger)-Spule erforderlich (nicht dargestellt). Der untere Bereich (13) ist in diesem Fall an eine Meßeinrichtung (nicht dargestellt) angeschlossen. Da die elektrischen Eigenschaften, insbesondere die Leitfähigkeit, der Schmelze temperaturabhängig sind, beeinflußt sie das Referenzfeld des unteren Bereichs (13) je nach Temperatur unterschiedlich, was von der Meßeinrichtung erfaßt und ausgewertet wird. Gleiches gilt auch für die Schlackenerkennung, weil Schlacke eine andere elektrische Leitfähigkeit als die Schmelze hat. Auch dabei kann die Kühlung des Bereichs (13) unabhängig von der Kühlung im Bereich (12) gewählt werden. Der untere Bereich (13) läßt sich auch zur Erzeugung eines gerichteten elektromagnetischen Feldes verwenden, das in der etwa in den Spalt (7) eingedrungenen Schmelze eine Kraftkomponente erzeugt, die dem Schmelzenfluß entgegenwirkt. Dadurch ist eine Abdichtung des Spaltes (7) erreicht. Eine intensive Kühlung ist in diesem Falle günstig, weil hohe elektrische Leistungen zur Erzeugung der Kraftkomponente nötig sind.
Der beschriebene Induktor läßt sich auch bei anderen Ausgüssen in der Wandung oder im Boden eines metallurgischen Gefäßes zum Vergießen von flüssigen Metallen, insbesondere Stahl, verwenden. Er kann aber auch in Vorrichtungen zum Schlackenabstich in beispielsweise Müllverbrennungsanlagen eingesetzt werden.

Claims

Induktor bei einem SchmelzengefäßP a t e n t a n s p r ü c h e
1. Induktor zur Erzeugung eines elektromagnetischen Wechselfeldes, der bei einem Auslaßorgan eines Schmelzengefäßes angeordnet ist und der zur Kühlung von einem Kühlfluid durchströmt ist, dadurch gekennzeichnet, daß der Induktor (9) wenigstens zwei Bereiche (12,13) mit getrennten Zu- und Abführungen (14,15;16,17) für ein Kühlfluid aufweist und daß die Bereiche (12,13) mit unterschiedlichen Kühlfluids beaufschlagt sind.
2. Induktor nach Anspruch 1 , dadurch gekennzeichnet, daß die unterschiedlichen Kühlfluids Flüssiggas, Trockeneis, Wasser, Wasserdampf oder Gas, insbesondere Druckluft, sind.
3. Induktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Kühlfluid des einen Bereichs(13) Flüssiggas, Trockeneis, Wasser oder Wasserdampf ist und das Kühlfluid des anderen Bereichs(12) Gas, insbesondere Druckluft, ist.
4. Induktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die wenigstens zwei Bereiche (12,13) des Induktors (9) getrennte elektrische Anschlüsse (21 ,22; 23,24) aufweisen.
5. Induktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Bereiche (12,13) des Induktors mit unterschiedlichen elektrischen
Frequenzen und/oder elektrischen Leistungen beaufschlagt sind.
6. Induktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das elektromagnetische Wechselfeld in den Bereichen zum induktiven
Aufheizen und zumindest in einem Bereich als Referenzfeld für eine Temperaturmessung oder eine Schlackendetektierung benutzt wird.
7. Induktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das elektromagnetische Wechselfeld in den Bereichen (12,13) zum induktiven Aufheizen und/oder zur Erzeugung eines Referenzfeldes für eine Temperaturmessung und/oder Schlackenerkennung und/oder zur Erzeugung eines gerichteten elektromagnetischen Feldes zur Ausübung einer Kraftkomponente auf die Schmelze benutzt wird.
8. Induktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein elektromagnetisches Wechselfeld in den Bereichen (12,13) zum induktiven Aufheizen und ein anderes elektromagnetisches Wechselfeld in den Bereichen (12,13) zur Erzeugung eines Referenzfeldes für eine Temperaturmessung und/oder ein weiteres elektromagnetisches Wechselfeld in den Bereichen (12,13) zur Erzeugung eines Referenzfeldes für eine Schlackenerkennung und schließlich ein weiteres elektromagnetisches
Wechselfeld in den Bereichen(12,13) zur Ausübung eines gerichteten elektromagnetischen Feldes zur Ausübung einer Kraftkomponente auf die Schmelze benutzt wird.
9. Verwendung eines Induktors nach den Ansprüchen 1 bis 7 für ein an sich bekanntes Rohr-im-Rohr-Verschluß-System (R).
10. Verwendung eines Induktors nach Anspruch 9, dadurch gekennzeichnet, daß die Kraftkomponente auf die Schmelze im Ringspalt (7) des Rohr-im-
Rohr-Verschluß-Systems(R) der Fließrichtung der Schmelze entgegengerichtet ist.
11. Verwendung eines Induktors nach den Ansprüchen 1 bis 8 für einen Ausguß in der Wandung oder dem Boden eines metallurgischen Gefäßes zum
Vergießen von flüssigen Metallen, insbesondere Stahl.
PCT/DE1997/002784 1996-12-11 1997-11-28 Induktor bei einem schmelzengefäss WO1998025718A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP97949973A EP0944448B1 (de) 1996-12-11 1997-11-28 Induktor bei einem schmelzengefäss
DE59706455T DE59706455D1 (de) 1996-12-11 1997-11-28 Induktor bei einem schmelzengefäss
AT97949973T ATE213440T1 (de) 1996-12-11 1997-11-28 Induktor bei einem schmelzengefäss
US09/319,383 US6052403A (en) 1996-12-11 1997-11-28 Inductor in a fusion tank
JP52607798A JP2001505487A (ja) 1996-12-11 1997-11-28 溶融容器における誘導コイル
DE19781390T DE19781390D2 (de) 1996-12-11 1997-11-28 Induktor bei einem Schmelzengefäss
AU53093/98A AU5309398A (en) 1996-12-11 1997-11-28 Inductor in a fusion tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19651535.1 1996-12-11
DE19651535A DE19651535C1 (de) 1996-12-11 1996-12-11 Induktor bei einem Schmelzengefäß

Publications (1)

Publication Number Publication Date
WO1998025718A1 true WO1998025718A1 (de) 1998-06-18

Family

ID=7814390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002784 WO1998025718A1 (de) 1996-12-11 1997-11-28 Induktor bei einem schmelzengefäss

Country Status (8)

Country Link
US (1) US6052403A (de)
EP (1) EP0944448B1 (de)
JP (1) JP2001505487A (de)
KR (1) KR20000057522A (de)
AT (1) ATE213440T1 (de)
AU (1) AU5309398A (de)
DE (3) DE19651535C1 (de)
WO (1) WO1998025718A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19819903C2 (de) * 1998-05-05 2000-09-14 Didier Werke Ag Fluidgekühlte, elektrische Stromleitung
DE10201355A1 (de) * 2002-01-16 2003-07-31 C G Aneziris Unterstützte chemische und thermomechanische Eigenschaften von feuerfesten Schlüsselbauteilen und Auskleidungen unter Stromzuführung und/oder mit elektrischen und/oder elektrochemischen und/oder elektromagnetischen Wirkungsmechanismen
JP4660343B2 (ja) * 2004-11-24 2011-03-30 新日本製鐵株式会社 溶融金属の注入用ノズルの加熱装置
EP3326735B1 (de) * 2016-11-29 2020-07-22 Refractory Intellectual Property GmbH & Co. KG Verfahren sowie eine einrichtung zum detektieren von grössen im ausguss eines metallurgischen gefässes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2433582A1 (de) * 1973-08-10 1975-02-27 Grohe Armaturen Friedrich Vorrichtung zur herstellung von gussteilen
DE3439369A1 (de) * 1984-10-27 1986-04-30 AMP Angewandte Meßtechnik und Prozeßsteuerung GmbH, 5100 Aachen Verfahren und vorrichtung zum detektieren von schlacke
EP0300150A1 (de) * 1987-07-10 1989-01-25 Amepa Angewandte Messtechnik Und Prozessautomatisierung Gmbh Vorrichtung zum Detektieren von in einem Fluss einer Metallschmelze mitfliessener Schlacke
US4972899A (en) * 1990-01-02 1990-11-27 Olin Corporation Method and apparatus for casting grain refined ingots
DE19500012A1 (de) * 1995-01-02 1996-07-04 Didier Werke Ag Regel- und Verschlußeinrichtung für ein metallurgisches Gefäß

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1681950A (en) * 1923-07-13 1928-08-28 Ajax Electrothermic Corp Multiple-path water-cooled furnace
US2277223A (en) * 1941-04-26 1942-03-24 Induction Heating Corp Electric induction furnace
US3014255A (en) * 1957-11-15 1961-12-26 Heraeus Gmbh W C Method of operating vacuum induction furnace
FR2518239B1 (fr) * 1981-12-15 1986-06-27 Air Liquide Procede et dispositif de frittage de parois refractaires
DE4125916A1 (de) * 1991-08-05 1993-02-11 Didier Werke Ag Verfahren zum induktiven aufheizen von keramischen formteilen
DE4320766C2 (de) * 1993-06-23 2002-06-27 Ald Vacuum Techn Ag Vorrichtung zum Einschmelzen einer festen Schicht aus elektrisch leitfähigem Material
DE4428297A1 (de) * 1994-08-10 1996-02-15 Didier Werke Ag Feuerfeste Düse und Verfahren zum Vergießen einer Metallschmelze aus einem Gefäß
DE19603317A1 (de) * 1995-08-28 1997-03-06 Didier Werke Ag Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens
JP2954896B2 (ja) * 1997-01-09 1999-09-27 核燃料サイクル開発機構 コールドクルーシブル誘導溶融炉からの溶融物抜き出し装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2433582A1 (de) * 1973-08-10 1975-02-27 Grohe Armaturen Friedrich Vorrichtung zur herstellung von gussteilen
DE3439369A1 (de) * 1984-10-27 1986-04-30 AMP Angewandte Meßtechnik und Prozeßsteuerung GmbH, 5100 Aachen Verfahren und vorrichtung zum detektieren von schlacke
EP0300150A1 (de) * 1987-07-10 1989-01-25 Amepa Angewandte Messtechnik Und Prozessautomatisierung Gmbh Vorrichtung zum Detektieren von in einem Fluss einer Metallschmelze mitfliessener Schlacke
US4972899A (en) * 1990-01-02 1990-11-27 Olin Corporation Method and apparatus for casting grain refined ingots
DE19500012A1 (de) * 1995-01-02 1996-07-04 Didier Werke Ag Regel- und Verschlußeinrichtung für ein metallurgisches Gefäß

Also Published As

Publication number Publication date
JP2001505487A (ja) 2001-04-24
US6052403A (en) 2000-04-18
KR20000057522A (ko) 2000-09-25
AU5309398A (en) 1998-07-03
ATE213440T1 (de) 2002-03-15
DE59706455D1 (de) 2002-03-28
DE19651535C1 (de) 1998-04-30
EP0944448B1 (de) 2002-02-20
DE19781390D2 (de) 1999-11-11
EP0944448A1 (de) 1999-09-29

Similar Documents

Publication Publication Date Title
EP2310538B1 (de) Verfahren und vorrichtungen zur regelung der strömungsgeschwindigkeit und zum abbremsen von nichtferromagnetischen, elektrisch leitfähigen flüssigkeiten und schmelzen
DE602004004147T2 (de) Erwärmungssysteme und -verfahren
DE60038224T2 (de) Induktives hochleistungsschmelzsystem.
DE1245509B (de) Plasmastrahlgenerator
DE2656398C3 (de) Heiz- und Kuhlkammer für Chromatographiesäulen
DE19843818A1 (de) Bedampfungsvorrichtung für Vakuum-Bedampfungsanlagen
DE2104525A1 (de) Kaltabscheider
DE2739483B2 (de) Elektrode für Lichtbogenofen
DE19651535C1 (de) Induktor bei einem Schmelzengefäß
DE1488839A1 (de) Einrichtung zum Trocknen der in elektrischen Apparaten enthaltenen Gase
EP0761347A1 (de) Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens
EP0915746A1 (de) Verfahren, vorrichtung und feuerfester ausguss zum angiessen und/oder vergiessen von flüssigen metallen
EP1427553B1 (de) Verfahren sowie eine vorrichtung zur herstellung eines metallbandes an einer rollen-bandgiessmaschine
EP0021219A1 (de) Vorrichtung zum Fördern oder Dosieren eines Flüssigmetallstromes in einem Rohr
DE19880178B4 (de) Einrichtung und Verfahren zum Gießen von Bändern aus Metall, insbesondere aus Stahl, in Zweiwalzen-Bandgießmaschinen
DE19603317A1 (de) Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens
DE19651534C2 (de) Verfahren, Vorrichtung und feuerfester Ausguß zum Angießen und/oder Vergießen von flüssigen Metallen
DE102008052571A1 (de) Diffusionsofen und Verfahren zur Temperaturführung
DE3031378A1 (de) Einrichtung zur entfernung von wasserstoffgas aus dem sicherheitsbehaelter einer kernreaktoranlage
DE3105129A1 (de) Ausruestung des abstichlochs eines schmelzofens fuer nichtmetallische stoffe
WO1998018584A2 (de) Verfahren, vorrichtung und verschlussglied zum angiessen von flüssigen schmelzen
DE69002936T2 (de) Ohmscher Erhitzer.
DE10237248B4 (de) Homogene, elektrisch-konduktive Beheizung von zylindrischen Innenräumen
DE4445494C2 (de) Einrichtung zur Detektion mitlaufender Schlacke
EP0443072B1 (de) Abschirmgehäuse zur thermischen Behandlung von Rotoren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997949973

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1998 526077

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09319383

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019997005228

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997949973

Country of ref document: EP

REF Corresponds to

Ref document number: 19781390

Country of ref document: DE

Date of ref document: 19991111

WWE Wipo information: entry into national phase

Ref document number: 19781390

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1019997005228

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997949973

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997005228

Country of ref document: KR